THE JOURNA๒

The (2)epartment of Kgriculture

or
VICTORIA.

Vol. XI. Part 6. \quad IOth June, 1818.

THE PIG INIUSTRY.
(C'onlinud from prage 255. Vol. X.)
By R. T. Archer. Senior Dairy Inspoctor.
IV.-FAITENING PTGS.

The spatem of feodug the sow has uheady been dealt with. ${ }^{\text {F }}$ We hay uon to consider the best nerthod of producing pork or baron of a quality that will command the hest class of trade, at the same time having due regard to the poobomical aspent of the bosiness whert alone will runble us to derive proft from the whertadivg.

The nbjuct of feeding pigs is to comworl forage into patatable and womrishing food of the lightest quality for wan in the most economical manoer. The quality most he sueh that it will suif the lighest ciass of trade. where the harhest prines are paid for a suitable mrtiele. This alone will moke the indastry remunerative. Formerly, the popular taste was for a heary weight fat haron, but during the last iwenty years the taste has undergone a considerable cbange, as at the present time what is in greatest demand is a young. lean, inhey, sweet. mildcared bucou. Fortumately for the producer also this class of product is the most economionl and remunerative to provide for the young pig has mroater poners of digestion and assimilation; and while a poung pig will be able to produce 4 pound of green pork out of about 4 lbs. of food. a lully-matured aninal or backfatter may take 6 lbs. or mone. So that, taking pollard at 1 s per busbel. or 6 of a penny per lb, in a young pig the pork would cost for feed 2 s/ud per lb; while a backfatter, taking 6 lbs , of pollird to $I \mathrm{lb}$. of meat. would cost $31 / 2 \mathrm{~d}$. In the former ease it mar be safely rerkoned that 4 d . per 1 b , on an average will be realized, while for the latter only 2%. to 3 . will be returned.

In addition to cost of food there are other expenses to be considered. whigh may be put at $1 / 8 d$. per lb.

[^0]5097.

L

Feedna.
The pir is the most economiral moat producer of all farm stock. i.c.. it produces more meat for the amount of food consumed than any other thimal. This is illustruted by the Following figures:-
(irajn reqtirged for 104 hbs, of Live Wemeht Gansed.

	-	Barle:	Maize.	Oat-	Pesse.	Wheat.
Pigs	\ldots	-118	485	472	439	452
Sheep	.	453	502	i] 8	522	582
Cattle	\cdots	1914	1.028	1,032	(1)	1.049

Anount of Purk prodicen per acre prom Varboys Crops,

-	Bushels peI acre.	Pounts of Grajn.	Grain mer 1h, of Meat.	Pork jer Acre.	-
Wheat	15 (30 Ibs.)	900	,	180 @ 4 cl .	$\begin{array}{ccc}\text { d } & s & d . \\ 3 & 0 & 0\end{array}$
Burley	35 (50 lbs.)	1.750	5	350 ..	$=5160$
Oats	40 (30 lbs .)	1,300	B	320 ,	$=568$
Maize	40 (56 lbs.)	2, 2.40	5	440 ..	$=794$
Pease .	25 (60 lbs.)	1.500	5	300 ..	$=500$
Green clover	$5 \frac{1}{2}$ tons	$=12,320$	15	821 ,	$=13138$
Green lucerne . .	3 ..	$=6.720$	16	448 ..	-
Groen lucerne (4 cuts) $=$	12 ..	$=26.880$	15	1.792	24140

Ayerage Btrth Weight and Weekly Gains of Pigs before and after Wehxtro.

The heaviest pig in these litters weigbed 3.6 lbs . at birth. and the lightest 1.6 lb ; the average for the lot being 2.5 lbs . Duriag the first week after birth the pigs made a gain of 1.9 , or an increase of 76 per cent. The tenth week shored a gain of 5.4 lbs ., equal to 14 wer cent For the seypententh wept there was a oain of 78 ths

Weekly Gatns of Pigs from Birta to Materiti.-Winconsin Stathori.

Age or Weight of Pigk.								Weight M I ${ }^{2}$ as	$\begin{aligned} & \text { Gain } \\ & \text { io } \end{aligned}$
								Ibs.	Per ceat.
At birt		' ${ }^{\text {a }}$	\cdots	\ldots				$2 \cdot 5$	
Fi,st weok								4.4	76
Second week ..								$7 \cdot 0$	50
Third week			.	\cdots				$9 \cdot 8$	40
Fourth week			.	.		.		$12 \cdot 5$	28
Fiith week			.	-				$15 \cdot 6$	25
Sixth week			.	.				$18 \cdot 6$	19
Seventh week			\cdots	\cdots				$22 \cdot 6$	$\because 2$
Eighth week			.	.				27-8	$\stackrel{23}{ }$
Ninth weok			.	\cdots	.			$33 \cdot 1$	19
Tenth	week	\cdot	.	\cdots				38 -	16
Cinder 100 pounds			.	.		.		78	7.0
,	1.00	\cdots	.	.	.	,		128	6.0
.	200	"	.	.				174	5.0
",	950	.	.	.				228	41
",	319	\cdots	.	.		.		271	$3 \cdot 8$
	3.5	\cdots	..	.	\cdots	\cdots		320	$3 \cdot 1$

As showing the increased cost per pound of gain with the increase of weight, Professor Henry gives the following trible, which is the result of feeding over 2,200 pigs:-

$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { figh. } \end{gathered}$	Average Feed per Disy.	$\begin{aligned} & \text { Feed } \\ & \text { eaten Dally } \\ & \text { per } 1001 \text { th. } \\ & 1 \text { ive } \\ & \text { Weight. } \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { Gain } \\ & \text { per Jay. } \end{aligned}$	$\begin{gathered} \text { Feed } \\ \text { eaten for } \\ \text { pach } 100 \text { tbs. } \\ \text { of } \\ \text { Gain. } \end{gathered}$	Coss per llo. With pollapi at is. per Bushos.	
					Live Weight.	Carease.
ibs.	llos.	lbs.	16 s.	lbs.	Pence per $.1 b$.	Pence per Ib.
15-50	0.223	5.95	$0 \cdot 76$	293	1.758	$2 \cdot 197$
50-100	$7 \cdot 30$	4.32	. 83	400	2.40	$3 \cdot 0$
100-150	+.79	3.75) 10	437	$2 \cdot 62$	$3 \cdot 37$
150-9 90	$5 \cdot 91$	3.43	$1 \cdot 24$	482	$2 \cdot 85$	3-61
200-2.50	6-57	2.9]	1-34	498	$2 \cdot 98$	$3 \cdot 73$
250-3010	$7 \cdot 40$	2.34	1.46		$3 \cdot 06$	$3 \cdot 82$
300-356	$7 \cdot 50$	$2 \cdot 35$	1.40	533	3.21	4. 91

Prefaration of tefe Food.

Cooking Feed for Pigs.

Heary says:--"While the practice of steaming roaghage for cattle has been universally abondoned whereser underaken, much is still said concerning the advautages of cooking feed for swiue. This suhject has been carefully investigated at our stations with practically concordant ressits, so that we are not withonf definite help on an important topic."

A great number of experiments have been conducted to determine the ralue of cooking the feed for pigs, the results being alroost withont exception in favonr of not cooking. Including all the tests, so far as
known, the average sbows that 476 lhs of wacooked meal or grain wre requited for $]$ the of porls; while after it was cooked 50 b lbs. were reguired. This shows n loss of 6 per revt. of the feeding valme through cooking.

Sivaling Moal repsus Dry Meak.
Comprang the vahte of teerling meal or grain sorked with water as agalust the same lemed dis, tith lhs of soaked food was equal in

 of whaluing over "ooking.

> Wiring this Fecd.

It has been fomed lat by mixing fwo or tnom grain feeds, the
 grater the rarien the lether the desult.

The rimete of Smbitek.

In lesting the value of shalter in pig feeding it was found that

It_{1} is estimated that tbe manimane requibernent of the pig js abont 2 ths, of feed tqual to pollard fox every loo low, live reight.
 into meat. Provided they are propery bred. the more they wan be

Esimelse.

The results of texts pstronding ower fom reats, momparing the feeding of pirs kept in smald porx and allowing cxereje in sards or rum of pastures stum flat houst in perts of sties aroraged a dails
 of incease: while those allowed a ran ine geased at the rate of 1.1 th.

 of madiv or 28 per fout. of the feed in making 3100 bss of pork in favomit of vand or pasture over elose confiument.

The Canadinn system is generally to let them mon on grass while fatreniag. Experiments recently condurted on an extensive serale ut the Thimois Fxperiment Shatiom-thitem experiments with fis pigs.-prove that rounc and mrowiug jigs reguire pleaty of excreise. This appears to bave its chaf valae in its inflaence over the respirators and digestive organs. When changed form a place where they hate pleaty of exerese to where they have little room, they mat less, and the result is sumaller and usualls more expensive paios.

Water.

It has been mentioned that the food for fattening pies should not be fed in a sloppy condition. bnt about the consistency of oatmeal porvige. Careful investigation goes to show that the proper proportion of water to feed is about 3 to 1.

It the Yorkshire College Famm two pens of six each were fed equal parts of barley-ment and pollard. In one case the mixture was
soaked with four times jts weight of water, whil in the other only fwiee its weight of water was used. The former was fed in a sloppy coodition, the latter was of the consistence ol oatmeal porridge. Both lots were allowed as much food as ther would eat and those having the drier food had access to a water trough. In right weeks the pigs getting the wetter feed increased lin 334 liss., while the other araned 458 lbs. (live weight). The pigs of the former consumed 1.90 - 4 lus of food whilt those of the latier ate 2.254 lbs. The proportious of food consumed to weight gained were-

$$
\begin{array}{lllll}
\text { In chose getting much water } & . . & \ldots & \cdots & \text {. } \\
\text { Io chose geting less water } & \ldots & \cdots & \cdots & \text { is in }
\end{array}
$$

The pigs fed on the drier food thus made $32+$ lhss. more inerease in live weight, and riedded about 10 hos more pork; while each 1 lh . af inemose in live whight was ohtained by the expenditure of 8 of 1 Ih. of fored luse than with the nother animats, egual to 1 ind per th. The extra bosi of food was about 19 s. but the value of the increased ynatity of pork was about 42s. Gid, Jeaving a net gain of $2: 3 \mathrm{~s}$. 6d. for the pen resciving the drier food. The estasive ferding experiunints randurted by Marris for the Wiltshire Conty Conncil prove also that ${ }^{3}$ lhs. of water or 3 lhs. of skim milk to 1 l . of meal are tho best propurtions.

A plentiful supply of waler shonld always be provided for pigs to driuk: and also. where possible, to wallow in, particularly in hot meabor. These amimals are often severely affected by bout, and on hot days a careful watch should lop lept in ser that they are not suffering. If they are they should be well doused with water.

Femb.

I'cas,-This iced is rich in protein, and fonseguently good for young pigs and prodnction of leas bacon. If fid whole. ther are very palatable but a big perceatage is wasted, passing throagh the systom nodigested. Yeanaml is a valuable feed but should never be fed mouc; its "hose leary nature renders it difficult to digest. and the pigs are ant tos sickev. It combines well with barley or barles and pollard. A fer well-ground mats muy also be added.

Beans-While this grain is rieh in protein, and will be valuable in enriching the ration in this requirement, if fed in any considerathe quantity has the wadesirable result in producing soft bavon-one of the morst of fandts. Wben available, it should be fed in conjunction with other grain. It is a valuable crop to grow, however, as very heary yields cau be obtained.

Barley.-1t may be safely said that this is the best of all the grain feeds for the production of bacon, taking into consideration both quantity and quality. It should altays be ernshed, and for young pigs should be mixed with pollard, a littie barley meal to commence with, and gradually increasing the proportion.

Wheat.-This is a valuable feed for bacon, and would often give better returas when converted into pork than sold in its natural condition. As 5 lhs of wheat will produce 1 lb . of pork, on an average, I bushel of 60 lbs . will produce 12 lbs . of pork, at 4 d gives 4 s . per bushel for the wheat; or, deducting $1 / 2 \mathrm{~d}$. per 1 lb . for working expenses, would return 3s. 6d. net for wheat. Split or damaged wheat may be
torned into profit in this way; and when market rates are below the price indicated, the above profit may be derived by converting it into pigs.
fiyc.-This bas a little lower feeding value than wheat. When sonpared with barley. it rill produce about the same quantity, but the gralits will be inferior, and it should be fed in conjunction with ofther food.

Oats.-Where nats are largely used for pigs the husks are removed, and then they are excellent feed both for quality and quartity. They are ot 100 fibrous a nature for romg and fattening pigs, although a little crushed fine may be mixed with other food. The famous York hams are supposed to owr ruuch of tbeir excolent flavour to the fact that the pigs are largely fed on oatmenl.

Ool bramming is generally cheap, and, being palatable and rich in protein, may be used with advantage.
pollurd.-This is an excellent food for pigs of all ages and for all purposes. It has the reputation of producing bacon of rather a soft matuse, and consequently should be fed with some other grain. When ted with wkim rilk it gives very satisfactors returns.

Oit Caties are expensive, and huve not bern lound very satisfactory for pig Feeding, so we may leave theur out wi consideration.

Bron, altbough rich in protein, must not be Jooked upon as a fattening food. While it is a very good milk producer, fed to the suckling sow. The principal value of bran is medicinal. helping to keep the bowels regular. A careful watch wnst be kept to see that pigs do not become constipated, as this quickly leads to or is indicative of serious trouble it not corrected. Bran in the food is very valuable for this purpose.

Maize. In America, where maze is very cheap, it is largely fed to pigs, and produces a large weight of meat for the anoluat comsumed. In this conntry also in thase distriets where maize is grown extensively, and owing to distance from lailway communication, and consequent diffientits in gettiog it to market, it is very largelv converted into pork. Whom forl in large gusntitios the ruality of the Besb is inferior, bcing soft oily, and not a gond colour. When fed sparingly, however, together with other grain, such as barley, pollard, and skiru milk and potatoes, the results are sntisfactory. Maize on the market is seldom very low in this country, and generally other grain foods are mote economical. In the Kast Gippsland river flats. where nsually from 80 to .100 bushels per acre of maize is grown, and it takes about 5 lhs . to produce 1 lb . of pork, ahout $1,000 \mathrm{lbs}$. per acre would be prodated, which at 4d. per 1b. amonnts to $£ 1613 \mathrm{~s}$. per aere.

Maize is not good food for young pigs if fed by itself or in any quantity. It is very deficient in mineral matter, of which young pigs are not able to extract sufficient to build $n p$ the necessary bone structure. Henry gives results of testa illustrating this where pigs fed on maize lacked density of bone 10 sueh on extent that the breaking strength of the thigh bone was only 380 lbs ., while at the same time that of pigs fed on milk. blood, and poliard was 503, a difference of 32 per cent. Maize-meal fed by itself is close, heavy, and difficult to digest.

Maize Carn and Cob Meal.-While the maize cob itself is highly fibrous and imutritions, it beeomes a valuable food when ground into
meal together with the grain and owing to its mechanical effect in lightening the maize meal it increases its digestibility. This is a method of converting a wast product into a valuabla food. In the maike-growing districts tons of cobs way be seen either buruing or left to rot. Machines for grinding the corn and enb are now on the market.

Mall Coombs, or the sprouts from malt, is very rich in proteib, and sweet. It may be mixed with other feed, and as it is generally cheap will hase the effect of botb enrichiug and reducing the cost of feed.

Rice Ifal is a feed largely used in Britain, bat seldom heard of bere. It is fairly rich in protein and phosphonic acid, and may be considered equal to barler. It should be mised with some other food

Separator Shim Vith:-The pig will give the best returns for the by-products of the dairy if these are fed ill a proper manner. To oltain full returns, however, it should he fed in conjuaction mith grain, \&c. The tables given below ilastrate clearly how mills should he fod to secure the best results.

At the Wisconsin Experiment Station, Professor Heury condueted nidetera trials with 88 pirs of all ages, to determine the valne of seprator nilk iu combination with maize menh. The proportion of milk to meal varied from 1 lb , to 9 lbs of milk for eat 1 Ib . of meal fed, and the followivg table clearly shows the result: -

Sermeator Skim Mith and Maize Meal requtred for 100 dhs of Gain.

When Feeding.				Number of Trials.	Feed for 100 hbs, of Gaia.		
				Moni.	Mak.		
1 lb . of Corn-meal to 1 to 3 lbs , skim milk					3	321	585
1 lb .	,	3 to 5\% lis.		8	265	1.048	
1 lb .	*	z^{5} to 7 l lbs .	,	5	- 250	1.434	
1 lb .	,	7 to 9 l hs .	,		- 207	$1 \cdot 616$	

Assuming that 500 lbs . of maize-meal fed hlone would have produced 700 lbs. of pork (the average of a namber of trials was 532), we find that with the Grst group 585 lbs . of skim milk cflected a saving of 179 lbs . of maze-meal. On this basis. 327 lbs of skim milk is equal to 100 lbs. of maize-meal, when fed in the proportion of not exceeding 3 Ibs . of milk to 1 lb . of meal. Taking maize-meal as a standard, we find the values of skm milk, when fed with maize-meal. in the varying proportion as follow:-

The average of alt : -475 lbs skim milk equals 100 lbs maize-meal. This places a moner value on separator skiu milk, The tollowing table shows at a glance the comparative value of separator milk mben fed to pirs, combined with meal, in different proportions and prices:-

This table shows that when maze is worth 7s. 2d. per bushel, separator milk is worth. for pirg ferding, 71 per per 100 lbs. provided that not more than 3 lh s. of skinu milk are fed with each 1 lb , of meal. If however: 9 lbs , of millk be fed with each 1 lb . of meal the milk is worth only $41 / 2 \mathrm{~d}$. per $]$ on lbs.. and the average ralue is $31 / 2 \mathrm{~d}$. Again, the value of the milk increases in proportion as dows the price of meal. So that when maize is worth 3s. 6d per busbel. 10 gailons of skina milk is worth 1s. Ild.. if fed in proportion of vot exceeding 3 lhs. of mill: to 1 lb , of meal. This shows the value of separator skim raile for prodnction of pork or bacon. The Dabes place the ralue at 6 lbs of mitls equal to 1 ib. of meal. Separator mill is all dicestible, it is rich in protein or nitrogenous matter. which is responsible for the production of lean mrat and also bone, so being particularly valuable for roung pigs, and the quality of the meat is high.

Buther-milt:-Provided wo water is added, this is of equal ralue to skim milk. It must be borre in mind that butter-unilk from factories atmost always coutains a considerable amout of added water, sometimes as much as ouper cent.. and conserguently by itself is not a suffirient food for pigs. Many iostances can be given of considerable mortality among piss fed solely on butter-milk: practically from starvation, bechuse they were not able to consume uough butter-milk plas water to derive sulficient butriment to satisity the demands of nature. But when the deficiency in solids is made up by adding mat. or even grass, roots, or other fordder. pigs are fond to thrive on butter-milk.

We have to remember that a pig requires abont 2 lbs . of feed equal to pollard per day per 100 lbs . live weight for the purpose of keeping up the system; that is, to keep up the temperatnre repair, waste of tissne, 踝. and that butter-milk contains 90 per cent, water and 10 per ceat, soids. From the results of trials with some hundreds of pigs, it is found that pigs of 50 to 100 lbs . live weirbt consume on
an average 3.35 ths of ferd equal to pollard per day. l'igs of $100-150$ tbs. live meight wilk eat 4.79 lbs . and those of 150.200 lds consume 5.9 lbs per day. It will lee seen from this that it momb be nerensary that they sbuld cousume in the last case 59 los., or practically 6 callons of butter-milk. for the same result: and shouk the buttermilk he diluted by half, as is oftro the case, it would require half as much again, or 9 gallons, fo produce this resuif.

Whey,-Tluis has not nearly the feeding valne that sepratar milk or buffer-milk has, especiatly for young aminals. nor will il produce as good yhality hacou, unless foud rich in protein be used in conjuaction with it. This is duc to the fart that only a small perecotage of protein remains in the whey. the bulk of of being removed in the form of cors. A high permbtage of sugal homerer. remains, and when mixed with food ristb in protein, such an peas, beans, \&i". is a valuable food, particularly as it is asily digested and there is no wasto. Whey has Ineen foud to have a higher feeding value than turnips $]$ lly. For 1 lb , when ferd with mens. The l) mons find 12 lbs of whey egual to
 This value can only he ubfaind hy freding if with a gond proportion

Root Crors for Feeding.

dill the root erops provide valuable fig food when fed in conjuare fom with grain, and. unlike grain: feds. the roots are better cooked after having the earth remored by washing. If this is mot done the effect will probably he that it rill soour the pigs too much. In the case of potatoes, the water must be throma away, not mixed with the food, as there is a substuace in the skin that has a prejudicial effect on the bealth of the pig il allowed to consume it. Artichokes. potaloss. mangels. ineet, carmets. turuips. parsuifs pmopkins. mbage -all itre grond. With regard to rabbage, Sanders Spencer says they are liable to aluse constipation, which if not remored will fegnently be followed by fever more or lass dangerons. Some hold that thmips fed to pregmant sows are liable to produce abortion. Maygels and furnips are not conducive to prime gaality pork.

Folatoes hare been proved to be valuable as a faod for prodaction of pork when fed in combination with grain, and more especially with the addition of skim mik or wher. The most satisfactory of all being d lo. grain to 3 lbs. skimi rilk and ; lbs. potetoes. Four lbs. of potatoes are equal to 1 lb , of grain.

Sugar-beds.-Digs seem to prefer sugar-beet to almost any other kind of roots. Ouly limited guantities of roots should be fed to fattening or very yonng piges.

Arfichokes (Jerusalem) - Of this plant, Mr. Potts, Principal of Hawkesbury College. π rites:-"This is a flosering perennial plant which has in the past been orerlooked as a valuable food for pigs. It grows from 6 to 9 feet high, and, when in bloom. seen from a distance the crop looks like one of miniature sunflowers. The stalks are frequently used for feeding sheep. or conversion into silage, and the tubers afford a palatable and sucealent food for pigs. The plant is very persistent in growth. and if raised in suitable soil is diffieult
to cradicate. Enough tubers, as a me are left each year to continue the crop. hence it is wise to set apart a permanent paddock for it, or the odd eorners of a farm or waste places of little value for other crops may he used for growing artichokes.

The plant is extremely bardy: it resists frost and drought. Whilst the hest erops are raised on good mellow tomens, proftable rields are secured on stifi clay lands. light sandy or gravely soils.

The land is best suited where the drainage is good; in fact, any sail suitable for potatoes will answer for artichokes. It is a crop that regures little attention when it is estublisbed. The soil needs thorongh "ultivation. It should the decply ploaglied abont May or June. During the minter it may be barowed occasionally. lighty re-ploughed about September, and well manured. The tubers are then pisited by dropping them intofurrows 3 feet apari with a space 2 feef between the thiners. Tf the sets are sullall, plant whole, while large ones may be cut. Coner be thraing a furrow over tbem. About 4 ent. of tubers mill plant an aere. The erop matures in fire months, Should raiu Gall immerliatdy after planting. the harmo may be rin over the laud to fine the surface. This should be repeated whon the phats are + inches bigh. It checks araporation, destrors weeds. and wild not injure the crop. Later on the cultivator should be lept moving betwen the rows about once a month.

Whey the erop flowers and the tops droop and die. about April or Wens. it is rendy for barvestitg. The average yield will br from 7 to 8 tons per acre.

Two varieties have been tested here, and gave the following resulits:-

> Jerusalem, White, 9 tons o owt. per acre.
> Jerusalem, Pinh, 6 tous 26 owt. per acre.

For feeding pigs, it is best to turn thean into the crop to root onf Uhe 1 abers. It must be remombered that, where it is desired 40 confinue the app, the piass should be removed before all the tubers are caten.

Fow foods are more relished by pigs. The tuber in the raw state is rery autritious, mote especially for pregnant sows and also sows reduced in weight and condition after suckling and weaning hig litters. This class of food acts as a diuretice or promotes a heathy action of the kidneys in secretiog urine; it relieves constipation and stimulates liver functions. One acre will support twentry soms from four to six months.

Young growing pigs evidence considerable growth on being fed with them for a short period. The exercise obtained in harpesting or rooting op the tubers has a beneficial infinence. It is especially notable that articholes are very digestible. The ontcome of a number of tests go to show that for fattening purpases these tubers must be given with grain, and bave a similar result to feeding with ordinary potatoes. 325 lbs wheat. fed with 890 lbs artichokes gave 100 lbs iacrease."

This crop was extensively grown for pigs by Mr. Syme, at Dalry, near Irealesville.

The average composition of artichoke is shown here in contrast with the potato:-

-	Water.	Ash,	Protels.	Carbohydrates.	Fut.	Nutritive Ratio.
Artiehoke	79.5	$1 \cdot 0$	$2 \cdot 5$	$16 \cdot 7$	-2	1\%
Potato	$78 \cdot 9$	$1 \cdot 0$	$2 \cdot 1$	17.7	- 1	1.86

1. is foumd that about 30 the of artichokes will produce 1 lb . pork. which at fd amounts to approximately E]0 por aere.

Tarcs. (lovers, and Lucconc ure all valuable feds when fed in coujunction with more coneentrated grain or mill oftal.

Kape is a very valuable food, and can be either pustured or cut and led to them in the pen.

Holasses may be added to the food in small quantities, but unst vot be looked upon as a foud, bnf more as an appetiser. It will also act. as a laxative.

Fruit.-The uaste of the orehard may be tumed to profinable account by rombining with grain, and for this purpose may replace roots.

Salt.-A liftle salt is necessary for pigs for promotion of digestion, but it is best supplied in the form of a condiment, as advised in a previous article." diwent experiments bave proved the value of this muxture when added to the food daily.

Bom-nichl-Growing pigs requise to draw extensively on the profeis ot the fond for bone-forming waterial to such an extent that other ingredients in the food are often to a large extent wasted. When one tathlespoonful of bont-meal per pig has been added daily to the feed, it has been found to save 25 per cent. of the food required when no bonemeal was fed.

A summary of the restilts of the different methods of feediag. wher presented in concrete form are safticiently strikihg:-

Assuming that it costs 3a. per ib. for prodnction-
Cooking the food increases amount required 6 per esnt., increasing cost 18 of a penuy:
Crushing anainst feeding whole reduces amount required T per cent., reducing cost 21 of a penny.
Soaking thoroughly reduces amount reguired 7 per cent., redueing rost .21 of a penny.
Grinding and soaking as against cooking reduces amonot reguired 13 per cent., redncing cost .39 of a pennp.
Shelter as amainst exposurt rednces amount required 25 per cent... reducing cost. 75 of a penny.
Mixing two or more grain feeds reduces amount required 20 per cent., reducing cost 6 of a penny.
Clover or lucerne bay soaked reduces amount required 30 per cent., redueing cost 9 of a penay'.
A mature pig requires more than young-rednees anount required 33 per cent., reducing cost one penny.

It is not inferred that the whole of these savings can be effected. bat it indieates the lines on which feeding should be conducted, and the reasons therefor.

It mast be borne in mind that the pig. like the horse, has commaratively suad intestinal eapacity, and consequently requires its ford in on comerutated form, ublike the cow or shaep. which require hulky food.

When incereas. in weight is spoken of. live weight is genemally meant ; the difference tuennem font and urrass may be taken as 25 per (emp)., or one-foumth.

> Pル Mavere,

Few farmess appear to realize the rame of pirs manue, or we wonld not spe sombly qoing to waste as is the case on the matority of the farms in this sitate. Jost farmers have prowed that jnerwased
 ficial hature, hat do mot trombe to conserve the more valuable material they have in fle pigereries. for besides this containing all the chomical Wenernts noguind by growing mops. it is teeming with myrind.s of micro-organisms which are neecsand to enable the plants to make nse of phant ford smpolicd. la should be understoud by pig feeders that every thi of food hought aud fed represents so monch manure nude atailable in a more valuable form than it was originalle. The following table gives the approsimata value of the madure from every lon of lood given to pigs, and should show the necessity of making provision for properly conserving the manare and that purehasing food for pigs is an indirevt way of manring the land:-

Boussingalt'sexperiments give the following results:-

Or, in other words, where piss are fed on clover and skim milts through summer, and topped off with half peas and half maize, each 1 lb . of pork leaves manure to the value of 1.875 d .

The Feed Hopper.
This system of feeding has given good results, and has the grent advautage in saving of labour: The ihsitation given below suff. dicurly pxplains the sestem. This hoppor is made of inch boards, and cousists of an upright hox 1 font sequare by 3 feet high, with a forizament lox f fort he: fent by: in inver at the botrum. The urwigh box bokeds the surpers of ferk and the lorizontal hos is made soms. buaturthe feer ans the pix. ront- it desme The bettom

 : All ine beed to the outler. Thae
 ome site of the "uming liox. and is ahne $1 \frac{1}{2}$ ibeh whle varine stixhtre with the kind of fed lused. The elifforent kinde of few ane sulplient io separato herpers. that the piose wan selert

FEEI) HOLPPRR.
 a frood sestem. Othernise it will not give se grood results as when the

To Estimate the Teggit of a Prg by Meagure.

It reguices considerable experience to judge the weight of a pig. and it almost necessitntes hejug comacted with slanghtering. Where aluge number of pigs are fatitened. patform sceles should le fixed ins the race, so that they can be run on sud weighed with very liftle trouble.

Their weght way be extimated very closely by measuring in the following maner: :-

Tabe the girth just behind the shoulder in fect and inches. The lengtb tron that point on top. along the curve of the back to the rool of the tail. The head and peek weighs about one-sixth the weight of the form guarters, and is wamated al ahout one-eighth the value. The girth and length as above. calculated by the rule to find the solid content of a cyliuder, each cubir foot equals three stomes of it the. (42 lbs.), and one-third of a font, or 376 inches. equals 1 stone. So if the contents in cubic imehes is divided hy 576 it equals irnperial stones, and 8 stones 1 ewt

Rule 1. Sguare the girth and maltiply by the length, botb in inches. and the product. multiplied by the decimal 07958 , will give the contunt in cubic inches, which divide by 376 and the result is the weight of the animal in imperinal stones of 14 lbs. or divido by 41 and the answer is in lbs.

Rule 2. Multiply the square of the girth by the length, both is inches, and divide the product by 7238 . and the quotient is the weight in imperial stones.

TOMATO CULTURE IN YCTORIA.

By S. A. Cock. Orchard Supervisor, Bendigo and Worthern District.

The cultivation of the tomato in Victoria is steadily growing in to an important industry. During the last thirty years great progress bas been made in ifs production, and to-dyy the eulture of this excellent furit is almost general. Tomators. to-day are extensively nsed eithar whole or in the ruakiog of salads and sandwiches for dessert. In the phat the tomato was almost exclusjuely nsed for salace. The uses of this delertallo conserm are rery varied and are rapid!increasing as an adjuct to the culinary art. Tomatoes are also used larguly for chutaey, and in their green state for picktes.

Marbet Pbosrects.

The prospects of the makel are cxedlent. Locelly the demand is : growing ouc. imth from the stand-point of the frestind presered

platc. 1, Gemeral Virw of Tomato Plantation, Chineae System, Eebuca.
fruit trade. For the Iner-State markets, Victoria is producing sance. pulp. canned tomatocs, and pickles, with a gruat certainty of large expansion in trade, and the orersea markets. Canada. Africa, Cevlon, and parts of Asia, are opening up for sauce and canued fruit.

There are no statistical data avalable as to the actual annual production of tomtoes in Yietoria, bat probably the annual producfion is abont 600.000 busbels from all sourees. The area producing this in kitchen gardens and on commercial plautations is not less than 1,000 acres. Tomatoes prodnce as much as 1,500 bushels to the acre, but the average yield can be placed at between 500 to 600 bushels. In the warm northern areas the objective is the prodnction of early market froit; this entails much labour and care
in protertion against frosts. Khrfy fruits comuland als high as $\mathfrak{t l}$ per bushel case in November and December. and when prices fall to below 3s. a case, about February. production veases along the Murray and north of Bendigo, as factory prices are umbennerative when freight has to be paid over long distances. At Bendigo the season is a longer one, as when market prices fall the factories are locally athilable, and this also applies around Melbourbe and other fantory centres. Factory prices for the last three yars are as follow:-

Flate 2.-Large Red Tonath, Staked and Trellised. Bendigo
Both in market and factory, fluctuations in prices, according to season and denand, are sure to occur, and there is no attempt to regalate factory prices at present. The eultivation of tomatoes on a commercial scale is a business that rerpairs constant vare and attention from the time the seeds ar planted until the srop is gathered. It is a bighly protitable crop, but requires intelligence to insure success.

Varteties

Tomato-Lycopervicum escrilentum (Tournefoot). Natural order, Solenacaea. A pative of tropical Sonth Abuerica. General charac-teristies-Annual; height. 2 feet to 6 feet; leaves, unequally pinate; leaflets, cut; flowers. yellow; numerons; fruit varies in size and shape, red or yellow in colour in different varieties. The cultivated list of
 manmay added. The following are the reguisitex lor a matrot fomito:- Farly ripering. smoth skin, solid fiesh. size large fo mocium.
 edour shond de bright red. In phanting for matree it is desimabe

 of dave.

Variotice racommented and rhiofy grown:-

 aluast swooth; colous, beight red. The most gevexally oultivated variety

Farlima.- - Ieasy burer and very marly: frait, medium to harge; fesh. solid, fine thvour; skin, very smuoth: colour, brigh! red.

Vila Seca (Spanish).-Good encly varioty fruit ripens all toguther: fruit. large: flesh, sotid. grod flavour; skin, smonth: colour, bright red.

Chalk's Early Jemel-Early and good bearer; frict, large; Hesh, solid, good Hayour: skin. smooth; colour bright red, almost scarlet.

Wilding's Early Prolific.-Very heavy bearer. and early; frait, modium; flesh, solid, good flavour; skin, fairly smooth; colonr, brioht red.

Kicy s Early Irolitie.-Best desseri variely; dwarf, and bushy in habit of gronth; hent bearer: froit. medinm; thesh, solid. delicious fiarour: skiu. smaoth: colone hright red.

Other red rarieties of eacellence-
 Farliest Pink.

Iellom variolins of pacellenm hard ats dessert or for garnishing in sitlale -
「herro Jarge "ellow.

Rusing Plivers.

A bof hed js vecossary for tha misior of the romm phanis. The namal fyer of hot hed is shown in blate 3. The but hed mans also be

 Plants iu Tins.
construeted by digering out the earth to a deptl of 1 foot ame bilding "fature over it. The manure to be placed in the bottom of the firme shombl he perfocty fresb stable manner, and during the course of a tell dars shond be turaed ovee or twice before placuig in the frame. When placed in the frame it slould be tighty packed. about 15 irshes in depib is necessary. On this is placed a $\dot{4}$-inch layer of well-rotted stable manure or, preferably, good lonmy soil free from weeds, and on this the secds are sown broadeast. The seeds are lighty covered oper with fine soil to a depth of not more than for iach. Sbould the soil or rotted manure on which the seeds are sown be very dry. it is adrisable to lightly sprinkle the surtace with water before sowing the seeds; this is, however. rarely necessary. When the seeds are sown and eovered witb soil. the glass is placed on the frame, and not removed natil the seeds have germinated. The plants should he allowed to
grow for about two or three weeks, and during that time the glass can be gradually removed on sumpy dars. This will prevent the young phats from growing too spiadly. The proper tspe of plant to ain for. holh in the hot hed and the pold frame, is a stock plant with a buish-arewn tint on the stom. This is onis achievect by hardening according to meather conditions; an erea temperatare of io to 75 degeres will be found "god groide to work by in the bot frame. When the plants are suffiriently large say fourteen to twedy-ode days whe, they shonkl he prieked onit singly, with a bittle earth aftached to the ront of each ydani, not then, with more enrth, placed in a circle of zinu or tin of about 3 inches diameter, as sharm, Plate 4 by + . If tius or zine are not procurable paper fundek "an be made, aud flis systum is largely in misw with the Chinese and seryes the purpose equally well. The young plants are then placed side by side in the cold. ar bardening-off frame as shown in Plate 4, the interstices between eact! tio or prapre bag being filled with soil. A cold frame has to folfom beat, the reguating of temperature becessary during the havenomeof prodod being with glass. Calico or hessian covers are also used ons the trot and cold frames as shom in Plates ar, 4. These ure made the full length of the frame and wan be drawn over the whole length of alass if pecessary, or the glass may be removed and the ratico or bussian covering used iosterd on the mold frame. Plants mas also be transfered from the hot to the cold frame withont tins or naper and be put out in lines 4 inehes apart each was in 6 inches of good soil. and. when removing to the open, the soil is ent between each row to fi inches deep and divided at every 4 inches so as not to disturb the earth irom the ront of the vorug plant. The plants remain in the cold frame matil required to be planted ir the open. The roung plants will require watering. In the loct frame great care is neresary io guard against overwatering, as ir may induce damping ofi. Should watering be neessary. it should be given ouly on warm days, or very sparingly during cold and cloudy weather. In the cold frame the yoong plants shonld be matered lightly after transfereuce from the bot bed, and shond be shaded for two or three dars by rolling the calico or hessian enverings over the chass. When the transferred plants biave struels root the coverings should be kent off the glass in the day time, and the mants ventilated and watered according to the judgment of the grower. Watering and pentilation are tmo very important factors and reguire much attention.

Seed is som in June in the Northern and Murray distriets. and the vonng phats removed to the open in August. In Bendigo. late June and Juiy are the montbs in which seeds are somen, and the plabts removed to the open in September and October. In the Midlands and the Snuth, the time of sowing is Jaly and Angust, and planting in September, October. and November.
(To be continued.)

Chlorophyll or leaf-green is a compound of nitrogen. When a crop does not get eaough nitrogen from the soil. its colour is bad, and nitrogenous manares on worn-out or poor soils improve the yield. But the lack of colour may also be due to water troubles--either too much water or too little.

SUOOESSFUL POULTRY-KEEPING.

Valuable Adjunct to the Farm.

By A. hart Poultry Erpmot.

Hints to Beginners.

The value of the poutry industry in our State has increased to a great extent dariag the last five years but it may still be rearardad as being capable of much improvewent. The possibilities of poultrykeping offer great advantages to those who euburs io the industry un coreret liues. No other husioess will produce a return quicker: no other stock will return as wuth per acre, and nothing else on the farm will mottiph so quink as fowls. Combined with this is also the fact.

F'ig. 1.-Poulry Shed Spstem, 15 birds or more in a pers 10 ft a fof ft .
that no country in the world is more suitable for the development of the poultry industry than our Commonwealth. We bave only to look at the marvellous figures attained by strains of Leghorns that have been built up here by judirious mating and breeding, combined with the valuable ctimatic condtions of Austrabia. Egg producing records that beat the world bave been made by these birds on several occasions. Another point is that even when Australian Leghorns are kept in cold climates. and under conditions distinctly unfavorable to egg production. they still retain their excellent laving qualities. An example of this is rivern by the fraet that three Leghorn heas seat from Anstralia 10 a poultry-kecper in England were tested for twelve months, and they produced 299,252 , and 234 eggs respectively. This average has been exceeded here by birds bred in our State, hat under the severe
chmatic conditions of Englavd. coupled with the effect of a sudden rbange of climats, the foures must bo taken as good. Veing far ahend of any previous Finglish reoords. These facts must convince even the most seeptical that fore poultry judustry has a brilliant future before it. The 200 -egg bon pel year was-a few rears ago-remarded as a wonders. But whet, under the strietest Government supervisiod. a per oi six Vieforian Leglorn pullets put up an arerago of $26 t$ egge onch fere furtwe months. the former figures are suall in ompanison. Thai thl of otw laying stach are not capmhk of rearhimg these figntres

 1972 that would mean a grose retmre of 175s, fick. fue hire, which, whon therspence of fordiner mad attention is deductod, would leave a profit of

(Ime valuabe poina in pualtor-kergiog is that it ean be made a very suitable adnact to finmug, danying or frobtorowing. It will
 the eost of production in varjons ways. allowing the produce to be sent (o) marke in a formentrafed form. and also providing a pegular souree of ruman to the owner. Grais, Erint, abd rerctables cas ath be utilized to admaftge by the nombrekerper. On the primesple then it is mot
 poutro-kmping with other industries is 10 be advised.

Several inshames conld be pmoted where ponttry-lepping is mande
 admunts. Other erses may be mentioned where poultry farming lis itsell is reftumiag a shtisfactory protit. lout experiexiee, as well as suithbe surromaliggs, are esseatial in these cases, wad it would be well for the beginner to start the husinuss in comexion with another indisiry Expericoce is a qualification that leads to suecesspul poultrykerpions and the only reliable unthod of seenring it is to exthark in 1.he industry on moderate lines. gaining experience as rou go on and
 liceping can be traced a slarting on a large scole without aby presjous expmicure. Jonltry-kepping aphears very simple, and no it is, but neonle make a mistake when they think all that is ueerssary to maku mones ont of poultry is to puif op a tew fowl houses and roms, storet thero with fowls. throw a little fund to them twiee n day, and collect ponugh agas a dry to make a handsome profit. The business is not havd to learm, but still it reyuires sowera! gutafications. An interest in the birds themselves is one of the most impurtami points, and if that is preseat the poultry-keeper will soon gato sufficient konwledge to monage sucussfully. But be must uot imogine that there is nothing more to leam. In this age off adrancement there is hound to be many changes in the feoding, honsing. \&o... of ponltry. Shedding systems in the way of homsing and dry food in feeding are two of the latest changes in this respect. It is quite possible that other improvements may be made later on, and the poultry-keeper must advance with the times if he wishes to be snceessfal. Reducing the expenditure in connexion with poultry-keeping is an essential point. But this must be practised in a systematic maner, and, while doing so, it must always

Fig. 2.-Poultry Shed, aceammodatiog 500 biris.
be renumbered that the poultry mast not sufter in any way through cutting down expense. Up-to-date methods of housing and feeding may save a lot of labour, and in the same way the supply of water may also be provided with practically no loss of time.

How to Start.

When the beginuer has selected the breed or breeds be intends to keep it is advisable for hin to start aith a couple of pens of each variety chosen In light loreeds. six to eight bons can be placed in eath breeding pen. and in the heavy breeds about six mill be enough. second season birds are jreferable, and always bear in mind that a good laying strain is indispensable. Birds itor eqg production pay best. and the best bred for that purpose is the White Legroon. Minoreas, Brown lechoms, and Andahsians are also good layers. In the heavy breads. If radotites. Orpingtons and Plyniouth Rocks are best, and are also rood winter layers. although not up to the sfandurd of the first-named. The begimer shonld breed about poop pullets to slart with in the first year, increasing this mumber as he gams experience. Theree hundred puliens. if hatched from the 1st of Sep$1 \times \mathrm{m}$ lese in the middle of October, should bring in a net retum of £lto a padr. if egg production is combined with rearing poultry for table jurposes, it is adrisable to keep Wyandotes, Orpingtons. or Plymouth Rocks.
lo watisg birds for breding gens. serond semson hems are preferible, wated with well grown rowkerels of frow ten to twelve mouths ald. By this mating you should insure strong and bealiby whithens. If pullets are well dereloped, and over ten mouths old. they may be used instead of hens, but only when the latter are not available. Begimoers should never make the wistake of hatching too may chimens. This generally results in overerowding the young stork, a od death chams a heary perceatage of the birds. In freding the stock different metbods may be adopted. 'I'he best morning meal for laving hens is two parts pollard, one palt bran, and one part lucerne chaff. or green huerne, clover, rape, thousand-headed kale. or silver beet, chafied or cut hane.

When lucerne chaft is used, it should be steamed orer-night. Warm water or milk should be used io moisten the mixture. Then skimmed or separated mils is used. it should be first mined with the bram. then add the pollard and green stuff. mixing the whole thorouglily. About 3 oss. of this mixture is sufficient for each laying hen. The meal should be fed in trouglis, so that an waste ocens, and the food is alsn kept elean. Animal food is çood tor laving stock. Blood meal. ment meal, livers. or other bolcher's offal are very suitable (the latter being well cooked before using), and ahout I lb inay be given three or four times a reek to every twenty laying fonls.

Blood meal may be obtained at the City Surveyor's Offee, Town Hall, Melbourde. For the erening meal the best grain is wheat heavy oats, waize, and peas come next as they are writter. About $1: / 40$ os. is sufficient for each bird. But the weights ruentioned need not be necepted as a hard-and-fast rule. It is alnays advisalile to give them as much as they will eat readily, and the quantity given may be safely regulatel by the inferested attendant. It is adrisable to throw the graia anong the litter with straw, chaff. or other short material, as it
provides the fowls with good excreise in scratching for the grain. During the hatohing season, birds in the breeding pen may be fed in a slightly diferent mander. Give meat scraps ragularly every day in sumal quanfities, and at midday a supply of grees food should be

Fig. 3.-Enomme in Feding and Labour Saving in Tolloring Eges
provided. A change of gram is also useful, as birds sometimes tire of ome kiad. Wheat can be given fon times a week. and outs, maize, and peas may be substituted for the other three days. The male bird shoukd be extmined for rerusin, aud watehed elosely, and, if he does

Fig. t.-Verminfroof Nest, simple and efferfiva.
not feed well with the heas. Le should be fed in a pen by himself. 'Two male birds for each pen may be recommended. one to be used every alternate week. This is the best method of securing a large percentuge of fertile eggs. Sbell and sbarp grit must also be provided, and a
liberal sumply of each should be always available. Chareoal is aiso an exceldint hing for pontry. A regular supply of drinking wates masi be provided. 'The drinking vensed should be placed trom 9 inches I' 1 foot above the level of the Moor, su that the water will be kept

 It shonda also be shaded from the sun and wind.

Fowl-houses.

A usiful style of a domble fowl-honse is illustrated. It is $\overline{7}$ feet

Fig. 6, -A Cotuplefe Plant u commexion wita a Ponttry Parm, all grain utilized fir stoels.
the back, with acst boxes placed at the side of the house. Good serviceable material should be used in its construction. Palings and lining boards will form the covering, and hardwood should be used in the frame. By raising the floor of the house 2 feet from the ground

- it will nrowide a shelter and dust bath for the birds underneath the
floor. The material used for the dust baths is two parts wood ashes and four parts sad. to which may be added 1 ib . of nowdered smlphur. The size of the yad or run varies aceording to the mumber of hirds

kept. Ahout t° feet by 20 feet is mough for fiftem, to pighteen hirds. and as they always give the best results when kept in small flocks. this size of yated and house in preferable.

Fig. 8.-Fitan of Double Powi-house.
The shed system of heeping poultry is now heeming popular, and good result bave been obtained in egg production where it has been used. Where Hocks of 500 are ruming together, a shed 100 feet long
by 20 feet wide, as illustrated, is suitable. This will give plenty of room for mecomunadion, and also allon of a scratehing space 100 feet Ione by IU foet wide. The hirds are kert is these sheds, expept when the weather is pory fince, when they are let out for a few hours. A shed 10 leet hy 7 (1 fort will hold fiftern birds all tbe yene ronod. Nll fowlhonses and sheds slomat wisere procticalle be bijit on a slope towards the east. Where the shed srsmem is adopted. the foor shonld be prepared by mamming down moist chay to a depth of 3 inches above the tour of the eromad. Thaen put a coating of boiling tar evenly over the sulface. Stod may then be sprintided, and the flonr allowed to dry: and set proprely. ill perches shoud he movabie. They shonld be at hasi 2 inches wide. and sut an hardwood cross pieces. The perches and crose pieces slomid bu regulanty dressed with a whltion of carbolic acid, or mure kerosenc. 40 as to keep down hee " Red Mife."

Incubation.

Whre a darge gutntity of whekens is hatched, or where early boung stock is required, incobators are indispensable. The hateding
 rearing. To insure sucess in this respert. strong and rigorous breed.
 it is adrisable That the rorrert tiwe should be observed. The most laxomble time to hatch chirkons from White haghoras for winter egres is from the ist of September to the midde of betoher. If the stoek is fin bredting purposes, they may be hateled in June. Tuly, and Alưust.

Jucmbituts have aow heed hrought to sich a stage of perfection that an amatmor, ohserviry the enoditions sent out with the machine. caty manare it easils.

Eggs selecied for jucubation should be as fresh as possible, of grood shape, peen and amooth in shell. and of fair size.

The sholls of tindod egers are geberally thicker than the whites, and take a day longer to hatwh. To obtain the best results, fill your wachine ut the stast. The incubator shonld be heated up to 102 doures before the esps are plated in the draver. It should then be kept as and that temperature as possible for the first week of ineubation, and for the remander of the time at 108 degrees. Tested thermometers shomid be used. and two may be placed in one drawer. Eiggs should be allowed to cool down as follows:--On the th day, to 90 degrees; and np till tbe 19 th day, to 88 degrees. The bulb of the thermometer shonld be placed hetreen two eggs in the tray when they are onit-cooling.

Treatment of Chickens.

After twenty-four hours, the chickens should be removed to the brooder, and fed on bismit meal, stale bread crambs. and Haked oatmeal, moistened with raw cras or new milk. A little of this may be given every two hours. After five or six days the above mixture
should be discontinued and the following dry mash should be given in hoppers for the first month:-

Brar	-	.	.	\cdots		perts
Flaked oatmeat	.		.	.	25	.
Biscuit meal.					23	,
Millet white ..			.		1.	\cdots
Fine shell grit					5	.
Dry bone meal	\cdots	\cdots	\cdots	\cdots	5	,
mixture for chickens is as follows :--						
Cracked wheat			.			farts
Hulled oats		2	\cdots
Peas, cracked	,		10	.
Maize, cracked			\ldots		O	,
Sand, conrse	.	-	.		,	,

This mixture slould be given to the ehickens in the litter, to make them scruteld for it. The best litter is chaff-lucerse chafi preferred.

Animal food such as boiled liver. sheep's head. or rabbit. should be pus throngh the mincer and given to the chichens onee or twice a week. All green stuft, such as lucerne or milk thistles sbould be eut fine and given to the mirkens in the midrlie of the day. After two montlis chirkens may be fard the same as adolt birds.
ill pullets should be separated from the cockerels when they can be distinguished properly, as it gives both sexes a better chance of improvement. When birds are intended for table parposes, they sbould he beyt in flocks of wearly the same age and size if possible, the same rule applying in other cases of growing stock.

Io romernwion. T would agnin renind my readers of the great possibilities of the poultry industry and the vast increase that could be made in this respect. In the hands of experts, combined with the assistance from the Department of Agrieulture, much has already bren done uad, with the foundation already luid, a rast trade could be built mp. The egg prodution of our State is not at present enough for our own requirements, There is every prospet of being ahie to send our surplos eggs to Fingland to compete against the world's supplies, and in the near future there should be a valuable trade opened up in this respect. England inportod from foreign countries in 1.911 eggs to the value of $£ 7,965,800$. The market is there, and what has bepn already done in ment, butter. nnd other products of our State should be snecessful? followit by the export of eggs and poultry to the hundon markets. where there is practically an unlimited demand for high class produets.

PROCESSES IN THE SOALL-

There are two great processes going on continoally in the soil which are known to be dae to the activities of bacteria:-(a) The conversion of ammonia and other eompounds containing bitrogen, derived from decaying organic matter and nitrogenous fertilizers, into bitrates, the only form in which. so far as we know, plants can utilize the nitrogen. (b) The utilization of free nitrogen of the atmosphere by leguminons plants. Both these processes are greatly facilitated by the presence in the soil of a sufficiency of lime.-Marl: Lane Express.

GENERAL NOTES.

REASONS FOR DRAINING--

The chice oljurf in draining wat had is not to remove the extra wator. A wot soil is, of conses, a eolder soil. but in Victoria this wotd seddom he a sufficient reason for draming. The main objert in draning laud is to admis lersh ain and this (ratu anly be acemplished by getting the water out. Leant ronts must treath, and aitritication in soils needs fresh air, and in "ater-hugged soils these results can only

 tions on the eforet of dmanage are reorded. It is conctuded that the most impornont factor comerome in the incrased productivity of a soil from lile draning is the improvement io aration. In arder to infrense the armangeffect the tiles were sometimes conmected with

 being continued, Probality the gir drawe iuto the soil as the watere

 render the upright Hues an ianediuent to amation. The fond air or cabonic acid gas, produced in sails is itself heavior than air and subley io diffusion: will slowly find its way down har drains whem Whes ate ont rarremg maler. This How of gases will be faster the freater fhe fall in the pipes, mad partimany when the subsoit is much coleder than the upper air. That thomost importanif achom of drains is to promots a apation ley firxt taking the water oul.

FINE WOOL -

Professor Batiker, of the lurabliord Terbinal Coltare, in the courst of a recent lecture betore the lbradford Textile Society, declared that Headfued to-day was in many cases demading a finer wool simpis. hecmuse it was found that the fince wool could be manufactured into tahries which emmanded a more regular market fhan fabrics manufarlured from coarser wool. He predicted a big shortage of fine wools in the wear future Commenting on these remarks, the Farmers darocalr (N.Z.) states that the demand fun fine wools has been a marbed feature of the lorad wool sales for several seasons past, and appends to pastoratists. rpecielly smald holders. to give consideration to lhis demaud of the traile.

IMPROVED SEED GRAIN-

In at report recently issued by the Linited States Department of Agriculture attention in drame to a new movement is the seed trade. A number of " experimental associations" and "crop-breeders' associations "have been formed in different States. The objents and methods of the two kinds of association appear to be somewhat similar. Of the first kind, the Wisconsin Experimental Association furnshes an example. It is composed of persons who have attended the State Agricultural College. The experiment station attached to the college supplies nembers of this association with seed of new varieties of grain
probuced at the station, or obtained from other qrowers, and the memhers thus berome distributors in their respertive rommnaties. When inguirins for secd come to the station the incuiners are refered to the memher of the assoriation who lives vearest them. "The neighbours uf He association mombers are mstally quick to realize the value of new and inprored rarieties grorn by the assoniation men, and are ready to purchase seed from them at good prices." In other States the organization takes the form of erop-breeders" assouiations. The secretary here is nsually a member of the State experimpat station, and inguries coming to the station and eollege are refered to him. He alsa publishes lists of members who have seed for sate, giving detaits of matien quatities, and prices anked. Whith a sale, some guaranty as to quality, purity and germination is generally supplied. This organization of seed-growers minder "xpert puidanee is regarded by tha Wakingen Hepartmont as a police which " it is desirable in excourage as far ak passible."

THE VICTORIAN RAILWAYS

According to the latest Momthy Summary of Austratian Statas/ics, Fictoria in the past financith ran lad 3.622 miles of ratway open for ruafir. The number of trab miles run was $13.833^{\circ}, 000$, which constituted a record for the Siate. The gross earnings for the rear fotalted to. 218.947 , and the working expenses for the sance time
 net earuings of the railways. The net earmings work out at 2 s . id.
 construction and equipment. which is stated at Ets.a3t,000. As compared to the ofleer States, Victoria leads slighty, in the matter of net earainmer prain mile. but with 3.88 per ceut. it falls just slightlay below most of them in the returu for capital sunk. Thas New Gouth Wales returned t. 34 per cent. (Quecestand 3.95. Sonth Australia i. 09 , Western dustralia 400 , and Tammaia 2.15 per ceut. Alike in the rate of iutrest ohtained, and its position in this matter relatively to the olber States, the Tiforian railways have been very consistant during each of the past five rears.

Experments show that sheep require abon 2 liss. of water for ? of dry food, horses 2 or 3 to 1 . and cattle 4 to 1 . l'asture grass in the green state contains 70 to 80 per cent. of water.

* SOME butrter maklivg experiments and ANALYSES.

By R. Croxe, Exqorts Superin!endent.

Is SALT A BUTTER PRESERVATIVE.

From time to time doubts have arisen and bave been expressed as to whether salt in butter had any preserving effect, or it it was only a flavouring agent. An experiment which was concluded early in

November last with one parcel of butter from the same churning showed that the sumple which had no salt or preservative in it was better after keepiug for some months than the duplicate sample with only salt added. On noting this result, three factory madagers were written fo-men in the Wesfera District another in ofippsland, and the third in the Goulhom Valley. They provided hutters from the one churning, yow fise wecks old. The Western District sample made withorl salt or pregervative is still a first grade butter meriting 91.5 points, whilst the duplicate to which salt was added in the process

of manufaciure is now distinctly a second grade butter, worth only 86.6 points, so that there is a difference in grade separated by 4.9 points. The Gippsland butter made without salt or preservative merits 91.66 points. whilst the duplicate sample containing salt is worth 89.16 points. There is therefore a difference of 2.5 points between the two in favour of the saltless sample. The Goalbarn Valley samples are mach the poorest in qualits; that without salt scores 85 points, whilst the duplicate with salt is marked down to 83.6 points, showing a difference of 1,4 points. These results show distiactly that butter without salt keeps better over a lengthened period in cool storage than salted butter.

Nafurally, quite a number of questions are suggested as the ontcume of this result. What is the reason Whar is the difference in larour of salless butter greater in one instane than another? Was all the sali used contaminated each to a difierent degree? Has the presence of salt fasured the development of putrefactive organisms, and was this change hindered through the absence of salt. or does satit assist in the chemical change known to take place in butter by lons keeping? Each one of these suggestions will receive further ftenfion during the present year, nod of all of them it is more likely that, the presence of salt facilitates bacterial develomment in butter thau

PERCENTAGES OF MOISTURE IN BCTTER.
that the salt was coutaminated or that it was instrumental in bringing about a chemical alterntion.

The percentage of the total butter exported yearly without any salt is $3 \overline{5}$, and unsalted batter usuably commands a higher price by 25 , per ewt. than that which is sulted, the reason given being that butter in that form is more suitable for blending purposes or for sale as Normandy, or in competition with Normandy nosalted butter. It has been generally known, however, for many years past that unsalted butter keeps better, and is much less liable to develop the fault known as "fishiness." In connexion with the question of price, it should
be remembered that unsalted butter contains. on the average, slightly more butter fat than salted butter. and also a greater percentage of moisture.

Butcer Anclyses.

Butter Fat (including (ascin).-During the last six yeam the analyses for butier fat (inclading easein) of 1.625 samples of butter has'e heen recorded. (lide Appendia A.) The average result is 84.23 per ceal. Three samples, or 0.18 per cent.. contaived over 89 per cent, whilst ons or 0.06 per cent, sas fonad to contain under 79 per

cent. of butter fat (iacluding casein). As the average casein content may be stated at 0.73 per cent.. the butter fat contents of the 1,625 samples would therefore average 83.5 per cent.

Moisture.-During the last seven years the analyses for moisture of 13,193 samples of export butter have been recorded, and these average 13.84 per cent. (Fido Appendix B.) Four samples, or 0.03 per cent., were foum to contain orer 20 per cent. moisture; 337 samples, of 2.55 per cent., were found to contain over 16 per cent. maisture; whilst 13 samples, or 0.1 per. cent., showed under 8 per cent.

There has been a great deal of controversy from time to time as to the maximum moisture contents which should be allowed in butter. Whilst the maximum allowed was 16 per cent., the average moisture contents varied from 13.44 per cent. in $1907-05$ to 13.97 per cent. in 1909-10. It is worth uoting that the average for $1910-11$ seasou was 13.82 per cent. when the maximum allowed was 16 per cent., whilst for 1911.12 the average rose to 13.91 per cent., when the maximum permitted had been reduced to 15 per cent.

Curd.-In the course of the last six years the analyses of 627 samples have been registered, which (vide Appendix C) give an average of 0.76 per cent. Some 40 samples, or 6.38 per cent., were found to contain over 1 per ceat. of curd, whilst 5 , or 0,8 per cent., yielded under 0.3 per cent. It must be meafioned that attention was directed chiefly to butters suspected of containing a high curd content, so that it would be misleading to assme that the average of all butter produced in the State was 0.76 per cent. of curd; the real average would be lower than these figures indicate.

Salt-The analyses for salt of 1,385 samples of butter have been placed on record during the past six years, with the result that the average comes out at 1.82 per cent. (Vide Appendix D.) Four samples, or 0.29 per cent, were found to contain over 4 per cent of salt, whilst 140 , or 10.11 per cent., yielded less than 1 per cent.

Boric Acid.-During the last seven years the analyses of 2,640 samples for boric acid contents have been recorded, and these give an average of 0.2 per cent. (Vide Appendix E.) Forty-seven, or 1.59 per cent., were found with over 0.5 per cent., whilst 606 samples, or 20.61 per cent., had less than 0.1 per cent.

Summary.

From these 19,470 results, the average composition of Victorian butter may be stated at 83.5 per cent. butter fat, 13.8 per ceat, moisture, 0.7 per cent. curd, 1.8 per cent. salt, and 0.2 per cent. boric acid. It shonld be noted that the same butters were not analyzed for the different component parts, and hence the only alteration from the previous quoted results, and referred to in appendices, is the dropping of the second decimal place in the case of moisture, curd, and salt.

The great majority of these samples were analyzed by the Federal Analyst, whilst the remainder were noalyzed by the State Analyst.
6897.

M

APPENDIX A.

Summary of all Anabybes of Butrib made by the Fedrral and State Government Analysts for the Exports OLTURE, VIC
BUTEER-FAT.

Season.

Mean average for the 1,625 samples analyzed $\approx 84^{\prime} 23$ per cont. (including Casein).

APPENDLX B.

APPENDIX C:
eusd.

[^1]APPENDIX D

Mean average for the 1,385 samples analyzed $=1.82$ per eent.
APPENDIX E.

Moan avorage of 2.640 samples analyzed $=\cdot 20$ per cent.

BEE-KEEPING IN VICTORIA.

(Contmued from pagc 305.)

By F. R. Beuhnf, Bee Experd.

XTV.—DTSEASES OT BEES.
The diseases affecting bees may be grouped under tro headings, viz., diseases of the adult bee and disenses of the larva, or brood. The latter diseases are the more genemally distributed and serious. and the principal ones are lonown nnder the general term of foul-brond of bees,

Follerrood.
This is a contagious dispase which kills the young larval bee in the cell. By contact with the remains of the dead grub the disease is transmitted by the adult bees to other cells, thas causing the death of the larvae from egrs deposited in such eclls or the contamination of any honey stored in them.

As the average life of the worker bee during summer is only six weeks, it follows that the number of young bees hatehing decreases as the disease adrances, the colony soon dwindles in numbers until it finally dies right ont or becomes so weakened as to be mable to defend itself against robher bees from other hives. The honey is carried away by bees from other colonies, which in turn become infected, thus propagating the disease indefinitely.

The methods of box-hive beekeepers, however, have done more to spread disease than anything else. The usual way is to drum the bees ont of the mpturned hive into an empty box, to eut oat the combs, and, after crushing them and straining the hovey off. to throw out the residue, nad any combs too black for straining, for the bees to clean ip. If any of the hives were diseased, the germs are at once re-introduced in to the newly-built combs of the robbed hives, while the contaminated honey, when mapketed, carries infection to distant localities by means of bees getting access to retail packages after they have been emptied and thrown away.

The cause of foul-brood is a miero-organism growing in the tissue of the larree of the bee and sometimes also in the adult insect. It was named Bacillus alvei by Cheshive and W. Cheyme in 1885 . Since then American investigators have discovered that thera are two types of foul-brood, Faropean Troal-brood caused by Becillus alvei and Ameriean Foul-brood caused by a miero-orgamism difeering from the former and named Bacillus larea by Dr, G. IF. White, of United States Department of Agricultrte, in 1907. The general appearance of the diseased brood is, bowever, the sanue in both, and the same treatment is necessary to effect a cure. Whether foul-brood in Australia is caused by B, avei or B. leerces has up to the present not been scientifieally tested; probnbly both are present.

To describe diseased brood to any one not well acquainted with the subject it is best to contrast its appearance to the eve with that of brood in of healihy state. Normal healthy brood shows in compact masses in the comb, that is to say, considerable numbers of adjoining
cells contain larva of the same age (Fig. 1). In a diseased comb the brood appears irregular and scattered. Healthy larves are of pearly whiteness, phump, and lie curled up on the cell bottom almost in the shape of the letter C. Diseased larye are pale yellow, and, further on, turn hronn: the grubs appear flabby, and are not so much curled up as healthy larwe of the same size.

When the larvee do not dic till after the cells have been capped over, cells will be found here mad there darker in colour than healthy ones alongside : the cappings asually will be indented instead of ronvex. and will frequeatiy show irvegular holes. (Fig. 2). If these cells are opencd, a brown mass is visible which, when touched with a match ne straw, draws ont stringy or ropy. The ropiness is the surest practical wry of identilying the disease, and the test should be applied to any suspicious-looking cells which rayy appear amonest the broot. I wonld bere point out that. although the cappings of brood, particularly

Fig. 3.-Comb of healthy brood; queen cells also shown.
those of black bees, have, when healthy, the appearance shown in Fig. 1, there are some bees of the yellow races which cap the cells quite flat; also, that the scattering of the brood is by itself not uecessarily an indication of disense, and may be due to the irregular laying of an inferior queen.

In vien of the heavy losses resulting from foul-brood, when once it has obtained a good start in an apiary, and the great amount of labour involved in its eradication, as well as to the fact that it has now been proclaimed a disease under the Bees Act 1910,* it is desirable that every ownex of bees should be able to reeognise this disease when it appears in one or more of his hives. He will then be able to deal with it before it has made any great headway.

[^2]Unfortnnately, there are still many bee-keepers who do not discover the presence of this disease amongst their bees till the small number of bees in several of the hives indicates that there is something wrong. When hives have been affected sufficiently long to show marked deeline in the number of bees, the disense is likety to spread rapidly; the remaining bees are usually inactive, and do not defead their hives against robber bees from strong healthy colonies, which in turn fall vietins to foul-brood. It is, therefore, important that vigilance should be exercised whenever combs are bandled, so that the disense may be discovered and treated when still in its first stage.

Wher foul-brood is discovered, the affected bive should be at once oovered ur again to prevent attracting robber bees from other hives; and unless the coloay is still strong in bers the entrance should be contracted to from 1 to 3 inches in width, so that the diseased colony may be better able to defend itself against robbers. The brood in the other hives of the apiary should be carefully examined, taking care not to attract robbers by leaving a hive open too long or performing

Fig. 2,-Comb of diseased brood, showing flat, sunken, and perforated cappings.
the examination at unsuitable times. If more cases are found, the hives should be marked and treated at the first favorable opportunity.

To successfully cure a colony of foul-brood three conditions are necessary, viz, first, there should be sufficient bees in the diseased colony to form a small swarmi; second, the weather should be mild or warm; and third, honey should be coming in. If sufficient bees are not left in a diseased colony to build combs and to raise sufficient brood to increase the-worker force, no cure should be attempted; it will be found more profitable to at ouce destroy by fire the bees, combs, and frames.

Warm weather is required to enable the bees to secrete wax and rear brood, and therefore bees cannot be treated before September or after March. A honey flow is essential, so that bees treated may not be robbed duriag or after treatment.

The only reliable method of getting rid of foul-hrood without de. stroying the entire diseased colony is to remove the bees from their infected strroundings and start them afresh in a clean hive.

This is done by putting a clean hive with frames supplied with starters of comb foundation on the spot oceupied by the diseased hive, removing the latter to a little behind the former. A cloth or bag is placed in front of the clenn hive, on to this the bees are rapidly shaken and brushed from the diseased combs. If they do not readily eater the new hire, a litile smoke may be used to drive them in. The bees will now start comb-building; the honey which tbey brought from the diseased combs in their honey sacs will be consuned in the secretion of wax, and the colony will now be free from disease. unless it is reintroduced into the hive from outside. To prevent the bees swarming out and abseonding. as ther will sometimes do when suddenly deprived of their brood, quen-exeluding sine mar be fastened over the entrance, so that when the bees swarn out the queen cannot follow, and the swarm will return to the hive. This olstruction should, however, be removed in four or five days, when the bees will have settled down.

The diseased hive. floor, cover and frames of comb, should be taken indoors as soon as the operation of shaking down is fibished, and effectively secured against areuss by bees. Tbe combs and frames should be at once destroyed by burning. The hive, bive floor, and roof should be thoroughly cleansed by immersing and scrubbing in boiling pater containing washing soda and soap. Wher clean, the hive should be exposed to the atmosphere to dry thoronghly. after which it may again be used for housing bees.

When only a few diseased cells are found in a number of bives, the strougest of thom may be treated first, and the brood cormbs siven to the other alfected colonies in a super over a queen-exchuding honey board. In ten days most of the healthy seuled brood will have hatched, increasing the worker-fores of the remaining diseased colonies, which may now also be cured by the shating-down method desuribed before.

To completely destroy a diseased colony which is too weak to be cured, close the entrance of the hive when the bees have ccased flying towards evening. Pat sufficient wood ready for lighting. iato a hole dug for the purpose, place the hive on the fuel and set fire to it. When burned down, fill up the bole with earth. The combs removed from hives shaken down should be destroyed in the same way, otherwise there may be rifficulty with bees getting aceess to honey which romained unconsumed by fire.

Observance of the following rales will greatly assist bee-keepers in the prevention of foul-brood and its eradication when present in the apiary :-

1. Have no queenless colonies; they will not defead their hives, and will thus establish robbing habits in the apiary.
2. Do not allow bees to have access to honey, combs, wax or hive refnse, even when quite free from disease; bees should know of no other source than the nectar of flowers.
3. Never feed honey to bees; it may contain disease germs; it excites them and induces robbing. Sugar syrup is safer, cheaper, and just as good for feeding.
4. Do not try to cure foul-brood by requeening alone, or by doctoring diseased cells, or cutting them out. It will only delay, the course of the disease, but will not cure it.
5. When examining combs for disease, do not use your finger nail to open the cells, but a mateh, toothpick, or straw. Use a fresh oue for each hive, and burn those used.
6. Do not try to cure the disease by giving the bees medicated food. Any drag given strong enougt to destroy the germs of foulbrood would kill the bees.
7. Do not interchange combs between different hives while there is disease in the apiary.
8. If bad weather should set in aftor a diseased colony has been treated, feed sugar or syrup ($11 / 2$ sugar to 1 water) inside the hive.
(To be continued.)

INDIAN RUNAER DUCLS AND EGG PRODUCTION.

A correspondent forwards some interesting facts about his Indian Rinnuer dueks and egg productiou. For the twelve months ending 31st March last, ove pen of twenty-five birds laid 5,561 eggs, of the wholesale value of $£ 302 \mathrm{~s}$. 6 d . The record was kept of only one of the pens, probably the other pens did equally as well. The birds were hatched early in October, 1911, and began to lay early in March. 39.2. The montluy record is as follows:-

Epiton's Note.

GROWING LUCERNE FOR SEED-

Oring to its high price, a good crop of seed lucerme yields splendid returns to the grower, but in ordinary cases the crop is an uncertain one. American experience in this regard is interesting, and the stubject is discussed in Farmers' Bul, 495, issued by the U.S. Department of Agriculture. It has been found that the most successful crops of seed are obtained when a relative shortage of soil moisture accompanies comparatively high temperatures while the seed is maturing. The soil moisture must be sufficient to permit the setting of seed, but not great enough to start new vegetation for the succeeding crop. "This narrow margin is the principal cause of the great uncertainty in the lucerne seed crop." The best time to harvest was when the pods ranged from straw colour to brown.

CITRUS CULTURE IN VIOTORIA.

(Continued from page 239.)
By S. A. Cock, Orchard Supervisor, Beadigo.
PART IIL.-STOCKS.
The unsuitability of a stock to local conditions of soil aud drajnage has been a great factor in the loss of a large number of trees. In the past the common lemon has been chiefy ased. Seedlings, layers, and cuttings, the last two have been failures; the seedling will thrive and produce a good tree with heavy erops; but at an age of ten to fourteen years root-rot will nvertake the majority of trees planted on the lemon stock. even under the most favorable conditions of soil and drainage. The stock is masuitable. The orchard costs a lot of money to establish,

Plate 12.-Twalve years oId Oranga Grove, Kyabram.
therefore it is necessary that the trees shall last and remain profitable, conserduently suitable stock must be obtained.

Planters should secure trees worked on the Seville (Citrus bigaradia) or the sweet orange (Citrus dulcis) stock. The sweet orange is an admirable stöck on which to worls, and gives great satisfaction in perfectly drained soils; it is subject to root-rot, but in a far lesser degree than the lemon. Oranges and lemons worked on the sweet orange stock make large trees, bear prolific crops, and excellent quality fruit wader congenial soil conditions. The Seville orange is undouhtedly the most suitable stock, adapting itself to all classes of soils. and withstanding irrigation conditions extremely well in all situations. Oranges and lemons worked on this stock are thrifty in their habit, prolific in bearing, and the stock is almost immme from root-rot, Plate 14 represents three-year-old Washington Navels on Seville stock at White Hills. Rendigo.

Cimus trifoliata is also used for stock in very wet situntions. Commercially it is a failure: the trees are too slow in growth; it also has a very dwarfing effect on the scion. and is generally unsuitable.

The Echuca seedling, Plate II., raised at Echuea by Mrs. Lilina Johnson, promises to become a goud stock. Trees thirty years of age show no sign of root-rot at Echnca.

Propagation.

Seeds should be planted in September and Detober. Seeds are obttined by allowing the fruit to rot in heaps or in bacrels, and when decayed sufficiently to break easily by haoding should be thoroughly washed through a coarse sieve. The decaying substance of the fruit is passed through the sieve and the seed left behind. The seed shonld then, before drying, be placod in moist sand; this can be done by making a box 2 feet square and 6 inches deep, fill it half-full of sand, and on this place a layer of seeds 2 inches deep, and fill up the bax on the seed layer with more sund, then thoronghly mix the seed and

Plate 13.- Five years old Wasbington Navel Trees; aversge yiold for orchard, 3 cases to the tree (1911).
sand together by stirring with hand; this is done to cover the seedswith sand and prevent them from sticking together. When the seed and sand have been thoronghly mixed, the box can be filled up with sand and stacked. When ready to plant, the seeds and sand are passed through a sieve, and the seed recovered. The seed bed should be made under eover of lattice work or wooden screen. The soil should be deep, rich loam, well drained. The seed should be sown in drills 2 inches deep and 9 inches apart, with about 3 inches between each seed. The seed should then be covered to 1 inch deep, and care taken through the growing season to keep young plants contimually growing; this is done by frequent watering, and cultivation between the young seedliags, and proper protection from cold winds and seorefting sun. At the age of one year the forward young scedlings can be transplanted to the nursery rows. 5 feet apart and 15 inches apart in the row. Backward or small delicate seedlings should be transplanted into very sheltered mursery rows, or allowed to remain for another year before transplanting. The seedlings shonld be allowed to remain
at least one year in the nursery bed, and allowed to grow at will, and in November, December, January. or February, when the sap is running free, budding takes place. Buds shonld be selected from round matured wood; with as few thorns as possible. The leaves should be removed by cutting, and the bud inserted for oranges not less than 4 inches above the ordinary soil level; and for lemons not less than 6 inthes. The rpawon for this is 0 presprve the scion agaiust any possibility of collar-rot, which is nearly always brought about by wet

Plate 14.-Three years old Washington Navel on Seville Stoek, White Fills, Bendigo.
earth, or water lying against, or coming in contact with the susceptible lemon and sweet orange; also to prevent roots being thrown out by the scion and thereby inducing root-rot.

Budding is done as follows:- A vertical cut with a sharp budding Innife is made in the bark of the stock at the desired height 1 inch long (Fig. 1, Plate 15) into the cambium layer; a transverse cut is then made at the top of the vertical one (Fig. 2, Plate 15) ; the point of the knife is then inserted and the bark held back, as at Fig. 3, Plate 15 , and the bud earefully pushed down, and the lifted edges of the
bark brought back again over the inserted bud, as at Fig. 4, Plate 15, and then tied with raffia or binding twine, as at Fig. 5, Plate 15. The wood from which the buds are taken should be beld with the point of the bud looking toward the body, and the bud eut from behind, as at Fig. 6, Flate 15; the bud should be cut 1 inch long, starting $1 / 2$ meh above the bud. and finishiag io jach helow, as showz. Cut with a sharp knife, cutting deep enough to remove a very this and smooth piece of wood on the underside of the bud, as shown at Fig. 7, Plate 15, back view of bud. Fin. 8. Plate 15, shows front view of prepared bud. When inserting the bud be careful not to injure it; hold the bud between the thumb and forefinger, and gentily press it into the prepared incision. When the bad has taken, the stock showd be shortened, as at A.A., Fig. 9, Plate 15. This is to prevent a check in sap flow, which tay injure the bud. Later on, when the bud is growing. the head of the stock is further removed, as at Fig. 10, Plate 15, and the delicate growing shoot tied to it to protect it, as at A.b., Fig. 10. Plate 15 , and, when strong enough, the remsining fortion of the stock is cut off, as at c., Fig. 10, Plate 15 , and the cut waxed over.

Plate is.-Buãding.
When the buds begin to move about three or lour weels' growth should be allowed before the string tying the bud should be cut. The buds are allowed to grow until they show signs of bending at the top: they are than pinched at the top; this arrests growth, and starts new growth from lower buds. The strongest is selected, and the others removed with a sharp knife. This growth is again pinched in tarm, When drooping or bending of the head takes place; and if the tree is adwanced sufficiently in height, pinching again takes place to form the head at the desired height. From the resultant growth the vertical is removed, and the tree shaped to three or four horizontalized branches.

In budding old trees it is best to ent back a portion of the tree. start a new groirth, and bud on to it. When the buds are started, the remaining portion of the tree can be removed, and on further nell growths more buds inserted if nocessary.

Buds inserted in the autumn remain dormant ontil the spring, and become active with the new growth of the tree. Budding may also be carried out in spring.

Growers should insist that none but strong, healthy, well-grown trees should be supplied to them. Too many weaklings and culls are sent out from the nurseries. A grower by producing his own trees will have many advantages in selecting scjons from his moost frnitful and strongest trees, and working on to selected snitable stocks.

Planting.

There are two systems of planting in Victoria-the square and the septuple, the square being the more generally adopted. The three general distances for plauting are 20 feet. 22 feet, and 24 feet. Citrus trees require plentr of room for growth and cultivation, and the square system, 24 feet x 24 feet, will he found the most advantageous. Tf planting alongside deciduous trees, which are generally planted 20 feet $x 20$ feet, it would be advisable, in order to avoid a break in the nontinuity of the lines of trees, to adopt a general distance for citrus and deciduous of 22 feet $x 22$ feet. The following table will give the aumber of trees to the acre for the three distances named on the square and septuple srstems:-

To find the nunber of trees to the acre on the square system, multiply the distance apart and divide the result into 43.560 . the number of square feet in an ate, thos 20 feet $\times 20$ feet $=\frac{83.30}{20 \times 20}=109$. To fincl the number of trees on the sepurple system, find the maber to the aure on the square system, and and 15 per cent.

In laying out the orchard on the square system, and assuming (Plate 4) the block to be a rectangle, as shown, the furst work to be done is to thoroughly and deepty plough the area to be planted. The ground sbould then be havrowed down thoroughly, and rolled and graded. After this preparation, which should be carcied out in early autumn, the situation for the head ditch should be determined and the fitch prepared, also other distributary channels of a permanent character. Furrows should then be struck out, and water run in them to find out any irregularities in surface grading. A trial rwo of water over any surface after grading is work well repaid. The success of cultare under irrigation lies in the equal distribution of water over any surface.

Deep thorough eultivation of any ground is essential for the sucsessful growth of orchard trees, specially citrus. A good heallyy start generally insures a prosperous career. Trees require all the essentials so necessary to the successfil enlitivation of any plant-a properly prepared soil. After any trial run of water aud subsequent rectifying of surfaces, a good cultivation is neebssary, and in Angust
distance the trees are to stand apart, strike out a base line, leaving a distance of at least 20 feet for a headland. This will be found of great benefit in future working of the orchard. Good headlands shonld be left all round the orchard. The base hine is best struck ont by a length of No. 10 fencing wire, looped or ringed at each end and notched with solder at the distances the trees are to stand apart, thus-

The base line should run parallel with ony known straight line, such as a fence, road, or chanoel. The wire should be securely fixed by using two crombars, one at each end $a-b$, by passing the bar throagh the loops; securely fix one bar in the gronnd, and when the wire is drawn tight, securely fix the other. If it is necessary to find the right angles, use the process of $3-1-5$, or any multiple of it, thus:-

3-4 form the right angle lines; 5 the diagonal line. - When the base line is struck and the wire drawn tight, pegs should be placed in the ground at the notches on the wire; pegs should be 1 foot long, and driven into the ground 6 inches; when the right angle line is found, the line should be similarly pegged. It will be found advantageous to peg the square, and then proceed with the filling lines, pegging out the whole orchard. The marking out wire shonld be the length of the longest line. By this process trees should be in perfect line in any direction. The square system is the best system for working under irrigation conditions, and should be generally adopted.

When the trees are received from the nurseryman at planting time, they are generally sent as shown in Plate 16. The trees are removed from the norsery after the winter's growth has hardened, and been balanced by a subsequent root groxtl. This is the condition for new head growth. Just before this starts, the fine roots on one side of the tree, and the tap root, at a fair depth below the surface, are cut with a sharp spade; the earth is then returned to the cut surface, and the trees allowed to form crown growth on the cut rootlets and tap root. This usually takes a fortnight; then the remaining roots can be cut, and the tree removed. This treatment prevents shock to the young trees in removal. The soil is then shaken from the roots, and the roots dipped immediately into thin mad puddle, atad then the roots of the trees packed tightly in the boxes in moist smultust and despatched without delay to the grower. The grower, on receiving the paekage, should remove the hessian covering, and keep the packed trees in a cool shaded situation, occasionally sprinkling the trees, to keep the package moist, until ready for planting.

When planting is to take place the trees should be removed from the package as required, and the roots thoroughly washed of raud paddle; all broken roots should be removed by cutting with a sharp
knife. and the roots thrown into balmace as much as possible. Figs, 1, 2, Plate 17, represent the treatneat of roots. In Figs. 1, 2, Plate 18, there were large broken roots; they have been removed, and balance made, as shown (Plate 17). The trees should then be wrapped in a wet sack. and each tree kept covered until planted.

In planting, a board is used. made thus--

3 feet long, 6 inches wide, and 1 inch thick: and notehed in the centre. The hoard is placed on the ground, with the peg already in the ground fitting exactly in the extrene aqgle of the noteh, as shown, and then two pegs are driven ot cither end of the board, as shown by X, and the board and eentre per removed, and the hole exavated inside the pegs

Plate 16.-Orange Trees packed for transport.
marked X; the hole for the reception of the tree should be large and fairly deep, 3 fect nearly in diameter and 10 to 12 inches deop. The soil is then returned to the centre of the hole in the form of a monod, and on this the tree is planted. The planting board is now brought into use again, being fixed, as before, inside the two pegs marked X,
on the ordinary soil level, and the tree should then be fixed in the noteh occupying the same position the original marking-out peg held. The tap root of the tree should then be placed in the monnd and earth returned, the small roots carefully placed, as equally spaced as possible, and more soil returned, until the roots are covered. If the tree is standing too low it, should be gently worked up through the soil, returning more earth until the roots are covered. Planting a lirtle

deep and working the roots up through the returned soils is a system geaerally adopted in planting. The tree should stand in the hole, when planted, with the surface soil mark on the stock (indicating the depth it stood at in the uarsery) standing 6 inches above the ordinary soil level. The tree should then be staked and tied; the stake should be made of redgum 3 feet long and $11 / 2$ inches square. If hardwood stakes are used, they should be dipped in tar, for a depth of 1 foot,
before driving in the ground. The stakes are placed on the southwest. the windward side of the trec, about 6 inches away, and the tree lied to the stake with raffia or hayband, at a beight of 1 foot from the gromad, tying tight on the stake and loose around the tree. The hole should then be filled up with water, and when the water has drained away, the remainder of the soil shonld be returaed : the soil will then

Plate 18 ,-One and two year old Trees before head and root pruning for planting.
assume the shape of a mound 6 inches high. This will compact to about 3 inches above the ordinary soil tevel, and will keep the scion well above any wet soil surface. The water placed is the hole at planting time consolidates the earth around the roots, and does away with the harnful practice of tramping with the feet, and the stake holds the tree firm in its position. Fig. 1, Plate 19, shews the planting

Plate 10.-Planting.

1
Plate 20.-Planting.
and placing of roots. Fig. 2, Plate 19, the tree planted, mounded, and staked.

It reguires two men to plant trees properly-one to hold the tree and fix the roots, the other to return the earth as required. Two men should dig the holes, plant, stake, and water, also return the earth on 1 acre of trees per day. Planting is work that requires care and aitention, and it does not pay to rusb.

Other unethods of planting are the ball and pot system. The balled trecs are removed with the earth undisturbed around the roots of the trees, and the ball of earth is tied in a piece of bessian, as shown in Fig. 2, Plate 20, and requires to have only the striog eut at the time of planting; the hessian soon rots in the ground. These trees, if properly lifted. veguire no pruning at planting, as the roots pre riously cut and crowned with callus, peceive no check. The potted tree as shown in Fig. 1, Plate 20. is the ordinary tree lifted from the nursery with bare roots, placed in a pot, packed with new earth. and new root growth forced by bottom heat under glass for about three weets. and then the growth hardened off monder ordinary glass eonditions for six or eight weeks, and still further bardened under ordinary cover, and sent out for planting, as illustrated. In planting out, the tree is sinply removed from the pot and planted in the soil. These trees generally reguire oo head pruning at planting, as ther receive no root check. In commercial oreharding nothing is gained by balling or potting. If the conditions of planting out bare-rooted frees are carried oui as deseribed and all wasty and weakling thees discarded at planting, tbere should be no failures. Lemons are more delicate than oranges, hat both require equally carefal treatment. Bandaging the butts of the trees with hessian or paper is not a necessity, and wive netting renders the orchard proof against rabbits. Potted and balled trees are suitable for persons growiag only one or two trees, and who do not understand pruning methods.
(To be continued.)

THE TUBERCULOSIS INQUIRY--

The British Royal Commission on Tubereulosis which has been sitting for nearly twelve years, bas now issoned its final report. The commission was appointed after a decharation in 1901 by Dr. Koch that "human tuberculosis differed from bovine, and cannot be transmitted to cattle "-a statement which, if proved, had an obvious bearing upon legislation calculated to prevent the spread of the disease. The commissioners deal with this and the other points referred to them. in a first interim report. dated June, 1904. they found that tubercle of human origin can give rise in the bovine animal to tubereulosis identical with ordinary bovine tuberculosis. In a second interim report of February, 1907, they state that cows' milk containing bovine tubercle is clearly a cause of taberculosis and of fatal tuberculosis in man. In the final report now issued, the commissioners recommend drastic action to prevent meat and milk affecting human beings, the isolation of highly-iafectious cases, better housing and special separate treatment for childrea, and the appointment of an advisory council to assist the Governmeat.
SUPPLEMENTARY LIST OF FERTILZERS REDIBTERED AT THE GFRICT OF THE SECRETARY FOR AGRLCULTURE UNDER THE ARTEFLCAM. MANLRES AGIS

Description of Mamure.	Brand.	Ystrogen.		Prosphorio Acid.				Potash.	Price nakedHor herManeper ton.	Wbero Oblalnabla	
				$\begin{aligned} & \text { Water } \\ & \text { Soluble. } \end{aligned}$	Citrate Soluble.	$\mathrm{In}-$ soluble.	Total.				
Blood and Bone Bond and Blood. No. 1 $\frac{1}{2}$	Unlod JackGaseiflG-b	.	$\begin{aligned} & \% \\ & \frac{\%}{6} 11 \\ & \frac{7}{6} \cdot 30 \end{aligned}$	\%	$\begin{aligned} & \% \% \\ & 2 \% 1 \\ & 5 \cdot 50 \\ & 3 \cdot 90 \end{aligned}$	$\begin{gathered} \% \\ 5.00 \\ 5.00 \\ 1.35 \end{gathered}$	7\%	\%	$\begin{array}{ccc} \varepsilon & s & d \\ 0 & 6 \\ j & 6 & 0 \\ j & 10 & 0 \end{array}$	N. Dale, Benteigh	
				\ldots				.			
lizer '" and bone Fert-									$\begin{array}{lll} 7 & 10 \\ 8 & 5 & 0 \end{array}$	Gipprand Co. Op, Bucon Ourlng Coy	
Bono and superphosphate,	Etsworth's		2.00	8.00	$3 \cdot 00$	$7 \cdot 00$	$18 \cdot 00$..	$\begin{array}{llll}5 & 7 & 6\end{array}$	The execurars J. R. Elswerth, Bai. larat East	
Bope and Superphosphtte, $\mathrm{No}, 2$	"		$0 \cdot 80$	12.008.00	$1 \cdot 00$	5.00	18.00		52 e	" " " " "	
Bona-Superphosphate ..	Gardiner's		125		$3 \cdot 20$	$5 \cdot 80$	17. D0		500 G		
Bone Ferthlizir. Indian Oesan Natural Gusino	Eagle ${ }_{\text {Haserf' }}$:		3.250.50	\cdots	8.058.00	10.3023.90	19.2529.00	\cdots	6 5 0 4 0 0	E. T. Hoskin. Eagle Polut, Balruadute A. H. Hawll, Nelbourte	
Desertption of Manare.	Brsod.			Nitrozon.	Phosphorle Adts.		scomariols Coxidrios.		tot Manure por mon.	Where Obialanile.	
			Ptine.				comrse.				
Bone Dust	3.N.D.B.				$\%$ 4.9 3	20		$\% \%$ $3 \% 00$ 31.00	\% ${ }_{6}^{63}$	$\begin{array}{lll}\varepsilon & s & d \\ 5 & 1 / \\ 8 & 10 & 0\end{array}$	J. N. Das. Beandigr

P RANKIN SCOTT,
Chenigt Ior A.tricultura
 THE PROVTSIOAS OF THE ARTIIICIAL K+NURES ACL,

Wool contains suint, fat, and pure wool hair. The suint consists
chiefly of a potash componud, and is mostly removed when sheep are washed. The suint may form more thas half the weight of the fleece, or may be only 15 per cent. The fat is not removed by washing, and may vary from 30 to 8 per cent. of the washed fleece.

STATISTICS.

AGRICULTURE IN VICTORIA.

ArEa and Produce, 1911-12 Anl, 1912-18.
The following returus for the State of Victoria have been jssued by the Guvermment Statist, (Mr. A. M. Langhton) :--

Name of Crop.			drea.		Producs.		atrage jeverace.	
			1011-12.	1012-13.	2911-12.	1912-13.	1911-19.	1912-13.
			Acres.	Acres.	Bushals.	Bushels.	Buxiels.	Bushels.
Wheat	\cdots		2,164,006	2,085,214	20,801,877	20,223,104	9.65	12.58
Oats			302,238	+39,212	4,385,326	8,323,639	15.17	28.95
Barley (matilug)	..	.	\$6,748	52,311	725,808	1, 263, 2381	19.75	23.27
Barley (ather)	.		10,793	19.320	298,781	+774.803	17-79	24.68
Maize ${ }^{\text {a }}$			18,223	19,086	709,6e\%	*	43.60	*
İye ${ }^{\text {a }}$.		1,098	1.428	0.981	17,141	9.09	\% 00
Foas and beans	\cdots		11,535	11,875	181,119	232,856	${ }^{15} \cdot 70$	$19 \cdot 61$
Potatoes (earjy oro			¢5, 14,	5.104	17,498	$19.08{ }^{\text {a }}$	$8 \cdot 40$	Tons.
Potatoes (general	0p)	\ldots	42.550	+2, 511	101,594		2-39	\%
Mangel-wurzel			797	1,121	0,568	14,045	$12 \cdot 01$	$18 \cdot 04$
Beet, carrots, parsnips, turnips for fodder			658	637	4.953	-	7 \% 3	-
Ondons .		\because	8,652	4.277	20.911	28,641	$5 \cdot 73$	$5 \cdot 75$
Hay (wheaten)		.	304,388	388, 370	857,370	t38,829	$1 \cdot 17$	$1 \cdot 14$
Hay (oaten)	.	.	535,146	790,268	648,846	1,099,436	[2]	1. 39
	,	.	20,671	27.090	26.072	34.668	30	1.28
					Curt.	Curt.	Cut.	Cwt.
Grase cut for seed		.	1. 188	2.429	1,647	$4.14 t$	$1 \cdot 43$	171
Green fodder		.	75,177	85.460	.			
Vines	\cdots	..	84.108	24,679	.	.		
Oncharas and gardo			59,985	63.209	.	.		
Market-gardeus	.	.	10,331	10.414	. ,			
Other tillage	.	..	5.462	0,859	.	.	.	
Total area under arop Land in fallow		\cdots	3,640,241	t,079.356	-	.		
			1,409,608	1,627,228	.			\cdot
Total cultivation			$5.109,849$	5,706,579	-			

- Not yet avallable. + The cadty crop relates so potatoes dug botore darcis 1 .

Area undrr Potators in Pringipal Counties, 1911-12 and 1912-13.

Total

1011-12.	1012-13.
0,228	6,187
8,205	8,010
6,618	5,087
2,687	3,752
6,870	8,370
8.756	3,198
\$,612	4,383
11,744	11,688
47,692	47.575

THIRD VICTORIAN EGG-LAYING COMPETITION, 1913-14.
Combmencing 15y April, 1913.
CONDUCTED AT BURNLEY HORTIOCLTUKAL SCHOOL.

ORCHARD AND GARDEN NOTES.

E. E. Pescott, F.RA.S. Prinripal. School of Horticulture, Burnley.

The Orchard.

Planting.
June is the month usually favored for the planting of all deciduous orchard trees, and this work should now be carried out. The growad shonld have been previously ploughed, subsoiled, and drained, in anticipation of the planting of the young trees. The young trees should be planted to the same depth as they were growing in the ausery beds, fad the holes for their reception should not be any deeper than is necessary to contain the roots. A deeper hole only provides sonkage room for the soil moisture, and the hair roots are roted ns soon as they are formed. To order to keep the tree holes at an even depth, a plough fincrow may be run along the whole length of the row, and each tree could then be planted to the depth of the furrow and no deeper. By this means any soil moisture, or an exeess of moisture, is evenly distributed, and is not likely to settle round the growing roots.

Before planting, the roots of the young tree should be well proned, cutting them back hard, leaving a pery small root system: generally cmly about one-third of the original roots being left.

It is iralely necessary to manure newly-planted trees when they are being planted. If manare is reguired, it should either bave been well worked through the soil previously, or else it should be used as a surtace ranlch some considerable time after planting.

In planting, growers will do well to study such parieties as are waluable as export fruit in apples and pears; and other classes are generally profitable if planted for a succession. A great deal of attertion is paid to new varieties, and it is to be regretted that, in the search for newer varieties, which are so often a failure, the older and more valuable varieties may be lost sight of altogether.

An up-to-date orchard should contain a very few varjeties; the fewer varieties simplify many orchard operations considerably, and the crop is far more easily hardled. In planting, it is also essential that the question of cross fertilization should be studied, so that the blossoming of each variety sball belp the other in the setting of the fruit.

The recent Pomological Congress drew up a list of apples and pears suitable for planting in Victoria, and growers are recomnended to select such as may be suitable to them from this list. The varieties are here given, aud in order of preference for planting purposes.

List of apples snitable for Northern districts-
(E), early; (M), medium ; (I), late ; (V.L), vary late.
(1) Cleppatra (M.).
(2) Dunn's Favorite (M.) ; Syn. Munroes's Favorite
(3) Jonathan, Gravenstein (M.).
(4) Rome Beabty (L.).
(5) Esopus Spitzemberg (L.M.), Cos's Orange Pippin (M.) (in sperna) districts), London Pippin (M).
(B) Peasgood's 2 Fonsuch (E.), Weilthy (M.), Stewart's (L.), Shepherd's Perfection (M.), Scarlet Nompareil (L.).
(7) Stone Pippin (L.).
(8) Rymer (L.), Scbroeder (L.), Winter Strawberry (L.).
(9) Rokewood (V.L.)

Southern districts-

> APPLES (in order of preference).
(1) Jonathan.
(2) Gravenstein.
(3) Yates.
(4) Rome Beauty.
(5) London Pippin
(6) Shorland Queen (E.), Reinette de Canada (M.).
(7) Alosander, Wealthy (E.), Pomme de Neige (M), Btatesman (L.), Rokewood, Newman's Seedling (L.), Stone Pippin, Stewart's.
(B) Sturner Pippin, Esopus Spitzenberg (L.), Lord Wolseley (Li.), Green Aleristoin (E.).

Pears-
(1) Williams (E.)
(2) Beurre Bose (M.), Winter Nelis (L.), Josephine do Mnlines (L.), Packbam's Trimph (M.), Beurfe d'Anjou (M.), Urbaniste (M.).
(3) Conference (M.), Winter Cole (I_{2}), Howell (M.), Madam Cole (L.), Glou shoreeau (M.L.).
(4) Kieffer (M.), Broompark (Lt.), Beurre Capiamont (M).
(5) Vicar of Winkfield (M.L.).

Spraying.
Al the winter pests will now come in for attention, and trees should be freed, as far as possible, from all classes of scale insects, bryobia mite, woolly aphis, \&e. The red oil or crude petroleum emalsion is most suitable for the eradication of these pests.

Spraying before pruning is not the general rule, and yet it seems to be the safest, especially where scales or woolly aphis are prevalent. Certainly, a moch larger amount of spray material will be required, but much better work will be done. There will be ao donger whatever from future contamination from any of these pests on the madestroyed pronings, or from any small clippiags that may be lying ungathered aromed the tree. Another point in favour of this is that, if by any meaas, whether by careless spraying or by the use of bad materials, any part of the tree is left, so that the pest is not destroyed, and so continues to increase, then a second spraying can be given while the tree is still dormant.

Dratning.

In old eatablished orchards a thorongh scheme of drainage does more to invigorate and resuscitate the trees than any amount of surface cultivation or manuring. - The work is easier done in June and July, and, where necessary, it should be started at once. Drainage pipes are more generally used, bat stones, logs, waste timber, brushwood, and charcoal are all valuable as drainage mediums. The benefits of soil drainage have been so frequently urged that it is hardly necessary to repeat them again.

Ромоlog.

The recent session of the Pomological Congress has decided to recommend certain changes in the names of various apples and pears,
mainly for the reasons that some names are unsuitable, that some are too long, and that some contain annecessary words.

The Congress, in considering the question of amaenclature of fruits, made no defiaite rules this year, but the following teatative agreements were adhered to:-
(1) That priority of name, naming, and of origin, have preference wherever possible.
(2) That such words as "Seedling " and "Hybrid'" be abolisheत from Anstralian Pomnlogy as far as possible.
(3) That simplieity of anning be followed wherever possible.

The following alterations of fruit names were recommended for the various reasons given. The nels dames are given first.

Apples.	
Cleupatra	Syamyms Oriley, Porter, New York Pippin of Lindley; bat sot of Downing.
London Pippin . The term Pive Crown Pippin is too genaral, as there are many apples with such a crown, and moro noticeable than this one, especially Delicions aud Colville Blanche d'Hiver.	
Scartet Nonpareil	Synonyms Winter Pearmain and Scarlet Pearmain in Tasinania.
Adam's Pearmain . Erronegusly ealled Golden Reinette and Dutch Mig-	
King of Pippins	Syuonym King of the Pipping. Erroneously known as Golden Reinette, Adam's Permain, and Summer Pertmain in Tasmania.
	Syzonyms Dumelor 's Seedling, Wellington, Wellington Pippin.
Tasma	Svnonym Democrat. A new Trismanian apple; the name has been ehanged because of the existence of two American apples called Democrat.
Statesman	Synonyms Chandler's Statesman, (thandler. This is the round apple sent out by Chandler, and not the ribber one, which he distributed earlier,
Dunu's Favorite	Synonyms Dunn's Seedling, Munroe's Favorite, Garibald, Obinemuri, The applo being raised by Mr. Dunn, of South Australia, priarity was given to his name instead of the Viotorian claimant, X.r. Munroc.
Schroeder .	Synonym Schroeder's Apfel, Growa in Harcourt, Vie., as Dunn's Seedling.
Stewart's	Synonym Stewart's Seedling, a Victorian seedling of Dunn's Eavorite.
Reinette de Canada	Known as Laxambourg in Camberland, N.S.W, and as Blenheim Orange in Tasmania.
Alexamder .. Esopus Spitzanberg Trirett	Synonym Emperer Alexander.
	Smaraym Feopus Spizzenbur
	Bynonym Trivett's Seedling
Bismarek	Synomy I'rines Bismarek. This is a Fietorten-raieed apple, and aot a Nrem Zenland voricty, us stated by Hogg.
	Pears.
Willisms	Symoryms Williams Ban Chretien, Bartlett, Dmehess
Giblin's Nelis	Symaym Gibiln's Seedliag (a Tasmadian
	Wiater Nelis).
Kieffer	Known as Koifter's, or Kiofer's Hybrid.

Vegetable Carden,

The priacipal work in this section during Juae is the preparation of beds for the main erop of vegetables. Most vegetables require, and thrive best in, a thoroughly well-worked soil, the soil being as friable as possible. The beds should be deeply worked; all manures should be well rotted, and evenly distributed throughout the soil.

One point to be emphasized is a good system of rotation whereby a continunl snceession of the different classes of vegetables is grown in the beds. This is not only valuable as a method of soil restoration and improvement, but it helps to reduce and weaken any insect or fungus disease that may have been present.

Asnaragus beds may now be renovated, and new beds planted according to directions given in the April number of the Journal. Onions and any other seedlings that are sufficiently far advanced may now be planted out, and succession crops of spinach, radish, peas, brond beans, Teek, lettnce, carrot, \&c., should be planted. The planting of rhubarb beds should now be completed.

Flower Garden.

General cleaning up and digging will be the work for this month in the flower section and shrubbery. Where the soil is heavy or sour, or where sorrel is plentiful, the garden should be given a heavy dressing of firesh lime, giving a lair dusting all over the surface. Lime should not be used in conjunction with leaves, garden debris, leafmonld, stable manure, or any other organic matter used for bumus. These should be first disposed of by digging mell into the soil; then shortly afterwards a top dressing of lime may be given. Should no humie material be used, the lime may be dug in with the autum digging.

In cleaning up the gardens, all light litter and dead folizge should either be dug in, or, better still, shonld be placed in an out-of-the-way corner to form a compost heap. Leaf-mould is especially useful in any garden, and where such plants as Azaleas, Rhododendrons, Liliums, \&c., axe grown, or for pot plant work, it is exeeedingly valuable. Informing the compost heap, no medium whatever should be added to help the rotting down of the leaves, nuless it be a little sand. Any chemical added will render the monld unsuitable for its sperial nhjents.

Any hardy amnals may be plauted out, such as stocks, pansies, wallfowers, \&e., and cuttings of roses and bard-wooded shrubs may also be planted.

REMINDERS FOR JULY.

LIVE STOCK.

Hosses.-Those stabled can be fed liberally. Those doing fast or heavy work should be ctipped; if not wholly, then trace high. Those not rugged on corking into the stable at night should be wiped down, and in half-an-hour's time rugged or eovered with bags until the coat is dry. Old horses and sveaned foals should be given crushed oats. Grass-fed working horses should be given hay or straw, if there is no old grass, to counteract the parging effects of the young growth, Old and badly-conditioned horses should be given some boiled barley.

Catpue-Cows, if not housed, should be rugged. Rugs should be removed in the daytime when the shade temperature reaches 60 degrees. Give a ration of hay or straw, whole or chaffed, to counteratt the purging effects of young grass. Cows abont to calve, if over fat, should be put into a paddock in which the fied is not too abuadant. Calves should be kept in warm, dry shéd. The bull may run with the cows.

PIos.-Supply plenty of bodding in warm, well-ventilated styes. Keep styres clean and dry. Store pigs should be placed in fattening styes. Sows in fine weather should be given a grass run. Young pigs over two months old should be removed from lueerne ram

Sheep.-The general classing of merino and lamb-raising ewe flooks should be commenced; none but roany thick ewes, carrying a bulky fleece, should be kept. Olass rams; keep only the best in shape and fleece, castrate all others; do not allow thern to go ontire to be used by those who think any ram good enougt. Deep and narrow forequartened rams are respousible for many car. casses dressing and freezing plainly, although often good sbeep from as wool point. Siell aged or barren fat ewes from breeding flocks. Clean filth from breech of erres of British breeds now commencing to lamb. Wherever possible, seaf lambs weighing 00 lbs . Hive weight to market. Early prices are always best; avoid waiting until the rush of the season.

Poultar.-Mating of heavy breeds for table purposes and winter eggs should receive immediate attention. Six to eight second-season hens may be mated to a cockerel ten to twelve months old to insure fertility and strong chickens. Hateh all breeds in July and August for stock purposes. Hateh light breeds in Eeptember for winter Aggs. Ten hens may be mated to one coekerel to obtwin best results.

CULTIVATION.

Farm.-Finish sowing barley, peas and beans, and late white oats in backward districts. Trim hedges. Fallow for potatoes, maize, and other summer crops; in early districts, plant potatoes. Graze off early crops where possible.

Orceaso.- Continue to plant deciduons trait trees, bush fraits, and strawberries, Cantinue cultivating and pruning. Spray for mites, aphides, and scales.

Ftower Garden.-Plant shrubs, climbers, and permanent plants, includiug roses; also anmuals and berbaceous perennials, Gladioli, Liliums, Iris, and similar plants. Continue digging, manaring, trenching and liming.

Vegetable Garden.-Plant out seedlings. Sow seeds of carrots, parsnips, eanliflawers, anious, peas, broad beans, and tomatoes, Dig sll vacant plots.

Vineyard.--Proceed with pruning, burning off, and ploughing. Complete, as early as possible, the application of manuxes other than mitrates and sulphate of ammonia if not alroady done. Mark out land for new plantations. If ground is in good ardar and not too wet, proceed witb plantations of young vines (onpraned). Remove euttings or scions from viaes previonsly marked. and keep fresh by burying horizontally in almoft dry sand in cool, shelterad place. Permanently stake or trellis Jest year's piantations.

Cellars.-Rack ull young wines, whethor previously racked or not, Rack nider wines alsc. For this work choose, as moch as possible, fine weather and high barometer. Fill up regularly all nifortifiod wines. This is a good time yfor hottling wine.

[^0]: - Joternal of Agriculture, Vite, A pril, 1012.

[^1]: Mean average of thr 697 samples analyzed $=\cdot \mathbf{7 6}$ per cent.

[^2]: - Ender the Beas Discancs Aef 1910 it is provided that the Governor in Counchl may by woelamaplon. declares as despage any peat, \&c, for the purpases of the hot. In this reypuct Foud frood bacilhe alvel, Brood Pest Bactlus Lerma, and Sour Brood Sireplodocous apis have leen mo prodatmed. fy the det an
 uecessary to arreat the epread of dibeaso by deanslogy or disinfecting or deatroging wach artirtes or
 let January, 1918, any district may be proclatmed a dictriot in whioh no bebe shitll be kopt except in eertain prescribed hives.

