The Journal

OF THE

Board of Agriculture

Or

British Guiana.

\qquad

JULY, 1915-SEPTEMBER, 1916.

EDITED BY:

ALLEYNE LEECHMAN, M.A. (OxON), F.L.S., F.C.S., F.E.S.

Printed by "The Daily Chronicle," Ltd., Georgetown.

JOURNAL

OF THE

Board of Agriculture

OF
BRITISH GUIANA.

VOL IX.
NOVEMBER, 1915.
No. 1.

The Cause and Cure of "Witch-Broon" in Cacao

"Witcif-Broom" disease of yheobromea Cacao las beet known in the neighboning colony of Surinam for the las twenty years, and the damage it has cansed has heen su serious as to threaten the very existence of the cacao in dustry. In British Guinna it is not manown, so that the real eanse of the troulbe has been the subject of a consider able amount of investigation. So far, while the authorities were all agread that the disease was due to a fungus much diflerence of opinion has existed as to the exact identification of the parasitr concerned. Professon Ritzemat Boa sugerested that the fungus was an Exoascu. -which lie named E. Theobromene: Mowarl, in 1901, foum IMsarimm spores an the' witch-hrooms' and thought that these indicated lhat some Nertria was the cause of the trouble: Erofessor Wemt's experiments were inconclusive: V. K. Charles, in 1sma, smspecterl ar Lasiodiplodia: while Dr. van Tull and 1. W. Drose in 1907, after a long and painstaking series of experiments declared that a fungus to which they wave the name of Colletolrichum luxificum was most probably the real canse of the disease,

A weak point in the poof, lowever, was the fact that inoculation experiments with colletotrichllm spores failed to reprotuce the disease. .T. 13. Rorer, of Trinidat, in 1913, isolated a mycelinm in pure eulture fiom cacao plants affected with "wjtch-hoom" which was not identical with that of C. 7uxificum, which did not form spores, hat did requarly form ' 'lamp connections, whence be comeluded that the cause of the discase must be a Basiatiomycete. But in this abse also, inoculation experiments were unsuccessful.

The whole problem has now heen carefully beinvestigatGrl by Mr. Gerold Stahel, Govermment Botanist in Suringm, who has arrived at the conclusion that the witelhroom disease is eansed by a basidiompertous fungus, to which he has given the name Marosmins perniciosus. So far as he has been able to discover, this fomgus has hitherto heen muleseribed. A complete acroumt of the careful series of experiments which led him to his result will be found in the publications of the bepartment of Agriculture of Surinam-the particolan paper* having the untisual virtue of apmearing simblameonsty in butch, English, and German. From a botanial point of riew the papere weords a very meat romplete and exhanstise researeh, amol one which appeate to afford a fimal solution of the problem. From an agricoltural point of view, the measures recommembed hy the anthor for the prevention and eure of the disease are worthy of the careful attention of the coltivatoms of acao in limishle giniana.

The witer-hromms, sats the athor, femain green for three to six woeks, amd so lomg as they are green they are hambess. As soon as they beevin to die off, howerer, they ean form, even bofore they are quite dead, Marasmius froit-homies, provided the weather is suitable, i.e., is damp enoughfor it is during wet weatlee that the mashoom-tike forctifoatoms are prodnced in greatest abmadance. During the rainy season, therefore, the trees ought to be exam-

[^0]jnell and cleaned of witch-brooms every 2 or 3 weeksin the dry season alont every 4 weeks. The witch-brooms must be remoned from the fields, or, if this is imposilile, they must be rendered harmless on the spot by being burned or buriet. They are a soure of danger if left lying on the ground.

It is advanale to supplement this measure ly spraying the trees with Bordeanx mixture. Spraying should lot done at the end of the long dry season, say, in October or November, as the witch-brooms are then scarcest. The most careful searching at this time of the year is of great importance. Badly affected trees may also be sprayed during the shom dry seasou, say, in February. When spraying, it is essential that the liquid should be extremely finely divided, so that it miny penetrate the buds. The applicatien of Bordeanx mixture has the additional adrantage that the tronks and brameles of the trees are kept free from moss and lichen, which prevent the development of flower cushions and make the detection of the cacao weetle rey difticult. If the trees suffer from the attacks of leaferaling insects, 0.05 to 0.1 per cent. of Paris green may he adred to the Bordeanx misture.

The tratment for a plantation suffring from a severe attack of witelh-hroorn may, then, be summed up as follows:-

During the long dry season thin out the foliage, especially on the inside of the crown, and clean the trees of all with-hroms and other diseased parts. Then spray thorongh!y with a \because per cent. Borleanx mixture. During the entire raing seasom remove the diseased parts once every two weeks and in the short dry seasom spray the frees again. Later it is necessary to spray only once ammally, at the end of the long dry season, and to neareh the tress once every $\ddot{0}$ or 3 weeks during the wet weather aud once erely 4 weeks during the dry season. Splaying may be discontinued when less than 3 to 4 witch-hrooms are produced anmally per tree. If the number of witch-hrooms increases again to more than four anumally, and these cannot be reduced by removal alone, spraying must be recommenced.

The Cultivation of Limes: JI.
Bu I'rofessor :I. B. Ilarison, C.M.G., M.A., Director, and \therefore K. Bancioft, IL..I. l'.L.S., Assistant Director, Deparmmot of science and Agriculture.

II.

INTERPLANTING.

The minimum hanting distance recommended for lime trees in the previons anticle on good flat land was 20×20 feet, while on steep slopes it was considered that the trees sould be planted as close as 16×16 feet. The vigorous wawth attained by the trees on good lamd in the eolony does not, in our opinion, permit of their being planted closer to each other without mofue interference resulting from the feeding area leing too small for the roots of fully deve]oped trees. If the trees ane planterl at the above distances it is obvionsly inalvisable to interplant any permanent crop among them: while on the other hand, the spacing of teres at greater distances apart, so as to allow of interplanting leing done, most interfere with the econemicat wowing of the coltriation, since from the points of seld per acre abd especially of low cost of labom in collecting the fruit, it is desiable to have large numbers of trees of the same kind per acre, provided that they do not iaterfere with cuth others full derelopment.

Interphating of rabler with limes is reay strongly condenned, inasmocli as (apart from the above considerations) the presence of an intercop with rubler incerases the cost of cenderting latex from the later to an extent whith at the presem range of prices for rubler is prohilitive.

Both Para rubler and lime trees are essentially surfacefeeders, their roos forming an anastomowing metwork neal the surfare, while hoth are very susceptible to root diseases.

Cost of evtablisiming a lime cultivation.

The establishment of a lime cultivation may le effected either from rigin (re secondary forest or from an existIng or abandoned cuitivation. In the latter ' cases the actual amount of preparation of the land required will depend on the condition of the land previous to the commencement of aperations for lime planting. It is not possible under these rircumstances to, give even an approximate cstimate of the probable rost of preparing the land. We propose, therefore, to contine our matimate to the cost of establishing a lime cultivation from forest land in the colony.

The plantation should be laid out in 50 -acre sections with narrow lolts of forest trees left standing between the different sections. The tops of hills shond not be bared not should very steep slopes he denuded of their forest growtls. It is essential from the point of view of high yields of limes per tree that the trees be protected from the precailing wuds. Occasional gusts do not do much harm hou exposure to persistent wiuds results in grave injury to the goung growing shoots, giving rise to Whet is kuow: as "stag-head."

Flat, low-lying river lands have to be empoldered and must b: provided with drains which are capable of rumning off water fairly rapidly. The usual practice is to lay out these lands in long, relatively namrow, rectangles, of leds smpounding them by wide trenches for draining parposex and divoning the earth so derived to the outside of the trancincs in oreler to make up the dams. Smaller. cross, drains, resulang in the production of approximately square or small rectangular areas, are led in to these larger channels sme the water is thas run off at low tides of the river. When the estate has been laid out, and, if on flat land, empoldered, the forest is underbushed and felled and the timber stacked for buming. The drainage of the different sections is then attemeded to. After this is completed tha land is lined, holed and planted. The subsequent operations are supplying, weeding, mulching, proming, and the treatment of diseases and pests.

TIIE ENTIMATE PER ACRE.

The following is an estimate of bringing to the boaring stage ifith eat? an ache of limes in a coltiration of 100 arres- - $\quad \$$ c.

Fers, Apphantion, surrey, ete. 51

IBuning. ('baring. Restackine and hmming 15. 00
Linime ami ll, inisg 0 . 00
Plantin! : 00
Cost oil I'lamis 1.20

.. (当ml realr 9.00

.. (.5th leat.) 6.00
.. (6ith Ye:if) 6.00
*Siperintemalener 60.00
Iniklings 1.i. 00

ToTAL . . . 16.3 .00
The above esimate provides for thorough hurning and Waring of the forest and for fairly rlean weeding. It foes not inctule roads which are neressary on an estate in the interior of the colong, or datime The cost of
 Anabage on an extate in the interior amother $\$ 10$. On the low-lyow lamo on the rimer banks no roads are regroired as the fermehes verve his purgose ; the drabuge of dese lamds je, homerer, more cosily amd may be astimatod at $\$ 15$ pere acte for extahlishment and sin.00 per acre per ammm for maintemance, making a total of \$80.

The cost of brinuines an arore of limes to the learing shog in a coltivation of 100 acres may, therefore, be

The madninery required depends to a great extent ou whether concentrated lime juice or citrate of lime is to be manufactment. In the former, the eost of the mathincry will he less than in the latter case. The following is

[^1] penses of supervision falls on the ara natablinhed under limes. The harger this area is the lower the cost per acre for supervision.
an esitmate for a ritrate factory capable of dealing with 8,000 to 10,000 barrels of frait per athum:

Lime mill, :3 rolls, (steel), 20 x 11 inchos . . \$: : 20.00
Oil Engime. . IT.P. $: 16.00$
Boiler, one (i H.I' V'erlical, with Feed Pmmp 6.50.00
Fommetations. (omerete blocks, : ft. thick. witla wittly to suil Mill, Eneine and Boiler, rajperimely

10ぶ.00
 Engine 300.00
 able of dixtilling 150 gats of lime juice per home
(90.60)

 : ins. and [ewter Worm, :30 fo.. : ins

Fibter for lot juire from still
Stmell Stoam loump with hass hamol and

suall Cromblagal ötins. Hasker with Engimer ("apacia! 100 Hs. (itratu per hour $1 ; 00.000$

 matle of Zin. planks. omside measime

* haboratory, lime froil store amd tinished citiate store 960.00
Labolatory fittings 80.00
Steam and Water I'iping, Yalves, ete. . . 300.00
Tuice Receivers, Gutters, Stminers, etc. . 100.00
Transporta:ion 275.00
Contingencies. 10 per cent. 12.00
Total. . . . \$., 6849.00

For making concentrated lime juice the following is an stimate for a phat capable of dealing with 8,000 to 10,000 barrels of limes per annum:-

Line Mill, 3 Rolls (sted), 20×14 inches . . $\$ 3$: 0.00
Oil Eugine, ぶ H.P. :316.00
Boiler, one (H.P. Verical, with Fed Pump 6.00 .00
Foundations, Concretr Blocks, 3 ft . thick with widh to suit Mill, Engine and Boiler, respectively 10 s 00
Engineers and Forters erecting Mill and Engine :300.00
Vat Still. 6ft diam. x ift. high, capmble of distilling a charge of 1.50 gals. per homr $; 0.00$
Vat for cooling worm, say tht x 3 . P t. high 30.00
Coose Neck, 12 ins to : ins. or 9 ins. to 3 ins. and pewter Worm, :30 fi., :3 ins. to eimell outlet 200.00
small Steam lump with lams bared and plunger: rapurity, 200 gats. per
 diameterx.00
Fat or cootie tank for water supply . . 30, mo
small Pump for water supply: capacity. 300 gak per hour 120.00
Juice leaters, two. wowlen 0.00
Stomge Vat 500 gels. 20.00

Factory Building Th0.00
Steam and Water Piping, Valves, \&c. .. 300.00
Juice receivers, Gutters, Stminers, \&c. . 100.00
Transportation 275.00
Contingencies; 10 per cent. 380.00
Total $\$ \pm, 189.00$

A proprietor possessing an area of say \underline{Q}^{0} acres would require at the commencemont, the following equipment:-

Shont the proprietor be desirons of making distilled oil of limes, then he will require a still of capacity 50 O: 90 orals.

Latre anothe tebehe will be mequired of 100 gals. çamacity. A stomge vat, and a copper still will also lie required.

The type of mill given in the above is a 3 -roll horizontal mill, $1 \mathrm{~N}^{\prime \prime}$ x $10^{\prime \prime}$, as supplied ly Messis. Geo. L. Squire M.F.(i. Co, Buffalo, N. ̌., Li.s.A.
Δ cheap hand or cattle mill can be made of a geeen. heart frame with molls of tmoned wermbent.

A complete factory for a large areage should be capable of preparing lime juice of high quality from selerted fruit, concentrated juice and cillate of lime aceoreling to the relative market value of these produrts. Gamite rolls or a cubsidiary mill with granita rolls will the required for making the firstmentioned proturt.

If the factory is rum as a subsidiary to a sugar factory the requipements will naturally he less and it will be foum that several of the above items may le dispensed with and the cost of equipment harefore appreciably lessened.

hand tencre and valde.

'The following are the principal terms and comblitions on which land may be leased from the Crown for culti. Vation in limes:--

No rent is payable during the first five vears of the lease, but the lessee pays an ammal rent of twenty-five enuts an acre from the sixth to the tenth year inclusive, and an annual rent of eighty cents an acre during the remainder of the lease ant in defant of payment of such rent on the day on which the same is due, the lessee, in
ardition, neps interses thereon at the rate of six per centum per ammm for eacle da! of such defalt.

The lessere shatl parh par plant not less than onetwentreffif pait of the hand leased nutil he has so planted not less than seron twontr-fifth parts of the said land, and sholl maintain surle cultivation in sood order to the satesenction of the dowernor-in-Comed or of such office: as maty be from time to time feputed by the (iovernore inComaci! to inspere the cultivation.

Tlio foss perable for obtalining a lease which most be depomital with the applicaion, are as follow:-

Apoliation
shirer-

Areas	

 51! $\$ 16.90$.
To be (omtimmed.)

Botany and the Text=Book.

We do not think that lantaty wan he tanght with athvantage to flildren fomm looks. So methot of teachine seemes so well atapted lo the walles of jumior stuments as that of demonstatim. A flower palled to pieqes by the stodent and the parts athl their importanee intelligently (xplaned be the tearher forms aleswon far more valnable than any fo !e got fimm at texthook. With a lew such demonstratione from rasily obtained flowers, taken as they present themselses, most of the elementary farts regarimag flayering phats a an the reatily mastered, while "the habits at observation amd the fateility of dissecting thus ohtamed are invalablhe to the sturdent. It is, we fear, too much the hatit in wathing lootany to make the sturent prepare a lesson tom the text-hook as if it were spelling ot history. Thin is rablly what shomble most carefully aroided, althongh there most be a great temptation to procem with the laok lesson when the plant is not obtainable.
-."N゙ature." Vol. NXTII, Jammay 1:3, 1881.

Agricultural Instruction in Surinam

By Mr. .J. J. Leys, Gorrmmant I gricultural Lecturer, Surinam.

 aed form brimary education, abll is put moler the superrision of the Director of Agriculturs. The aim of the instruction is to give to rombe agridulumists a theoretical fnowletige of agicoulture.

Sessoms are given in arrianlamal rlemistry botany.

 weeks atch atul 12 holiday weeks. Every week a lecentre is given lasting threr homs. The tios ratr of the romber is used to give the propils some beorediral knowledge, in ordere that they oret an insight into some of the problems of mature, surf as the life of plants ame amimals, the movement of Water in the soil, amt the atmosphere, ame to make them arguanted with words abl expmessions which they will meet in after ratrs when they ladel bobse amd mapers on atoricultural shbieres. This is the objeret

The second rear is devoted to practioal knowledge-the
 dapry work and the colivation of agrianltural plants. These phate which are entivated on the farms of the neighboarlood are trated more fally. For instance, the

 tivatine those plams, whereas the sumbents at my romber
 do not grow cac:ab on cotfer or rice, so I alo not theat those plants so fully-the dulture of hananas amd water metons comes in instead. Catherearing is also fully gone
into in the Second Road course as the place is situated in ateck-misine district. So the local circmmstances fix what branch of Agriculture will be treated the more fully.

TIIE A(GE-LIMITS FOR PUPILS.

The minimmo age at which the pupils are admitied is 15 years. At that age they have already some practical experience. A maximmm age is not fixed, so that we have pupils of forty and fortr-five years of age, farmers who are at the head of a masiness or managens of plantations. Xow and then excussions are made to a plantation at f:Irm.

The bectures on ratelerearing are at present contined to the cor and the pig: in after reads it may he possible to
 The different breds of cows are comsidered, the imporowment of the strains, rossing, feeding and cattle foot, the treatment of milk and the making of butter.

THE TREATMENT OF KCHOOL TEACHERS.
Schooì teachers who wish to bake such a roume monst have a certificate in agrirolture. Dvery two years a special examination will, in the futmre le held to cnable them to obtain this certificate. The examination will last two days, the subjects heriug the sime as those treater in the course for yoming famers. of comse, the teachems cannot study by themstlyes, they mast have guidance, and to give them this a regular course of two varas is pron vider, forty weeks bering milized in rachs gear. The lec-tures- which include experiments-ate given on saturdars from 9 a.m. till 1 p.m., with half an hom for rest, from 11.80 to 12.

The First Year (Primary) Lectures are givell from 910.30 in Chemistry by Mr. Levs; from 10.30-11.30. in Physics by Mr. Levs: amd from 12--1 in Agriculfural Rotany by Agricultural Assistant Drost.

The Second Year Aseomdary Lethres are given in the Tilling of Soil, Origin of the Soil, and Manming be Me. Huizinga, Director of Agriculture : in Botany and Zoology hy Mr. Leys: and in Aerirultural Botany by Mr. Drost. We try to mite theory and pactice by visiting farms and plantations: in course of time we shall try to establish Model Gardens.

WVOR IV THE COCNTRY DRTRICTS ENCOURAGED.
If a school teather, after having followed a course of two years, passes his examinalion, he sets a certificate with $\$ 40$ as a premium wherewith to pay his expenses in buying books. The only thing he hat to do now is to tiry and gather a mumber of boys (minimum 15) of 15 rears of : ge and upwatts, in his native lown or in the neighbourhood. If he succeds in eettion that mumber he is appointed 'headmaster' of a course described under the name of "Coums for Fammers" Boys." His salary as an
 trict-in l'atamatibo it is \$140. The extra $\$ 80$ is given as an indurement for the tearlars 10 go and work in the courtry districts.

The time has not ret arrived lo suak of any success. We started our primary comses in March, 1915, and our secondary romse in diay of the same rear. Not before 1917 shall we he able to speak of results. In that rear, when onf first secomdary comise is completed, we shall be able to start primary courses umber certificaterl surinam teachers.

THE PROSPCOS FOR TILE FTTTRE.

In onder to helf these teadhers with heir gifficult work we meeds mast have some experience; that is why I have started two primany romes comblucted by myedf. One romese is given at lombmes, six miles up the Numban river, aud the other at sicomad Road, from miles west of Jaramaribo. The first is attemded by to pupibs, the secome by sixty. These commes have been ruming how for seven months, and the pupils are following the lectures with great interest. Nome of the hoys have to walk six milas to attend the lesomis. If the storlents show the same interest when the primary courses are conducted by surinanl: teachers, then our success is assured.

Generally speaking, the agricultural courses in Holland are given according to the same method, and there we may speak of a hig success. Every agricultural teacher, when lie starts a combe, is strougly advised to establish a school rapden-not to make agriculturists of his boys, (for if he thinks that, he will always experience that school gardens are a failare but to impart to his pupils a love of Nature and ground them in the first principles of agri-
culture and the use of tools. In Europe, at least, every hor, when grown up, will have al large or a small garlan in which he will work for recreation or for ecomomic purposes. The value of a school sumben is even greater Io the agricultural tracher than for his pupils: ly its
 is able to commmumatr his experientes to the pupils of his amienthual courss, amb he fimbs demonstration material for his lessons.

Sunflower Growing for Seed.

The samfower will orow in almost any soil and in any whate It will bear cold or heat, dronght or rain. It is subject to no disease athe to mo rematio disumalificafom. The enltivation is rary simple. The plant is mot at all particular, but prefers light, rich, well-drained soil. It is adrisable to sow carly-saly, the hegimuing of Seg-tember--to secour perfer maturity. The quatity of sere

 over each other, thiming is gemerally meresary. Then 12 in. hioh a slight eathing np bemefis the phams. Sunflowere wi,h many heads do not ripen the seed eventy, therefore it is better fo cultivate a species prowncing only obe lame head to each plam.

The "Tall Xammoth Rossian" is surl a varietr, amp mat be planted rloser It prodmes more serd than amy other sort, and ain le whtamed from most seedsmen. It has oftem produced flower hearls 1.5 in. in eliametor and learing orer :onol meeds.

The teares of the sumblower, when sun-dried and ponndpr, and mixed with meal or bran, make good fodder for milel cows. The oil expressed is almost equal to olive बì.

We are not sure of the wholesale price now buling for the seal: lefore ther war it was quoter at $£ 12$ per ton.

- " Qucensland Agricultural Journal," April, 1915.

The Birds of British Guiana.

By Charles B. Dawson, S.J., M.A., (Oxon.!

I.

I parpose in this and in following articles to sue u brief, general description of all the Classes, Orders, Families, and Gememaf the himh of the "olony with some account also of their habits, charateristics, ant affinities. I shall treat separately such species as are typical, abnormal, or in ayy way worthy of spectial mention. The readier is supposed to be faniliar with the specimens in the local Museum and to have some knowledge at least of Orbithology.

There are in the world mpards of seventeen thousand species of birds known to science, of which this Colong cean boast some seven or eight hundred.

I append a complete list of the colony birds which it have compiled from the Hand-List of the British Musemm. I may remark in passing that there are many more species of bims fomal in thes ©omy than are notion as such in that Hant-List, (1899-1912).

A fer rears ago The hom, pmblished a list of
 mens collected by Me. Quetch, B.Sce, the former Conator of the Masemm, but it is now out of print and, moreover, noeds mision. Previons!y, in the year 1884, Osbert Falvin, MA. FRS, published a list of British Guiana Dirds in the "Ihis," based upon a series of collections made hy Heney Whitwer dumg the years 1879-81; but this diso is not now procmable and would need revision

To the former of these lists I am indebted for the Enelish names of many birds. Where no English name a;peors to exist ! have rentured to supply that defect by one suggested rither ia the hatin tithe or by some pectlliadity of the bird itachf this I have indicated by a dagger, thus: $\dot{\dagger}$. I refrain from maming a hird from its discoverer. as for instance, "Whiteleys Toncan," because such nanes are no real indication of the bird itself; I prefer
to call this particular hirk, "the Sea-green Toucan," since sea-rreen is its prevailing colour. Aud so of others. Calling a lied after the name of a place is open to the same objuction.

Whew the specimens in the Musum do not represent, at last at present, the whole Class or Order, I have in dicated ahsent forms by an asterisk; and where species are dontotful, as hids af lhis colony, or are only chance visitors. I have marked them thas, (?).

Some apology may he thought necessary for the order I have adopted in presenting the ditferent Clawses and Orders Bible have ambities, whether of halnts or structhee. in so many limefions, and the conchnsions of science are at resent so conticting and indeterminate, that I have felt merelf free to follow an amadeduent of my own. Thens I have placed Eagles and Hawks at the head of the list becanse they are the most masterful of all the feathered tribes not hecanse I am unaware that, in the order of evoluton,* Ratitar fof (xisting lirds) are generally placed in that position. So also I have placed Sugar-hirels and Hummong-himets in juxti-position because, whaterer and however diver:ent, their procoss of evolution bay have heen, ther hase strong ontward affinities and resemblances. Gimilar! also swifts and swallows, king-tishers and jas: mats. Where no such stong outward aftinities are present I here hean content to follow the provisional conchusions of Seience and thus 1 have placed cuckoos near parrots, and wool perkers near toucans. Further, I have nlaced trant-lideds near habots aml the two Orders of barbets iogether for the sake of mataal comparison and contrast. So of other forms. In all cases their scientific stans is clen ly fomond. At present the whole arrangement of birds in Classes and Families is, to say the least, moies or less tentatior. It is dombtful whether a fimal and shtisfatore sathement will ever lie amivel at.
Hams of Pres.

Conder this popalar title maty lo imelndeal all raptorial
 zards, Ejtes, Falrons: as well as Owh and Night-jars.

[^2]It las ben convenient also to iuclude the solitary Colonial specimen of the corvine family, the Jay. The Colony has more than its due proportion of raptorial birds, there being some fifty speries of howk and vultures, twelve of owh and the same number of night fias or goat-suckers.

Voltures mumber twelve genera ant twenty-six species. Hawks, inchding all the rest, smo eighty generai and four hundred and eighty speries.

Hawts and Eagles may at oner herognised ly their upright and dignifiet (arriage, thrir piereng and intelligent ares, hooked beaks and jowerful waws or talons. The fenales are gemerally lagur tham the males, but not so drightly coloured: in some pperies, notably among the hatriens, the females differ so entirely from the males that they have oftem leou mistaken as hirds of differem species.

Vullures are the scavengers of the carth and may be known by their bare heads, and less powerfal feet. They feed on carcases which they masily desery, as they soar aloft, le their telescopic vision. Their sense of smell, as is the case of birds grmerally, is weak. They do not disdain to teed on Hesh and offal in a high state of putrefaction, plonging their heads inte the reeking mass.

The Harmy Edald is the most powertal of his masterful tribe and is so named after the filled monster of classic gore. He mages theoughout tropical Ameriea and prevs upon shich mammals as sloths, fawns, pecaries, and modheys. He most not be confounded with the Cromed Buzard. a bird of different calibre. Buzards are slow and hesivy of flipht and some of them content themselves with such fry as small lizards, mmphibian and even beetles. One of them. the Awl-hilled Buzzard or Kite (as it is 'called) has a slender, look-like, maxilla (or upper beak) designed for extracting snails from their shells. In case of nemb. binzards aud some other hawks will even feed npon leaves and berries.

The Osprey or Pishliug Mawk, is an eagle in size and nower :nd feeds entirely on fish which it procures by diving. sonetimes from a queat height, into their watery ele. ment. Its outer toe or talon is reversible, and has it is able to hold its slippery and struggling prey securely.

Its range is world-wide and it has lacem known to breed in Great Britain It was formerly dassed among falcons, hut is now requrded as belouging to a separate filmily.

Falcons are bold, long-winged, swift-flying hawks; and chase their prey with vigour, seizing it as it flees, with great skill. They arm distinguished by having a notel:en masilla. To this class lelong Kestrels, Hobbies, and the beautiful Merlin.

Kites may generally he known by their forked tails. One of the nost remarkable is the Nwallow-tailed Kite, which as it soars on bigh after the manner of its tribe, might easily be mistaken for a large swallow. Kites are closely related to linzzards.

Under the term Hank are inchuded all diurnal raptorial birds that are not Lages or Vultures, Buzards or Kites, Falcons or Marriers. The word is used in a general sense of all these lirds.

Marriers were originatly so mamed from their habit of Larrying poultry Thes ate distinguished by having a frill something like that of an Owh. In hight they resemble Buzzards, but walk more quickly on the gromind. They affect the open country and prey upon snakes and frogx.

The Caracara or Carion Hawk is a connecting link between hawles and rulimes, hating the structure of the former with the habits of the latter. it rams easily ant quickly upon the ground, a thing meommon among hawks, and is often seen in company with the black Tulture. There ate several otber kinds of hawhs which have similar characteristics; but mat in such a matred regrec. (adacaras, when other food fails, will eat insects, worms and seeds.

The Elack: Vulture, oroncously called the ('ririon Crow of Turkey Buzzard, of which there are fons species in the Colony, is : common nbject. He maty be seen at all times either soaring, high in the air, or scrummaging around a lear dog or fowl thrown out on the roarlside. At a distance these valtares might easily be mistaken by the uninitiated for small turlers, hence their altermate popolar name. On the ground they move with a hop and a stride.

The King Tulture is so designated from the gaudy cotours and coruncle that adorm his bald head, giving him the appearance of being crowned; not from any couragecus or kingly qualities.

Fagles and large Voltures build their nests amid rocky fashesses; f:uloons often choose rocky ledges on crags in retired places: hawks build nests of sticks in trees, or even utilize the abandoned nests of other birds. The smaller maltures build their nests on the ground or on low shrubs in retired plates. On this account, the Black Volture has been almost exterminated in Jamaica by the Mongoose, unfortumately introduced into thaty country, for these animals love eggs.

Hawks' eggs are generally beautiful objects (ospreys' particalarly so), leing streaked and blotched with rich red, brown, or purple. The cry of hawks and eagles is a peevish sneer or snarl; that of vultures generally a grunt.

Hawks are recognised as encmies by all the feathered tribes and mobbed without mercy whenever they appear. It is a common sight in Georgetown to see the ChimaChimi Hawk pursucd by Kiskadees or even Swallows.

Hanks and Yulutres-- (Colonial.) CathartidiformesAccipitriformes.

Eagle-like forms (Aquitinae.) -
Osprey or Fishing Eagle I'andion haliaëtus. Harpy Eagle Thraëtus harpyia. Crowned Eagle (ov Buzzad! Mophnus guianensis. White-breasted, or Crowned
-, Hawk-eagle

* Llack-breasted, or Crowned Hawk-eagle
Black Hawkeagle
Cathartidiformes--
King Vulture Giyparchis. papa.
Brack-headed Vulture (Car. rion Clow, ele.)

Cutharista atratus
(urubu)

Yellow-headed Vulture
Turkey Vulture
Yellow-and-red-headed Yalture

Buteoninae-
Common Buzzard
Lesser ${ }^{-}$ "

Short-tailed , (Whitefionted)
Grey-barred Spartow Buzzard (or Hawk)
Common Chicken Buzzard (great-hilled)
Wh:te-handed Red Buzzard
Black-necked Clab Buzzard
mark-headed
Whillo-necked
Sturakel
Black Clicken "
Wattled Chicken .,
Suail-eating Buzzanlor Kite
Grey Snail-eating Buzzard or Kite

Kites-

Sw:llow-tailed Kite
Cayenne ,.
Heosed-linled
Yellow-faced ",
Pigeon-Hawk ,. Grey or Pale ,,

IP, Myborinac. Carrion hawks-
The Brown Caracata
$\dot{\dagger}^{*}$ White-necked "

Rhinogryphus (Cathar-
tes) perniger.
Rhinogryphus (Cathartes) aura.

Rhinogryphus burovianus.

Tachytriorchis albicaudatus.
Turbytriovechis abureciatus.

Bulcola incach!yura.
Asturniu nitida.
Rupornis Magnirostris.
Heterospixias Meridionalis.
Busurchus negricollis. Buteogallus. dequinnoctialis.
Leucopternis ulbicollis.
\%. melanops.
Crubitinge wrubitinga. antluracina.

Rostriamus sociabilis.
, lencopygus.

Elanoides furcatus.
Rogerhinus (Leptodom.) cayennentis.
uncinatus.
Gamp:sony.e stcainsoni.
Ictinia plumbea.
Elanus leururus.

Polyborws cherimay.
" thatus.

Black Caracara or Tick

Hawl:
White-hilled or Bush Carrion Hawk
White-hended or ChimaChima Hawk

Accipitrinac-
White measted Hamiereagle
State coloured Hariereagle
*Bloe Harrier-eagle
Spotted Harrier.
Blark Hartier
White-htansted Harripr
Red-necked
Yellow-necked "
-Breast-plated Goshawk
Small sparrow-hawk
*Red-lequed :partow-hawk +Capped

Falconimac-
Large Merlin (or [Barili)
Small Merlin (or Baridi) (White-throated)
Orange-breasted Hobly
rackoo Fakcon (Doubletonthed)
Path Falcon
Smen! Kestrel
American sparow hawk

Ibycter ater:
,, americanus.
Milcago chima-chima.

Herpetotheres carlinams.
Geranospizias caerı-
lescens. gracilis.
Circus maculosus.
Micrastur melanoleucus.
," mirandollei.
" ruficollis.
", gilvicollis.
Astur pectoralis.
Accipiter subniger
(tinus.)
" bicolor.
" pileatus.

Fulco fuscococrulescens.
", albigularis. ", aurantius.

Harpagus bidentatus. diodon.
Timmonculus (Cerchnis) isabellina.
Tinnunculus (Cerchnis) spararia

Onlo..--Like H:aws, these lirds have powerful talons, hooked beaksand an crect carriage. The beak, however, is not so powerful, for whereas Hawks tear their prey to pieces before derouring it, owls generally swallow it whole, and afierwards reject the bones with fur or feathers, in the form of pellets. They may be recognised at once
bry their cat like risage and forward stare. The face is surrounder by of frill. qumerally of white feathers; the feathers of the heat atre loose and fluffy, and in consequence it looks much danger than it really is. As they are, with few exceptions, mosturnal in their hatits, Nature has provided them with suecialized eyes, highly developed ears to ratelt the shiglitest sound, and soft feathers to eusare a moiseless dight. Some arr adorned with tufts of feathers on the head that look like hoons of ears; hut these are of wo imporame in determining orders ar species. There is a gencmal miformity in the phamage of owle: neme are highly colomed; browns, dull yellows amb buffs; with white, mol orasionally back markings are the prevaibing tints. The iris of their abommally large eyes is lyight amber whirh wives them a maligmant look.

Owls are divifed into 1 wo distinct families, differing from each other in the strueture of the stermum or breasthore: Striginae, including the Erreech Owl, and Bubomidur, including the Tawny Owl of Engiand; nearly all the species in this Colony belong to the latter fami!y, which is further distingnished by haring a reverible otere toe like that of the Osprey. This, at will, it can turn right hack as it generally does in perehing. The sereech owl is cosmopolitan, keing found in almost all rountries of the word. It is the Jann-Owh of Englamd. The ery of owls is strange and weirel sometimes at sereecel, nometimes a wail as of someone in pain, aml at other times a lyark or "woof." They buikl their mests in holes of trees, or make no nests at all, simply laying their eggs on the recaped wood. The egos are glossy white and spoberod in shate; the yours are covered with down.

Hated-Ouels are diurnal amd have lost to some degree their owllike peculiarities, the facial dise, and prominent eyes; and their fluffy feathers. The Hawkowl of the Colony, Ciccaba hululo. is moticeable as having hawk-like plumage.

Burowimy Ouls, foumd in both Noth amt South Americt, are aks mainly dimmal in latits. Ther live in warrens, either made hy themselves or, as it were, rented from other anmak with whom they live in perfect agreement. In Yorth Ameriat hey may be sern living in harmony with prairiedogs, rats, squirrels, or badgers; in
this colony. with armatillos. large lizards, and even rattlesnakes. They serem to have extablished a motnal itruce. They feel on small mammals, binels, reptiles, and insectr. Tley have almost lost their frill or ruff.

There are twenty gencra and more than three humbed speces.

The oil Bird.-Intermediato hetwern Owls and Nightjats, is placed the (inachato or Gil-bibd, nownaid to breed in this colony. Abont the size of a row and with a similat heak, it has stiff bristles in cach side of the gape, its phomage being chocolate amel gres, barred with dark brown or black and spotted with white. The legs are feeble, but the wings are large. It inhalits dark vaverns, congregat jug in large numbers, amd obll iswing forth at might to feed on oil-nuts and finit. It builds its hest of clay wherein are deposited about four white egos, often verg dirts. The young are so lad that thet Indians false them for the purpose of extractiug their oil, which they use for lamps, ete. In this way, thomsambs are shaghtered. In some places the roung are estermed as a delicaty, though their odonr is said to be that of rockroathes. Guly one species of this bird is komon. Their ery is a loud, croakiteer, raxping utaramoe.

Kight.Jars or Goat-sumers ate party owl-like in struc ture aur partly liki swifis, having affinities to bot! Needless to say, theim socomel mame is founded in a firtion. Like Owhs, they are chiefly nocturnal in their halbits. They make slamge moines; nometimes with a harsh, metallic ring, hence their hame. Ntangers to the hom are sometimes sumpised at olnsk hy hearing voices, alling From all sides in mommfnl tomes. "Who are you?" This s the Syctidromus ulbicollis, which is rery common in эpep places.

Night-Jars frequent the open, laying eggs on the bare ground. There they crouch during the day and will alnost allow themselves to be tiodden upon before moving fff They do not perch upon trees, but will lie along the manches. Their plumage is soft, and moth-like in colour. Pheir eggs are mottled with purple. They feed on moths ind heetles which they pursue with open months; their rape is enormous and is generally beset with strong mistles.

Certain species of the genus Chordates are semidinnall and misty sometimes be seen chasing their prey with disour in broad daylight. There are twenty-three genera mil one hundred and forty-nine species.

The fey is our solitary example of its kind and has no affinities in this colony. Its habits are not known. The European Thy feeds on berries, fruit, young birds, and egos. and in England has almost been exterminated on account of the depredations it makes in or hames and pheasant runs. It hills its nest of twigs and rooks and therein lays from four to seven eggs of a light green colour closely freckled with olive Our Colony Jay has prob ir ably similar habits of the Crow tribe, there are some forty genera and some two hundred and eighty species, of which about sixty species belong to the New Word d.

OwLs (Iohnial). Strigiformes.

OWls
Large eared On l
Small
isharp-sighteq Owl
Collared
Sops "
Romamat ()nl
*Tufted Scop
Guatemalan Soon: (10
Fops Smalleraral Ow

- Hawk -Owl

Brown
Moth Owlet
Burrowing Owl
Screech Owl (liam (ml)
Ntcatornithidae
The Oil-hird (:)
Nightjars (raprimentgidnc.)-
The Great Night-jar (or goatsucker)
Jamaican Nightjar for goatsucker.)
Lometailed Nightjar
Sharp-winged "
*Greyrumped "

Bubo virginiamus. Agio Clamator. Pulsuti-ir perspicillala. torquela.
Scope brasiliana. ," roraimat.
". atsirrapilla.
., gutirtermalue.
.. \quad sion.
Ciceaba ringala. h:uhula.
Gluridium pholurnoiders. speotylo cunicularia.
stir flammea.
, perlata.
Ntcatornis caripensis. „'

Syctibins grandis.
, jamaicanensis.
" longicandatus.
Chorditex acutipemuis.
Iyctiprogие leucopyga.

Fleect
Schomburghis .. iwater. scissors)
White-collared Xight-jal
Who-are-you"' Night-jar (Night-fyer)
Guiana Night-jar (nap-row-faced)
\dagger Red-necked Night jar
Small Black Night...Jar ,, Red ,

Podrefer marunda.
Hydropsalis Schomburghi.
Larocalis semitorguatur.
Vyctidromus albicollis.
Stenopsiz cayennensis. " ruficervix.
Coprimulyus nigrescons. rufus.

Crows (Corvidac.) -
The Guiana Iny Cymmororas Caymus.
*Puple $\quad, \quad(?) \quad$ rioluceus.
Tyrant Brides.
These birds belong to the great Order of Paseriformes and are thas distantly related to the Colony Jay. They ate only fomm in the Sew World. The name appears to have been first given to the King-hird of Nordl Amerian on account of its lobhuess in attacking hawks and even eagles and driving them off. It is himbly applicable to many of the colony species, thongh our Kiskadee rertain. ly merits the title. In habits, some of these birds ree semble the Furopean shrikes or butromehirds; others, the fly-atchers; and one at least, (the Cotton Bird) the wagtail. The family comprises many different forms, but all are insectivorous, some varying their diet with firnit. and the latoer forms with egrs, young hirds, and small lizards. None are qaudily coloned; brown, red, grey, dull-vellow. with markings of bhatk or white are the prevailing tints, relieved in the Kiskatee and others with bright yellow, and in the Pyrorephalus rubineus with bright scarlet. The seissor-tailed Jyant-IBird is remarkable for its long, forked, tail, and the Royal Tyrant-IBind for its lalf-moon rown-like, cmest. The note of these bitos is generally loud and hansh; there are no songsters among them.

The Kiskatoo isomotimes wittell Qu'est-re-qu'il-dit from a fancied resemblamer of its loud note to these words) is, in this colons. farite princeps of his Order. He is the admonitor of 1 rads aneratly, and is in evidence everowhere.

Me must not be mistaken for the Slender-billed Trmant Bird which is the same in colour and markings, but is smaller, more retiring and has a bill proportionately much smaller, nor yet for the Broad-billed Tyrant-Bird which is larger and han a rery broad bill; this hipd, however, is seldom seen, beiny very shy and solitary. The Orangecrested Tyrant-1Birl is also marked the same, but is smaller than the slender-lill. All these birds have orange-col oured, silken feathers beneath the hack feathers on the top of the head and all shew them orrasionally; but the latter named more than all, hence its name.

The Pigme Tyent-Bind, or Pipitorin as it is callent from its persistent note, is like a tiny Kiskadee, but has. no corona The Forktail was once a common object in Georgetown: the Cotom bitd is still to be seen along the trenches; the Grey-healed, and the Rustir Tyrant-Rims; qe very common.

There are some eighty genera and abont four humbed and sixty species.

Tyrant-Bims (Colomial). Tyramidae.
Pesseriformes-

Kiskadee Tyrant-Bird
Slender-bilhed Tyant-Bind
*small .. .,
Brad-billed \quad.. \quad.. Megärhynchus pitangma.
Orage-rested ., .. Myoretetes caycunemis.
Yallow-hmasted ". ", sulphereus.
Palreyellow-veuted Trumt-
Birl (?)
Muft Tymant Bire
Grey-headed Tyrant-lime
Scjesor-tailed
Brown-tailed - Musfore fyramus.
Brown-traled ,. , Myriodynastes antus.
†Solitary : $\quad »$
Nearlet herasterl .. ".
Rustie
Wh:10-capperd
©Olive brown ". ., small-brown ". ., Whatamd Ma:n Tyrant-

Bird (Gotton Bird)

Pitangus sulphuratus. " lictor. ", parvis.
.. luteicentris. Tyrennus rostratus.
,, melancholicus.
Muwirorel tyramus.' solitarius.
Pyrocephalus rubincus.
Elainer pagana.
" albiceps.
" olicina.
Mionertes oleagimes.
Fluricola pica.

OThe Fly King Tyram-Bind			Myiarchas tipremmulus.		
tTher Rold		"		".	ferox.
				..	pelvelni.
The Grey	*	.			phaconotus.
-The Striped	"	"		Empidonom	us carius.
*Swallow-thy	,	",		Empiàocha	ues salvini.
*Ash colonred				Sayorin	meracea.

Rameers and Puff-Bums.-These birds derive their name from the bands or bristles with which their mouths are beset, though they are ly no means the ouly bitds thas armed. The Larbets of the colony may be compared with the Kiskarlee in size and form, and also as regards their powerful beak: loti they bedong to a different Order, namely, the Coraciiformes. There are two different families: : he Buceonitae or "Puff Pide" which are nearly related to the Jacemars, and the Copitonidue or "Big-heads," reheta! to the Toocms. The forme belong eutirely to the Sew Wordd the latter are also found in Africa, India and the East.

The feet of all these bids are grgodactyl, that is to say, there are two thes before and two behint. Barbets feed on fruit and herries with occasional insects. They buila their nests in holes of trees which they themselves, if necessary, exanate in the decaying wool. They hay white, shining eggs. Their note is genemally long, loud, and riugsug A species in India is called the "Copper-smith" om aceomet of the resemblance of its interminably repeated note to the somal of a lammer striking metal. The phomage is often brilliant with contrasts of scarlet, purpie, yellow or blue, bright greeu often prevailing. They are shy, arboreal birds, seldom appearing in the open. There are twenty-eight genera and about two hmodred and eighty species, of which forty-five Capitonidae and sixteen Bieconinae belong to America.

> Barbets-(Colonial.)

Bucconinac-
Collared Babet or P'uff-
Bird Bucen collaris.
*Long-killed Barbet or
Puff-Pird $"$ macrorhynchus,
*Dyson's Barbet ", dysoni.

Large-lilled Barbet
*OrN's
ried
$\begin{aligned} & \text { Spotted } \\ & \text { White-breasted } \\ & \text { featbered) }\end{aligned}$
Red-hilled Barbet (Solitary)

- Whitr-rumped Iarbed (Sin:llow-winged)
Camitminae-
Red throated Barbet.
*Godmen lanbet or PuffBird

Buceo hyperrhynchus: " ordi.
", tectus. $"$ tamutia. 1

Malacoptila fusca.
Monasa migra.
Chelidoptera tenebrosa.
Cupito niger.
, auralus.

Krac-Funtrs-These birds comprise a well-marked fanily of which the Euglish Jingfisher may be taken as the type. They are remarkalle for theiv large heads, spearlike heaks and, as a rule, for ! the gorgeous, and often metallic like lustre of their plamage. They are divided into two sub-fanilies, the . Ifcedininae and Halcyonimae, the latter f:mily called the Wood-Kingtishers, being found as leserifed, and feedine upon insects, reptiles, worms, etc, und on! y occacionally on tish. The former are expert fishus and have thas given the name 10 the whole tribe. Siting soletary and motienless for a long time by the side of a pool or trench they may be sern suddenty to dart like In arrow into the water and seldom do they fail to bring in a struggling victim. The feet are exterdingly small :or the size of the hird and are ergodactylous: the shor satet tongue is shaped like an arow-head. They lay heir globular, sliming white eggs in holes of trees or mask of streams. According to legend, Zeus changed Ceva and alerone into Kingfishers, while the father of Alcyone camed the weather while they formed their floating nest pon the ocean! Their note is generally nothing moze han tcit-tcit or tit-it; but in some speries, a loud derisive augh. There are in all, twenty genera and some two rundrod species, of which cleven mly belong to the Ne" Norld.

Mot-Mots--Closely related 10 Kingfishers and the ? Rollers of the Old World, are the Mot-Mots, an twenty-
four species of which belong to the Neotropical regions. The Ffoutouli of this colony is a goom example. In habits they resemble the Wool-Kingfishers, feedinir on insects lizards, etc., and also linit. The feathens are loose and often beautiful in colour, grean or greenish red prevailing. The Houtouli and some other species nibble off the vanes from the two long tail fathers, making them raquet-like. The legs are short and the feet small; and, unlike Kingrfishers, they have three toes in front; their tougue is a long, flat, bristle: the beak is sermated. They lay their eqges in looles of trees or banks. Their cley is a mufthed note, something like: mot, mot-mot-mol, mot-mot, and sometimes, very loud, like the mufled bark of a dog. .They are by no meaus shy, but this may be due to a want of inteligence.

Jacanemar - These birds greatly resemble Kingfishers in outward aperamme athl in theit mode of catehing theit prey. Sitting motionless upon some high hrameln of a tree, they will suddenly dart down with the swiftness of an 'arrow upon some insect flying below, and with unering airy. It will be noticed that their leaks are slenderer and sharper than Kingfishers and their plumage softer and more brilliantly metallic, being generally roppery or golden-green above amd reddish below. They are found in the ENeotropiral regions. On account of the peculiar
brillamer of their phomage the have leen called Latge Humming PibN. The sexes are abike. 'They nest in holes like Kingfishers and like lmon, lay roumdish, shining white rggs. The lamatise dacaman is ehataderised hy a median pair of long, taporing, tail fathers. The Kingfistere tasamar difere from all the others in possessing only thre toes, the hallox being absent. There are six genera and twenty-two species of these birts.

> .Tacamaps- Colouial.) (ialbulinue.

Paradise Jasamar		Ciomalba paradisea
Green *Red-taliled Jatcallar		lialbula ciriclis.
		., rufir $\frac{1}{}$
White !umped	. a , atmar	., albirostris.
* Bright-rented	"	letmendester.
Brown	"	Brarom! alba lutubris.
King-tishar	, (3	
The dirat		Aaremmerops atirert.

Thososs-Trogous are singularly hemotiful birxs, forming a distimet class. They are somewhat hamk-like in form hat rery difterent in calomring. Bright, metallice blue or porple above, pale rellow berow, with delicate matings of white. blat or gres, are common colourings. The fenthers are soft atal silliy aml the skin so thin amt tender that they masily come ofl with rough handling: there is mo moder-down. The tailfeathers are ofen curicusly stuatrad and are often harred or striped, hawk-like,
 tail unper eowerts extend enommons luyomd be rectrices, the two metala mose being the lougest. The hied is

The lifl is wite at the gape athe besed with bristles. The maxillat is moteled at the emal amol both mambibles ate ofter, loothed or verrated. The feet are weak amb heterolactyl, the serond tor being merest—an arrangement andque among the himk. They live in the haick forest and feerl primeipal! he wiog. Their lliwht is moiseless and rapid but short and jerley. They are gemerakly silent, bot sumetimes cherk, whistle of chater. They lay their roumbish egas of white, lielt hhe of 'mft, in holes of trees whieh they will make or anlarge on a roten tree or stmmp. While most of the Trogons belong to America, species, generally of a
mose sober ${ }^{\text {b }}$ luc, are fomd in Africa, India, China, and the East. That they are aucient forms is shown by the discovery of the Trinyon gallicus in the lower Miocene of France. The order includes some fifty species, included in five genera.

Trogons--Colonial). Trogonidae.
Quezal or Long-tailed

Trosen (?)
Masked Trogon
Green-buaisted Trogon
Purple-breasted
Blue-hraded '",
Red breasted

Pharomacrus mocinno.
Trogon personatus.
" atricollis.
", viridis.
" meridionalis.
", melanurus.

> To be Contimued.)

Guarantees for Lime.

The Stafformhim Chamber of Agriculture has calleal attention to the uressity for farmers getting a guarante when buying !ime. A case was instanced where a parcel or ${ }^{2}(0$ tons of lime was purchased, and was fomnd, on analysis, to le practically worthless for agricultutal purposes. The comnty agricultural instructor expressed the opinion that farmers shonld not huy lime which contained bese than 80 per cent, caustic lime.
-."Fertilizers and Feeding Stuffs Press," November $21,1914$.

Thomas' Phosphate (Basic Slag).

"The lime containem in mas slag, i.e., Thomas or slag Ihosphate, is itself of comsiderable value; it supplies what is often a much needed base, and on old grass land in particnat. its affect in bringing the soil potash into solntior, orb in promoting the oxidation of the nitrogenous reseryes in the sul is very marked; on tillage land also, the line is of assistance in improving the texture of the *s.!."

- A. IP. Hall. M.A., F.R.S., formerly Dirertor, Rothamsteal

The Cultivation of Vegetables: III.

$\therefore \quad B y$.J.F.Waby, I.S.O., F'L.S., I'R.H.S.

* Just arter ibe publiation of my bast notes on the Bat tivation of Vegetables the writer of "Notes on Agriculture" snggested that the "Nimewah" ot " Loofah" should have been inchoded in the list of desimble vegetables. I do not comsider there is much use in giving instruction for cultivating an article which meds no cultivation, one which will grow antwhere and anyhow. The coolies grow it and use it, yes, but I have never heard of anyone else doing so, except for the purpose of obtaining ripe fruits for use in the bath. The young fiuits are too hitter for the white man, and I do wot think creoles use them. All that is necessany is to dig up a small mound, add a little manme to improve the soil, put in $2 \mathrm{or}^{\mathbf{3}} 3$ seeds, give the plants something to climb on, a little water ocrasionally and the crop will follow.

Had the writer mentioned the other species, the "Ghingee," Iufta achtangula, I could have understood that a desirable vegetable had been omitted, for this is one worth growing, being rery delicale in havom and withont bitter. ness. I recall the circumstance of a well-kifown doetor here who applied to me for a few young flouts of this " Glingee" which he harl reommonded to a padient. a werl-known ofticial of the colony, who wits rery ill ambl noeded some delicacy to tempt him to cat. I was fortunate in loing able to supply what was needed and they were greatly relished by the sick man. This plant needs a little cultivation and good soil: the rough dealing as with the "Nunewah" is not sufficient: consequently, like other regejables which need a little attention and dou't get it, it is ravely to be met with.
THE "GHiNGEE."

Plant it as you would any good vegetable in good soil, with plenty of space on Which to climb, free from obstructions ani shade and it will do well. Use the fruits when very vomas, betore fibre has been formed; hoil them as yomer squash, and serve hot with a little butter, per per and salt.

The frat of the " Numewah" is smooth and the skin when ripe, peeks casily, hut that of the "riningee" is cer" rogated with sharp elges, the skin adheres to the fibre and will tear off in small pieces. I helieve the Chinese wos the fibne of the ribe fruit as soles for shoes and slinpris; is beine tense and springy.

The " Eat-puteah " or " Fire-fingered Lootah," Luffa satputeoth. This is amother hatia well worth wrowing. I harl hot sere it for many yeans matil 1 eame across it again a slort while ago in the Market. It is quite as good as the " (ilingee." The fruit is small, about the size of a methun-sized banama, amd grows in bunches, $: 3-5$ logether, uot singly as in the other fwo species. Se in the roung state hefore fibre is formed.

THE sWORH-REAN NOT POLEONOTS.
The Sword-bean, ramaralia ensiformis.- Whis bean has beal grown in the botamb Gardens for sevelat years for ther purpose of obtainions seed to distribute as a soil imfover ley green manning. The phat hat the reputation af being matit for conammpion as a vegetable, being sugpesedtr poisomons. There being so many regetables grown for tal le use in the (iamenns l had no wish to "bell-the
 fageons, so 1 neror that my ham in that direction. d fobend in town, who wise tokl of its rejutation, asked for a few sede, grew the phants. when the froit was ripe used the sholled sombe ats a resedable, looth as a side dish and in soup, and pomomberl thesu exedlent. There being
 Was dobe away wibl for good so fate as the rije seeds Were ermermed. Lat I eonsidered that as the riper seds
 and shomld be triot, as they seemed likely to provide a gomal oreen regetable with little trouble. On coming to reside in town I ohtained a few seeds and grew the plamts. As soon as the beans were sufficiently labge I had them picled, trial then at home, and was delighterl with the experiment. For anyone who has litele space for growing regetalles this shonld powe a boon and wonld give a constant supply for wery liale fomble. I'lant a copuple of seeds together in small momuds of good soil and as they legin t,grow give a few branched sticks to climb on, or
if a fence is :wailable plant the seeds beside it, giving say, f.f fee between the mounds. In a slont time the fruits w:ll he prowloced; pick the beans hefore the seeds are formed, treat them exactly as French-beans or the "Scarlet Runner," i.e., slice and loil till tender. Five or " beans will be sufficiont for a good dish. Sive a few beans to riben for another sowing. For harge familics, or where there are many persens to participate, plant about a dozen momots. The beans are very prolific and are decidedly woth erowing as a regetable.

Selling Basis of Lime Juice and Oils.

Concentated lime juice is sold on the basis of its citric acid content. The juice is quoted on the basis of a standard "pipe" of 108 galloms, containing 64 oz of acid per gallon. A pipe is therefore equivalent to 6,912 oz, or 432 lb . of citric aci.d.
A. West Indian hogshead of concentrated juice 100 oz . per gallon) contains about z_{2}^{2} gallons, and is equivalent to three-fourths of a standard pipe. A pipe contains 432 llo. of retric adid; a West Indian hogshead :3:5 1b. Ju commereial analyses the citric acid is mentioned as cress tallised acid, containing onty half a molecule of water instead of one molecule, as would be done in the case of or dinary amalysis.
-" Inlletin of the Imperial Institute," Vol. Xill., No. 1, 1915.

A Good Rubber Tree.

A (I'ara rubber) tree in the Waterfall garden, Penang, twenty-eight years old, hats leen tapped yearly since 1896, and has given during the years 1896 to 1918 (inclusive) a total yield of 98 llos . of rubler, the arerage for the last there years leing just over 1:3 Ihs.
—"Gardens Bulletiu," straits settements, 1914, 1,212.

Planting Table: Number of Trees per Acre.

The following table of the number of trees per acre obtained by different planting distances will be useful to readers of "The Journal."

The methot of using the table is simple.
Select in the top horizontal line and on the vertical line on the left the numbers corresponding to the planting distances: follow along the lines until the rertical line cuts the horizontal: and the figure at that point gives the number of trees per arre. Thas $16 \times 20=136$ trecs per acre: $32 \times 12=113$ trees per acce: and so on.

A Valuable Cow.

What is claimed to he the champion dairy cow of the world was sold recentiy in the Ynited states for $£ 1,020$, which is believed to be the highest price ever paid for a dairy cow. This cow, Mayrilma-a Guernsey-has a yearly ?ecord of $19,673 \mathrm{lb}$. of milk, containing 1,073]lb. of butter fat.

- "Queensland Agricultural Journal," March. 191.5.

The Curing and Preparation of Jamaica Ginger.

In Norember 1914, the Board of Agriculture distributed to certain planters rhizomes of Jamaica ginger for trial on a small scale. Good results attended its cultivation when grown under favourable conditions.

Jamaica ginger, as is well-known, is the best grade of ginger on the market at the present day, realising a price of $55 /$ to $75 /-$ per cwt.

The following information regarding the curing and preparation of the product, issued by the direction of Sir Villiam Robinson, K.C.M. (x., for the use of District Agricultural Boards in Trinidid, is here published for the use of those who are angaged in its cultivation:-
" Ginger is propagated by the smaller pieces, prongs, or protuberances of the root. dath of which throws up two different stems: the first bears the leaves, amb rises to thes height sometimes of three feet of upwards. but ite usual growth seldonn exceeds is incless. It horives best in a rich cool soil; therefore one which has been recently cleareal from wood is well adapted to the culture of it, more espercially ats it is supposed to be a great impoverisher of land. In such a soil it grows so loxuriantly that a hard or large spreading root will weigh near a pound. It is. however, remarked that what is produced from a clayey. tenacions soil shrinks less in scalding, while such as is raised in richer, free, hark momlds loses considreably in that operation. The land intended for the cultivation of it is first well cleaned with the hoe, then slightly trenched, and planted about the month of March or April. It atrains its full height and flowers about August or Septeir. her; and fades towards the close of the vad. When the stalk is entirely withered the roots are in the proper state for digging This is gemerally performed in the months of Smuary and Februmy After being dug they are picked, cleansed, and grambally seethed 'or scalded in boiling water; then spread ont and exposed every day to the sum till sufficiently dried: and after heing divided into parcels, of about 100 lbs . each, they are packed in bags for the

- market; this is called the black ginger. The manuer of scalling the roots is as follows:- I large pot or copper is
fixed in the field or some convenient place, which is kept ful! of boiling water: the pirked ginger, being divided into smatl parrels, is latid in haskets, and phoned in the water: where it is sutfered to stay for the space of 10 or 15 minutes, and then spread on a phatform for drying: but care is taken during the process to rhange the water so soon as it becomes much impregnated with the juices of the root.

" White ginger."

The white sort ditfers but little from the batek roots. The difference arises wholely from the mothods of curing them; the white is never sralderl, but, instrad of this casy process the 'roots' are pieked, seraped, and washed oue at a time, and then dried: all which requires too much pains and time for any real adrantage to he gained in the properties; though, being mate more agreable to the eye, the price of the white is muth higher at matren. When the root is intemad for a sugarpreserve, it is chow while temder and full of juice the stems at this time ralrely exced as or (6 inches in height), carefully picked, washerd, and afterwards scalded, till it is sufficiently temder; it is then put in cold water, and peeled and seraped gradmally. This operation may last thare or four days, during which it is commonly kept in water, and the water frequently changed for the sake of eleanliness as well as to extract more of the matural arrimony. After this preparation it is laid in mglazed jas amd covered with a thin syrup, which in two or three dars is shifted and a richer put in; this is sometimes removed for a third or fomrtl, but more lhath three are seldom reguisite. The shifted syrups are not lost, for in damaica they are dilnted with water and Fermented into a pleasant liquor called 'cool drink," with some minture of the chaw-stick, lignum vitae, and sugat:" -(Long's Jamaica, p. 700.)

TILE JAMAICAN METHOD.

Mr. W. Bancroft Espent, F.L.S., iwrites regarding the voring of Jamaica ginger, in 1886, as follows:-
'. The method pursued in Jamaica is extremely simple. The ginger being abont 10 months to 1 vear old from the ime of planting, and having arrived at maturity begins o wither, the leares getting yellow and shrivelled. The oots are then dug up, great eare being taken not to bruise hem. If the epidermis (skin) of the root is injured, it
discolones the product. After hie roots are dug, they are carefully trimmed with a whap penknife and picked and allowed to dry in the air for a few hours hntil all the accompanying earth an he ribbed or wiped off with a soft cloth. The cleanerl roots ano then phaced a few at the time in boiling water and sealded, and the epidermis is scraped off with a sharpenerd bamboo like a very hamow flexible paper knife. Is soon as scraped they are phated in the sum until appareutly frese foom dampuess. Gradual drying results in a better prodnet than quick drying. Dfer this the drying is continned for a fow homes a day in the moming sumshine and in ail-driang sheds motil after 8 to 12 days the fingers brak off shanp and clear. The ginger is then cured and should be sorted, all of one colour being kept separate, and the large again separated from small. The water used in scalding shomhl he clear and free from iron or exeess of lime."

Mr. .J. H. Hatt also writes fome the Botanical Department, Jamaica, in the same yadr as follows:-
"Jamaice ginger is curch in hao ways, one in producing the commodity known as 'umoated ginger; the other 'coated ginger'; both saleable in British or American markets.

To pronluce the 'uncoated ginger', which is that prepared for medicinal use, the fresh rinizome is simply scraperl, washed, and then well hriad in the sun. When thas prepared it should have a pale boif home, a striated and fibmous surface, should hreats asily, exhibiting a short farinaceons fracture with mumerous hristle-like fibres. It is often further prepared by hearhing, being subjected to the fumes of burning sulphur, or immersed in chorinated lime. Much of that sold in England is coated with calcateous matter, either sulphate or arbomate of cakeimm. These bleaching amd coverime processes are, however, usually performed after the artielo leatehes the first mantet.
'Coated ginger' is prepared by being dried in the sm without removing the eprommis, which causes bee article to assmme a crude aud wrinkled appearance.

The rhizomes should be collected after growtl is made for the season, which may be known by the leaves turning yellow and gradually: drying up."

The Climate of the Principal Rubber Countries.

In an article on the climate of the principal rubber producing countries, W. van Bennelen (In "International Rubber Congress met Tentoonstelling," Tatavia, September, 1914. "Rubher Recueil," Amsterdam: .J. H. de Jussy 1915, pp. 145-166, pl. 1), rescribes the elimate of the Amazon and congo basins, Ceyon, Malacea, Smmatra, Borneo. and Jaya as follows:-

It is stated in gemeral that " the climate of these commtries is purely tropical; that is to say, warm, damp, and equable. The temperature in the plains is 25 to $27^{\circ} \mathrm{C}$. (77 to $80.6^{\circ} \mathrm{F}$.) declining above the sea level at the rate of about 0.6 for asery 100 meters $(1 \mathrm{~F}$. for avery 300 feet). The pereentage of moisture in the air is groat, amt as a result the pressume of aqueous vapour is proportionately high ($\pm \mathbf{2 0} \mathrm{mm}$.) and the manfall is more ahmuthat ($2,000 \mathrm{~mm}=79$ inches and more per year) : above all, however, its evemmess is the most conspicuons feature of the climate. The vearly lise and fall in temperature amoments to only a few degrees and the daily differmer fiat excerds the rearly, though aron that is not exerssive. Periods of drought are seldom of longer dumaton than tiwo months. The fore of the wind is shight, and stomes are practically monown: there are merely the grasts which are forerumers of the many thmolerstomes, and these ean lee pretty violent."

The Medical Report of the United Fruit Company.

Not many large British hasiness concerns are known to issue Anmual Reports, and it is certainly a sign of proGressiveness that the American United Fruit Company does so. Is a matter al fart. few Iritish Colonial Govermments have, matil quite rerently, poblished anything so good. The operatious of the Fruit company evidently cover a rery large area in the tropics. and this report contains sereral observations which will interest students of tropical merlicine and sanitation.
_"Science Progress," July, 1915.

The Prospects of Hevea Cultivation in the Colony.

The following Minnte on the present position and pros. pects of Herce bresilichsis in lbritish duiana has heen issued by His Excellency the Governor:
"Mr. T' Heayson, who has heen manager of Plantation Freeternstein for a short time, has made certain statemente regading the cultivation of Hered brazil. iensis (the Para Robber tree) in Britisil Guiana, which are likely, if not quickly and athoritatively contradicted, to canse considerahbe injury to the prospects of that indenstry.
"Before commenting on his stamements. I mivy re. matrk that for some time the Goverument has issued Wannings agamst planting rubber in the coast belt of the colony withiu a short distance of the sea where the sub-soil is somr or saline. As regards P'h. Vreedenstein itselt, I hase visited this phatation on several ocersions and I wan speak from personal rxperience, acenired in $\because 1$ gears residence in the Straits Settlements where I sam the rubber industiog grow ub, that where the sedlings hate been kept egean and properly cared for, they have shown growth quit: rqual to the average in the East.
"I have seen plantations of l'arat rublere in the East the trees in which, when wer 10 years old, were still not much thicker than the butt of a fishing rom, but that was where they had hem nexplected and had been allowed to become choked with grass and weeds and secondary growth-he sime conditions ohtain here.
-. "Jhere are certain soik also in the East where lata malier will not flourish. That is the case here.
"At my first visit to Pln. Yreed-en-Stein l went over the whole estate and I saw a few trees, the only tress then over 4 years old on the plantation, which stowed extraordimarily rapid growth for the agex given me
"I have not seen a single rubber estate in this colonv where the same care is given to the cultiration
and keeping clean of the trees as is almost the universal practice in the East. The fact is that Para rubler cultivation is not believed in yet in this colony, and that proprietors very often are unable to provide the sum required to ensure rapid growth and early maturity of the trees. There are rew plantations in the East that tap their trees at 4 years old, and where that is done, it is only a small percentage of the trees that are tapped,-trees that are exceptionally developed-and only where money is mucl wanted in urder to chable the estate to be carried on.
"]t may be quite twe that some proprictors,-the instance deferred to by Mr. Drayson is that of a proprietor who has jus purchased his estate-have recently cu! down lana rubler trees. The same thing occurred in the Fedebited Malay States. The first planter who planted up any considerable area in Para rubber cut. down some hundreds of acres of these trees after they lad attained a considerable size, because the whate of the trees was damaging the inter-planted cof fee. Within a very few yeats of his having done this, the remaining portion of his Jara rubber cultivation was worth orer $\mathfrak{k} 000$ an alre, the portion left in coffee w:s worth nothing; and the coffere coltiration was abandoned and the land replanted in lana rubler.
"That jand now: forms a jontion of the propertien of the fanows Lingor Estates, the premier Rubber Com pany in the workl.
"The statistics publisheed bre Goverment authority of the results obained on the (fovermment plantations in this colony and on private plantations, are absolutely correct. They have been carried out under the clone personal surervision of Mr. C. K. Bancroft, who served in the dericultural Department of the Felder ate? Malay Ntatow for some years, the combtry which is the most successtul, and the chief, Para rubber planting country in the whole world. He acquired there an expert knowledge of the methods of growing and tapping and curing "Plantation" rubber. Previous to his arrival in this colony the results of experimental tapping liere were very unsatisfactory, but under kis supervision, owing to the introduction or.
the proper methods, it has been clearly proved that the vield of trees here is fully equal to the yield in the Eastern plantations.
"It has also Ineen proved that under suitable conditims of soil amd situation the trees grow ats freely and quiclly here as in the Federaled Matay States. This colong has a width of orer 200 miles and a deptr of 300 miles. Tt possesses large areas of soils of varions descriptions and large areas where the ranfall is as well spread over the year as in the Malay Peuinsula. It is in the same latitude as the Federated Malay States and it is ridiculous to contest the fact that there are tens of thousamds of arres here well adapted for the planting of Hecea brasilicnsis, and it must not be forgotten that Hecco brasiliensis is a native of South America and that other species of Herea :ne indigenous, althongh the Herca which is proved fucile princeps as a producer of rubber is not common.
"But wheu Para rubber, as other, cultivation is camied on under expensive Emopean management, it is necessary that a fairly large area should be planted in order to spread the cost of costly superintendence. Cufortunately in this colony every Company that has undertaken the phating of Pama robber has been hampered with insulticience of apital or ly the doubt in the minds of the proprictors as to the real value of the cultivation or both.
"On the question of the cost of rubber tapping the Goverment have given the results obtained by the Govermment Officers. The Gorernment management is admittedly seldom as efficient or cheap as commercial;

- but the results achieved by the Govermment show that even at 2 shillings a pound, I'ara rubber cultivation if carried out on a sufficiently large seale and with sufficient capital, should prove wery remmerative.
"Statements such as those that were published in The I Daily Aryosy on the e9hh Novembe bive an entirely wrong impression of the prospects of the industry.
"All trees and plants cultivated are sulject to the attacks of disease aud insect pests but up to the pre-
sent Hevea braziliensis has shown itself especially resistent to the attorks of disease and insects and to hate great powers of recuperation. There is no reason to fear that the diseases mentioned by Mr. Drayson as now prevalent in some districts will prove more fomidable than other which have been successfully fought and conquered here and elsewhere. The Director of sidene and I griculture has informed me he is certain Mr: Bancroft can tackle it successfull:"

WALTER EGERTON.
2 20 Deremler, 1915

The Role of Chlorophyl.

A series of four maize plathts were cultivated in solutions Which, for the first two acting as controls, were of ordinary strength, and for the last two ten times as strong, approximately 3.4 parts of soluble clements per 1,000 . The amount of water evaporated by each plant was measured. and on the twentieth day this loss of watter was made good by addition of the respective culture solutions, the strengih for plants 3 and 1 having reached approximately $6 \cdot 2$ parts per 1,000 . From this date these two phants began to lag behind the controls, and six days later the terminal leares of plant 4 were chlorotic. Comparing one control and one experimental plant, it was found that on the twentefourth day the control exaporated wice as much water as the othere, the expenditure of heat heing. therefore 1 No and 90 Cal. respectively. This diference rould not be attribuded to differences either in the chemical work of the plant, to external conditions, or to difterence in leat surface of evaporation. It could only come from calorifie sthergy due to the transformation of luminous radiations by the ehlorophyl. A dimintion of the activity of a plant must conserfuently produce a decoloration of its green organs, and this was fomed to ocrur in the case of planis 3 and 4, the chlorosis being the means by which the plant protects itself againsl an exaggerated rise in temperatune.

In the case of the control plant on the day mentioned, when the expenditure of heat due to the evaporation of the water was 180 Cal., the increase in dry weight was 2 grams. For this gain in weight, about 8 Cal. were absorbed. The author considers that the difference comes from the chlorophyl, and that it is rash to attribute to this substance any immediate action on the chemical changes taking place during the assimilation of carbon. The rôle of the pigments of the higher plants is purely physical.
-"Journal of the Chemical Suciety," July; 1915.

Presentation to Mr. L. S. Davis.

The departure for the seat of war of Mrr. Lionel Stuart Davis, Second Assistant Analyst of the Department of Science and Agriculture on Saturday, August 21st, was made the occasion of a presentation to him of a token of appreciation from the Director and Officers of the Department, which took the form of a purse of $\mathfrak{E 1 8}$ ts. 4$\}.$, subscribet to hy every member of the staff from the Director downwards.

The presentation was made at a rery pleasing little ceremony, held at mon on the "2tst, only an home ni two before the departure of Mre. Davis with the British Guiana Contingent, of whirll he was one of the first to volunteer as a member. There were present the Director (Prof. J. B. Harrison, C.M.(i., M.A.,) the Assistant Direetor (Mr. C. K. Bancroft, M.A, F.L.S., Messrs. G. E. Bodkin, B.A., R. Warl, A. Soton Milue, M.R.C.V.S., .T. Williams, F.C.S., R. Service, E. S. Christiani, K. 1). Reid. L. D. Cleare, jur., F.E.S., ('. W. Anderkon, ГI. B. France, and C. Cameron, Misses M. Van Nooten and Foring, and the Editor of "The . Fournal." Wr. .J. Wood Davis, father of Mr. L. S. Davis, also attemed at the special invitation of the Director.

Professor Harrison. in making the presentation, alluded to the devotion to duty which Mr_{r}. Davis har shown dur. ing his period of service in the Department of Ecience and Agriculture, as well as in his military capacity as a member of the colony Artillery. He was sure that Mr. Divis woudd keep up his reputation for hard work and a keen sense of duty, and live up to his own high standard, as a representative of the colony with the British Guiana Contingent which was now to take an active part in the defence of the Empire.

Mr. Bancroft, who followed, spoke of Mr. Davis's prowess in the world of sport, and esperially as a foothallese and cricketer in the ranks of the Artillery Sports Club

Mr. Reid, as one who had worked in close personal contact with Mr. Davis in the Laboratory, struck a more intimate note, and Mr. Davis (who was much affected arrl spoke with much emodion) in acknowledging the presen-
tation and the kind things said about him, assured his hearers that they might le confident that he would in no way disgace them, but wonk do his duty in whatever shape it might present itself to him.

Mr. .J. Wood Joavis, who was also much moved, said that the recipient of the presentation was his only son amt that it had been a grat strugele for his wife and himself to part with him. They saw, howerel, how determined the lad was to serve his King and romotry, and they were satisfied that they were doing the right thing, at whatever cost to themselves, in letting him have his way. He concheded with a warm personal tribnte to Professor Harrison for the kindly interest he had taken in his son during the consiberable momber of vans in which the lat hatr been an officer in his bepartment.

A group photograph was subsequently daken by Mr. Williams.

Racial Effect of the War.

Fov my part, I am inclined to think that the most potent factor is probably the demencr to revert to the racial mean, and this may well explatin how hations have patssed trith little ehange throngh peace amd wat: If the peoples of onr continent were really fo become weaker, more shagight, more stupid. more enslaved to preconceived ideas. then in truth we might despate of amy mbimate good arising out of the present war. But I see no deal cause to fear degeneracy. On the contrary, we may hope for an alvalle, not perbaps in racial qualities. but in the comprehersion of our enviromment. After terrible cannage, the iniquity of the wats of religious persecution was at last realised. So we may hope that this conflict will lead mbtimately to some finther extension of the realm of justice in inter. national affains.
-A. (r. Tharker, A.R.C.S., in "Science Progress." .July, 1915.

Meeting of the Board of Agriculture.

A Meeting of the Board of Agriculture was held on 8 th Tune, 1915, His Excellency the Goversor (Sir Walter Egerton, K.C.M.G.,) presiding.

On the motion of the Chairman (Professor J. B. Harison, C.M.G., M.A.) seconted by Mr. .T. (iillespie, a motion was passed recording the regred of the Iroard at the death of Mr. J. Monkhouse, who hat been comnected with the Board for upwards of 1: years, aud its deep sense of the loss the colony had sustained.

REPORTS.

Among the reports submitted were:-
That owing to the large stock of Rubber plants on hand it had been decided to sell rubber stumps at $\$ 12$ per thonsand.
That l Oretinaure No. 7 of 1915 the registration of Yeterinary Suroenons had been transferred fiom the Medical Board to the Veteripary Committers of the Boand of Agrionlture.

That the Permanent Exhibitions Committee had reported to the Boarl that the Committee had placed in the Brotish Guiama Mnseum at a costof \$70, a slass case with the object of exhibiting representative specimens of the colony's industries and that representative sets (of 26 samples) of mamed colony woods had been prepared for sale. The price per set was $\mathbf{5 0}$ cents.

That the rubber yields at Issorora and Christianburg during the period November, 1913-May, 1915, had been 900 lhs. and 112 lhs. respectively.
That from May, 1913 to April, 1911, 27,613 seeds of the Afroma (Oi! I'alm , Elais guineensis) had been imported but only 1,293 had germinated-a percentage of $4.0 ;-$-and that of 894 local seeds sown only 29 germinatter-i.e., 3.2 per cent. During the period Inly, $1914-$ (", Clonbrook, Onderneeming and the Hills Estate.

AREAS L'NDER CULTIYATION.

The Chairman mestioned that sowing to the objection of several proprietors to give correct returns of areas under cultivation when required for compiling the annual agriculuual sratistics, great difficulty was experienced in properly compiling the returns. To obviate this he moved that under Sertion 9 (e) of the Board of Agriculture Ordinance, 9 of 1910 , regulations be made providing for the colbection of agricultural statistics. Mr. Gillespie scoonde! and the motion was carried unanimously.

The ('hairman submitted a "Guide to the Botanic Garbus" prepared by Mr. J. F. Waby, I.S.O., before his retirement from the Department of Science and Agriculture. He thought that a guide was a necessary publication for the convenience of visitors, but he regretted that there was no fuuds available for the publication of such a work. The matter was referred to the Executive Committee.

The Chairman mentioned, with regard to the potentialities of the Ginger Lily (Hedychium roronarimm) as a raw material for paper making. that it was hoped to send a dipment to England for trial.

TIME MODEL GAROENS.

The Chairman intimated to the Roard that at their last Ammal Session, the (ombined, Court deleted fiodm the Estimates of Expenditure the sub-vote for the maintenance of the Morlei Gardens. He regrdetted that action urd considered it the most retrograde step in agricultural matters that had been taken for a long time. He presented the report on those gardens which he had prepared for the Government.

The President and Mr. Clementi pointed out that the members of the comrt were apparently moler a misapprehension when they deleted the item, the members thinking the item related to school gardens.

The Clairman then moved that the items necessary for atrving on the gardens-which should in future be desigmated "District Gardens"-be included in the next drait stimates. Mr. Clementi seconded, and the motion was rgreed to umanimously.

AFFILIATED SOCIETIES.

It was decirled that His Excellency the Governor be recommended to awarl grants of alfiliation to the following Societies according to the Board's soale:-

Association. No. of Members. Grant.

Buxton and Feiendship
Farming Association $36 \quad \$ 12.50$
Victoria-Belfield Agricultural
Socriety 37 12.50
Beterverwagting and Trinmph Agricultural Society . . . 06 17.ão
W'alicnaam Farmers' Association $29 \quad 10.00$
West Bank Firmers Association $20 \quad 10.00$
$\$ 62.50$

The following grants were similarly recommended:West Bank Farmers' Association for Agricultural Nhow in 1915 .. . $\$ 1.50 .00$
Model Exhibits at West Bank Show .. 30.00
School Garden Prizes at West
Bank Show 00
Contingencies 2.50
THE ANTLIRAX OCTBREAK.
The ('hairman reported that since last meeting, Anthar lad boken out on several aroas on the East Coast, Iemerara. He detailed the raction taken by the Veterinary Committee to combat the epidemic. Supplies of vaccine and syringes for inoculating animals against Anthrax had heen obtained, and up to the time of speaking abont 8,300 anmals had been inocmlated. A meeting of the planters of the East coastiad lieen convened and held at the office of the ehaiman: and it was decirled, as a hasis for fighting epidemics, that each plantation should be held responsible for its own quarantine and ishould have resident inoculators -the Board stocking supplies of vaccine for sale to planters and stock farmers and authorised inomulators. This had been done. The epidemic was on the wane; and the district was already practically free from the disease.

After discussion, it was decider that any restrictions imposed on a district le not remored until after the lapse of thed monthe from the ocourence of the last suspicions rease.

The rhaimman reorter that the colony was free from Swine Plague amd swine Fever ; bent that since last meetjug, the Veterinam (ommitter hat dealt with an ocemp rence of contagions phenrophemmonia on the East Coast, Demerara.

It was derided to confirm the Orxler of the Veterinatry Committere dated otle May, 191.), athorizing the Chairman to give written permission to persons to drive or rive animets in or ont of an infected area.

On a? application from the Rer. Father ('. H. Datwon, A.J., M. A, permission toshoot wild birds in or near Georma. town was granted to the R.A.C.S. Mnseum attentant. With the distinct mulerstimding that no birds in the botanic Garfens be shot.

The Board then aljompert sine dic.

A Letter from the Front

How much the wretched payment given to men of seiemor ik this country is exercising their minds may be gathered from a letter which we have received from a very apable !junior worker now at the front. He says: "I lave heen hoping that the war might have as one good result the hetter treatment of the seientist in England, but judging fionn the Aniline I ye affair, as I read of it in the papers, things bue, if anything, a little worse than ever, and the Government will make no attempt to utilise the scientific albilius of the country, neither will it give the scientist any opportumity of working ont its own salvation.

Hints, Scientific and Practical.

'Tise existence of attraction between the

Tension and Surface
 Capillarity.

 molecules causes the free surface of any liquid to become a sort of stretched elastic film, in tension itself, and exerting a certain pressure inwards when free. The molecules within the diquid are equally attracted in all directions by the surrounding molecules, and are therefore in equilibrium; the molecules on the surface, having mothing on one side, are only attracted inwards, and so, as a whole exert a pressure on the liquid similar to that which would be caused by a stretched elastic skin over the liquid.The existence of this force of "surface tension," as it is called, may be demonstrated by many simple experiments, c.If, by the familiar fact that a clean needle will float when placed carefully on the surface of water; or, by the fact that a portion of any liquid, so small that the force of gravity on it is not large compared to the molecular forces, immediately assmmes the spherical shape. Of all figures, a sphere has the smallest surface in proportion of its contents, i.e., the stretehed film on the surface of a drop of liquid shoinks as far as it can until the liquid is packed into the smallest possible compass, which must be the form of a sphere.

When a liquid and a solid are in contact, the form of the surface and the resulting pressure or tension depend on whether the liguid "wets" the solid or not. For" exanple, if a series of very fine or "capillary" glasm tubes are dipped into water and nercury respectively, the water will rise up the tuhes in inverse proportion to their diameters, the mereury, which does not wet the glass, will be correspondingly depressed.

The surface of a liquid may exert either a pull or a pressure on the liquid within, according to the curvature of the surface, and the greater the curvature the greater will be the force exerted. It is this teusion of the surface
film which causes movements of water in soil, other than those due to gravity : for exanple, if a flowerpot stands in a shallow dish of water the whole of the soil within the pot is kept moist: or if water is poured on to dry soil it is seeu to work outwards through the soil, the water advancing from particle to particle as it wets them, just in the same mamer as it rises up the capillary tubes. When a soil is saturated the whole pore space is filled with water; if this soil be allowed to drain, some of the water is pulled away by gravity, but much remains clinging round the particles in the stretched film condition, the tension in the film balancing the pull due to gravity. Perlaps the best illustration of the state of affairs in a wet but drained soil may be obtained by linking a series of toy balls together and then dipping the whole into oil. When the oil has ceased to drip it will be seen that every ball is covered by a thin film of oil, and that between the balls there is a layer of oil, much thicker in the lower than in the upper layers. The whole surface film is equally stretched, lout thestretching in the upper layers is largely due to the pull from the oil helow, while in the lowest layer of all the whole tension exerted by the stretched film is devoted to holding its own thick film of oil. If oil be taken away at any point, the curvature of the film, and therefore the tension of the surface in that region, is increased: a re-aljustment then takes place till the stretcherl film regains the same tension everywhere, which is effected by a motion of the oil to the place where the tension has heen increaserl. If the withdrawal of the oil be continned, the film round the balls becomes thinner and thinner: the more it is stretched, the more closely it clings to the surface, so that the removal becomes progressively more difficult; at last the film lecomes so much stretched that it ruptures and reunites again over a smaller surface, hence with a diminished tension. The rupture naturally takes place where the film is thinnest, on the top layer of balls, which become more or less "" dry," while the lower balls are still surrounded by their filn.

Just in a similar way water will always move in a soil from a wet to a dryer place till the filu surrounding the particles is equally stretched throughout.

-A. D. Hall. M.A., F.R.S., iu" The Soil." tree is not deprived by the grass of the food or water necessary for its welfare; these may be present in abundance but is is incapable of utilising then: this is characteristic of a toxic action. Long lefore all the evidence here alluded to was obtained, such a conclusion was the one arrived at and to those who have had trees suffering from grass constantly before them, during many years, it would be difficult to arrive at any other. A toxic action, however, does not necessarily mean that the grassroots excrete some substance which is poisonous to the tree: there is a considerable amount of debris from the roots of grass while it is growing, which on decomposition might form sulstances poisonons to the tree-roots; or the poisonous effect might be due to an alteration in the bacterial contents of the soil.

Independenty of anything coming from the grass-roots or resulting from their growth, it seemed possible that the grass might alistract something from the soil and alter the proportions of the constituents remaining so as to render the soil virtually toxic. This suggestion, however, has been negatived by some recent experiments in which the grass was grown in such a way that it was impossible for it to draty a rahing out of the soil in which the trees were growing. These trees were planted in pots and the grass was grown in movable hays resting on the soil in the pots; the trays were perforated to allow of drainage from them down to the trees but the holes were covered with fine ganze to prevent the grass roots from passing through and thus there could be no passage of water upwarols from the poti to the trays. Set in spite of this entire separation of the grass from the tree, the grasseffect was still very unticable and caused a reduction of growth amounting to some $\because=5$ per cent. These experiments have since been extended to a study of the effect of grass on other plants besides trees and in every case examined up to the present, a similar action has been observed: in the care of barley the reduction of growth amounted to 15 per cent. ; in that of tomatoes to 46 per cent.; in that of mustard to 58 per cent. and in the case
of tobacco to 71 per cent. One other important point in connexion with these experiments should be mentioned. that when the grass is grown in trays as in the preceding experiments and the washings. iustead of being allowed to pass immediately to the tree-roots. are left for some time exposed to the air before being used on the tree, their action, instead of being hurtful. is decidedly beneficial; apparently the toxic ubstance is oxidised and converted into plant-food.

The proposition which has been made to acconit for these facts-it cannot at present be termed more than a proposi-tion-is that the growth of grass and probably also of other crops, give rise, either directly or indirectly, to the formation of some substance in the soil which is toxic towards plant-growth but which, on oxidation becomes Tharmless and when exidised serves to render the soil richer, probably both in organic matter and nitrogen. While the grass is actually growing, there would be a continuous supply of this toxin, which would prevent the plants from henefiting from the increased richness of the soil; but as soon as the grass were removed, the production of toxin would cease and the previously grassed soil would be found to he more fertile than soil which had never had grass growing in it. This is in accordance with the behaviour of trees in soil from grassed and tilled laud. as mentioned above; the accumulation of nitrogen in grassed land is a fact which has been known now for many years. It is probable, however, that no soil would ever be quite free from the toxic substance, if such exist, which is produced by the growth of grass.
-A. D . Hall, M.A., F.R.S., in "The Soil."

Osmosis
 ia Plants.

The passage of the dissolved substances into the plant takes place by the purely physical process of osmosis, the walls of the root-hairs (which consist of single elongated cells) acting as semi-permeable membranes through which water or salts will pass independently, according to the relative concentation of the solutions inside or outside the cell. Should the cell sap le more concentrated than the soil water outside, pure water will pass through the wall until a certain osmotic pressure (causing turgor in the plant) is
rearhed, which varies with the concentration. If, on the contrary, the soil water become more concentrated than the cell sap, water will leave the cell, the plant will become flaceid, and even die if the withorawal of water be too grat. It is in this way that plants become "scorched" or "burnt" by too concentrated solntions of any kind of soluble salts, such as are formed when a little soluble mamure, salt, etc., falla upon the surface of a leaf.

Not only will water pass in or out of the cell, but an equilibrium will be attained between the cell sap and the extermal soil water for each constituent present in the latt.r. If, for example, sodium or potassium chlorides be present in solution in the exiernal soil water, both will continue for difuse through the cell wall until their respective concentrations are the same within and without the cell. If now the potassium compounds be withdrawn from the solution within the cell by the living protoplasm in order to bake pant in the varions vialal poresses requiring potassimm. there will be a fresh influx of potassium matil the old equilibrimen within and without is restored. It is in this way than the apparent selectire action of a plant takes place; as a rule, sorlium compounds are more aboudant in soil water than salts of potassinm, ret the ask of the plant will be foumt much richer in potassium than in sotiom. Similat? acsin the asb of any particalar plant will mantain a failly constant composition although grown on soils of widely differing character. The selective power resides in the living cells themselves; all substances dissolved in the soil water diffuse throngh the walls of the root hairs into the plant, but will not continue to accumulate therein unless they are utilised and withdrawn from solution by the protoplasm.

Further it is not necessary to considei that the plant takes up the rarions salts presented to it as wholes; the process of eliffusion until equilibrium is attained, of withlrawal by the protoplasm and consequent renewal of the prores of lifinsion, takes place for each acid or base inlependently of the others. As a rule, a plant growing in i nutrient merlium containing nitrates as sources of nitro. gen, will withrlraw an excess of acid and render the ;olution alkaline, but cases also occur when the medium ecomes acid during growth because the plant takes more mase than acid. According to modern views of solution, we
must regard the soil water as a highly ionised solution, and each particular kind of ion establishes its own conditions of equilibrium within and without the cell.

-A. D. Hall, M.A., F.R.S., in "Fertilisers and Manures."

> General Plant Sanitation. unchecked. In seasons favomable to their development, their ravages caused widesprearl damage and, in some instances, the almost total ruin of a country; ant only the atrent of less favomable peans brought relief. Even after it had been proved that plant. diseases were due to the adion of specific organisms ant that some steps rould be taken to combat them, little improfement resulted at finst, because, in the majority of cases, nothing was done until the disease had obtained so strong a footing that nolhing conld be done successfully at any reasonable cost. The fungus of coffee leaf disease (Hemileid rastatiox) was recognised to be a vely destructive pest in 1869 , but it was not until ten years later that active measures were taken against it. There is little donht that morlo of this shalay wis the to a reluctance to admit that any disease evisted: and it is only within the present century that public opinion in planting countries has come to moderstand that plant diseases are as inevitable as those of men and animals. Less than ten reans ago the issue of a circular on a disease of tea brought letters, either abusive or suppleatory, pointing out the supposed injury which such prbaication inflicted upon the industry ; bot at the present day similar circulars may be poblished crery month withont exciting any such response.

This arknowledgement of the ineritability of disease leads immediately to a recognition of the fact that it is necessu:y to lie always an the alor to observe any abmormal or suspicious appearances, and to have inquiry made into theme at the earliest possible moment. Speed is an essential factor in the treatment of discases, and to deal with any one of thous successfully it must be attacked in an corly stare. In JIerea, at least, this proposition is thoroughly understood; and there is little fear that any disease will be allowed to proceed unchecked or unobserved in Eastern
plantations, so long as the present vigilance of estate superintendents is maintained. Of course this implies that the onserver has a full knowledge of what is normal in Heavea. A^{+}present many trees are sacrificed unbecessanily hoause the planter thinks they may be diseased, abl sends them in for examination: still, this is erring on the right side.

But thongh the recent adrance of public opinion in this respect has been extraordinarily rapid, it still falls short of what is absolutely necessary. The continued study of plant diseases has shown what conditions are favourable to their development, and consequently what precautions should he observed if they are to be aroided or minimised an far tis is hmmanly possible. In short, such knowledge emblen an to alrance from the idea of remedial measures to that of preventive measures. It is no longer permissjble to adopt systems of planting om methods of cultivation withont cousidering their probable efect when diseases arise: and in the light of onr present knowledge, that effect can in many cases be predicted with a close approximation to certainty. The pathologist shonld he consulted beforelaud, not five or six years afterwards, when some disease has already appeared; and in the absence of any sucle consultation he would fail in his duty, i^{r} he dial not point nut how new or old planting practioes toraled to promote disease.

> —T. Petcll. IS A., IB.Se., in "The Physiology and Diseases of Hever brasiliensis."

Science and the Truth.

Science is not only a fairy godmother to humanity : she is lierself a goddess whose great religion and commandment to all is to think the tiouth. To her and, we believe to the vast majority of her genume votaries, the whole system of party politics is based upon a false political hypothesis and is conducted by means of wilful distortion of facts and prepense employment of the lying argument; and we fear that a nation which inrlulges in this evil mnst certainly have sunk to a somewhat low intellectual level.
_-"Science Progress," July, 1915.

Exports of Agricultural and Forest Products.

Below will be found a list of the Agricultural and Forest Products of the Colony exported from Jannary 1, to September 30, 1915. The corresponding figures for the three previous years are added for convenience of comparisou.

Product.	1912.	1913.	1914.	1915.
Sugar, tons	30,981	87, 2.0	52,995	63,795
Rum, giallons	1,502,0 11	1,685.0.st	1,949,135	2.9333 .50 .1
Molasses, easks	904	76	882	
Catte-food, tons	3.110	5,313	1,1:3 1	1,35:
Cataro, evts.	10:2	35\%	374	519
Citrateot Lime, ewts.	. 1	6	19	919
Coemuts, hoousands	940	528	1.516	1,54.
Copma, ewts.	9193	745	1.16 t	1,594
Coffere, cats.	1.205	727	2, 232	1,5:37
Kola-mats, ewts.	\ldots	2	4	2
Rice, tons	2,36.5	5,673	-1.711	7.001
Ricemeal, tons	1.ド1	1.651	213	23:
Cattle, hemd	113	1iTR	951	460
Hides. No.	20171	4.026	3.706	2,703
Pigs, No.	907	1,271	999	856
Sheep, head	fil	$\because 2$	133	4
Balata, ents.	2.140	6.949	7.710	10,425
Charcoal, liags	50, $97-1$	43,761	54.327	12.786
Firerrood, Wallaba, ete., tons	7.203	6,598	8,189	6,345
Gums, lbs.	3,011	1,515	886	
Lumber, feet	155,42:3	$425,73 \mathrm{~L}$	$2+1,229$	134,512
Railway Sleepers, No	1,046	6,718	6,127	1,05i
Rubluer, cwts	1.8	5	7	17
Shingles, thousands	1,645	2,020	1,633)	1.50 \%
'Timber, cub. feet ...	24,940	391,683	173,130	101,987

JOURNAL

OF THE

Board of Agriculture

of
BRITISH GUIANA.

VOL IX. FEBRUARY, 1916. No. 2.

American Enterprise.

Trie beginning of the year 1916 saw the foundation or at enterprise which should have firl-reaching results. This was the establishment of a Tropical Koological Researeh Station in British Guiana by the New York Zoological Society. The objects and organisation of the work are best put in the words of the official organ of the New York Zoological Socicty-the "Balletin "-which says:-
"Early in January, the New Vork Zoological Society will embark upon a new scientific enterprise of a most interesting character. Mr. C. William Beebe, ('mator of Birds, accompanied by three assistants, will sail for British Guiana, for the purpose of establishing in Georgetown, the colonial capital, a tropical zoological station, on lines absolutely new, so far as we are aware. The choice of a location has been made chiefly witl reference to the amount of animal life available within a radius of 500 miles.
"The prime oljjects of the enterprise are two in number.
The first is to secure ample facilities for studies of the evolution and life histories of lirds, and various problems of avian development that can be studied successfully only
witl the aid of living material fresh from the jungle. This is no effort to make a catalogue of the species and subspecies of the birds of the (iuianas, or to make collections of skins Mr. Beebe proposes to go back as far as possible toward the origin of the Class Aves, and throw light from new investigations upon subjects hitherto untouched.
"Those who have followed Mr. Beebeis remarkable inrestigations in the Zoological Park will appreciate what it means to place him, with a corps of enthusiastic assistants, at the edge of a great tropical wilderness teeming with bird life, provided witl all necessary facilities, and favoured by the Government of Britislı Guiana. There, if anywhere on earth, may we expect new light on the avolution of birds, and the life histories of strange species.
"Take, for example, the hoatzin, with its strong presumption of tree climbing ancestors. Up to date, not one living of tree climbing aucestors. Wp to rlate, not one living hoatzin, old or young, ever has reached a zoological park, or been sturlied alive in captivity. Mr. Beebe's laboratory will be within easy reach of an indefinite number of living and breeding hoatzins. Soon we will know more of this strange species; and it requires no strain upon the prophetic instinct to predict moving pictures of hoatzins at home.
"The second object of the laboratory and its staff will be the gathering of mammals, birds, reptiles, amphibians, and insects for the zoological park, and fishes for the Aquarinm. To this end Mr. Donald ('arter will be taken from the Zoological Park Fore as Collector. In view of the great difficulty that always has attended the procuring in good health of mammals and hirds from Sonth America, the collecting function of the Laboratory will, by some persons, be regarded as its most important work. While we also have great expectations from that line of endeavour, and very much need the accessions, we feel that the scientific work to be done is of paramount importance.
"Mr. Beebe has been fortunate in enlisting, as Research Associate, the interest of the self-sacrificing services of Mr. G. Inness Hartley, an ardent student of avian life who has generously volunteered to devote his entire time to research work witl the Zoological Society.
"Mr. Panl G. Howes, an expert in micro-photography and the intensire study of invertelorates will take a place in the tropical Laboratory as Research Assistant.
"The Government of British Guiana has generously offered the use of facilities in the Botanic Gardens, besiden the privilege of importing apparatus and supplies free of duty.
"The Trinidad Steamship Company has joined in promoting the whole enterprise ly providing for the transportation of collections on most liberal terms, and co-operating in many matters of importance to the success of the enterprise.
"Finally, five members of the Board of Managers of the Zoological Society have suberiberl, on a lasis of $\$ 1,000$ each, the entire sum necessaly for the work of the Laboratory, during its first year. These gentlemen are Cleveland H. Dodge, Mortimer L. Schiff, C. Ledyard Blair, James J. Hill and George J. Gould.
"The element of novelty ataching to the society's new scientific enterprise will focms upon it the attention of Amerian \%oologists. Aready there are signs that a mumber of investigators will seek the hospitality that our tropical station will afferd, and not the least of the pleasure and benefit to be derived from the station by our Society will be the satisfaction that can be formd in promoting the work of zoological investigators who never yet have enjoyed such an opportunity for getling close to animate tropical nature as this station will afford."

A pleasing feature has been the iuclusion in Dr. Beebe's party of two ladies-Miss Taylor and Miss Hartley-who, we understand, are to devote themselves more esperially to the artistic recording of the results of the work, and who have already taken to the life involved with an enthusiasin and contidemer which are intinitely refreshing. We extend a healty weleome ta Wr. Beebe and his parts and olfer our hest wishes for their success: we applaud the wistom which chose British Guiana as the site of the staion: but we must confess to a feeling of regret that so interesting a work in a British colony, and one so promising of raluable results (in the best sense of the term) should have been left to the enterperise of citizens of the Cnited States.

Areas Under Experimental Cultivation, 1914 and 1915.

The areas under experimental cultivation at the different stations of the Department during the years were as fol-lows:-

Products,	Aereage.	Lroducts. Acreage
Rubler, Para. .	99	Balata . . . 6
, Sapium	2	Fruit Trees ... 412
\% Other Sorts	1	African Oil Palm .. 3
Limes	36	Castor Oil $1 \frac{1}{2}$
(roconuts	. 30	Tonka Beaus .. $1 \underset{1}{\text { i }}$
Coffec	. 23	Bananas . . . 1
Sugar Canes	. . 20	Cotton, Sisal Hemp, Ginger Lilies, Car-
Dacao	19	ludovica, Palms, \&e. 1
Rice	7	Ground I'rovisions
		(various) . . 5-10

Ducks as a Preventive of Malaria and Yellow Fever.
Ducks, whieh occur in all regions of the globe, are among the greatest ememies of mosquitocs, and consequently of yellow fever and malaria. Their value in this respect has been determined is follows: By means of dams two pools of equal wea were made in at steram. Ducks were placed in one and fish in the other: The former was speedily cleared of mostuitoes, while the second continued to maintain the insects in all stages of development. Wild ducks were then introlnced and found to prefel the inescts to all other foods. At the end of twenty-four hours no puper were found in the poud and after two days all the lanve hod been destroyed. These experiments condirm the observations of Willian Lockwood, who found that the duck was particularly adapted to devouring the larrae on the surface of water, and of McAtee, who found mosquitoes in the gizzard of a rild duck.

The mosquito has numerous animal enemies, of which the duck is the most widespread and consequently the most suitable to clean up unhealthy marshy districts which it would be too costly to drain.
-"The Colonial Journal," October, 1915.

Sugar Cane on the Experimental Fields. Crops of 1914.

(By Professor J. B. Hamisom. (..M.G.. M. L., Director; * K. Bancroft, M..L., F^{\prime} L.N., 1 ssistent Director; and R. Ward, Agricultural Superintemlent.)

The sugar rame experiments were carried on at the experimental Fields under the direct supervision of the Agricultural Superintendent.

SEEDLINGS.
The work in connection with the raking of scedlings of sugar cane was continued. In all 9,730 seedlings were raised. Of these 3,510 have heen retained at the Botanic Gardens and 1,517 distributed to sugar estates in the colony. Of the seedlings retained at the Botanic Gardens 1,486 were possible crusses; while 315 were selfs.

The more important rarieties crossed were:-

1) 118×10419
D 118 x Red Ribbon
Bourhon x D 419
D $118 \times \mathrm{D} 4399$
D) $4399 \times$ Red Ribbon
D 118 x .Javal 189
D) $419 \times$ Red Ribbon
I) $6: 5 \times$ Red Ribloon
D419 天 19499

68,860 cuthings of sugar cane were also distributed
to estates during the year; the principal varieties being:-

Seedling Canes.
Number of Cuttings

Rainfall.
The rainfall at the Botanic (iambens from Jannary 1 st to December 31st was 69.49 incthes, 21.62 inches less than the arerage for the past thirty-three years. Of that 18.37 inches fell in May alone. The precipitation was, however, not unevenly distributed over the rest of the year and
apart from the customary dry spell from September to November the weather was more faromable to growth of sugar canes than a casual observation of the total amount of rainfall would indicate.

The crops on the Experimental Fields were reaped in December, 1914. The returns were not satisfactory, due in part to the defective rainfall but more largely to the long period the various fields have been umder sugar cane cultivation without any rest.

The South field was not under cultivation during the year as it was considered absolutely necessary to let it fallow from sugar cane under which it had been in practically continuous cultivation for twenty-two years.
resclis from varieties.
The varieties grown on the North-east field which has been under continuous cultivation for thirteen years gave the following mean results:-

Varieties.	Cane per acre. Tons.			Saccharose in expressed juice.	
D 721		21.3			2.14
D 118	.	19.7			2.04
D 317		19.9			1.93
D 167		18.4			1.91
D) 625		16.2			1.3.7
J) 419		13.9			1.46
1) 4.51		12.t	.		1.16

The areage characteristios of the expressed juicos of the above varieties were:-

TABLE 1.

	Variety.	Specific Gravity $\frac{30^{\circ}}{16.6^{\circ}}$	Pounds Sucrose	Is per Calta Glucose	allon. Solids not Sugar.	$\begin{aligned} & \text { Ouo- } \\ & \text { tient of } \\ & \text { Puritity. } \end{aligned}$	Glucose Ratio.	$\begin{aligned} & \text { Non. } \\ & \text { Sugar } \\ & \text { Ratio. } \end{aligned}$
1) 419		1.0795	1.843	. 045	. 273	85.3	2.44	14.8
D 118	...	1.0767	1.745	. 0.55	. 286	83.6	3.15	16.4
D 167		1.074	1.676	. 059	. 281	83.1	3.52	16.7
D 317		1.0717	1.646	. 052	. 258	84.1	3.16	15.5
1) 721		1.070	1.624 !	. 08.5	. 202	84.4	¢. 23	12.4
D 454		1.070	1.594	. 071	.252	83.1	4.45	15.8
D 625		1.0707	1.568	. 107	. 263	80.9	6.82	16.8

RESULTS OF MANURES.

The trials with sulphate of ammonia and nitrate of soda and with applications of increasing quantities of nitrogen were contined to the North East tielal. The mean results were:-

Succharose in

The mean results on land not manured and manured with phosphates were as follows:-

Tons Canes per Acre.

The results with the nitrogenous and phosphatic manures were concordant with those of previous vears.

Every plot in the Norithest field received sulphate of ammonia at the date of :300 lbs. pet acre. This was done witlo the object of testing the vields of the imelividual plots as well as of the varieties ats a final check on the results of the four crops during which trials with various forms of nitrogenous manures were in progress on them. The results showed that the errors introduced by plot variations were far less than the differences apparently due to the manurings.

The mean results of the varieties were:-

	Tons Canes per	Tons Saccharos: in juice per
Tiriety.	acre.	acre.
419 .	. 31.9	3.34
118	26.6	3.11
625 . .	. 29.6	. 2.85

	Tons Canes per	Tons Saccharose in juice per
Variety.	acre.	acre.
167	28.5 .	2.68
721	29.0	. 2.66
333	22.2	2.44
638	23.9	2.32
$\therefore 17$	23.6	. 2.30
44	24.7	2.28
139	$\because 4.2$	2.21
$\because 46$	$\because 0.6$. 2.15
6.42	23.5	. 2.15
4399	$\because 0.7$	2.12
154	22.4	. 2.10
454	15.7	. 1.45
E31	14.6	1.12

The characteristics of their expressed juices are shown in the following:-
T.IBLE II.

The yields of sugar-cane calculated to tons per acre on the areas in the northern division of the field were:-

Plots. Series 1 21.75

,	2	\cdots		33.2
"	3			22.3
"	4	\cdots		22.5
",	5	.	1	21.95
"	6	.	1	20.3
"	7	\cdots		20.7
"	8	.		22.05
"	9	.		21.0

The mean yield of the nine series was 21.7 toms per acre, that of the four series which had been used as not manured controls being $2 \pm$ tons and that of the five series which had been manured with nitrogenous manure being 21.35 tons

The probable errors due to soil differences in the manured and not manured series were $\pm 1.8 \%$ and $\pm 11 \%$ respectively, equal to 4 and .25 tons of canes per acre.

The yields of sugaremue calculated to tons per acre on the areas in the southern division of the field were:-

Plots.	Series	1			19.8
	,	2			19.05
	"	3			19.7
	"	4			21.0
	"	5			21.0
	"	6			21.8
	"	7			21.2
	,	8			21.55

The mean yield of the eight serjes was 20.6 tons per acre, that of the three series which had been used as not manured controls leing 20.6 tons, whilst that of the five series which had been manured with nitrogenous manures was the same.

The probable errors due to soil differences in the manured and not manured selies were $\pm 1.45 \%$ and $\pm 2.9 \%$, respectively, equal to .3 and .6 ton of canes per acre.

The probable single plot errors in the two series of comparisons with nitrogenous manures were $\pm 2.7 \%$ and $\pm 2.5 \%$ on the northern plots and $\pm 5.2 \%$ and $\pm 3.35 \%$ on the southern plots That is the gields per acre on
single plots probably might have been affected by soil lif. ference to the extent of 1.1 ton of canes.

The mean vields during the four crops 1910-191:3 presumably due to 50 lbs. of nitrogen in each of the manure applications were:-

The subject of the gains or losses per acre caused by manurings and croppings among the more important soitconstituents called for attention during the year in connection with the fact that the demands of $\mathbf{D} 625$ on these are higher than are those of the Bourbon in the production of equal weights of sugar per acre.

composition of the soll.

ln our earlier investigations into the question of gains and losses of soil constituents we had examined samples of soils drawn, in the majority of cases, from at least 9 similarly manured and treated plots although in a few cases only not more than 4 plots were available.

The soil of the north-eastern fied was sampled in 1901 prior to the commencement of the varietal and manuring experiments which have since been carried on for 11 crops. The samples were carefully drawn from the north and sonth sections of $2 t$ plots which have been used as notmanured control plots. The 48 samples were mixed together and the composite simple analysed. The composite sample yielded:-

Nitrogen	. . 170 per cent.	.170 per cent.			
Soluble in 1% citric acid solution					
Calcium oxide		. 087			
Potassium oxide		. 015			
Phosphoric anhydride		. 008			

From 1901 to 1914 two series each of six double plots on the field have been under continuous cultivation with D 625, the series being Plots Nos. 13 to 18 and Nos. 61 to 66. The northern section of each plot was dressed yearly with phosphatic manures, whilst the southern section was not so manured. Two plots on cach series did not receive
any nitrogenons manure whilst the others received manurings of sulphate of ammonia in increasing proportions at rates of 100 the, 200,300 and 400 lbs per acre.

Samples of the soils of earh half plot were very carefully taken so as to be fairly pepresentative of the soil of that plot. Each of these 24 samples was examined separately, making a mechanical analysis, determination of the "humus," of total nitrogen, and of the nitrogen in the humus, and estimation of the calcinm oxide (lime), potassium oxide (potash) and phosphoric anherdride soluble in one per cent. ribite acid sotubion umber eonditions of constant shaking for fiours in a rerreffectmal shaking machine.

As cherks on the acromacy of the chemieal determination seren areage samoles were prepared by mixing equal proportions of each of
(a) the eight samples drawn from nom-manued plots:
(b) the eight samples drawn from plots receiving either 100 of 200 the of sulphate of ammomiat per acre:
(c) the eight samples drawn from plots receiving either 300 or 400 the of sulphate of ammonia per acre.;
(d) the six samples from the northern sections of plots 13 to $18 ;$
(e) the six samples from the sonthem sections of plots 13 to 18 ;
(f) the six samples from the northern sections of plots 61 to 66 ;
(g) the six samples from the sonthern sections of plots 61 to 66 ;
In each of the seven composite samples thus prepared the total nitrogen was determined. whilst in the four composite samples (d), (e), (f), and (g) the proportion of calcium oxide, potassium oxile and phosphoric anhydride soluble in 1% citric acid solution were also estimated. The soil does not contain any lime in the form of calcium carbonate and the calcium oxide dissolved by the citric acid solution must be derived from calcium phosphate, calcium silicate or the traces of calcium sulphate present in the soil.

The following tables give the results of the mechanical analyses of the samples of the dry soil:-

TABLE III.
Western Section of Field.
Plots 13 то 18.
Plots Rumning from South to North.

	Coarse Sand.	Fine Sand.	$\begin{aligned} & \text { Coarse } \\ & \text { Silt. } \end{aligned}$	$\begin{aligned} & \text { Fine } \\ & \text { Silt. } \end{aligned}$	Clay.	Loss on Ignition.
Plot 13 S	7.7	5.2	6.4	3.9	64.4	12.4
	7.7	6.4	4.8	6.0	64.9	10.2
Plot 14 S	6.3	9.2	7.7	7.2	59.0	10.6
	8.6	6.4	6.5	5.0	62.5	11.0
Plot 15 S	8.2	7.9	8.2	4.0	59.1	12.6
	12.5	7.9	5.8	5.1	57.8	10.9
Plot 16 S	11.3	6.2	6.7	5.8	57.6	12.4
	11.9	6.6	6.9	5.4	57.2	12.0
Plot 17 S	12.0	6.3	7.7	5.4	57.7	10.9
	8.5	4.5	7.3	3.9	63.3	12.5
Plot 18 S	8.0	4.4	7.4	4.0	65.4	10.8
	7.8	5.9	5.2	5.5	64.7	10.9
Means 13-18	9.2	6.4	6.7	5.1	61.2	11.4

TABLE IV.
Eastern Section of Field
Plots 61 to 66.
Plots Running from South to North.

		Coars Sand.	Fine Sand.	$\begin{aligned} & \text { Coarse } \\ & \text { Silt. } \end{aligned}$	$\begin{aligned} & \text { Finu } \\ & \text { Silt. } \end{aligned}$	Clay.	Loss on Ignition.
Plot 61 S	1	9.6	4.6	8.0	4.1	62.4	11.3
	...	10.3	6.8	6.5	5.8	58.9	11.7
Plot 62 S	...	10.2	5.7	3.8	5.9	62.9	11.5
		8.4	5.2	7.0	5.1	63.2	11.1
Plot 63 S	...	8.3	8.9	7.8	4.0	58.8	12.2
	\ldots	10.9	6.7	6.5	4.7	58.3	12.9
Plot $64 \underset{\mathrm{~S}}{\mathrm{~S}}$		8.6	5.7	6.2	4.6	62.7	12.2
	\ldots	8.7	6.5	8.0	6.6	57.3	12.9
Plot 65 S	...	9.2	6.9	8.1	6.4	57.4	12.0
	\ldots	9.0	8.3	9.8	4.2	$5!.7$	13.0
Plot 66 S		5.9	6.0	7.7	3.5	64.6	12.3
		9.8	6.8	7.7	5.6	57.5	12.6
Means 61-66		9.1	6.5	7.2	5.0	60.1	12.1

From these data the soil has the following average mechanical composition :-

Coarse Sand...	 9.15	\pm	. 25
Fine Sand	6.45	土	. 17
Coarse Silt	\ldots	\ldots	6.95	\pm	. 17
Fine Silt	...	\ldots	... 5.05	\pm	. 14
Clay	\ldots	\ldots	... 60.65	\pm	. 52
Loss on Ignition 11.75	\pm	. 14
			100.00		

The " probable errors" in excess or deficit of the analyses of single samples were as follows:-

	$\begin{array}{r} \text { Per } \\ \text { On Soil. }^{2} . \end{array}$	cent. On Constituents.
Coarse Sand	1.4	15.3
Fine Sand	. 80	12.4
Coarse Silt	Si	12.2
Fine Silt	.68	13.4
Clay	2.46	4.0
Loss on Tgnition	. 68	5.8

To reduce the probable arros within reasonable limits. say of one half of one per cent. for each constituent other than clay, on whieh being detemmined by difference the accumblated errors fall, and for this purpose to obtain a reliable sample of the soil of a five acre absolutely flat, apparently uniform field, the sample must be drawn from at least 9 different plots scattered over the field and preferably from 16 From each plot the sample must be drawn -as the samples were in the present investigation-from at least five places and a sample representative of the soil of the plot prepared by mixing them together.

The proportion of "Loss on Ignition," " Humus" (organic matter soluble in dilute (2%) sorlium hydrate solution after washing the soil with very dilute hydrochloric acid) Nitrogen in "humus" and Total Nitrogen on the various plots grouped according to their manurial treatments are given in the following tables:-

TABLE V.

No Nitrogen l'lots.

				Loss on Ignition.	Humus.	Nitrogen in Humus.	Total Nitoogen.
14 S		\ldots		10.58	1.20	. 0355	.1986
N				10.94	1.09	. 0865	. 1769
18 S			\cdots	10.85	1.22	. 0416	. 1787
N				10.94	1.05	- . 0319	. 1632
61 S	..	\ldots		11.28	1.58	. 0363	. 1777
N				11.68	1.58	. 0362	. 1700
64 S	\ldots			12.28	1.14	. 0255	. 1681
N				12.99	1.55	. 0297	. 1916
Menas				11.44	1.30	. 0341	. 1781
				$\pm .26$	$\pm .08$	$\pm .0015$	$\pm .0042$
Composite Sample, Plots 14, 18, 61864						-	. 1777

Low Vitrogen Plots.

			Loss on Ignition	Humus.	Nitrogen in IHamus.	7 otal Vitrogen.
16 S	\ldots		12.39	1.61	. 0401	1.588
N			12.14	1.17	. 041.5	1769
17 S			10.79	1.14	. 0333	. 1629
N	\ldots	\ldots	12.56	1.40	. 0403	. 1742
62 S	...	\cdots	11.51	1.50	. 0321	. 1925
N			11.17	1.40	. 0354	. 1796
66 S		\ldots	12.26	1.18	.0332	. 1606
N	\ldots	\ldots	12.59	1.38	. 0298	. 1707
Means			11.92	1.38	. 0357	. 1720
			$\pm .20$	$\pm .05$	$\pm .0014$	$\pm .0030$
Composite Sample, Plots 16, 17; 62 ± 66						. 1731

High Nitrogen.

				Loss on Ignition	Humus.	Nitrogen in Humus.	Total Nitrogen.
13 S	\ldots	\cdots		12.49	. 95	. 0365	. 1862
N	\ldots		... ${ }^{\text {d }}$	10.25	1.09	. 0339	. 1655
15 S	12.57	1.28	. 0372	. 1750
N			... ${ }^{4}$	10.87	1.10	. 0377	. 1805
63 S	...			12.29	1.38	. 0359	. 1742
N	1294	1.45	.0329	. 1764
$60^{\circ} \mathrm{S}$	\ldots	\ldots	\ldots	12.62	1.17	. 0255	. 1533
N ${ }^{\text {' }}$	12.28	1.17	. $0: 297$. 2028
Means		12.04	1.20	. 0837	. 1767
				$\pm .29$	$\pm .05$	$\pm .0013$	$\pm .0041$
Composite Sample, Plotr 13, 15, 63865							. 1766

It is evident that the distribution of the nitrogen is very irregular among the plots varying in the three series to the following extents:-

Sitroyen in humus. Total Nitrogen.
Mear. Maxinum. Minimum. Mean. Maximum. Minimum.

No Nitrogen0341	.0255	.0410	.1781	.1632	.1986
Low Nitrogen...	.0357	.0298	.0415	.1720	.1588	.1925
High Nitrogen	.0337	.0255	.0377	.1767	.1533	.2028

The mean content of nitrogen determined on the at samples was .1756 per cent., on the three composite samples, 17 s, , while on the composite of 48 samples in 1901 it was 170.

From these results a sample must be taken from at least eight plots in order to obtain reliable results on either the nitrogen, the humus or the total nitrogen.

The data obtained by the determination of the calcium oxide, potassium oxide and phosphoric anhydride soluble in one per cent citric acid solution in the soils from the sec-

11018 of the plots which were not manured with phosphates are given in the following:-

TABLE VI.

Plots South Sections.			Perconiage of		
				Potassium Oxide.	
			Calcium Oxide.		Phosphoric Anhydride
13	...	\ldots	. 0808	0117 -0009	
14			. 0869	. 0148	. 0111
15	 0625	.0136	. 0077
16		..	. 0813	. 0115	. 0084
17		\cdots	. 0571	. 0137	. 0066
18			. 0426	. 0113	. 0053
61 0444	. 0097	. 0079
62			. 0601	. 0124	. 0077
63			. 0419	. 0107	. 0049
64 0553	. 01.52	. 0068
65 0636	. 0185	. 0050
66			. 0636	. 0167	. 0054
Pluts 13 to 18.				. 0127	. 0082
Me			. 0685		
			. 0076	. 0007	. 00008
Composite Sample...			. 0606	. 0145	. 0087
Ibots Git to 60 . Mems			. 0548	. 0130	. 00663
Composite Sample...			. 0041	$.0011$. 0006°
			. 0.91	. 0114	. 0079

Pluts .Varth Sctions.	Percentage		
	Calcium Oxide.	Potassium Oride.	Phosphoric Anhydride.
19	. 0860	. 0107	.0102
14	. 0627	. 0149	. 0119
15	. 0719	. 0148	. 0125
16 - ..	. 0597	. 0115	. 0069
17	. 0446	. 0100	. 0079
18	. 0660	. 0144	. 0097
61	. 0707	. 0169	. 0092
620399	. 0183	. 0086
63 0661	. 0115	. 0093
64	.0520	. 0163	. 0059
65	. 0693	. 0155	. 0056
66	.0603	. 0187	. 0052
Plots 3 to 18			
Means 0660	. 0144	. 0097
	$\pm .0054$	$\pm .0011$	$\pm .0009$
Compositesample...	. 0747	. 0096	. 0083
Pluts or won			
Mcans"	. 0597	. 0162	. 0074
	$\pm .0049$	$\pm .0008$	$\pm .0009$
Composite Sample...	.0602	. 0171	. 0084

From these tabies and the records of the total nitrogen given in table No. V. the following average results are obtained:-

	Vitrogen.	Calcium Oride.	Potassitm Oxidi.	Phosphoric Anhydride.
$\left.\begin{array}{l}\text { South Sections } \\ \text { withont phosphates }\end{array}\right\}$.1739	.0616	.0129	.0072
North Sections with phosphates	$\pm .0032$	$\pm .0041$	$\pm .0016$	$\pm .0005$

The mean results of the corresponding compusite samples were :-

	Nitrogen.	Calcium Oxide.	Potassium Oxide.	Phosphoric Anhydride.
Soutl S Sections without phosphates	.1749	.0599	.0130	.0073
North Sections with phosphates	.1769	.0674	.0134	.0083

It is evident that to obtain fairly reliable results witin regard to so-called "available" calcium oxide, potassium oxide and phosphoric anhydride, samples of soil must be drawn from at least 6 similarly treated plots.

By determining the apparent specific gravity of the soil it was found that its weight over an acre to a depth of S inches is $2,350,000 \mathrm{lbs}$., and that therefore .001 per cent. of any constituent in it is equal to 23.5 lbs. of that constituent per acre. In the following the weights in lbs. per acre of the "humus," the nitrogen in the humus, total nitrogen and of calcium oxide, potassium oxide and phosphoric anhydride soluble in 1% citric acid are shown:-

TABLE VII.

Plots.	Humtas.	$\left\lvert\, \begin{aligned} & \text { Nitrogen } \\ & \text { in hum } \end{aligned}\right.$	Total Nitrogen.	Soluble in 1% Citric Acid Solution.		
				$\begin{aligned} & \text { Calcium } \\ & \text { Oxide. } \end{aligned}$	$\begin{aligned} & \text { Potass } \\ & \text { m ox } \end{aligned}$	iosphuric hydride.
13 S	22,400	858	4,375	1,900	275	232
13 N	25,445	796	3,889	1,981	251	240
14 S ..	28,320	834	4.657	2,043	348	261
14 N	25,732	857	4,157	1,473	350	279
1.5 S	30,000	$87!$	4,113	1,469	320	181
1.5 N	25,920	886	4,242	1,689	348	294
16 S	37,950	942	3,732	1.911	270	197
16 N	27,589	975	4;157	1,666	343	209
17 S	25,920	78.	3,828	1,340	32:	155
17 N	32,950	947	4,094	1,403	270	162
18 S	28,700	963	4,200	1,001	266	124
18 N	24,680	749	3,835	1,048	235	186
61 S	37,230	853	4,176	1,043	185	186
61 N	37,230	851	3,995	1,661	397	216
62 S	35,180	754	4.524	1.413	291	181
62 N	32,950	832	4,221	937	375	202
63 S	32,410	844	4,094	985	251	115
63 N	34,070	773	4,145	1,553	270	239
64 S	26.840	599	3,950	1,300	357	160
64 N	36,470	848	4,503	1,222	383	129
65 S	27,590	599	3,6013	1,495	317	117
6.5 N	27,400	698	4,767	1,628	364	132
66 ¢	27,780	780	3,774	1,495	392	201
66 N	32,410	700	4,011	1,417	439	61
Meaus	30,193	813	4,127	1,469	326	185
Average of the Composite Samples	Not dete	rmined	4,128	1,495	310	183

The manurial treatment and average vield of produce per crop during twelve crops on each of the plots were as follows:-
Number and Treat. South Section. North Section. ments of Plots. No Phosphates. Phosphates.
No nitrogenous manure-

14	.	..	31.7	..	31.3
18	\cdots	..	29.1	..	30.5
64	.	..	40.1	..	40.4

Low nitrogen: (130 lbs .
ammonium sulphate) -

High nitrogen: (350 lbs. ammomium sulphate) -

The average yields having been determined on each of the fields during 12 crops it is of interest 10 contrast the yields of plots similarly manured bui having different percentages of nitrogen, thus:-

In the following comparisons the nitrogen content of the plots was approximately similar:-

It is clear that the differentes in the vields were not governed by the differences in the total nitrogen of the soil.

Similar comparison' with the nitrogen in the humus results as follows:-

While in the following the proportion of the nitrogen in the humms is approximately similar:-

Thus the "lumus" portion of the organic matter does not appear to influence the yield: it is inert.

Although the rarying quantities of nitrogen in the soil aud in the humns of the soil apparently in no way gorerned the yield of the plots, these can be clearly shown te: be due to the proportions of available nitrogen present: therein or rather added during the active growth of tho crops:-

That is aditions of nitrogen in manme equal to $27.3,53$ and 73.5 lbs . or to that supplied by 130, 25.2 and 3.0 lls . of sulphate of ammonia per crop resulted in gains of 3.1, 7.7 and 11.9 tous of produce respectively. These ammal additions of nitrogen are practically negligible in amount when compared with the differences in the conlent of nitrogen of the similarly treated phots.

It is not possible to trace any relationship in the yients of the plots to their retative eontents of either so called araiable caldinm oxide, potansium oxide or phosphoric anher dride: but as our long contimed tield trials have shown 1hat soils containing more thath .005 per rent. of either potassimm oxide or phosphoric anlyaritle soluble in one per rent. citric adid solution do noi respond to manurings with these substances the results are thas consistent with ex. perience.

Although these negative results with regard to potassium oxide and phosphoric anhedride are concorelant with ow earier experience on the heary clay soil and under the conditions of high rainfall prevalent in Demerara, that experience may not hold good for the proportion of these consituents present in lighter sugar-cane soils where the rainfall is lower. It is possible that in Berbice and probably on many sugareane soils in Bablados and other Wost Indian istands of romparatively low rainfall that the
limits at which dressings of potash and phosphates cease to exert beneficial influence are higher than on the Demer. ara soils. In them it is probable that phosphoric acid and especially potash will act beneficially on the yields of the sugar-cane on lands the soil of which contains more than .005 per cent. of each of these constituents.

hybridisation experiments.

Many examinations were made of new varieties of sugarcane raised from seed in 1912 and earlier years. For the first time it was possible to compare the saccharose content of a considerable number of hybrid varieties with that of their parent canes. In former years we had not a sufficient number of hybrids of different derivations for making satisfactory comparison, but the indications were that in accordance with proved facts of plant breeding the result of crossing varieties of mixed parentage was to increase the variation in the progeny not to decrease it-in other words, to add to the complexity of the problem instead of reducing it. If we had canes of pure parentage of durable properties the problem would be a relatively simple one but we have not-all the varieties we have of approximately pure parentage are small weedy canes of low saccharose content quite unsuitable as sugar producers with the climatic conditions of British Guiana.

The following shows the parentage and the number examined of hybrid or controlled parentage canes:-

Crosses.		No. of Plants.
118×625	.	$\cdots{ }^{\text {. }} 4$
118×167		. 5
118×504		.. 4
118×145		19
118×95		.. 17
625×95		. 4
419×95	\cdots	. 47
145×95	.	. 8
4395×95		. 2
419×145		.. 7
145 x		.. 2
$95 \times$ Red Ribbon.		.. 1
$625 \times$ Red Ribbon.		.. 7
$73 \times$ Red Ribbon.		\cdot

Table No. VIII. shows the results of the more important lỵbridisation trials:-
TABIE VIII.

TABIE VIII.-Continued.

TABLE VIII.- Continned.

84
TABLE VIII.--Continued.

	Purents.					ecalings, Ordinary.			Seedlings, hybrids	
	$\begin{aligned} & \text { Mrxi- } \\ & \text { mum. } \end{aligned}$	Minimı"m.	$\begin{aligned} & \text { Maxi- } \\ & \text { mum. } \end{aligned}$	Minimum.	Max:mam.	Minimum.	Maximum.	Minimum.	Mavi mum.	$\begin{aligned} & \text { Mini- } \\ & \text { mum. } \end{aligned}$
			Hybirids of 419×145				145		419×145	
Average Weight of one Cane in los.:	6.8	4.4	5.2	4.7		4.6	9.6	3.0	3.7	3.2
	1081	1071	1082	1080	1074	1060	1084	1052	1086	1059
. Sucrose, llos. per gallon	1.884	1.624	1.988	1.839	1.901	1.291	2.066	1.052	2.056	1.970
,. (tlucose, lbs. per gallon	. 069	. 04.5	. 19.4	.122	. 131	. 051	. 158	. 019	. 089	. 050
	145		Hybrids of $145 \times$ Bourbon							
			Bourbon		145		Bourbon		$145 \times$ Bourbon	
Average Weight of one Cane in lbs.	5.	4.7	4.1	3.6	9.6	3.0	12.6	1.7	5.2	3.2
- alumesnecific Gravity ${ }^{0.0}$	108.	1080	1081	1078	1.084	1052	1086	1052	1069	1066
ucrose, lbs. per gallon	1.988	1.889	1.874	1.863	2.065	1.052	2.084	1.042	1.530	1.452
verage Wlucose, lbs. per gallon inice, Sp^{f}	. 156	. 122	. 166	. 151	. 158	. 019	. 333	. 030	+ 178	. 156
, ${ }^{\text {, }}$ Su	95		Hybrids of $95 \times$ Red Ribbon							
G			Red Ribbon		95		Red Ribbon		$95 \times$ Red hibbon	
eight of one Cane in lbs. sific Gravity ${ }^{350}{ }^{30}$	2.5 1090	20.0 1088	4.8 1082	1.8 1079	Nil	Nil		. 7		
. cose, lbs. per gallon ...	2.177	$\because .050$	1.478	1.902			1.7		1.66	
Alucose, lbs per galion 042	.032	. 055	.042					. 02	
Juice, ${ }^{\text {a }}$ - . . -										
,, Sucrose, lbs. per gainon _-_glucuse, los. per gallon		$\begin{gathered} 1.608 \\ .131 \end{gathered}$	$\begin{aligned} & 1.001 \\ & .086 \end{aligned}$... 042	.080	. 196	.023			

TABLE VIII.-Continued.

		Pare	nts.			edlings,	Ordin		Seedlings	hybrids
	$\begin{aligned} & \text { Maxi- } \\ & \text { mumt. } \end{aligned}$	Mini- mum.	Max:mum.	Mini- mum.	Maximum.	Minimum.	Maxi m"m.	$\begin{aligned} & \text { Mini. } \\ & \text { mum. } \end{aligned}$	Maximtm.	$\begin{aligned} & \text { Mini- } \\ & \text { mum. } \end{aligned}$
			Hyb	ds 625	Red R	bbon				
	62		Red	ibbon	62		Red	iblon		
Average Weight of one Cane in libs.	5.9	4.2	4.8	1.8	11.8	3.5			5.9	4.2
Juice, Specific Gravity $\frac{80}{13,9}$	1074	1070	1082	1079	1082	1048			1082	1072
" Sucrose, lbs. per gallon	1.608	1.561	1.978	1.902	1.868	. 994			1.910	1.645
. Glucose, lbs. per srallon	. 131	. 086	. 055	. 042	. 196	. 023			. 200	. 056
			Hy	s 73	Red R	bon				
	7		Red	ibbon	7		Red	iblon		on
Average Weight of one Cane in lbs.	6.3		1.8	1.8	Nil	Nil			12.2	4.0
	1074		1082	1079					1080	1056
, Suerose, lbs per gallon ...	1.754		1.978	1.902			1.7		1.848	1.250
, Glucose, lbs. per gallon 017		. 055	. 042					. 131	. 033

VARIETIES DIRECT FROM BOURBON.

Much attention Las ber:l devoted during recent years to raising isew varieties directly from the Bourbon cane and from its earlier seedlings. During 1914 the numbers of those examined were:-

The range of variation in the new rarieties of Bourbon parentage was rely great:-

Maximum. Minimum. Mean.
Average weight of one caue . . $16.3 \mathrm{lbs} .6 .75 \mathrm{lbs} . ~ 2.5 \mathrm{lbs}$.
Juice, Specific gravity . . 1081 10685 1.046
Sucrose, lbs. per gallon .. 1.915 1.466 . 767
Glucose 233 . 066 . 020
The more promisiug of the new (1912) seedlings of Bourbon strain are:-
TABLE IX．

	$\begin{aligned} & \text { N } \\ & \text { E } \\ & \text { Sis } \\ & \text { Sis } \end{aligned}$	
$\begin{aligned} & \text { is } \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	豙害	
		웅
		ペシ OSO日SOSOOSOOOO
		ऊ
		$\vdots \vdots \vdots$
		$\vdots \vdots \vdots \vdots \vdots \vdots \vdots$ ！$\vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots$ ！$\vdots \vdots \vdots \vdots$

As a rule seedling canes derived from the Bourbon possess far greater vegetative vigour than does the parent cane which results in the production of many varieties characterised during the earlier years of growth by weli marked development of the canes as regards size. The tendency is for rarieties derived from the Bourbon to be relatively low in accharose, yielding juice baving a low quotient of purite and a high ond of sugars. Few only of the Bourhon derivatives are characterised by high or aven medium sugar-content. Of the 3.6 varieties examined 10 only yielded juice which as expressed by a laboratory mill contained over 1.8 ll . of sucrose per gallon whilst 2 only contained more than 1.9 lb . During later yeass of growth the canes produced are smaller in size but of higher and more satisfactory sugar-content.

Other varieties of which considerable numbers of new seedling kinds were examined gave the following results:ordinity seedlinfi rarieties.

New Varieties. with juice over

Parent Tariely.	New Variatics examinet.	1.8 lbs. of sucrose per gallon.
6 O 5	121	13
14.5	65	4
45	23	4
11.	21	3
71	18	.. 1
18.3	18	. 0
178	12	,
119 .	.. 8 1

> Hybrid Varieties with juice over

Hybrid Turiphes l.s lls. of sucrowe

Parent Variety.
118×625.. .. $4 . . \quad$.. 0
118×107.. .. 5 0
118×304.. .. + 1
118×14.5.. .. 19 :?
118×9.. .. 17 i
(62) x95 1 0
$419 \times 95 \quad . \quad$.. 4. .. 9
hybrid seedling rarieties.-(Continued.)
Hybrid Varieties
with juice orer
Parent Tariety.

145×95	8	. 3
4395×95	2	. 0
419×145	.. 7	. . 3
$145 \times$ Bourbon		.. 0
$95 \times$ Red Ribbon		0
$625 \times$ Red Ribbon	7	\bigcirc
$73 \times$ Red Riblon	9	2

There appears to be a larger proportion of sugar canes vielding juice of orer 1.81 h . of sucrose per gallon among the higher varieties than among ordinary ones. This may be due to the variety of high sucrose content, either 95,145 , 118 or Red Ribbon, selected in each case to be one of the parent kinds.
area under sugar in the colony.
The total area planted in canes in the colony in the year 1914 was 73,108 acres, an increase of 412 acres over that of the preceding year. The sugar crop of the colony was an arerage one. As the crops of 1912 and 1913 had been adversely affected by the prolonged droughts of 1911 and 1912 it was expected that the 1914 crop would be larger than that of either of the two preceding years. The total export for the year was 107,138 tons, an increase of 19,724 tons over that of 1913 , and of 29,350 tons over that of 1912. The total export of rum was $2,489,729$ proof gallons, a slight increase orer that of the previous year. The exports of molasses and molascuit showed a decrease, 83,197 gallons and 2,427 tons respectively being exported as against 118,699 gallons and 6,860 tons in 1913 .

The returns submitted by sugar estates in the colony show that in 1914 more than $4 / 5$ of the total area under sugar-cane was planterl in varieties other than Bourbon Of the area cultivated in these varieties 85% was under canes raised from seed in this colony, while about 14% wats oecupied by varieties imported from Barbados. On many plantaitons the Bourlon is being planted principally on the best lands, the other lands being cultivated in seedling varieties-a practice which has much to recom-
mend it. Of the principal rarieties cultivated in the 1914 crop eight pielded higher results than the Bourbon. The best of these varietics were D 625, Diamond 185, D 118, D 419 , D 145, B 208 and B147.

The following tables show the acreage under the principalararieties and rield of sugar per acre obtained from certain of the varieties during the crop of $191+$ as reported by the sugar plantations:-
principal varieties of canes, 1914 and 1915.
Areas in English Acres.
Variety. 1914. 1915. Increase. lerrease.

| B 208 | . | .. | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D | 1208 | 6,820 | \cdots | 388 |

D 145 6,071 5,916 \quad - 155

Diamonit 18:5 .. $1,50 \div 1,791 \quad 28 \times$
D 109 .. $\quad . \quad 2,272 \quad 1,748 \quad-\quad 524$

Green Tramsparent	.	1,172	1,150		17	
D 118	.	.	177	547	370	-
D 419	.	\because	100	213	113	-

$\mathrm{D} 419 \quad . \quad . \quad 100 \quad 213 \quad 113 \quad$

B147	27	192	-	82
D 43399	78	10.5	97	
D 119;	16.)	100		65

D $4: 39$.. .. 96 80 $\quad 16$

D 199 . . . $4 t$

Java 1	$4:$	(6)	19	-
I) 216	41.	5	1:3	
D 108	17	51	34	
White Transparemt	48	14		34

fesclets of the cultidation of the priveipal vabieties of sugar-cane, crops of 1914.

	Number of Plantations.	
Sumar-cane	reporting.	per acre.
D. 419	6	2.35
D 118	. \quad	.. 2.23
D 167	2	. 2.05
Green Tramsparent	,	.. 9.03
D 4397	.. 4 .	. 2.00

RESULTS OF THE CTLTIYATION OF TITE PRINCIPAL VARIETIES OF SUGAR-CANE, (ROIS OE 1914.- (Conlimued.)

Variety of	Xumber of Plantations	Tons sugar
Sugar-cane.	reporting.	per acre.
B 1.17	8	1.94
Diamond 185	5	$1.9 \because$
1) 625 .	30	1.83
Ibourhom	$\because 0$	1.80
1) 145	$\because 4$	1.74
J) 39.56	\because	1.6i)
I) $4: 399$. 2	. 1.89
B 20S	. 20	1.76
D 109	11	1.3:3

1NSEOTV IENTA.
The Eeonomir Riologist reports regarding the pests of the sugar-cane:-
"Sugar-cane."
"Yarious methods of control against the variety of in"sects which damage this erop have now heen fully tested 6 and a regulan syisem is in use on the majority of the "estates.
"A regular gang is employed, the members of which aro "employed as reqularly as possible. A reriain degree of "skill and knowledge of the work is thus arcuired les these "people which is very desirable. The cutting out of deard "hearts, collection of the egrg masses of the small Moth " Borer, destruction of Castmio larvae and pupae in re"cently cut fields and the ocrasional destruction of minor "pests such as leaf eatins worms and hardhacks form the "regular duties of such a gang.
"During celtain seasons traplights for the destruction " of the adult forms of the two species of small moth borer. " (as advocated in a previous report of the Biological Di" vision) have been used witl! considerable success on some "estates.
"The collection of parasitized egg masses and their re" distribution in the fields has been seriomsly undertakem "in some instances but the quality of such work is sener"ally greatly deprectiated owing to the lack of supervision " ly a trained and competent person. Speaking from per-
"sonal observation it is significant that where such super"vivion exists the hest results are obtained and the rields 'of sugar per acre are among the highes in the colonr.
" However, all-romind progress ran be recorded and it is

- hoped that the general rise of prices owing to the war in
"Europe will perwamb hose romeerned to further extend
"this side of" the work. Is an investutent the returns maf,
"on at casmal insperelion. appear small amel hardly worth
"while, hut careful investjation will fully show the entire
" fallacy of such views
" No new really serious sugar-athe pests have appeared
"though perceptible increases in Froghopper (Tomaspis
"flarilatera Trich) and hardbacks (lysreinctus bidentatus
" Burm.) should be recorded.
DISEASES OF THE CANE.
The principal divease atixeting the sugatrane during the rar was the root disease, also termed the " new" or "dry disease" "amsed by . Morasmmes strecheri. This was, nowerer, present in smaller quantity than in the previous rear The rind diseases, ratused by Tricosphaeria succhari and Melameonium sarchari. were faily prevalent though conidecally less damage was attributable to these than to the root disease Next in importane" were the "pineapple disease" (Thiclariopsix rhatelicons) of sugar-(ane enttings and the rot the to Diplodia, the latter affecting principally the ribe cane Leaf diseases were for the most part not abmalant. the only one worthy of mention being the spoting eamsed by Cercospora raginac.

" Vomiting Sickness."

 that this dienase corresponds exaletly with the main arekee Neason, when other fabts and matuml fools are relativels
 in previons yeats. lmstead of eminer in Mareh or early in April they have been alondant till well on in Mat, and romiting sictness cases have been reported in greater numbers than in the previous rear. for example, and over a wore prolonged perion This has been noticed for three or four yeare past.
—"The Colomial Journal," October, 1915.

The Birds of British Guiana.

Bu Ciurles B. Dauson, S.J., M..1., (1)ron.)
I 1 .
PARROT~.

Tnder this head are included the following:-
Macaus, pecnliar to the Neo-Tropical rergions; (orkatoos, peculiar to the Australian regions; Nestors of New Kealand, including the Kea which has recently becoming carnivorious, making havoc among slieep by digging into their kid. neys for the sake of the fat; Lories of New Guinea and the Malay Archipelago; besides l'arrots proper', J'arakeets and Loev-birds found, with few exceptions, in all Tropical regions, though each with its peculiar orders and species.

Parrots are the most intelligent of all the feathered tribes. Possessing proportionately more brain than all the other birds, easily domesticated, prettily or even gaudily coloured, knowing in their ways, and with a wouderful capacity of imitating sounds and even the human voice, they are everywhere popular as pets and familiars.

Chamacteristics of the whole family are: loumd heads, zygodactyl fect, a highly dilatable iris, a fleshy tongue, and (what is common to no other bird), a pincer-like beak with a movable maxilla (upper beak) and the use of the foot as a hand. We may also add "powder-down patches" which give to certain parrots when in good healti the appearance of being covered with bloon. There are in all seventy-nine genera, including five hundred and seventy suecies, two hundred of which lelong to the 'Axericen Condinents; one species, the Carosina Parakoed being found in the Uniterl States.

The food of parrots consists of fruit, nuts, berries, and seeds. Lories feed on honey which they extract from flowers with their brush-tipped tongues; the Kakapo or Oyt parrot of New Kealand will add lizards to its bill of fare and the Nestors, insects and their larve; while certain Cockatoos will dig in the earth for roots and tubers.

Parrots pair for life. but congregate in great numbers at their roosting places where they make a deafening noise. The sexes are generally alike, the males being larger and more brightly coloured; but in one species, the Electus of New Guinea, the male is green with red sides, and the female has head, beast, and upper parts bright red. Parrots generalty make theit nests in holes of trees which they will whittle out with their powrful beaks. Therein are laid the spheroid eggs, white or with a greenish or bluish tinge. They are long-lived.

Parrots- (Colonial). Psilturiduc.	
Red and Yellow Macaw	Arat Itaceo.
Red amd Blue	,, chloroptrize.
Blue amd Yellow	, arararma.
* Green	,, sercra.
Lta	mucacaamna.
\dagger Red-fronted Greeu Macaw (Hahni's)	hathio.
Brown-throated Parakee	Commins uermginosus.
* \uparrow Scarlet-tipped (bright-eyed)	, leucophthulimus
Kissi-Kissi	solstitialis.
Golden-fronted	(1urcus.
Scaley breasted	Pyrrhura picta.
Red winged ",	, egregia.
* \ddagger All-Yellow	
(Roraina Mt.) (humau-voiced)	Bolborhynchus panychlorus. Brotogerys tirica.
Golden-winged Parakeet	, chrysopterus.
GGreen redrumped ,	tuipara.
Black-winged Parakeet	Crordrome cingulata.
¢Purplectad \quad	purpurata henti.
Amazon Parrot	Amazona ochrocephala.
Yellow-cheeked Amazon (Screecher)	, amȧonica.
Blue-cheeked Amazon (Culu-culu)	:, dufresneana.
Green Amazon (Saurama)	" farinosa.
*	bodini.
Red-backed Amazun	, festica.
White-capped "	aestiva.

Cuckoos consists of eaterpillars and insects generally: some will eat fruit and bereies; others, lizards, small smakes and eveu birds and mice. Their cry is loud and shrill, but none in these regions utter the note that has given the name to the whole family. Some species have striped, hank-like breasts as also a hamk-like flight aud are in consequence often mobbed by other birds. In this colong the Cuckoo's habit of depositing its eggs in the nests of other birds is taken up by the Lazy-bird, and its aftinity, the great Corn Bird, both belonging to the Order "Icteridae," q.v.

These birds are found all over the world except in Ais tralia, Madagascar, and Egypt. They may be recognised by their large heads, often decorated with a scarlet tuft, their wedge-shaped and pwerfill beaks, their necks, spiny tails and zygodactyl feet. Browns, greens, rellows, with markings of scarlet and suots or hars of black and white are the prevailing colotiss. They are rightly called "scansorial" for they asceud the trunks of trees with great
agility either asing theit claws or, if the trunk is slendet, clipping the tiees, as it werr. astride. With their power, ful beaks they can easily chisel a hole in the hardest wood; and with their highly protrusible, worm-like tongues, which are tipped with a hathed spine, they extract insects and their larve from narrow holes or crannies. Then loul and rapid tapping may be heard for a mile. They make their nests in deep holes of trees which they hollow ouewith great precision and symmetry; here they lay white, ciossy, oval eugs. When at work, ther rest lack upon their hayd, spiny tails, and as easily descend as ascend, preserving their upright position. They are shy hirds and so not oftes seen; but their loud note, or derisive laugh, ringing through the forest, when once heard is not easily forgoters. Their flight is swift and undulating. There are fifty genera, including four hundeed and forty species of which about half are peculiar to the New World.

Y'OODPECKERS.- 1 Colo	al.) Picidae.
\dagger Head-streaked Woodpecker	Chloronerpes capistralus.
Yellow throated	, flavirula.
Red-cheeked	rubiginowus
TSpeckled-throater] "	Chrysoptilus punctigule.
†Biood-crowned " (Yellow-naped)	Melanerps cruentalus.
\Varangle Rubr-fronted (Lesser Black)	rubrifrons.
Rudje	Yeniliornis sanguinems.
TSparrow ",	" passcrinus.
+Helmeted \quad (?)	cassini.
Red-rumped (Kirk's)	kirki.
Yellow-crested Brewn Woodpecker	Celeus reichenbachi.
Fine spotted yellowbrown Woodpecker(?)	, eleguns
Rel. cheeked Woodpecker	$\begin{equation*} \text { Iumana } \quad \therefore \quad \text { rsimaril- } \tag{?} \end{equation*}$
Brown Woodperker	.. rufus. isea. latus
iStriped , (?)	\because grammeonsobrina.
Brown-breasted Woodpecker (collared)	Cerchnripicudioptila.

WOOD.HEWERS.

Hood-hewers. like ant-thrushes are a large and littleknown familis, and like them, are peculiar to the New World There are no less than fifty genera and four hundred sy, ectes. They do not precisely "hew" the wood and would be better called "wood-peckers" were this name not already in possession of birds that might lay better clam to theirs. They might be better named "wodpeckers," for they ron with great ease about the trunks of trees pickins ont insects and their larvae from holes and crevices. When the trunk of the tree is slembler they will ascemt or descend, sitting as it were astride, and clipping the tree with the sides of their feet with queat adroitness, much in the manner of wood-peckeps. They vary in size, the largest being a foot long; but penerally they are only half that size. Red, rufous, or chestnut, are the prevaling colous, while the head and neck may be streaked of freckled with light huff or white, and there may be white or black patches on romp or throat respectively. The tail feathers, generally ronnded, have in mny cases projocting spines, tike those of wood-yeckers, which materially assist the hird in ascendjng or descending trees; and on them it ean rest bate dur. ing its "wood-hewing" operations. The beak may he long and curved, in one species, Xiphorhynchus procurrus, enormously so. They build their nests, sometimes great struetures, in trees and shrubs of in holes of trees or banks. The sexes are similar. The roico is sometimes loud-the note being rapidly repeated in a descending trill-and sometimes rasping or chattering.

Wood Pickers or Woom-Hewers.-(Colonial). Dendro. rolaptidur.		
Whife-faced Woom-Hewer ?)		
(earth (bit)	Gicumilla leucopurs.	
*Coppice Wood-Hewer		
(woon)	(rıhimimx	nematmer.
Fronted Wood-Hewer (social)	Symallaxis	frontalis.
Brown-tailed Woor-hewe	,	brunneicamdalis.
Whitish ,	"	albescens.
Guiana	.	guianensis.
Rootie or Red	,	rimnamomea.
*Swarthy Wool-H wel (Roraima)	"	adusta.

Therush-like Worm-
Gater (?) Automolus furdinus.
Whate-throated Worm eater.
*Fire lose Water. Worm-eator.
Re? tailed Water
Worm-eater \because erythrocercus.
Spotted-lreasted Worm-eater (?)
Cheek-bearded Wommeater
*Sharp-tailed Wormb. cater
Writge-billed Wormcater
*Long-tailed Woord carver
Resplemant Worm-eater
Olive

* Merle \quad - \quad ".

Spotted Woorl-Diral

* Pale-billed Woot-Siar

Pard-spoted
*Much-spotter polysticta.
Mruch-sperkled multigutata.
White thoated Trees. Weaver

Woor-hewer (\%)
Thick-billed Woorlhewer (?)
Spot-headed Woad Bidd
Wh:te-lined

* Long-heaked \quad Vasiog longirostris.

Curve-billed Siphorlimehts trochiliros.

* Lighty ('urved-bili

Wood-Bird
Latee Wood-hemor
Broad-billed ,
*Bar backed "

Dendropler pieus.
mendrexelastex temmincki.
Hylexetastes perroti.
Pirolaptes puncticeps.
albolineatus.
., subprocurrus.
tris.
Deudirocolaptes plagosus.
.. rerthia.
,, radiolatus.

SUGAR BIRDS.

These charming birds were so called from their habit of fearlessly visiting tsugar factoris in pursuit of the flies that swarm in such places. In outward appearance, with their lows beaks and lorked tongues, they resemble hum ming-linds; their plunage howerer, though very beantiful, lacks the metallic lustre of Trochilidac. They mumber some twelve genema and upwards of a hondred species, all peculiar to Neo-Tropical aud Sub'Jopical regions. In company with Hummiug-Divds they probe Howers for honey. or like fly-catchers, dart after flies on the wing; or like tree-creepers, search the bark of trees for insects. Velvetlike or nurple, relieved by brilliant patches of sky-blue, white, or yellow, are the prevailing tints; white the hens are often dull olive or green. From their note they have acquired the colloquial name of Quit-quits. They build a rongh, domed nest of grass, mose, roots, etce, and deposit therein from two to four white, or greenish eggs, with blotches on speeks of whety-red. They are easily tamed, and from the fearless nature and pretty plumage, soon hecome great pets: but on acconat of dificult feeding iney do mot: ordinarily live long in cages.

HCMMLNG BHRDS.

These small but wonderful creatures excel all other birds in their power of fliglit, and rival precious stones in the lustre of their colour patches. Some are adorned with crests, car-tufts, frills, or pendents; and in some species the tiny feet emerge from little puffs of snow-white feathers. The wings are long, but narrow, and the tail sometimes
assumes fantastic shapes. They were happily named Trochilidec from a Greek word denoting the swift spinniug rodler of a windlass; for their wings, moved by powerfu! mיiscles, whirl with the rapidity of the propenler of au aeroplane, as they dart like insects from flower to flower.

The humming of their wings may lo heard for several yards and is frequently accompanied by a continual twittering. To sustain the powerfol muscles of the wings, the breast-lone is enormously (Leveloped and shaped like the keel of a racing gacht. It will be noticed that the beak is abnormally long, in some species even longer than the body. and sometimes serrated. The tongue also is rery long and can be protruded to a long distance; it is a double tube. forked at the end like a snake's. The bird is thus able to suck loney from flowers as it poises horizontally betore them on almost invisible wings. The tail meanwhile opens and shuts like a fan, or is moved laterally from side to side. Its food consists, besides honey, of small insects which it collects from leaves and flowers.

These tiny creatures are fearless birds and will drive ot: intruders ten times their size, darting at them with lightning rapidity, their beaks held out stiff like a kuight's lance.

The tiny nest is a fairy-like structure of felted wool and? cobwebs, often tastefuly adormed with lichens; it lays bu* two white eggs, or only one.

All these birds belong to the New World, their neares: approach in beauty and habits being the Sme-birds of India and the Last; but these latter are normat in lheir Hight and must creep about the flowers in pursuit of heit food. Tbere are in all a hundred and seventeen genera, including some five hundred and seventy species. The females are generally much inferior in colouring to the wales, and laci their feathered adornments.

Humming IBmes.-(Colonial). Irochilidac.
Blue-fionted Lance-Bill Hemistaphania johannac.
White-tailed Barbthroat
(mouruer.)
Thienctes lowemrus.
*Bronze-green Hermit ", antoniue. Rugsed Brown Hum. ming Birel

* C Guiana Radiant,\quad Phaethornis guiannac.

Eyebrowed Humming Bird
\dagger Majestic Radiant
Fiermit Humming Lird
*Rupuruni Radiant
*
*Bishop "
Silne-wing Humming Bind

Jacobin (or white-raifeq)
Hmmming limb
(honey-cater)
Emerald
\dagger White-vented Pilgrim (beggar)
Ultragreen Pilgrim

* Aspotred-tailed ..
* Bright-tailed
+ Copper-tailed Dainty
* Geren-rented Wooulbeanty
Rod throater א゙appire
Blue-rhiumed Eal|hite
* F Forked-tailed goh! Na: 1 , Mt. Romamal
Fration Forr-tail Wood-Nymph
©Watertoms Humming Biod
* Ciar-tufted Humming Bind
- Mt. Roraima) shate hesurer
Dophin Ear-tufted Humming Bird
Fiery-taled Arocet
\div Violet-tailed forrh Humming Rird
Green-throated Torrh Humming Bird
\therefore Gold-shining Mospuito Hımming Bial
\therefore Emepald Terona Gieen. t:ill
Grareful Wonder

Phethormis suporciliosus.
$\begin{array}{ll}" & \text { untulusti. } \\ " & \text { bourcieri. }\end{array}$
", rupuruni.
, Tongllemurels
\therefore episcopus.
Campylopterns largipennis.
, hyperythres.

Farisuga mellicona.
Lgyrtrie whilclyi.
$\because \quad$ leuronusler.
", eiridissima.
., marnlicelleda.
", nitidirauda.
Sullecrolted eupreicumate.
Itylocharis cididirontris.
sefyuilam.
Ghlorestes cocrubles.

Thatmanial jumenta
ratiptomi.

I'r lusophlories !fermathat.
.. delphimur.

Lampornis violicauda.
, gramineus.
Chrysolampis mosquitus.
Psitamyeter therexier.
Polytmas thatmectulias.

King Topaz
\dagger Yelow breasted goldenglory
Godlen Long-ear
Tuft-crested Coquicte
\dagger Rocket-tailed Quoit

Topaza pella.
Heliodoxa xanthogonys
Heliothris aurita.
Lophornis ornatus.
Discura longicauda.

SWIFTS.

The resemblance of Swifts to Swallows is only superticial, Anatonically, the difference is fundmental, and swifts have been fimally placed in the same sul-order as Humming Birds. They are emphatically birds of the air, performing all their functions on the wing aud never resting except to roost. Like Humming-Birds they have enormous keels bearing the powerful muscles that sustain thent in their contimual flight. Their feet, unlike ali other birds, except a few speries of Night-jars, are generally pamprc. dactylois, that is, all four toes are in front, and in some examples even the toes are feathered. Their coloration is generally sombre, blacks and hrowns with sometimes white chins, breasts, or rumps, and markings of rufous, being the prevailing tints. They range all over the workd except in New Zealand and some other islands, and in snow-hound latitudes. Their tails are generally forked; and in fliglts they resemble a bent bow. Their note is a shrill scream uttered continuously. The Collocalia make their nests of secretions of their salivary glands and from them the Chinese concoct excellent soup! None of these species, however, belong to the New World. Others make their nests saucer-shape, of twigs, straw, feathers, etc.. which they catch in the air as ther fly, linding the material together with saliva, and selerting such sites as the face of a clitf, the open lianch of a treer. palm leaves, ett: The Penyptila makes a hage mest entirete composerl of sapeds, ghed together with saliva. The eggs are dull white like those of Homming- Pirds. They are in all nine gentrat and " bumdred species, of which twenty-five belong to the New World.

Swifts-(Colonial). Cypselidac.

\dagger The	Belted Swift		Chactura	naris.
"	White-banded	Swift	,	albicincta.
*ì	Spiny-tailed		"	spinicauda.
* \dagger ',	Grey	,(?)	"	poliure.

```
*The Ash-rented Swift Chaelura cinereiventris.
*: Grev-breasted ," , guianensis.
! Rudily , (?) Cypiseloides rutilus. . . . .
* \(\ddagger\), Black , , ., niger.
    "Smok. „ „ fumiyatus.
    " Palm Swift (Scaly) Claudia squamata.
    , Cayeme, (downy) Panyptila cayencnsis.
-
```


SWALIOWS \& MARTINS.

These birds belong to the Oreler Passeriformes and are placerl next the swifts in this collection for the sake of comparison. Like Swifts they are cosmopolitan and their habits are gencrally the same, feeding on insects which they catch with open month. They will alight on the bare brincles of tires and are sometines seen on the ground collecting mud to build their nests which may be cupsh:ped or like a retort with a tube for eutrance. They often form colonies of mests and hunt in companies. In colour they resemble Swifts: blue blacks, with puff, and under-parts gemerally white; there may be chestnut or reddish markings. They twitter or warble, both on the wing and at rest. The egos, from four to seven, are white in Martins, and white with red spots or purple markings in Swallows. Martin* are genera!ly smaller than Swallows and the colouring is not so bright. Many of them are white-rumped. Sand Martins build their nests on the face of cliffe, digging holes in the soft ray or sand; the Purple Martin of N. America, in holes of trees. There are in ali thirfeen genera, inc ${ }^{1}$ ming more than a hombled amd thire teen speries, of which twenty-six belong to the New World.

Swallows d Martiss. (Colonial)-Mirmdinider.

TVuite-renterd Swallow
(Quick-flyer)
Chimuey Swallow (red-
vented) Hirundo erythrogaster. Chalybate Swallow (ironblue)
Brown Awallow
Brown Swallow

- Ehorant banded Swallow thírora fasciata.
Ash-throated ,
* \ddagger Dark-blue bright \quad :
\dagger Capped
†Forked

Tachyeineta albirentris.

Progne chalyben. tapera.
" melanolenca.
" ryanolcura.
.. pilcata.
.. fucata.

CHATTERERS.

These are forest birds, feeding upon berries and seeds, with insects and even lizards. They are all peculiar to the Xeo-Tropical regions and include some of the most gorgeonsly coloured birds in the world; such as the Crimson? Cotinga, the Fire-Bid, the Pompatour Cotinga, the Purpiethroated Chatterer, etc. : and some of the most remarkabie: as the Cock-of-the-Rock, Tmbrella Bird, and the Canpanere or Bell-Bird. Ther vary in size, the Bald Cotinga being as large as a crow and like it in appearance, others as smail as a Sparrow. The Cock-of-the-Rock has the habit of displaying himself before the females after the mamer of Galliformes. The Campanero, which lives in the tops of high trees utters a double note, resembling the striking of a hammer upon an amil, which may be heard for three miles. It has a hollow comucle in its lill which it will infate with air and ened for several inches: but this has nothing to do with its belf-ike note. The Imbrella-Bind is black and has a permanent arest as describerl: the Green heart Bird utters a mipl ringing note that resounds throngh the forest. Nome of the Cotinga have hare orbits or patches. There are some thirty genera including a hundred and sixty species little is known of their hahits The Cock-ot-the-Row makes its hust of stick and mod on some projections of rock within a cave and therein lays two eggs of huff, spotted with red and purple; others build iyn trees

Chatterers. (Colonial)-Cotingitae.
Black-headed Cotinga

*Rps ${ }^{\text {Ros-throater ", }}$

Tityra rayrana.
." inquisior.
Platyparis minor.

Pachryhamphus griseign-
laris.
*White-rented
Ash-coloured Cotinga tBlack
†Dark-coloured ", $\quad " \quad$ atricapillus.

MANAKINS.

These birds, closely alliet to Contigidae, are little like them in outward appearance; they are all small birds, said to have the habits of the English Tit-mice. All belong to Neo-Tropical regions, numbering nineteen genera and some eighty species. Many of them have brilliant patches of colour; lipire aureola, for instance, has a flaring red head which, when the crest is erected looks like a flaming torch; others have golden heads or yellow. They live among trees n slirubs and feed on fruit, berries, seeds and also infects. Tlieir note may be loud or whistling; one species at least, (Chiroriphia linearis) has the credit of displaying itself, and another of the same genus (caudata) of holding a con-
cert, all listening while one sings. The females are generally dull green, or some other sombre hue. Ther make shallow nests of grass and tendrils which they hang from the forks of trees or shruhs, and lay egge yellowish or red. dish white, mottled or hotched with darker colom.

(T'o be Continued.)

Selection of Rubber Seed.

The conclusion is that large seeds fumish by far the best results, both as regards germination and as regards growth of the seedlings. One should, therefore, before planting seeds, go over them and selecting from them, count as inferior and throw out all which weigh less than five grammes.
..." The Gardens* Bulletin," Straits Settlements, June 20, 1914.

Hints, Scientific and Practical.

The Conditions for Research.

IT is only too well known that other comntries have some years past distanced Britain in tie field of research; that while Germany is semetjing her trained sons to all parts of the world, we scarcely eren supply onr own colonies. A writer in "The Mosthly Joumal of Science" said last vear that "to a rery great extent, both in the home kingloms and the colonies, we find ourselves compelled to import that intellectual eminanee which we refase to coltivate in onf midst Foreigners ocerpy professorial rhairs in our colleges. they fill the posts of botanists and geologists in onf colonial gowernments, they hold high positions in the respective staffes of the libtish Musemm, of the Ceological simever al Jmoth, and of our rephoring expeditions."

Now as these results cannot be owing to may intmed foficiencr in thr commirymen of Newtom, Fallalaty and Dirwing it bebowes us to ask if our educational system is at fanli, amo if fair provision is mate for those allo and wit. lis.g to make origiual research.

Numerons sugestions hare bern mate regarding the endowment of researd, hut most of them arr mupartica? Those who imagine that the objert will he gatined hy establishing adeguate teacherships of science. seem to be too sanguine. The labome involved in the work of teathinge in the way of acquisition, preparatom, and performance is too great to permit the derotion of sulficient time and thomest to the seatele after new touth. If it is desilable that bew facts and winciples be seametal after, why should fit in quirers be phet, either partly or wholly to other work: I know that mamy of ond teachers have hitherto been at a ereat disadvantage that managers of institutions have hat a sharper ere on their prosperets than on their interal armangements: that they hava thought of a college mather as a body of bricks than as proturetive of a boty of learning; and that apparatus amd assistants, thongh well emongh in Berlin or Leipaig, are needless in prudent England. Tet the ideal profeswor is rather the head of a department than a mere speaker by the rard of so many lectures: a man with mmeroms hands in the shaper of demonstrators
and assistants, themselves the possessors of well-trained brains; a divertor of work with all its apparatus freely supplied to him. Such a man adequately remunerated, may be safely left to lis own tendencies. Contact with nature breeds the desire to know her better. In favourable conditions whe teacher becomes the investigator, and while seeking afier new truths builds up his own fame.
_" Nature," January 27, 1881.

The Goat as a Source of Milk.

There are two special qualities possessed by goats milk which alone should make it popular:-

1. The rase with which it is digested by children, and experially infants.
2. Its almost complate immonity fiom germs of tuberculosis.

With regard to the fiss point, the substitution of gats' for cors mill has been instrumental in saving many young lices. The explanation of this superior digestibility is furnjshed on sejentifir wromeds by at least fwo athorities. The late T_{r} : Augustus Voelcker held that it was due to the fact that the ream globules were much smaller than in rows milk, and in at more perfect state of emulsion. The explanation of D_{1} : Barbellion, a French medical anthority, is that the curd of cows' milk forms a dense adhering mass which by agitation weparates into clots that are but slisintly soluble, but the curd of goats' milk forms very small, light Hakes, which are soft, very pliable and very soluble, like those in the milk of the ass and in limman milk. Samples of these latter as well as goats' milk were summitea to the action of digestive ferments and were found to be digested competely in 20 hours, whilst the same prosess applied to cows milk showed only a very slight progress after 60 hours.

So much bas been written on the prevalence of tuberculosis amonget cows and the possibility of commonicating the discase to the human subject through the milk that, when it is fully recognised how comparatively free from such germs goats milk has been proved to be, this valnable quality should stimulate its use. In this connection

Sir William Rroadlent may be quoted. In his address to stulents on the "Prevention of Consmmption and other F'orms o!' 'Tuberculosis," he said: " It is interesting to note thatesses and goats do not suffer from tubereulosis, and to bear in mind that the shrewd physidians of past days userl to order asses' and goats' milk for persons threatemed with ("msumbtion."

To eralise the difference between goats and cows' milk obe has only to return to the latter after a comse of goats' milk. The difference is very much the same as when skimmed milk is sulostituted for whole milk. This superiority is not so noticeable when goats milk is drunk by itself as when it is taken in tea or cofter, or used in milk puddings, eostards and blanc-manges; the rich, creamy taste is then rery maded.

> "The Jominal of the Board of Agricultme, October, 1915

DURN: investigations made last rear by F. T. Jomoks. M. A., and the writer of this articte. it was necessary to carry ont spraying experi. ments with Bordean mixture to determine if spraying mothods were likely to be useful in the controi of Pink Disarse. Mechanical diftienlties amd rlimatic ronditjons in Malay render such methols nseless except in sperial cases The experiments were conducted with spiat: ing madinines specially adapted for use on phantations in this cometry. The Borteanx mixture was mate np of the following:-10 lbs. Copper Nulphate, 8 hs. Quicklime aml 100 gallons of water.

The experiments were specially conducted to test the Pffect of Bordeaux mixture salts on the resulting rubber. The rubber was made up in sheet form so that as much of the roppere salts as possible was retained. In . luly and Angust, 30 trees were spraced once a week from the tevel of the upper traping cut to a height of er-30 feet above this level. Control plots were kept for purposes of comparison Frecses of fluid was applied which ran down over the cuts, rhanel and spout. None of the rubber aheets from these trees ware tacky her the and of November. From Septem-
ber 10 in Normber 12 , the trees were treated as above, lnt the lapping cuts were deliberately sprayed.

Examination showed a plentiful deposit of blue copper salis on the spout and tapping ents after the application. Only one sheet of rubber in the bateh, manufactured on Oetober ent. was considered to be tarky. This sheet was prepated from latex gathered on Octoher 1st on which date spraying was done The tacky sheet was much folded together and the surfaes wre vo stirky as to be inseparable. The experiments stopped in November. All the rubber sheets were kept for several months in the laboratory, but there was no further alevelopment of tarckiuess thought the pesence of Copper salts in appreciable quantities was bemonstrated hy the dericultural Chemist. It can now he stated, that there is lithe danger in using bordeaux mixtarr as a spray agales the attacks of fongi on rmber trees. It trees in lemping are to he sprayed with bordeanx mixture they shomble bexted for two or three dalss after the sprovine Tlas perion wonld be quite sufficient to allow for arequents.

- The S Mrionltural Bulletin of the Falerated Malay States, september, 1915.

Abstract

The Manurial Situation and its Difficulties. (9) the forme important kinds of manurial matrorials (nitrogemons, phosphatic. potassic, and rakeareoms!, there is only one the potassie, of which there will be a serious scareits, and it serms almose certain that grater difticulty will atise fom want of labom than from want of raw matorial.

It is mobable that there will be sufticient supplies. of nitrogenens manures. In normal bimes we export wer thereforathe of our wotal prodaction of sulphate of ammonia. such export will now be rextricted, as this amo other fer tilisers can only be exported meder licence. Our total production of entphate of amimonia exceerls 400,000 tons per anmum, so thot ihere shonh he suffie ient of this saluable fertiliser available to meet even wratly increased consumptieri. It is probable that the priee will be a little higher than in pro-wat times owing to the onlanced price of sulphoric acid, and the increased cost of labour and
transport, but it is not likels that the price will be excessive.

An immense amount of potash is at pesme list in liquid manure. It iv not generally realised that lipuid manure is far ricker in potash than in any other mamurial constituent. As a result of 35 analrise of liguid manme obtained from farms in the northeast of seotland, the writer found that the percentage content of potash is. on the average, more than wice the perentage of nitrogen. There are natmally, great variations in composition, and in exceptional cases the nitrogen was higher than the potash. but in nearly all cases the potash was higher than the nitro gen, and gencrally very much higher.

Mest of the potash in the food of stock is excreted in the urine, and the liquid which drains away from dung heaps were sased and used as manme, it would langely do away with the necessity for the use of sperial potash manures, and would a!so suppls much nitrogen to the soil. With potash at its present high price, the waste of liquid manare is alnost criminal.

> -"The Journal of the Poard of Agriculture,"
> (England), October, 1915.

The Demand for Molybdenum.

At the present time there is an cerepionally large demand for the so-calle! "sperial steels," that is 10 say, steels which are specially hardened. This rlase of sleels is much used in connection with ordament work, and particulath for making machine tools the wear and tear of which in out lange engine ming works is just now ahnomathe high.

These "onecial stels" are made hy the addition of ratious companatively rare metals, such as tungsten, manganese, vanadium and molybdenum, to steel, and their importance may be gathered from the fact that in Germany all stocks of these metals are being commandeened by the government. In the Cuiter Kingtom molydenum is at present in so great request that the ore is now selling at $£=50$ per ton
_-_The Colonial Journal," July, 1915.

Exports of Agricultural and Forest Products.

Below will be found a list of the Agricultural and Forest Products of the Colony exported during the year 1915. The corresponding figures for the two previous years, and the averages for the four years previous to that, are added for convenience of comparison.

Product.		raye 1909-1:	1913.	1914.	1915.
Sugar, tons	\ldots	99,62:	87,414	107,137	116,293
Rum, gallons	\ldots	2,289,820	$3.260,986$	489,729	4,698,230
Molasses, caskis		1,872	1,187	832	
Cattle-food, tons	\ldots	7,388	6,859	2,426	2,233
Cacao, cwts.		487	505	445	532
CitrateofLime, cwt		. ${ }^{\text {: }}$	36	99	170
Coconuts, thousand		927	87.	1,890	2.090
Copra, cwts.		1,282	1,127	1,690	1,619
Coffee, cwts.		1,110 ${ }^{+}$	797	2,131	1,538
Kola-nuts, cwts.	\ldots	$\because 4$	1	4	17
Rice, tons		3,737	7,709	7,090	9,058
Ricemeal, tons		2.005	1,802	$\because 41$	266
Cattle, head	.	983	965	1,172	649
Hides, No.	.	4, 177	5,106	1,6.4ij	1.58 .1
Pigs, No.		1,318*	1.604	1,303	1,193
Sheep, head		76	40	141	12
Balata, ewts.		9,349	11,817	9,131	13,903
Charcoal, lags		73,950	62,321	67,450	58,424
Firewood, Wallaba etc., tons		9,319	8,670	10,204	8,905
Gums, lbs.		4,764	2,237	886	
Lumber, feet		259,837	517.819	254,772	225,453
Railway sleepers, N		5,280	11,0\%0	10,627	2,556
Rubber, cwts		17	11	9	41
Shingles, thousand		2,437	2,645	1,806	2,214
Timber, cub. feet		254,093	+37,111	212,418	113,861
*In sear 1912 only. tla years 1911 and 1912 ould			-		

J OURNAL

OF THE

Board of Agriculture

Artesian Well Water for Rice Lands.

IT has been well said that successful rice cultivation is a matter of water supply. It all depends upou what is understood by that phrase " water supply." Water is needed-water for germination water for growth, water to regulate the temperature of the field, water for keeping down pests, water for carrying mutriment to the plants, water for killing out weeds and grass, plenty of water to keep the water fiesh on the ground: but the phrase implies something more-complete control. The rice planter mnst know the right amountof water to use at any given periol of the erop, he must know the right time to use it and how to apply it in the best manner: It should be the object of the grower to " apply only the amomat of water which is most bemeticial to the plants during the different stages of plant growth. Good ecomomy ealls for the use of only so much water as is uecessaty to make the hest rields. It is not good economy to save water to the extent of injuring the erop. If too lithe or too moth water is used, lower yielde will he secomed. dute to stumted plants and small heads in the first ease, and loss due to poor stooling or straght-head blight on some soik in the serond."* Given this knowledge and control, it is undombedly trme

[^3]that successful rice growing is a function of the water supply.

That irrigation might furnish the means of control and artesian wells the water supply, seem olsious corollaries to this proposition. In Texals two successive crops of rice can be grown with irrigation on very sandy loam soil, and four crops on the batck claty. At l'Crban lark, in this colong, where the water from an artesian well is a a ailable, five crops, averaging 26.6 bags of 120 lbs. per acre, have been raised in 2.5 months. These facts indicate possibilities which must appeal to any man of affairs.

At the Experimental Fields of the Botanic Gardens, Georgetown, where the irrigation water is under complete control hat is not supplied by an atesian well, the following interesting figures have been recorderl:-

> Wuter During Grouth of Crop.

				Lbs. Padi
Tear:	Rain.	Irrigation	Tolal Inches.	perare
1909	24.8:3	26.12	50.9.)	4,504
1910	38.07	25.50	63.57	4,8R0
1911	33.71	24.40	58. 11	$3,27)^{* *}$
1912	16.04	27.80	43.84	4,956
191:3	28.6 .5	38.10	66.75	5.880
1914	18.6.	32.90	51.4;	6,199)
191.5	18.76	44.90	63.66	5,046
Means	9\%-1	31.89	\%6.90	4,966

On amalysis these figures show that in the driest crop period (1912) a full normal crop of 2.2 tons of padi per acre was obtained with 27.8 acre-inches of irtigation water: in 1914 a maximm crop of 2_{4}^{3} tons was got with $3: 3$ acreinches of irrigation water. The monthly average in 1912 was 9 atre-inches, in 1914, 11 acre-inches. Except in abnormally dry seasons, 9 to 11 acre-inches of irrigation water per month of the period of active growth produces very satisfactory results. In fact, in normal years, 8 acreinches per month would seem to be sufficent for a full crop. Excessire water supply has resulted in reduced crops, and not necessarily in increased returns.

[^4]In Texas the rice crop may reach 16 to 18 cuts. per acre, with an aremge of 11 ewts. In British Guiana the average vield has been $1 \frac{1}{4}$ tons per acre. In North Exsequebo, with goorl irrigation, the arerage vielt over two crops per amnum approximates to 3 tons per acte- one crop of 20 bags of 140 ths cach, and one crop of 30 hags. With controlled irrigation amd dramage, the average yield of pati in this colony should not be less than 1.2 tons of pati per acre per crop, and this quantity, in favomrable sitmations, should reath 13 to 2 toms.

With so attracie a prospect, it is surely worth while to develop as murh as possible our artesian well system. Many of the wells in the dice conntio of Texas supply from 500 to 2,000 (American) gallons of water per minute: the average is abont 890 gallons per minute. 'This is, howerer, pmoped water, for the surface of Water in the wells is fiar below the gromud level, or soon becomes so. The average output of the Britisile diuiana wells is abont 200 + Americam seallons*** per mimbe without pumping, from a pipe standing some inches above ground Allowing 10 inches per month of total water, as the amomint refuifed, it is calcolated that one of out wells wiving an average flow of 300,000 gallons, per day, would supply so acres of rice ground for two full crops, and would amply make up for any deficit in the jainfall
*** One American Gallon= ca. 0. 83 Imperial Gallons.

Chlorine as a Water Purifier.

'The liquid chlorine which is being used her the Germans to prodece asphoxiating was has another and a rerg usaful quality. It is a very good water purifiel. Indeed, it was for we as sucin that it was tirst put up in steel cylinders, and it is conceivable that it was originally brought to the German front for this purpose and that the use of the gas in fighting was a later thought. It acts as a steriliser, :and though wot entirely effective, probably affords the lost means of dealing with impure water when there is no time for more elaborate processes.
.--" The Colomial Jonrual," October, 1915.

The Cultivation of Limes. III.

(By Professor.J. J II, rison, C..M.(i., M..., Director, C. K. Bancroft, M.A., F.L.s.. Assistant Direrfor, Department of Science and 1 yriculture, and (i. L'. Bodkin, B.A.. F'Z.A., Economi(Biologist.)

Diseases in cultivated plants are usually classed under two heads, riz., (1) therse which are due to the non-living environment, i.e, soil, atmosphere and physical conditions, and (2) those brought about ly living organisms, plants or animals. Lime trees cultivated in British Guiana are subject to diseases of woth of the above classes. It should, however, be remembered that no one factor alone is sufficient to induce disease; hence damage which is commonly attributed to a fungus, bacillus, insect or other organism is in reality primorily due to a combination of influcncesi. more especially to soil, atmospherir and rultural defects. Neglect of the hygiene of the soil is the fruitful cause of plant diseases. The signiticance of predisposition to disease is, we fear, seldom sufficiently apprectated by the cultivator. For example, lime trees are particularly susceptible to unfavourable soil conditions: and there is little doubt that the disease known as "Mal-ri-gomma," "collar rot" or "gummosis" is primarily induced by certain physical conditions existing around the base of the trees, although several authorities attribute the disease solely to the activity of a living organism.

biseases of the live tree.

The diseases to which lime trees are subject in this colony are dealt with in detail in the following part of this article:-
(a.) Discases caused primarily by physical influences:-
i. Ycllowing of leaves. This is a disease induced by adverse soil conditions, vir., either the physical texture of the soil or a deficiency of one or more of the essential elements of plant food, mineral constituents, or a deficient drainage. Limes growing on heary elay land, such as ocenrs in many parts of the coast-lands of the colony, are
frequentiy affected in this way. Soils deficient in available nitrogen, potash or phosphates frequently give rise to the sanc condition, while deficient drainage is also a common callse. In places the chlorosis of the trees may be due to deficiency in readily available iron.

The remedies are obvious. Land should be carefully selected for planting; a light, well-drained soil is most suitable for lime cultivation. The application of 2 lb . of superphosphate and 1 ll . of sulphate of potash per trees is frequently beneficial where the plants have developed a yellow and unhealthy appearance.
ii. "Stag-head" is a condition induced bs exposure to constant winds. Sometimes it is caused ly deficient drainage or tillage. Recommendations made in the first of this series of articles in regard to protection from wind should be carefully followed. "Stag-head" is, perhaps, one of the more important and frequent causes of non-productivity of the lime tree.
iii. Citrus finot. Lime trees frequently show knots on the stem arising usually cither at the base of a branch or in the interval between the points of origin of two branches. The knots arise as small protuberances and gradually increase in size until they may attain a diameter of 2 or $2 \frac{1}{2}$ inches. They are woody structures composed of short tracheids-resembling in appearance the cells present in "womm-wool." They are similar to the woody nodules occurring on Beech and other English forest trees, but differ in this respect that they cannot be readily removed loy a knife, as the wood of each knot is fused with the wood of the branch on which it arises.

The cause of production of these knots is not clear. although recent work conducted in the Cinited States attributes their origin to the action of a fungus, sphatopsis tumefaciens. All attempts made in the laboratories of this Department to isolate any organism from the wood of fresh knots have failed. Old knots whose wood has been exposed to the air for some days frequently show the presence of a Diplodia, which is clearly a saprophyte. The genus Diplodia is very closely allied to the genus Sphacropsis

Similat excrescences, such as burs aud sphaeroblasts, are sometimes due to provious injury; at other times they are due to sudden exposure of the shoots to light throughi beavy proming or lif the folling of aldacent trees, the excreseences being in such cases the protuct of development of adventitions of dommant buls. $\lambda \times$ fiar as mur observat tons have gone in liritish Guiana "ritros kuot" is usually associated with the presence of bird-vine (Loranthus Theobromac.)

It is doubtful whether knots are injurious to the trees or not. In some cases where a knot euriorles a branch, the portion of the branch above the knot dies. The knots may be pasily got rid of by proming.
iv. Gummosis or ' m al-di-gomma.' This is a common disease of lime trees. It is also the most common and wide-spread disease of the orange. First reported from the Azores as early as $18: 32$, the disare is now known to be present in Southern Earope. the West Cmies, Vnited States, Hawai, Australia amd probably in all other regioms where the orange or lime is arown.

The actual canse is makown. It has been attributer

 physical jnfluences. Our own obserations have shown us that the disease is most prevalent on hary clay land and is encouraged, if not directly ransed, by certain arlverse conditious existing around the hase of the tree. Mulching or the heaping of earth arombl the collars of trees preflisposes them to the disease, while the liming and the loosening of the soil at the hase of trees emables them in many cases to resist the disease. It is signifieant of this that the disease was scarely erer fommd in native Indian cultivations until malching and moulding of the trees were introduced. Wounding is also a possible cause. We must, therefore, regard the disease, at any rate for the present, as a plysiological one, arising from adverse soil conditions, defective drainge, mechanical injury or some such eanse.

The disease oceurs most commonty at the eollar of a tree. It may extend some distance up the trunk or downwards along the roots. In cxudation of gim first occurs. This
is followed by a bownish discoloration. Sometimes a distinct odonr is present. Where the monk is ringed the tree usually dies.

Careful cultivation, the removal of affecterl parts with a knife and the taring of the exposed healthy wood, the removal of eath from around the base of the affected trees, and the application of lime to the land, are remedies for the dinease. In some rases, too. the trumks are treated with $\bar{\sigma} \%$ carholice acid, aller the alferded pards have heed removerl.
(b.) Discases caused by plant orymmisms:-
i. Wither tip, Eeaf spot or Anthrachose attacks many eitus plants, influling the lime. The disease is of fungus origin and is caused by Collelotrichum glocosporioides. It occurs on trees of all ages, from seedlings to mature trees. The dips and edges of young laves usually show the disease first. The leaves wither and die, and the disease spreats to the romigs stem, wiving rise to "withertip." Defoliation of a lree many result in this way. Blossoms and youme froit may also be attarked, resulting in the trees heroming fouitless. Voung froits when attacked fall ranlils. When, howerer, the frout is nearly full grown, it is usually not alfeeted except through wounds made liy careless hatudling.

Pronine and the removal atod destroction of diseased parts help to keep the disease in check. Spraying with Bordeamx Mixture at intervals from the time the fruit is set until it is nearly mature, is a good preventive.
ii. Sooly Mould. This is due to a funsus, Capnodium citricolum. The leaves, stem and finits become covered witli a sooty coating. The leaves are prevented from perferming their proper functions and the vitality of the tree is impaired.

The fungus is not parasitic. It lives on the honer-dew "xurled hy erertain insects. The treatmont, therefore consists in getting rid of the insects. This is hest clone by -praying with a rosin wash.
iii. Root Diseases. Two have recently made their appearance among lime trees planted in the interior of the colony on cleared forest land. The symptoms of botio diseases are almost identical. Affected trees may appear unhealthy for some time, but they usually show little or no indication of disease nutil death is imminent. The complete death of a plant usually occum within a few days following on wilting of the rounger parts above ground. In one case, cia., the discase caused ly Fomes semitostus. the affected roots bear strands of mycelimu which are white when young and yellowish brown when old. In the other disease, ris., the brown root disease, caused by Hymenochacte noxia, the tap-rot and sometimes also a small portion at the collar of the plant above ground are covered by a brownish incrustation in which sand and small stones frequently accumulate.

Both fungi Jive on dead stumps of forest trees, from which they spread to the living roots of the lime trees. As many of these stmups as possible should be cleared before planting is commenced. When a tree is once affected there js no cure; but the disease can he arrested by trenching affected areas, removing all dead woor and lurning it on the surface along with the roots of the affected trees. The areas should then be dug over and limed before supplying is donc. In the case of the latter disease (the brown root disease') trenching is not necessary, as the spread of this disease is not appreciable unless diseased and deal trees are allowed to remain in the ground for a long time.
ir. Lichens frequently occur on the trunks and leaves of the trees more particularly where they are closely planted. These cause no direct injury, but where prevalent they prevent those parts from performing their proper functions. Pruning, thimning out and the use of strong Bordeaux Mixture are remedies.

[^5]INSECT PESTS OV LIMES.
The lime plant when grown under farourable conditions of soil, cultivation, etc., is seldom seriously hindered by the attacks of any insect pest. When the leaves, branches and fruit of a plant are observed to be covered with several species of scale inserts these may be taken as a sure indication of a memeral poor state of health. It is, therefore, a matter of prevention rather than cure; no amount of spraying will ever rid a tree of seate insects if that tree is grown in the wrong kind of soil or its proper cultivation neglected.

As scale insects are among the worst and most persistent pestrs of limes, these may be considered first.

The Mussel Scale, (Mytilaspis , itrirola, Newn.) This insect appears particularly on the leaves, twigs and fruit of the plant. It is a mussel-shaped scale, brown or purplish in colour. tapering towards one end. It spreads rapidly, and if left underked, will speedily cause serious damage. It is best treated with Resin Compound made as follows:

For use, dilute this solution to either 1 in 4 or 1 in 6 according to strength required.

To make this stock solution satisfactorily, the following points should be observed:--the resin should be erushed fine, aud the soda dissolved first in the water (2 galls.) by heating. The resin is then gradually added, the solution leing meanwlile stirred. Finally, the solution is well boiled and the rest of the water added.

The solution is hest applied by means of a spraying machine. Spraying is best performed in the early morning. A good pressure shonld be maintained in the machine so that the spay maty be delisered in a very finely delivered condition (i.e. a mist-like effect should be obtained). In
this condition it will settle far more effectively on the leaves, etc. ('are should be laken that all infected parts of the piant are reached. As soon as the leavas are observed to drip, spraying should cease.

The Orange Now siake, (Chionaspis citri, (omstock), is another common and pronirions pest. It infests the trunk and ehter hanches of the tree, often completely emveloping these parts with a while, smow-like covering.

Spraying with the abovementioned solution is effective, but in bad cases the mixture may be applied with a large brush, working it well in.

Several other species of hard-botied hatck or dark coloured salas are at times encomutered. These may also be treated with Resin Wash.

Mea!y ling, (Pscudorocrus ritri, Risso), is at times, troublesome, especially on the froits and leaves. It appears as small, rounded. soft-borlied insects, chustering together and covered with white powder. Spraving in the mamer previonsly described with Kerosene dimulsion will eradicate this pest.

Kerosene Emulsion is best prepared as follows:

	Kerosene	2 galls.
Stock	Rain Water	1 gall.
Solition	Soap (Ordinary rellow or soft soap)	$\frac{1}{2} 16$

For use, 6 gallons of water are added.
The stock solution is hest prepared by first dissolving the soap in the water by heat and arding the kerosene while the mixture is still lot. The mixture should be kept well stirred during use.

Conshi Ants. i Itta cephalotes, L.), are often troublesome, especially in newly planted areas. They shonld be traced to their nest, which should be destroyed. Provided the soil is not too sandy, one of the best methods of destruction is 'pudding.' If this is not possible, all the exit holes to the nest shonid be flomoughly closed up with the exception of
several large ones towards the centre of the nest. Into these holes severai pints of carbon hisulphide are poured, and the holes securely closed to prevent the escape of the fumes.

With small and medium sized nests this answers well, but the very large nests are very difficult to destroy. Pumping the fumes of sulphur into the nest is also effective with the smaller nests.

If the ants are persistently annoyed with any of the above methods 'they will eventually migrate to another locality

In some cases the nest may be isolated from the cultivation by means of a trench alwars kept well filled with water and free from weeds, for these ants are exceedingly clever and will speedily take arlvantage of any means of crossing the water.

Caterpillars or 'worms' which eventually turn into butter. flies, are sometimes found feeding on the foliage of the lime tree. A common caterpillar is that of the hotterfiy Papilio anchisiodes. Esp. These caterpillars feed exchasively at night; diring the dartime ther may be fomm clustered together usually at the base of the ree. This habit makes their destruction an easy matter.

> (To be Continued.)

Conditions for Agricultural Research.

'Agricultural research deals with subject-matter profoundly compies, baffingly difficult, and becanse of this dem:nds researchers of the verr finest qualitymen with " the spirit," men free to work in an atmosphere cleared of the hampering inflnences of compulsory advertisement by result- - for these later are often the outcome of luck. and in no case can they be produced to orderfree from the compulsion to provide passable annual reports for the scrutiny of an official tribnual, free from the worry as th the wherewithal to live: in other words, men provided with a living wage.

> -A. D. Hall, M.A., F.R.S., quoted in
> "The Agricultural Bulletin of the
> Federated Malay States", September, 1915.

Experiments with Rice, Coconuts, Rubber, Coffee and Cacao: Crops of 1914.

By Prof. J. B. Harrison C.M.G., M.A., Director, C. K. Bancroft, M.A., E.L.S., A.ssistant Director, and R. Ward, Agricultural superintendent, Department of Science and Agriculture.

RICE.
The return of the area under rice cultivation in the colony as received from the District Commissaries was 47,037 acres, an increase of 17,454 acres over that of the preceding year; but as two crops were reaped in the year in certain districts the actual area of rice reaped was 53,661 acres. In 1898 the acreage returned by cultivators as being under rice was about 6,000 , and the increase in the crop of rice between 1899 and 1915 represents about 32,000 tons of cleaned rice per annum of a probable value of $\$ 2,000,000$. Considering that the industry is pursued mainly by small farmers, its rapidity of development has been phenomenal. This has bren mainly due to the East Indian settlers, but the black people of the colony are also entering with some enthusiasm into the industry.

The variety of rice cultivated generally in the colony is the Demerara Creole, a long-grained variety, which has frobably arisen locally by unconscious selection.

> Yields of padi.

The yield of padi obtained per acre in 1914 was 19.7 bags of 140 lbs . each to the bag, equivalent to 24.6 cmt . per acre, the total field being $1,060,292$ bags. The figures show a decrease of i bags per acre compared with those of the 1913 crop.

The following table gives the average of padi per acre in the colony from 1898 to 1914 :-

The exports of rice and rice-meal for 1914-15 were respectively 7,090 tons and 241 tons.

EXPERIMENTS WITH VARIETIES.
The experiments with rice varieties were continued at the Experimental Fields. As in the previous year varieties of proved value were planted in the North Field on large scale trials in duplicate $\frac{1}{2}$ acre plots. The yields obtained were as follows:-

Selected Varieties.	Bags of 1 qolbs., per acre.
No. 75	36.3
Creole	36.2
H 6 ..	34.6

Strains.
No. 75 strain 7 39.0
\& No. 75 strain 6 37.9
H 6 strain 1 37.3
The crop reaped was not as good as that of the previous year, but was considerably above the average.
imported varieties.
Upwards of 250 varieties have now been imported from foreign countries into the colony by the Department for the purpose of experimental cultivation. Of these, two, No. 75 and H6, have given better yields than the Creole rice under trials extending over a period of ten years, while three strains specially selected from these two varieties have yielded still better results than the parent rices from which they were obtained. Taking the series of ten years, 1905-1914 inclusive, during which trials with the three varieties, Creole, No. 75, and H 6, have lasted, the mean results have been as follows:-

Kind of Rice.
Bags of $1401 b s . . \quad$ Creole taken

H 6	\cdots	33.47	\cdots	104.1
No. 75	\cdots	32.86	\cdots	102.2
Creole		39.15		100.

One of the most notable features brought out by the trials is the increase in gield of the Creole rice as a result of repeated selection of seed.

The padi reaped from this crop totalled $28,764 \mathrm{lbs}$ or nearly 13 tons. By means of a rigid seed selection annually the padi yielded by the rice crop is rendered 99% pure. It is proposed to distribute this padi as has been done in previons years to ricegrowers in the colony for the planting of the 1915 crop. The amount available should be sufficient to plant up orer 500 acres.

The duplicate and quadruplicate comparative trials of certain varieties and strains on $1 / 1 ;$ acre plots wate the following results:-

Tariety of Strain.	per urrs.
No. 75, Strain 1	34.10
No. 75, Strain 4	44.75
No. 75, Strain 8	39.57
No. $75 \times$ Honduras	18.20
No $75 \times$ Carolina Golden Grain	29.91
Creole-selected as pure to type	37.86

The work of hybridising rice has been rontinued. It is not possible to express any opinion as to its probable rabue. The manner in which the flower is adapted to selfefertilisation by the dehiscing of the anthers immediately it opens renters artificial hybridisation very difficult. It has accordingly been found that, most of the supposed hybrids retain, in future generations, all of the characters of the female parent and must, therefore, be regarded as 'selfs.'

MANTRIAL EXIPRTMENTS.

The manurial experiments with rices in the North Field have continued. Twenty-six plots, $\frac{1}{8}$ acre each, were cross-
dressed with sulphate of ammonia at the rate of 100 lbs . per acre, and twentr-six plots, their duplicates, did not receive any nitrogenoms manming. The results obtained in this experiment showed that the mean return from the manured plots was 36.31 hags of 140 lbs per acre, while the mean return from the unmanured plots was 87.13 bengs. From these and from the results of experiments on manning of rice in previous years it is clear that in the beriod during which the rice land is in fallow an accomulation of available nidrogen sumicient for the needs of the crop takes place. The addition of nitrogen in the form of artificial manure serves only to increase the luxuriance of the vegetative growth, thus causing the plants to be early laid.

RICE IRRIGATION WITE ABTESIAN WATER.
By direction of His Excellency the Governor trials were commenced in September, 1913, of growing rice under irrigation with artesian water. Br growing the erops continnously it is anticipaled that five crops will be obtained in t wo years. The results of this highly interesting trial wil! be published on its eompletion.

COCONUTS.

The area planted with coconut palms in the colony has been slowly increasing for some years, but during recent years there has been much greater activity in coconut phanting and the contimued extension of the industry may be expected.

The coconut palms arowing in the colony are scattered, heing owned chielly by small growers; but there are a few fair-sized coconut estates and the large proprietor is paying increasing attention to the cultivation of the palm. On one estate, where coconnt planting is being carried ont on a large scale, upwards of 50,000 trees have been planted, while another property possesses 20,000 trees. The acreage in the colony under cultivation in coconuts in 19141915 was 15.894 , an increase of 1.717 acres over that of the previous year. The gradual extension of the induotiy is shown in the following table:-

Year.		Yo. of acres planted.		
$1904-05$	\ldots	\cdots	5,140 acres.	
$1905-06$	\cdots	\cdots	6,560	$"$
$1906-07$	\cdots	\cdots	6,700	$"$
$1907-08$	\cdots	\cdots	6,828	$"$
$1908-09$	\cdots	\cdots	8,315	$"$
$1909-10$	\cdots	\cdots	9,466	$"$
$1910-11$	\cdots	\cdots	9,761	$"$
$1911-12$	\cdots	\cdots	12,236	$"$
$1912-13$	\cdots	\cdots	13,698	$"$
$1913-14$	\cdots	\cdots	14,177	$"$
$1914-15$	\cdots	\cdots	15,894	$"$

A very large proportion of the acreage is still young and has not yet come into bearing. The export of coconuts is small in comparison with the acreage under cultivation both for the above reason and because the major portion of the nuts is utilised in the colony in the manufacture of coronut oil and cattle food. There is a large consumption of cocouut oil, especially among the East Indian section of the community and the locally prepared product has gradually replaced the imported kinds of coconut oil.

Exporit of NUTs.

The export of coconuts during 1914-15 war $1,890,000$ as against 872,000 in the previons year. The following table show the average annual exports for quinquennial periods since 1892 :-

Periods.		Leerage Annual Expor
1892.6		80,374 nuts.
1897-01		21,892
1902-06		187,305
1907-11		526,901
1912-14	(3 years only)	y) .. 1, 427,644

A small quantity of copra was made in the colony during the year, the export being 1,690 cwts.

Better attention is being paid to the proper spacing of the plants, but the necessity for proper drainage is frequently overlooked.

Most of the varieties raised at the Botanic Gardens from imported and from selected local nuts are now bearing and the seed is being distributed for planting purposes. Five hundred and sixtr-nine nuts were distributed during the vear, the number being made up as follows:-

Origin of Trees.
No. of Nuts
Distributed.
From trees grown from Singapore nuts . . 187
" ", ". Trinidad nuti. .. 56
" " ". " Tobago nuts . 207
:" " " ," splected local nuts 119
Total .. 569

The following returns giving the average number of nuts per tree occurting on some of the trees growing at the Experimental Fields. Botanic Gardens, are of interest:-

Origin of Trees. Vo. of Trecs. | Average No. of |
| :---: |

RUBISRR.

There are now 4,962 acres cultivated in this product in the colony, all increase of 743 acres over the previous year. It consists almost entirely of the Para Rubber (Heven brasilionsis). By far the greater proportion of the trees have not ret reached maturitr; it is anticipated, however, that tapping operations will he commenced on a fairly extensive scale in 1916.

RATE OF GROWTH.
The average rate of growth of the trees at the different stations of the Department is shewn in the following table:-

	Girth ind Inchesat 3 Feet frome the Ground.				
Ages of Trees in Years.	Onderneeming.	Issorora,	Christianburg.	Marl borough ${ }^{1}$	George towen.
3	10	10	\cdots	\cdots	
4	20	18			7
5	25		14	22	...
6	...	22	19	...	
7	\cdots	29	$13 \frac{1}{2}$
9	34	\ldots	...	\cdots	...
11	35	...	\cdots	..	\cdots
13	42
14	43

The rate of growth of the trees in the colony generally has been more rapid than it was in the preceding year and considerally greater than in $191 \geqslant-13$ when the trees were badly affected by the prolonged drought of 1911-1912.

TAPPING.
Experimental tapping was continued at Issorora and Onderneeming during the vear; tapping was also commenced at Christianburg a the end of the year.

At Issorora the tapping of 379 trees in one experiment was commenced in November, 1913, a basal V being employed as the tapping system and the trees being tapped every day. In Jannary, 1915, the tapping of the surface of bark (18 inches high and $\frac{1}{\square}$ circumference of the tree) marked out for the experiment, was completed. Altogether 7141 bs . of dry rubber were collected at an average cost of 16 cents per lb. The trees in this experiment were not adjacent to each other, but were scattered through the older part of the rubber cultivation of the Station, and the total number, 379, was found to be rather more than a fair task for one man to tap in the morning. The two factors resulted in the cost of tapping being higher than it would have been had the conditions been more favourable for the experi-
ment. However, this cost of collection for an initial experiment is quite reasonable.
collecting at 7 cents a pound.
In February, 1915, another experiment was commenced, 300 trees, the number regarded as a fair task for one man to tap in a morning, being tapped each day with a basal V on the opposite half of the tree to that tapped in the previons experiment. Up to the end of the financial year, Marcl: $31 \mathrm{st}, 260 \mathrm{lbs}$ of wet rubber had been collected, the equivalent of 130 lbs . dry, at a cost of 7 cents a lb.-a very low figure.

These experiments indicate that rubber can be collected in the rolony, if the trees are grown under proper estate conditions, at a low cost.

Samples of rubler obtained at Issorora were shown at the London Rubber and Allied Tpades Exhibition and vere favourably reported on hy Messars. Lewis and Peat, the following being their leport on the samples:-

> "Issorora Estatc.-Large samples of Para biseuits "shown liy the Board of Agriculture. All good to fine "quality Hevea hiscuiks, well prepared amp in good "condition. An excellent example of the grade. "Value, 2s. 2d.
> "Snaall sample of fairly clean brown Scrap, in good "condition and well selected and cleaned, better "quality than is usual for this grade. Value, 1s. 8d."

The experimental tapping of 22 trees at Onderneeming. which was commenced in 1913 was continued during the rear under review. The trees continued to yield well, an average of more than 4 lbs. of dry rubber per tree being obtained

Tapping was commenced on 128 trees at Christianburg, the same system of tapping being employed as at Issorora. The results indicate a sliglitly higher cost of collection than at Issorora. but the experiment has not been in progress for a sufficiently long time to enable any accurate
conclusion to be drawn as to the probable cost of collection per lb.

COFFEE.

The return of the total acreage moler roffec in the colony in 1914-15 (4,320) shewed an increase of 1,002 ateres over that of the previous year. The extension of the coffee industry is graclually taking placr. Local contitions, aspecially scarcity of available labour, tend to restrict somewhat the extension of the raltivation, more particnlarly of the Arabian varietr. The increase in the market price of Liberian cotfee, couphed with the cheaper cost of cultivating this variety and the fact that it indives well on lands situated some distance bark from the coast-line and on the lower reaches of the river, bave induced cultivators to extem this varioty in preference to the Arabian or Creole ceffee.

The export of coffee from the colony in 1914 was $\mathbf{2 , 1 3 2}$ (cwts. as aganst $7=6$ ents. in 1918 and the same amomet in 1912. Most of the cotfere grown in the colony at the pres sent time is consumed locally; the total export is, therefore, only a small proportion of the crop whifo is gathered.

CACAO.

There was an increase in the area under cacao (2,316 arres) of ty3 acres over that of the previous year. In some parts of the colony cacao-planting is an industry of some promise, but it requires for its successfal installation more capital than small famers manally possess. Some of the cacao estates are of falle age, hat there are also considerable areas under young trees which have uot yet come into bearing.

The amual export of cacao was 575 cuts.

EXIPFRIMENTS AT ONDERNEEMIN(:

The experiments at Onderneeming were cominued during the year, the object being to ascertain the residual effects, if any, of the manumes applied during the years 1910, 1911, and 1912. For this purpose the plots were not
mannred in either 1913, or 1914. The results were in terms of wet and of cured cacao, per acre:-

The results in terms of liss of cured cacao per acre during the two years of non-application of mamere, due to the residual results from the application have been ats follows:-

No manure		1,095	\pm	35
Heary mulching		1,338	\pm	63
Sulphate of ammonia		1,078	\pm	52
Superphosphate and sulphate of potash ...	\ldots	1,452	\pm	117
Sulphate of ammonia and superphosphate	\ldots	1,169	\pm	78
Sulphate of ammonia and sulphate of botash		1,154	\pm	105
Sulphate of ammonia				
$\left.\begin{array}{l}\text { Superphosphate, } \\ \text { Sulphate of potash }\end{array}\right\} \cdots$.	1,294	\pm	108

CONCLUSIONS.

Allowing due weight to the probable errors of the trials, the results indicate that only the heavy mulching treatment and the application of superphosphate of lime and sulphate of potash have exerted residual effects over both the years. Their residual effects over two years were of the orders:-

whilst during the second of the years the effects were:-

Heavily mulched	48	12.8
Superphosphate and sulphate of potash...	40	9.2

the after effects of the mulching proving to be the more lasting.

The retarding effects as regards production of truit of the active nitrogenous manuring noticed during the years of its application ceased to be appreciable in the second year (1911.)

SOIL CONSTITLENTS.
The following were the determinations of the soil constituents usually considered as of importance in the soil used for the manurial trials during the past 12 years:--

	Per Cont. of Dried Soil.	Lbs. per Acre to the Depth of i8 Inches.
Nitrogen	129	8,320
Phosphoric anhydride soluble in boiling hydrochloric acid	-065	3,900
Phosphoric anhydride soluble in 1 per cent citric acid	. 0025	150
Potash soluble in boiling hydrochloric anid	$\cdot 502$	30,120
Potash soluble in 1 per cent. citric acid	-0052	31.2
Lime soluble in boiling hydrochloric acid	$\cdot \underline{2} 48$	14,880
Lime soluble in 1 per cent citric acid	-0390	2,340

The total yields of the plots during the six crops of the second series (1909-191t) of the trials have heen:-

The indicated maximum and minimum gains in the not manured plots as deduced from consideration of the probable proms were:-

	Minimutm.	Maximım.
Yields of not matured Plots for comparison ...	7,178	6,726
	per cent.	per cent.
Mulching ...	190	36.6
Sulphate of ammonia ...	Nil	$5 \cdot 3$
Superphospbate \& sulphate of potash:	164	$39 \cdot 7$
Sulphate of ammon'a and super phosphate	Nil	$23 \cdot 3$
Sulphate of ammonia \& sulphate of potash	Nil	19.5
$\left.\begin{array}{l}\text { Sulphate of ammonia } \\ \text { Superphosphate } \\ \text { Sulphate of potash }\end{array}\right\}$	$7 \cdot 8$	267

CONCLESTONS.
This very clearly indicates that the soil contains a supply of avaiable nitrogen sufficient for the requirements of cacao under the climatic and metcorological conditions existent at Onderneeming, that the proportions of readily available phosphates and potash present are not equal to the requirements of the cacao, that of these it is probably
the phosphates which are deficient, but to enable phosphatic applications to exert their effects, some addition of readily available potash is requisite. Applications of lime to the land have not exerted any beneficial action on the producing powers of the cacao trees.

The sole objection to the use of heary mulchings is the cost. Up to the present the value of the alditional yiedd of cacao has not sufficed to cover the cost of the mulching to which it is due; trials in future will be made to combine the increases due to manmings of superphosphate and sulphate of potash with those produced by heavy mulching.

SHADE.
Between November, 1900, and May, 1902, the shatle-trees on the cacao fielde were largely removed. On an are: of about two acres of the southern cacao field the shade-trees were not cut out. At the same time the methods of cultiration were changed and instean of the haphazard want of system that was in force prior to the cacao fields coming under the control of the Agricultural Department the fields have since been carefully cultivated, the trees pruned, and a persistent look-out kept for pests of various sorts. Under these conditions the returns have greatly increased. The yields steadily increased from a mean annual sield of 1,064 ibs. during the five years prior to the thinning of the cacao trees; and during the past six years the crop has been at the following rates:-

CAUSES OF THE INCREASE.
The mean anmual increase of $3,800 \mathrm{llhs}$. of cured cacao has been due to the three factors of lessening the shade, adequate tillage and care of the cacao trees, and improved drainage.

effects of reduction of shade.

The yields having approached a fair degree of con-stancy-the falling-off in 1912 being due to the drought of 1911-1912-a commencement was made in Japuary, 1913, to determine the results due to the lessening of the shade as apart from the other improvements. This is being done by recording the yields of cacao from the area on which the shade-trees were not thinned out, and from the adjacent parts of the cacao field on which the sbade-trees had heen largely reduced Four lundred and forrteen cacao trees are growing on the former and 586 on the latter.

The soil of this ficld is a much lighter one than is that of the present manurial experiment field. It is a clay loam and the mean composition of its soil and the quantities of the principal constituents of plant food in it to a depth of 18 inches is shown by the following anaylsis and statement:-

STATEMENT.

Pounds per arre to a depth of 18 inches.
Nitrogen 9,120

Phosphoric anluydride soluble in
boiling hydiochlorir acid 5,400
Phosphoric anlygride soluble in
1 per cent. citric acid . . . 252
Potash soluble in hoiling lydrochloric acid
. . 31,800
Potash soluble in 1 per cent.
citric acid 420
Lime soluble in boiling livdro-
chloric acid
14,400
Lime soluble in 1 per cent. ditric acid . . $\boldsymbol{\Omega}, 442$
The returns from the heavjly sharled and the lightly shaded aras were at the following rates:-

The mean yield from the very lightly shated area was at the rate per acre of 4,288 pors and 697 lbs. of pulp, equivalent in round figmres to $2 \frac{1}{\ddagger}$ cwt. of cured cacao, in excess of that from the heavily shaded part.

The mean annal increase of cured cacao per acre from 1910 to 1914 ower that for 1897 to 1900 has been, in round figures, 3.800 llos . This was the increased product of 3,186 trees of which $41: 3$ were heavily shaded.

If the 413 trees had not bern shaded the increased yield would have been 4,150 in romud figures, equal to $3 \frac{1}{2}$ cwt. per acre of 300 hearing trees.

These deatilk indicate that the increased yields are probably due to the varions treatments in the following proportions:-

145

	Diy Cacuo por acre．
To improvements in cultivation and drainage	－1がい。
	11
	$3 \frac{1}{2}$ wwts．per acre．

CONDITIONS FOR SUCCESSFUL CTLTIVATION．
The experiments commened in 1900 indicate that in British Guiana under conditions similar to those existent at Onderneeming farm，the methods of cultivation pre－ cedent to the successful growth of cacao are：－

1．The reduction of＂shade＂to the lowest amount compatible with due protection from wind．

2．Deep and efficient drainage，certainly not less than from 3 to 4 feet．

3．Annually forkiug the laud hetween the trees in such a manner as not to injure their roots more than is absolutely unavoidable，whilst effectually loosening the soil for aeration and drainage，and thas con－ stantly adding to the depth of tilled surface soil and the feeding area available for the roots of the trees． To do this requires the services of skilled forkers working under strict superrision．

4．Mulching the soil，hut only an far as can be done at a low cost per acre；such cost not excecting，say，$\$ 6$ ．

5．Manuring the trees with a mixture of super－ phosphate of lime and sulphate of potash．The cost of such application should not exceed $\$ t$ per acre．

The Birds of British Guiana.

(By Charles B. Dawson, S.J., M.A., Oxon.)

III.

THRUSHES.

The common Thrush of the colony, "the Grey-breasted Thrushe" as it is called (Bherula phaecopy!ia) resembles the common English thrush (Turdus musicus) in form and habits and may be taken as a type. It is, however, slightly larger and has a grey-brown breast instead of a spotted one. Scientifically it is more nearly allied to the English Blackbird (Merula merula).

This large family belongs chiefly to the Old World, for of the one hundred genera and a thousand and more species (1,093) only ten genera and some hundred and thirty species belong to the New. Thrushes feed on insects. worms, and molluses, as also fruit. Some of them will batter snail-shells to pieces on a stone with great vigonr. They build cup-like nests, sometimes lined with clay. and lay bluish or greenish eggs, varionsly spotted or mottled with black or brown.

With some exceptions, they are sombre-coloured hivks: browns, blacks, aud greys, wth markings of red, buif or white, being the prevailing tints; the breast is often mottled or spotted, our colony thrush having a spotted breast when young, but the spots fade with age. Many of them compensate for their homely appearance by their melodions voices : the Nightingale and the common thrush of England and Europe generally, being the most. wonderfal songsters ef all the feathered races. dany of them are migratory.

Babbling Thrushes or Babblers, are an ill-defined group closely allied to Thrushes. They feed among dry leaves and frequent forests or marshy places. Many of them chatter or chuckle and have thus given a name to the whole family. Like thrushes, they are generally of sombre hue, the sexes being generally alike. There are
fifteen genera, comprising some eighty species, almost equally divided between the Old and New Worlds.

Thrushes- (Colonial). Turdidae.
Common Thrush (Grey-
breasted) Merula phaecopygia.
Bright-headed Thrush
*†Bare-eyed ",
Dusky
Mouse-like
Smoky
White-vented
," leucops.
", (Mt.
Roraima) ," roraimae.
\dagger Yellow-legged

Grey-marked
Red Vine
, Platycichla flavipes.
$"$ (?) , " polionota. $" \quad$ (?) Turdampelis gularis.

Babmels-(Colonial). Mimidae.
Savannah Bahblius Thush Mimus gilvus.
Black-headed Balobling

Thrush
Brown Wood-Thresh
Grey-cheeked Wood-Thrush
Red-brown " .. ", ustulata.

WRENS.
The familiar English" Jenny Wren," Troglodytes parvulus, is well approximated in this colony by the even more familiar "God-hird," Troglodytes musculus. The family, numbering twenty genera with some two hundred and fifty species, are nearly all inhabitants of these Neotropical regions, hardly twenty species belonging to the Old World. The colour of these small birds is generally reddish brown, with spots or markings of chestnut, grey, orange or black; the primaries and rectrices being often barred with darker colour. The note is shrill and warbling, sometimes developing into a song as in the case of our common God-bird; while the 'music-wren' or 'quadrillehird' whistles the opening bats of a valse or quadrille in flute-like tones, surprisingly loud for the size of the bird.

Wrens build larer, rough nests of ferns, grass, moss, or leaves; sometimes immed, hence their name, Troglodytider. i.e, cover dwellers. The eges, sometimes to the mmber of nine, are gemerally white, somedimes sperkled or fredkled with red.

Wrevs --- (Colomial)	Troorlodytidac.
Common Wren or (:od-hial * (mouse-like)	Troylodytes musculus. clarus.
Red "Wren	rufulus.
*Grey, blatk-nceked Wren	Itelcodytes griseus.
\dagger Smaller Wren (Sumdweller)	,
Smaller Red Wren	gularis.
\dagger Sprightly Bush-Wren	Thryophilus leucotis.
*White-breasted	albipectus.
Black-faced	Thryothorus coraya.
Rust-coloured we Song Wreu	musicu
	ridguayj.
measted)	rutilus.
-Seet-husil Wirell	Cistothorus allicola.
HBright-dicted Wreu	Ifenirorhinu Irurowicta.
Banded Wren	Microcerculus bambla.
* \dagger Red-browi Wien	ustulatus.

WARBLERS.

Under the gemeral title of 4 morion Warblers are included a large family of twent-five genera and two hundreal and thitty specipe of small, shy, restless birds, all peculiar to the New World. They seek their foorl, consisting of insects, spiders, worms, molluses, with oreasional fruits and seeds, upon the ground or about the trunks of trees. Olive-greens or gress, browns, and yellows, with markings or bands of white, black or orange, are the prevailing tints. Some are like titmice in their habits, others like tree-crecpers, othes again like fly-catchers. Siurus will wade into the water and has thus acquired the name of 'water-thrush.' The ordinary note is a chirrup or
whistle, but some, such as the above mentioned, Basileuterus, and Setophaga, have a sweet, sustaimed song. The cup-shaped nests are made of grass, leaves, moss, and feathers: and the eggs, from two to six, may le creamy or preenish with markings of brown or black. The golden' warbler is migratory and nests in North America.

Fly-catchers. These birds belong to an Old World family including no less than six hundred species; three genera with ten species, however, belong to the New World, and one single species represents the family in this colony, though many other birds have their habits and manners, notably, the grey-headed Tyrant-bird. They are adepts at catching flies on the wing, as their name implies.

Wafftails and Pipits. These birds form one family belonging also to the Old World, but of the one hundred and ten species of which it is composed, ten are found in the New, and one representative in this colony. Wagtails, whose prevailing colours are black and white, or grey and white, or rellow, seek their food of insects, by warling in shallow water, and continually "wag" their tails as they so. hence their name. Pipits prefer open places with low bushes and weedy herbage. They are usually brown with dark streaks or white. Some of them have a lark-like song. Wagtails build their grass nests on rocks in holes; pupits, on the ground.
Whamens-- (Colonial.) IMiotiltidae.
Golden Warbler Dendroeca aestira.
\dagger Wading Warbler (?) Siurus noveboracensis.
†Ground Warbler (Yellow-
vented)
\dagger Tanagrine Warbler (Rose-
vented)
\dagger Fire-red Mothreating
Wirbler.
\dagger Fly-eating black-throated
Warbler
\dagger Chestnut-capped Warble?
Chamaethlypis aequin.
octialis.
Granatellus pelaplni.
Setophager ruticille.
Myioborus :erticalis.
" castanei-
capillus.

\dagger Roraima Eing Warbler (Mt. Roraima)	Basilcuterus	rorlimae.
\dagger Olive King Warbler	"	olirascens.
\dagger White-rented Wood-		
Warbler	"	mesoleucus.
\dagger Double-banded Wood-		
Warbler (Olive-yellow)	"	bicittatus.
\dagger Golden-capped Wood-		
Warkler	"	auricapillus.

Motacillidae.
Red Pipit Anthus rufus.
Muscicapidae.
Grey Gnat-Fly-catcher Polioptila Buffoni.

GREENLETS.

Greenlets or Vireos are, as the nane implies, small, greenish birds. They form a distinct family with six genora and more than a hondred species, all peculian to the New World. Some ormithologists place them next to the shrikes, others near the Throshes. They probably have aftinities to both. Olives, qreens, and greys above, and grey, whitish and yellow helow, are the prevaling tints; some have caps of black, brown, red, or aslı. They are active and fearless birds, creeping about trees or hanging from the twigs like Titmice. Some have loud, melodious voices. developing into a song. They make beantiful nests woven of grass, leaves and cotion, adorned with lichens. and suspended from the fork of trees. The rggs, four in number, are white, usmally spotted with brown, black or purple They feed on insects, seeds and berrios; and are generally seen in pairs. The red-eyed vireo migrates north, even as far as Greenland, and has been reported as an aceidental visitor to England.


```
+ * Brown-capped Vireo
    -Red-fionted \(\quad, \quad\) (?)
* \(\dagger\) Green-fronted
    Crook-heaked "
```

 Pachysilvia bruneiceps.
 ," ferruginei-
 frons.
 luteifrons.
 Cyclorhis guianensis.

MOCKING BIRDs.

These birds derite their name from the powers of mimicing which several sperjes possess. They are not to be confounded with the true Mocking Bird of North America (Mimus polyfflotus) of the ('at-lind of ('anarla, ete., (Galeoscoptes corolincusis) which are" babblers." Ther have affinities to starlings and finches. Some of them, such as the (aduri, the ('orm-hird (or Jazy-birl) and the Troupials, have beantiful songs and make good cage birds. Some are matirely slossy-hank; others have patches or markings of bright yellow orange, or scarlet. The beak is generally long and shan p and, in the Cassiques, widens into a frontal shield. The legs are generally stont, the feet powerful. Bunyis and Morking Birds live in communities and weave long. bottle-like nests, and hence are called Hang-nests. They choose high, spiny trees, or such as are infested with marabuntas or ants. Plantain-liris also build long, woven nests, but they are solitaries. Quiscalinae or " Boat-taila" earry their lails with the outer feathers uppermost giving the appearance of a rudder. Cassidix and Molothrus deposit their eggs in the nests of other birds. Leistes. like the skyark, frequents low-lying tand: others are chiefly forest-dwellers. They feed on seeds and berries, insects, and furdit. Their note is loud, flute-like, and shrill, developing iu some cases, as already stated, into a song. The egos, four in number, may be blue with black spots, or whitish with spots and blots of bown and purple. In size and form they are geuerally similar to the starling, but Cassidir aum (sicuops are as large as a crow. They all belong to the New World and number thirty-three genera with eighty-five species.

Mocering Bisme-iColonial.) Icteridae.
Black limya (Hang-nest)
Green Ostinops decumamus.
Yelow-hacked Mocking

Bird (cacicus)
Crimson-backed Mocking Bird
White-veaked Mocking Bird
Great Rice Bird
Common Rice Bird (Lazyliirl)
\dagger Yellow-tufted Cassique (im Thurn's)
Yellow-headed Reed bird Brown , ,. (?) American Redbreast American Meadow Lark
*Black Mocking Bird Cadluri
*13lack Plantain Bird Yellow Orange-breasted or Common Troupial
Yellow-crested Troupial

* \ddagger Tanager Starling
\dagger Guiana Rudder-tail (or
Boat-bill Black-bird)

Cassicus persicus.
, affinis.
" albirostris.
Dolichomyr (Cassidix) oryzivorus.

Molothrus atronitens.
Agelaeus imthurni. ,, icterocephalus. ", frontalis.
Leistes guianensis. Sturnella magna. , meridionalis. Gymnostax melanicterks.
Icterus chrysocephalus.
, cayanensis.
,. ranthormus.
,, rulgaris.
", crotonotus.
Lampropsar tanagrinus.
Holoquiscalus lugubris. TANAGERS.
Tanagers or Sackies, as they are locally called, form a large family of New World fruit-eating birds, of which there are twenty-five genera, including some four hundred and thirty species. They are nearly all small birds, Saltator, the largest, being the size of a thrush, and Euphonia nigricollis only three inches from the extremities of bill and tail. Some of them, and in particular the Calospisa. are very leamiful, disporting themselses in all the colours of the rainbow. The sexes are generally alike, though the females may be less lriltiant; in a few cases dimorphisn prevails as in the Lonis D'Or, where the female is a dull green, and in the Black Tanager, the female being a dull red. Many have melodious voices, and in particular the genus rightly named Euphonia.

Tanagers are closely allied to the Finches; fitylus, formerly placed among these birls being now regarded as a
finch. They have, however, longer beaks and only take seed occarionally, fruit being their staple foorl. The lower mandible of Rhemphococlus is morlitied into the form of a small scoop; in Euphonia and others the beak is almost swallow-like. In Procnias viridis (or tersa) this is so much the case, that a separate family has recently been

- formed. Procniatidae, of which it is the sole representative. The nests are shallow and composed of grass, roots, etc., lined with hair or down. The eqges, like the phomage, are very raried, being white, greenish, bluish, grey, or rich brown, and generally mottled, freckled blotched, lined or scrawled with hrown, lilac, purple, red, or black. Some of the species have crests. Many of them are easily tamed, sing pleasantly, and lecome interesting pets.

Tavagers-(Colonial). Tanagridae.
\dagger Roraima Yellow Singing
Tanager.
Black-throated Singing
Tanager (minuta.) Euphonia nigricollis.
Yellow-marked Singing
Tanager (?) ", chlorotica.

* Golden-rented Singing

Tamager ", ranthoyester.

* (Pupple-hreasted)

Olive Green Singing
Tanager (\because) oliturea.
Louis D'Or Singing
Tanager (blue and vellow)
The Singing Tanager ?
*Rol-venter Singing Tamayer.
\dagger Black-cheeked Singing
Tanager (Buck-town-
Sackiel ., caycnsis.
\dagger Steel-blue yellow-tufted
Singing Tanager
\dagger Blue-veiled Velvet Tamager
Paradise or Rainbow
Tamaser (calliste trtur) Colospiza paredisea. Blue-hearled Tanager

Chlorophonia roraimae.
,. finschi.
" violacea.
", lichtenstcini.
"
" ruficentris.
.. plumbea.
Tanagrella velia.
.. cyanocephata (festica.)

perkled Timager	Colospind punctuta.
Spotted	,, gultata.
*Golden-yellow-vented	
Tanager	xanthogastra
广 Verdant Tanager (?)	csectas.
Colden	,, cayana.
Yellow-breasted Tanager	flava.
Brown-headed (round-headed)	gyroca.
Yellow-rented Tanager	
(Butterfly-wing)	, flaviventris.
Black-bambed Tamager	nigricincta.
Black and Green-grey	
Golden Tanager	aurulenta.
Glossy	vitriolina.
Reflbilled Fincli Tanager. Gueen Black-ficed Finch	Pitijlus grossus.
Tanager	riridis.
Scarlet-breasted Finch	
T'andage	,, erythromelas.
Blue Sackie or Tanager	Tamagra episcopus.
PaIm	,, palmarum.
Giey-rented	ornata.
Cisulay	Rhamphocooclus jacupa.
\dagger Bloor Red Tanager (Mt.	
¢Finered Tanager	ardens.
\pm Dione	Cyanirterne remustus.
\dagger Black Butrher-Bird	
T':nater 1 melatrucus)	Lamio aticapillus.
CReil (buick-singing	
Tanamer	Tachyphomus rufus.
\div Mournful-singing Tanager	,, luctuosus.
Scarlet Tanager	phocniceus.
Crested singing Tanager	,, cristatus.
Tawny Tanager	surinamus.
¢Ditrk-throated Wood	
Tanager (?)	Nemosia nigrigula.
Capperd Wood Tanager	pileata.
Quit-quit , ,	guira.
V゙ellow-throator Thanager	emithraupis flaricollis.
Olive-banded o, (?)	Mitrospingus olcaginus.

Magpie	Tanager	Cissopis leveriana.
\dagger Half-mantled	"	Schistochlamys atra.
Olive-green	",	Saltator magnus.
*Olive	"	, olicascens.
Great-billed		, maxillosus.
	Procn	tidae.
$\dot{\dagger}$ Green Swallow	illed	
Tanager		Procnias viridis (tersa.)
	FIN	LEs.

Finches form an emormous family containing no less than two homdred and filteen genera with some serenteen mumdred and sixty species. Represembatives are found in all quatters of the globe. The common English Sparrow
 deviation: some half a dozen gemerat possess erests, several speries have longer taiks, and the mandibles cross each wher in Losiat. Most genera are smaller than the type taken and a few are somewhat larger: All may the recognised by their come-like heaks and their bard, trim, feathers. The dail is generally moterate and square, the wings are rommbed. The beak is emormonsly enlarged in sereal genera, notably in Orysoborus, and comparatively slemele in of hers: it often hats a noteled maxilla.

Nearly all Find des have a song of some kind-frequently beantiful, as in the comestic eanary. The coloration is generally sober, browns and blacks being common, with sometimes patches or hars of white, or some bright hue. 'The breast may become red, or redder, during the nesting season The sexes are often alike, but not always so, the female leing much more moxified in tone. There are delightful exceptions, some Finches heing very brilliantly coloured, as, for instance, the 'Avadavats' of India and some of the Australian forms.

The nests rary comsiderably: the Sparrow making a great untidy, domed structure, others a neat. cup-shaperd nest adomed with moss amd lieheus; the eges are equally various, bluish, whitish, or greenish with spots, freckles, or streaks of different hues. They feed mostly on seeds, hat gemerally feer their nestlings on insects, and also add fiouit and buts to their bill of fare.

Finches-(Colonial). Fringillidae.

* \dagger Bhue Finch **Grey-azure Finch	Cyanocompisal rothschildi.
	glaucocaerulea.
Redrented Grostuak	Ory:nborles lorridus.
Blatek Silveroill b	
(irosloeak (Twa-twa)	crassinostris.
(?)	Pyrrhulagra propinqua.
¢Pearlowry (imas-hird	Sporophila (spermo-)
†Lead-grey "	grisea. plum-
*	,, whiteleyana.
Chestmut-hreasted	
Grass-bird	rastancirentris.
- Rmb-bodied (irass-bird	minuts.
* \dagger Hooder	cucullatu.
Ring-necked	
(Black and white)	lineata (americanus.)
Moustache Finch	lincola.
Nide-spotterl Finch	ocellata.
	., gutturalis.
(rer-venter : ${ }^{\text {a }}$)	Calameniu homochroa.
$\forall R=$ diant Fill!-Fimeh (?)	liurlhia fulgiunser. Volatinia splendens.
Wlack lyiuch	, jacarini.
Yrion-cresterd Finch	Chrysomitris (Spinus)
	Spinus longirastris.
Long-billeal or (?)	Spinus longirostris.
(anary Grass-lind	Sycalis arrensis.
Earth-vented Grass-bird	,. huteiventris.
\dagger Lesser	," minor.
Yellow	,, flaveola.
Earth-brown	
(Pseudorhlorix)	lutea.
TAmericall Piping Finch(?) Spiad americama. +Ntriped Bunting or Fly	
(dromms)	Myiospiza mamimbe.
suall rapued Finch	
(Zonotrichia)	Brachyspiau pilcata.

(To be Continued.)

Wax of Wild Bees in the African Colonies.

The trade in wild beeswax is constantly increasing in most of the Afriean colonies, especially in Gambia, Gold Coast, Nigeria, Angola, Surlan, Cganda, British East Africa, German Last Africa, Mozambique. A few rears ago the exporation of wax from these comotries was almost insignificant, while now it amounts to thousands of tons. Was oreupies the third place in the export trade of Angola (lenguela supplying 90 per cent. of the exports of the whele province). Angola exports every year 600 or 700 toms of wax: Morambique about 100; Portuguene Guinea 50. The wax is exported in cakes weighing ex.3 to
 $802,37+$ lls. : British East dfrica, in 1912-13, $7,552$. _" The Colonial Journal," July, 1916.

The Nation's Choice.

A nation most adont one of two irleals-either to be a great nation producing greal work, men of high intelect and character, and nom who prefer to serve the world rather than tr, serve themselves: or to be a nation of politicians, of persons who try to obtain wealth without labour, of those who look only to the main chance, of trumpery, journalism, ? contemptible stage, cinematograph shows. public-houses, silly processions, superstitions which ceall themselves religion, and streets full of untidy loafers with cigarettes in their mouths. We have not yet quite sunk to the latter level, but the efforts of our politicians before the wal were, perhaps, largely tending in that direction.

The Cultivation of Vegetables.-IV.

$$
\text { (B!y I. } I \text {. } \| a b y, f . L . S . I . S . O .)
$$

In my article on the above in " The . Fommal of the Board of Aericulture." Fol. V1I., July aud October, 1914, Nos 1 and 9 , page 14 , a valuable novelty in a form of Dolichos is mentioned.

I have had ample opportumity of observing this particuhar hean and 1 hatse no hesitation in prononncing it to he the best ret introduced for "hmman matumes daily fool." On account of its similarity in the pod to the "Acarlet Rummer of the old combtry, it was wiven that mame; but as its !lowers are of a pale purple colour such a name can searecly cling to it and would probably be pronounced ab. sumb. As is wats introduced to me by Mr. John Park, I think the "Park Rumner" will be a decidedly distinctive and suitable name.

The full grown lean is t_{2} inches long, $\frac{7}{8}$ inch !wide, flat dill the seeds are formed, pale green and slightly rough on the ventral suture. The ripe seeds are either blackishbrown or brown-suaded; both colours are sometimes found in the same pod, though there are more darker coloured seeds than brown. The phat is by no means common, but deserves to be grown everywhere. I am very amxious that such att excellent regetable should be well known and I heartily recommend it to everyone who cares to grow it. Taken as it grows to full size, before the seeds are in evidence, and used as French beans, commonly known as "cinnabones," it is equal in flavour-if not pre-fermble-to these; while it is much leas troublesome to grow, and far more prolific.

A LOST VARIETY.

Another bean mentioned on the same page of this samo Vol. VICI., I)olichos Lablab var., nemkinicas, veems to all intents and purposes do be absolutely lost to cultivation here. If it is lost altogether it is a deciderdmis. fortune, becatuse it is the only variety which catn be used as are the "green peas" of "home." A
brown seeded variety-in all ofler respects similar -is very common, but the seeds being hrown, do answer the purpose of "green peris" as the white form does. If anyone has this white-seeded valiety growing and will communicate with me, I shall be very grateful, as it has been asked for by the Bureau of Plant Industry at Washington, U.S.A.

- A variety of Dolichos Lablab, sent to me last Spring
 by the tirm of Messus. Vilmorin-Andriend \mathbb{A} Cie, I'aris, F'ratuce, and mamerl ly them "Stringless," is likely to prove a most nseful adjumet to bur tables. In Bulletin 318, UN. Department of Agriculture, dated 1sth November, 1915, this variety is referred to as follows:t
" A vigorons, very viny sort when planted in 3 -foot rows, making a solid mass of herbage 30 inches deep; herbage ereen; leaflets large; flowers rather large, white, in compact panicles, or short peduncles; immature pods very flat, Lroad, 4 inches long, fleshy, white, shrinking in maturiug.

Seeds large, phomp, reddish purple in colour (hown). The green pooks of this valriety make a most excellent vegetable, very similar to snap beans, hom aven mone telicate in flatrons. This variety should be grown largely as an atbour vine, as it is not only ormamental, but ahso pooluces ath abundance of delicious beams."

I have the vatiety growing and can emdorex fully the above
 not altogether stringless, however: I have supplial the Botanic dardras with this variety and it can be seen wrowing there in the regetable garden.

THE VAELE OF TIIE SWORD BEAN.

Referring to the Sworl-hean, mentioned on page 3 t of Vol. IX. No. 1 of Sonember, 1915 of the Journal of the Board of Agriculture, I would emphasize the desirability of making this regetable well known to the public generally, esperially to the poorer classes, at this time when it is necessally to whw any and all kimls of provisions in view of a possible scarcity. We do mot know what we may.

Have to face as the result of this terrible war raging in Europe Alrealy flour is scarce in the West Indian Islands and Dependencies, and althongh we are farourably situated and need not fear for the immediate futme, still we may not be inmme from the threatened scarcity, and it behoves us to do all and everything we can to meet such a contingency should it arise. This bean will grow almost anywhere and with no more trouble than just hreaking up the ground and planting the seeds in any open spot. It will thrive sprawling on the ground without support, or on stakes or fencing. Grown in large quatities and allowed to ripen, the seets could be easily shelled and ground into meal which might be used in the same way as plantain, cassava, or corn meal, and would probably make a good flour even if it lo coarse. An article of this kind, which can to grown at a minimum of cost and labour, would be a great boon to villagers and poor folks generally. If waste ground were prepared-and there is plenty of it-by simple forking, and the seeds put in just at the time the rainy season sets in, there would be absolutely nothing to do till the beans were ripe. The plants would cover the whole of the ground in a short time and prevent any weeds growing, so there would be no weeding to do and the rain would supply the necessary moisture. In thee months there would in a a harvest. Them do no appear to be any destructive insecto affecting this plant, probably hecause of its rampant growing and its being of a decidedy harsh nature.
" Bro.dD-HEANs."

When we go to England or Canada in the summer months we are delighted to get a chance of a good dish of "Broadlneans," a regetable we never have a chance of enjoying in the tropies; yet, in this bean we lave a similar article. and, used in the same way, we can enjoy "Broad-beans" to the full.

As a matter of fact, we have a large number of beans in our midst which we neglect to make use of as we should. We come across Bonavists in our daily rambles, of one sort or another, but always in small quantities, growing on palings, old bushes, and out-of-the-way places, which give a dish here and there, but we rarely, if ever, find a large
patch grown for particular purpose, such as supplying a family with a quantity two or three times a week: aud yet this can so easily be accomplished. A dozen plants grown with a little care are enough to supply a small family for several months with two or three dishes a week, the beans being picked, as a rule, as they become full and used as shelled peas, and the "Runners" the same. These, picked just before the seeds form, will produce sufficient "Snap beans" for any ordinary family and prove a delight to those who crave "French beans" without the worry these canse, and at a fir less expense.

A Very Destructive Flash of Lightning.

In the night of January $10 \mathrm{th}-11 \mathrm{~h}, 1914$, a grove of coconuts on the coast near Bedok, east of Singapore, was struck by lightning, and the number of trees which died at once or slowly over the months which followed, amounted to one hundred and four.

The case is recorded on account of the extent of the damage, and of the fact that the canse of the death of the trees is in this case indisputable.
.-"The Gardens Bulletin," Straits Settlements, Algust 31, 1915.

Why England Lost the Dye Industry.

At the time Sir W. H. Perkin sold his works in Greenford Green. the British alizarine industry was well established. !at the fact that, whilst the derman firms were devoting large sums to the investigation of everything even remotely connected with the production of synthetic alizarine, in England continuous and systematic research work was not undertaken to any extent, soon lost us the lead that had for a second time been given to the British industry by its founder, so that the German firms continuously grained ground on the British concern, and in 1909 Germany was exporting close on 10,000 tons of alizarine and related dyes, covering by far the greater portion of the world's demand.
_-" Science Progress," October, 1915.

Report on Cokerite Fruits and Oil from British Guiana.

The samples of cokerite fruits and cokerite kernel oil, which are the subject of this report, were forwarded to the Imperial Institute by the Director of the Science and Agriculture Department in August, 1915.

The fruts were sulmitted by the Imperial Institute for identification to the authorities of the Royal Botanic Gardens, Kew, who stated that they were derived from a species of Maximillian. possibly I. regia.

> DENCRIPTION OF SAMPLES.

Frats.-The sample weighed 18 lhs., and consisted of dark hrown fruits, romuled at the hase and pointed at the apex, measuring $1 \stackrel{d}{2}$ to $:-$ inches in length and from ? 101 inch in diameter. The rounded end was covered by a thin, papery bact.

Each firlit consisted of pericarp. nut and kernel. The dark brown pericanps were tongh and fibrous externally, whist internally they were soft and pulpe and contaned oil. The nuts, which were of a pale hown colour, measured fiom 10 1: inches in length and from to $:$ inch in diameter, and consisted of a hard, woody shell enclosing \geq or $: 3$ kernels.

The kernets were long, narwo and flatened in shape, measuring aloout 1 inch in length and $\frac{1}{2}$ inch in breadth. They were covered with a greyish-brown mottled skin, whilst internally they were whitish and resembled palm kernels in consistency.

Oil.-The sample of kernel oil weighed (G ozs. and consisted of a faity hard ceam-colomed fat, with an odour rekembling that of coconut fat. It was free from dirt and moisture, and appeared to have heph well prepared.

RESULTS OF EXAMINATION.
 Fiuits.

The fruits were fomd to have the following composition by weight:-

			Per Cent.		Per Cent.	
Bracts	\because	.	12.4	Pericarp	.	17.0
Shell	\because	.-	53.6	Kernels	.	17.0

The muts consisted of shell, 76 per tent. and kernels 24 per cent.

The arerage weight of a fruit was 10.6 grams, of a mut 7.5 grans, and of a single kernel 1.3 grams.

Pericarp Oil.

The brown oily pertarap contained 12.1 per cent. of moisthes and yielded 15.0 per cent. of a semi-solid, orange-red oil, eq"ivalent to a rield of 17.1 per cent. from the dry pulp of 2.6 per cent, from the whole fruit. The oil was submitied to chemical examination at the [mperial Tnstitute, and the results are shown below in comparison with those tecorded for palm oil (the pericart oil of the fruit of the ol-palm Elacis !uineensis.)

Cokerite pericarp oil Palm oil.
Solidifying point of
 (usually 44.5-15.(1)
Acid value* . . 28.6
Saponification value* .. 211.6 $196.3-30.5 .5$
Iodine valne, per eent... 51.4
5in.7.t
This cokerite pericarp oil rasembles palm ail in appearance, but it obvionsly differs somewhat from it in chemical composition. There is, however, no dombt that cokerite pericatp oil womld be readily maketable if it could be obtained in quantity.

Kernels.

The kernels, as extracted from the fruits at the Tumerial Institute, contained 11.3 per cent. of moistme and yielded

* Milligrams of potash for 1 gram of oil.
56.9 per cent. of a fairly hard cream coloured fat with an odour resembling that of coconnt oil. This is equivalem to a yield of 64.1 per cent. of oil from the dry kernels, or 9.7 per cent. from the whole fruit.

The kernel oil forwarded from British Guiana and the oil extracted firom the kernels at the Imperial Institute were examined with the following results, which are compared with those recorded for palm kermels and coconut oils:-

The results indicate that the oil obtained from cokerite kernels is similar to palm kernel and coconnt oils, the chief difference being that it yields somewhat smaller quantities of volatile acids.

Kernel Meal.

The meal left after the extraction of the oil from the kernel was a pale brown material, with a mild and not mpleasant taste somewhat suggestive of coconut. It was sulomitted to chemical examination at the Imperial Institute, and the results have been re-calculated for a cate
containing 7.0 per cent, of fat so that they may be coinvenientle compared with the figures recorded for pahn kerinel and coconut cakes:-

The foregoing results indicate that the residual meal from cokerite kernels should have a feeding value approximately equal to that of patm keruel cake and somewhat lower than that of coconnt cake.

COMAMERCLAL VALEE OE COKERITE FRTITN.

It will be seen from the foregoing that the cokerite fionits lave a structure analogons to that of oil palm fionits E Elatis gmineensis), and that like the latter, they furnish two prodnets which meed romsideration from a commereial point of riaw, riz.-

- (1) pericarp ail.
(2) Kernel, vielding oil and feeding cake.

The principal difference hetween cokerite and oil-palm fruits, so far as commercial value is concernerl, is that the former have a thin pericatp, giving a romparatively small ried of oil, whereas oil-palm fruits have a thick, soft pericaup, rich in oil. The essential ditferences be-
tween the two kinds of fruits are shown in the following table:-
Pericarp. Pericarn oll. Kernel.

Oil-palm fruits-

In West Africa onle oil-palm fruits with thick-whelled nuts :ur obtaina? le in sufficient quantity to be worth workinge and consequently only this variety need be considered for comparison in the present instance. It is elear that since this variety of oil-palm fruits vields nearly seven times as mucl pericarp oil (palm oil) as cokerite forits the latter form a comparatively poor somre of pericary oil, and it is searcely worth while to comsider them as a commereial somre of this product, except as a possible bigeroduct in working the fruits for kernets.

The rield of kermels on the other hand compares favourably with that from the best varieties of oil-patan frots, viz., thin-sheded oil-palmations. Moreover, since the kermese riele rather more oil than palm kermeles and the oil itself is quite compalable with palm-kerolel amd coconut oils, there can be no dombt that cokerite keromels wonld
 more. The present priar of palm kermels in Liverpool is £26 10s. per tom (18tli Janlatry, 1916.)

The sole question, therefore is as 10 whether cokerite kermels am be produced in British Guiana at a price which will almil of their being sold in Liverpool at atoont the same priar as pallan kermels. [n this commedion it is important io ascertain whether the fouts are obtamable in fritish duiana in latere quantities in easily aroesible areas, and the The erial Jnstitute will be ghad to have information on this point. Further it would probably mot be remmerative to export the whole frouts from British Guiana, so that it becomes important to consider the extraction of the kernels. It would probalbly not be possible to do this by hand in British Guiana, and so far as is known at the Tmperial Institute there is at present no machine suitable for this pirpose.

The extraction of the halassu kernel, however, presents a similar problem. It js stated that a machine is now in use in Brazil for extracting labassu kernels, and the Imperial Institute is making enquiries there on this subject. It is possible that this machine will also be snitable for cockerite fromits, and if so it might be feasible to treat the cokerite frutio in the machine to obtain a mixture of (a) kemels and (b) shells and pericarp. The former conld be separated and exported, whilst the mixed shells and pericap conld pertaps be worked ly a modern extraction process for the production of pericarp oil.

Until information is avalable regarding the Brazilian machine all that can be dome is to ascertain whether the supplies of cokerite fruits in British Guiana are large and sufficiently acressible to warrant their serions romsideration as a workable protuci If hiss semems likely, the Imperial Institute will be ghat to have a consigument of about 6 wht, of the froits for terlmical trial.

Preservation of Flower Colour in Herbarium Specimens.

Botarical epecimens are commonly deprived of all beauty. an! math of theeir value by the loss of colour in the flowerleals. This rary serions drawbatk has now been remored by the timely diseovery of a method of colour preservation ly (Mr. 'A. F. Fothergill and deseribed in detail in "The Musemms Journal" for July. It has the further merit of extreme simpliety. Briefty, Dre Fothergill employs sheets of absorbent cotton wool, placed in three layets forming two compartments be:ween two "prids" whid ate made of a "wire-mesh work of half-inch sequates with a heavy encireling band." The necessary pressure is obtained by fasteuing one or two straps, preferably of webbing, around the grids, and tightening them as required. The flowers to be pressed, having been placed in the grids, are then suspended in front of a fire, or in the sum, when this is sufficiently powneful. The explanation of the succers of the method is, that the process of olrying is sorapid that the pigment is fixed instead of being slowly decomposed. Fresh carnations can lue premered in about seven hous. Primroses picked fesh off the living phant can be permanently dried to retain a, lifelike colour in two hours if the press containing them js plated in the oven."
-" Nature," September 2, 1915.

Meeting of The Board of Agriculture.

A meering of the board of Loriculture was held at the office of the Board, Broad Street, on the Find Norember, 1915, His Excellency the Governor (Sir Walter Egerton, K.('.M.(i.), presiding.

A resolution of resper al the death of Mr: Miratar I'ayne, li.d. LJ.li., wha had been at member since .July, 1906, was manimomsly adopled.

THE GiNger tily.
It was reported that it had been decided to terminate the experiments with the Ginger Lily (Hedychinm coromaritum) as a peper protheing plant: it hat been peoved that the phate conld be grown in the colony in large quantities, but there was at present mo market for it : also that that West bank Farmers Association held a Khow on 19th October, 1915, : 11 which the exhibits were small in mamber but good in filality. The attemdance was rery poor. Mr. Eialle pointed out that the small atremdance was due to the people being employed om the sugar estates, which were winding. Dis Excellency alvised that future shows be held at a time when the people were able to attend.

" PEST" POSTERS.

The C'laitman submitted fwo draft posters prepared by the Govermment lotanist and the Economic Biologist respectively, giving information concerning the principal fungre and insect pests of the colouy. The posters were to he printed and sold at a momimal price.

The ('haiman reported the arrival on the esth August of a Tamworth boarr and two sows, and a similar number of Berkshires. The sows were received "in pig," and had since farowed 26 piolets, 14 T'amworths amd 12 Berkshires. The piglets were being sold.

INPECTIOC'S DEEASES OF STOCK.

With regard to the anthax ontbreak, the Chairman reported that the area Kitty to Mahaica, on the East Coast,

Was still infected, amd it was estimated that 2,000 cattle remained uninocolated. Opposition to inorolation had been met with at Mahaica. In outhrak of contagious pleuro-pmemmonial was ako reporterl. The (iovernment of Gremada lad prohibited the importation of all animals from British Guiana for six months.

sales at flant stalds.

The ('hairman further drew attention to a serions falling off in the sales at Ilant stalls belonging to the board, and :nlonitted the following statement:-

Stall.	So. of Plonts sold.	t.
Georgetown	. . 297	\$ 5.89
New Amsterdam	860	16.68
North West station	14	1.38
I'omeroou	1	24

The Board derided not to close down any of the stalls, but to give the sebeme a lomger trial.

R:CE AT DORBAN PARK.
I: was anmonmed that the last (rop) of tice on the DTrb:u field had bern bather disappointing-20.9 bags of 120 lhs. of padi per atore. This was date to an exeessive development of straw (equal to 7.8 toms per acre) ; to heary rams in Angust inducture regrowth in for plants at the time they should have been flowering ; and to an attack of fungus disease following on the rains. The results so far hare been-

First Croj	$\because 8$	bags of 100 lbs .
Second Crop	21. ${ }^{\text {a }}$ *	, , ,
Thard Crop	30.00	, .,
Feumh Crop	:36.00	$\because \quad \stackrel{ }{\prime}$
Fifth (100p	$\because 9.90$ *	

 RIDBER TAPPING AT NTATJONS.
The Assistant Director reported as follows on the robber crops of the Department of seieler amd Agriculture, for the period Faturary to September, 1915:-

Issorora, N.W.D.--Tapping commenced 11 Feb., 300 trees in one tapping experiment tapped daily vielded to

[^6]September 30, (a perion of nearly 8 months), 950 lbs. 2 oz. 3 drs., which is appoximately equal to 570 lls. dry lubber: cost of collecting, $\$ 37.12$ or (6.) cents per lh. dry. Another 128 trees, which are being bled separately, and which, not being sufficient for a task for one man for a half day, were not includet in the above experiment, yielded 125 lbs . of dry rubber in the same period.

Christianburg.-Tapping commenced 6 Feb.; 2.00 trees tapped daily vielded to September 30, 235 lbs. dry rubber at a cost of 24 cents per lb. dry.

Taking both stations together 93.5 llas of (by rubler have leen obtained in 8 months for $\$ 19.40$ aquivalent to 12.8 cents per lb. Early tappings at Choistiamburg cost 133 cents per 1b. as companed with 15 conts from eatly tappings at Issorora. Considerable diffeculty was experienead in getting setiled laluell for tapping, and the leaf disease having reduced the giold at Christiamburg, the reost has been somewhat higher than at Issomen for the first s montlis of tapping.

The Chairman added that there were about gon lhas. of rubber at the Gardens amailing shipment.

FIYRRID COTRON.

Samples of Buck aud hybrid cottons cultivated by the Department were exhibiterl, and attention was drawn to the report of the Imperial Tustitute on the new hybrids produced by experiment.
" KArok."

A note ly the Assistant Director on the experimental growing of the Kapok (Ceiln pentondra) tree at the Gardens showed that of plants were put out in March, 1913 They attained a lright of 1.5 feet when 18 months old and fruited for the firs time all that age. From a first sowing of 100 seeds, $1 \underset{\sim}{2}$ plants. and from a secomd sowing of 1,500 seeds, 250 plants were rased. Two separate ronsignments of 1.000 seerls fom the Malay States gave ouly 4 plants Twenty-four plants were given away at the West Bank Farmers' Show, and 200 plants were on hand.

The President stated that the tree was extensively planted in the East, and advocated the introduction of the tree
into the villages. Thi, fibre is largely used in making lifebelts, mattresses, rope amel other articles.

THE PANAMA HAT INDUSTRY.
The Chaiman stated that the Department had now raised upwards of 1,000 plants of the Panama-hat palm (Carludocice palmata). The majority were at Issorora, but alant 200 were at the Gardens. The Fresident thonght that a phatation of the palm might he established at the lemal Settement. He refereed to the progress the industry Iatl made in Surinam, and saw mo leason why it spould not do well here.
board assumes cowtrol of girdens.
The Roard unanimously rewolved to take over charge and control of the Promenarle (amens and other Municipal ormamental (xardens from the Mawn and Town Council, for a term of five rears; and also the control of the Public Free Sibrary Garden-the loadrd undertaking, in the latter case, to make the sum of $\$ 140$ suffice for the ammal upkeep of the groumds.

An " Otommental Gadrdens Committee" was then appointed, and regulations for the control of the grounds adopterl.
 man of the [Band and the Eeomomice Biologist, was unanimously agreed to, the Chaiman pointing out that it was necessam in cases of plant diseases and pests that prompt action should he takers.

The Jomat? then adommed wine die.

Banana Flour in War lime.

Banama thour is being used an a food in the French base. hospitak The banama yods alome a quater of its weight in meal and the cost of meal in the Wrest. Indies is about 2d. per !h.; mixed with wheat Hour, excellent loaves aned cakes are obtained, and if wheat continnes to advance we might well take a leaf out of the German look and use another ingredient. This loaf is quite as nutritions as the wheaten. which is more than can be said of the "war bread."

Hints, Scientific and Practical.

The Secret of Germany's Strength.

Dering the past fifty rears no other nation has so encomaged scientific research ats has Germany and hy no other nation hale scientific discoverios been so readily accepted and so quickly ntilized. In all legislation upon economic questions the man of science has had paramonnt influence, and in that greatest of all economies, the pre rention of unnecessary waste and the getting ont of every material thing the last drop of usefulness, the Germans, from prince to peasant, have no rival The administration of her monicipal govermments is a model for the resst of the world. beciuse the advice of the seholar has been songht at every turn. All of her foremost industrial enterprises have hat their begiming in the laboratory. In many jmportant lines she has contronled the markeis of the world, not on account of her superior hasiness or commercial intelligence, but hecause of the knowledge and tectinical skill of her chemists.

Whatever we may think of the ontcone it cannot be denier that it is applied soience that has mabled the German Empire to suddenty convert itself into a hage engine of destruction, all parts of which seem to have been so delicately adjusted to each other that the awful strais to which the whole is now subjected is distributed among the several members in exact proportion to their alnility to bear it. Other nations are learning this lessom in the hatra school of experience and they are paying tuition fees in blood and treasure. Fortunately for us (in the U.S.A.) it may be learned by ohservation as well as bex experiment. -T. C. Menhmilhali, in "Neqence":

December 24, 1915

> The Potassic Fertilisers.

Ahmorart water cultures compled with the results of the Rothamsted experiments even in their early rears, showed that of the alkali metals found in the plant's ash only potassium was iudispensable, for a long time the salts of potash conld could not be obtained in quautities or at a price appro-
priate to agricultural requirements. Almost the only somee of potash was the crude carbonate or " potashes," which was obtained by dissolving the soluble salts foumd in wood ashes; and though this was to a small extent supplemented by the nitrate of potash or saltpetre obtained trom India, and by a certain amount of sulphate of potash obtained from "kelp"-the ashes of seaweed-no widespuead use could lee made of potash salts in farming intil the opening up of the great Stassfurt deposits in Germany The fertilising value of wood ashes had long been known, and in the south-east of England it had been castomary for the hopgrowers to organise a regular system of collection of the ashes of their cottagers, who burned little besides wood; but such a supply was only local aud eatly exhansted.

William Ellis, again, writing in 1750 , states that "at Long Marston, in Bucks, is a potash kiln, where they make ashes from lean straw for the most part, and sell a vat of them, which comtams 32 five-bushel sacks, which dresses one arre, for fomrern shillings, to be shovelled out of a cart or wargon, and throwed over grass land in this month (.July) or at any time till Candlemass"

In 1861. the output of potash salts began from Nassfurt and rapidly grew, until in 1900 no less than $1,1,58,0 \% 0$ toms were being used for agricultural purposes alone. -" Frmilisers and Manmes" by
A. D. Hall, M.A.. Fe.ies.

The Role of potash as a Manure.

Therf is ahundant experimental evidenes to show that potash makes the plant more resistant to the attacks of fungoid disemses. It las alreaty been explained how sust po tible the use of nitrogenous manures renders the mandolds on certain of the Rothamsted plots to the attark of a lraft spot fungos-l rom!fres betae. The attack is, however, mur-h less serere on the plots receiving an abmolant supply of potash; there the plant remains healthy even thongh the nitrogen is in excess. Iust in the same way, the wheat on the potash-starved plots is always subject to rust, eren in a
goorl season when very little is to be seen on the other plots normally manured. The grass also on potash-starved plots is attacked by various fungi; hence it may be taker as a general rule, that crops which do not receive their full supply of potash will be correspondingly susceptible to disease.

It is not possible to say whether this is due to any specific alteration in the composition of the cell contents or to a general lack of rigom, but the latter is probable, because an excess of potash tembs to prolong the vegetative growth of the plant and to delay maturity. I'lants receiving potash are always a little the greener, especially late in the season, and this is not always an adventage, as may be seen from the tact that the batleys grown on the plots receiving potash at Rothamsted show a somewhat darker and less attractive colom than those grown without potasl, That potash tends to prolong growth may also be inferred from the fald that its effect upon the yield is always most pronomneed in dry seasoms.
—"Fertilisers and Manures" by
A. D. Mall., M.A.. F.R.s.

The British Science Guild.

The wrat fature on the meeting, howerer, was the able speerll of Sir William Ramsay on the Orgamisation of science. White giving due praise to the efforts of all the separate scientific societies during the past ten monthe to utilise to the full Britain's scientific assets. he pointed out, and emphasised the fact, that nothing of a really effective nature could be done until such societies were made sul)servient to one central body of scientific men, to whom the Goverement Departments should be compelled to apply for advice and arsistance. He said that the Royal Society was eminently fitted to play such a part, and read a scheme drafted by Lord Sydenham which showed how such an idea could be made practical. Sir Willian Ramsay, in his attempt to rouse his audience to an adequate sense of the importance of such an mulertaking did not hesitate to buing to light all the shortcomings of our country by com-
paring it very unfaronmably with that of Flance. Ha uatrrated low our Alls, as early as August 4, had called a general mecting of her Acallemy of Sciences. which decided to offer the whole scientific resources of the comntry to the French Government, and pointed to the lamentable fact that on the 1 st .Jnly, eleren months later, such measures in England were still conspicuons hy their absence. As a striking illustration of the slowness of Britain to alter its irlas he read an extract of an address. given sixty-three years ago by Lord l'layfair on "Industrial Inswruction on the coutinent," which is equally applicable at the present day In it Lord Playfair remarked, "For many reats foreign States, acting upon the facilities for communicertion. hive expended annually large sums in sending highly anlightemed men to our country; for the purpose of anling from our experience, ath of imporing it into their own land: and we see the effect of the experience thas readily arquired, when unjted with the high development of mental labour in the rapid growth of new industries abroal. . . . With us, there is a wide-spread jealousy of srience amd a supposed antagonism between it and pratetice. . . While we continne to rely upon local advatates or acquired experionce, we allow a vast poner. to arise ahroad. which is already telling against us with wonderful effect." Sir William Ramsar also deplored the fact that no publicity is givell to the work that is being fone in this country. The names of the workers are studionsly smppressed without any ned for surh secrecr. and ohe borly of men is barely cognisant of the aims and archievements of the others. At the close of the meeting. Gir Wioliam Mather stated that a letter conveving the opinion of the meeting would le forwarded to the Prime Minivar.
--"Acience Progress," October, 1915.

Exports of Agricultural and Forest Products.

Below will be found a list of the Agricultural and Forest Products of the Colony exported during the first quarter of the year 1916. The corresponding figures for the two previous years, and the averages for the four years previous to that, are added for convenience of comparison.

Product. At	Average 1910-13.	1914.	1915.	1976.
Sugar, tons	15,876	18,785	21,259	23,806
Rum, gallons	690,231	1,028,245	1,216,036	1.938,593
Molasses, casks	445	628		
Cattle-food, tons	2,137	760	374	520
Cacao, cwts.	59	208	187	29
Citrate of Lime, cwts.			17	45
Coconuts, thousands	ds 331	579	486	650
Copra, cwts.	505	490	589	824
Coffee, cwts.	447	927	334	658
Kola-nuts, ewts.			2	
Rice, tons	1,251	2,898	3,072	5.023
Ricemeal, tons	704	98	170	78
Cattle, head	247	370	196	173
Hides, No.	1,359	1,738	758	1,399
Pigs, No.	544*	360	267	320
Sheep, head	4	6	2	21
Balata, cwts.	S31	2,168	3,289	2,700
Charcoal, bags	17,66:3	22,076	12,989	16,264
Firewood, Wallaba etc., tons	$\cdots \mathrm{a}$.. 2,472	3,215	1,914	3,817
Gums, lbs.	689			883
Lumber, feet	66,880	120,217	8,877	156.002
Railway sleepers, No.	No. $1,503^{*}$	502	53	675
Rubber, cruts	181	...	7	46
Shingles, thousands	ds 581	254	441	437
Timber, cul. ft.	81,050	78,184	37,434	67,569

[^7]
Selected Contents of Periodicals.

The Inftuence of Research on the Development of the Coal Tar Industry:
The Cash Value of Scientific Research.
" Science Progress, Jannary, $1: 16$.
Science Teaching in Public Schools.
"The World's Work," April, 1916.

A New Interpretation of the Relationships of Temperature and Humidity to Insect Development.

A Sew Spray Nozale.
" The Journal of Agricultural Research,"
March 20, 1916.
Relation of Carbon Bisulphide to Soil Organism.s and Plant sirouth.

Ibid, April 3, 1916.
tims, Methots and Results in Medical Education. " Science," March 17, 1916.

Scientific Truth and the Scientific Spirit.
Ibid, March 31, 1916.
Ensilaye-Its Value and Cost of Production.
"The Journal of the Department of Agriculture," Victoria, Australia, February, 1916.

Over-irrigutin!j Rice:
School of Tropical Igriculture:
Endemism and Ecolution.
The Tropical Agriculturist (Ceylon), February, 1816.

J OURNAL

OF THE

Board of Agriculture

The Botanical Aspect of the Sea Defence Problem.

W'e are glat to nee that the botanical asject of the probs. lem of sea defence is recognised in the Report by Mr. G. O. Case, the expert called in by the (aovermment as a sequel to the recommendation of the (ommission appointed to deal with this vital matter. This is, in fact, the first hint we have seen that there is a botanical side to the problem, for the leport of the Commission itself contained no reference to this aspeet of the guestion; fer in all countries which hate to take into serions aroome their defence against the inroads of the seat, the role of phats as agents in buibling matuma ramparts is one which is studied as minntely and at painstakingly as is the form and structure of mechanical obstacles to the destroctire marel of the ocean. Right! considered, the two aspects of the problem ate complementatr-oue makes good the deficiencies of the other. Ditural hulwarks are the cheapest, and while they are not impregnable against storms or extreme forms of erosiou (when they have to be supplemented ly artiticial contrisances) ther can be made to form the bulk of the sea defences over great areas. Moreover, they have proved themselves, within their obvious limits, thoroughly efficient. The art of the engineer endeavours to utilise the energy of the sea itselt to form its own barmier, coaxing it
to deposit the sediment it carries in suspension and nowhere giving it an excuse to exert its latent power; the art of the botanist is directed to choose such plants as can live in the conditions obtaining on the shore and by slowing down currents induce the deposition of silt, and above all by arresting the wind-blown sand, build up stable dunes and banks letween the water and the land. And the botanist's activities have the inherent advantage that his defences, like the timber trees the old scotsman advised his son to plant, "are aye growing while ye re sleepin'."

So far as we have been able to ascertain only one accome of work of this character done in this colony has been published, and we propose to quote freely from the article, which will lee found in "The Journal of the lional of Agriculture of British Guiana," Vol. I. No. 3, (.Janary, 1908). "As the subject was of much importance," writes the then Editor, Mr. A. W. Bartlett, "it was brought before the Board of Agricolture and some valuable informat tion was obtained. . . . A question was addressed as to the value of the Comida in resisting coast crosion. It appeared to be the general opinion that courida was very unsatisfactory. The roots do not penetrate deeply hut feed for the most part on the surface, and the consequence of this is that the full-grown trees which oftem attain to a considerable height, are casily bown down by a stomg wind and realily uprooted lig a slight wash. The orerthown trees, moless quickly remored, are capable of doing much damage to the sea defences when washed about by the waves. On the other hame, the Comita appears to be of some wese in withstanding the encroachments of the sea when left mulisturted. . . The Mangrove, on aceount of its abmulant wide-spread and deeply seated system of roots, which emables the tree to withstand heary seas and strong winds was considereal to be of much greater ralle than the courina in protecting the foreshore against erosion.

[^8]some rears past. I took an early opportunity of visiting the place where the grass had been planted. For a length of about 100 rods this grass covers the higher and upper parts of the foreshore which it has largely helped to build up, aud there are large patches of it growing in various plares in the soft mund on the lower parts of the shore, Which are covered by the sea twice every day at high tide. Excent for Young Mangrove trees planted in places of the shore which have been built up by the mud accummated by this grass, it appears to be the only plant which is able to become established in the soft shifting mod on the seaward side of the fringe of Courida. Mr. Junor noticed this wass many reats ago growing on the banks of the Demerara diver at both Vriesland and Providence plantations and observed how the soil accumulated aromed it, which led him to test its powers in protecting the shore from erosion when he heame Manager of Plan. Vryheid's Lust. His experiments were entirely successful, and after the erass had become established he tried planting mansrove trees amonget it, so that to-day there is a forest of these trees springing up and requiring no further attention.
"The grass appeats to be itentical with sperimens of Nometina brasiliensis. Raldi., in the herbarimm of the liotanic Garrlens. . . Mr. Jhnor informs me that he plants the dufts of the grass in rows, the rows being six feet apart and the pants in the rows separated by a distance of two feet. The deptla which the lufts are planted is abom! one foot below the surface. The grass spreads quickiy so that in a shont time the phants meat to form a pateh, the momerous stems of which serve to fix the mud amb prevent it from being washed away by the sea. Even shonlet the mud rover up the plants after they have heem planted, they are able to make their way through it in time.
"When the grass is firmy established Mr. .Jumor"s plan is to plant the sedrings of the mangrove in amongst it.

Where follows a wreat development of roots both from the trounk and the branches (of the mangrove), which, after ? he manner of flying loutresses firmly support the tree it: the soft mon and enable it to withstand the strongest breczes aut the heaviest seas. These aerial roots being
more or less curved, allow a certain amount of give' or play which is often ot athentage in emabing a structure to withstand pressure withont collapsing. So the mangrove tree is in many ways particularly adapted for growing abong mudrly sea coasts whicle are exposed to winds and wares The romg plants grow rapidly and in a few years

 (omst amb should be wathered for planting when they are nearly reaty to fall. Jll the plathting that is required is merely to insed the bower pointed emb of the seddinge in the mud. When the mangrove mese have grown to a fatie size they form a crowe shanle, amd so far as my obseration groes they kill out the 'wild rife' which appears to dectuire full exposure of the smas rays for at last a part of the daytime for its sucerssfut growth. But by the time that the mangroce trees have reached a sufticiently lage size to do dis, bley will themselyes have taken over the fumetion of the "widd rier" in preventing coant eqosion and herere the latter is no longer required."

We have been mable to procure ame information as to the present condition of the foreshore mentioned in this
 a somm jurgment to be formed of the sucess of othervise
 to "wild rice" for purposes ol sea defemere that we have been able to discover is in the valuable " brief Ilistory of the Neat Defence Work of the P'ablir Works Department" by Mr. L. P. Horge, attarbed as an appenclix to the Renort of the Sea Defence (om. mission. On patge 86 it is stated that the planted in a spare emelosed be proynes amd that "ther result has been a very satisfactory waping of the shoe.".

These extracts will serve to show what a rery weat deal We do mot know regarting the hotanisal aspere of the sea defence prohlem as it affechs this colent. The foreshore does mon romsist entinely of mot : samd also ocemes: ant wes monderstame that this is comsidered the most valuable materia! for forming a natural protection for the coast, aurl that the resilt of Mr. Case se scheme will be the formation of stabilised areins of such material at the latud ends of the groynes. But how long will such stabilised areas
last muler the constant aroxion of sult-atrial agencies, if they are not protected liy suitable vegetation? In the light of our present knowledge, no answer (an be siven. We have no data. There have been no weientifie investigations into the fartors whirh determine the distribution and growth of the shore thom of the colony, or to settle the preerese value of the plants from a sea defence point of view. No experiments have yet been mate to ascertain Whether or bot raotie plants of proved value elsewhere will retain their virtue in the comblions prevaling in bidish dalana. dil such points have bere, and are, fhe subjeet of detailed experiment in other rombtres, as can le seen from the literature of the subjeed." With the eme giteertag side of the problem in lBritish Gmiana already tackleal in so promisinge fashion, the time seems to be of erortume for the malertaking of the botanical aspect. If carried thromgh in a seientific spirit and in an exhanstive manmere, the results most be of extreme valoe to the colony and would romplete in the only satisfactary way the solntion of a problem which has worried the colony abreaty too long.

[^9]
Science and Truth.

Science, then, is not infallible and never can be. Equally lacking is the quality of infallibility in sciontific truth. The eswerner of a troth in science lies in its power to explain phemomema in at satistactory way. If it does not do this, then it is not a trath. In a ceretain stage of the development of seientific knowledge a theory is found to explain or relate all the known fade in a particular jange of phemomena. This is the somme of the satisfaction it gives to the seientific mind, and at that stage it is accepted as a tronh. Rat subsequently diswererl facts in the same province may refuse to be so explained or related, and the previonsly acopled touth will, consequently, be disaraded for that one will give this service.
—"Science," March :31, 1916,

Lessons with Plants in British Guiana.

By the Editor.

"It is finding answers to questions which chicfly deserves to be called science."-L. C. Miall, F.R.S., in "Teaching and Organisation."

VIII.

ADAT'TATIONS TO EXCEPTION. L CONDITIONS.

If you have earried out intelligently the simple experiments suggested in the previons articles of this series, you will have found out by the best possible methor-experi ment-that ordinary pants absorb water by their roots and give it off be their leaves, need a good supply of atr below ground so that the delicate, attive cells of their roots may live and do their work properly, requite good soil from which to get food, and mast have sumhoht if they are to thrive. But simple observation of the plants of the colony will show that many plants live high up among the batmeles of trees where they are quite away fropany possible connection with the ground ant its supply of food and water, others flomrish in trenches, ponds and swamps in the mud of which no air of a breathable quality is likely to be found, while many grow on sand reefs in which the supply of food is poor and the available water is obsionsly at a minimum except during the miny season. Evidently, these plants have by some means or other overcome the difficulties of their enviromment-have solved the problem of existence in seemingly impossible comditions-and it will be of interest to try and discover, if we cam, how they have done it.

Let us consider for a moment the reason why these plants have had to take to such difficult places in order to live. This is to be found in the Struggle for Existence to which we have refered in a previons article. The best places in the world are naturally the objects of the greatest competition, and ate very early and quickly occupied. The fight for such places is constant and relentless, the one penalty of failure is death. Every species which can ob-
tain a foothold strives to onst every other species, the straggle between individuals of the same species is even keener. Plenty of "e]how room" is to be hat only where conditions are difficult-even impossible, apparently. The more forbidding the prospect, the more space there is available, but the less the chance of surviral. Not that competition is less keen. Comntless numbers of seeds attempt the jmpossible, and perish. Competing species crowd to the erlge of the valrant sparee, aurl the slightest improvement of the prosperet, the smallest modification in the limiting conditions, gives some of them the chance they were wating for. Meanwhile a few, fitted by some peroliarity of constitution or structure to live in the apparently impossible conditions, take every advantage of their opportunity, even improve by selection the ir initial peenliarities- - for fompetition amongst themselves is as meompromisng as area and people the valeant spot.

TIIE STRTGOME FOR JIGIIT'.

Take the case of a very eommon plant--not ao common in Georgetown since the advent of modern samitary scienco-nthe Catopsis mitide usually, but incorrectly, called a " parasite." Its gracefinl fimmelshapeed tutts and hoight red spikes were a common sight on the Faman trees in Vlissingen Aremue, until the athorities combemmed them as a mosquito-breedng musance. It is said that ratt]oads of them were removed, and that thes men who did the work were thoroughly dreneled by the water the plants had stored up in their funmelferces. (limb up yourself to a limb on which some Cotopsis js growing atud convince yourself that the story is trae in this rempect. Carefolly examine the water in the fumel. Yon maty find live mosquito larvare fom will almost certainly see dead inserts and botting leaves which have been hown thear or have fallen from hear-by trees. Detach the bromelia from the branch on which it is growing. Note whether or not the roots actually penetrate the bark. Examine the roots. Are they large, thick, lomg, tamgled" Do they gather murh dust? I O the e collect anything of which a "soil" could be made" Trake sperial note of the sheface of the leares, botlo below and above the water. Yom will be mable to make out much without the assistance of a microseope, but you should observe white, dry sales. Below the water
level these serve as absorbint orgoms, amb theire structure is interesting. They are really broat, Haftemed hairs, mathe of thin permeable cellnlose in contrast to the thick, im. pervious cuticle of the suromating leafeppideruis or skiu, and by means of these the phant takes in the water ine pregnated with leaf-monld and decaying animal matrer which has collected in the leat-fumel. This the Catopsis as a result of a womderfully eftrient adaption, arries with
 ost ame dreest plates it eall timel in its searelt for the essentiab—all-essential-light. How suceessful the phant is in the strogele for existemee is prowed by the most rasmal acopaintance with the bush, where dery dead tree and many living limbs are thickly rovered by members of this gellins.
THE " SEMI-PARASTHE" LORANTHIS.

An instrative eomparixoln ann how be mate between the
 the phant almost everwhere, expecially on ('anmanimatrese,

 Examine he mots. Trey to pall the plant from its lowet tree
 sections of it with rour kife, just ware the foots or
 trate". Refall the simple experiment of plating a cut branch
 to deternine the conles of the watro-the "transpiation

 the water amt milts in solution which it meets for hald-

 the catbon bloxide bas and water vapome of the air for

 parially pamsitie Vote aber that it is 10 athantage to such a patasite folit! its host: the mose lavomable case is When the host remalns abive and well to supply food material to the parasite. In oldexstalbished plant and animal rommunties, therefore, we fand native parasites do litter of mo damage, but should a mew member be introducef. the prob-
lem of protecting it from falal attarek is often a difficult one. The point is important in connection with the saluitation of introdnced economic cultivations.

Eloldilites.

The Catopsis is termed an epiphyto or plant whirh lives upon--up on-another plant but does not tepemd on i (s, suppot for Pool : and epiphytie regetation is a repry rhararderistie feature of laritish Gitamatmat of Tropical South America gemerally. Jake a walk throngh the Ninsely in the leotanie Garrlens ame stmer the orehids there. Lgain devote your attention to the roots. How many kind. cam you distinguislo? Some hamg down, some rling to the supports, some pooject straight up into the aile. Note any differences you dan in them. Do ron tind amy rleat leaves amd dust ramght by the projecting roots: Amything like a "roil". The hanging "arial" roots are worth farful in-
 athd theif whine parehmemt-like covering is very noticeable. This is called the " velamem," amd eat alowoh aty water which matren over it during showers, and retan it for the use of the plamt. A eomsin of the éatopexis-the "Old
 which can le seen on maluy trees in berbice amd elsewhere hanging in wreygrem masses from the branches of treesdoes the same thing, bat the ahnorbing oreans in this ease are mot roots-for the phant has mome- hat the linear leaves which are eovered with seales similar to those we saw in r. nitidr.

XEROPHYTH' ChARAC'TERS.

You will of comse notice that the orehirls tave no funnel arlangement for collecting water in bulk. Eviclently the will have to deonsere earefally the water they do absorb. The leaves are thick and leathery, amd helow them are corions
 The water problem is obvionsly a ver serions one for me phytes and we timd that they all exhinat remophytir chatalr-ters-that is featomes abaping them to live in dry eombitionis. As a pole they eut down their tamspiation to a minimmon, have a thick anticle, and deeply-sunk stomata, sometimes pessess "aqueoms tissue" in which water is stored, and mecasionally have a mucilaginons of gmmmy cell-sap
which dries with great difficulty and holds liquid very tenaciously. Capital illustrations of this last feature can be found along the sea Wall. The groynes towards their fall ends are covered with brownish red seaweal (locally called " moss "), which is wetted with water only twice a day, at high tide, and for the greater part of twelve homs has to withstand the heat of the tropical smo beating on the exposed stone. Experiment will prove to you that these seaweeds ate remarkably slippery-mucilage-and that eren during the heat of the day they are moist-mucilage. Again if you walk along the coping of the wall opposite the Riffe Ranges after it has been wetted ly a light tide, you will fimb the going dangeromsly slippery owing to a slimy growth of "IBhe-green Algate." Lach tibament of these microseopie plants is enclosed in a thick tube of mucilage, which prewents their drying up to a fatal degree between perionical wettings, which are often very distant in time ferm each oflocr:

rARJMAL EPJIPHYTES.

A geom many plants, howerer have not ret leeen able to sepparate themselves eutiedy from the swil, but still gat the bulk of their foed and water from that great storehouse while endeavomring to reach the light after the manmer of toue epiphytes. They have rooks, often of remarkable length, which reach down from the plant atowe until they come into rombact with har bath below. These hanging or arerial roots are atother chatacteristic feature of our colony forests.

'THE AROINS OR ARAC'EAE.

Oue Order of Monowotylefons, the \mathbf{A} reids (Ararefer) are of great interest in this comection. They may he recognised hy their inflorescences, which are of the "Armm Lily" type-al exlindrical rool, or spudi.f. more or less enclosed in a green, white or brightly coloned leatf, or sputhe. The family is a very prominent one in British Guiana, the memhers of it ranging from the common Water Lettuce (Pistia stratiotes) of on wencher through the Catadimm of one gadens, with its waily spoted leaves, the Eddoes (Colocasin) of our markets, the Dumb Cane (Dicffernbechiof) of our waste lands and the Anthurime Seherectituum of our ormanental pots, to the giant Monsteras which climb our trees. It is to these last that I shombla like to
draw rour attention. Many fine specimens of Monstera oblique are easily to le fonnd in the botanic and [romenade Gardens, their large, simple leares with great holes in them so distinctive that the plants am harelly be mistaken. Stury carefally the methor of growth of the specemen rou find, and expecially the means by which it elimbs but yet retajus commection with the soil. How many kinds of reot can ron distinguish in this rase? Make sections of them. Recall the fact that ofe water supply from the roots travels langely in the ressels of the wood (for you remember the experiment which shows this:) and tiv to explain the differences in structure which you observe in the roots of
 which you lual find Hourishing as a trome epiphyte.

EYOLCTION JN EPIJlIYTINM.

A quotation from 1)r. Willis"s book "Floweriug Plants aud Ferns" will he useful at this point. "The larged tropical Lrmerar." he wites, "show interesting stages in the development of epiplytism. The elimbing forms grow to considerable size and form longer and longer aderal roots as they grow upwards. The original roots at the base of the stem thas berome of less amel less importance and it not nucommonly haperens that they die away together with the lower ead of the stem, so that the plant thas beeomes an
 the soil, it is not an emiphyte in the sellse that re!.. many Orehids or Bromeliaceat are such, and it is evident that if this method of beroming epiphytic were the ouls one fomm iuthe Oroler, these plants comble with no more justice be classed as thoe epiphytes tham the ivy which may oftem be seen in the 'howls of pollard willows iu Europe, and Which has got there her climhing up the tronk and rying away below. It is found, however, that some species of Philodendion. Poblos. ete, are able to commeme life as epiploytes. The fleshy firuit is eaten by hiots amd the seed dropped on a lofty branch. The seedling forms elasping roots and dangling aerial roots which grow steadily down to the soil, eren if it be 100 fert or more away. It is hardly possible to suppose that these true epiphytic species have heen apolyed in any other way than from former elimbing species. The leaves of Philodendron cannifolium, Schott, have swollen petioles full of large inter-
cellular spaces lined with murilage. When rain falls these become filled with water and act as storage reservoirs. Lastly, some species of Anthurium, etc., are true epiphytes without any comnection with the soil. They have clasping roots and also absorbent roots which ramity amongst the humus collected by the plant itself. The arriat roots of some Aruceae possess a velamen like that of Orchids." The method of sead germination high up on the branch of a tree is found also in some of our Figs in this colony. We have observed that in the hash many of the climhing Aroids have ants' nests at the hase of the plant, and this must have the same result as if they took their own garden mould with them. It is worth while noticing what a very small amomut of soil suffices for the nomishment of quite large phants. Of course, in the leaf bases of Dalms there is always a considerable rollection, and such places often support a flourishing population, of which the fine Hares Foot Fern-the growing end of the rhizome or root-stock beats a remamable re. semblance to the "hares foot of a laty"s toilet table -is a prominent member; but if you keep your eyed open you will eome aress cases where, in the erevies of walls or the chinks of stone-work. the size of the phant seemes out of all proportion to the pinch of earth which momishes it.

> (T'o be Continued,)

Interesting Papaw Experiments.

The Hainatii Experiment station is making attempes to secure a strain of palaya (palpaw) with self-fertilising flowers, thas domg a way with the necessity for male trees The results hitherto obtained ate most promising, and comphete success in wo or three generations is promised. Of the second generation of breeding, tot trees examined showal 9 ! $!$ per cent. with perfect fowers fin fiutplearing. One most interesting experinent was that of cutting down fwo male trees two feet from the ground. When the new branches came ont it was foumd hat the sex had changed, and that rexular, perfect flowers, each bearing fruit, were developed :-"West India Committee Cireular:"

* Hints on School Gardening.

(By C. Dricbery B..1., F'.II....n., Department of Agriculture, Ceylon.)

Objects of Sehool Ciordens:-
(a) To brighten the surroundings of the sehool, and make it what it onght to be, viz., a pleasant resort for the bose, and not a biae amd mattractive building: (b) 'To lighten the routine of chas work hy valrying it with outdoor work of a rereative mature ; (c) To exemphfy order, form, neatness, and goon taste in the laying out of the premises; (d) To furnish a field for mature study, i.e., the stody of natumal objects in their matural suroundings; (e) To serve as object lessoms in horticulture, i.e., the cultivation of useful and ornamental plants; (f) To give a pratiacal turn to school life, and provide a traming the ementary agricultural seience: ($\underset{(1)}{ }$) To serve as centres for the dissemination of seads ame plants, amd of information eoncerning them: (h) To be mediams of commmaication between the agemes flat aim at the improvement of agroulture and the coltivating chases; (i) To induce the cultivator, directly or fhrough the sehool boys, to take up new and improved products amd adope letter methons of coltivation ; (i) To awaken in selool rhilalen a new interest in the cultivation of plants: and instil into them a love of nature, and no reeoncile them to a comitry life, and to agricultural
 dems at their homes ; (l) To make school hoss take an homest pride in manual labour, amd induce a healthy competition among them as well as between one school and amother.
Conditions of Work.
(a) Any selool which presents possibilities for school gamening will be fumbsed with a stock of implements, and supplied with seeds from time to time: where required, fencing wire would atsa be suppled: (b) (xatern work should be earied on hy the teacher with the help of the monitors and seholars. After setting aside

[^10]cellular spaces lined with mucilage. When rain falls these become filled with water and act as storage reservoirs. Lastly, some species of Anthurium, etc., are true epiphytes without any connection with the soil. They have clasping roots and also absorbent roots which ramify amongst the lumus collected by the plant itself. The aerial roots of . some Araceae possess a velamen like that of Orchids." The method of seed germination high up on the branch of a tree is found also in some of our Figs in this colony. We have observed that in the lush many of the climbing Atoids have ants' nests at the base of the plant, and this must have the same result as if they took their own garden mould with them. It is worth while noticing what a very small amount of soil suffices for the nourishment of quite large plants. Of course, in the leaf-bases of Palms there is always a considerable collection, and such places often support a flourishing population, of which the fine Hare's Foot Fern-the growing end of the rhizone or root-stock bears a remarkable resemblance to the "hare's foot' of a lady's toilet table-is a prominent member; but if you keep your eyes open you will come across cases where, in the crevices of walls or the chinks of stone-work, the size of the plant seems ont of all proportion to the pinch of earth which nourishes it.

> (T'o be Continued.)

Interesting Papaw Experiments.

The Haiwaii Experiment Station is making attempts to secure a strain of papaya (papaw) with self-fertilising flowers, thus doing away with the necessity for male trees The results hitherto obtained are most promising, and complete success in two or three generations is promised. Of the second generation of breeding, 454 trees examined showel 95 per cent. with perfect flowers for fruitpbearing. One most interesting experiment was that of cutting down two male trees two feet from the ground. When the new branches cane out it was found that the sex had changed, and that regular, perfect flowers, each bearing fruit, were developed :-" Vest India Committee Circular."

* Hints on School Gardening.

(By C. Drieberg B.A., F.H.A.S., Department of Agriculture, Ceylon.)

Objects of School Gardens:-

(a) To brighten the surroundings of the school, and make it what it ought to be, viz., a pleasant resort for the boys, and not a bare and unḥttractive building; (b) To lighten the routine of class work by varying it with outdoor work of a recreative nature; (a) To exemplify order, form, neat. ness, and good taste in the laying out of the premises; (d) Tho furnish a field lfor nature study, i.e., the study of natural oljects in their natural surroundings; (c) To serve as oljject lessons in horticulture, i.e., the cultivation of useful and ornamental planits; (f) To give a practical turn to school life, and provide a training in elementary agricultural science; (g) To serve as centres for the dissemination of seeds and plants, and of information concerning them; (l) To be medium's of communication between the agencies that aim at the improvement of agriculture and the cultivating classes; (i) To induce the cultivator, directly or through the school hoys, to take up new and improved products and adopt better methods of cultivation; (j) To awakeni in school children a new interest in the cultivation of plants, and instil into them a love of nature, and so reconcile them to a country life, and to agricultural pursuits; (k) To encourage school children to establish gardens at their homes; (1) To make school boys take an honest pride in manual labour, and induce a healtlyy competition among them as well as between one school and another.
Conditions of Work.
(a) Any school which presents possibilities for school gardening will le furnished with a stock of implements, and supplied with seeds from time to time: where required, fencing wire would also De supptied; (b) Giarden work should be carried on by the teacher with: the help of the monitors and scholars. After setting aside

[^11]such part of the produce as is required for purposes of propagation the remainder should be divided between the headmaster, assistant master, monitors and boys who have actually assisted in the work of the garden; (c) In the case of produce not actually used as food, and which it is desirable to dispose of with a view to profit, the amount realised is to be entered in the quarterly report form. The revenue from such cultivation will at the end of the year be equally divided, half to go to the headmaster, and half to be tevoted to a garden prize fund for the school; (d) quarterly reports should be furnished in the forms provided; (e) The school gardens will be inspected periodically by the Superintendent, and Inspectors, and prizes will be awarded by the Department to teachers who show the best results; (f) A certificate will accompany each prize, setting forth the nature of the award, \&e., and certificates of honourable mention will also le awarded to deserving teachers.

Points to be considered in Judging.
(a) Area cultivated; (b) Situation and lay of land; (c) Climate and rainfall; (d) Number and variety of plants grown: (I) economic; (II) ormamental; (e) Laying out; (f) Arrangement of plants and trees; Grouping for effect; (h) Skill in cultivation; (i) Cleanliness of premises; (j) Cultivation in pots, tubs, and boxes; (k) Bowers and arches; (1) Fruit trees; (m) Fences and hedges; (n) Paths and drains; (o) Lawn and playground; (p) Furnishing of reports and returns; (q) School garden records; (r) Activity and intelligence of scholars; (s) Care of implements; (t$)$ Aptitude and interest shown by teacher.

Seeds.

A certain number of hardy plants should be selected as seed-bearers. The best fruits producel by these should be taken forlseed. The best seed, i.e., the plumpest and heaviest should be selecterl, carefully and thoroughly dried and put away. Seed should be kept in tins or glass bottles with well-fitting covers or stoppers. A little napthalene or camphor put into the bottle will help to keep away insects, such as weevils, that attack seed.
Soil.
Very steep or hilly land should be laid out in terraces. Where large stones are found in the soil they should be dug
out and used for embankments or dykes-for which ther always come in handy: if small and gravelly, the top soil for a foot or two should be "screened" and the gravel taken out. Where the soi is naturally poor or worn out; it must be improved by manuring. If cattle manure is not available, green mamure or leaf manure can always be got. Sow green gram or some such leguminous crop once, or twice if nedessary, and turll the ap into the soil. Give heavy dressings of leaf manure ("Keppitiya:" Croton lac-ciferus-or any knd of leaves which will add humus to the soil). Another goon plan is to trench the laud, oie trench at a time, and fill the trenches with refuse vegetable matter. Wet and som soil must be draned and given a dressing of lime. When the land becomes foul, i.e., peedy and full of insects and other pests, pare and burn the wiper layer.

A mulch is a dressing of anything (rotten 'leaves, straw, etc.,) which will art as a covering to the soil: a soil mulch, or a spil banket is a surface layer of lonse soil produced jul situ loy tillage. Muldhang and tillage are recom-
mended to fight dronght. mended to fight rronght.

Garden Tools.
The following is a list of implements with notes on their use :--

Alavanyo.-For digging holes for fence posts or for large plants; also for removing large stones, shifting logk, aud breaking up hard soil.
'Axe-For cutting down trees and dividing them up into sections

Bill-kook--Used in place of a catty, for
cutting
Bueket-For drawing water aud conveying it from place to place.

Dutch Hoc.-A vely useful implement for weeding, stirring the surface soil, aud moulding up.

Fork, digging-For looseuing the soil without injurs to the roots of plants, particularly lefore applying manure.

Forl, weeding.-For remoring grass and weeds and stirring up the surface soil,

Mramoty.-Used for a variety of purposes: digging, turning over the soil, weeding, leveling, drawing earth, making paths, bels, trenches, ete.

Pickuxe and Quintumic.-For breaking up and digging very hard soils, severing large roots, \&c.

Prunin! Knifc.-For cutting small branches and roots.
Rake.-For breaking clods, levelling beds, collecting weeds or leaves, stones, etc.

Shears, garden.-For pruniug hedges, such as Duranta and Madras Thorn.

Sheurs, sheep.-For cutting herbaceous plant borders, such as Alternanthera.

Trowel.-For filling carth into pots and boxes, and for lifting young plants for transplanting or potting.

Wateriny Cum.-This should ouly be put to its legitimate use, for watering young plants, and not for drawing water, or carrying earth and mannere.

Implements should be kept by the teacher or given in charge of his assistant, or a monitor, and must not be taken for use without permission. After use, they should be thoroughly cleaned and put away in the proper place and not left lying about, as is often the case, exposed to the atmosphere. Small articles are best put away in a box or cupboard.

It will be found convenient to ummber each tool to correspond with the registered number in the list kept in the school. This will allow of easy identification of any article lost or damaged, and also afford a means of discovering who is responsible for such loss or damage.

As soon as an implement is fonud to be damaged, it should not be used till repaired, as slight damage will soon result in total unserviceableness unless the article is put right at once. Teachers should as far as practicable get all
minor repairs done without troubling the Department-if possible, by the boys, in order to train them to help themselves, as well as to encourage economy and independence. Handles for mamoties and rakes should always be prepared by them"; and such work should be properly finished.
-The Ceylon Agricultural Society Year Book : 1914-1915

Like all other living things, plants must breathe or they will not coñtionne to live. The more highly specialised among them are therefore provided with elaborate respiratory systems, consisting of passages which conduct air to all parts of the plant, and openings on the surface, theongh which oxygen can be taken in and carbon dioxide given ont, substantially as is the case with animals.

The extemal openings of this ventilatind system are of three general types: stomata or valves on the surface of leaves and young shoots; ventilating pores, which occur iu certain aerial roots; and lenticels, pores in the older wood, whose presence can be noted by the unaided eye iu almest any plant.
-"The Tropical Agriculturist," (Ceylon). Felruary, 1916, No. 2.
; Vegetable Paint.

In certain parts of Uruguay the farm buildings are a fine white colour, even during the wet season. To obtain this neat effect a white-wash is used, made from the sliced " leaves" of the Prickly Pear, which, when macerated in water for twenty-four hours, produce a solution of creamy consistence. To this lime is added and well mixed in. When the solution is applied to any surface, be it wood, brick, iron, or other material, a beautiful pearly white appearance is produced, which endures through rains and frosts for many years.

> "The Tropical Agriculturist," (Ceylon), February, 1916.

The Birds of British Guiana.

(By Charles B. Dawson, S.J., M.A., Oxon.) IV.

DOVES AND PIGEONS.

Pigeons form a homogeneois Order, comprising five families, seven suld-families, ninety genera and some six hundred species. The use of the name pigeon or dove is a matter of choice. The common domestic pigeon may be taken as the type although certain ground doves are only a quarter the size, while the Gouridac or C'rowned I'igeons of New Guinea ate as large as a bush turkey. The Order includes the large tooth-lilled pigeon of the Samom Islands (Didunculus strigirostris) is also the three species of the now extinct Dodo, (Dididac.)

The following chatacteristics may he notel:- the boly compact, the feathers close, the head small, the meek dainty; the bill sleuder, the base with the nostrils being flesty; feet small and often pink in colour, the bird walking lightly on its toos. The coloration is ordinarily sober; grey-blues and browns being the prevailing hus; but the fruit-pigeons of the Old World may be brilliant green, with a coppery sheen and markings of various coloms. There is a general tendency to bars on the wings or jottings of dark purple or black; there are often green or purple refections on the neck, as well as a ring more or less defined round the throat.

Pigeons build as a nest a mere raft of sticks through which the two white eggs may sometimes appear; or like the Stock-dove, they may make a nest in the hole of a tree or rock. They feed their young on a cheesy secretion of the crop, the young birds putting their beake into the mouths of their parents.

Pigeons feed in company; often in immense flocks: Fruitpigeons on trees, others on the ground. Grain of all kinds, with occasional insects and their larvae, ants' eggs, and even snails, form their staple food. Fruit pigeons feed as their name indicates.

Pigeons \& Doves-(Colonial). Columbidae.

Speckled Pigeon
Common White-naped Pigeon
Copper-coloured ${ }^{\circ}$ "

Columba speciosa.
" rufina.
,, albilinea.
", plumbea.

- I'eristeridac.

Bronze-necked Ground

Dove
Speckled Ground Dove Common (small)
Sava!umah ", "(red)
Grey " " Pevistera cincrea.

Conmon Gromid Pigeon (ret-mander-wing)
Brown Ground Pigeon
(Mountain Ground-dove) Geotrygon montana. 1-ARTRIDGES.

Pheasants, Grouse, Partridges, Quails, Fowls and Peacocks are included in the same suborder Phasiani. The sub-order includes no less than seventy-seven genera and some four hundred and ninety species, nearly all belonging to the Old World. Only two representatives are found in the colony, both belonging to a family called Odontophoridae, or American P'artridges. They may be recognized by the donble-toothed mamible, and the absence of spurs. They are quail-like birds of small size, and in habits resemble their Enropean congeners to some extent, being found in coveys in open woods and pastures, thongh they wilk take refuge in trees, clouching along the branches. Their food consists of shoots, seeds and berries, and also insects. The nest is formed on the ground, and in it are laid white or drab eggs.

\[

\]

TINAMOUS.

Tinamous or Maams (as they are locally called), are the survival of an ancient form; there are nine genera and
sixty-nine species, all peculiar to the Neo-Tropical and Neo-Subtropical regions. In outward appearance they resemble Partridges, but in their internal structure they have :effinities with the Ostrich, the Apteryx and certain now extinct forms. The colour of the different species varies from rufous brown to slaty, with bars or half-moons of a darker shatle above, or even below: the muder parts being lighter, with grey or whitish throat and vent. The beak, it will be noticed, is longer than that of Partridges; it is, in fact, much like that, of the Rhea. They have small, triangular tongues, a large crop, powder-down patches near the rump, aurl only a rudimentary tail. They are ground feeders, but are strong in flight, dashing blindly ahead when, with difficulty, they are disturbed. They scrape a hole for their nest and lay eggs varying from reddish-chocolate to dark blue or purple; these have a surface like polished porcelain, unlike those of any other bird. As in Ostriches and Ratitae generally, the male takes upon himself the duty of incubation. The sexes are much alike, the female, if anything, being larger. The species vary in size, some leing no larger than a Quail, others, the size of a Fowl. The note is often a slurill whistle. The food consists of secds, firuits, and insects. They dust themselves like Fowls. They often form into coveys, frequenting the dense mudergrowth of the forest or the open country. The flesh is excellent eating.

Tinamots-(Colonial). Tinamidue.

Large Maam	Tinamus subcristatus.	
Brown Matam (liding)	Crypturus cinercus.	
\dagger Capped Matam (ov small		
Mam)	"	pileatus.
\dagger Olive-brown Mamm	"	simplex.
\dagger Red-footerl ,	."	erythropus.
Small Maam (spotted)	,"	rariegatus.
*Brown-breasterl Maam		dissimitis.

CURASSOTV \& MARUDIS.

Under the family Cracidae are included Curassows or Powis Birds and Marudis or Bush Turkeys as well as Orfatis or Bush Fowls They number eleven genera and fifty-nine species and all belong to the New ${ }^{2}$ World.

Curassows are handsome birds, standing from three to four feet ligh. Odax alector, the one commonly domesticated, may be taken as the type. The prevailing colour is glossy black with pure white or light-coloured vent. The lase of the beak is bright yellow in Alector and others, and scarlet in Uritu uritu, Nothocrax, and some others. There is a curly crest, sometimes tipped with white or yellow. The females are smaller and are, in some cases, marked or mottled, the colouring being duller. Nothocrax is chestnut above lined with black, and cimamoth below; the crest is black, the beak srarlet, the feet fleshicoloured. Bush Turkeys or Marudis are, in outward appgarance, more like the Mound-makers or Bush Turkeys of Australia than Curassows; their habits, however, are similhr to the latter and thus they are placed in the same fanily. Mound-makers (Megapodidac) are closely related to leracidae, but are not arboreal in their habits The ILunaqua, so named from its cry, is an earth-hrown bird, hardly the size of a domestic Fowl, the top of the head being red, 'and there leing a small red wattle below the beak. It is'easily tamed.

Busk Turkeys are brown or olive-green, varied with red; the throat is wattled, the naked skin of the face may be purple or blue, the crest moderate. Oitalis is brown or greenish with no metallic lustre, the under parts being lighter: white or buff; the naked skin red, the feet pink.

Cracidae are forest-dwellers, feeding on leaves and fruit; some species scratch the gromnd for food Tike Fowls. They make large, careless, nests and lay comphratively small white eggs. Their flight is generally heavy their note may be loud and harsle or cackling.

> Cracidae.-(Colonial.)

Common Powis Bird *†Black-crested Powis Bird	Crax alector.
	Nothocrax urumutum.
* \dagger Red-billed	Mitua mitu.
Savannah	, tomentosa.
\dagger Knol-fronted (red-lilled) (?) Pauxis pau	
Small Marudi	Penelope jacupeba.
Large	marail.
Green	jacucaca.
Hanaqua	rtalis mot-mot.
White-headed Marudi	Pipile cumanensis

THE HOACTZIN.

The Hoactzin (Hoatzin or Hoazin) oi Canje Ploasant differs from all other liirds in its internal structure and is therefore placed in an Order by itself. It has an abnormally large crop, and to accommodate this, the breastbone keel is aborted in the front: a form unlike that of any other bird. It derives its local name from the Canje Creek where it is found in fairly large nombers, and from its fancied resemblance to a Pheasant. Its long, loose, crest of heckled rufous feathers, suggestive of " flowing hair bebind," provides its generic and family name, also that of the Order, Opisthocomiformes. It is generally placed between Pigeons ant Rails, thongh it has no strong affinities to either. It is never seen far from the dense shrubberies of the creek-side where it makes its home, feeding on the leaves of the Bundoree limpler and other water-side trees.* It flies lazily from tree to tree and in alighting will hold up its wings for some little tine, as if uncertain of its art; it will then rest upon its breast bone, the skin being worn bare. The feathers of the breast are hair-like; the bare patch around the eye is blue; the iris red. The young, which rum about as soon as they are hatched, lave two claws on the wings (that is, on the index and pollnes), with which they climb abont with great agility. A conspicuons nest of sticks is made in whiclu are laid alont five eggs of a creamy pink with blotches of red and purple. The sexes are alike; a cock and several hens are commonly fomd together. Its note is a harsh, husky hiss, unlike that of a bird. It las a slight musky odour It is a very local bird, being found only on the Amazon, in this Colony, Colombia, Ecuador, Peru and Bolivia.

Order: Opisthocomiformes.
Sulb-Order : Opisthocomi.

Family : Opisthocomidae.

Hoactzin, Canje Pheasant or "Anna"

Opisthocomus cristatus or hoazin.

[^12]
RAIMS, CRAKES, COO'IS, MOOR-HENS, AND ! FINEOOTS.

These lirds form an order which has representatives in nearly all parts of the world. There are in all fifty-three gencial and some two hundred and seven species, of which fifty lelong to the New World. They valry in size, some being little latger than a sparrow, othets the size of a hen. Gemeral chanacteristics are : smanl heakt, short beak, sometimes thickened at the bise, or broadthed into a frontal shichl which may be white or sealing-hat red ; the body compiessed and lithe, the feathers smooth, the legs long and slemoler, the toes also abnormally long in many cases, or partly websed in fin-foots, tail sliort. The coloration is generally sober-olive-browns, and bhaish+greys being the prevailing tints, with markings of back and white,-and the thighs ate sometimes striped with black' and white ; there are exceptions, as for instance, Porphyriolu martinica, which is a gorgcous purple blue.

They inhabit for the most part, the tangled manderwood, gemerally in damp sitmations near creeks, and are expert in making their way thougli dense masses of roots and brauches. Their food consists of worms, nolluses, insects, the shoots and roots of aquatic plants, and seeds. Their pests may be masses of plaits floating near the water's edge or among sedges. From two to ten eggs are daid, amd they are oftern pink or eream colomert, with spors or blotches of red and pratple.

Some are alutost silent bitds ; others make weital sounds like the croaking of frogs or the mufted barking of a dog, others again cackle, or make lond whistling noises. They swim and dive witl dexterity and seldom take wing.

GREBES.
Rallidae-(Colonial).

Jang-billed RaiI
Virginian "
Brown-headed Gallinule Red-breasted (Killicow)

Rallus longirostris. ,, virginiamus. Aramides axillaris. " cayanea.

Chestnut Rail	Amaurolimnas concolor.
White-necked Crake	Porzana albicollis.
\dagger Eye-spotted Rail	Thyrorhina schomburgki.
Little Rail (yellow-vented)	" flaviventris.
Red-fironted ,	Creciscus cayennensis.
Red-faced	Neocrex erythrops.
Coot	Gallinula galeata.
Pupple Coot	
(Blue breasted	
Water lıen)	Porphyriola martinica.
Small Moor-Hen	,, paria.
Hel	idae.
American Fin-foot	Heliornis fulica.

GREBES.
Grebes belong to an ancient form of which five genera, including twenty-five species, survive. Representatives are found in most parts of the world, nine in America. They are all water birds with webmed or lobed feet, and the legs placed far back. They are generally a dusky black or brown above and silvery white below. Some species have fantastic crests or cars, or ruffs of feathers on the head. Their plomage is short and close, as befitting their aquatic life. They feed on fish, molluscs, reptiles, crustaceans, the shoots of aquatic plants, and insects. Their nests are luge floating masses of aquatic plants ; the eqgs are chalky and white or bluish in colour, but soon become stained brown from the weeds the parent, bird places upon them when the nest is left. Though they do not easily take wing, they will fly great distances, being migratory birds. The chicks run about as soon as they are hatched, using both wings and legs almost like mammals. The colony possesses one species only. Grebes.-(Colonial) Podicipediae.
\dagger Pied-billed or Fetter-
footed Grebe Podilymbus podicipes.

PLOVERS \& CURLEWS.

Within the Order. Charadriformes are included Plovers, Curlews, Woodcocks, Snipc, Sandpipers, Lapwings, Turnstones, Kuffs, Oyster-catchers, S'tilts, Stints, Phalaropes, Dunlins, Mots, Redshanks, Greenshanks, Godwits, Wry.
bills, Avocets, Seed-snipes, and the long-toed Jaçanas or Spur-wings. There are in all some one hundred and fifteen genera, including no less than three hundred and serenty ord species, of which some seventy species are found in the New World.

The Order is very heterogeneous but all agree in having long, slender legs on which they can run with great swiftness, and short tails. Lapwings, however, are often in flight, and Phalaropes have their feet somewhat modified for swimming. Many Plovers and Curlews flove dry inland places, whereas Turnstones, Oyster-catchers, Godwits, Wrybills, and Avocets are to be fonm on the sea-shore. Woodcocks are fomd in forests, snipe in marshy placos; Sandpipers are known all dver the world and as fur north as Greenland ; there is hardly a strip of sound ly river or sea that has not its Sandpiper. Jacauas run about the floating leaves of lilies or other water plants, aided by their abnormally long toes.

These birds have generally slender bills, soft at least at the base ; in Gurlews it is very long and curved ; in Wrybills it is curiously turned to one sided ; in the Arocet turned upwards. The plumage is generally brown or grey, white or lighter colone below and often marked or barred with a darker colour. In some species, as for instance Oyster-catchers and Stilts, it is glossy black above and white below, the bill and the legs being often bright red, as well as the itis. Some genera have entirely different plumage for the pairing or nesting season, particularly Phalaropes ahd Ruffs; thus the grey Phalarope of England, where it winters, is the Red Phalarope of the Continent. The sexes are generally similar but in Fudromias morinellus and Phalaropus hyperboreus at least, the females are brighter in colour than the males, which take upon themselves the burthen of incubation. Several genera, notably the Parridae, have a carpal spur which may be large and stout. The eggs are generally pearshaped; they vary in colour from olive green to drab, sometimes white, with blottings and marking of black or lighter shade; the nest is generally placed
on the ground; the eggs, with their pointed ends towards the centre, are difficult to distinguish firom the surrounding stones. Their note varies from the drumming of the snipe to the screaming of the oystercatcher amo the metallic rattle of the spur-wing. Many of them have a wide range, being migratory. Their food consists of crustaceans, insects, worms, molluses, and sometines berries and vegetable matter.

I'lovers, Curleus, Ete.-(Colonial.) Charadriidae. 1

Turnstone Avenaria interpres.
Spur-winged Plover Hoploxypterus cayanus.
Black-breasted Lapwing Belonopterus cayennensis.
Grey Plover Squatarola helvetica. .
Americall Golden Plover Charadrius dominicus.
tSemi-wel-footed
Shore ", Agialous semiualmatus.
Coloured Sand "
Larger Curlew " Numerius hudsonicus.
Snowy Sand Plover (?)
Americum Stilt
*American Avocet
larger ('urlew
Eskimo ,
American Dodwit
*Dowitcher ,
Stilt Simplpiper
Willet or stome-Curlew
Larger Yellow-shamks
Lesser " "
\dagger Marsh sumpiper ," nivosa.
ILimantopus himantopus. Recurvirostra amoricana.
Numenius hudsonicus.
(?) Limosa Thudsonica.
Macrorhamphus griseus.
Micropalama himantopus
Symphemia scmipuliuatu
Totanus melanolencus.
" borealis.
Spotted
Longtililed " Trinfoides macularius.
Semi-wel-footed Sandpiper (or Peep) Ereunetes pusillus.
Red-necked Siundpiper (?) Tryngites subruficollis. Sanderling Calidris arenaria.
\dagger Spotted-necked Sandpiper IIeteropygia maculata.
*Brown-tailed
"
" bairdi.
Dusky-necked ",
The Knob
Tringa canutus.

Cranes belong to an old form and chiefly to what we call the Old World. The American representatives of the Oider cannot be called typical. There are in all some sixteen genera with thirty-fon species, five genera incturing fourteen species being peculiar to the New World.

Cranes jnclurle the largest forms of wading birds and are distinguished by their long legs, moflerate beaks and generally short tails; several species have (rowns or corests, flowing feathers and other adormments. They perform strange antics furing courtship: howing, cancing, sctiping, and jumping in the air; sometimes they will toss leaves or twigs into the air eatrhing them again as they descemol. They are said to pair for life, remaming faithful to each other during their long migratory flights. They are known for their loud, piereing, whooping or trumpeting noises, which they utter with hearl thrown back and month agape. They feed 'on grain, pulse, shoots, tubers, ast also small mammals, reptiles, insects and even fish. They nost in marshes or merely scrape a hole in the ground; the egos may be brown or buff with markings of a darker colour or purple.

Trumpet Birds are small cranes with many of the habits of their larger congeners. Of these there are seven species all ipeculiar to South America. These are skittish birds and make amușing pets. They make low ventriloquistie noises, hardly to be called trumpeting. The sexes are similar. At certain seasons they flock together as all cranes do; they build their nests on the ground, laying white or creanıy eggs.

The Caraow is a connecting link between cranes and herons as regards external appearance, having a long bill; but internally it resembles the rails. There !are two species, one of which is found in the Colony. They ffrequent the shallows of streams and marshes and feed on mulluses and worms. They build their nest anong reeds and lay some twelve pale brown eggs mottled with purple. Their note is a loud melancholy wail, or sometimes a cluck.

Sun-bitterns are not cranc-like in outward appearance, and there has been some difficulty in assigning them their present status. They are not bitterns, as was formerly supposed. They have a curious halit of spreading out their wiugs to form a circle, the primaries almost meeting in front, givinga fanciful resemblance to the setting sun. They walk with slow aud dignified step, keeping the hody horizontal and stretching out the neck. They are allept at catching flies and other insects. They may be fomed on the muddy banks of rivers feeding on fish and insects. The note is allong drawn whistle. They build their nests on low bushes and lay reddish eggs with brown and grey markings. They are easily tamed and have nested in the London Zoological Gardens. There are only two species in the genus.

$$
\begin{aligned}
& \text { Cranes. (Colonial)-Aramidae. ; } \\
& \text { Snipe-like Caraow Aramus scolopaceus. } \\
& \text { Prsophiidac. (Colonial.) :- } \\
& \text { Guiana Trumpet Bird } \\
& \text { (or Warracaba) Psophia crepitans. } \\
& \text { Eurypygidae. (Colonial.) } \\
& \text { Sun-Crane (or Bittern) Eurypyga hetias: }
\end{aligned}
$$

STORKS, HERONS AND IBISES.

These birds may easily the recognised by their long, straight, stout, pointed, and powerful beaks, long neeks, and long legs. Storks in appearance are like large hevons, but differ in several important respects. In the same order, Ardeiformes, are included Ibises and Spoonbills. Bitterns, Egrets, Quacks, Gciuldings, etc., are all herons.

This Order includes some seventy genera with two hundred and sixty-five species, of which only some forty species are found in the New World.

All these birds are waders in the truest seuse, seeking their food, which consists of fish, crustaceons, molluses, etc., in the shallows. Storks add to their menu frogs and snakes; Ilises, beetles fand other insects. The prevailing colour of Storks is white, the primaries being often black, the beak and legs red. The Negro Cop or Jabiru has a black heat, beak, throat and legs: the Pelicgn Stork or Nigger-head, a black beak, throat, and legs, as also the flight feathers. The sexes are similar. They boild their nests, sometimes immense structures, on ligh frees or flat tops of rocks. In Europe, the presence of the. Stork used to be regarded as a lucky omen, and fat-topped pillars or chimmeys were often erected to accommodate them, the birds taking to them quite naturally. Theireggs are whiteand chalky. Having no vocal chords, the only noise they make is a hiss, or a clattering of their lills.

Herons are much smaller birds and shyer. Théy flock together in their roosting places, but feed in solitude, remaining for long periods in the same place and, attitude watching for their prey. Like Storks, they seldoni or never take to the water ly swimming.

White, grey, or buff are the prevailing colours, with markings of black; some species are adorned with a black crest that hangs down the lack like a pigtail. Bitterns may be brown, or reddish, sometimes rich chocolate with green; striped, spotted or lined. The neck is in some forms adored with a frill or mane.

White Fifrets are indispensable in rice fields, keeping them fairly clear of custaceans, insects and other creatures destructive to the grain or young plants. Unfortunately in recent years thousands of these most useful birds have been slaughtered, and that in the nesting season, to supply the uarket with "osprey-plumes" which at this period adoru the wings of the male birds.

Night Herons, as their name implies, carry on their useful operations at dusk or dawn, and perhaps during most of the night. Bitterns have the same habits. The
note of herous is harsh and guttural, hence such local names as 'Quaak' or 'Chow.' Bitterns, dwing the nesting season make a booming or bellowing noise, from which some would derive their name. They have a habit, when alarmed, of standing with reltical beak, and thus approaching the iutruder will suddenly deliver a jab with this powerful weapon that may result in the loss of an eye.

Herons, unlike most other lirds (not excluding Famingoes) fly with the head drawn back upon the boty. The nest may be made on trees or among the reeds of marshy places, from which they are never far distant. They lay some six eggs of bluish or greenish white. Ibises are easily distinguished by their weaker hills, which are almost semi-circular. Tantulus (with a straight leak) forms a connecting link, and is sometimes called an Llis. Among these hirds, the S carlet Ihis is remarkable for its flaming red colour, unsurpassed in beauty by any other. The yomg are a dull brown A flock of these birds is a sight never to be for ${ }^{2}$ gotten. The Ibis was regarded as a sacted lired among the ancient Egyptians and hears the name, in lower Egypt, of "Father of the Sickle" from the shape of its heak, Other species are white of brown, glossed with green or purple ; the bill and feet are generally black. Some species are adorned with a,head plume.

Spoonbills, of which there are three genera including six species, have a representative in each quarter of the globe. The dise at the end of the mandibles marks them out from all other birds. They are to be found at the nouths of rivers or in marshes or lagoons near the sea. As they move along the slallows feeding, they swing the bill with a semi-circular motion from side to side seareling the mud for their prey. Several species wear a nuchal crest, at least during the nesting season. They nest in colonies among reeds or low bushes and lay four or five dull white eggs spotted with red. Their note is harsh and guttural: like storks they have a habit of clattering their bill. All these birds have powder-down patches.

Storis and Herons.-(Colonial.) Ardeidae.

Large Blue Heron
, White Agret
Blue Gaulding
Small White Ægret
Blue Quaak
\dagger Red or"Agami Heron (Solitary)
Common Quaak
Boat-Bill
Crested Gaulding
Shypook (hawk-like striped)
Tiger Bittern
Small Heron
\dagger Small Zebra or Tiger
Herou
\dagger Brown-winged Bittern (or small Tiger-hird)
\dagger Freckled Bitterr

Ardea cocoi. Herodias egretta. Florida caerulea. Leucophoyx candidissima. Nyctanassa violocea. Agamia agami. Nycticorax nycticorax. Canchroma cochlearia. Piierodius pileditus. Butorides striata. Tigrisona linéatum. Zebrilus pumpilus. , Zebrilus pumites. Botaurus pinnatys. " lentiginosus.

Ciconiae.
Pelican Stork or Nigger

Head
Heeri Stork
Negro-Cop

T'untulus loculator. Ensenura maghari. Mycteria americana.

Ibrses.一(Colonial.) Ibididac.

White-necked Tlis
Bush Ibis

* \dagger Pin-tailed Ilis

Scarlet Ibis (or Currycurry)

Theristicus cundatus. Harpiprion cayennensis.
Cercibis oxycerca.
Eudocimus ruber.

Spoon Bills.-(Colonial.) Plataleidae.
\dagger Roseate Spoon-lill Ajaja ajaja.

FLAMINGOES.

The rlamingo differs from all other wading birds in having webbed feet, and from all other birds whatever in baving a moveable maxilla and a practically immovable mandible. The reason for this curious formation of the
beak is this: having such long legs, and obtaining its food by sifting the mud through its beak as ducks do, it finds it more convenient to feed with the head inverted, the maxilla thus taking the place of the mandible and vice versâ. The flamingo is recognized as a link between storks and geese, and is placed in a separate order, Phoenicopteriformes. There are three surviving genera with six species, distributed in various parts of the world. As the name implies, they are all, more or less, of a flaming red colour.

Like ducks and geese, Flamingoes simultaneously shed all their fight feathers in the Autumn and are, during this period, unable to fly. They fly well, however, when they take, to wing, with head and legs stretched out ; and the flock' generally forms the letter V as the birds fly on ligh to pastures new. Their favourite haunts are salt lakes; here they will scrape together the mud and make their coneshaped nests, laying two eggs with a bluish, chalky, shell. The young run about as soon as they are hatched. They feed like ducks on aquatic herbage, frogs, molluscis, ete., and cackle like geese.

Flamingoes.-(Colonial.) Ihoenicopteridae. ,
Flamingo
Phoenicopterus ruber.

SCREAMERS, DUCKS AND GEESE.

Ducks, and Geese, with Mergansers, Goosanders and Swans from a definitely marked order, Anseriformes, of which seventy genera and some two hundred species are known to Science. Later Orinthologists also include Screamers or Chakas, regarding them as the ancestors of the whole tribe, thongh outwardly unlike all other members of the order, having fowl-like beaks and only slightly webbed feet. Screamers are peculiar to Neo-tropical regions, inhabiting marshes and feeding upon water plants, seeds, etc. There are three species only, one of whlich is found in the colony. The general coloration is greyish black above and lighter, or even white, below. In Palamedea cornuta, the Guiana species, the lores are feathered and a slender, whitish caruncle adorns the forehead: in chavaria and cristuta a crest finishes off the back of the head-in chavaria, the lores are naked and.pink in colour, the beak
and legs red. Chauna cristata is the largest of the family, being the size of a very large turkey. All are armed with sharp spurs, two on the carpal or "butt" of each wing. Between the skin and the muscles is a layer of aircells, which causes a crackling sound when the body is pressed. The name is derived from its loud cry which, uttered with the head thrown back, can be heard for a distance of two miles. These birds have the habit of soariug to great heights and then wheeling in circles, uttering at the same time "cha-ha" or " cha-lia-li," hence ${ }^{\text {their }}$ local name. The nest is a luge mass of reeds standirg or floating in the water, and herein four or six buff-white eggs are deposited. Ducks, seese, and swans are all chatacterized by having broad, blunt, flat, leaks with well-developed tooth-like edgas, and sometimes adorned at the base "by a caruncular knob, and almed at the end by a bony pubcess called the "nail." They feed upon grass, grass-wrack, and other aquatic plants, shoots, and roots; also upon beetles and their larvae, the latter of which they obtain by sititing the mud, (where the water is shallow enough), through their beaks, and lalf-submerging their bodies in the process; the serrated leak acting as an excellent sifting, pulling, and grasping instriment.

Swans are distinguished from ducks and geese by their longer necks and more graceful forms. The one usually domesticated is Cygnus olor, the Mute Swan, found in a wild state in N. and C. Europe and Asia, N.W. India and on the Caspian and Medeterranean in the winter. It is still considered a royal bird in England and well deserves the title; for when, with arched neck and wings puffed out like sails, it ploughs the waters of some broad lake, no more majestic sight in lird life can well be imagined. Its only note is a hiss or grunt, hence its name. Other swans, however, have trumpet-like or whistling notes. Of the eight species all are snow-white, with the exception of Chenopsis atrata. found in Tasmania and Australia which is black, and Cygnus melanocoryphus found iu Brazil and Patagonia, which has a black head and neck. The sexes are similar; the nest is a pile of herbage near the water; the eggs, four or five in number may be white or light green. They are generally found in pairs and do not congregate.

Geese are stonter and coarser birds with harsh voices, and are oftell found in flocks. The prevailing colours are grey, brown, or black, often lighter below. The sexes are similas. Neither swans nor geese are found in this Colony. There are some twelve genera with thirty species of these birds.

Ducks are by far the most numerous forms of the order, but smallest in size, though our Cairina moschata or Musky Duck (erroneously called "Muscovy") attains the size of some of the small geese. The common Bahama Duck (sometimes erroneously called "Vicissi") may be taken as a type though it differs from most in the important respect that the sexes are similar. In most forms, the drake is much the finer bird, lleing in many cases most gauthily coloured during the nesting period, while the female remains dull. Many drakes also have crests, or face feathers, heckle! or elongated scapulars, ruffs or curly tails. In this Colony, however, we have no highly coloured duck. Ducks congregate in flocks, sometimes in immense numbers, but pair off and separate for nesting purposes. They are only polyganous under domastication. The nest is formed in some secluded spot under a tree or bush and not always near the water; when incubation begins the female lines the nest with down from her own breast and carefully covers the eggs when she leaves. The eggs, upwards of a dozen in number, may be white, or buff, or green respectively. Tree ducks roost aud build in trees, but how they conduct the ducklings to the water is as yet unknown.

Characteristic of mauy ducks in the "speculum" or broad band of glossy green or blue or some other colour upon the wing. In the Autumn ducks shed their quill feathers simultaneously and are thas rendered incapable of Hight; they then retire in flocks to marshy fastnesses. Some species are almost mute, others give vent to their feelings in noisy quackings; others again are whistlers.

Screamers.-(Colonial.) Palańedeidae.
Horned Screamer . Palamedea cornuta.
Ducks.-(Colonial.) Anatinae.
Masky (or Muscovy) Duck Cairina moschata. White-faced Vicissi Tree- .
duck Denlrocygna viduata.

Brown Vicissi Tree-duck
Common or 'Two-colour Tree-duck
\dagger Green-winged Teal
Black-winged Pintail
Bahama Duck (spotted breasted)
Blue-winged Teal
Black-tailed "

Spiny-tailed Duck

Dendrocygna fulva.

> discolor.

Nettium brasiliense.
Dafila spinicauda.
Poecilonetta bahamensis. Querquedula cyanoptera. discors.
(?) Metopiand peposaca. Nomonyxdominicus. CORMORANTS AND PELICANS.
In the Order Ciconiiformes, or according to other orni- thologists, Pelecaniformes, are included Cormorants, Ducklars, Gannets, Frigate Birds, Tropic Rirds and Pelicans. The Colony possesses one species of these several families. There are in all seven genera and seventy-five species, of which forty-one are cormorants, four ducklars, eleveu gannets, two frigate birds, six Tropic birdsk and ten pelicans. Their affinities are determined by their internal structure; externally, they are very heterogeneous. All are water lirds feeding on fish, and have webbed feet; Cormorants have the four toes connected by a web. Cormorants are further distinguished by having, when adult, no external nostril. They are large birds almost the size of a goose; the Green Cormorant or Shag is somewhat smaller. Cormorants live on the rocks by the sea shore; they are expert divers and pursue fish in their native element with great dexterity. Formerly, being easily tamed, they were used as fishers, a band being put around their throat to prevent them swallowing their captures. The "Master of the Cormorants" was once the title of one of the officers of the English Royal Household. Cormorants breed in communities on preciptious rocks or trees; a huge mass of sea-weed forms the nest in which four small bluish white eggs, with a thick, soft, shell are depositerl. The prevailing colour is black or dark brown with different degrees of glossiness; the under parts may be white, and there may be patches of white on the face. The beak is long and hooked, the throat is dilateable, forming a pouch. There may be bare patches in the face or throat, red or yellow respectively; some species are adorned with a crest; the
feathers on head and throat may be hair-like. Their note is a croak or a liss.

Darters, Ducklars, ol Snalie-birds, as they are variously called, are the Cormorants of rivers. They are distinguished by their snake-like necks, pointed beaks, and broad tails, the long feathers of whicli are curiously fluted transversely. Like Cormorants they are skilful divers and like them use both feet and wings when under water; devouring one fish after another while under the surface and sometimes appearing with their head alone above it, giving them the appearance of a water snake. The Stl and 9 th vertebrae of the neck are mortified in a manner unique, enabling the bird to seize its prey with lightning-like rapiclity, and giving the neck a Z shape. The general coloration is glossy black, the African and Australian species having patches of rufous on head and wings. The Colony species resembles that of India. The male in courting plumage is a beautiful object: the eye is bright crimson, the bare skin of the orbit green, that of the chin orange; along each side of the neck are feather filaneuts of white tinged with purple; other elongated, heckled, scapular feathers are centred with silky-white. The head, neck and breast of the female are dull brownish or grey. The nest is built in a high tree over water, of sticks lined with leaves, and may be used several years in succession; several nests may be found in close proximity. The eggs are like those of Cormorants.

The Gannet or Solan Goose is a goose-like bird with pointed beak, wings and tail. The general coloration is white or grey-brown with white markings or patches; the primaries may be black. There are bare patches on the face or throat of bluish or reddish colour; the bill may be yellow; the feet, yellow or reddish. They resemble gulls in their habits, being ocean birds and feeding on surfaceswimming fish, squids, etc. They make their huge nests on rocks, and lay two greenish or bluish eggs with chalky surfaces. Some of the birds are extraordinarily fearless and have earned the sobriquet of "Booby." The note is a harsh, repeated cry.

Frigate ov Man-of-War Birds are so named from their habit of cruising about and chasing other birds such as Terms or Boobies, and compelling them, should they have
caught a fish, to drop their booty, which they seize before it reaches the water. They are expert in suddenly turning or twisting about in flight, and have a power, unrivalled by any other birds, of soaring and of making quick progress with apparently motionless outspread wings. The wings are long and pointed, and the tail is decply forked; and thi": latter they open and shut, like a pair of scissors, as they fly: The coloration is blackish-brown with a green and purple sheen. The female is brown above and white below. She has pink feet whereas the mate has black. He is also adorned with a scarlet pouch which he inflates in flight; the naked orbits are also scarldt.! They seldom approach the shore except to nest; the nests being built of twigs or trees and the one egg is like that of Cormorants. All these birds feed their young by regntgitation.

I'ropic-or Boatsuain-birds like the foregoing are denizens of the ocean, seldom approaching land except for breeding purposes. They make no nest but lay one brownish egg, spotted with darker colour, in some hole of the rock. The colour of all Tropic-birds is glossy-white with markings of black about the eve. The beak is red except in flavirostris, and in rubricauda the two long, middle tailfeathers are also red-crimson; actherus has the upper part of the body barred with black. Several of the species are tinged with pink. The sexes are alike. Unlike Frigatebirds they fly with rapid pulsations of the wings and often dive into the water from a great height. Ships seem to attract then ; they will circle round and even perch upon the rigging The feet are generally black, and the legs so short that can only when difficulty rise from a level surface. Their ordinary note is a croak; but parents when disturbed in the nest will scream and chatter, viciously snapping at the intruder. They are so called because they are seldom or never found outside the Tropics. Ph. flavirostris, the smallest of the family is only the size of a large pigeon.

Pelicans may at once be recognised by the enormously dilatable pouch formed by the skin between the lower jaws of their long beak. Of the size of a goose and goose-like in appearance, the general coloration is white, sometimes with a tinge of rose or yellow, the primaries being sometimes black. The species found in the Colony, however, is brown and unadorined. Several species have nuptial crests
and head filaments and long, heckled scapular feathers. The maked patches of the face may be yellow marked with red, the feet pinkish. Some species have a blood-red knob at the end of the beak from which may have arisen the legent, famous in ecclesiastical art, of the Pelican feeding its young on its own blood. The Pelican swims and dives with ease, securing many fish in its pouch before eating them at its leisure. Their habitat is the shore of tidal waters and inland lakes and mashes. The nest may be simply on the ground, or built of sticks in trees; two or three eggs, white or bluish and with chalky incrustations, are laid, and the roung are fed with partly digested fish. The sexes are similar. Thongh built so heavily, pelicans fly well and swiftly with the head drawn back on the body as with herons. The legs are short and the walk is wadding; they take wing with difficulty from the ground.

Cormorants and Pelicans.-(Colonial.) Phalacrocoracidae. The Colony Cormorant I'halacrocorax vigna.

Plotidae-
The American Ducklar Plotus anhinga.
Sulidae-
\dagger Aquiline Frigate-bird Fregata aquila. Brown Gannet Sula sula.

Phacthontdae-
American Tropic-bird (?) Phacthon americanus.
Pelecanidae-
Brown Pelican.
Red-lilled "
(?) , erythrorhynchus.

GULLS AND TERNS.

With Gulls and 'Torns, in the Order Lariformes, are also associated Skuas and Skimmers, all of which are sea-birds, seldom visiting the land except for nesting purposes. Some ornithologists also include Puffins, Aulks, and Guillemots, these latter, however, are more strictly sea-shore birds and differ from the former in several particulars. The former group have long, pointed wings, and are remarkable for their enduring flight; the latter have rounded wings and fly somewhat heavily near the surface of the water when
they fly at all; but they are expert swimmers and divers. In the latter group also, the legs are placed far back so that the birds sit in an upright position. The normal colour of Gulls is white or grey with black markings or patches. Terns or Sea-swallows may generally be distinguished by their forked tails, they are generally grey above and white beneath with black or brown markings; their feet are webled and generally a light vermillion in colomr," whereas the feet of Gulls are often black. Gulls seek their food from the ocean-fishes, crustaceans and molluses -but many of them are the scavengers of the sea-shore, feeding upon the refuse of the sea an the tide goes down. They will sometimes fly inland seeking for grubs and snails upon some newly-ploughed field. Terns will fly great distances inland, beating the rivers and maritime streams for their prey, and will sometimes hover like hawks over the water. Their breeding places are gençrally precipitous rocks or stony islands, where they flock together in great numbers; or sometimes inland marshes. There depressions in the rock or soil furnish nesting places; others again will make their nests in trees. The eggs aire very varied in colour: olive or green or blue, with bloteles or serawls of black, brown, or purple; sometimes indistinguishable from the stones among which they may be deposited,

Skimmers or Scissor-bills are peculiar in having the lower mandible elongated like the lower blade of a tailor's scissors. As they skim along the water they lower this mandible into that element and thus scoop up small fish, crustaceans and the like. They generally clioose for their habitat the mouths of rivers where they live in comparative solitude, more than a pair being seldom found together.

The voice of Gulls is generally harsh and discordant, a bark, a grunt or a scream; some species have been named from their note, as for instance, the "Langhing Gull," the "Kittiwake."

The range of Gulls is very wide, the common river tern, for example, being found in the countries on both sides of the Atlantic as also on the Indian and African coasts.

Gulls and Terns.-(Colonial.) Laridae.

Large-billed Tern †Graceful " "Broad-lilled "
(?) Sterna elegans.
" eurygnatha.

Little Tern (eye-browed)	Sterna superciliaris.
River "	fluviatilis.
†White-capped Sooty Tern	Micranous leucocapillus.
Black-backed Scissor-bill	Rhyncops melanura.
†Grey-backed	Larus philadelphia.
Black-capped Goll	"
Spotted winged	" (?)

Stercorariidae-
Brown Herring Gull Megalestris chilensis.

PETRELS, SHEARWATERS, ALBATROSSES.

In the Order Procellariformes are included lirds of extreme type, as regards size, some Petrels being no larger than sparrows, while Albatrosses are larger than geese. They are the survival of an ancient form and are distinguished from all other birds by having tubular nostrils. The order numbers some twenty five genera and includes about ninety-six species. All are ocean birds and notable for their powers of prolonged flight, leing often seen several lundreds of miles from the nearest shore. They feel on fish, cesphalopods, and other molluscs. Their cry is varied and has been described as a bay, a croak, a diabolical scream, a puppy's whine, a whistle, etc. They nest on rocks and lay white, lustreless eggs. The Colony can claim, perhaps, but one species-the Stormy Petrel. They are so called because they seem to walk the water, flying low and dangling their legs; a fancied resemblance to St. Peter walking on the sea. They bite severely when taken in the hand.

Albatrosses are white, relieved above by wavy lines, the quill-feathers of the wings being brownish black.

Shearwaters are generally black above and white bencath, and vary in size, most being as large, as a pigeon.

Petrels are generally dusky, or sooty black.
Albatrosses, Etc.-(Colonial.) Procellariidae. Stormy Petrel

Oceanodroma leucorrhoa.

Meeting of The Board of Agriculture.

A meting of the Board of Agriculture was held in the offices-of the Board, Broad Street, on Tuesday, July 11, His Excellency the Hon. Cecil Clementi, C.M.G. (Officer: administering the Government), presiding.

THE PLANT STALLS.

In connection with the returns of fplants sold at the stalls belonging to the Board during the period 1st October, 1915 to 31st May, 1916, the Clainnan (Prof. J. B. Harrison, C.M.G.), said that at the last meeting he pointed out that the sales had fallen off considerably, and it was a question whether or not it was worth while keeping the stalls open. As there had been no improvement he suggested that the Georgetown stall be abolished. This was agreed to. It was resolved to close down the stall at Morawhanna intil after the war, but tolkeep in being that at Marlborough, Pomeroon, until the lease of the land on which the station is built, expires, and to coutinue with the stall at New Amsterdam, where a cẹrrtain amount of business continues to be done. A vote of thanks, proposed by the Chairman, to the Mayor and Town Conncil of Georgetown for allowing them the use of the stall in the Stabroek Market free of charge, was unanimonsly passet. Prof. Harrison attributed the poor results from the stalls to the war conditions prevailing, and considered the state of things only temporary.

CENSUS OF AGRICULTTURAL INDUSTRIES.

The returns sent in with regard to the agricultural industries of the colony were commented on by the Chairman, who remarked that the cacao figures were always unsatisfactory, the cultivation sometimes being described as cacao, sometimas as coffee and sometimes as rubber. He did not think there had been any actual decrease. Coffee showed a slight falling off ; pubber also-due to the throwing out of land planted in Sapium-while maize and ground provisions had decreased no less than 1,200 acres. Limes showed a noticeable increase, as did live stock. Thus there were 74
more donkeys, 7,000 more cattle, 8,000 more sheep, 160 more goats, and 2,800 more swine. Last year there was a marked decrease in this last item, owing to the prevalence of swine feveir. Buffaloes showed an increase of 37.

PEST POSTERS.
It was announced that of the posters describing colony fungus pests and remedies, 52 had been distributed and 52 sold; of the insect pests poster, 53 had been distribted and 55 sold. The demand seemed to be greater outside than iu the colony.

CANE FARMING.
Commenting on a Minute by the acting Governor of Trinidad, dealing with the regulation of prices in the cane farming industry, Mr. Shankland pointed out that conditions and methods of computation differed in this colony so widely from those obtaining in Jrinidad, that a romparison was hardly feasible.

The President intimated that he proposed to appoint Messus. C. Morris and H. E. Muray to the Board vice Colonel de Rinzy and Mr. J. Brmmell (deceased). The appointment of Mr. Pulsey (Acting Director of l'ublic Works) in place of the Hon. E. (. Buck (resignerl) was amounced.

The Chairman announced that there had been another severe outbreak of the caterpillar pest (Brassolis sophorae) of coconuts on the East Coast. Steps were being taken to deal with the trouble.

Specimens of logwood (Haematoxylon), such as were to be found growing at certain places on the East Coast, were exhibited, and the Chaiman referred to the enhancerl value of the wood in the present scarcity of dyes.

The formation of a "Government Falins Committee" of the Board was amounced, as was the completion of arrangements with the Imperial Department of Agriculture for the sale of some of their publications under the auspices of the Board.

SATISFACTORY PIICES OF RUBBER.

Referring to the sale of rubber prepared by the Departnient of Science and Agriculture in 1915 and 1916, Prof. Karrison stated that results had been exceedingly satisfactory, the product, with one exception, fetching the highest price in the market.
It laving been pointed out by Mr. Withers, Manager of the Hills Estate, Bartica and of Agatash, that in the export retums of the colony there was no record of the export of concentrated dime juice or of essential oil of limes, Prof. Harrison suggested thagt steps should be taken to have these details included in the returns. This was agreed to.

The affiliation of the West Bank ' Farmers' Association was announced, and some discussion arose over the applications for a similar privilege of tha Buxton and Friendship Farmers' Association and of the Victoria-Belfield Agricultural Association which did not satisfy the conditions laid down by the Board with regard to the status of their finamcial members. It was decided to suspend the granting of affiliation to these bodias until they had satisfied the Board in this matter.

AFFAIRS IN THE CANAL POLDER.
Mr. Earle pointed out that circumstances would prevent the West Bank Farmers' Association from holding a Show this year, and Prof. Harrison suggested that the money which would have been given in prizes might be devoted to a schente for rewarding those proprietors in the Podler who showed the greatest improvement in theidrainage. His officers had recently visited the Polder and had reported that the drains were iu many cases far from satisfactory. Prizes of $\$ 50, \$ 30, \$ 20$, and two of $\$ 10$ might be offered, and a Committee of the Board miglit adjudicate in the matter next December.

His Excelleucy thought it was a good opportunity to put clearly the position of the Government. He had him-
self visited the Polder and had noticed that not only were the small drains in bad condition, but the " B line" trench was overgrown with weeds for a great part of its length and needed cleaning badly. That was a matter for the Polder. The onty reason why a Government officer was associated with the Polder Authority as chairman was because the Polder owed the Government money and it was necessary for the Government to have control of the finances of the Authority. That was secured by appointing a chairman and auditor, but the executive control of the area, the cleaning of the canals and so on were the duty of the Authority, and it was for the people who lived in the Polder and were the bencficiaries of the scheme-. which was a good one and drained some of the best land in the colony-to see that this duty was carried out.

Mr. Earle pointed out that he had lost $\$ 1,800$ and others more than that.

After some discussion, the Chairman's sugrestion was adopted, and Messis. Junor, Earle, and Shanklaud were appointed on a Committee to suggest details.

In connection with the recrudescence of antluax on the East Coast, the Chairman mentioned the interesting fact that his Department has discovered that the infection was confined to certain fields on certain estates. The quarantine orders would therefore be modified and relate to these restricted areas ouly. Swiue fever was now practically eradicated.

Specimens of lauxite and of iron ore from the North West District were exhibited.

The Board then adjourned sine die.

The Farmer and Experiments.

Science and practice helped by experience-that is what we want. Experience means that which we have ourselves learnt; that which has been knocked into us forcibly is never forgotten. This is why it is so often advocated that " every farmei should be his own experimenter."
—" The Journal of the Department of Agriculture,"
Victoria, (Australia.)

Hints, Scientific and Practical.

The
Agricultural
School, Ceylon.

The Director of Agriculture is the Principal, and Mr. Drieberg, Superintendent of Low-Country Products, the VicePrincipal, whilst the staff of the Department of Agriculture will coustitute the lecturing and demonstration staff on the School.

Those who kịow Ceylon will be interested to hear that the School is situated close to Peradeniya Gardens, on the main road from Colombo to Kandy, tea minutes from the new Peradeniya station. Peradeniya Gardens are nearly a hondred years old, and as they cover an area of 150 acres and contain almost every economic product of importance. The student surely can wish for nothing better as a centre of education, both in the open as well as indoors, as the library has 6,000 volumes, and the herbarium 22,000 floral specimens,' whilst other sections have over. 10,000 specimens of economic importance.

Such a spot must also be idéal for English students, for Peradeniya is situated some 1,600 or $1,700 \mathrm{ft}$. up, and enjoys a mean temperature of $75^{\circ} \mathrm{F}$. The nights are said to be always cool, and even in the hottest months the days are not too oppressive for study. Candidates for admission must be at least 17 years of age, and lave attained a certain standard of education. The fees, payable'in advance, are Rs. 30 per month for board and tuition, or Rs. 7.50 for tuitioin only. At present only a limited number of boarders can be accommodated. Work begias with the school muster at 6.20 a.m., and lights must be out by 10 p.m. Breakfast is at 11 a.m. and dinner at 7 p.m. There is no regular work for Saturdays but independent investigations and expeditions are expected to be carried out. The course of instruction includes the soil, manures and manuring, plant chemistry, crops (a wide range, i.e., over seventy in all), pests, diseases, agricultural engineering, stockraising, co-operation. Demonstrations will be given of how to plant, prune, graft, transplant, fell trees, and many other most necessary things, whilst under the head of plant-
ing everything necessary to learu in connection with each of the leading crops will be included; amongst them we note demonstrations in dynamiting for planting, for subsoiling, blasting rocks and stumps, etc.

> —"The Tropical Agriculturist," (Ceylon), February, 1916.

Purifying
 Water for Stock.

A simple method for purifying almost any water for drinking without boiling it, has been worked out by Dr. G. G. Naismith, director of the Health Laboratories of Toronto, Canada, and Dr. R. R. Graham, assistant chemist. The process is as follows:-Add a teaspoonful (not heaped up) of chloride of lime, containing about one-third available chlorine, to a cupful of water. Dissolve, and add in any convenient receptacle three more cupsful of water. Stir and allow to stand for a few seconds in order to let the particles settle. This stock solution, if kept in a tigltly stoppered lottle, may be used for five days. Add a teaspoonful to 2 gallons of water to be purified; stir thorouglly in order that the weak chlorine solution will come into contact with all the bacteria, and allow to stand for ten minutes. This will effectually destroy all typhoid and colon bacilli, or other dysentery producing bacilli in the water. The water will be without taste or odour, and the trace of free chlorine added rapidly disappears.

Water containing mud in suspension is easily clarified by dropping hot wool asbes into it, or by the application of lime or alam. These two substances make the water hard. Chloride of iron may also be used. It is quite harmless and a valuable constituent for all animals. Medical men prescribe iron in one of its several forms as a tonic. One pound of chloride of iron (2d. per 1b.) will clarify 1,000 to 2,500 gallons of muddy water, aud much reduce the bacterial contents.
-" The Jomrnal of the Department of Agriculture,"
Victoria, (Australia.)

> The Measurement of Osmotic Pressure by Direct Experiment

As long ago as 1748 it was discovered by Nollet that a flow of water took place through a membrane of pig's-bladder separating alcohol from water. This observation was forgotten cluring more than half a century, until it was redescribed in 1802 by Parrot, who also detected a similay flow when urine twas used iustead of alcolol. Parrot recognised that a dow of liquid took place simultaneously in both directions but that the velocities differed so widely that a pressure might be developed, on one side of the membirane, equivalent, in some cases to a column of water not less than 10 feet in height. Quantitative measurements made by Dutrochet (1827), to whom we owe the terms exosmose and endosmose and by Vierordt (1848) showed that the rate of flow depended on the nature of the membrane, on the concentration of the solution and on the temperature; but the factors determining the flow were too complex to allow of any simples statements of the laws governing osmosis. One of the first generalisations to be attempted was suggested by Jolly in 1848, when he bronght forward evidence to show that a fixed ratio existed between the exosmosis or outward flow of the salt through the membrane and the endosmosis or inward flow of water into the solution. This ratio, the "endosmotic equivalent," he supposed to be independent of the concentration but further investigation showed that this was not the case.

Equally little progress was made when experiments were carried out to determine the maximum. "head" of liquid which could be driven up by the osmotic flow of water into a solution. It is true that one factor, the frictional resistance of the membrane to the endosmotic flow, was now eliminated; but so long as an exosmotic flow still took place the "head" of liquid or " osmotic pressure" was still dependent on the individual properties of the particular membrane used. No real progress could be made until this difficulty was overcome by the discovery of "semi-permeable" membranes which would stop completely the outward flow of the solute whilst still permitting the solvent to pass inwards to the solution and there develop the maximum osmotic pressure that was possible Such membranes were, in fact, discovered by Traube in 1865 in the form of floating films precipitated by the interaction of two contiguous
solutions. Traube then showed that if solutions of copper sulphate and potassium ferrocyanide are brought together, a floating membrane of copper ferrocyanide is produced which is permeable by water but impermeable by both salts. According to the relative strengths of the two solutons, water is drawn in one direction or theother through the membrane which is so displaced that it always forms the boundary between the two solutions. If the boundary expand or if the membrane be broken, a fresl precipitate is at once produced by the interaction of the two membrane-forming solutions.

But whilst Traube's membranes possessed the property of being semi-permeable, they were not suitable for quantitative experimentis, as they were incapable of supporting even the smallest osmotic pressure. Great importance attaches therefore to the introlurtion by Pfeffer in $18 \pi 6$ of methods by which Tranbe's meminanes conld be strengthened by precipitating them on linen or silk or parchment or best of all in the pores of aunglazed porcelain batteryjar. With this equipment, it was possible, for the first time, to make real measmements of the maximum osmotic pressure set up in a solution ly the inflow of water through a semi-permeable mombrane. Even then, however, very few regularities were diseovered: the maximum pressure was found to be proportional to the concentration of the solution but no indication was obtained of any law by which the magnitude of the pressule could be predicted.

In view of the obscurity in which the phenomena of osmosis were involved, it would be difficult to exaggerate the dramatic effect produced by the discovery, made by Van't Hoff in 1887, that the gas-equation $P V=R T$ could be applied directly to solutions, if " osmotic pressure" were substituted for "gas pressure." This remarkable generalisation appeared to illuminate a vast range of difficult and puzzling phenomena and at the time of its introduction it was widely believed that the problems of osmotic pressure and of solutions had for the most part been finally solved.

[^13]As already fully recognised, the house-fly is

The Manure Heap
and the
House-Fly. liable to breed in large numbers in stable refuse which is stored in close proximity to dwellings. The governing factor is found in the dwellings rather than in the manure heap, the latter merely serving as a secondary convenience, providing a breeding place for the flies which have been attracted to the house in search of food.

The open farm manme heap far andy from honses is but little firequented by honse-fiies, and thién only later in the season when the insect has become numerous and widely disperised.

The spent manure heap, in which fdrmentation has practically ceased, produces under rural conditions, at least, practically no flies at all.

- Although the farm heap may produce but few house-flies, it is a prolific source of Stomoxys catcitrans, and those agriculturists who value the comfort and healtlo of their animals should treat all manure with a view to the destruction of the larvae of this pest.

It should be clearly understood that the above conclusions. apply to manure heaps far distant from houses. Where the farm dwelling and the farm buildings adjoin, as they do in so many cases, the danger of the manure heap becomes much greater, particularly where dairies or othei food-preparing departments are in proximity to farm refuse.

For the town manure heap no regulations can be too drastic, and it is but little creditable to our local authorities, and even less so to to the proprietors, that bad conditions should be permitted to exist.

Mention has been made of Stomoxys calcitrans as a pest to cattle. The " biting house-fy," as it has been called, is a blood-sucking insect possessing great capabilities as a carrier of disease, and it is by wo means, inclined to distinguish for alimentary purposes between the human and the equine species.
—Dr. H. Eltringham in "The Journal of Agricultural
Science," April, 1916.

Air and the Roots of Plants.

A clear presentation of the relations between the air supply in the soil and root development is not often to be found in the literature. A great deal of emphasis is laid on the functions of the roots and on the part played by the root-hairs in absorbing water and food materials. The nee'ds of the active cells of the root itself are generally ignored. There is, however, one well marked exception. In Sorauer's "Popular Treatise on the Physiology of Plants," occurs an excellent account of the needs of the root, in relation to practice, in which great stress is laid on the necessity of constant aeration, and of continuous gaseous interchange between the atmosphere and the soil. During growth, the oxygen in the soil is not only drawn upon ly the protopllasm of the root-hairs and of the other active cells of the root, but, at the same time, the proportion of carbon dioxide is greatly increased. This gas is given out by the growing cells and is also produced by the decay of organic matter. Many of the soil bacteria also need free oxygen and besides increase the amount of carbon dioxide. Unless copious ventilation takes place, the supply of oxygen will be exhausted and, at the same time, the soil air and water may become charged with carbon dioxide to such an extent that a poisonous atmosphere for the roots is produced. Growth will stop for two reasons. In the first place, there will be no air for the working cells of the root and they will die of asplyyiation. In the second place, there will be direct inhibition due to the presence of large quantities of carbon dioxide, which Soratuer states is a poisor for roots.

In the case of leguminous plants, an adequate supply of air for the root is even more important than in other crops. As is well known, these plants are provided with special root factories (nodules) in which, by means of bacteria, atmospheric nitrogen is worked up into complex nitrogenous substances which the plants can use as food. Both oxygen and nitrogen are essential raw materials for these factories and must, therefore, be provided if these plants are to thrive. This can only be done by efficient soil ventilation and ly the provision of ample means of gaseous interchange between the soil and the air.
-A. and G. L. C. Howard in Bulletin No. 52 of the
Agricultural Research Institute, Pusa (India).

İt has long been known that those mem-

> The Genuis "Diplodia." bers of the Sphaeropsideae which produce brown uniseptate spores are extremely variable. The distinctions between the genera Diplodia, Botryodiplodia, Chootodiplodia, Lasiodiplodia, and Diplodiclla have been based om slight structural variations in the pycnidia. The points of separation are the or caespitose; their relation to the hot, whether subcutaneor cespitose; their relation to the host, whether subcutaneous, erumpent or superficial; the presence or absence of bristles and of paraphyses. These hre all characteristics which oue might expecte to valy sonhewhat with the characteristios or condition of the lost. This variation probably occurs; and for this reason there thas been some uncertainty as to the proper position certain species should occupy in classification. Botryodiplodia theobromae Pat., which causes a die-back of Hevea braziliensis in Ceylon, southern India, and the Malay States, is an example; and in his account of this fungus Petch remarks that "Among the names which are known to refer to this species are Macrophoma vestita, Diplodia cacoidola, Lasiodiplodia: theobromae, Diplodia rapor, and there are probably others. Botryodiplodia theobromae is its earliest name, as far as is known, but:some prefer to call it Lasiodiplodia theobromac."

Taubenhaus as a result of his inoculations upon sweet potato (Ipomoca batatas) with Diplodialtubericola (E. and E.), Diplodia gossypii (Kim.), Diplodia natalensis, (Pole Evans) and Lasiodiplodia theobromae (Pat Griff. and Maubl.), suggests that the characteristics of the genus Diplodia be so extended that it may include all of the five genera.

This gems, although it is not thonght to include forms which are absolute parasites, is nevertheless a source of serious trouble among some of our cultivated plants. The injury is usually confined to a fruit-rot or to a dieback of the younger branches or shoots as in the citrons disease prevalent in Florida aud the Isle of Pines. In both cases the fungus has been described as following au injury which has been previonsly inflicted either by mechanical means or as the result of the action of some other fungus. In the United States the more important crops which hitherto have
been knowa to le affected are sweet potato, citrus fruits, corn (Zea Mays), and cotton (Gossypiam spp.) In our Sonthern States the Diplodia injury is of considerable consequence in connection with these products. As one enters the Tropics the number of plants which are attacked increases. Among the listwf hosts found here are Citrus spp., Hevea spp., Theobroma Cacao, and Thea spp. In certain cases where the growing plant is attacked, the injury produced is sufficient to canse the death of the host, as is the case with Diplodic vasinfecta, (Petch), which causes an internal root-rot of tea.
-F. C. Meier in "Journal of Agricultural Research," '

$$
\text { (U.S.A.), April 24, } 1916 .
$$

Gunfire and Rainfall.

An impression has arisen in some quarters that the heavy and persistent rains recently experienced in this country [Great Britain] are attributable to abnormal atmospheric disturbances prodnced by heavy gun firing at the seat of war. The idea is by no meaus novel, and like other meteorologi: cal myths (such, for instance, as the belief in thunderbolts and the supposed influeuce of the moon upon our weather) it seems to possess a bullet-proof hide and takes any amount of killing. About four years ago the First Lord of the Admiralty was asked in the House of Commons whether he would instruct the fleet to carry out their heavy gur practice at some period of the year other than in the middle of harvest time, 'when the resultant heavy min may caluse serious loss to the farming community.' A similar anggestion was made at the instance of a member of the Highland and Agricultural Society of Scotland who at a meeting of that body, moved that 'the Admiralty be petitioned to discontinue heavy gun-fire round the coasts in August and September, 'when clouds were abont' (sic), the speaker. adding that 'firing was apt to bring down rain, aud at that time of the year fine weather was desirable.' It may be said at once that the idea is alsolntely without foundatiou. Experiments made some years ago in America and on the Continent showed that in droughty weather no amount of concussion in the air artificially produced had the slightest effect in the production of rain.

231

The District Gardens.

Under the name of " District Gardens," some of the Model Gardens, founded in 1908, and abolished by resolution of the Combined Court ith March, 1915, have now been reconstituted. Below will be,found the details of the attendances at these gardens from January to the end of June this year:" It will probably be a considerable time before the numbers approach those recorded before the aboli tion of the Model Gardens, for the increasing interest and confidence of parents, teachers and children received a rude shock-and these things dre plants of slow growth.

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Census Returns of Agricultural Industries.

Below will be found the figures giving the state of the Agricultural Industries of the Culony for 1915.

Acres.		1915.	1914.	1915.		
		Increase.		Decrease.		
Canes. 75,744	78,108	2,636	\| ...
Rice	\ldots	.. 50,737	47,037	3,700	, \cdot.	
Coconuts 17,920	15,894	2,026	...	
Caca		... 2,020	2,454	...	434	
Coffee	\ldots	... 4,468	4,326	142	...	
Rubber 4,687	4,962	...'	275	
Limes	...	973	690	383	..	
Maize and Ground Provisions		... 19,820	21,063	...	1,243	
Head.						
Horses	\cdots	... 1;006	1,013	..'	7	
Donkeys 6,078	6,004	74	...	
Cattle	\ldots	... 97,768	89,297	8,471	...	
Sheep 22,150	19,734	2,416	...	
Goats 15,290	14,831	459	...	
Swine 13,768	10,926	2,842	\cdots	
Mules 2,137	1,998	139	...	
Buffalses	. \quad \%	.., 136	99	37	;	

Exports of Agricultural and Forest Products.

Below will be found a list of the Agricultural and Forest Products of the Colony exported up to the end of June, 1916. The corresponding figures for the two previous years, and the averages for the four years previous to that, are added for convenience of comparison.

Product. Average 1910'13. 1914. 1915.1916.
Sugar, tons $\quad \therefore \quad 26,107 \quad 32,576 \quad 42,440 \quad 37,493$
Rum, gallons $\quad \ldots \quad 1,050,140 \quad 1,646,370 \quad 2,030,872 \quad 2,496,763$

Molasses, casks	\ldots	591	659	\ldots	\ldots
Molascuit, tons	\ldots	3,235	1,050	979	522

Cacao, cwts. ${ }^{\prime} \quad \ldots$	132	299	284	29
Citrate of Lime, cwte.	\ldots	21	71	304
Lime Juice, conc., gals.	\ldots	\ldots	\ldots	3,057
Essential oil of Limes, gals. \ldots	\ldots	\ldots	198	
Coconuts, thousands	566	1,091	1,064	894
Copra, cwts.	\ldots	605	820	843
Coffee, cwts.	\ldots	840	1,756	679
Kola-nuts, cwts.	\ldots	2	\ldots	2,342
Rice, tons	\ldots	2,593	3,967	5,653
Ricemeal, tons	\ldots	874	202	205

Cattle, head	..	473	623	307	273
Hides, No.	.	2,376	2,788	864	2,551
Pigs, No.	\ldots	645	653	540	479
Sheep, head	\ldots	37	12	4	22

Balata, cwts.	\ldots	1,582	3,128	7,568	4,195
Charcoal, bags	\ldots	36,081	36,861	28,236	27,431
Firewood, Wallaba,					
etc., tons	\ldots	5,175	5,652	4,442	6,098
Gums, lbs.	\ldots	1,804	719	\ldots	883
Lumber, feet	\ldots	185,368	198,145	31,619	211,015
Railway sleepers, No.	1,975	2,602	556	1,825	
Rubber, cwts	\ldots	6.5	6	17	55
Shingles, thousands	1,136	1,061	1,070	1,011	
Timber, cub. ft. \ldots	173,927	182,468	85,807	71,231	

Selected Contents of Periodicals.

Some Experiments on the House-fly in Relation to tha Farm Manure Heap.

Cause and Prevention of Rancidity in Palm Nut Kernel Cake.

The Fungicidal Properties of Certain Spray-fluids. "The Joumal of Agricultural Science," April, 1916.

Soil Ventilation.
Bulletin No. 52: Agricultural Rescarch Iustitute, Pusa, (India).

Tobacco.
Great Students of Plant Life.

> "The Tropical Agriculturist," (Ceylon.) March, 1916.

Bemesting van Rijstvelden.
"West Indië Landbouwkundig Tijdschrift," (Surinam), April and June, 1916.

The Mathematical Theory of Organic Variability.
"Science Progress" April 1916.

Water-melon Stem-end Rot.
Crown-gall Studies.

> " Journal of Agricultural Researcl,""
> (U.S.A.), 1916.

INDEX TO VOL. IX. 1915-'16.

Selected Contents of Periodicals.

Some Experiments on the House-fly in Relation to the Farm Manure Heap.

Cause and Prevention of Rancidity in Palm Nut Kernel Cake.

The Fungicidal Properties of Certain Spray-fluids.

> "The Journal of Agricultural Science," April, 1916.

Soil Tentilation.
Bulletin No. 52: Agricultural Researell lustitute, Pusa, (India).

Tobacco.
Great Students of Plant Life.

> "The Tropical Agriculturist," (Ceylon.) Marcl!, 1916.

Bemesting van Rijstvelden.
" West Indië Landbouwkundig Tijdschrift," (Surinam), April and June, 1916.

The Mathematical Theory of Organic Variability. "Science Progress" April 1916.

Water-melon Stem-end Rot.
Crown-gall Studies.

$$
\begin{array}{r}
\text { "Journal of Agricultural Research," } \\
\text { (U.S.A.), } 1916 .
\end{array}
$$

INDEX TO VOL. IX.

1915-16.

paged.
Adaptations to Exceptional Condidíns 184
 124
Agricultural and Forest Produgris, Exports of- $5 \mathrm{~S}, 118,176,239$
Industrims, Censüs Returns or- 2:3
" Instruétion in Surinam 11
129
, Research, Conditions For-223
Air anie teee Roots of Plantes 2.8
Alir rodr l'Lants 195
Albatrosses (Procellariidae) 218
Amerigan Eniterprise 59
Ant-Thrusiles (Formicuridae) 100
AREA TNDER SUGAR IN THE (OLONy 90
Arbas under Experialental Cithtivation
1914 and 1915 62
Aromes on Ararcae. Time- 188
Artesian Well Water for Rice Lands $11!$
B.
171
Banana Floul in War Time
28
Barbets (Bucconinae)
32
Basic Slag
Birds of British Guiana. The- .. 15, 94, 146, 196Birds of Prey16
Board of Agriculture. Meetings of the - $47,168,219$Bordeaux Mixture as a Spray for Rubber Thees115
Botanical Aspect of the Sea Defence
Problid. The- 179
Botany and the Text-Book 10

Selected Contents of Periodicals.

Some Experiments on the House-fly in Relation to the Farm Lanure IIeap.

Cause and Prevention of Rancidity in Pulm. Nut Kernel Cake.

The liungicidal lroperties of Certain Spray-fuids. "The Journal of Agricultural Science,"

April, 1916.
Soil Tentilation.
Bulletin No. 52: Agricultural Research Institute, Pusa, (India).

Tobacco.
Great Students of Plant Life.
" The Tropical Agriculturist," (Ceylon.)
March, 1916.

Bemesting van Rijstvelden.
"West Indië Landbouwkundig Tijdschrift," (Surinam), April and Jnne, 1916.

The Mathematical Theory of Organic Variability. "Science Progress" April 1916:

Water-melon Stem-end Rot.
Crown-gall Studies.
$"$ Journal of Agricultural Research,"
(U.S.A.), 1916.

INDEX TÓ VOL. IX. $1915-16$.

A.

PaGE.

B.

Binana Flour in War Time 171
Barbe's (Bucconinae) 28
Basic Slag 32
Birds of British Gritana. The- .. 15, 94, 146, 196
Birds of Prey 16
Board of Agriculture. Meetings of the- $47,168,219$
Bordeaux Mixture as a Spray for Rubeer Trees 115
Botanical Aspect of the Sea Defence
Problem. The-
179
Botany and the Text-Book 10

B.-(Continued).

Buourbon (Cane.) Varieties Direct from- 86
British Guiana. Lessons with Plants in-.. 184
" ". Report on Cokerite Frutis and OIL FROM- 162
" " . The Birds of- .. 15, 91, 146, 196" ". The Culitivation of LimesIN一4, 122
, ., . The Culitivation of Vegetables in- 33, 158
The Prosiecet of Hetea
Cultivation in- 41
British Science Guild. The- 174
"Broad-Beans" 160
C.
Cacao
" The Calse and Ctre of "Witch.
Broom" in-.. 1
Canavalia ensiformis 34
Cane. Diseases of the- 93
Cante Pheasant 200
Capnodium citricolum 125
Carrion Hattis (Polyborinae) 20
Catopsis uitida 185
Census Returns of Aghicultcral Indistries 232
Chylon. The Agricultural Schooi- 223
Chatterers (Cotinaidae) 110
Chionaspis sitri 128
Chlorine as a Water Purifier 121
Chlorophyll. The Role or-- 44
Climate of the Principal Rcbier Countries. The- 40
Coconuts 133
Corfee 138
Cokerite Fruits and Oil from British Guiana. Reports on- 162
Colletotrichum gloeosporioides 125
luxificum 1
Conditions for Agricultural Research 129
iii.

C.-(Continued).

Conditions for Researcii. The- 113
" \# Successful Cultivation 145
Cormorants and Pelicans (Phalacrocoracidae) 213
`Cost of Establishing a Lime Cultivation 5
-Cousiri Ants (Atta cephalotes, L.) 128
Cranes (Aramidae) 205
Crows (Corvidae) 25
Cuckoos (Cuculidae) 97
Cultivation of Limes in British Guiana.
The- 4, 122
Cultivation of Limes. Land Tenuie and Value for- 9
Cultivation of Vegetables in Britisii Guiana 33, 158
Curing and Preparation of Jamaica Ginger.
The- 37
" 1
D.
Davis. Presentation to Mr. L. S.- 45
Demand for Molybiendm. The- 117
Destructive Flash of Lightning. A Very-.. 161
Diplodia. The Gentis- 229
Diseases catised by Plant Organisms 125
" of the Sugar Cane 93
" of the Lime Tree 122
District Gardens. The- 231
Doves and Pigeons (Columbidae) 196
Ducks (Anatinae) 210" as a Preventive of Malabia and YellowFerer ..62
Dye Industry. Why England Lost the- 161
E.
Efrect of Grass on Trees. The Toxic- 53
" of the War.-Ractal- 46
", of Reduction of Shade on Cacao 143
Epiphytes 187
Epiphytism. Evolution in- 189
Experimental Cultivation 1914 and 1915. Afeas Under- ., 62
iv.

E.-(Continued).

$$
\begin{aligned}
& \text { Experimental Fields: Crops of 1914. Sugar } \\
& \text { Cane on the- . . }
\end{aligned}
$$

Tapping of Rybren 136
Experiments at Onderneeming 143
Experiments. The Farmer and- 222
with Rice, Coconitis, Rubber, Coffee and Cacao: Crops of 1914 130
Exports of Agricultural and Forest Products 5e, 118,176, 232
F.
Farmer and Experiments. Tife- 222
linceles (Fringillidac) 1.5.
Phamingoes (Phoenicopteridae) 209
Flower Coloyr me Herbarivai Specimens. Preservation of- 167
Fomes semitostus 126
Forest Products. Exports of Agriceldtral
AND- 58.118, 176, 233
Fieut Company. The Medical Report of tile
United- 40
Fusarium limonii 124
G.
Gqneral Plant Sanitation 56
Germany's Strengtil. Tile Secret of- 172
Ghingee. The- 33
Ginger. The Curing and Preparation of Jamaica- 37
Goat as a Source of Milk. Tile-. 114
Good Rubber Tree. A- 35
Grass. The Toxic Effect of-on Trees 53
Grebes (Podicipediae) 202
Greenlets or Vireos (Tireomidac) 150
Guarantees for Lime 32
Gulls and Terns (Laridae) 216
Gunfire and Rainfall 230
V.
H.
Hawks and Vultures (Accipitriformes Cathardiformes) 19
Herbarium Specimens. Preservation of Flower Colour in- 167
Hevea braziliensis 41
Hevea Cultivation in British Guiana. The ; Prospects of-.. 4.1
Hints on School Gardeqing 191
Scientific and Piagtical 51, 113, 172, 223
Hoactzin on Canje Phea'sant (Opisthocomus cristatus) 200
House-Fly. The Manure Meap and the- 227
Houtouli. The- 30
Humming Bimos (Trochilidae) 105
Hybridisation Experimentsis 80
Hymenochacte noxia 126
1.
Insect Pests of Sugar-Cane 92
" " of Limes 127
Interesting Papati Experinients 190
Jacamars (Galbulinae) 30
Jamaica Ginger. Tife Curing and Preraration OF-.. 37
K.
Kingrishers (Alcidinidae) 29
Kites 20
L.
Land Tencie and Value for Cultivation of Limes 9
Lessons wheth Plants in Brittsh Gutana 184
Letter from the Front. A- 50
vi.

L.-(Continued).

Light. The Struggle for- 185
Lightning. A Very Destructive Flash of- 161
Lime Cultivation. Cost of Estarlishing a-- 5
Guarantees for- 32
" j Guarantees ror-
35
35
", Tree, Diseases of the- 122
Limes in British Guiana. The Cultivation of- 4,122
" Insect Pests or- 127
", Land Tenure and Value for Cultitation
OF-. 9
Loranthus theobromae 126, 186
Luffa acutangula
Luffa acutangula 33 33
M.
Malaria and Yellow Fever. Ducks as a
Preventive of- 62
Manakins (Pipridac) 111
Manure Heap and the House-Fly. The- 227
Manures. Results of- 65
Manurial Experiments 132
" Situation and its Difficulties.
The-- 116
Mfarasmius perniciosus 2
Measurement of Osmotic Pressure by Direct Experiment 225
Medical Report of the United Fruit Com-
pany. The- 40
Meetings of the Board of Agricultcie 47, 168, 219
Millk. The Goat as a Sotree of- 114
Mocking Binds (Icteridae.) 151
Molybdenum. The Demand for- 117
Monstera obliqua 189
Mytilaspis citricola, Newm 127
N.
Nations' Choice. The- 157
Night-Jars (Caprimulgidae) 24
Number of Trees per acre: Planting Table 36
vii.
O.
Objects of School Gamens 191.
Oils. Selling Basts of Lime Juice and- 35
Onderneeming. Experiments at- 138
Osmosis in Planys 54
Osmotic Pressure. The Measurement of- by Direct Experiment 225
OwLs (Strigiformes) 21, 24
P.
Pant. Vegetable- 195
Papat Experiments. Interesting- 190
Papilio anchisiades, Esp. 129
Parrots (Psittacidae) 94
Partridges (Odontophoridae) 197
Philodendron spp. 189
Plant Sanitation. General- 56
Planting Table: Nymber of Trees Per Acre 36
Plovers and Curlews (Charadriidae) 202
Potash as a Manule. The Role of- 173
Potassic Fertiliseis. The- 172
Presentation to Mr. L. S. Davis 45
Preservation of Flower Colocr in Herda- hium Specimens 167
Principal Rubber Countries. The Climate 品 The-. 40
Prospects of Hevea Cultivation in British Guiana 41
Pseudococcus citri, Risso 128
Purifying Water for Stock 224
R.
Racial Effect of the War 46
Rainfall 63
" . Gunfire And- 230
Report on Cokerite Frutis and Oil from Bititish Guiana 162
Research. The Conditions for- 113
Rice 130

R.-(Continued).

Rice Lands. Artesian Well Water fòr- 119
, Varieties. Experiments with- 131
Role of Chlorophyll. The- 44
Potasif as a Mantrie. The- 173
Rubber 135
, Countries, thie Climatte of. The Principal- 40
Experimental Tapping of- 136
" Seed. Selection of- 112
" Trems. Bordeaux Mixture as a Spray for- 115
S.
Sanitation. General Plant- 56
School Gardening. Hints on- 191
Science and tile Trutii 183
" Guild. The British- 174
Scrammers (Palamedcidao) 210
Sea Defence Problem. The Botanical Aspect of the- 179
Secret of Germany’s Strengith. The- 172
Seed Selection of Rubber- 112
Sunflower Growing for- 14
Seedings 63
Selected Contents of Periodicals 177, 234
Selling Basls of Lime Juice and Oils 35
Shade. Effects of Reduction of- 143
Spartina brasiliensis 181
Sphaeropsis tumefaciens 123
Spray for Rubber Trees. Bordeaux Mixture AS A-.. 115
Storks and Herons (Ardeidae) 206
Strugale for Lights. The-! 185
Successful Cultivation. Conditions for- 145
Sugar-Birns (Coerebidae) 105
Sugar in the Colony. Area Under- 90
Sugar-Cane, Crops of 1914. Results of the Culitivation of the Principal Vabigties gF-., 91
ix.

S.-(Continued).

Sügar-Cane on the Experimental Fields:
Crops of 191463
Sunflower Growing for Seed 14
Surface Tension and Capillarity 51
Surinam. Agricuitural Instrugtion in- 1.1
Swallows and Martins (Iirundinidae) 109
Swirts (Cypselidae) 108
Sword-Bean not Poisonous ithe-.. 34
" Tile Value gr mie-. 159
T.
Tanagers (Tanagridae) 153
Tapping of Rubber. Experimental- 136
T'heobroma Oacao 1
Thomas' Phosphate (Basic Stiag) 32
Thrushes (Turdidae) 146
Tinamous (Tinamidae) 197
Toucans (Rhamphastidae) 96
Toxic Effect of Grass on Treès. Tine- 53
Trogons (Trogonidae) 31
Tideth. Science and the- 57,183
Tyrant-Birds (Tyrannidae) 25
U.
Úntied Frut Company. The Medigal Report
OF THE- 40
Uromyces betae 173
V.
Valutable Cow. A- 36
Value of the Stword Bean, Tife- 159
Varieties of Sugar-Cane Direct from
Bourbon 86
" " \quad : 1914 AND 1915 .. 91
" " \quad. Resulit from-.. 64

X

V.-(Continued).

Vegetable Paint 195Vegetarles in Britisf Gulana. The Cul-thVATION OF- .. 33, 158
Very Destructive Flash of Lightning. A- 161
"Vomiting Sickness" 93
W.
Warblers (Mniotiltidae) 148
Water for Rige Lands. Artesian Weld- 119
Stock. Purifying- 224
Wrens (Troglodytidae) 147
Wax of Wild Bees in the African Colonies 157
White Ginger 38
Why England Lost the Dye Industry 161
"Witce-Broom" in Cacao. The Cause and Cure of-. 1
Wood Hewers (Dendrocolaptidae) 103
Wood Peckers (Picidae) 98
Wrens (Troglodytidae) 147
\mathbf{Y}.
Yellof Fever. Ducks as a Preventive of Malaria and- 62

[^0]: Kakaos in Surinam ; von Greold Stahel ; Dept. van den Ladbouw, in Suriname.

[^1]: *This item is calculated on the assumption that the whole of the ex-

[^2]: * There are not watin : ()e:ianhogists wh in uddescribe Penguins (Spleuisodue) as the most ancient form of lided.

[^3]: * TPrest Dept. of Agriculture Bulletin. No. 4x.

[^4]: ** Crop reduced owing to error of As sistant in regulating irrigation water.

[^5]: v. Bird-tine (Loranthus Theobromac) frequently affects lime trees and may camse considerable damage on neglected cultivations. It slould be kept under control by removing it from the trees at frequent intervals.

[^6]: * attacks of birds
 ** attack of fungus.

[^7]: * In year 1913 only.
 †In years 1913 and 1912 only.

[^8]: "John Junor, Esq., the Manager of Pln. Vryheid's Lust, made mention of a grass known as 'wild rice' which has been of great saring to the foreshore of Better Hope and New Montrose estates, where he has been planting it for

[^9]: *For an excellent smmaryse" "Coant Sind Dumes," and "The Cse of Vegitat on for Redaiming Tidal Land-,' by Mr. G. ('. (ase.

[^10]: * We have much pleasure in affording our readers an opportunity of studying Mr. Drieberg's article, whi happears to us the best we lave yet seen on the subject. ED., J.B.A.

[^11]: * We have much pleasure in affording our readers an opportunity of studying Mr. Drieberg's article, which appears to us the best we liave yet seen on the subject.Ed., J.B.A.

[^12]: "The precise food-plants of the Hoactzin are now being investigated.

[^13]: —" Science Progress," April, 1913.

