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SOME APPLICATIONS OF HEAWOOD'S
THEOREM*

This note deals with some applications of Heawood’s Theorem, viz.
“[f f(z) =0 is a cubic representing the vertices of a triangle, then
7' (2) = 0 gives the foci of the maximum inscribed ellipge.” The theorem
has been discussed in this Journal by Prof. Naraniengar in Vol. IV, p. 96,
and Vol, V, p. 14.

Notation. a, B, ¥ are the vectors to the angular points of a & ABC;
> ths vector to any point Pis (z + iy); and I, m, = are real qnantities.
5 i m n
The equamonz_u-l- P + e
are geometrically related to the A ABC and are denoted by the points
S and H.

= 0 has roots z,, z; which

Im7+ mB 4+ ny
lfm+ ..

P is the point %, given by & =

1. The points S and H are isogonal conjugates, (Vide: Prof. Nara-
niengar’s Note in Vol. V, p. 14 of the Journal),
The equation on reduction is
2Bl +m+n) —z{({l+m+n) Yo — o} + .8y =0.
Taking the origin at A, 2,23 . S = 1 8Y.
Hence AS, AH, have the same bisectors as AB, AC. Similarly for

BS, BH. The product of the moduli are equal, Hence S, H are
isogonal.

# Quarterly Journal of Mathematics, Vol, 33, p. 84,
6
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I‘ll-l52|-22=2:|ﬁ"|yl'

& AS . AH = G AR AT,
l4+m+n

; AS. AH - o
AB _AC + oo 4+, =1[(Q. 254 (2)] 5

also AS-BS.CS.AH.BA.CH _l—m—n_ 1

a? — p2 — ¢2 =hs 2T

When ! = m = n, S, H are the foci of the maximum inscribed ellipse
and we have Cuestion 511,

2, As ABC, PSH, have the same centroid, for

z,+zg=z_‘_l_;2_17—_2l_u'=gm.;g,

5 Atz tl=a4 3+

3. If M be the mid-pt. of SH, and N the centre of the nine-pt,
circle, O the circumcentre, MN = 10FP,

This follows from the similarity of the As OGP, MGN.

S M H

4, OS.OH = R.OP, where R is the circumradius.
Take the origin at O, the circumcentre. Then

Zlel=]8]=]Y|=ER

*8y l m n)

Pt e e e eI 2 TN

g I+ m4+n (ol o B Y

b 7 i

Pato = R. ele’; Bh= B..e’e’; Yy = Rieic
1 a.8.Y ]

S e M et AT R

DEEY SR SN ( 3 + + )
i —if, 0,
The modulus of :LI*E%;_ is the same as that of El»ge ;
latter is OP (the two points being reflsctious about z-axis).

i
il = e Ly [ OF.

which
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o OS . OH =R . 0P,
and QB ="2SMNE—2V7
where d is the distance of the centre of the inconic from the nine-poiut
centre.

Hence OS.OH = 2R .d. (SeeVol. 11I, p. 68).
Similarly we can establish the result
K8 .KH ® 2 {KB'+-KC2*—BC )
l = mm
e ) o wp RO [E i

KA® o KB?. KC* 2
K being any point in the plane. ;

5. 1f AG, BG, CG are produced to meet the circumeircle in A’B’C',
show that G is a focus of the maximum inscribed ellipse of the A A’B'C'.
(Question 351 of Prof. Naraniengar).

The foci of the max, inscribed ellipse of the A A’B’C™ are given by

1 1 1
z—d'+2—;7F+ a'_—y' = 0, (l"m"“”)
where a.’, 3’, Y are the vectors to the points A’, B', C’.

Choose the origin at G. 1f G &hould be a focus, z = 0 is a root of

the above ; and l-i— +ﬁ = 0, which is obviously true since G is the

centroid of ABC,

6. 1f BOP,BOQ are equilateral triangles on the base BC of a triangle
ABC, show that the bisectors of the angle PAQ are parallel to the axes of
the max. inscribed ellipse, (Question 444 of Prof. Swaminarayan),

Take A as origin the points P, Q as 3, % and S, H the foci of the
max. inscribed ellipse.
The equation giviog S, H is
328 — 22(8 + ¥) + BYy=0. o ()
If 6, 8, Y form an equilateral triangle,
01 + B° + ¥2 — 68 — 6y — BY = 0.
(See Hardy’s Pure Mathematics).
Hence 5, ¥ are the roots of the above equation. '
L34 =84+
o5 = B2 4 yi — 18-
The direction SH is that of the vector (2, — z,), 2, 2, being roots of (i)
o oy — 2z, =% JE-BYEYI— .. from ().
S8 =9 (5 — 2)%
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Hence one of the bisectors of the angle PAQ, is parallel to SH,
That is, the bisectors of £ PAQ are parallel to the axes of the ellipse.

Also the product of the moduli being equal,
AP . AQ = 9. SH?.

7. AS.BS.CH + A@ . BH.OH = 2aG . BG . 0G.
(Question 478 of Mr. M. T. Naraniengar).
S, H are the roots of
323 — 2z(o + B + y) + 0B + 8Y + Ya = 0,
Take the origin at the centroid G, then & + 8 + Yy = 0.
.. S, H, are the points + z, — z given by
322 + a8 + B8Y + ya = 0.

Now « +z.8F+35. Y42+ ac—2.8—5.Y—35
= (aBY + z.38Y + 2. Za + 28) + (aBY — z.38Y + 2* — %)
=2.,a.p5.Y, onsimplification. !

Hence the result.

N. Dural RaJan.
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THE THEORY OF RATIONAL
TRANSFORMATION.

By R. VYTHYANATHASWAMI,

1. The general Rational Transformation is of the form

i S (w)
Pics it qb(w)
i) = ga,. o=, (@) = 2 by ar=r,

n being the order of the transformation. The roots of z = R(z), (n+1)
in number, are the fized points. The transformation R involves (2n + 1)
effective constants ; that is, n constants other thaun the fixed points.

The pencil [f(z) — M ¢ (#)] where » is a parameter is called the
pencil associated with R or briefly the pencil of R. Two transformations
having the same pencil will be said to be congruent. It is obvious that any
transformation congruent to R is of the form S8R where 8 is homograpbic.

The Rational Transformation R effects an (1, 1) correspondence
between the number x° and the members of the pencil of R, the z’ corre-
sponding to any assigned member beiag the transform by R of any of the
roots of the member, — this transform being the value of the parameter »
corresponding to the member,

2, If o, oy ... &, are the fixed pmnts (supposed dnstmct) of R (),
the equation »' = R () can be written in the form
7=

7 m,_“r —
Sk - 0y L),

~ The numbers %, will be called the parameters of the transformation.

Nors,—If all the parameters are finite and their sum is zero, the
transformation is the identical transformation &' = .

The value of Zldi' at a fixed point is called a multiplier. When the
z

fixed points are all distinct, the multiplier at o, is seen to be

tiy =1 — z@.
ey

The multipliers mg m; ... Mn thus satisfy the identical relation

= I

1—m,



46

Nore,—When the transformation is homographic, the identical relation
becomes mym, = 1, which is obviously true,

When the fixed points aq o, ... ot,_; coalesce at e, equation (1)
becomes

2—1 n

PGl e (=)
S ”’2 u— u)f“ (@—a»)

/2 may be called the principal parameter at o and ky, ky ... ky-1, the
secondary parameters, The multiplier at o is unity and at @, is
e (k + Fkpi1 4 kpio.a)

kp ;

The multipliers are thus functions of the principal parameters only.

Iun this case there is no identical relation between the multipliers,

Note (1).—If R and R’ have a common fixed point « with multipliers
m, m' respectively, then « is a fixed point of RR’ (and also R'R) with the
multiplier mnt.

Nore (2).—The multipliers of R are the same as those of S-! RS
where S i8 homographic. For, let a be a fixed point and 7 the correspond-
ing multiplier of R. Let S (¢ + p) = o + X p where p is infinitesimal.
Then S—! (o) is a fixed point of S~! RS and the corresponding multiplier
18 m, because

8- RS (u + %) = 8"!R (a+p) = 8! (wtmp) = at+m’
A
Note (3).—The muliiplier at on injinite fixed point.

Let R bave a fixed point at infinity so that
ay " +apt 4 .,

B = g bt
Lot § () = i Then S-1 RS (x) =91a“:2°:i+":.
e

The multiplier of R at oo = the multiplier of S~ RS at 0 = b1,
a

Nore (4).—The multiplier at a finite fixed point o of
R =580 (/@) —as @3/ @

For the polynomial transformation R (2) = f (), the multiplier at
the fixed point « is /' («) and at the fized point o is zero,
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3. Thke Derived or Polar Transformation.

There is one type of Rational Transformation—which we term the
Derived or Polar Transformation—which.is completely determined by ite
fixed points. The derived transformation with respect to a polynomial
6 (z) of the (n 4 1)th degree is

e | de
(@) i [ dz
= the root of the nth polar of 6'(y) with respect to z ;
¢t being the usual unit variable, The fixed points of the transformation
are given by 6 (z) = 0,
Nore.—-All the parameters of the derived transformation are equal ;

and all the multipliers are also equal each being —mn, where # is the order
of the transformation.

|
- For, the equation o g: + d;; = 0 reduces to
5 & = 9% — 0, o’s being the rosts of 6.
T — a,

In the case when O has multiple roots, the order of the derived traus-
formation is equal to the number of distinet roots,

For, if a is an m-ple root of 6, (@ — a)7-!is a common, factor of
(? and %F; Tt will be noticed, that when this common factor is cancelled,
dx

« is only a simple fixed point of the reduced form of the transformation.
Further, the parameter of the transformation at an m-ple fixed point is
seen to be proportional to i and the corresponding multiplier is

(1 = ’?,%1) A

Nore (1) — A rational transformation with distinct fixed points and
parameters proportional to positive integers is a derived transformation.

Nore (2).—The derived transformation of order 1 is the invulution.

Those of orders 2 and 3 may be reduced to
1 re? —1
f= (s s s el o,
o —yandiz iy
The Focal Rational Transformation.

When 6 (z) possesses an apolar quadratic Y (), the derived transfor-
mation is focal, the roots of y (%) being termed the foci. The focal trans-
formation traneforms each focus into the other and trapsforms no point
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oot a focus into a focus, Taking the foci as 0 and w, the transformation
reduces to the form ' = ;L .

4, Certain Families of Rational Transformation (n > 2).

When the pencil of R is given, tkree of the fixed points of R may be
chosen arbitrarily, but the rest are determinate ; so that the co-efficients
of 6 (z) are linear functions of four parameters. Conversely the pencil of
a transformation with given fixed points can not be chosen arbitrarily,

Theorem :If 6 (2) = 0 gives the fixed points of R, then 6 (z)is apolar
to Fs,_> which is the unique form of the (2z—2)th degree apolar to every
member of the pencil of R. We have seen that € (z) belongs to a four-para-
meter system of polynomials. To determine this system, suppose f (2) to be
a member of the pencil of R and two of its roots a, 8 (say) to be fixed
points of R. Then R («)=a and R (8)=43. But R (a)=R (3) sincex, &
are theroots of f (z). Hence o, @ are each carried into more than one
point by R, g0 that (2 — a) (z— 8) is a common factor of the numerator
and denominator of R. Hence since the numerator and denominator are
members of the pencil of R, they must contain the common factor f (z), so

that R (x) reduces to the singular form % f_’Qf)
7 ()

Henct whenever fwo of the roots of 8 ‘z) are roots of f (z) a member
of the pencil of R, § (z) is of the form f (z) . (t—%) where & may be arbi-
trary. In other words the four-parameter system of polynomials to which
6 (z) belongs, is that four-parameter system which has the pencil of R for
a singular pencil, E

Now the four-parameter system of (» + 1) —ics apolar to Fs,_ is
also a system having the pencil of R for a singular penecil.

Hence 6 (z) is apolar to Fy,_o

Theorem : 1f R, (z)is  particular transformation whose fizxed points
are given by 6 (z) = O and the pencil of R, be the pencil determined by
two n-ics which are written in the forms
o'

76 (2) 3 b
T— o,

where «'s are the roots of 8, then the pencil of any other transformation

whose fixed points are a’s is the pencil determined by two n-ics of

the forms

k. b,
o,

G(z)zz andefa:)z e

P
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Dem.—Sincs the pencil 8 (z) S Zﬁ';’_*:‘b"is the pencil of R, its
apolar, (2rn — 2) —ic viz. Fy,_s is apolar to 6 ().

Thus F2,-2 is of the form 3 A, (z—a )22,

The condition that this is apolar to 8 (z) = backorbls for all values

5 )
of A is

S A (b, 4+ AW (@—a)m2 ] (o, — a) = 0.
This equation is unaltered if we write /b, for b,, kb, for #’, and
A,/k, for A,.
Th h : e S N .
us the pencil 6 (z) T %, e is’ the apolar pencil of some

Fun_2 apolar to O () ; that is, it is the pencil of some rational transforma-
tion whose fixed points are given by 6 (z).-

Cor. Considering R, as the derived transformation defined by 6 ().

Tts pencil is the pencil of first polars of O (z) and is determined by
1 a,

¢] ) e = tiand SV e E
. (=) (m—-u,.)an 0(2) 3 —

®formation whose fixed points are roots of @ (%) is the pencil determined by

Hence the pencil of any trans-

two n-ics of the form 9 () 3 - #r and 6 (z) 3 Frt where the /-,’s

2 — a, X — a,

are arbitrary.

Geometrical Interpretation.

Represent every n-ic as a point in 2 dimensions. The n-ics which are
perfect #th powers will then correspond to points on a twisted n-ic
cnrve T, An nic (# — 0,) (2 — a3) .oeee (82— 2n) corresponds to
the point of intersection of the osculating (n — 1) -dimensional
regions at PPy ...... P, where P, is the point on T" corresponding to
(¢ — a,)" By Para (1), the general Rational transformation is an (1, 1)
correspondence between T' and an arbitrary straight line. The fixed
points are the points (u,) on T the osculating planes at which intersect
the straight line in the corresponding point, 1f the points (a,) are given,
the possible straight linee form an n-ply iofinite family such that any line
of the family is the transtorm of a fixed line L of the family by some
collineation whose fixed (7 4+ 1) -hedcon A’ is the ooe formed by the
osculating planes at (a.,). This complex of oo™ straight lines is evidently
the generalisation of the tetrahedral complex in three dimensions,

-

‘
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As in the corollory above the line T, may be taken to be the line
which represents the pencil of first polars.

Theorem: The live L which represents the pencil of first polars is
ths locus of poles with respect to A’ of osculating planes of T'.

The equation in plane co-ordinates of the twisted n-tic with respect
A’ may be taken to be

TR— e (=0l )

t— a,

¢ representing the parameter of the current point on the curve, The
equation to I, which is the locus of poles with respect to A’ of osculating
planes of T, is then

Tf the osenlating plane at ¢, on the cnvve passes throngh the point ¢
on the line

< M .t—d’_——-?t'_u",::(),
P 2

i —a, e iy 0l

Thus the transformation whose pencil is represented by the line is a
derived transformation, so that the line represents the pencil of first polars.,

Theé line L. may be called the polar line of A with the respect to 105

5. Argand Representalions.

(L) Transformations with real multipliers (and therefare real para-
meters).

Loat k, k; ... I, be the (real) parameters corresponding to the fixed
points o, ¢, ... o, respectively of the transformation R. With the point
2 a8 centre describe a circle in the Argand diagram and let o', be the inverse
of «, with respect to this circle.

The inverse with respect to the sams circle of the mean centre of
o’y a’/y .. &'y tor maltiples k, k&, ... K is the point R (2).

Dem, 1f T represent the operation of reflection in the real axis, then
- /
(=) =1(— =)

It M is the mean centre
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Therefore, if 2’ is the inverse of M,

1 ) L
— 7 T = P b = el
(z—72) =T (z M) Skl [zk, - a'r)]

i 1 iy,
_Ekr.T[EkT‘T(B,_w)] i

2z — o,

850 that Sk, T/ % = 0,

Z— O,

This construction is suitable for all derived transformations.

(2) The above construction may be extended to any transformation
whatever, provided we define the mean centre for multiples m, m; ... m, of
Ny
poiuts 2, ... 2z, in the Argand plane tobe the point z = %ﬂ’;zr, even in
- r

case the m’s are complex,

6. Powers of @ Rational Transformation.

The rth power of a Rational Trapsformation I of order » is a rational
transformation of order n#, which may be denoted by R7. The n” 4 1
fized points of Rr include obviously the fizxed points of R and the fixed
points of R? where d is any divisor of R. Those fixed points of Rr which
are not fized points of R? are the special fixed points of R, The spscial
fixed points are «() in number, where

(r)

o =i nr 24 En”‘lpx + E’ILTIZJ 12s

— etc.
D1 Py . being the prime factors of . (For proof : see my * Note in
Combinatory Anpalysis,’ J. . M. 8.) é

»l7) is divisible by ».  (Extension of Fermat’s Theorem, Ibid).

Hence the n(*) special fixed points can be divided into sets of » points
oach set being carried into itself cyclically and therefore primitively by R.
Such a set may be called a primative set of R and the corresponding poly-
nomial a primitive polynomial. Apy polynomial carried into itself by R is
either primitive or the product of primitive polynomials,

5 3 )
The number of primitive r-ics of R is 31_-.

Theorem : The multipliers of R’ corresponding to the points of a
primitive r-8et, are equal to the same rational function of the co-efficients

of the corresponding primitive #-ic.
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Leta, ag... a, be a primitive r-set so that ey =R (%), ... ¢ z=R(v.-1)
and o, = R (a,).
Then R (a, + do,) = ay + da,, ... R (0 + dy)=0p+1 + d(az+1)
[k=2..(—1)]and R (&, + da,) = o, + da';.
The multiplier of R~ at o,
_ da'y _ da'y da, dua

da, da,  da,_, " du,

e Lol o)y o () ipi(a,h)
(f(o-r) d a ) = (f (Uf—l) ¢ (&r-1) )
f(®)

(wbeleR(z)__qb( )

T L) P(er)
=0 (f(w-) S (au)

= a symmetric fupction of «, a; ... o, ,

Il

0; Os .0

which proves the theorem.
The multipliers of R* can be divided into the following sets :—
(1) The multipliers at the special fixed points of R”. There are

'i:—'l such multipliers, each multiplier corresponding to a primitive r-ic in

virtue of the theorem proved. - Call these M,1 M,.n

Bach fixed point, not a special fixed point of Rr, must he a special
fixed point of one and only one power of R, say R¢, where d is a divisor of 7,

Hence the other multipliers can be classified into—
(2) The multipliers of R~ at the special fixed points of RY, These

maltipliers are the ( ;— )th powers of the multipliers of R at the same

points. That is,in our previous notation ( M¢d )r/d (}c =l 9530 'ﬁ))
k d
each multiplier corresponding to a primitive d-set,

(8) The multipliers at the fixed points of R. These are the rth
powers of the multipliers of R.

Thus the problem of finding all the multipliers of R~ reduces to that
of finding the multipliers.at the special fixed points.

Egz. (1) Deduce from simple considerations a proof of ¥ n(2) = g
where the values of ¢ are the divisors of r (unity and »- iucluded), s
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Bz, (2) To tind R2 (x), where
R{m)—ol_'_a R(I)—-u2+a R(@)—os _ g

T — 0y agy T — 0,

a4

Let m; m; m, be the multipliers of R and (8Y) the primitive pair.

The multipliers of R? at 3, Y are equal to the same number m and at
oy Gy, are my® m,? mg’, m is thne determined by the equation
1
L il ey

D=t ol —lmo® 1 — mg? L —m

Phis ‘determines 7 as a function of m, mgy m,, Where

% m, = s (Gt g ) otc.
ay
Hence R? (w) is given by

v

.
TSR ) T — O, 1 —m
r=1

3
OV Bl ARG e )l [R’ (2) — B8 R (@) — 7] Lt
2 T — AR T —Y

7. Powers of the Derived Transformation.

1f 6 () = O, represent the fixed points of a derived transformation,
then any primitive r-ic is a covariant of € (=) but not a rational covariant.
However the product of all primitive r-ics is a rational covariant of 8 (z)
(which we may call the rth primitive covariant). To prove this assume
this to be true for all values of » up to a given one ». The fixed points of
the 7th power of the derived transformation is a rational covariant of
6 (v),say L.. It d ia a divisor of r, the dth primitive covariant (which
by hypothesis is rational) is a factor of L.. On vemoving all such factors,
the part which remains in Ly is a rational covariant and is the »th primi- °
tive covariant. Thus the th primitive covariant is a rational covariant—
ghewing that the theorem is true for 7. Since obviously the theorem
is true for » = 2, the induction is complete.

Ex. (1) The primitive quadratic of a derived quadratic transforma-
tion is the Hessian of 6 ().

For since a cubic is apolar to its Hessian, either root of the Hessian
must be the second polar of the other.

Ex. (2) The primitive quadratics of the derived cubic transformauou
are the apolar quadratic factors of the sextic covariant of 6 ().

Tet «5yd be the roots of 6 (z) and (pg) the pair harmonic to (a.5)
such that (a.8pg)‘is apolar to (287), (pg) is thus a covariant of (o.8) and
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(y?) and must therefore be the common harmonic pair of (ag) and (y?).
Thus (pga3) and (pgyd) are both apolar to (o 3y?3) and therefere (pppg)
and (pggq) are both apolar to («3y?3). Thus either of p, ¢ is the third
polar of the other, shewing that (p¢) is a primitive pair.

The following are examples of this theorem.

ZLz. (3) To find pairs of points on the rational space-quartic, such
that the osculating plane at each passes through the other,

Let f(¢) = 0, represent parametrically the super-osculation pointe.
Then if the osculating plane at the point ¢ cuts the curve again in the
point ¢, ¢ is the derived cubic transformation of ¢ determined by f(t).
Thus the pairs sought are given by the quadratic factors of the sextic
covariant of £ (¢). i

Ex, (4) To find pairs of points on an ellipse the osculating circle
at each of which passes through the other.

Let G (¢) represent parametrically the axial extremities of the ellipse.
If f(¢) = O represent four concyclic points on the curve, then obviously f
is apolar to 6. Thus_if the osculating circle at ¢ cots tne ellipse in ¢/, ¢’ is
the derived transformation of ¢ determined by O (¢). The pairs sought are
therefore the quadratic factors of the sextic covariant of O (¢), t.c., the

points at w on the ellipse and the extremities of the equiconjugate
diameter.

8. Reducible Pencils.

A pencil TV, of n-ics is said to be reducibls over a pencil IV, of p-ics
(where p is a factor of » other than 1 or ) if every member of I°,is the
- product of members of T7,.

The Jacobian of I, is then the product of the Jacobiaun of TY, and of
(2_" — 2) members of I'p. Conversley it is easy to see that I is
P
reducible over I', whenever the Jacobian of T, is such a product,

From the definition of reducibility it follows that T3, is certainly
irreducible it =z ia a prime.

Bz. (1) A pencil of quartics is reducible if it contains two perfecy
squares.

For if T, is reducible over T, the Jacobian of TV is the product
of the Jacobian of Iy and of two members P,, P, of T7,. Obviously
P,, P, are members of I',.
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Ez. (2) A pencil TV, is reducible if it contains two perfect gth
powers.

Let P9, P,2 be members of Ty Py, P, being of order p. P2 — AP,
is resoluble into ¢ factors of the form P, — pP, and therefore T', is
reducible over the penci'l (Py, Pg).

Ez. (3) An example of a pencil of n-ics which is reducible over a
pencil of order p for every divisor p of =, is the pencil of vertices of
n-gons inscribed in one conic, circumscribed to another.

Bz, (4) A pencil of quartics if reducible over more than oae pencil
of quadratics, is reducible over zhree such pencils and is a standard pencil,

For if T, is reducible over two distinet pencils, it must contain three
perfect squares P2, Q2, Re (since it cannot contain four). Thus TV, is
reducible over each of the three pencils (P, Q), (Q, R), (R, P). Obvionsly
T, is a standard pencil.

9. Reducible Transformations.,

A rational transformation (or function) R (z) of order » is said to
be reducible if R (z) = R, { R, () } where R,, R, are rational functions
of orders p, ¢ respectively (p, ¢ == 1). If R is reducible, any transforma-
tion congruent to R is also redncible ; for if R=R,R, then SR=SR,,. R,
where S is a homography. Thus the reducibility or irreducibility of R is
determined purely by the pencil of R.

Theorem : The necessary and sufficient condition for the reducibility
of R is the reducibility of the pencil of R.
Fivstly, let R = 'g and the pencil / + r¢ be reducible over a pencil
of order p» (n = pg). Then
7

i G B R D + 0P,
where P,, P, are p-ics.

"0P|q SF atplq—lpg T P s + aqP,_,g

Hence R = R;R,,

7 !
where R, (1) = Ey(2) Ry(w) = %% + @2 o @
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A f
Secondly, let R = R,R.,, R=,f| R =ﬁ. R, = 22,
i TS ¢ 5 $1 i ¢,
Then the equation f + A¢ = 0 is equivalent to fi(R,) +1$,(Ry)=0
and therefore the pencil of R is reducible over the pencil of R,.

L]

Note.— A rational function of prime order is certainly irreducible.
When a rational function R is reducible, the reduction can be performed
in a triply iofinite number of ways: For if sR = R,R,, then R is also
equal to R,S . S-1R, where S is homographic.

If we call R, the pre-factor and R, the post-factor of R, then all the
possible pre-factors are congruent to one another and the pencils of the
post-factors are linearly transformable into one another.

Bz, (1) A reducible quartic transformation can be expressed in
infinity ways as the prodnct of two congruent transformations.

For S can be chosen in infinity ways so as to make the pencil of R,8
identical with that of R,.

Hence thers is an infinity of quadratic transformations R, such that
R,2 is congruent to a given reducible quartic transformation,

[This is an attempt to study the general Rational Transformation of
one variable in some of its most characteristic aspects. More questions
nave been raised than solved ; and the positive results obtained are few.
In spite of the fragmentary character of the article, it is believed that it
will be of some value to readers interested in the subject.]
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THE GROUP-THEORY ELEMENT OF THE HISTORY
OF MATHEMATICS.
By Proressor G. A. MILLER.
(Continved from p. 12.)

OR about a century mathematicians studied these special groups with
only occasional glimpses into their deeper meanings and wider appli-
cations. E. Galois, A. L. Cauchy, A. Cayley, and W. R. Hamilton made
references to these deeper meanings, especially as regards ap abstract
theory, but none of these men formulated the abstract laws governing
this theory, About 1870, an eminent triumvirate of mathematicians,
0. Jordan, S, Lie and F, Klein, began to exbibit the applications of the
group concept to new fields, In his “ Traité des Substitutions” (1870)
and in an article on the groups of movements (1868), C. Jordan made
fundamental geometric applications, which were greatly extended by
F. Klein. About the same time 8. Lie founded a new theory of conti-
nuous groups of transformations and made extensive applications of these
groups in the theory of differential equations and in other mathematical
subjects.

It may be of interest to note that during the first, or implicit period,
of the development of our subject, groups involving an infinite number
of elements exercised the greatest influence. During the second, or
specialization period, the attention was centered on groups of a finite
number of elements, while during the third, or generalization period,
groups involving an infinite number of elements again moved to the
foreground, but groups of finite order continued to receive considerable
attention. Two types of groups of infinite order were studied during
this period, viz., those in which the transformations were continuoue
and those in which the transformations were discontinuous.

The fundamental abstract notions involved in group theory are so
elementary that they can be easily understood by those who are not profes-
sional mathematicians, Hence it is the more interesting that these notions
were not explicitly formulated before 1870. In formulating these for the
special case where the elements obey the commutative law when they are
combined, L. Kronecker expressed himself as follows : “ The extremely
simple principles upon which the method of Gauss is founded, find appli-
cations not only in the place named but also in others, and, indeed,
already in the elementary parts of the theory of numbers. This circum-
stance points to the fact, about which it is easy to convince oneself, that
the said principles belong to a more general and more abstract sphere of

8



58

idess, Hence it appears appropriate to free their development from all
non-essential limitations so that one will be spared the trouble of repeat-
ing the same method of reaching a conclusion in the different instances of
its use, The advantage of this appears even in the development itself,
and the presentation gains at the same time in simplicity, and, by the
clear exhibition of the essentials only, also in distinctness when it is given
in the most general permissible way.”?*

The student of the history of science may be especially interested in
the fact that the formulation of a definition of an abstract group came so
late in the development of this subject. For afull century mathematicians
were dealing with special substitution groups before making a serious
effort to develop an abstract theory embodying the fundamental principles
of these groups as a special case. It was not until such an abstract theory
was being developed that mathematicians began to see that the group con-
cept had been a dominant factor in some of the most important early
mathematical work and hence it became an important means not only for
suggesting further advances but also for securing an insight into the large
body of earlier mathematical developments.

A few statements found in well-known text-books may serve to illustrate
the attitude of leading mathematicians at the beginning of the present
century as regards the theory of groups. In the preface of his
“ Géometrie,” 1905, F. Borel says :

The new foundation (of elementary geometry) has been laid in the nineteenth
century by the works of leading mathematicians, It consists of the recognition that
elementary geometry is equivalent to the investigation of the group of movements,
Such a view is in accord with the characteristic tendency of modern scientists to
replace static investigations of the phenomena by dynamic ; or, to speak in more
general terms, the thought of development penetrates more and more our observations,

To his “ Lehrbuch der Algebra” (kleine Ausgabe), 1912, page 180,
H. Weber notes that :

There are chiefly two large general concepts which dominate modern algebra,
The existence and importance of these concepts could be observed only after algebra
was completed to a certain extent, and had become the property of the mathemati«
cians. Only then could be observed the combining and guiding principles, These
are the concepts of groups and of domains (koerper) which we now proceed to exe
plain, The more gereral of these is the concept of group,

In his * Beriihrungstransformationen ” 1914, page 11, H, Liebmann
makes the following statement :

The rules and concept development of group theory may be compared with the
organizing laws of nature according to which crystals arise, If it is allowed to

! L, Kronecker, Berlin Monatsberichte, 1831, p, 882,
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continte the figure of speech it may be added that the remaining mother liquor is &
rich fostering soil on which luxuriant organized life unfolds itself,

These quotations may suffice to indicate in a general way to what extent
group-theory influenced the trend of mathematical progress since the
beginning of the third period of its development. The infinite number of
finite groups, each of which exhibits special laws of operations, which had
been discovered during the second period of the development of this sub-
ject, showed that this theory can never be completely mastered in its
details. There are, however, large categories of groups which have many
properties in common and whose common operational laws throw light on
other mathematical developments. -

Comparatively little progress has been made in the study of those
abstract properties which all groups have in common, yet it is just
these common properties which were popularized by the mathematical
literature of the last quarter of the nineteenth century. While they are
so simple that the ancients did not consider it necessary to mention them
explicitly it was found that they furnish a point of view which offers
many advantages. For instance, few mathematical terms are more use-
ful than the term equivalent, and one of the services which 'group-
theory has rendered is to give this term a flexible yet perfectly definite
meaning by npoting that the equivalence of two. objects implies that
ope can be transformed into the other by the operations of a certain
group. ‘

Hence the term equivalent is relative to the group under consi-
deration, For instance, in Euclidean geometry two figures are equiv-
alent if they can be made to coincide by operations of the group com-
posed of displacements and symmetries. The distance between any two
points is an absolute invariant under this group. On the other hand,
in elementary geometry two figures are equivalent when they can be
transformed into each other by the operators of the group composed
of the similarity transformations which includes the preceding group
as an invariant sub-group. In elementary geometry all circles are
equivalent, and all squares are equivalent, but this is not true in
Euclidean geometry. :

Euelid’s *“ Elements ” could have been enriched not only by the
explicit use of groups of infinite order but also by the introduction
of groups of finite order. Ln particular, the five regular solids which
play an important role in Greek mathematics and in Greek philosophy
represent three interesting groups of finite order, In the words of
E. Picard :
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A regular polyhedron, say an icosahedron, is on the one hand the solid
that all the world knows; it is also, for the analyst, a group of finite order,
corresponding to the divers ways of making the polyhedren coincide with
itself, The investigation of all the types of groups of motion of finite order
interests not omly the geometers, but also the crystallographers; it goes
back essentially to the stody of groups of ternary linear substitution of
determinant unity, and leads to the thirty-two systems of symmetry of the
crystallograp'sy for the particular complex,

While it seems impossible to establish the reasons why Euclid did
not make explicit use of groups of finite and of icfinite order in his
“ Elements,” the fact that Aristotle frequently expressed the view that
mathematios has to do with the vmmovable objects except such as relate
to astronomy, is suggestive. While movements were used to illustrate
the demonstrations of theorems the Greek philosophers seemed to hold
the view that geometry itself was essentially a static subject, It is
difficult to overestimate the great influence which this view had on
the later history of mathematics.

If Euclid bad emphasized in his * Klements” the dynamic rather
than the static elements of mathematics, it is likely that his work would
have exerted a more vigorous inflaence. The cube of Euclid, for in-
stance, is of great interest but it is not so inspiring (as the cube com-
posed of the twenty-four movements of space which leave Euclid’s cube
invariant. These movements affect all space and convey bigand far-
reaching notions. Moreover, they sugzest many questions as regards
sub-groups and abstract laws of operation. In particular, this group of
order 24 is completely defined by the fact that it contains two operators of
orders 2 and 3 respectively whose product is of order 4.

While a group-theory of the third century B. c. is conceivable, it conld
not have been the group-theory of the nineteenth century since the latter
century had a much richer mathematical heritage. The rapid strides of
group-theory during the last century were largely due to the utilization of
old results, as is always the case in generalizations by abstraction. The
soil had been prepared by the labors of earlier centuries and it was only
neceseary o sow on it the new seed to secure the bountiful harvest with
which the labors of many workers in this field were rewarded, especially
during the last decades of the ninteenth centu:y.

When group-theory appeared explicitly, it naturally took a form whigh
was in accord with the spirit of the times. Substitution groups constityg

a type of combinatory analysis and arose ahout the time when the Comb'e
natorial School fiourished in Germany under the leadership of 1;“
Hindenburg (1741-1808), Abstract group-theory is a type of postulatic;nai
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mathematics and its early development during the middle of the preceding
century was in the van of the postulational activity which was 8o promi-
nent during the second balf of the nineteenth century. Continuous and
geometric group-theory are mainly applied group-theory and their rapid
development during the last quarter of the preceding century is in accord
with the spirit of this age when the fear of mathematical isolation through
over-specialization tended to make the study of applications especially
popular,
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SOLUTIONS.
Question 1102,

(M. Buimasena Rao):—P is the inverse of the incentre of a triangle
ABC with respect to the circum-circle of ABC. Show that the isogonal
copjugate of P with respect to ABC lies on the common diameter of the
in-circle and the nine-point circle of ABC.

Solution by N. Sundaram diyar and C. N. Srcenivasa Iyengar.

Let O be the circumcentre, L the incentre and N the nine-point
centre of A ABC. Then OI, OP = R? (R being the circum-radius).
The trilinear co-ordinates of O and 1 are (R cos A, R cos B, R cos C) and
(r, 7, ) respectively. Let a, &, y be the co-ordinates of P.

Then obviously

r—R.cosA‘:u.-—[{cosA_ ~/(r — R cos A) (* — R cos A)
o1 oP A R 3
a —Rcos A _ R? R

S n = RGO AR A O[3 B Ry

__R%cos A —2Rycos A + Ry — R’ cos A
R —2r

. &

i Ry 0]
um:(l 2 cos A).

; The co-ordinates of P are thus proportional to (1—2 cos A), (1—2 cos
B) and (1—2 cos C),
The co-ordinates of its isogonal conjugate are proportional to

1 1L 11
~ 1 —2cos A’ 1| —2cos B' 1 —2¢cos C

To prove that this point ie on a line with T and N whose co-ordinates
are proportional to (1, 1, 1) and [cos (B — C), cos (C — A), cos (A — B)),
respectively, we are to show that

1 1 1
cos (B — C) cos (C — A) cos (A — B)

1 1 1 ‘=O'
1—2cosA 1—2cosB 1 —2cosC |
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Now S(1 — 2 cos A) [cos G—a (1 — 2 cos C)
= 3'1—2 cos A) [cos C — A — cos & —B — (08 3C — A (cos A — 2B)]
3(cos C —A& — cos & — B) — 3(cos C — cos B) — I[cos C — 24

— cos (2A — B) — (cos 2C — A — C08 A — 2B
+ X(cos 2C — cos 2B) 4 S(cos $C — 24 — cos 2a — 2B) = 0.

Hence the result.
Similar solution by M. K. Kewalramans.

Question 1104.

(M. Brrmasena’ Rao):—A circle cuts the sides of the triangle of

reference at angles «, 8, y. Show that it cuts the nine-point circle at the

angle @ given by the eqnation
cos B(a cos a + b cos B + ¢ cos Y)
= Y acos Asin? o 4 Sacos Scosy + ... .

If § = « 4 B + v, show that either

(i) sin A sin a 4 sin B sin B 4 sin Csin y = 0,
or (i) cos A sin a + cos B 8in 8 + cos C sin ¥ + sin (o +8 4y) =0.
Interpret these results geometrically.

Solwtion by N. Sundaram Awyar.
The trilinear co-ordinates of the centre of the circle of radins 7,
which cuts the sides of the A of reference at angles, a, 2, y are
reos a, ¥ cos B, ¥ cos Y,

where r(acoso + beos B + ceosy) =2 A,

1f d be the distance of this centre from the nine-point centre, we have

R

@
— Co8 6, o oo ()

R2

as = 72 4 Z-——Qr. 5
But the nine-point centre is the point
B cos (8 - 0), I—;cos (C — 4), 3 cos (A — B).

s od2e ab::z S'a cos A (r cos 0. — %‘ cos ]?-TZ;)q~

.:Zg%c.ga (rcosﬁ—%coscaA)(a-cosy—%cosm)
L [Sacos A, 72 (1 —sin? a) — 7R cos a cos A cos §—g

4 Az

—
=g
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+ %—'EacosAconB_c—rn Sa cos B cos Y

—_— Eacoeo_AcoaA—B+ *E(G.OOSBGOSA——B
4+ acosycosG—A))

=§R_A—[rﬂ.2A—rl(EacosAsin!a + Zacos,B cos y)

+ 7 Ecosa(ccosc_A+bcosA—-B—2acosA00 —0)
¥ I2:(acosAcos!B-—o—acos(‘J—A%SA-—B)l

But ccos G—4 + bcos A—B — 2acos Acos B—C
= R (sin 3C — A + sin A + 8inA +6s6insB—A —8iNZA4B—0
— pin (2A — B + C) = 2R sin A =
Also E{acosAcr)sﬂaf-‘é—-acoec———gcoa(A-——B)}

a c;s A+ Yacos A t;os SB—2C __ wR sin A (cos O=B --cos OFB—2A)

4

= >

+ = T (ein 2A + 2B — 20 + sin A — 2B + 20)

S(sin A+ C—B +8in A—C +B+sin C+B—a+sin 3A—B—0)

w\:: »;-lg;,

R sin 2A sin 2B sin 2C — 2R sin A sin B sin C — 2R %% sin 2A

(3]

]

S Eip

+

. d==r2—— (ZacoeAsmﬂn‘#EacosBcosy)

rR® e R?
+Ezacoso_r z—Rcoa;O-(»—zf.gi

S cos 0= _2[5 (Za cos A sin2 o + Fa cos 3 cos y)

or cos 6 Y(a cos 0.) = Za cos Asin? a 4+ Sa cos 3 cosy. (2)

If § = o + B + Y, this result becomes

(Zasin a) (X cos A sin 0.) + Za sin? a cos (8 + )
+ Xz sin o cos a 8in (@ + y) = 0,

or (2asinu.)(2c:os&iino.+sma+5+y)=0,

Hence either

(i) sin A sin @ + sin B sin 5 + sin Csiny = 0,

or (ii) cos Asina + cosBsin 2 + cos Csiny 4 sin(a+B+Y) = 0.
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Question 1108.

(SALDHANA AND MapHAVA).-—Prove that

[f (a')] ( )f(x £ (Bombay, B.A.)
where A= (:ﬁ + ::) ;

and extend the result as follows : —

Pfir@]=(3+1+gm) f@+D
e

. | 1 1 1
@] = (3+5+ stgn) G+ D
where 1, = d%; + gaud e — E:i]; + 2

Solution by A. V. Subbr Rausy K..J. Sanjuna and several others.

The three results to be proved are particular cases of

Ar | I\ = d ”»
= = z+41) wh e 2
e [f(:c)] (l +m) f (z+1) where a dn:+:c
» being any positive integer.
Let £, fys farfs .on-en ete, be f(2) and its derived functions with

regard to z.

Then A, f = f, + ,;f,

e fl f—&f+

fot 2.l Uy

N =Ny Ltk 2<M[; fl] Rl r,a[al?.f ]

2 2 252
fat " fak ZhHh—""fit T f

T

]

z> z8

o r(r — l)f]__27(r — ])f i ri(r:; l)f

=fi +8.7f, +3. "(’_—‘)f.g.wf
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In general, we get
o(r — 1
f = fn + nclgfﬂ*l + HC. ’————-(7 = )f'n—2 4= wer vee iee (l)

the last term being

@ 0: r(r—1) (r—2) ... r—n+1) £ ifn<r;
m'ﬂ
(i) ;_‘ fitn =r;
i
(iii) C, %f_f,,-,, ifn >0

To prove this expansion of S in terms of fa, fa-1, Sams, 0bC., W6
assume it in the case of n and deduce it in the case of n+1 as
follows : —

Now r:"*1 = E{ - % .\’f i

3 dw T HIE
and the general term in Nrr g
d

Ny e S (Ea& : ) “—{Y
e te PG U e
2
R G :‘ B il T ooy
B =2 =3
o ~ )(r 3‘ ‘(” % )f-n s+1
= 0L )V(rL{l-”“‘ kSl

5 7(r-—1)... == s 1)

-(n+(\( = -——fnﬁj—‘.

Hence by Mathematical locuction the expaasion of A" # a8 given in
,. ¢

(1) above, is true.
Now o = 2)\"" i

n—~9

and 271' Sa—l 5 211—2' et ure all equal and each is equal to

f (s + 1), by Taylor’s Theorem,
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(1 + i g e g ':—;’)/(z+l)

| @]
=(l +a_1r)'f(w+ 1).

By putting r= 1, 2 and 3 the three results required to be proved
are got.

Similar solution by 0. N, Sreenivase Aiyangar, V. M. Gaitonde,
N. Sundaram and others.

Question 1110.

(A. NarasinGs Rao):—Lf for a curve there exists a functional relation
connecting the area of every escribed triangle, and that of the triangle
formed by the points of contact, such a curve must be a straight line or a
parabola,

Solution by V. Sundaram.

Since the functional relation is true for all inscribed As, let us take
the inscribed triangle formed by three consecutive points on the curve.
Let P, Q, R be the points forming the inscribed A of area A;. Let C be
the corresponding centre of curvature, and p the radius of curvatura.
Then the area of the triangle LNM formed by the tangents at P, Q, R to
the circle of curvature will differ from that formed by tangents at P, Q,
to the curve by an infinitesimal of lower order than A,, Let A, be the
area of the escribed triangle.

It is obvious from a figure that

Sealosr SE A g a0
Hy, =31 2 sm .2p am»z sin - 2¢- 2p% sin et ';qb,
(3 6+
and A, = p®tan 5 tang. tan ‘Z,d”

where 6, ¢ stand for the angles PCQ, QCR,

Thus since 6, ¢ are small, we have as the functional relation
A=22000

Hence sither &, = A, = 0, which is obviously the case when the
curve is a straight line; or the curve is a parabola which satisfies the
relation A; = 2 O,

For if (at,?, 2at), (aty? 2at,), (ats? 2at;) be the vertices of the

inscribed A, [a'tltaf a(t, + t3) 35 ahts, a(ty+1ts) s atyts, alt, + ,)] are the
vertices of the corresponding escribed triangle.
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=as (t — ) (b — ) (¢ — &)

S Dy = 3a.20 (42 1 1
foNEs S
fas b5 1

and &, = ia? ity bty 1] =10 (h—t,) (b,—t;) X (L—b)
tofs totts 1
oty I3+t 1

> A, = 2 A,, in'a parabola.

0 X A

[We can prove that the only form of the curve other than a straight
line is a parabola, as under :

Let OA and OB be two fixed tangents to the curve at A and B. Let
X,X, be a variable tangent to the curve at P, It will be shown that P
can trace only a parabola.

Let OA and OB be the azes of co-ordinates, and the equations to AB
§+¥ = 1 and £ + L =1, respectively, Let P be (w,y),
a b T, @

Now A APB = 2 A OX, X, as above,

and X, X, be

A
. 1 AB.p=w,z, sin AOB, where pis the perpendicular PR on AB.
PQ = p, (say) is drawn parallel to OA to cut AB at Q.

A
. 4 AB . p, sin A = z;2, sin AOB.

But _A_PK_ = '—bA'
sin AOB e L
bp, = 23,25, S w (1)

And length PQ or p, is a( 1 —% ).._. @
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=
Writing 9:§ + ;ﬁ = lin the form Y —y = %(X-—m)
1 9 a

x

and remembering that — + 2 = 1, we have
oh T

w1=m—-§,andw2 = ——y'(w—y—,).

=

Substituting in (1) for z,, #, and p,, we bhave

—2(e=3)fv =4 (1= )

i

dy i NGy .
or Z(a;d—w y) —(Tm{ay+b.(m—a)}. wezi(2)
To solve this, put 2 = au?®, y = by, so that
dy by do

dz ~ au du
Bquation (2) becomes

dus Sy s NE by idy - 5 :
(buv@ bv) —-Ei'aTu'ab(u + 9 —1);

or o (B o) =2 g1 @)
o 7 ) e e

which is satisfied by v+u=1.

Hence the origin'al equation is satisfied by

\/i—f + J; =1 @

Since the differential equation is of the first order, (3) should be a
solution got for a particular value of the single arbitrary constant which
the complete primitive can have. But since our curve is to touch the
axes at distances @ and b respectively and (3) does so, it is the locus of P.]

Question- 1113,
(C. KniseNamacEary, M.A.) :—If V is the normal velocivy drawn
outwards to a closed surface S in a liquid, show that

~ dP
ffdeS+_Jffdn des dy 0,

where the volume integral extends throughout the volume enclosed by S,
and the surface integral over the surface S.

Hence establish the equation of continuity,



70
Solution by Martyn M. Thomas and S. I. Ranganatham.

Liet p be the density at any point (#, y, =) of the fluid inside the given
closed surface S, so that p is a function of z, y, 2

Then fff p da dy dz being the mass of the fluid within S we have

3 fff p dx dy dz. 5 = increase in mass inside the surface in time ¢

= excess of flow in, over flow out, across the
surface S in time 3/

=S[1:a’ytz’z,‘p—(m+§§) N-dydzp]

+ two similar terme, the summation

being extended to points all over the bounding surface S
S Jif {updydz + wpdzdx + wpdedy] o¢, where », v, w are the com-

ponents of the normal velocity V on the surface parallel to co-
ordinate axes

= ._ff(up .S + up . mdS + wp . ndS) 8, where [, m, n are the

direction cosines of the normal to S

b —ff(lpu + mpy + npw) dS.B ... ‘(1)
=— [To V) 4+ pm*V) + p(aV)] dS . 5t = — f [ vy as.e
LuJ,” Pdmdydz+JJ PVdS }m
Horee [ [ [ amayaz + [ [ pvas =

To deduce the equation of continuity : 5

Green’s Theorem states that

f(lf + mg + nk) dS —J J J (Oz D(] + ah ) drdy dz,

where f, g, h are functions of (z, y, 2), which, \Vlbh bhelr t.[-ug derivatives,
are finite and continuous through a region boanded by a closed surface S

Hence from the equality (1) obtained above, we have

g_c[ f f f pd:cdydz] shid o I j [2(pu) + m(pv) + n(pw)] 28.5
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- [ [e2 4 2o s AN iggas,

using Green’s Theorem.
b(Pu) d (p2) , 2 (pw) Sk 2
4% 3 + 20 | dedydz = 0. ... (2)

o2

Since equation (2) is true for all ranges of integration within the

flaid, we have DJJ + a(pu) 2o yud det) 0, at every point of
oz Y Jz
the fluid ; and r,hls is the equation of continuity, in Cartesian co-ordinates.

Question 1113.

(SeLrOTED): —An ellipse, of eccentricity sin 20.. passes through the
focus of a parabola of latus-rectum 4a and hag its foci on the curve. Show
that the major axis envelopes the parabola

y?2 = 4a (1 — tan2a) (¢ — a)tans &) ;
and that the minor axis envelopes the semi-cubical parabola
27a sec? o y3 = 4 (z-—a — a sec? &)’
Solution by 4. A. Krishnaswami Aiyangar and Martyn M. Thomas,

Let S be the focus of the parabola and P, P’ the foci of the ellipse.
Denote P, P’/ by the parameters ¢, ¢’ respectively.

s SBERSBIg Sl S Sl
s SEPAe i aleine
2 4 13 + 12 £ 2] _ l+tans &
{!:?)r/_[(ti-l',"”;a—] T sionZe  2tan &
A% I S o ) or J(fﬂ’fl(‘
J(E+ )+ 4 t — ¢
) i+ \?
i = ( Sa (1 —tan? &) — tan? a,
taking only the first value. (i)
The equation of PP is
i+
a FL =
© 4+ a Y 3

ie, z+a(l—tan? «) (t:t—!' ) —atan? a = y i2

G
2 ’

after substituting from (i) ;
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2 ; t-'_"_t_" 2=0
2 +a\1—tan'm)(~2 ) 'y

1.6, %—a tand a—y.

whose envelope is easily seen to be
y2 = 4a (1 — tan2 &) (x — a tan? &},

If we take the second value of tan &, we can get similarly the enve-
lope ys = 4a (1 — cot® &) (z— a cot? &), which is not given 1n the
question.

Again, to find the envelope of the minor-axis, we may write its equa-
tion in the form
1 + 2% a t+t
Yy + (2 — 2a) ——

: 2 4 ¢'3
= (a4 t'3)

= a Bec? (ti'—;’) & + atan? & . '; ¢ -on substitniion from (i) ;
’ 3 ’
i.e. a sec? o (’? ) — (¢ —2a — a tan® &) t—;t —19 = 0.

Considering this relation as an equation in the variable %, we easily
find its envelope to be
27a sec? a. 2 = 4 (z —2a —a tan? a)?
=4 (x —a—asec2a)’.
Similary, we can get another envelope of the form
27a cosec2 ay3 = 4 (x — a — a cosec? a.)s,
It can be easily verified that the locus of the centre of the sllipse is

the parabola y3 ='da cos2 o (w — « tan? a),

Similar Solutions by N. B. Mitra, K, B. Madhava,
Martyn M, Thomas and several others.

Quastion 1114.

(T. P. Trrvenr, M.A,, LL.B.) :—1If p, q are any two integers selected
at random ; prove that that the probability that the fraction (p/g) is in its
lowest terms is 6/13.

Solution by N. B. Mitra and 4. Narasinga Rao.

The probability that pfg is in its lowest terms is the same as the
probability that p and ¢ may be prime to each other, 2

Let a be any prime number, 1f any integer p be taken at random,
the probability that p may have a factor ¢ may be found thus -
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At first 3Uppose p :'p m. Two cases arise,

(1) Let m be a multiple of a say = np ; there are n integers > m
which contain a as -a factor, viz,, the integers @, 2, ...... na: also the
total number of integers > m is m. Hence the probability that p may
have a factor a is n/m = 1/a.

(2) Next, let m lie between na and (2 — 1)a, where = is an integer.
In this case the number of integers = m which have a factor ais n — 1.
Hence the probability that p way contain a as a factor is (n — 1)/m which
lies between l/a aud 1/a — 1/m. But as m is taken larger and larger
1/a and 1/a — 1/m tend to equality.

Hence the probability that an integer p taken at random may contain
_a as a factor is ultimately 1/a.

Similarly the probability that anotber integer ¢ taken at random may
contain a as a factor is 1/a.

Hence the probability that the two integers p, g taken at random may
both contain « as a factor is 1/a2.

Therefore the probability that p, ¢ may not have a common factor
aisl — 1/as.

Similarly the probability that p, ¢ may not have a common factor b
(where b is another prime) is 1 — 1/b2,

Hence the probability tbat p and ¢ may not have a common factor
which is either a or b is (L. — 1/a3) (1 — 1/63).

~ And so on,

Hence the probability that » and ¢ may be prime to each other is
P = (1 —1fa% (1 —1/b2) (1 — 1/¢?) ...... where @, b, ¢ ...... are the
succession of natural primes.

To evaluate P.

Let S denote the convergent eeries 1 + 1/22 4 1/32 + ......
multiply by 1 — 1/2s, The cffect will be to remove all terms from the
series whose denominators contain 2 as a factor. Thus

S(l — 1oyl /38 % 158
Next multiply tbis by 1 — 1/33, This will remove from the right
side all terms whose denominators are multiples of 3. Thus
10 ;
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S(1— 1/28) (1 — 1/38) = 1 + 1/5% 4 1/7% + 1/11? & 1/I32 4 oo
. Proceeding in this way we shall arrive at 2
S(L—1/2) (1 —1/39) . @ — 1D =1 + 1/13 + ...uee

where >2, 3, ...... & are the successive natural pripies up to & and 7 is the
prime next to #, We may make I as large as we please and then 1/1% + ...
will tend to O, since it is less than the residue after (I — 1) term of the

convergent series S,
Hence finally SP = 1. ButS = 72/6. Therefore P = 6/m2
Note by Q. V. Krishnaswami.
This problem is due to the R.nseix;u Mathematician Tchebycheff,

(i) The probability that none of the primes from 3 onwards is a com-

mon fagtor of p/g is

P (1—317) (1—512) (1—;’) (1-—%) e

B 6 1
i Tr‘af(l—gﬁ)'

(ii) Suappose furthermore, we were assured that none of the two
primes 2, 3 was a common factor of both p and g. The probability that
the fraction might not be reduced by division by one or more of the other

primes is, from the above,

o[(-3) (-2)]

(iii) Generally if we know that none of the # primes m,;, ms, .. mp
was a common factor of both p and g, the probability that the fraction
might not be reduced by division by one or more of the other primes is

S [ (=) (=2b) (o) o (=) ]

Question 1115.

(D. P. Triveps, M,A., LL.B,):= Piove that

: 22 — 1 32 —1 52__] . 2
B o1 Do Sl
: 24 —1 3¢ — 1 bt — 1] ; 6
(i) e e ad inf. = 7
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Solution by N, B. Mitra; H. R. Kaepadia and

C. N. Sreenivasa Iyengar and others.

[N.B. : Master S. Chowla, aged 13, has sent a solution on similar linese—Ed.]
Lst us consider the Savi - + 27 + = + aadiinfs T ()
We know that it is convergent if n > 1. Let us denote it by S.

Multiply the series by 1 — lﬂ The result will be to deprive the

2
series of all terms whose dencminators are maltiples of 2,
1 1 1
Thus, S”(l—‘ﬁ):l"'-ﬁ’*’;ﬁ'*""

Let us multiply this by (l — ;‘—n ). 3 being the prime next to 2. The

result will, be to deprive the series on the right of all terms whose
denominators are multiples of 3. :

Proceeding in this way we get

s,,(l_ziﬂ) (1—61) (1—51;) i (1-_‘.");—.1+1—,L+...,

where 2, 3, 5, ... p are the primes up to p and g is the prime next to p
Also 1/¢" + ... is less than the residue after ¢ — 1 terms of the con-

vergent series (1) and hence can be mads as small as we please by making
g as large as we please.

Hence we get finally,

(-8)" (=3 (=

Similarly

Sl 1 \-b s B A 2
(1_@) (l-—d—) (1—5-—_.,,) citow = Sz e (B)

Dividing (b) by (a) we get :
LAY 1 o S2x
(1+2~;,) <l+§") (1+5”) )

" Dividing (c) by (a), wet get, after clearing
gTegl 31 0t ol
x4+ 541

)-1 tom = S,, e (@)

0

1Y)

L, 2
« oo ad inf. == Sa
"
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The questions proposed are particular cases of this for n = 2 and 4

o wt s

We know S5, = 5 5, = 90" 8, = 5150

These can be successively calculated from the well-knowa formula

rin—2 - Tin-4 R g NN
S, @n—1)! B (2n—3)! thexale = Pnt1) !

Hence putting #» = 2, 4 in (A) and substituting the above values,
we get the resalts :—

e e o
T ST g =

i) el Al = L 907 L 8
U413 I T g0 7

Question 1117.
(Pror. K. J. Sax3ans) :—If agiven function of x, y, z be transformed
by the substitutions
(g? 2
= tlog (22 +y* + 2% ¢ =tan-! i, § = tan=1 & T Y 't yl’

prove that the operation

: o 3 =2
(z* + »* + 2%) (DF' + 3 e 9)

is transformed into

(;; 56' + cosec? § _¢ + — + cot O ——)
Solution by Martyn M. Thomas and several olhers,
Let ' + y* + 2® = R,
Then the given relations are equivalent to :—
R =re7; o = R sin § cos ¢

y = R sin gsin ¢
z = R cos 4.
It has been proved in Edward’s Diff. Oalculus, § 532, that
a2V | a2V VSV 2 g 1 d2V | cot 4V
da® ' dy? 4*  dB* T R dR  R? dg* + R' g d
a3y

1 2
o= R Cosec OE'
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dsV |, dV | dWV

&l Re B8 VOT V.
(da:' dy? o dz’) x
P EAY

s 2V av. . dv A% 2 g
RdR’+2RdR+dT"+ cot 8 Te - cosec 817?
& & [pedV : -
= fEaile ; :
a P A
& M‘[e erdr ¥ 2 2 4
= d? ] + » » )
awv av :
F + dT + " " ”
5 d‘l. d2 as
2 2 2 7
Thus (@4 y' + 2 (@+d? E,)\
=(‘£+£I+ ,+cote +co>ec97)V.
dr* d: 46" dp?

Question 1118.

(N. Dora1 Rajan) :—Show that in the cubical parabola 2® = a‘y, al}
tapgent chords ere trisected by the y-axis.

Solution by V. M. Gaitonde and several others,

Tangent at any point (z, y) on the curve X?® = a'Y is
X (3a?) + Y(— a*) + (— 2a%) =0,

Eliminating Y froma these two equations, the abscissae of the
points of intersection of the tangent chord with the curve are given by
the cubic equation

X3 — 328X + 2a% = 0.

Let » correspond to the two coincident points at the point of contact
P of the tangent, and 2’ to the other extremity Q of the tangent chord,
Then

%+ 2 + o« = co-efficient of X% = 0,

Let the tangent chord PQ intersect the y-axis in T.

T x

c 2 : P 1 :
Then, by similar trfanglgs, TQ =i numerically,

Hence T is a point of trisection of PQ.

e =
.
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Question 1120,

(N. DogrAr Rasan):—Show that the curve whose (%, ) equation 18
r= (a+ p) is an involute of an involute of a circle. Find its polar equation
and trace the corve.

Solution by N. B. Mitra, C. N. Sreenivasa Iyengar and several others.

1f (+', p") be the pedal co-ordinates of a point on the evolute corre-

sponding to the point (r, p) on the curve, we have
=r—72 .. ()

and 2 =1+ P — 2pp, - e (2)
where p refers to the given curve and = ».dr/dp.

Here the given curve is

r=a+ p. ass vee we (3)
p =1
and from (2), '3 = 2r.(r — p) = 2ra.
Also from (1), p’2 =a(r + p) = a (2r — a).
P +a =12

Hence the pedal equation of the evolute of (3)is r® = a® + p?,
which is the involute of the circle » = p.

In other words, the evolute of r = a + p is the involute of the circle
r = 2).

Thus r = (¢ + p) is the involute of the involute of the circle r = p,

To obtain the polar equation of (3) :

We know that

d8 prins 3
dg p r—a
: . dr ) ? 3 (A
i (7 e e g
5 dr ey e e
. T 5 so=a J(a 2r — a).
& Jadbs=ar.(r —a)/ {r o/ (2r—a)}.
Integrating,

4 0= vers — 1? + Y2r—a ghich may be put into the form
a

r = %cosec’q‘u 0 = 24 + cot ¢,

where ¢ is an arbitrary parameter.

e
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QUESTIONS FOR SOLUTION

1161. (K. J. Sansana) —Prove that
7 (2 +1)...(2n—1) & nn+1)..2n 1
n! 2

0 il ] ' 2

n(z+1)...2241) 1 P |
=+ Sy, L + ... ad. inf. _}_2 .

1162. (K. J. San7aNa) :—Solve the following differential equations
and explain their geometrical sigunificance :—

2o (L 4y L 200 F ®) s,
o J%s

i 2%+
Yo Ya
(i) «® + y? — 2y(149:2) 4 249 o (———1+y,‘2)s = k2
: Ys Ya Ys© a
Gy —mip 2T v my (L + 94%) _ g
i Ye Ys
Here y,, ¥, stand for gg, ‘{%74, af;d % and » are given constants.

1163. (V. Ramaswami A1var):—Ifa rectangular hyperbola passes
through the incentre of a triangle and the feet of the perpendiculars drawn
therefrom to the sides, prove that it cuts the inscribed circle again at the
point which is diametrically opposite the Feuerbach point.

1164, [G.T.V.] .—O is the circumcentre of a triangle ABC. Points
X, X': Y, Y'; Z, 7 are taken on BC, CA, AB respectively, such that O
is the common incentre of the triangles AXX/, BYY’, CZZ. Show that
(1) their circumecircles intersect at the Euler poiot E of the triangle ABC ;
(ii) if these circles intersect again in points Ay, B, ¢, then AA’, BB, *
OO concur at the centre of the N,P. circle of the triangle ABC ;
(iii) B is the twin-point of O with respect to the triangle A’B’C’.

1165. (N.P. Panpya) :—Find the lowest prime of 17 digits,

1166, (HemRAl):—I¢t n be prime and

n—1 et '
H (m+ k) = 2 A, x"_k“l.A
k=1 =0 :

proye that

5 ;
Bl ey
%2(_])' il et ]CT Apyp O (mod. ™ +3) :
= )

where 7 and 7 are both odd and & = (v + 2).

2Ak5
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1167. (HeuraAj) :—1f [={aé—4bd + 3¢*) is a negative nuu?ber ; prove
that a necessary and sufficient condition that the roots of the biquadratic
ozt 4 4bas + 6oz® + d4dz + ¢ =0

with real co efficients may be concyclic in the Argand Diagram is that
a root of its reducing cubic should be proportional to ./I.

1163, (8. KrisaNaswAMI Arvanear):—If (2'y) stands for
8o (2 + y) sn (z — y), then - #
1—k (aB8)  1—k(By) _ 14k (Y8) 14k (ba)
1+£(B) = 1+E(BY) 1k (V) = 1+k(%a)

1169, (8. KrisaNASWAMI AIVANGAR) : —

dn?z — dn?y
If (zy) = 1T kide' s m , show that

(28) + (8y) +:(a//a}«,-¥-'"_«kf,f(_aﬂ) By (Ya).
1170. (P. V. SESHU A!,.’!}Kj/a-—lf yr' e _Tbh term in the eXpansion
of (p 4 ¢)”, show that 3. -
a1 .

+d d d b
S (yr - 79) =?t1 (7‘7’1) (qd—q) weee qlp + ),
re=1 B

LN

where 2 is repeated s timesg.
d(I M

1171, (R. VawovaNarmaswaui):—It S + NS’ is a pair of lines for
the values a, }z' —i of Ajiprove that quadrilaterals can be inseribed in

S — aS, with their four sides touching respectively the conics

S+58,8 b8+ 19,51,

1172. (B. VaIpviyarnaswaMi) :—E is a oonic of a given four-point
system and S;, S, are Vty.ize two conics of the system which are inscribed to
a self-conjugate A of E _As are inscribed in E with two of their sides
touching 8,, S, respectively. Prove that the envelope of the third side
is composed of the two conics of the system each of which has As in.
scribed in itself, circumscribed to the other,
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