
 THE JOURNA回

Ithe (1)epartment of Agricuifure

VIC「IORIA.
Vol. XI. Part 8. -

WHEAT ANO TS PU.TU ATHOS.

(C'mbinmal) from payi Es. 1

A large number of ingames is received af the beginoing of each year by the Departomet of Agriculture for informafion regarding the merits and quatities of different varieties of wheat grown in the wheat areas. It is proposed in the present artiele to rive in simple language a brief description of a few of the more commonly grown varieties of wheat, and to briefly iodionte surll features of structure as will enable these varieties to be more or less madily recoraised.

It luight be mentioned, in passing, that a larges number of attempts has feeth madn from time to time by various observers to evolve a workable wheme of chassifrivg the many varieties of enifivated wheat. "mit, so fat. ho satisfactory system of classification has vet been obtained. There is a general agreewent on the division of the mativated wherts betonging to
 classification of the variotios within these shth.grouns there is the greatest difference of opivion, Eriksont has evolved a seheme of elassifving the rarieties of whent by the strueture of the ear. and particharly by the leagth mad deasity of the spikelets; but such a sotheme und be mote or less unsatisfactory when applied in practice. since the hend is known to sary considerahly from season to season, and with changes in the soil conditions.

Vilmorin: has made a very systematie review of Ferench varieties of wheat, but the minor subdivisious of his dassification are wanting in definiteness Cobb. \S of New South Wales. sume vears ago proposed an ingenions seleme for the wiversal nomenclature of wheat, and

[^0]sugrested the efasifiration of whents hy moroserpice examination of
 the applioation af ubelt a luchor, and, moreover, the symem rests on an inseatm fommation. sine it tatifly assumes that difterence in
 haver.

 of wheat, varidies in varions parts ol Anctralin sumsquetading moder quife a bimmixer of different namos.

I'ntil a systematie smmey of the famatoristime of the huadreds

 the following:-
 King's Einlly Stemwedel. Thew.
 tion. Jomalhas. Zealand Blue.
 Medeah, T'urpho silaw. Taudilla Fing, White Tuscan.
The above division of commorly gronz wheat varioties ituto early. mid-sensom, and late is adopted for romreniones, and represents the averagu resulis of fuur seasons of observation uudir unform condilions.

The line separating sone of the early and mid-season wheats on the ons havd, and fhe mid-womont and late variefies on the other, is not, as mixh be repocted. vory emery defined.
E.bato Finaeties.

BOBS.-This infereting waraty of wheat was produced by the late
 Nopanl Barly aud Fians lambeigs 1 hlegt. It is ome of the jest milling wheats yet produrd under Australian conditions. Its grain is hard. shomb. and tmushmulat and welds a good perventage of fonm of very hirh strenatl. The four is wry suitable for hending pur-
 given very satisfactory fielels in dry as well as eool, moist districts. It is a very early sparestouling wrimy, with erect hightooloused. bollow strmw. The ears ate while, beraders, and smooth, somevat. fax in chameter, broad and open in the ehest. carrying small, shotty pluny. trauslucent graio which teods to shell ont. On account of the excellemt milling quatits of lhe srain it has long since been o favorite will millers, and prico in adrame of f.a.q. rates have regularly heen graid for paccels of this wriety. Its riolds in most of the whest areas of Victoria have uns ben very salisfactory; and, in spite of the enhaneed prices, it has not generally given such good fnancial returas as other mom meolifie sammers.

BUNYIP--This is a very carly, upright, moderately tall, stronggrowing varipty of fair stooling power. and is a verv useful variety to sow in dry districts when the season is late. The ears are yellowish
white brome awnless: bet the upher spikencts banc a slight tip beard. The grain is hard. phamp. and atramisur, of fome milling yhetity, and yields a thour of high strengeth. In does not readily shell. On arcount of its extreme eardiness it give lest results in hurbal seasoms when sown in the micidle or bowarels the end of the spason.

Conedsach-Thas is an enty variely of fair smoling caparity, noderaty fall, with chem, hollow straw, and make a wory nice sample
 length. fandy compact. hut with a lang taporine tip. The gan is small, somewhat shoty io ehamerter, thas resembling Rols. with hard semi-translurent enderperm. 'The grain is of ligy milling phality, and. like Bolss is magerly songht ly millers, making a good persentige

of high-guality flour very suitable for blending purposes. It has bren sold on the Syduey and ddelade markets of various times at 3 l . to 6 d , per bushel above urdinary f an, whents. It has the repuat tion of being a shy vielder. -hat in som of the drier distriets it has done remarkably well. There is a number of strains of Cometrack in cultivation, and some of these are remgnised as of more value than others. Among these latter might be mentioned Pratt's Comeback, origiuated by Mr. Pratt. of TMo Wiells. South Australia, to whom the late Mr. Farrer sent a sample of the original cross. Comeback is a crossbred wheat of Fife-Indian marentage and may le censidered the best milling wheat yet produced under Anstraliso conditions.

FIRBANK-This is one of the most popular bay wheats in the Riverina, and fin some voms past ith dpmand for seed of this variety bas bema mamerefonted. It is an warly, tall-growing, eriset variety
 stroag, rot hollow. and makos sweet hay of quod glablity, which retains its edmar well. The rals atre lomg smooth, lan, upen, and tareriag. wifh slimh tip beards. The what is of a yellowish-white colour, and holdh the wrain somenhat lonsels, and possesses very short, stiff, terminal anows. The grain is Lame phann, and soft. It is rather liable for thes smat and rast. It is essemtially is hay wheat..
 South Australia on necomit ol its eat? maturitr, gooeral immanity Erom disease-particuand its mostmesting prowers-and its capaity tor yichlieg well in dry seasous. It is vigumbs. moderately tad
 weak io the sifat, and bas a feodemy fo go down, particubiarly in heave wedilur. Tbe betrs are dark-hronze in eolonr moderately

ds the grain approaches maturity. the dark heads berome pendulous. bat do sot shell on aromant of the firmly closed eaveloping glanes. It is a very mseful varify for sowing in dry distriets ju a late senson.

KLNG'S KARLY-This is another very popular early variety in Malke rountry, which vields well in a diy season. It is a selertion made mens yeam ago by the late Joseph King. of Georgetown, South Australia. It is a vigorous, tall-growing variety of moderate stonling capacily, fonsessing somi-solid straw with a fair atnount of flag. The cars are bearded, white, somewhat open: and the grain larace phomp, and of low shrength. In spite of its beard, it is prized as an hy wheat on aromot of the solidity and sweemess of its straw. and the capereity fo retaite its colowr well. It is a very old variety; but durige recent years it has bew gewaty improved in vieldiog rapacity by Protessor Perkins.*

STETNWEDEL is a bery popular, early maturing variety, exten. sifely gromm in Vieforia, South Australia. and New Sonth Wates. It origualed from a solection made from a wop of Farmeres Friendone of the old Purple Straw varietus. It is a Jree stombing, moderately tall-growiug radiefy, with drooping foliage aud strong. hollow, purplish sfraw. The enrs are smooth, white, bold and lamge. with broad mpikelents and a slight tip beard. The grain is lape. bright, plump, hat suft ard mealy. It is was to mill. and the How is of good eolowe but of low strength.

This varipty has a strong feudeney 10 shell, and the rrup should, therefore. be harrested as soon as it radebes maturity in order to obviate lossus. It is a pood violder in the drier areas and can be relied on to do well in a dry spring.

THEW' is a romarkably tarly vigomens-growing wheal, possessiog good stooling porers. It is a moderately tal! grower. with stiff narmow flag and medium-sized hollow strab: It cures frood colour, and in some early districts has given good yields of hay and greer stuff. It bas been siagularly free from rust during the past few years, but
this may probably be due to its rapid maturity rather than the possession of actual rust-resisting powers.

It bas a long tapering beardless head, with smooth white chaff, and somewhat las spibelets, which. however, hold the grain well, and cause some difficulty in threshing. It is a crossbred wheat with improved Fife parentage and is a very good hay wheat.

Mid-season Yarieries.
BAYAT is a crossbred mheat with improved File and Jonathan parentage. If is a mid-season pariety which very closely resembios

Federation in the colour of the ehaff and the short upstanding straw. It is a very vigorous grower, of good stooling capacity, with welldeveloped, shapely, dark-brown, compact ears with clubby tops. The chaf is smooth, but the spikelets near the tip are slightly awned. The grain is plump, soft, and white. On accownt of the short stiff straw it is not saited for hay, though its grain yields have been very satisfactory.

CORREL'S No. 3.-This is one of a number of varieties originated by Mr. J. Correl, of Arthur River. Western Australia. the originator
of the Le Alugumet Wheat. Correls No. 3 is a tall-growing, vigorous bariety, with qrod, strong. semi-solid straw, and a good stooler. It retains its reflour will when eut for hay, and makes a very good sarmple. It posscsses a pond empmatly-built ear. slightly awned at the top. The chaff is dark-brown in colour, and smooth, whilst the graio is barge and anderately pump.

DARTS LAJPERLAL - This popular vapiety was originated by Mr. Thomas Dat. of Nhill. Victoria, formerly of Lacindale, Sonth Ausiralja, and is a sijection from a purple straw variety. It is one of the oldest rarirtirs in greneral cultivation at the present time. It is a gook all-round grain and kass what, and is a rery reliable yielder in moost whent disisits. Th is a tati-growing variety, with good stooling powts. but hoflow shemmed, and prosessing considerable follage. The lemeds are well developed square and compact, with broad. smooth, erean-eroloured mikelets. somewhat crowded towards the thy giving the inp a fubbike appearance. The chaf is swooth. but possesses slight awns towards the summit of the head. Tise grain is solt, white and menls. nad not of high strength. The grain in ansily milled and it helongs to the weals flour rroup of wheats, Hongh the colour of the four is excellent. In Deparfonental variety tests the piods of Jurt's Imperial have usually stond out prominently, and eonfirm the orinion that this variety is a grod prolific standard fype for 1 n:os of the whes areas.

FELEERATION-This is. withont quastion, the most popular and prolitic varity of what in general cultivation at the present day. It was produced by the late Mr. Farrer, Wheat Experimentalist, of New Sinuth Wales, from a cross between Purple Straw and Padilla. Yandilla is a eross belween Improved Fife and Etewah. an Indian varief. The groduction of this wheat was probably the greatest of Mr. Farmers many trimphes in wheat breeding. for none of his mang suceesslill rosshred wheats hare enjoyed such a wide measure of popularity ith Federation. Indred. during the last six years the golfent yellow eharacteristic of old time Australian harvest fields has been gradtalls chaqged to a dall bronze througb the ever-increasing popmarity of Fecteration wheat. This popularity has been won by sherr uerit. fur Feduratiou. "hea seen in the field for the first time, is deridedly matimative in apporaven. especially when grom side by side with the showl wheats of the Purple Straw type. Most farmpre in yrowing it for the first time have expressed great surpise at the yivding unpacity when the wheat was taked off, for the yield invariably exceeded the expectations based on pre-harvest estionates. As a matter of fact. Mr. Farrer's main , im in producing Federation was to jroduce a variety sujted tu the Australian methods of barvesting with the stripper. Federation is a short, erect-growing variety of inderate stonling rapacity, with broad, semi-erect, lightgreen foliage. It has short, upright. stifi straw, unaffected by some of the most violent storins. It may be regarded as a variety in which there is a maximum of grain to the minimum of straw. Its chicf Leature is its extraordinary prolifieacs. It was not inteaded for nor recommended as a has wheat. It is essentially a grain yielder. It possesses a bold, square beardiess, conmact head, with a peculiar ard ahamactaristic tranze east hroad wall-flevplaned emonth anikelpts

As might be expected. Hech are נmmprows strains of Federation
 of the bead. Waracteristic of the varity whon if energed fresif from the breeder's lands, lave to a largo extmit diwaperbed. The offect of rigorous sefection in matamining the yieding eapacity of a given variety may he seem ly the results at the hancerenour devinulatal College this season.
 was produced by the writer al the t'areffeld Wheat Station. Sonth

Austialin, was put io competition with two other Federation plots under precisely similax conditious. Whilst the yield of the handrelected seed was 43.2 bushels, the two other plots gave 34.5 bushels and 32.8 bushels respectively. Federation is susceptible to fungus diseases-especially rust and flag srout, and, to a lesser extent, "take all" (Ophiobolus graminis). Were it a more disease resistant and earlier in maturiag, it would be ideally suited for the more arid areas. The grain is very liable to suffer frow bleaching, especially in a
sbowery burvest, owing to the farf that, malike many of the older Whatt varieties, the ear stands upright wheu ripe und allows rain to readily pedetrate the ear. lts graul is soff. white, and plump, and
 the strearfl of the flour is considerably Lower than Comeback aud bobs. it is herier than the Purple Stmw Whoats."

JON, \IJIAN is amother crosshred proctued hy the late Mr. Farmer, aud is of Fife-dodian purentage-ic.. the result of mating Improved Fife with an Indian sariefy knawn as "Indian G." It does befter in moist eool distrints than in hol dry regions. It is a fairly vigorous grower, with moderate stwoling calbeity. with sparse. erect, glancons, narrow folinge, mon hollow, shondsm, supple straw. It is fairly rust
 varieties have beed serionsly attablied. The dead is chameteristic in shape being broad towards the motre and topering gradually at the summit with white. smouth. herndess. eompact. closely adherent spikelels. The chaf adheres rlosely to the grain. and possesses sharp poinfed tips. The grain is bard and of exeollent appearanee, and sields a good proportion of Hour of high guality and strength. It. is a diffionlt variety 10 sirip. at arount of the closeness with which the grain is held.
 whent-and Zealand-a variety of the Lammas type-bred by Mr . G. F. Berthaud. of Western Australin. and sent ont as Crossbred EbA. It is a thallgrowing, medibm bate varjets, with grood stooling powers, and strong straw. This variety has done well, both as a grain yjelder and bay variety, espocially in the cooler wheat arens. The head is longe heardess, slighty tapming, with charteteristic velvets chaff. The grain is large, plamp, and medium hard, of very attractive appearamec. and of good milling quality.

Lare Firfeties.

 stooling eapheity. This was the hest of a large number of American rarieties grown at the Paratield Whrat Station over a period of five years. It has done well both as a crain and hay yielder, and when thoroughly acclimatised it may prove a valoable variety. It is a somewhat late whear, with firm. upstanding straw, and characteristic dark-brown heads. The ears um marom, mell formed, beardless, with rather densely packed spiketets, aud the chaft vers closely adherts to the grain. The grain is small, hard, and dart red, and of good milling quality. Last season a bag of this ratietr suwn at Rutherglen Experiment Farm on stubble land gave 251, bushels per acre.

GENOA is a late wheat with grood stomling propensities and uprigbt straw. Tt is one of the buntresistant erossbred varieties proulnced by the bate Mr. Farrer, and ite introduction suggests the possibility that the pickling of seed wheut for the prevention of bunt mas in the near future be dispensed with. It does well in seasons wheu the spriur rains are heavy. Thus at the Rutberglen Experiment Farm last season, a 2 acre plot on stubble land yielded $211 / 2$ bags of grain, or 32.2 busbels per acere. It is more suited. however, to cooler dintricts

[^1]than hot ones. The ear is long. beardless, slighty tapering, with characteristic rounded widely-spaced spikelets. The rhaft is wide and smooth, and the grain saft, white, plump, and mesly.

EUGUENOT.-This wheat was originated by Mr. J. Correl, of Arthur River, Western Australia, Mr, Correl has been responsible for the production of a number of new varieties, nost of which are hay wheats. He states that it was obtained in 1897 from a crop of Medeah

Wheat, and from the twelve distinct variations he obtained from the variety he selected in 1898. He supposes that his selection must have been a natural crossbred wheat between Medea and Purple Straw. Huguenot is a very tall-growing wheat of the macaroni or durum class. and is quite free from the long, coarse beards characteristic of Medeah. It stands up well, Erequently growing to a height of 6 or 7 feet. Its straw is practically solid, and very sweet in character. It is a poor stooler, and must, therefore, be soma very thickly. This
js the more acessary ou acenum of the lare size of its grain. Its early growth is emet, and ox hightmmen whone and the leaves houd and stiff. Caless sout thickls the stras goos up like momiature bamboos. The herd is pery dease and compate being dark hrown in colour, with a ceat of purplish black. "Tida spilielets are densely crowded, and give the ear a chb-like apmarance. The gram, which is long, hard, homs, angular, and chytht piuched adheres closcly to the chaff, aud makes the whent difficult to stpip. This diffontty is

increased by the faet that the whent is invariably a tall grover, and pussesses very prominent top nodes, which latifer often ehoke the comb of the stripper or havester. It is a macaroni wheat, und not a milling wheat. Its gluten content is high. but the colour of the flour is very objectionable. It is a very poor yielder, and will not pay to grow for grain at f.a.q. rates. It is essentially a fodder variety, being groma either for hay or ensilage. As a hay whent it gives an exceedingly heavy eut, Jields up to 4 and 5 tons per acre being fromant in Sonth Anstralia. Mixed with varieties like Barootia

Wonder, Majestic. or Calcuta Cape Oats, it gives heary euts of good quality sweet bay, it is smut resistant, and rolatively rust resistant. The cosi of sed wheat of this variety is usualy high, but it could not be produced with profif at urdinary facq. rates on arcount of the low yield of gruin per aure.

MEDEAFT-Lhike lluguenot. this 1xelours on the Macarous class of wheats, and is a tall-growing late variety whish stoms very spariugly, The stram. like Muguenol, is practieally solid, hut coarse in charater. sweet, and berring prominent nodes. If is difficult to harsest, par

ticularly when growing ankly, owing to the pendent character of the ripe heads, and the prominence of the last node causing the stripper to choke. It is a very sultable variety to sow for the production of a heavy crop of green fodder or ensilage; but for hay it is rather unsuitable on account of the coarseness of the straw and the beavily bearded heads. The difficulty in harvesting both Huguenot and Medeah may be obviated particularly where it is liable to grow rank and tall, by sowing it early in the season and grazing the young plants, and allowing the second growtb to mature for grain. The heads are compact. the spikelets densely crowded, brown in colour
with patchus of hiaish hwek. porsessing long, black, sertated beards, aud hard, horny. long. and augular grafn. The milling quality of the grain is wery low. It is essentially a forage variety:

MABSHAld'S No. B-This is one of a large number of varieties ormmated by that succosfal wheat brender. Mr. R Marshald, late of Templars. South Australia. It is a bate whent of good tillering capacias. but rather sow growing whers romg. with a sorumbat spreading habit. and broad, dark-gropa, drooping leaves. It is some. what rusi remstant, but ifs litte maturity is an aibigetiou for the drier districts, The straw. When rine. lias a purplish tinge, stands up well. and homs a beardiess, somewhat open head of fair length earryiner smooth hroad spikelets. with a shight tip beard. The grain is soft. White, phmp, and of tair size, and of fair milling quality. If is very populir in South Australia, New South Wales, and Qucensland, ad has been rery ridyly grow for hay.

Y ANDILLA KLNG.-This is another of Mr. Marshall's crosshred wheats, and is a half-sister to Federation. It was obtained by mating Yantilla and Silser King (a white-strawed variation of Marshall's No. 3.) It is a late wheat, with good stooling propensitios, and. like Maribalt 's No. 3. is a somewbat slow grower iu the early stages. The ripu straw is stifi, hollow, and uprigit, on the short side, beariog large, Hill-develoned, shapely, beardless lirads, creamy-white in colour, with broad, elose-set sinooll spikelets. The chaf adheres closely to the grain and renders stripping sumenlat difficult. The ear is slightty: tip bearded, and the grain larare, plump, medium hard, white, and of good milling qualitw. It hits heen a consistently heavy yielder, and bas done well in Departhental variety tests, and must be regarded as oue of the most prolitic grain varicties in general cultivation.

HIEITE TUSCAN-A very popular hoy wheat, late. with grood stowling puwers. Possesses fine guality sweet straw, which retains its colour well when cut for hay. The hoad is rather oper beardless. white, and possesses a characteristic tapering tip. It gives a heavy cut of good quality hay.

The foregoing list of whents represents some of the ratieties which bave done well in various paris of the wheat arcas. The list is not intended to be exhaustive, but is intemied merely to direct attention to varieties which have been proved to be satisfactory for forage, ensilage, hay; and grajn purposes. The number of varieties grosin in the various wheat areas under different local names is legion, but careful analysis of the properties and structure of many of these parietics repeals their identity with well-known standard varicties. It is to be regretted that, up to the present, no satisfactory scheme of descriptive classification of the Australian wheats has vel hech evolved. Such standardization and elaskification is a work of the future, and might well be done by the co-operative efiort of the Stato Departments of Agriculture.

Incidentally, it might he mentinnod that the prodncrion and sale of pure varieties of seed wheat is vrey rarely a remunerative busincss. While large incomes have been made by the berelers of high-class stad stock, there are very few men who have profitel from the production and sale of new varieties of seed wheat, wr improved strains of old varicties, The men who have contributed to the wealth of Anotrolio her tha nendaction of ness and improved strains of whent
have not benefited financially from such productions. The reason is obvious. Before a what ean be popular it must have been tested orer a wide area, and proved to be of value in a number of localities. By the lime its value las bear demonstrated the variety is possessed by many provers, and the modopnly of the wriety cannot, therefore, be possessed by the breeder. Mureover. the modnetive powers of wheat are such that the total produce of one bushel in five years wond be sufficient to seed the whole of the wheat aren of Victoria.

Most of the inate Departments of Agrimalture and Agricultural Colleges have taken in hand the production and dintribution of selected varieties of graded seed wheat.

A list of arieties of what availatha for distribution by this Department for the seasors 191 . and 11114 is annowned in the akertising (olumas (p. vii).

Obvionsle: the production of bigh grade aed is most effective when the seed has been selected within the limits of "pure lines"; that is, the produce of a single typiryl high grade plant, and continuing the selection on the lines indieated in A, \vec{H} icle 9 of this serjes. ${ }^{*}$ Selection on such Jines bas already been imitinted at Rutherglen. Longerenong, and Wyma, but at leasi thre years must elapse before such seed will be available in bulk fis distribution. Meanwbile, such varieties as are available io bulk for 1913 and 1914 are announced elsewhere.
(To be continued.)

BEG-REEPING IN VICTORA.

(Comtinuod from mage 4.)
By F. R. Beuhnc, Bce Erpert.
XLI.-NTCJET.

The word nucleus in bee colture mons a small colony of hees taken from a normal colony and established separately in a small hive. The number of bees in a unclepsi may vary from nof to several thousands, the strength of pornation bejug regulated by the beekeeper according to the season or the purposes for which nuclel are formed. There are two distinct objects in making nuclei by the clivision of a stock of bees or of a swarm, one being increase, the other the mating of virgin queens. If the object is incrense in the number of colonies, each mucleus should consist of not less than one-fourth of a normal colony, otherwise tbe end of the season will bave arrived before these small colonies have developed sufftiently to winter safely.

For the mating of queens, nuclei are indispensable to the queenbreeder and the modern apiarist, but for this purpose the number of bees in each little hive may be much less, the objeet being merely to provide a separate habitation for each young queen, with a minimuma of worker bees, consistent with taking care of their abode and resisting climatic influenees.

In the raising of queens for the purpose of superseding those which are either too old, or otherwise inferior, bee-keepers often encounter

[^2] young querns safoly laving

The most dirwot. but also the crmest and most wastefal way, is to kill the ohd gamen and rither lat the lnes ratise wells themselves or

 may mise a pond romer pheren from her hoord. but in the case of an

 gisem, the result will he as groed as by one other method, so far as

lo -ither case hmever, there is a monsterablas los the reproduc-
 considerally, when a mell. rady to hanh hinhon two davs is given.

NUCLEL IXINES FOR MATING QUEENS.
the joung queen commences egg-laying; when a cell is given, it will
 good queens eannot be raised. excepting under the very conditions which cause brood-rearing to be at ins best, it follows that breeding is interrapted just when it should be at the maximum. Even a poor or old queen will at soch a time lar 500 eggs per day, representing for 21 days a worker form of 10,500 bees and 6,000 for twelve days, but as young leus contious io hateh for 21 duys after the old queen is removed, the weakeming of the colony does unt hecome evident till a month afteruards, by which time the cireumstances have probably passed from memors:

It is a generally understood fact that there can be only one quees in a hive at a time and, with the oue exception referred to further on. that lolds good, as, on the aremge from the tine the ronge gueen latches till she begins to lay, ter days elapse, and a break in egglaying for that period must of nomasity orear. To reduce this intercuption of breeding to o minimam. or to do away with it altogether.
difenent methods have beon eonsod and practisod primerpally by Amerixan bere-keepers in the first instance.

The plan whell does away "inth stuppage of ergelaying alogether
 a queweexeluding lone hoard. About half of the combs of brood are placed in the urper story. Which a separate ombatere is providud. A queen-cell is given alswe and tor roung quen will taki hel' mating Gight from the upper ratrance, and in dur remace will ermmence to

 cell given.
 bination of cimanstanees. These are : coluny rovering the combe of
 fiars uld: and a free use of the meper eutrance by the worker bees. otherwist the virgin queen whon roturuing from hor matiug fight, fioding do bees at the upper nimane. will be attracted by the lower one, will enter, and either kill the liying gneen or be herself destroyed by the heos.

To reduce the tatal intermption of breding to a minimun for the
 into a number of nuclei of two or the enuhts. curch being given a queen-cell aud phaced apart from orlhers. Many of the bees mill however, return tri the former stand lawiog but mond bees hehiad. These are und ble troperly take calw of the brow and the queed-cell and to delend the litthe hive arginst intruders.

There are several ways of overcoming this diffienlty. The bees for each muclens may be taken from noy bive which can spare them; they are shaken into a smatl empty hive, such as the one shom on the right of the illustration. A wire sereen is fastened over the top of the box, and it is placed in a dark, cool, welly-aired position. On the evening of the dey following. that is. : thont thirty hours later, the box is taken to the spot where it is to be located. A comb of brood and one or two combs rontainiug honey and pollen are taken (without bees) from some strone rolony and given to the uncleus, a ripe uneen-celd in a coll protector, or a virgin fluets, in an introducing cage, being inserted at the same time.

Another way of making muclei is to lreak up into lots of troo or three combs each. a colony which has just thromn a swarm. As a number of bees will return to the old stand, only one comb of brond sbould be left in cach nucleus. Selert for the purpose those combs contaniug the greatest amonnt of sealed brood, and place the combs of young brood in the heve on the old stand. where it will he cared for by returned bees.

A swarm may also be divided into nuclei. It is best 10 allow it to cluster somewhere; then hive it in an empty box and about sunset divide it nuougst a aumber of nuclei hives, each containing a comb of the brond from which the swarm issued and one or tro combs withont brood. As bees which have swarmed and clustered will stay in any bew stand. a greater number of nuclei can be made out of a swami than a swarmed stock. The queen of the swarm sbould, however, be
removed, otherwise the bees are likely to erowd to the particular box she is in.

Ly any one of these methods form fonr to ten ourlei mas be made out of a single stock, aud thus brood-rearing is intercupted only to the extont of oue gucen for four to ten aew queens. In order to still further prononize, Amerieon bee-keepers some years ago adopted a sysfen of very small nuclei with miniature frames and only a teacaplul of lres in enth. These are known as Swarthmore auclei. Owing, Luwever. Wo the hiablity of surb very sumll hives being robbed out when near an apiary and the aratic behaviour of these small commonities in freaumally swamiug out, the [ew dustralian beekeemers who experimented with this system have abaudoued it. For the raisure of the hest frpe of gutern. il is essential that from the first star of the gucen-ecll to the commencement of laying of the young quen. the most tavorable rondifions shonld exist. In the case of very small unclei these conditions are ahsent during part of the chrysalis and the adialt stage of the queen's life. Even in nuelei on standard rombs in thin walled hoses holding two or three frames, the period betuen the hatching and laying of the queen is often unduly extended hy flimatic influences and the vigour of the young queen impraired.

The inttuence of extremes of heat and (ond may be reduced to a minimm by having three or fonm mule in an ordiuary hive body, as shown by the uucovered bive in the reotre of the photograph. A tenframe bokiy will hold four an eightrame three nuelei of two combs each. The compartments are made ty tbin tighty-fittiag division boards. extending upurards to the level al the top of the hive. Each has a separate entrame fucing in a different direction and a separato thin corme board indenendent of l_{s} ordimary hive roof.

As it is always desirable to have some spare gueens at the end of minter, to make rond nuy hosses vit queens, these muclei grouped together in one hive may be carried through the winter, provided there are mongh bees in cach to nearly cover the combs. When queens' have been removed, the divisions may be withdrann and the bees smited under one queer.

Nurlei may be grouped in yet another way by standing, elose together, two buxes of two compartwents eachl, as shomn in the second hive from the right in the illustration The advantage of this method is that, after one queen is removed from each box and the bees united, a four-frame super may be prat on each, allowing an extension of the brood nest upwards, as shown on the left. When all combs are occupied, an ordinary hive with entrance in the same position may be substituted for the four-frame boxes, the hives moved apart by degrees, and run as independent colonies.

For coavenience the auclei are numbered, the numbers being painted on tablets secured by a pail in the centre and used to indicate the state of each. The number is in normal position for queen laying; upside down, for queenless; diagonal apwards, for queen-cell; hori\%ontal for virgin; and for queen-fertilized but not laying yet, diagonal dowawards.

CITRUS CULTURE IN VICTORIA.

By S. A. Cock. Orchard Supervism. Bendigo.

Intronuction.

Froitgrowing in Virtoria is rapidy becomiag one of the most important industries in the State. The area under cultivation is extending every vear with fruits suitable to their geographical situation, and io the northorn areas, under irrigated closer settlement, Citrus culture is making sueb progress that it bids faix to minuately outstrip all other closses of fruit in area and production. For the benefit of those who are embarking on the production of oranges and lemons, this rrticle will deal with Citrus culture in all its aspeets. According to soils, sifuations, stock, varieties plantiag and proning,

PLATE 1.-LNSTRUCTING SETMLERS AT TONGALA ON CHTRUS COLTURE.
irrigation, cultivation, drainage, manuring, pieking, packing, marketing, and diseases.

Solls.

The suitability of the soil is a most important feature in connexion with the successful cultivation of the Citrus family. Perfect drainage is an absolute essential. Careful consideration is, therefore, necessary in the selection of a soil for the successfiul grouth of Citrus trees.

The climate of Beodigo is quite as good for the production of the orange as the Marrar frontages, but the soil is, in mauy instances. unsuitable. Bendigo soils generally are deep to fairly shallow, and ponsist of alluvial and colluvial soils. The subsoil is, in many places, reteative; consisting of red and yellow to grey clays, resting on vertical sandstones and states, and are depicted in Plate 2, $\mathrm{Fig}_{\mathrm{i}} 1$. Such soils require perfect artificial drainage. These soils are fond as far north as Raywood, Inglewood, and Goornong. North of the places
mentioned, and extending atmost to the Murfay frontages, and east through the Goulbum Valley, ure found soils consisting of a shallow to deep red lomm, overlying a retentire red clay of varying depth, lying ater layers of silts, grey elays. and gravels. These soils are improperly drained unless the subsoil clay is brokem through to the silt hayer below. These reed elays howeser. wompact again under irrigation and can be clawed as unsuitable. I'late ? Fig. 2, depicts this class of soil.

Throughout this area, and all through the Mallew conmetry, are found sand hills of pize rideres These pine-ridge solls are generally, most snitable. Areas vecur, however. where Cirus nuthire wond prose it falure. These areas consist of soils of a very sindy nature, immedialaly overlying gravelly washes. These soils danan too freely. and dar out, and can be classed as unsumable. late $\because 2$ Fig. 3 represents this class of soil.

Suitable soils are represonted ly the sedmatitary liats of the Marray fringe. the finserilge country of the Matle and the deep loamy soils and poroms siblsuils of the Cohuma, Banawna, and Tongala areas-of the first, the couposition is all a misture of clays, silts, and sands. carried by floads from the eroded highlands, and spread on the fringes of the Wurray river. These soils are uniform in chavacter and very deep. extendinix to as much as 20 feet, and overlie a sandy and gravelly drift. They are well drained, extremely fertile, and produce the finest growth of tree and type of fruit in the Sfate. Plate 3 shous orange trees 25 feet high, $2 \overline{5}$ years old, at the orchard of J. Greeuwood, Esq., Koondrook. The tree acgaiust which the owner is standing produced this year. 1912, 25 bushel cases of good marketable fruit; last year. 18 bushel cases; and in 1910,

class of soil is "quatiy produrtive. Jlate - Fig. 5. depiets this bype of soil. Mildura is a name known evervwhere. The soits suitable there consist of the treical pine-ridge comatry of the Maller. Deef to vers deej mad sandy soils, trouraliy onelying porous elays, which ave in many bases intermixed winh limestome uarl. These ciovs sometimes overlie silts. and these in tm? orerlie spavelty drifts. Mr. J. P. Grossmati, of Miduma, in a letter of 18 th Angust. IGIQ, writes. The the general fermure of the Citros regarding prolific benting, the very limy and gravelly soils should be avoided. A stif land may be made to suit tha mrange, provided it is well draintd and the trees resudarly manmed, and be character of the soll waged by green manurine The more sandy and deep loatoy soils are the more suitable. 'lhey are better drained, and allow deep cultiation.' 'These pine-ridge soils are also fonnd at Cohuma, Jamawm, and Tongala, and

PLATE 3.-ORANGE TREE, 25 YEARS OLD, AT J. GREENWOOD'S ORCGARD. Yteld, 1912, 25 buseel cases.
they extend right through the Mallee. Their drainage is good, and the type of Eruit produced excebeat. Plate 2. Fig. 6 remresents this elass of soil.

Amother class of soil fonnd in the northern irrigable areas consists of a deep red loam, overlying a porous clay, intermixed slightly with limestone marl. 'I'his porous subsoil overlies a yellow silt, which iu ture overlios alternate layers of gravels and silts. This class of soil is distinet from that shown in Plafe 2. Fig. 2. as the soil is deeper anel more onen in texture, and the subsoil is intermixed with sandy partieles, which permit of peritect drainage and makes it very suitable for Citrus culfure. Plate 2, Fig. 7 renresents this class of soil.

Other suitable soils of limited areas may be quoted, such as deep granitic soils, worlying morous subsoils of triable clays, and sedimentayy soils orerbing gracelly whelus aloug the fringes of erems and
rivers. Generally speaking a sutable soil for Citrus culture should be a deep homy sail, werlying a pornus subsoil, which in turn overlies a gravelly wash as shom in Plate 2. Fig. 8. Red soils. as far as my experience rocs, do not make any difference in the deeper red colour of the rind. The rich red tiuge of the Navel variety appears equally in all the classes of soils indicated in Figs. 5. 6. 7 of Plate 2.

Touts of the subsoit of any area fo be pianied should always be made before planting, su as to thoroughly muderstand its eharacter,
 heyers of cemonts as shown in Plate 2, Fig. 4. Its porosity ran be detemined hy dirging a hole 4 feet sybare and 2 feet deep, under absolutely dry conditions in the summer monthe, Tannary or Februars. The holl should then be filled to the surface level with water, aud in two days this water should have fhroughty drained away naturally, if it does net do ilnis, the soil requires under-drainage.

Smeimon.

The aspect of the orchind shombld well considered. Citrus trees like a well sheltored and wam situation. The generally flat surfaces of the sumblale arcas do not lead themselves to mach choice, but adrantage should always be taken of any eminence. The orchard should be givel, as near as posible, a nombrey and an masterly aspect, rod should the protered from the sonth and west. The elimatic conditions of the nops gud east are congenial. The eold winds of the soluth and the west are very severe on young trees, as well as on the young growths of old trees. On thin plains of the north frosts are rarely severe enough to do any serions danape. Any fall of temporature below 29 degrees Fall. may in iure the lemon. but the orange will whthstand more severe conditions of Erost. (In) sions have very hos temperatures ocrursed, as ma be shown by the following table. Taking the three places namory as qupical of the climate of the Citrus aroas:-

In the midlands and the sonth, although every advantage is taken of soil and situation, the orange produces a fruit of thiek rongh rind, mitb much raq, and of poor quality. The lemon does much better, and can be grown, practically, all over the State under congenial soil conditions - Doncaster and some parts of Gippsland being especially faverable. The suitable irrigable areas of the north successfully produce all classes of Citrus fruits.

Under irrigation, and on Closer Settlement blocks, mixed culture is the general practice. Blocks are as a rule small, and the holder has to produce many varieties of produce-lucerne, fodder crops,
vegetables, and froit. Wherever practicable. suitable areas should be given over wholly to the production of special crops. There should be Citrus areas, deciduous fruit areas, and side areas, distinct from lucerne areas, and mixed fodder erops. This would modify, to a large extent. the danger of over-irrigation, and mader seepage, so injurious to Citrus thees, caused by the laying out of closer settlement blocks on wroag lines. Tuder intense culture, Citrus trees should be planted on the highest portion of the lond. The highest portion is usually the sandiest and best drained. aud along the highest points the irrigation chanuels are bromght. to command the block.

MLATE $\frac{1}{2}$ - IFLAN OF IRRIGATION BLOCK, SHOWING IO-ACRE CITRUS ORCEARD PLANTED ON THE SQUARE SYSTEM.
Trees 22 feet apmirt : seale 10 chains on 3 inches.
Ficquantary. - Arrowi denote llow of water: 440 to 390 contour lines.
Citrus trees require more frequent irrigation than deciduous froit trees or vieus, and, economicully, the planting of the highest land with Citrus follows as a matural deduction. Lucerne requires more water than fruit trees, and if planted on the bigh ground, and the fruit trees planted adjacent to and below the lucerne, under-seepare is likely to oceur with great damage to the orchard block. The older irrigators of this State will have recogrised these nonditions long ago. Plate 4 represents a closer settlement block set out according to soil and situation for the gridance of new settlers.

To shelfer the orchard from the south aud west it is advisable to aid the situation by suitable wind breaks. Sngar Guns and Pepper trees plated. alternately, at a distance of 20 feet apmet will make a suitable breakwind as far as sheiter is concerned. The Sugar Gum grows high, and the Pepper tree has foliage right 10 the ground These trecs should never be planted nearer the orchard than 50 feet. Tagasaste (Tree Lucerne) is most suitable, and can be planted half a chain away from the orchard. It is a quick grower, long lived. makes a dense hedge, and can be trimmed, nor is it a robber of the soil. These trees should be planted in the carly spring (Δ ugust, at a disfince of 8 feet appart. Olives can alsa be used as a breakinind. They do not grow rapidly, but form a valuable adjunet to the orehard, and should be planted 30 feet apart, half o rhain away from the ormard. Varieties suitable-Black Italian, Blanquel. Bouquettier. Vardals. Lucea, Manzanillo, Hardy's Sredling No. 1. Cork Onks (Qureus Suber) could also be used, planted 30 feet apart, and half is tham away from the orchard. Ther are evergreen, and shonld eventually be of commereial value for the corls they produce.
(To be comimucd.)

A COSSIDERATION OF T'HE CAUSES OF STERIIITY IN FEMALE JOMESTROTED AYMALS.

By G. Acslop, L.V.Sc. (Veterinary Staff).

Sterility may be defined as the incapacity on the part of an mumal to reprodure its sperjes. It may bo absolute or promanent, relative or transient.

Absolule when ferundation dores bot laki" plasu.
Relativa when fecudation orens ouly very ocemsionally. and when development of the young animal is arrested ly accident or abortion. A relative sterility may occur in animals in low pondition, when, owing to malnatrition, there is imperfect development of ovan in the ovary aud absence of sesual desire. It may also oceur in fat, obese amimals, where there may be fatiy chauges in the generative organs themselves.

Relative or transient sterility is produced by causes which are removable, and is, therefore, amenable to treatment. Absolute sterility, as the name implies, is incarable.

Fertility in animals is dependent upon nomal struture and function of the generative organs, und any abormality may be produetive of either partial or complete sterility.

In order to understand the varions abnormalities which may give rise to sterility, it will be necessary to give a short deseription of the female generative organs. For the purposes of this article these organs may be said to comprise:-(1) the ovaries; (2) the womb: (3) the nterise tubes; and, (4) the ragina.

The oraries are two hean-shaped strutures labout the size of a han "s egg in a ware sithited abont a hand-hreadth behind the cortesponding kidnes. They are sifmalug in the alondmanal batity, and gre suspended from the abdominal "roaf" by a large expansive mass of lipament. 'bley are concerpad in the clevelopment of ova or eyge at the rarious priods ol "seasm" thoughout the genemative life of the arimal.

The womb is a hollow mosenlar sat which. like the ovaries is suspended form the abdomionl row hy larga Folds of ligament. It is \}"-shaped. hemp made up of a aslindrical hody trom whech, in front, two homs (riglat and loft, are giveu off. and these roul forward fuwards their pespective oraries. de the formard fommation of fleme lames. anst eonnecting them up nomp od less eompletely will the ovarics. are the uteribe of bllopian tulas. These tubes convey the wa or aggs from the mary to the womb. where, if the ovam is fertilized, furtber develommoni will fake place

Portion of the hinder part of the nomb projeels outwards into the casity of the rarina, and is somewhat coustrinded where it joins the varinal wall, Eorming the so-called os. or nocti. To a nomatly develosed os finis constrietion does not bring about pertect ocelusion uf the passage between the vagina and the warals, although a very gerat rebuction in the size of the opening is fhus onensioned.

The vagina is a fmbuhar passage, about 6 in 8 inches in leagth in the matr. leading from the neek of the wombs. and opensug extermally.

The gemeatice organs of tho domestimad fomale animal are ouly in it state of greatest activity during the brime of life. The most motable eharaeteristin of fleir functions is their puality or state of Leming regularly rechrrent.

Prion 10 the attainment of puberty the gemerative ormas are Hatrtise and incapable of reproduetion; but. When the arge of paberty is ruathed. (bis period of inactivity rives plate to one of periodieal arfivity. This change ocelus in both sexes, but is earlier attained in tha female forn in the mater, and marls the animal's arrival at sexual mafurity.

The ate of puberty is variable and indefinite in that it is controlled by a number of ontside intmences, such as "limate. work, and food. For instance, anmuals med in hot countries reach sexual maturity earlicr than those animals of the same species bred and remred in cold countries.

With the adreat of puberty, changes take place in the crenerative organs. one of the most important of which changes is the occurrence of Season or TJent. The ocerrrence of season in amimals is deperdent upon the attainment of puberty. and upon the development of a ripenm ovnm im the ovary. It has been shown by experiment trat it the oraries ale enticely removed from a female nnmal by an opera. tion, surb as spaying, season will not oocur. 'L'his is as interesting fact, as it cmables us to anderstand a number of the phenomena associated with some forms of sterility, one of the symptoms of which is total absence of sesson or hoat.

Immediately prior to the appearance of season, an orum or egg undergoes ripeaing in the ovary and escapes along the uterine tibe. being conveyed towards the womb. If a male and female animet
berome matrd at this time the rigg will berome fertilized by on of the living particles contained in the sempen of the mate. The union of these male and female elements will result in the formation of a new individual, which will subsequenty undergo development in the nomb of the female until expelled at birtb.

Prevalence of Sterif.tys.

In the absence of statisties it is mopossible to arrive at any conelusion regarding the prevalene or otherwise of sterility. In uertain individual studs pregnaney and sterility figures have bon kept, and these firmish the only information that is available. as far as I can ascertain. As tbese figures refer principally to pure-bued animals, they canuot be takeu to apply georally, ans it is a well-konow fact that the degrec of sterility is greater in pure-bred stud animals than in animals hess subiected 10 artifipial rondifinas of feeding and exercise.

In female aumals other than mares if has bean impossible to collect any relisble data from which fertility und sterility tables could be worked out.

Statistijes furmshed by Eaglish anthorities go to show that from 25 to 30 per cent. of mares used for stud purposes fail to produce foals. I am unable to ascertain if artificial insemination was practised in the studs from which these figuren were ohtained. In alt probability it was not. for figures supplied hy one of the latge Geriana Studs go to show that the pereentage of sterility iu that stud was 28 before artificial insemination was practised. and that after artificial insemination whs introduced this percentare of sterile mares was reduced to 21 per rent.

The degree of sterility varies in different breeds. For instanue. in Grat Britain, in Shire mares the average percentage of sterility was shown to be about 37 , while in Clydesdales the percurtage was abont 32, and in Welsh and polo ponies the percentage was about 30.

An examination of the figures available goes to show that an cnormous anoual loss is oecasioned by this bigh degree of sterility in the larger domesticated animals, and therefore any mens to remedy the evil will commend itself to breeders.

Causes of Sterluty.

Injudicious breeding and miswanagement.-A great oumber of cases of sterility bave as their casual agent some error in dieting aud exercising. "Condition" in an amimal intended for stud purposes bears an entirely differeat relationship to "condition" in an animal intended for slanghter and food. Grossness should never be confoonded with good-breeding coudition, it being a well-established fact that very fat animals, especially females, often fail to conceive when mated.

Sterility is frequently seen in animals specialiy prepared for show parposes, where obesity and grossness are often associated with idleness and lack of exercise.

In race-horses there is often noticed a remarkable degree of sterility, especially in females. As these animals are not usually
allowed to breed until after the completion of their raciag career. a condition of sexual inertia is established: in addition. the bard, dry food given in a racing stable leads to hold in aheyance the powers of procteation. Such animals. in the majority of cases, require a long spell al grass before they are mated, in order that they may be capable of reproduction. Food, although probably only an accessory cause, excreses a remarkable intuence upon the production of sterility. Wabalanced rations contriniug excesses of fonds which are rich in carboharates (starch and sugar) are mpable of prodncing parying degrees of sterility: such a food as brewers grnins heing especinlly notorious in thes respect. Foods, such as peas, beans. Incerne. and clovers. containing large. gnantities of gitrogenoms substances, are said 10 in rease fertility. This they probably do to a limited extenf by inereming scxual desire and assisting in rmsing up a sloggish and isert condition of the ovaries to the production of ova and season.

Paverfs and orerwork are eonditious which ure offen associated, and wheb tend to lower the fertility of the athmal by bringing mbout ovarina jeertia.

The influewe uron fortility exercised by age is worthy of consideratiou. The ability to reproduee the species becomes gradually less ans age increascs beyond the period of fall physical development, ontil. finally: in old age the sexual function ceases altogether. doimals which have bexa maled soon after the attainment of puberty are more likeiy to conceive than animals which have been kept sextally idle until old age is reached and then mated.

In-hreeding exercists an influence upon fertility. it being found that continned in-breeding results in the production of animals possensing varying degrees of limrremess.

Hphrids such as mulcs. are generally regarded as being sterile. Cases have been recorded where males of both sexes have been cappoble of reproduction, but these cases are exceptional, the rule being that hybrids are sterile.

Ir mares of an excerdingly excitable temperament it is often noliced that immediately after service the semen is ajected by a series of violent straining motions of the genital orgase. In these cases the effect of exhanstive work before service is beneficial. This fact was probably first noticed by the Arabs as it was a common praclice with them, in dealing with excitable mares. to submit them to a fatimuing gallop immediately hefore service and aftermards to leave theme quietly at rest.

In vicious draught mares brisk exercise and the pouring of nold water over the hind guarters and loins after service has proved of benefit in preventing the ejection of semed.

Climate, as well as exercising an intuence upon puberty in aumals, may influence fertility. Animals subjected to sudden changes of climate are often readered temporarily sterile until acelimatised. It has been noticed that animals are more fertile in countries where the climate is fairly everı and is not subject to sudden extremers of temperature.

In amimals affected with chronic debilitating diseases or fevers a temporary and sometimes a permanent sterility is present, in which there is dulness of sexual desire and faulty development of own in
the ovary. It fhe treatment of this vondition, certain drugs having a stimulating action unou the gruerntise organs are iudirated. These drugs include strychuine, empounds of rhosphorns, arsenieal componads, and severil non-official flugs. Lnother favorite drug amongst some borse-breeders, bat one falling rapidly into disuse amongst veterinapimas. is "antlarides (Spanish fhes).

In har hse of aby of these drums for ovarian inertia the breeder slosuld he gladed by the adriee of bis veteriutrian. for owing to injuderous use thes have been responsible for the produetion of scxal and other disnrders more serious in their consequences than those for which they were ariginally administored.

A largu number of eases of sterility have their origin in alterations in. and dineases of the nvaries. This is especially true of the majority
 sulstance are common. These alrerations nsumlls take the form of orsts, which. hy eblargement and pressure. destros ovarian tissue aud prevent the development of ora. It is not usual for both ovaries to be rystis: at the some time, expepting in well-adranced. old-standing cases. Where onc ovary is crstic and the other one healthes it is quite possible for the lealthy ovars to take up the whole function of production of ora and for the gnimal to conceive. Thually, however. a castic condition of an orary gives rise to irritation in ather parts of the genibal tract. causing straining aud expolsion of the semen at the time of servies The remedy lor this romdinom is surciral and has for its object the breaking of the cest wall and the liberation of its contents: or, in some bases, the pemmeal of the diseased ovary and evst. Icmeing the normal ovary to earry on the whole function of davelopment of ova.

In mamperad, obese animals a condition of fatiy degegeration of the ovaries frequertly exists. Fat aninals are notably infertile, and
 fubes the animal is permanently steri]e. Execpt in the carly stages the condition is incurable. Dieting on fords poor in starch. smear, and fals. together with ronstant and mruptrly regulated exereise, is abont the only arentment likely to have any benefeital effect.
 maligant tumos or growths affecting the orajes, are rare, but when present give rise to sterility. In the wase of growthe the ouls effective treatment is surgioal removal.

Atmong starile mares the matorily have at some fime in life been pregnant, or have been capahle of procreation: the number which have been totally harren throughout life being relatively small. The cause of these cases of sterility in onetime pregnant mimals is referable to the previons parturition. at which there was either partial or complete retention of the afterbirth, with or without joiuries (abrasions and lacerations) of the genital organs themselves. Retention of the afterbirth is attended with much more serions consequences in mares than in other animals on account of the susceptibility of mares to "blood poisoning" and "founder." Retention of the afterbirth usually oceurs in those births in which the expulsion of the young animal from the womb is unduly hurried. It may also occur in cuses where birth has been unduly retarded. The semi-attached afterbirth
heromes putrid owiug to baterial infection, and this gives rise to catarrabl coudifions of the lining membrane of the womb and vagima. The preseure of this cutarh husw, in some cases. be demonstrated by the oremrence "f dicharyes of more or less thekemed fluid material from the raginit. In the majority of "ascs. however. owing to closure of the nect of the womb by plugs of cratarphal material the fluid is retained within the wowb and no raginal discbarge way be seen. Sometimes b eatarrhal condition of the membranous lining of the vacina may ro-xist with tatareh of the womb. in which case the discharge is profuse. In cbronic catarrl the lining membranes become considerably thekencd, and pormanont sterility results. Eren in mild eases the preseare of this catarthal flaid. which is usually acid in reaction, is fatal to conception on arrount of its destroring action upon the liviag elements coatajued in the sperm ol the nate. If pregnaney does occur it is usually followed by sarly abortion. Treatment slinuld consist of frequent tushiug of the wonb with weak autisertio and alkaline solutions to destroy the bacteria or germs and to enrrect the acculity.

Oergision of the oporing af the beck of the womble which way the prosent in colamph of the womb. or may ocenr as a separate coudition, arts as a morbinjogl barrier fo the passage of senaf towards the ovom, and fertilization damot lake phate Lader normal ciremmstames when sedson is present in a femar amimal there is sufficient diatation of the os to allow the semen to pass aloner into the wouband meet with and fertibize fle ovan elaborated at this time. Very. often occhusion is brought mbout bṣ injurios, such as tearing and abrasions, rewived at the lime of a previsus parturition, when, on healing of these wounds taking place. there is formation of thickered tissue aromod the os whin obliterates the orening rommmanating betwem the varima and womb. Some of them minies are cansed hy the strainiag efforts of the notber in expelling the young aninal at birth, while others are produced bs the ingirdirious use of rones. hooks, knives, and other instruments fy persons in attendance npon the mother af the fime of partorition. In simple ocelusinn of the os, unarumpanied by watarl of the womb or ragina. the treatment adopted should be in the direction of dilating the passage. This ena ustally be accomplisbed by passing the hand, previonsly woll oiled, into the vagina and directing if forsard until the fingers come in contact with the neck of the warah. By geutle rosessure with one finger over the centre of the as, at the same time giving the land a rotary motion, an opening and be made which can be farther dilated by insertion of other fingers until it is large enough to allow the whole hand to pass through into the womb. Ferfect cleanliness is necessary in order to insure sucess. The dugina shoud be Linshed out with weak antiseptic solutions both prior and suhsequent to dilation. The hands of the operator shonld be well washed and disinfected. and the mals trimmed in order to prevent injury to the womb. The use of instruments in order to bring about difation. in the matority of cases. is quite monecessary, and, unless used witb extreme untion, may bring abont fatal results. Their use should not be undertaken by any one other than a qualifed veterinarian. In cases of ocelusion of the os, the use of the inseminator is of considemble value in bringing aliout preguaney.

Abortion is a trequent somere of sterility. Thwo forms of this malady ate recomised. namely:-(1) a contagions form, due wa germ whid fains chlance at the exterual genital opeaing. or through the digestive systen; and (2) a non-wntagious form. This noncontarious forto nay le due to a number of eanses. the wise of which are--(1) external viotnce inficted upo the mother during pregnoncy: (2) the ation of certain drugs whith excri contractile influmers upou the mosevare strachere of the genital organs; (3) ingertion of food-stuffs aftered with varime forms of moulds or fongi. Commonly associated with abortion is retertion of the afterbirth and hacterial iofection of the genital trand ako internal injury to the womb, nis. and vaginat. The refations of these eometitions of the eausation of sterility hive heen previonsly refermed to.

Coms wheh are know as "hullers," and are practically atways in season, are invarialy sterile and are suffering from a condition which is incurable. In cows the removal of the ovaries by no operation such as spaying controls to a great extant the morbid sexual desire thus rendering the animal capable of hoing rapidly fattened and slamphtered.

By G. V. Howhins, Poultry Efpert
The results obtained from the Competition Pens during the past month. dexpite trying conditions axsting, were highly satisfactory. On two occesions the thermoneter rose ahove 105 irs houses, wemessiLatine the romstant use of the hose in the pens and on the birds themselsw. Fontumately no death from hem apoplexy oocurred, and the health of the birds is excellent. Two nseful showers of rain fell. which leeped to soften the grownd and put goow hearl into the hirds. Mr. S. Browns White Leghoms are still well in the lead with a total of 1.31 chgs. Mr. E. Waldon's White Leghoms now accupy second position with 1.246 eggs. Neither pen has bad any replacment, and both teamis look remarkably fit, though Mr. Broms's are indined to loosen it feather, which is an indication of moult. It is anticipated that there will be a very close finish hetween the first three pens.

Focting--Care has to be exercised in feeding during the hot weather. On several occasious the wid-day meal was withheld, and the eveuing grain reduced; wheat being used almost exclusively, and an increased supply of green feed.

Brovdiness.-There has been an increased tendency during the last week for the birds to show broodiness, this being attributed to the humid condition that existed. nod which hastened many birds into the moult.

The totul number of eggs laid up to date is 71,668 -an average of 1,038.6 eggs per pen, which must be considered as highly satisfactory.

SECOND VICTORIAN EGG－LAYING COMPETITION，1912－13．

Commerneing 15th April． 1910.
（！NOUCTED AT BURNLEY HOR＇IS（＂）ITERAT，SOHOOL．

	Brewil．	Nitur it Ownys．	Eiges laid	ariake	petition．	
A．of Jea．			$\begin{aligned} & \text { April } 15 \\ & \text { to } \\ & \text { Jan. } 14 . \end{aligned}$	$\begin{aligned} & \operatorname{Jan} .15 \\ & \text { to } \\ & \text { Feb. } 14 . \end{aligned}$	Total 4 Date 130 inonths）．	Touratan in Comper－ tlob．
40	White Leghoms	3． 1 Srond ．．	1.178	120	1．336	$\overline{1}$
20	＂	B．Wruddan	1.103	178	1.248	$\begin{aligned} & z \\ & 3 \end{aligned}$
47	＊－	J．E．Bradey	$\begin{aligned} & 1.517 \\ & 1.105 \end{aligned}$	119	1.235	
31	－．	G．Edwarus		124	1.229	3
4	－．	1．W．Pope	$\begin{aligned} & 1.084 \\ & 1,100 \end{aligned}$	118	1，203	5
88	．	F．Q．Exagletou			1，198	${ }^{1}$
25	．	It．L．Appletosil	$\begin{aligned} & 1,060 \\ & 4,058 \end{aligned}$	$\begin{array}{r} 98 \\ 135 \end{array}$	1，184．	7
70	\cdot	E．J．Beatts		131	1.181	5
23	\cdots	W，bicLlster	1,0771,068	101	1.178	$\stackrel{1}{5}$
37	＂			$\begin{aligned} & 116 \\ & 118 \end{aligned}$	$\begin{aligned} & 1.177 \\ & 1.175 \end{aligned}$	111
1	\cdots	J．Campbell	1，045			
39	．	W，G．Swift	1，08\％	$\begin{aligned} & 188 \\ & 126 \end{aligned}$	1．130	12
13	\cdots	W．B．Crelfu	1，042		1， 1 家	19
33	$\stackrel{+}{ }$	11．Mokenzle	1，01． 6		1.168	14
0		J．Epestarmjad	L，066		1，159	15
46	．．		$\begin{aligned} & 1.081 \\ & 1.089 \end{aligned}$	194	$\begin{aligned} & 1,151 \\ & 1,142 \end{aligned}$	16
49	．.	W．Purvis		123		17
38	\cdots	R．3ley	I．010 L．009	$\begin{aligned} & 123 \\ & 124 \end{aligned}$	1，133	1
94	．	J．B，Bragdea			1，133	
53	．．．	H．Modges ．．．	$\begin{aligned} & 1,009 \\ & 002 \end{aligned}$	$\begin{aligned} & 124 \\ & 189 \end{aligned}$	1，131	$1 \begin{array}{r}180 \\ 21 \\ \\ \end{array}$
68		Percy Kialker－．	983	189 148	1，128	
$\because 1$	－．	Grimbu Catt	1，013	$\begin{aligned} & 107 \\ & 110 \end{aligned}$	1，120	21
4 B	14		1.008		1.118	23
$1+$	．	J．H．Wrikfat	997	111	1，108	94
＋1		A．IL，HBII	981	116	1，0927	905
5	．，．．	J．H．Bralu	986	123	1，089	26
7	．．．	A．H．Padneas－	\％ 5	111	1，07\％	$\because 7$
31	．．．	A．Alapee ．	980	93	1，072	28
8\％	．．．	\＄．Bratadruct	917	113	1.060	， 20
1	H C	j．B－Scarthu：	910	111	1.060	120
10	R．C．Brown Legy Lor口s Hinck Or pingtons．．	S．P．Giles	9：2	137	1．050	31
48		Fi．A．Laugdoli	9155	948	1.0509	f f
है1		Jas．Ogden	956	102	1.057	t 3＊
10	Wilite lekborna	Cowan Bros，	P34	123	1，057	）35
\％	＂	P．Buwlinsget	956	100	1.056	36
$4{ }^{4}$	．	Min．Eempstar－	037	117	1.054	38
40	\cdots	Morguna and W．dtanti］．．	916	134	1，050	37
84	．．	14．Merrick	921	128	1.049	38
$t \mathrm{H}$	\cdots ．	Mch．Steer	921	119	1．040	70
36	．	C．H．Brwat	918	123	1.0439	413
30	．．．	Mra．Steveasan	918	106	1.024	418
12	．．	T，骨．Stafford－	581	128	1.010	42
$5!$	＂̈ ${ }^{-}$	H．Burniulil	896 919	111	1，007	48
3		Eipg and Fatsin－	919	87	1.006	$+1$
56	W゙lite Jexdman：	M．A．Monk	$\begin{aligned} & 893 \\ & 885 \end{aligned}$	$\begin{aligned} & 111 \\ & 105 \end{aligned}$	1，004	45
45	－．	A．H．Thomatill			990	46
19	－	Q．Purton ．． B．$_{\text {Walker }}$－	$\begin{aligned} & 885 \\ & 854 \end{aligned}$	127	981	17
37	．．		848	135	275	$+3$
40		Miss B．E．Byali－	$\begin{aligned} & 865 \\ & 833 \end{aligned}$	110		
\＃f	phack＇${ }^{\text {b }}$（plagcon－	\＄．Mratorey ${ }^{\text {J．S．froodisenir－}}$	$\begin{aligned} & 833 \\ & 845 \end{aligned}$	125	958 9.7	51
11		T．S．Eoodtisubli J．Blackburne	823	118	957 949	52
27		E．Xiasf	833	1198	942	35
51		F．R．DeGaris	848	87	938	64
4）		A．Stringer	831	07 125	928	50
55	Browr Leginomis．	1．Matheson	795	125	980	54
14	SWver Wyandottes	R．Jobidar	802	116	917	6.7
A8	While Lodrharme．	W，J．Lekeddlu．	780 813	128	（002	66 50
¢ ${ }^{\text {a }}$		D．FLx．J．Stock	813 789	78	891 875	${ }^{50}$
${ }_{31}$	W＇tilta leghorins．	W．J．Stock	787	76 100	875 857	61
17	＊＊	3．Childs ．	746	106	852	92
52	Mlaorcs：	（－1）	783	58	241	83
23	Whita leghorns	W．N，Lifar	740	96	838	84
67	Arwantay ．	d．F－Mrandig	748	91 102	8834	66
69 34	Whita Jeghoram ．	W，J．Serbiduge	721 689	1102	823 806	${ }^{67}$
34 18		R．F B．Moore	689	117	806	81
36	Old English Oamb	E．J．Barrett	670	01	761	H9
26		（Ristercedi	－			－
		1 Totals ．．	63.782	7.886	71.8868	

GENERAL NOTES.

WESTERN WOLTHS RYE GRASS--

This new grass, said to be a spor from the ordinary Italian fye frasm is an extremely mpid and vigorous grower and some account of if (irsl rear's test with, it is given in the Yow Zcaland Joumal of Agrantior: it Ruakura Fism it surpassed all rye grasses, making a raph dinse growith and providing excellent spring feed. Sown on Jth May, it was ratly for feeding alout 1st October. It is said to be
 good afterectatings. The deiry herd did as woll on his grass as on a miximer of peas and wats, and it is suyserted that the new rye should rovde exelleut hay for horses. Beiner related to Italian. it is not
 forage cepp) in the romation. It is adialud to wet distriets and woud wifs. and, as stated. it has the merit of froderine severad cuts in we season. It the lime of writige IS tons to the are was being rut at Ruakum.

'HE DAIRY COW-

 orol netersary to maintam a dry rom in fair condition. so that she will wither low hor gain in weight. represents what is matled har" main-
 If similar wiryht does pot rarre much. If a com is milking, however,
 went. Whemise she will lome in weisht. The fond comsumed by a raw -inding milk is thas mtilizal for two different purgoses. One part is ergired for mabmename, aud this may he set down as working exrenses. The other part is utilized to fill the mill-pabl--in is the raw naterial fionn which milk is produced. What is a rencl com? It is ne whinh can digest and assimilate for milk prokliction an mount of 'nod which largely exceeds her maintenance regnirement. But conss ary widely in this respect. From the I'niversity of Missouri there ontes au interesting discussion of this tome in Erperimental Siation: Guldine No. 2. Guring two voars the herd-testing at the station Howed No, 27 cow to be a good miker, and her half-sister, No. 62, a ad one. They were registered Jemsers. In the third year it was ecided to compare the fond regnitements of these cons. and for this arpose both were calved, as it happened, the same week. Duriug the whation period the food to each whs requlated so that the live-weights. mained ronstarit. and the amounts of milk aud butter fat were then -mpared with the amounts of food onsumed beach eow. In the asults it was fonnd that the grod milker was consuming aboui $21 / 9$ mes as wneh food, after deducting her mainteoancer refairements. as id the bad cors, and she also produred ahout $21 / 2$ times as moch milk. ltogetber, with the good cow, 35 per cent. of the ration went for laimprance and 65 for milk; with the bad one the figures were 56 and 1. Ten bad cows may yield as much milk as five good ones, but they ill reqnire twice as much food for maintemane purposes. As it is only te food utilized in excess of maintenance that lenves a profit. the wefits of herd-testiag are hereby euphasized.

LUCERNE H4Y-

When lucene ix armondy hand od hathaking there mas he ronsiderable loss in weitht, and still more io armat feedime ralur. to Bul, 35 of the Colorado Exp. Sta. it in sfated thet in average Income
 leaves. As the hay dries the leaves berme bittle, and. together with the finer stems are easily bomen off in bre pross of lan-making. It is calualafed that in Colorado the losw from this canse ranges tirm 3. 1066 per cent. "f the total wop weight. These lases are the most nutritive jaill of the "Foj". ln hiv standard work on "Farm Foods." Wolff states that in woren the lsates contain more that hate the flesh-fommers of the whalk crop. I similar extimate may safely be assmoed for lucerme, and the imortance of saving the heaves during haviug is homely cmphasized. In making tureme has. the awn as left by the mower should be drawd into wind-rons infore it rearhes
 it is ready for cartiag. In rows the materibl will be sufficjently fompact io hold most of the leaves wheu ready to lift, and. morenser. this kind of dreing will presare the colour beller. Where a "rop has heen hefi tow loug in the swaste of an atternom a dew moming next day with of en allow it to he raked together with litthe loss. On dry berstirg luceme the horse-rake is a bad inphement. and it is worst naturally when the crajp in light.

FARM COTTAGES--

It is a fact to be mach regrettont that on very many of the larmer farms in this Stalte no provision is made for the housing of married workers. In most districts of Fngland and throughont Sootland sill the farms of any ronsiderable size have cothoes as part of the regnar emaipment. and in the meb who ocelupy these rottages the fannors have the best and most relinble of their workers. The married nagn is tho sheen anchor of the British farmer. In Victoria. if a fanem worker marres-and it mill oftem he the best who marry-he is procticaly forced out of the ranks of mied labnus. There appear to be three courses open to him. Ho may give up farm work altogether to take up other work in the city where be can get a housc. Ine may hold on at farm work intermitently ly liting apart from bis wife. In the third place, he may take up a small fork on his own areount where the returns to lis lahoir will tend to be limited by the capital and applanees at his commad. From the point of viex of production none of thewe is a contingency which the farmer as a class can desire: and the wat of farm cottages which is characteristic of the State makes it difficult to retain the best class of a arricultural labour permanently in the service. Plans and specifications of farm cottages were given in this Jommal of Aug. and Nov., Z909. and in Jan.. 1910. by A. S. Kenyon, C.E., Engineer for Agricultare, and the cost of materials and labour was folly detailed.

ACRICOTRTRE.*

 'humisf for dificullur.

 phorus is alwats romentrated int thens parts of the plant where cell
 is intimately commeefed will the vital processes of reproducfinn and growth and tie ammut of phomphorie acid rebowed lis urops is more constant than of any oflay simere eonstitumt of crop ash.
 from the soil. In his Presidential. Adelrens for this Section i Adelade,

 and a laper number of soil analses were ghoted showious that this wass so.

 quoted. and the results are aremand matire six disflace tyme or lacal groups an folloms:-

L'Hosphorle ACID PER 100,000 Dk: Sidl			
Hill soils (30 samples) ...			1.3
Northern Plain (34 samples)	.		01
Coastal Plain (8j samples)	.	--	6
Volcanic soils (24 samples)	\cdots		61
Mallee (5 samples)		4.
Drained swamps (8 stmplex)	\ldots		-6
Average fist mils)	\ldots		62

 cent. above the Veforian average, and alse is (approx, abowe each of the Victocian groups. Marrkev (Germany ulasses soils as follows in degard to phosplaric akil rontent:- Poor. 30 parts per
 250 ; and rich. over 250. Hilgat (America) wes that in virgin soil less than $\overline{3} 0$ is seriously definiont moless arommpanied by much lime; sandy loams. with fair supply of lime. Iff: sady loams, with poor supply of lime en(H) : and claver soils not less than ebo. Aceording to Englist, Guround and Aumerion stamatards. therefore. it appears that Victorian soils fall seriously lelow the permissib] limit when they are vimed as gromps.

The method of averaging soil allalysus however is not safistactory, and while in practice mixing soits has rommonly a goud effect, as mach canoot be said for mixing the figures. Ne have therefore arranged the above 186 soils showing what pereatage of the soils of each local rroup falls within stated limits of phosphorie acid. The steps selected

[^3]rise by 10 parts per 100.000 up to 100 pnrts, theu by 50 is up to 200 , while the few over 200 are clussed together.
 ("OSTESTーBH DISTKICTS.

	1 10.	10 $t 0$ 20.	20 10 30	30 40 40.	40 to 50.	50 to 60	60 70 70.	70 70 89	80 70 70	90 100 100.	100 10 150.	(150	Over 200.
Hil) moils (30)	,		26	10	7	16	10	,	7	3	7		7
Sorthorn Plain (34)	.		12	3	12	29	12	17	6	3	3	3	k
(oastal Plain (85)	2	8	22	15	17		9	5	7	4	11	2	4
Volcanic soils (24)	4		4	9) 1	26	8	8	8	.		21	.	. .
Mallee (5)			20	20		20	20	20					
Yrained swampe (s)			13	13	13	13		22			13	13	
Ml mijx (180)	2	4	18	13	12	10	9	9	5	3	10	2	

PIG. 1.-STHOWING EFFECT OF SLPERPFOSPITATES ON A FTELD GROP COMP.ARED TO NO MANLTE. (SMMLL SFEAVES FROM UNMANUTED PLOTS.)

Loobing to the iotals if is seen that 49 per fent fall below 50 parts. 36 per ceut. fall between $\overline{50}$ and 100 . while anly 15 per cent. of the soils eximined are soils which, as judged by the standard of other conntries, might possibly be sufficiently supplied with phosphoric acid.

Lo a state of nature fertility is never stationars. On good soils it is cumulative: on poor soils it deelines. Ta the earlier settlement of this country the best soils aaturably were selected first. These were
thas.

Well supplicd with phosphoric acid. and gond crops conld be got withmof the how of manmes. Io later times the need for adding phosphates to the land has beeons clearly detimed, partly through the depletion of uxable phosphorir arid in ohd soik her continued consping, but chiefly owing to the grathal exteusim of cultivation to the medium and poorer soils of the State.

Luckily. within resent rears, appreciation of the effect of phosphat manures has been incrasing faster than the growing aced for them. herording to Rofuras issued by the toremment Stutist, \bar{f} in r rent. of the area moder crops was manured io 1898 ; $1!9$ per cent. it 1901; 36 per ceat. in 1903; 56 per cent in 1905; 66 per cent. in 1909: and 6e per cent. in 1910. We estimate that from! 12 to 35 per cevt. of the manures were used to fumisb jhosphoric acid being principalls. disoolsed phosphate.

In 7.910 the manured area totalnd $2.714,50$ ares. and the arifin('isl manure used 86,316 toms. This gives an apphication of it los. pes acre. In 1901 the manured area equatied 550.777 acres, and the artitiriat mathere used was 23,535 tons. This gives an application of 95 ths. per acre. Furnyard mamre increased by 33 per cest. iad the cropped area also by 33 per cont. between these two dates, so that thou fis uo reason to beliwe that furmgard manure was replacing arificiads. It appears, therefore, that although farmers have been using artificial manure more extensively they have been applyiug swaller dressiugs per acre. It is not possible to reckou fron the figures wat is the average applieatiou made for cereals; but as whent, hay, wils, and barley at cach date together formed 93 per cent. of the aropped area the applications presumably approached within of few pounds of the amonats stated. The relatively small area under green forage, roots, and orchards would be somewhat more heavily manured than the area under cereals.

The phosphatic manures used in Victoria have three sourees of origin-(1) imported reudy for sowing; (2) raw material imported and marufuctured locally; (3) raw materials found locally and manufactured locally. By tar the greatest lualk of the material comes under the serond cluss, and a small portion ouly under the third.

In 1900 there were 24 firms in Vietoria cugaged in the manafacture of artiticial manures, but as detailed returns for manure works other thas bone-mills are not available, we may revjew the manure supply brietly for the Comunourealth. The figutes in $1: 910$ were as stated below:-

Imports have imereased over 250 per cent in ten years. The chief items are phosphates. Of bones itone do exports exceed imports. The guano is almost entirely of the insoluble kind, and is used for making superphosphates. Of the manufactured super.. over 70 per cevt. came from the Uaited Kinedom; Japan and Geramy contributed smalle: amounts. The largest itern is roek phosphate, utout is per cent. of which emes from Oeean Island, and the balance from Christmas Island. This is entirely used for dissolved mamure and superphosphater. and an ground rock practically is used as such. Dedneting inports from exports of raw phosphate, and allowing 1.9 ton superphosphate for eack 1 ton of rock phosphate and gamo. Australia in 79$]$ mavufactured 275000 tons of mineral super. -which was $8 \mathrm{~B}^{\circ}$ per cent. of the totel quantity employed. The "Other Manures" in the Table is partly made up of nitrogenous and potassie materials which do not supply plosphates.

F1G. 2.-MLLING PHOSPHATES, OCEIN ISLAND.
The chief export of manures is from Victoria. Prices io Victoria compare favorablr with those of adjoining States, but not so well with prices in Great Britain. The following Table compares the Unit Values of phosphoric acid in Victoria with the figures for phosphate, calrulated to phospoorie acid, in Scotland \dagger in 1912.

UNit Valies for Phispharic Acid (ig(z).

$$
\text { t Travse, High \& Agrie. Sne., } 1012 .
$$

F 2

In (ixal Britain citrate sulubla and idsoluble ars not paid for in mideral suparphashaters. but paring far them trelps for give a drier maдure. Whind is ath advantage. It ofters less inducement to use

 phosplate.

 Us of phampherie acid and. therefore the when wop of 7 ? 11 (1 remored

 will raw grow a apop worlo haversting withom manare. We find

 provided the other conditioss art right. Thie sitaw witl regure the empaltut of 10 lim, manme: and in no aise ran the manure apphed he wholly ahoothed lig the first arop. At Ruthamsted 36 per
 but. We hate wo figures as the the mammen urization pessible lis wheat on fene vails. The methot of drilling is fasorable to absorption. but prolably this mever mathes an per eent. It will qealerafly be less. It is formbate therefore, that themonot of mamis nees. sary fo wive the lirrest pofit mast iucidentally comtribute to the enrichmen of the suil by what the crop is physiolorically muable (a utilize. This phaces the phosphate suppis of cultivated soik, on the up-grade.

An ante of soil to a depth of 1 foot will weigh about 3.500 .000 the
 awount, this wond equal pxacty. 1 ton pare ucre if 70 ths, superphosphate be almilied per acre to allow for ox per cent of absorption by a lib-bishel crop, then 320 years would be required to double the phosphorer acice content of the soil. The effect serens tritting. As is well knoma, the manarial residue however, is more valuable than the ation wail phosplate benause, particularly if applied in soluble form, it is hinly spread out. This effect is ealameed whe the first rains after drilling ure heany. Fammers say their land grazes better when the preceding (rof was well mapured.

In Britain it is common to apply up to f ewt sipperphosphate to cereals, and up to 8 ewt. for roots. The manare is genernlly som broadeasi. This practice is caleulated to soon enrich the soil in a sensible degree. Ln Victoria sueh large dressings are not profitable with cereals. It will seldom pay to apply much over 80 Ifs. of superphosphate to a sereal. The difference may be partly due to climate, but it is probably due in larger measure tio the australian method of
drilliuy in with the seed. This method has eertain advantages, and j. donbtess the best means of employing manme in small citantities. 11 does yot follom. bowever, that if is a sate guide as to the best ghantity of manure to apply. except in cases where the manure is left in contact with the seed. For each quantity of manure there is dembless a leses method of applying it. and the subject is one for sistematic juvestigation. Will 140 lhs , of mamer placed 2 inches bolow the sued give a botter bet return that 70 lbs. uppliad at the same deptlat the seed: and wild the former erop be deeper rooted. and stand dry wather better: That the land will araze better futer does non admit of doubt: abd that the phosphate supply of the soil can to increased hey method of application mbutiting of hearior dressings with protif follows as a matter of conrse. Virtorian soils are for the most part highly deficient in phosphates, and the iocidental waults which will follow the disconers of a method wherebe heavier applications of manure pan be made immediately profintale to the farmer are we might say of nathonal imporinare.

Lowking to the bracticinal effect of phosphates upon cerchls. evety on vimgin soils. it is remalkable that almost un athemation is given fo the manuring of pustmre grasses. Being generally shallow-rooted. their zemedn are presumable the greater. More partienlarly on serond claws land dovotad to diarsing might a good roturn be expected from a moderato ajplimation us phosphates.
(To be cunitaued.)

FERTILITY OF WHEAT LANDS-

Fallowing js an ascellent means of storing up soil moisture and cleaning the land, and on this account it pays for doing. But in the long ruv the whent-fallow-wheat system can ouly fer view as a tempuraty expedient. Where it is wetl done, tor soil is seriously depleted in organic matier by fallowing. In Catiforma the eonditions somewhat dosely reseruble those of our own northem areas. bat contisation is of older date, and the experience of California, therefore is for us finly significant. The subject is dealt with in an exhative Bultciun (211) issued by the State University. "Continned grain culture mader shallow preparation over a long period has seriously atferted the naturally low hums supply of the grain lands of Califorma. This condition has heen reodered worse by the burning of the straw and bienuial eulture necessitated by a limited minfall. Itumns in armple quantity in a suil means success; its lack means disaster, and this is partoularly true in dry-land Eaming." The Bulletin guotes a numbex of experiments, shouing the excellent effect of ploughing in green manures as preparation for wheat, and states that the wheat yield of California can be doubled by following this system, coupled with deeper cultivation. As ploughing-in crops rye is recommended as a start, to be followed later by an admisture of rye and peas, or vetches, when a foundation has been laid. Rye has been found the surest. "Whateser crop is used it should be seeded as soon as it is possible to shallow-plongh or dise the land in autum, and the crop should be turned under in earls spring, before the land is too dry for deep ploughing. and while it is still moist enough to start humification, or decay of the material ploughed in."

REJORT ON THE EXPERIMEXTAL POTATO FIELDS $1911-1 \%$.

By Gim. Srymome Jofato Expert.
During last spisom this nork was carried ou at a limitad number of centres, as the blight camsed a large derease irs the amount of available seed Varietr tests were carried out at thr folloning cefres:-Tourello. Pootilia, and Alberton.

Also at Ireongatha, for the purpose of festing the raiduve recistabce 10 Irish Blight of different varieties. Tho plots were also established for manner tesis rachusively--one at Daylesford and one at Romasey.

Table l. shows the phan of that plots at Pootilla. Tourello, and Alberton. Thahe II, shows the plan of the plots at Ransey and Daylesford.

Table: I.
Plan of Sxperimental Plots at Toureflo. Pootilla, and Liberton.
V'ariety and Manure 7'sts.
ts chains.

Table IX,
Flan of Plots at Rowsey and Daylesford.
Artificial Manure Tests.

The plot at Lengatha was manured with a dressing of super－ phosphate at the rate of 224 Ibs．pure ace with an mamamed check sertion．

Tourelio．

Tlue season was very uafavorable for heary yields being unusially dry during the tubering period．The field at Tomepllo was on fairly groel potato land．Tha varietics used in this plot may be divided into two rlasses．i．e．．while skins and red skins：the former represented ly Clarke＇s Main Crop，State of Mnine，aud Crufte；the latter．a varicly now largely grown in dippsland，which promises to be a Hacefal addition to the main crop sorts of this State．Last season it slood the disease in the Leongatla plot，and has proved itself a con－ sistrut whper ander all conditions．Of tho other varieties，Clarke＇s Main Crop gives fairly steady yields；State of Maine is a medimen－ early variet：the crop was planted on the 16th November，and on －th Jamary（1．n weeks afterwards）the plants of this variety were farying thbers of a monsiderable size，and by the 1st March were fit in barest．

Table III．
Mr．J．A．Troup＇s Plot，Tourello．

Vars 1：	Thomas． Phoaphate．		So Manore．		Super． phosphate．		So Manure．	
	Market． able．	Small．	Market． able．	Simali．	Markit－ soble．	Snuall．	Tarket sole．	suall．
	安	宷 家	运它家	安	$\underline{\underline{y}}$	\pm 家	完药	家
A．River	$2 \begin{array}{lll}2 & 3 & \mathrm{H} 4\end{array}$	11816	\＆ 6.50	$0 \cdot 12$	1 1 533	0808	1416	$\begin{array}{llll}0 & 13 & 74\end{array}$
（ap．Shin	$\begin{array}{lll}2 & 5 & 85\end{array}$	1 I 0	$2 \begin{array}{llll}2 & 13 & 11\end{array}$	$\begin{array}{lllll}0 & 19 & 14\end{array}$	$1{ }^{1} 1828$	119	1466	$\begin{array}{llll}1 & 1 & 96\end{array}$
Black Priace	$\begin{array}{llll}9 & 5 & 85\end{array}$	$\begin{array}{lll}61 & 18 & 49\end{array}$	± 1067	$\begin{array}{lllll}0 & 13 & 74\end{array}$	$\begin{array}{llll}2 & 5 & 8\end{array}$	0 15	1106	$\begin{array}{lllll}0 & 19 & 38\end{array}$
Old Finbeys	2791	$1+66$	$\begin{array}{llll}2 & 3 & 86\end{array}$	1406	11622	$1 \quad 5107$	1106	17836
Scruflle	$3 \quad 6105$	1436	$3 \quad 4 \pm 3$	$1+66$	$3 \geq 69$	$1{ }^{1} \quad 7 \quad 36$	11828	17836
C．Main Croy	3423	$1+66$	$\begin{array}{llll}3 & 0 & 12\end{array}$	$1+60$	3499	0） 17 175	$\cdots 1742$	0 O 15
Stats of Matme	21556	$\begin{array}{llll}0 & 3 & 190\end{array}$		$0+89$	≥ 1167	0 \％ 56	－ $2+22$	$0+92$
	21291	03184	2125	01774	$2 \quad 689$	$\begin{array}{llll}0 & 17 & 27\end{array}$	11549	01748

The returns obtained from the red skins go to shor that these rarifties have had their day，as far as the old potato districts are concerned．

Pootilla．

The plot at Pootilla was on a light，gravelly，buckshot soit，not typical of the potato laud in this distriet．The main，indisputable feature of this plot is the effect of the manures．The dressing of ＇Thomas＇phosphate resulted in an increase of 9 cwt 25 lbs ．per acre， whilst the super of the same valne only increased the pield by 1 cot． $8 \pm$ lbs．The soil of this plot was of a very even character，as shomu by the returns from the unmanured seetion，which was in favour of the phosphoric acid section．

Alberton．

The most satisfactory returns were obtained on the Alberton plot． The soil is alluvial river tat．Twelve varieties were planted in this plot，amongst them were the following red skins：－Brown＇s River and

Black Privece, These are two varieties very suitable for export. Over 8 tons par acre were obtained from the Brown's River, and a slightly hetter vield from the Black Prince. This class of potato has almost disappeared from the old districts. as it nu longer gives satistactory returus. Further experiments are contemplated in the comiog sexson at the Abertou plot. and, should these relurns he confirmed, it. will point to the fuct that the cultivation of these varicties would pay handsomely. as there is always au assured market for shipment io other States.

Table IY.
Mr. Ibeott 's Plot. Poothla.

Lemag.itia.
This phot was established for the purpose of testing the rexistance to frish Blight of different varieties. Thirtenn different varimes were planted: but. in cousequence of the sury dry scrison, the Thight did wot make its apparance, therefore of juformation was obtamed ou this point. As hefore stated, this plot was dressed with 2 ewt. of superphosphate per atere, with a check section without manure. This moderate dressing of phosphorice aeid. costing about is. per arre, increased the yield by over 13 cat. which, at, the market price at the time of hervest, was worth aboul 4 f . It should also he stated that the average sample from the manured section was much superior to those in the mamanured. This plot was ou lea ground haviag been under grass for some years, and, as often happens with such land, the crop was attacked by Eel Worm. It is interpsting to koow that. the manured section was very free from the disease. whilst the unmanured land was badly affected, the difference amounting to quite 50 per cent. If these results are confirmed by future experiments, it will nome worthe nf the attention of arowars who have hiad trouble
from this pest，notwithstinding the fact that it is advisable to takp a crop of oats or maize of a field before using the land for potatoes．

ARTIFICIAL MANURES．

Damesford no Romsey．
The desline in the yield of the potato crops in the older districts of this state makes the guestion of manures a pressing one Every grower lowos well that farmyard manure is the best．because in addition to supplying all the necessary ingredients of phat food it has a beneficial wifect on the mectraical condition of the sul on account of the organic watter it sapplies；but the difficulty is to get suftisient of this material to cover any considerable areat．consequently artificial manures are resorted to．Thase bave many points to recom－ mend them，such as the saving of time and labour，as with the ordinary sund drill 7 or 8 acres per day can be dressed．An ordieary dressing of dung cotails an cuormous amount of heavy worls，as abont 80 per cent．is water．A 16 tou dressing contains 144 lbs nitrogen， 66 lbs． phospharic arid． 132 lbs potash，and 282 lbs ．lime．

Thble V ．
Alberton Plot．

Vatires．	Thomas＇ Phosphate．		Su，Mbalura		ploneplate．				
	2 B 2 Ibs．per acre．				224 lbs，per acre．		－	\cdots	
	Tisble．	Stuall．	Tatle．	Small．	Tubie．	small．	Table．		
	家家	$\underset{y y y}{y}$	家㤩	运它突		总 总		${ }_{\text {感 }}^{\text {E }}$	
Green Mountain	$4 \quad 384$	120	$516 \quad 28$	） 956	9756	I 10，0	8120	12	
Sutton＇s Abumdance	5328	7） 942	4814	013384	$6 \quad 120$	01528	5608	011	28
brown＇s River	884	162.4	3 4100	0） 756	816 as	$1 \begin{array}{lll}1 & z & 56\end{array}$	61126	011	28
Black Prince	$\times 1026$	015 b	118888	D 1884	$\begin{array}{llll}9 & 3 & 80\end{array}$	01695	\＄ 1610	018	$8 \pm$
Carman	$\begin{array}{llll}3 & 1 & 88\end{array}$	$0 \quad 656$	410 d	0728	6 0 0 0	0 \％ 66	61884	015	9
Burbank	$8 \quad 635$	$\begin{array}{lllll}0 & 10 & 68\end{array}$	$618 \quad 32$	$\begin{array}{llll}0 & 13 & 0\end{array}$	${ }^{6} 12121$	1 \％ 56	6150	12	56
Adirondack	81870	0880	51814	01884	$\begin{array}{lllll}9 & 1 & 84\end{array}$	01324	$410 \quad 0$	018	83
Foxe＇s Scedling	$\begin{array}{llll}6 & 3 & 84\end{array}$	$1 \begin{array}{llll}1 & 0 & 84\end{array}$	3150	01128	5 L	0134	$\downarrow 19+2$	011	28
Clarke＇s Main Crop	61324	01685	61884	0 15 15	$\begin{array}{llll}7 & 11 & 84\end{array}$	$1 \underset{4}{ } \quad 46$	$\begin{array}{lll}5 & 5 & 0\end{array}$	08	
Wilson＇s Premiers	$5 \quad 128$	0 \％ 8 ¢ 90	41728	0728	$\begin{array}{llll}5 & 8 & 48\end{array}$	0150	5 128	0	90
Snowflake	1 1756	$\begin{array}{llll}0 & 7 & 28\end{array}$	31834	$\begin{array}{llll}0 & 3 & 70\end{array}$	± 1755	0725	3728	07	
Old Pinkeye	21818	0150	$117 \quad 56$	01128	$3 \quad 366$	0169	11766	011	28
Averages	6881	b） 1315	$5 \quad 13104$	01231	$6 \quad 243$	01672	5152	015	106

There are several factors controlling the action of artificial manures，but it depends chiefly upon an ample supply of moisture． This sometimes depends apot－

1．Climatic conditions．such as a bountifnl rainfall during the growing period，or a coul moist region where the evapora－ tion is low．
2．Soil conditions－
（a）bottom land．which is often shtnrated in winter；
（b）\＆retentive subsoil；
（c）previous methods of eultivation，especially when pasture is included in the rotation．

Table VI.
Leongatha Plot.

Table VII.

Oou noticeable feature of these plots was the vigorons growth of the plants on all the sections manured exclusively with a dressing of phosphoric acid, which was only surpassed by the sections receiving a dressing of sulphite of ammonia. The yields of these sections in the Romsey plot were not in keeping with the early growth of the plants, whilst in the Daylesford plot the beneficial action of the phosphoric acid is evidenced by the increased gield, the only difference in these plots being the rotation practised. The Daylesford plot was comparatively new land, whilst that at Romsey bad been constantly
under cultivation for fifty years, and was lacking in bumus, consequently very liable to dry out in the summer. The function of phosphoric aeid in plant growth is to hasten maturity. In a wet season or on moist soils phosphoric acid will increase the yield and iv a dry season on land that dries out quichly it. will decrease the yield.

Table vili,
Comparative: Returns-Tbomas Yeospeate and Superphosphate.

Manure	Thomas ${ }^{*}$ Phosphate.	So Manure.	+ Increase.	Supcrphosphate.	No 3iunve.	+ Incroser.
Weight ..	$\begin{gathered} \underline{265 \mathrm{lbs}} \begin{array}{l} \text { acre } \end{array} \\ \hline \end{gathered}$		- Dcereasm	$\begin{aligned} & 224 \text { Its. } \mathrm{jer} \\ & \text { acre } \end{aligned}$	Nat .	- Decrease
Cost	10s. .			Os. Od.		.
Hos.	trs. cwt. lbs.	this. cwt. Ibs.	ths. cwt. Ibs,	tos. cwt. Ibs.	tas. exich lims	ths. cwt. lhes.
Tourello . .	31123	3109	+0 123	344	21201	+01125
Pootilla	211100	1. 1558	+016 42	11886	11710	+0 176
dituerton	71106	$\begin{array}{lll}6 & 6 & 23\end{array}$	+0 1583	6198	\% ¢ 108	+910 7
Average	$+830$	31727	+01112	4068	312107	978

NEW SEEDLING VARIETIES.

A parcel of pedigree seed was received from Dr. Wilson. St. Andrew's. Scotland, who visited this State with the Scottish Commissinn. It comprised six different crosses, most of which are the result of working a red-skinued variety, sent to him from New Zealand, on a number of British sorts. They were as follow:-

No. 88.-Main Crop (3), New Zealand variety (2).
No. 99.-Up-to-date, a New Zenland variety (2), Myatt's Kidney, Main Crop.
No. 128.-British Queen, Myatt's Kidney, Main Crop (2), New Zealand variety (2).
No. 139.-Main Crop (2). New Zealand variety (2). Myatt's Kidney.
No. 155 -Craruond Blossom. Main Crop, New Zealand variety.
No. 177.-British Queen, Main Crop, New Zealand variety.
A ferr seeds of each variety were planted on 23 rd February, in pots. Germination was verf satisfactory. The plants were removed from the pots on 6th April, and planted in a well-prepared garden plot. Early autumn frosts and dry weather interfered with the growth. with the result that the tubers produced were very small. No definite information can be formed as to the value of these new varieties for a season or tro. It may be stated, however, that the flesh of most of them is yellow. By 1st June, all the plants except Nos. 155 and 177 had ripened off. The two latter appear to be very hardy plants. They resisted the frosts better than the others. The
whole of the plants were lifted on 27 th June wheu flat following particrilars were noted：－

No．88－Tubers round，colour white late maturiace stolons long．
No．9．－Tmbers round，rolour of potato white，medim maly． stolons long．
 white，early．
No．139．－Tubers all kidney shape．white．carly．stolons very short．
So．jas．－Tulners round．white late，vigomos mant．resisted frost．
Sis．17－－Tuhers ahl aprial．white，wey late，rigorous phant． resisted frost．

1，OCNALY RASED SEEB．

it smath paren of secel was sared from a dield ot potaters grown by Mr，suott，of Noss，urar（Gasterton．The crop me this feld was remark－
 tive stmin，and showed romarkable fesistane to blioht．This sed was
 Here obtainsel．Three of these did not produce any tulem，fiswed

 were froducod quifu elose to the stoms．One desimathe fature wf this pared is that the whole of the varieties are very white in the flesto．

REPORT ON DYSEASES．

Potato brops werw geberally very tree from disuste of all kinds．
 Bhtuber：buf very dry weather set in and ehectied the sprend of the discedse．and．awing to a very dry smmmer and atutume，the late rops wer quise free from the blight．

Porato Mote．

Nore dimage was done during Jsh1－12 hy the potato grub to the mid－scason erop than by the blight in 19］0－11．In sume cases it amonnted 10 fully 50 ．per ceni．No satisfactory ucthod has yet beru drised for coping with this pest．The use of tarred canvas sereens $t 0$ trap the moth when on the wing，and spraying with arseuical pre－ parations，are recommended．The latter will probably wive the most satisfactory results if commenced in tiune．In many uases where the crop was lifted before the plants dried off．．tubers which were appa－ reutly sound wheu put into the bags and covered witb green tops． when the sap dried out of these，the grubs forsook then and attacked the tubers in the bags，which are often left in the feld for a week or ten days．The result was that when the tubers reached the market they were found to be so badly tannelled with the grub that from

30 to 75 per cent. Were unfit for use. Derp platiag has lyeen recom-mended- 512 to b incbes; but this of itself is. not sufferemt. as it is the fabit of some varinties to form their tubers new the surdaw. The bust proteetion is. probably, fairly deep plantiner aud thorough monding of the plants. If the moth aperars in the field. this should

SC.ABAX TUEERS.
seed, it wrsald be advisable to dip theu in a solution of corrosipe sublimate (17/4 oas. to T gallons of water) for one hour and a half.

Scab wod Eer. Torm.
The utuestion of seab and efl worm has, in the presence of Irish Blight, been almost lost sight of; but these cliseases will fore themselves on the attention of growers, especially thoso who desire to keep their fields clean. The treatment recommeaded for the various forms
of scab due to the athack of fuogus diseases is that of dipping the potatoes io corrosive sublimati or formaliu. It is to be regretted that many growers are not inclined to go to the trouble berause they sur a neighboar who does not treal his seed have a clean erop. This often oceurs, ine spite of the most striking evidence of the lomefit of dippiog. The resnlts of some exproments made in 1909-10 vere recorded in the Journal of Agriculture, Juue 1910. Thexe experiments were eontinued during the foltowing season [1910-11\%. The puts were put uside after lifting the tubers in [s10. The sobt was not interfered with in any way, and in dovenher, 1410. " clear ('annan potato which has been dipped in formalin for two hours was planted in ench pot, Nos. 1, 2. and 3. The produce of these Whs harvested in February, 191]. The following results were recorded:-No. 1, all tubers perfectly clean. No. 2, all tubers more or less srabby. No. 3 (duplicate of No. 2) , all seabby. It was not intended to carry these experiments any fusiher but in the spriag of 13.11 it was diseovered that a tuber had beer left in euch pot. The produce of these was harvested in February. 1912. The aceompanving photographes will show that the rewhlts of the previons seasm were repeated.

SPRAYING FOR BLIGHTT.

The resulls from spraying are dealt with in a separate article in the Jommal of Agricmitme, lyecember. 1912.

THE rRUIT TRADE OF YICTORIA: ITS PRESENT STATUS FROM A COMMERCIAL STAHD-POINT.

> (Continued from pay 123.)

PART V.-OVERSEA EXPORT TRADE
By E. Meeking, Senior Pruit Inspector.
Phoblems affecting the Fieeping of Fridu's.
The masatisfactory condition in wioh a large proportion of our fruits arrire on the British and Confinmol markets, and the couseguent loss which results from this eath season, has furnished muelt subject-mutter for controversy amonmst mrowers, shippers, and others interestod during the past. few seasons. Many theories have beer advanced as to why our fruits deferiorate during transit. Some of the dispulants. for instance aver that wat of due cere on the part of the shipping companies in the matiters of carrying the frat at too kigh a temperatme and also of permitting the temperature to flotuate duriug tratusit, the luck of providing insulated chambers for the froit taken on at each port, the rough methods of hurding be stevedores (both at this end and at the port of destimation), the meglect on the part of the Railway Department to provide suitalale cool-car aceothmodation for conveying the fruit from the onchard to the purt. are each responsible for the unsatisfactory resulus. The great fault has been that, in most instances, those eoncerned have confined their
arguments to one aspert of the ense only, and appear to eonsider that one of the factors mentioned abore has heen solely responsible for the deterioration of fruit during transit. Some consider that the preenoling of fruit prior to shipment is the only panacea. Others. again. think that if the shippiug vompnoics atteuded carefully to the various matters which come under their rontrol. such as careful handling. stowage, and proper attention to temperitures during transit, the problem of landing the foul in uniformy gnod condition will be solved without preconling of any alteration in our present methods of harvesting. packigg, hauding and rail iransportation. As a matter of fact, the problems conneeted with the maintenance in good order of Ernit from the orehard 10 market are so many and intrichte that. it would ajpear a complete alteration of our present mothods in harvesting, parkjog, and hoodling. and in transportation by rail and seas is Decessary to ansure. in ald instances, the landing of our fruits in oversa markets in a sound and saleable condition. The series of systematic and "arufil iovestigations which have been eurried ont during the past decade in the Tnited States of America und Camada the two larges fruitexporting countries in the world) confirm this belief. It would upperr from these experiments that none of the individual disabilities which at present exist in our methods of harvesting and transportation can he held solely responsible for the loss and waste which ernstes each seasom. but that improper methods of piching. pacting. handiog, and tramsportation all eontribute in a greater or lesser degres. The scope of investigation in the ['nited States and Canada has rovered, intor alia, such problems an the following:-
(a) The efterts of various methods of picking and handling fruits.
(b) The influence of different methods of packing, both with respect to the systems under which the fruit is packed, and, also. the style of package used.
(c) The results of applying cool storage at various periods after fruit is picked.
(d) A study of the physiologicel and chemical ehanges which talse place in fruits, both under cool storage transportation and under ordinary romditions.
(e) The effects of punctures. bruises, and abrasions of the skin on the keeping qualities of fruits,
(/) The reason why fruits vary in keeping qualities, even when subjected io similar treatment regarding eultivation, harvesting, juckiug. and transportation.
It will be readily understond that these problems, of necessity, cover a wide field of investighation, and have claimed much time and attention. They have had the effect of altering many pre-conceived notions roneerning the fucturs which detrimentally affect the keeping qualitics of fruits. Moveover as the investigations have advauced, the opinions formed as a result of these in their initial stages have also wadergone much modification in many directions.

As the experience gained from the experiments conducted in America shonld be of great value to the trade in this conntry, more especially in connexion with the policy to be adopted in
developigg the industry on proper lines. it may not be out of place to give a cummary of the resalts obtaned for the benefit of thase who are possibs macipainted with the same. Taking the investigations in their sengential orsor. it will be as well to commener with the pieking. packing, ame preliminary handing of fruits.

Porksig. Jowking, and Hixdemg.

Althongh it may be stated that from time immemorial it has been recognisel that frois gemerally, and more particularly soft fruits such as prablus. phans, and the more delicate rabpetips of pears. require to be handed with seredt care, abl that this fact was as mell koom - It the Americals Continent as elkembere, yet the importance of carrsing this out cutirely was never recognised to its fullest fextent. witil the iuvestigations proved how repry easidy fruit cond be rendered
 The paperiments. affer beime ewducted for some vears. show that. From all the canses whim comtribute to the deteriomation and derey of fruit. no less a propertion than fion per erot. is due to uechanalal injuries inflicted imping the pretiminary pioting. proking and handing.

If was demonstrated that the more fommon kinds of mould, which are responsilite for the lareest proportion of decoy in livuits from the whard to the market wer unabje to protate the somed maraken skins of the fruit. tiquerzing the fruit whon picking. dropping it
 on to the proking tables. mumuing the fruit in springiess raggons ower rongh gromad from the whated to pracking bouse the persence
 mate be finger-nails of pickers aud packers. when all found to be amongst the anses wheh ertatributed to the ingury of the frum. As a matter of fact. comparing the relative valums of cool storage and warefal baudline in womesion with the kepping of frait in a somad coudition ofer buse periods. if mes be stated that the bather is of greater importance thas the formor. In this respect it has been discovered that the value of the application of proper cool-storage temperatures is very much lessened if due attention is not paid to parefinl haudling and pirking. It has beer shown that mbruised and sound apples will remain in good condition for a longer period in an ordiunty storage room than will apples in rool storage if these have been previously rendered unsound as a result of lareless handling.

Athough the development of monlds and other forms of decens. whose spores have fonad acerse to the fruit through abrasions of the skin, may he checked to a great exteat by the prompt application of cold temperatures, get the value of a sound skin in providing a safeguard against the eatrance of decay cannot be too strongly ernphasized. Even such relatively hard-fiesbed and tough-skimed fruits as apples and citcus froits shonld be handled with the utmost care-when being picked and packed for export they reguire more cureful handing than eggs. Even a slight pressure of the fingers will often serve to give the fruit a bruise. which, although unnotiondble at the time, will, in the course of a few days of reeks (with greater or less rapidity.
anororling to the surrounding conditions). develop unsighty bruises. and eventualls render the fruit usouncl and umarketable.

Conceming the particular feriod which elapses fromi the picking of the truit to its arrival on the market at which it repeives the largest proportion of injury it appears certain that the greatest percentage of bruses takes piace in the initial stages of harvesting and packing. This is so because fruit when pheked properly and tightly is less liabic. 10 injury than when stacked loosely on the iackiog-table or in the revegtarles used by the pickers.
('bol Storige. Pre-moling, Trinapomthtion, Fitc.
Although carefal picking. packing, and handing have been shown to be such impurtant tactors in kecping fraits in wood condition over Tome periods. mpid and properly applied retriguration is also a pimary essential. The deviloumpnit moulds and other forms of deeay procteds with greater rapidity under high temperatures; and this develonment in proportionately retanded with esery degree of moluchom in the temperaturs. 51 is now well known that at or near the wiminty at which water freezes (31-32 degrees. F.) the development of decay is almost completely suppressed. or. at least. proceeds with grent shomess, In riew of this fact, it is of the utmosf importmene that trmit should le chilled as soon as possible atter severance from the tref: and also. Bermuse the ripenime proresses are neeplerated atter the firnit has heen pieked. The higher the temperatures at which truifs are pioked. the mote speedily shonld they laf placed in mold sturdere: and in all insances fruit shonld be matiotaned al low temperafures until surch time as they are placed on the market. For many Seans it has lyent the pactive of the shipping companies to carry frolits at temperatures ranginge fron 33 to 40 degrees, F., and there can be little doubt that the keeping al fruit for so long a period as is necopied during the vosage to fle linited Kingdom and Enrope at
 the waste and deterioration wheh hats ocenrexel. Notwithstanding this lact. the want of rapid pre-cooling after harvesting mast also hear its share of responsibility. The chief manatages which are whained under the system of chiling fruits as sonn as possible after harsesting. and keening these whiled until their arrival on the market. are as follow:-

1. Mians are furmished wherender fruit may be allowed to mature before harvesting and shipment.
2 . The developanent of moulds and other forms of decay (including Bitter l'it) is prevented.
2. The shipper is enabled to land his fruit in a soumd and unsbrivelled condition.
3. The shipping companies are assisted in maintaining the fruit at low temperatures during transit.
The advantages of being able to allow the fruit to remain on the trees until full maturity has almost been reached are so obvious that little comment is required. It may be is well to point out, however. that the superior appearance of fully-matured fruit over that of immature froit on its arrival at the market greatly enhances its value.

Regarding No. 2. the advantages of checking the development of bitter Pit, which, as is well known, of ten oceum during transit. wonld alone justify the establishment of the pre-cooling systen. That the development of Bitler Pit in the stages in which it manifests itself after the harvesting of fruit may be retarded has been amply proved by the expermenf. sarriod ous. by Mr. D. WeAlpine; during recent sears. The result of experiments carried out at the Goverument Cool Stores, Melbourne, has also shown that even such rapidly developing forms of moulds as the ordinary green and bae monlds of citus frnits (${ }^{\prime}$ (nicilham spp.) are almost completely whoked at the freezing point of water: and are apparently. entirely retarded at at temperature of 29 degrets. As the freezing point of most Eruits is somewhere betweon 28 and $2!$ degrees, F., the appliation of temperatures at which the development of these discascs ard kept in abeyane may low safely applied to fruit.
(To be continued.)

ROOFING IIAY STACKS WITH (IALYANISED IROX.

万. R. Kerr, Dairy Superiser.

Nauy tons of valuable bay are last annually through defective roofing of hay stacks. Where the hay shed is not avalable envering with corrughed galvanized iron is the most effective method, and. provided the stark is well built and the iron properly secured, do min will penctrate.

If reasouable care is taken the iron will last many yars. The Hriter knows an instance where the same iron las been in use for twenty yeats, heing removed aud replaced arery your, and still in fair order.

In buidding hay stacks it is mach better to lay a proper fonnda-tion-one that will permit of a free eurrent of air widerneath; this will minimize the tampness that generally oceurs. Haring decided on the size to huild the stack, place sorme stout pieces of wood on the outside-old posts. for instance-and fill the centre with may pieces that may he lyiwg about, so arranging them as to allow of the air current already mentioned. With the fonndation laid. secure some solid pieces-such as old rails-and place them at intervals of about $\overline{7}$ feet, allowing them to project $]$ foot over the sides of the foundation, haring one flose to each ond (see plan 1).

The whote secret of successful stack building is that the stack is always full in the centre and gradually increases in length and breadth as it becomes higher, the idea being that the water will at once drop off the butts of the straw, instead of trickling down the sides of the stack.

When building the roof the sheaves should be so armanged that the butts will meet in the centre.

A steep roof is not necessary when covering with iron, and a fall of 2 in 12 would meet the case.

Prian No 1
Megs an soution fiom antratimg wremes

Plas No:

1t-firost ithella at minurf
c- man dowbero aurien on siff

Thinn No 3
X-wrees slopled on whisd
A - wincs 17 persplom
F - pegy , whoch where

T゙NO VIEW
A-4. $\times z^{*}$
B, wirg
B- which sirck

With the stack rompleted, prowere some pieces of 4 -in a 2 -in. hardwond ir Jugths approppiate to the bength of stack-in most rasps 15 feet will le found the oust suitable-and lay them lengthways on for rool of the stack allowing an werpho of abont 6 inches: three
 belon fre ridere rase at eave and the thited midway betwera.

With the wome in position to suit the leugth of iron-a stagk 21 feet wide at the botfon would reguen foms sheets of at least 7 feet iron fo ratoh acrosis the row-atach wires to the projecting pegs already mentioned in phan l-fenciag wire will do, galsanized for preferext. If po prusjesm has been made for thesu pegs, if will be necessary to thive some iutu the stakis: they must be stromg and at least 5 feent loner Aftor attabling the wire to the first peg. throw across the siate and te to fle correspowding peg on the otber side. atad so on right alomer the stack. the wire should be tied farly shark aud then stapherd fo the woud an the roof. the staples heinir only fartly driven in ; ons

wim sifould somu in the eemtre of ench length of havdwook, and Hnother whore the lengths overemp eath other.

It is mow nocessary io armange a Spanish windass. Seente some
 drive them into the stack. having abat? foor expored. This sbould be done about $\overline{5}$ faet from the gronnd and at the side of rach wire Cons get other piouts a little lass in diameter amd rhmut is fret long-12 -in. pipigg answers wall and is ererlasting-mith this piere take it fwitelf somad the wixe and then a twom romod the peg in the starck, then likewise on the opposite side motil all are seenero-if the wires are tight somme differalty will be experienced in gettiog the first turn onmore turns are now taked matil the wires are tight, the turaing stick is then semured to the main wire with a little hayband, fine wire, or held in position by another peg driven into the stack.

The wires are tighteved at intervils as the stack settles down.
With the lengths on the roof in tbe right position and the wires fight, drive the staples well iuto the mond so 45 to avoid slipping (vlan 3).

When purchasing iron, get the sheets of sufficiert length to allow of arerlapping about 6 inches on the ridge of the rof on the weathor side. and plenty to spare to throw the waler clear of the walls of the stack. Great care must be exprcised in phacing the first sheets of iron that the enerugation be perfeefly straight all along the stack. Always start on the weather side, and after placing the first sheets double one over the eud, as in plan 2. This mill prevent the wind and rain beating under. These doubled sheets are secured we weights or pegs.

Two men awcustomed to the work can cover a large stact in less than a drys.

Always endeatar to have the stack about the same width, so that the irun will alwas come in right.

Wher opening the stack. the frou is rmored in sections, one or two benders being mate acoording to the amount of bay reguired; he this merans litile lay is oper to the weather at any ore fime. Wher renoving the ron care mast be taken that the timbers are oot allowed to slayd too far ont from the emel. We the weight will ace as a lever and anse a buckling of the rumamer of the roof.

When remoring the spring-head nails from the iron. procure a

 wombl ueene by pulling against the iron ouly.

All iron remoreal. barether with all pegs. should be carefnly pat away lof tise in flat following sequsus.

SOIL MOISTURE AND WHEAT--

The form aud size af a mature what plant iucheate, to at large extont. the character of the seanon in which it was grown it in a kind of self-rugstering meteorological instrument. The difficulty is to interpert all the radings properly. At the I'niversity of Göttiugen (Iurnay. Diss.), what was grown mader different condifions of suil moisture to see how the develoment of the fint was afteeted. In some enses the erops were kept rather dry (45 per cent. W. IL.C.) during the tirst vegetation period, and in the seconch rather wet ($\overline{6}$) per cent.): is ofler cases thuse conditions were reversed. In the results, tillering was infuenced by the water suphly. Tillering redued the subsequent weight of straw and beads only under lack of moisture at later dates. la the straw the length of the uppere juternomb was influenced hy the water supply, partieularly at the time of shooting. while the length of the lower interuodes depended on the water coutent during the first vopptative period. The water sapply during the first. period governed the length of head aud the mamber of kemels jeer bead. Inereased moisture at the time of shooting gave the smatlest number of barren spikelets. Guain formation was favoured by an increase in the amount of water during the last vegetative period and the weight per 1,000 kernels varied with the soil moisture on good soils. Where poor soils did not receive the necessary manures, the benefts of increased water supply were in large measure lost.

TOBACCO UITRING.

Temple A. J. Smith, Okicf Pield Offeer.
Cigar Leaf.

In urder to make the tobacco leaf grown in Yictoria more attractive aud suleable. greater atteution is required during the curiag process: this takes pluce from the time the tobaceo is harvested notif the final ffomentation hus been completed, just before the Jeaf is packed for markel. Simply drying tobaceo leaf is not enring it, and colour, Hasour, and general quality am atl affected and greatly improved undrer a proper systems of eming. Different kinds of tobacco require ditierent systems to develop certain qualities for various purposes, and even rariation in seasons will influence trore or less the methods adopted. Tobareo harvested in cold wet weather will neither cure nor fermment well as if eut after a few genial warm days, when there is mot an excess of moisture in the soil. The proper coring of tobaceo is partly chomical, partly a life process, and is not simply due to the dreing out aif surplas boistare. Tobacco, when just harvested. contains from 70 to 80 per cent. of moisture, and if this were simply dried out by heat. the leaf wonld remain more or loss green, aud be faite msmokeable, with bad burming falities and no flavour, the starehs and other constimouts in the leaf remaining unchanged. and the tobace would have no valus. During a proper system of duriug. Which in partis ehtmical and largely due to miero-organisms in the leaf cells. tho onter skins of the leaves are broken and oxidation takes place, the whour of the leaf changes from green to brown, red or yelbow, according to the class of tobaceo troated. These chnoges afe cused by angrmes or ferments in the leaf cells, which during the process split up existiug chemical forms through their power of faking oxygen from the gir and supplying it to the contents of the phant cells. and forming uew products. These enzymes are easily chetroved by too much heat or too great cold. Temperanures of over 130 degrees Fahrenteit kill them. and at less than 60 degrees Fithrentoit their operatious are stopped. while at freeziug point they are destroyed. The most beneficial temperature is from 80 to 100 degrees, under which they do a maximmm amount of work; also a cortatin degree of moishure is necessary for their proper working. It is. therfore, of great importance that the conditions suitable to them should low studird closely to insure surcess. If the eare be too fast the work is not properlo done, and if too slow the process may go too far. Quick curing is. however, more dangerous than slow curing. and unless the matter is thoroughly waderstood by the operator it is wiser to cure somewhat slowly, especially in the early stages of the trontment. linzymes are easily destroyed by too much heat and too rapid loss of moisture but if the tobacco is made to dry slowly they multiply guckly and force their way throngh the outer skin of the leaves, thus encouraging oxidation at a greater rate. Should they, however, be killed throngh scarcity of moisture, or by too rouch hant, they become enveloped in the insoluble protein in the leaf, and
will not then be of use during the fermentation proress which takes place later on, and the resuld will be a poor fermentation and conseguent noor quality tobaceo. Leaf of fine growth and appearance if badly cured, may the utterly useless for manufarture, while the same tobace given a proper cure and fermentation an be made a fide manufacturing commodity with all the desired gualities for a gond smoke. The varions tobacoss used in facfories require different tratments according to the purpose for which they are intended, as, for instance, cigar wrapper leaf for outside covers must beepssarilybe thin and silky, with good colour fine veins, and a further virtue known to the trade as strengith and stretch. Such leaf needs very careful treatment in both the cure and fermentation. as it will be too dry and hrittle if eured finst. while if over-wared or fermented is liable to suffer in colour and elasticity. Only experiente connbined with a knowledge of what the buyer requires, can determine exactly how far the treatment should go. Cover wrapper leat is not smacht after so mueh for its smoking gualities as for is appearamer; it constitutes only a very small prapertion of the ejgar-about 5 per rent. of the whole-hut it must have the eharacteristies moutioned otherwise jt will not sell well. The bunch wrapper, which is the portion of the rigar immediately under the cover or outside wrapper leaf comprising 20 per cent of a cigar. need not be as good in appearance and so fine in fexture, bui should have good flavous, and burn or combustion with a nice grey ash, its mechaniral plorpose being to liold the fitler leaf in shape hafore the enoer wrapper is put on; such leaf must be sound and also be strmag enough in texlure to stand a fair amount of pressure withont breaking. It must be Eree. as far as possible. from orgauic mather in the shape of starcll and sugar: otherwise it will be liahle when made into pigars to absorb worsture whenever the atmosphere is damp, and berome soft. a had sign in a rigar.

The fller leaf which comprises the greater butk of the eigat (Th per cent. ; must have good thavour and burn. he free from organie matter. and of tine texture, but rolour is not of such great importance, thongh to insure high prices a dark-brown or lighter sbade. which should be uniform, is desirabip. Soundness, so far as boles or broken leaf is concerned. is not of great importance unless very prononaced. as the leaf is broken up by the manufacturer before being made into cigars. Flavour and freedom from organic watter, together with good combustion, are the chief points in cigar tnbarco. A good aroma in all kinds of feaf is desirable, and this quality is largely developed in the emre and sutserfuent fermentation. Colours may vary considerably, and yet be good; a very light-coloured cigar wrapper is umusual, though the present taste leans towards the lighter shades, smokers being under the impression that a light-coloured eiger is a light smoke; this docs not follow, as the fller may be any colour from light to very dark, and as 75 per cent. is filler that portion has the greatest influence. When we take into consideration the fact that the soils the tobacco is grown in produce leaf of varying descriptions. requiring a more or less fast or slow cure. also that seasons aftect the condition of the tobacco, and that the various tobaccos are needed for
different purposes. it mill be realized that a thorough study is necessary by the inclividual grower as to the special treatment required to develop to the highest possible effect the different qualities of leaf with regard t" the tolacec he is producing. especially in a new country where frexh districts are being exploited. A good crop of tobacco can be absolutely ruined by bad treatment in the curing and fermentation, nr hy grod treatment made a valuable and highly profitable crop. The toregoing remarks apply equally to pipe tobnceo in the main. except that cigar leaf reyuires more careful handling, especially in fermentation. than pipe leaf. The proportionate amounts of wrapper. bunch nrappif, and filler leaf in each are approximately the same and exercise the sarue influences in their way.

A deserpition of the different methods in use in Americh and clsewhere will be dealt with taking cigar lead first.

Id roring "jgav leat, the changes which the leat must wodergo are controlled by the ragutation of heat and moisture in the shect, and watil sery receatly fire or flue caring has not beed followed, excepting in cases where continual fors or hory moist atmospheric conditions have existed. Curiug proceeds slowly in cold dry weather, but drying takes place: while in wam moist neather the chages in the leaf conslitnents that ape necessary take plawe, and tobacco cures fast. Thermometers should be kept both with wet and dry bulbs to ascertain the tempersture and relative mosisture in the air, both inside and outside the building. It las been foond that the best temperabures at which the leal cures in diy weather are when the iuside temperature is over Th deques Fabrerlieit, and the outside temperature is 10 or 12 degrees less; while a difference of 15 degrees Fibrenheit in wet weather is best. Thbaceo will cure well at any temperature between 70 and 100 degress Fahmohit, but, ws prevousty stated. it is sher to "ure slighty on the slow side. While the leaf is curing fairly fast yentiation must be provided to carry of surphas moishare "sperially in wet weather, or when the onside air is sureharged with moistore. The relatice percentage of moisture should be betweon 20 and 60 degreses. In Vietom the elimatie corditions are not as cold as in many tobawn countries but the air is in some districts drier. consequently artificial methods of supplying moisture may be found advisable, such as watering an earthen Hoor, or envering with a few mohes of straw and appiying water, which as it evaporates increases the atmospheric coutents. Jn dry cold weather the shed should he kept closed, with no current of air. or a very slight one, but the top ventilators should be sufficiently opeu to take off the moisture evaporatiog so that it with not settle from the top on the tobacco, the idea being to keep the tobacco durivg a cold spell from drying out. while not curing. The life will remain at such o time dormant, and directly the right degree of teniperature- 65 to 70 degrees Frhbenheit-obtains agair curing will be recommenced. Cigar leaf during the process should ont be allowed to get so dry that the leaf will break upon being handled. and should be so managed that at least once iu every 24 bours it becomes soft until finished this can be regulated by the currents of air admitted through the ventilators. It will be realized that no bard-and-fast rules can be laid down in this respect, as the treatment
will rary according to weather conditions and the stage rached by the tohacco. In the early part of the cure the moisture is driven off fast if weather conditions are suituble, but if eold and dry the shed should be kept cosed to prevent its loss at ton fast a rate. It may take four weeks ouly to rure a shed. and in some seasons twelve weeks, the latter period being more uswally required unless artificial heat is applied. OnJy experience will tell the operator in कharge when the leaf is ready for its special purpose before bulking dora for fermentation. The colours should be fairls even throughout. the terture of the leaf thin, pliable, and devoid of vegetahle mafter, with not more than a 10 in 20 per cent moisture content. lreaf for filler purposes and for bunch wrapper will generally require a longer and more tharough cure than cover wrapper leaf, the natural teudency to thimess and lighter hody in the latter having less organie. matter to be disposed of. Here, again the operator is the sole judpe as to when the cure has gone far enough for his purpose; the tendency amonget Victorian growers is. however. to cure too fast aud not quite evough.

As soon as the leaf is cured the shed should be bent closed add dark: if hight is freely atmitted the colours are liable to suffer. Some grovers favour putting the leaf dorn in bulk at once after curing. re-hanging later on, while many prefer leaving the tobace banging in the shed until rendy for fermentation. Tohace leal san be put down in bulk in cold weather with 20 per reat. of moisture, hat is liabla to ferment when warm weather ensnes, and should ennseruently bit watehed, and if hoating it should be turnod. otherwiss it might go so far as to rot. and the season's labonr be fosi. The main matiers to be earefully watched are:-

7st. To so control the air cupents so as not to dry or cure, tno fast in the initial stages of treatmont.
?ad. To keep whemerer possible. the inside tomberature 10 to 12 decress Fratronheit above that of the antside shade twaperature.
:ard. To close the shex whers curing is finished, and, if murh damp wather follows and the lenf is inclined to hecome mildewed. open the vertilators on a dry das. or put slow fires underneath sufficient to drise off superiflous moisture.

The curing by the aid of stoves lias been recently adopted in the Comecticut faley and Florida. in America, in rectard to eigar lenf, and a useful pamphet written hy. W. W. Gamer. of the I'nited States Department of dorxealture, in which the following direetions for cuing cigar leaf by artificial heat are given:-
'No beating system will give satisfactory results in a bam or shed which is not reasomahly dight, because the temperature cannot be $^{\text {sen }}$ raised suffieiently without drying the tobace ton fast. On the other hand, a system of rentilators which can be opened or "losed at will is necessary for the removal of exepssive moisture in the shed in wet weather: If there is no rentilation the air soon heromes saturated. and heat alone will not drive it off. When artificial beat is used it is not desirahle in filling the shed with tobacco to leave open spaces from top to botiom, as these will only act as channels for the escape of heat to the top, while to be effective it must be forced to pass through the tobaceo.

The heating sistum must have sufficieat capacity; a Little bent is frequenty worse than mone pacticularly in the control of pole sweat. Experioner has shown that a satisfactory system must be capable of mantaining a temparature in the shed of from 15 to 20 degrees higher than that of the outside air when moderate ventidation is ased. It is ouly nocessary to maintajn this temperature when there is dauwel of jwle swent; wader ordionry conditions a difference of 10 in 12 degroes between inside and outside air is suffienent. The beat musi be smpplied frotu the bottom of the shed and be evenly distributed in order that, so far as possible, all the tobaceo may receive the same treatment.

Open tires of rean bumine woud and rharcoal can be usad. but it is necessary that speriai premations are laken in case of fire, and only clan hurving wood is used, as rely heavy smoke from fires is apt to jujure the tohaco (hareoal is expensive and there can be no doubt that fle store aud Hut ruring system is bust, as temperatures can be hatior confrolltr, and there is less danger of injury from parcssive snoke and fire.

Coke and rand are wot suitable fuels, as they generate injurious fumes, chiefly sulphur dioside, whicb will damage the tobaceo.

Should opeu tirs be used. it will be found secessary to have many small fires in priforence to a few larget ones, in ordor to distribute the heat more evenly and appliances im the shape of deffectors in the shape of sheets of iron over the firss have good effect.

The use of artificial heat can be resorted to at auy time after the tobaceo has been placed in the shed, from the firsi day until nearing the end of the cure. Many sucuessfit tohacco-growers preter to hase the tobacco in the shed a werk before using fires, especially if grod natural ruring wedther obtains. Others sty that as soon as the Jeaf is wilted firiur should commence. Practically all the cigar types are air cured int judicious management of artificial beat will result in it more porfect product."

The fermentation of cigar leaf and system of making flues and sfores will be deait with ulso a dessription of the types of sheds for enriner uigar and pipue tobacros.

ORCDARD AND GARDEN NO'IES.

The Orchard.

Plaxting.
In preparing land for planting out-and this should be commenced right away, so as to allow the soil to swepten--it should be sulmoiled, so as 10 produce good resulta in after vears. Subsoiling will add to the age and vigone of the tress it will materially inr rease the crop; and it will considerably Jessen the expense of fertilizers. Reforence has previously been made in these notes to the sumess aftianed from growing fruit fress in subsoiled laud: but the fact may be rognin pointed out that many srowers in Victoria fo-day are reaping the henefif of increased crops without artificial feeding where the soil was subsoiled before plating. Drainage is another most important factor in suceessfal fruit culture; but while, perhaps drainage may be delayed for a few yenm, if the ather inifial papenses are extensive, it从nsi again be emptasized that proper snosoiling canoot be carried oul after the trees are planted.

Green Manures.

The exceedingly bot dry months of January and Febmary will have had the effect of considerably weakeniog the soils, and reducing the humus content. It will be advisable wherever at all possible to put in a crop of greed manure to supple humis, nitrogea, and other heneticial factors to the soil. This should be done as soon as the froit is of the treas, and the earlier the better.

An early erop is a distinct advantage. The cover crop should make good growth before winter sets in, as the plants make very little headway in the cold weather. and they reguire to be ploughed in as soon as the ground is dry enough in early spring. It will thus be seen that it is necessury to get a good autuman growth, as dense as possible, and one which will well cover the surface before winter.

Pests.

No codin moth affected of diseased frait of any kiad should be left on the gromud after the crop has benn gathered. These should all be destroyed by boiling.

Rust-infected phum and peach leaves, as well as all foliage of stone fruits that have been attacked by this and other fungus diseases such as shot-hole, \&c., should be barned, if possible. This will miaimize the possibility of future attacks. The same treatment should be given to foliage where either red spider or the bryobia mite have been in evidence.

New Fruts.

Th. fullowing deseriptions of sone of the new fruits may be nsefnl to growers. These have been fouited at the Burrley Gardens and hase all proved vers interesting varieties:-

7'ar.-Maryur rife Wariliat.-This is a very large nad showy peur.
 be obw of the largest of pears, being larger that either beare Bose or l'vedale's st. Germain. But. being a dessert pear: this will
 Febroary, and. being inclined to mealiness dows not promise to be at wrel kepper.
 wind wethed. coloured with red. showing appamen Cox's brange
 flawne and solid bestred right thengh from shis: to rore. with vers. samall wate. It has become a bere jopmar apple in sume parts of England.

Riad-- Io apple approaching comical shape with a beautiful bright rellow collour at base and with rioh red streakiuess near the crown. Thre flest is vellow coloured well flestied to the corr: cure failly onna. The flesh is crisp, and the flavour gond and mellow.

C'ormarion- -in apple of grod size. greeu skin, well mottled with soarlet markings; flesh very firm, greenish, well filled to the core. The finour is very geod-a grod. juice apple.

Charle Foss-A fine coloured well streaked apple, especially on the stmny side; under skin a good yellow. The fruit is a good size, very jury; the flesh is yellomish. erisp. and a first class Havour.

Jomes Grieic-A welt eoloured yellowish apple, skiw well streaked on the sunny side. it good firm Hesh. inclining to mealiness. of mild excellent flavour.

Vegetable Garden.

All vacant phots should be given a liberal surface dressing of stable mamure, and then well and deeply dng. For winter growth, the beds should bee elerated somewhat above the ordinare summer level. That is, the path surfare may be on a lower level, the plot soil being well thrown up and boldly ridged. This will give a certain amoment of drainage and will insure warmer and better soil: the vegetables should succeed more in this class of bed than in any other.

The vegetable garden and also the seed beds shoald be kept free of any wesds, and a good cultivation kept up all through.

Seedlings of cabbage, cauliflower. lettuce, and celery may be transplanted out; and seeds of cabbage, caulifower lettice, early peas, swede turnip, carrot, parsnip, and early onions may be sown.

Flower Garden.

One of the effects of the hot sumner bas been to considerably

supply was not copious. This shmild be remerliert. as far as possille. be a grood alutumen cultivation, mukehing, and wateriug, if she rain does not eome in sufficiont quantity: The stuble mamere muth shomld not be stinted at this shason of the year, and garden plants should he given fyery encouragement. This tsperially appline to such phants and shruls hat wild be hooming in ataman and winter. If these are strenghened beod and water cimplies. good gromblis will result. which means a mopions supply of hlomos.
D)hblias and (hrysanthemums may be fed with liquirk manure or mideled with stable or poultry manuro-blo bater is meferable.
 and it shond alwas be withbeld before the fioners rome. If the manure is supplied in the form of multhings. it will he well to

 of rewis.

All chases of arring flowering buths may bow be planted. In
 The manure should have heen some time previousl? dug well in and mixed with the soil. and all heat shond have disarpeared. If much manne is reguired it shoma be placed bome fla buth. wis that the routs mas utimatmy pometratio to it. Bullos thrice in samly soils, and where the sall is herry a little sund may he whded with advantage.

 derper:

All hardy annaal, biemial, and paremial serts may now be planted; among these are dianthus, candytuft. sweet peas. [ecland
 fhlux, penstemon. pans. gallardia, \&e.

Wherever aphis and ped spider orem the plants shomald he spayed with bemzole proulsion, ricoline, "Festend." "Soatrerine." or some other preventative, in order to protect the coming flowers. Mildew attacks on the rose should also be warded off by the use of sulphur. The sulphur may either lie dusted on the plant. or it may be geattered (i) the ground around and ander the plant.
dareh is the month when the show and fine stmmer annamis are at their hest. The asters and zimnias should be very fine: and these. combined wifle salpiglossis, minature ammal and herbaceous sumflowers, phlox. and many other popular hardy auwuals. are alf now at their best. These will reçuire a faje cuantity of water and wanure nulching; and the plants will be considerably helped if the blooms that hare passed their prime are kept cut off.

March is one of the best months for the transplanting of evergreeu phants of all classes. trees. shrobs and pulas. The roots of the transplanted plants should be disturbed as little as possible. while the roots of those transplanted from pots should be well meoiled and set ont before planting.

The soil is now warm, and the roots will quickly take hold and grow. They are thus established for the winter, and will give little or no tronble in the subsequent summer heat and dryness.

Perishable and Frozen Produce.

Leacription of Produce			Eaperta from shate (Ovenea),		Deliveries from Goverrment Cool Stores	
			Quarter ended 31.1212	Quarter endied $31,12.11$.	Quarter ended 31.12.12.	Quarter ended $\$ 1.12 .11$.
Butter			18,064,584	$24,450,852$	18,379,256	94,917,984
Milk (dried)	\ldots	cases	3,508	1,996	18,37020	- 2 ,
औilk (cond.)		\cdots	5.045	2,730	50	\$1
Cheers		11.88.	22,320	15,480	300	500
Bacon ...			11,590	62, 300	...	
Poultrs	\cdots	hesed	5,605	6,510	64:3	4,759
Frgen...		dozen				5(M)
Matton and Lamb		rcases	694,412	1,118,585	29,794	(i6,4:3)
Beet		urters	7,099	5,45	127	
Veal...		rcanes	915	\$35	91	79
Pork...				1,491	$2: 30$	858
Rabbite and Beres		prims	57,204	171,3,2	9,793	11,768
Sundries _...	\cdots	$1 \mathrm{log}$.	,	...	35,645	52,665

R. CROWVE, Superintendent of Exports.

Fruit, Plants, Bolbs, Grain, \&oc.
1mports and Exports Inspected for Quarter erding 31st December, 1912.

Description of Prodiace	Imports.		Exparts,	1resuiplion of I'roluce.		Imports.		Exports
	InterSlate.	Orersea.	Oversen			jiter. Stsute.	Oversea.	Overses
Apples	9,205	-	30	l.0yuata ...		303	-	-
iprucots	-	-	332	Loge ...		96	4,657	
humans, bunches..	59, 2141	49,617	-	Maize	.	268	13,945	34
3 andinss, cases ..	7,542	31,188	2	Mangoes..	-	184	-	-
3arley ...	26, 820	-	7,642	Marrows	.	165	-	
jemdes.	33	5.52	-	Melons	.	219	-	-
3ulbs	-	246	1	Nutmega	.	-	396	-
horrics...	-	-	4,119	Nuts		235	2,655	-
Ebillies	10	40	-	Oats	\ldots	10,307	26,042	-
jocos beans	-	2,031	-	Oat. Halls		698	-	-
'ocosputs	56	160	-	Onions		-	1,698	-
Soffee berns	-	809	-	Oranges ...	-	10,260	1,495	641
'opra -	1.337	-	Paraion Eruit		J,418	-	-
ducumbers	7,244	-	85	Puw Puws	\ldots	22	16	
)ates	-	22,472	-	I'enchos		-	-	310
'iga	-	553	-	Pess, dried	...	337	15	205
'ruit-				Pepper	-	249	-
Crnned	\square	-	1,392	Pineapples		11,621	78	392
Dried	-	2,210	3,735	Planta.	\ldots	126	33.4	70
Mixed	-	49	,	Plunis	.	-	-	480
100seberries	614	-	-	Potaloen		1,502	10,386	400
Ireen Giuger	-	108	-	Rice ...	\cdots	1,120	8,554	
fay	-	115	-	Seeds	69)	7,106	45
[ops . . .	1	831	-	Spice ...	\ldots	-	511	20
ams, Shuces, tic...	-	0,130	1,05]	Tomatoes	...	2,931	-	20
emods	1,5027	3,130	856	Vegetables	\ldots	2,332	349	-
entils	-	186	-	Whent ...		4,050	I	-
inseed	-	305	-	Yuins		2)	-
				Totals	...)	164,680	194,200	21,911

Yotal number of puckegen inopeoted for quarter ending 3lat. Decumber, $1912=380,791$.
F., MEEKING, Serior Fruit Inspecior.

STATISTICS.

Rainfall in Victoria.-Last Quarter, 1912.

I'tabe showing average amount of rainfall in emah of the :2b Basias or Regions cuastitutiog the Slate of Victoria for each mouth aud the quarter, with the corrosponding moathly and quarerly avergges for buch Buan, deduced from all avalablo records to date.

Basitit or District	Wetolver.		November.		Precemiver.		sth quarter.	
	$\stackrel{\text { E }}{5}$	$\begin{aligned} & \text { 娄 } \\ & \text { 륜 } \end{aligned}$	$\frac{\dot{\rightharpoonup}}{\stackrel{\rightharpoonup}{3}}$		$\begin{gathered} \stackrel{\rightharpoonup}{5} \\ \stackrel{y}{8} \end{gathered}$		$\stackrel{\square}{5}$	
	proints.	prointx	proints.	points.	points.	points	points.	pointer.
Glomelg and Wemnod Rivers	178	279	212	179	239	154	629	612
Fibaroy, Eumerella, and Merri Rivers	$2: 0$	987	246	184	235	166	891	6i3
Bopkiss River and Mount Emu C'reek	160	245	247	183	$2: 32$	169	639	397
Mount Elephant and Lake Corangamite	158	230	275	183	220	169	653	691
Cape Orway Forest	$2 \cdot 14$	338	309	230	2×0	232	\$83	801
Moorsbool and Darwon Rivers	140	242	266	188	259	196	$\underline{65}$	826
Werribecand Saltwater Rivers	\$4	237	232	18k	258	223	374	648
'urra Biver and Habdenong Creek	214	3;3	$3 \mathrm{H2}$	262	431	327	1,007	922
Kon-vec rup Suramp	198	337	$3{ }^{3} 3$	244	401	281	983	862
South Gippsland	235	373	23%	257	292	329	785	962
Latroles and 'Ihomson Rivers	25%	369	371	256	263	319	891	934
Macallister and Avon Rivers	121	227	321	184	187	269	829	(6)
Ditchell River	191	273	306	128	248	250	744	721
Tambo and Nicinalion Kivera	181	289	279	178	380	282	790	749
Soowy River	169	346	323	204	2.52	282	724	832
Murray Ricer	82	175	410	131	272	145	764	454
Winum Mitha und 'Kiwnce Rivets	388	382	52,	23.	421	245	1, 176\%	g9
Orens River	172	324	626	228	433	235	1.231	787
Gualburn Kiver	85	2.4	450	178	272	177	807	584
Campanpe Kiver	50	200	251	169	255	176	556	5315
Loddon River	38	184	187	13.5	234	124	469	423
Avoo mad Richardson Rivers	44	140	138	116	190	93	373	344
Avoral River	33	146	181	123	232	113	446	382
Eastera Fimmera	60	192	216	151	196	128	472	471
Weatery Wirnmera...	85	189	167	133	199	94	45	416
Mallee District	32	116	150	92	183	83	345	991
The whole State	114	227	977	16.5	246	174	637	566

H. A. HONT,

REMINDERS FOR APRIL.
 LIVE STOCK.

Hokses, Thase stabled whould he fed liberally Ford of a more stimulating mature can bow be given to get then well oxer the "chaoging coat" season. Those doidg fast or heavy work should be clipped; if not wholly, then trace high, The liges should wot he elipped. Those not ragged on cansing isto the stathe at might swratmg fruely shomld be wiped dusn and in balfon fonur's time ragged or concert with hage until the cont is dry. Weaned foals should have a litile ernshed oats daide, it asalable,
('atthe.-As the nights home colder the daine cans shond be rugged. The ruges shomb her remowed in duy-time when the whate tomperature renches (i) degrees. If mu arass is plentiful, give a ration of hay or straw, whule or
 spayed.
 wht plenty of hetding and ser that sties are wam and well ventilated. Supin! suws liberally with grain. ('astrate vanis boars.
 and lambs to best pature as anon as dropped. Castrate rath lambs when a fres duys old: defor wiling them until the ewn lambs now ready, After frat rain (when dust is : e:ted) dear wool from the pees of young morino sheep; whilst yarded put wank weiness in hospital padiook, and any unprotitable wolled sheep in fattening praddoct.
 teasumanl of linsed to eacb hird's ration one daity. The more exercise the licus eret the better ther mont. Remove all malic liods from mens. Add Dongas misonter ro drinking water. Keep a sharp low ont for chicken pox. Forwayd prollets shomid now be in their wintor guarers, with phenty of seral-ling litter, and fed liberally-inchading ration of animat fool. Grit. sheil. atml chareoal should always be availahbe.

CULTIVATION.

Fal: A -Dig potatoes as they mature Cart ont and spread stable manure. Irepary and plough land for main cereal crojs. Sow Chou Moellier seed in beds for transplanting. Sow the following mixture per acre for green feed during the winter months for the dairy herd:-112 bushels. New Kealand Black Oats; ' bushel, 'ape Barley; 1/2 bushel, Tick Beans; ¹/2 bushel, Vetches. Sow Giant Drumbead (abbage for transplanting (1 lb, sufficient for 1 acre, io rows 3 feet apart): provided the soil is in good friable comblition, plants from sped sown last monts should be planted out. Sow wheat and oats according to healits; also rape for winter feed or green manuring. Prepare clean seedherd for licerne; and sow Gunter River, Arabian, Turkwhm, or Perovian seed, frue from doder, is drills i iuches apart and at the rat of 10 bbs, of seed fier acere sow permanent pastures with grasses and clowers,
orchana,-Prepace land for planting: plough derple and smb-sot. Plant Jegumes for green manure. Ilant out strawherries. Cyean uf Codlin Moth from troes as soon as all fruit is gathered.

Flower Gardex, -Plant out evergreen shrubs, trees and Anstralian phants. divisions of herbacens plants, seedlings. layers, and rooted curtings, Fued chrysanthemums with liquid manare weekly unty flowers begin to open. Prepare land for future plantings of roses and shrubs.

Vegietable Gabden.-Mladt out seedlings from tha sed beds, Dig alt vacunt spaces roughly, Sow onions for early eron; also peas and hrond beans. Clean out asparagus beds wherever the seeds are ripeaing.

Vinetard,-Consideration mast be given to manurinit marly mpliestion is strongly urged. Peas, \&e., for green manuring should he sown as sion as possible.

Cellars-Cleanliness is emphatically urged. Carefully remore all fermentable refuse-skins, lees, skimmings, \&e. Snch odds and ends favour multiplication of vinegar thes (Drosophila funcbris), If present. destroy these with formatin or insecticide powders A little bisupphite or sulphurous acid in washing water is recommended; also free use of lime on floors, \&e.

[^0]: "Fide Wheat and Its Caltivation, Jonvad of dgriculture, Ficforia, Feb, 1 bld, pp. gz-0\%.
 1 Pilksson, Die laadwirtscholitichen, Fersurh Fatumen, Bd, 45, 1804.
 1 vimorin, Catalogue M ethodique Systematique des Iromente, Paris, 1894.
 - asc

[^1]: ment of Agriculteres, Souflh Australia.

[^2]: - Jour. of dgric. of Fic., Jan., 1013. Wheat Improvements.

[^3]: - Addres deliverad at the Melwaurne meeting (1913) of eve Aitstralasian Assochitlon for the E.Adrancement ofgsclence.

