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On Tetrahedral Coordinates.
By A. C. L. Wilkinson, M.A., F.R.A.S.
(Continued from page 55.)
§ 15. Properties of a tetrahedron.

T propose to solve analytically the problem of determining all
tetrahedra for which the thres shortest distances between pairs of
opposite edges intersect in a point; while, however, this is the direct
object of the following sections a namber of other results that arise out
of the work will be noticed.

We commence by finding the eqaations of the shortest distances :

Take the common perpendicular to AD and BC. If

ainos A=l Y-y 5=
LT etm TEN 2 Gl Dt

is this perpendicular, the conditions of perpendicularity between this
straight line and the lines

a
S D05 e 0
are seen to be
mAB*+nAC2+(p—1) AD*—mBD*—»CD*=0,
IAB2—IAC?*— (m—n)BC?+ pBD*—pCD?*=0,
l+m+4+n4+p=0
The plane through BC containing the shortest distance is
pa—I5=0,
since this passes through the point (L,m,n,p) at infinity.

Eliminating 1: m : n: p, this plane is

1 —6 0 0 a |

| AB—AC? —BC* BC* BD'—CD® |
—AD? AB'—BD* AC'—CD? AT

1 1 1 1 |

On expansion this will be found to be

§[f(CDY+f(BD)] =a[f(AB)+/(BC)| ... €L
The plane through AD is similarly
Bf(BD)+(AB)] =y[f(CD)+(AC)] ... 2

The shortest distance between AC and BD is
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S[f(AD)+§(CD)] = A[f(AB)+(BO)] . @
a [f(AB)+f(AD)]=y[f(BC)+f(CD)]
and that between AB, and CD is
6[J(AD)-+f(BD)] =y[f(AC)+f(BO)] e
a[f(AC)+f(AD)] =41 f(BC)+(BD)]
§16. The condition a shortest distance intersects a perpendiculur frone
a vertex on the opposite face.
If the shortest distance between AC, BD intersects the perpendi-
cular from A on BCD, we have
S[f(AD)+f(CD)] =A[f(AB)+f(BC)]
a[f(AB)+f(AD)]=y[f)BC)+(CD)]
a1 Vi meh

i 2 ~JOD) F(BD) B0V

are consistent.
f(BO)[f(AD)+f(CD)] =f(CD)[F(AB) +f(BC)],

or FBO)f(AB) =J(CD)f(AB).

The symmetry of this result shows that this shortest distance also
intersects the other three perpendiculars from B,C,D on the opposite faces.

Further, § 14, the perpendiculars from A,C on the opposite faces
intersect, as also the perpendiculars from B,D.

Also, by § 11(1), we must have AB*+0D*=BC*4 AD? which is the
condition of perpendicularity of the edges AC, BD.

(Clonversely, any one of these relations implies all the others.

§17. The condation that two shortest distances may intersect.

Suppose the shortest distances between AD, BC and AB, CD inter.
sect. By §15 (1) (2) (4), we must have

H(BOY-+{(BD) F(CD)+F(AC) {(BD) +{(AD) fAB)+£(AC) _,
F(AC)+f(AD) f(BD)+f(AB) f(BC)+f(AC) f(OD)+1(BD)
Writing this

[[(BD) -+ f(BD)[F(BO) 4 f(AD)]+{(BO) f(AD)

[/(BD) I+ f(BD)L/(AB)+/(CD) | +f{AB) f(CD)
_ [fAG) PAf(AOYF(BC) +f(AD)] +£(BC) f(AD)
[(A0)J"+J(A0)[f(AB)+#(CD)] + f(AB)(CD) *
we obtain either f(BD)=f(AC) = ([0
F(BD)f(AC)—f(AD)f(BC) _j(BD)+f(AC)+(AD) +f(BC) @
o ABDY(AC)—[AB)CD) J(BD)+HA0)+/AB)FHCD)
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The first of these relations is capable of a simple geometrical
interpretation, which I gave in Q. 356, J. L. M. S; for, it gives
2AD%BC?+42AB%.CD% —2BD%AC*—(AB*+ AD®*— BD?)
(BCO?4-CD*—BD?)
=2AD%BC*42AB%CD*—2BD* AC*—(AB*+4 BC*—AC(C?)
(AD?>4-CD*—A(C?),
whence cos BADcos BCD =cos ABCcos ADC ; and conversely, if this
relation holds good the corresponding shortest distances intersect.
The condition (2) reduces, by § 23 (1) and simplification of the
right hand side, to
AD? £ BC*—BD*—AC® _4AB.CD*—(AD*+ BC?*—BD*—AC?)*
AB'+CD'—BD'—AC® 4AD.BO'—(AB'+OD'—BD'—AC): @)

It is easy to find a tetrahedron for which (3) is satisfied bat not
(1). For, consider the telrahedron in which AB=AD, BC=CD,.(3)} is
satisfied and also f(AB)=f(AD), f(BC)=f(CD).

Hence f(CD)f(AB)=f(AD)f(BC) and all the properties of §16
hold good ; also, the shortest distance between AC,BD bisects BD .
these results are easily seen geometrically. ;

§ 18. If the shortest distance between two opposite edges AC and
BD passes throogh the centroid, we have

f(AD)+f(CD)=f(AB)+f(BC)

J(AB)+f(AD) =f(BC)+f(CD),
whence f(AB)=f(CD), and f(BC)=f(AD) ;
and the shortest distance becomes 6=/3, a =y ; this passes through
1,0, 1,0) and (0, 1, 0 1) which are the middle points of AC and BD.
Now, by considering the circumscribing parallelopiped, a tetrahedron
for which the line joining the middle points of AC, BD is perpendicular
to AC and BD must have the faces th on.h the other edges rectanzles.

Thus AB=CD and BC=AD. Hence:

Ifin a tetrahedron f(A B) =f(CD) and f(BC) =f(AD),ithen AB=CD and
BO=AD.

§19. Considering further the common perpendicular to AD and
BC, its intersections with BC, AD respectively are

0, {(CD)+f(AC), {(AB)+f(BD), 0
and f(BD)+(CD), 0, 0, f(AB)+f(AC)

where all these guantities shonld be divided by f(AB)+f(BD)-f(AC)
+f(CD), which is the same for both points.
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The coordinates of the middle point are, therefore,
f(BD)+F(CD), f(CD)+f(AL), fF(AB)+F(BD), f(AB)+f(AC).

The equation of the! plane through the middle points of the three
shortest distances is

a B : £ Y ) 6 1
FBD)+F(CD),  fCD)+f(AC), ete. . . - |
f(BC)+f(BD), F(AC)+f(AD), ete. . . . Ay

f(BC)+f(CD),  f(AD)+f(CD),etc. . .
which reduces to
(cbivis B Ve 5
F(CD), f(CD), f(AB), f(AB)
f(BC), f(AD), f(AD), f(BC)
f(BD), f(AC), f(BD), f(AC)

This passes through the isogonal conjugate of the centroid.

The condition this plane may pass through the centroid (1,1,1,1)
reduces to

[f(CD)—f(AB)] [f(BC)—f(AD)] [f(BD)—f(ACi=0,
whence a pair of shortest distances must intersect §17(1)—vide: Q. 357.

If the condition f(CD)—f(AB)=0 1is satisfied, the above plane
reduces to a -+ —y—§=0. Hence the theorem :

If the shortest distances between BC, AD and AC, BD intersect, the
plane through the middle points of the shortest distances (i) passes through
the centroid, (ii)\zs parallel to the edges AB and CD and (iii) bisects the
other four edges of the tetrahedron.

s

Suppose the three middle points of the shortest distances are colli-
near. The above determinant must be indeterminate, whence
either {(AC)=f(BD) and f(AB)=f(CD),
or f(AC)=F(BD)=0.

The jcase f(AC) =fBD)land f(AB)=f(CD) has been considered in
§18, and the greatest distance between AD and BC contains both the
centroid and the middle points of the other two shortest distances.

If f(AC)=f(BD)=0, the pairs of edges throngh AC, BD respec-
tively ave ab right angles.

§ 20. The tetrahedra in which the three shortest distances between pairs
of opposite edges vntersect.

The conditions of intersection are of two kinds :—

(1). f(BD)=f(AC).
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®). AD”—{—BC”—BD"'—AC?:'{(BD)+j(AC)+f(AD)+f(BC),
AB’+ OD*—BD*—AC* f(BD)+f(AC)+/(AB)+f(CD)
or ¢ (AC)=0.

‘We have four cases to consider :

Case (i). f(AC)=f(BD), f(AB)=f(CD), f(AD)=f(BC).

This is the well known tetrahedron for which the opposite edges
are equal and the shortest distances bisect the edges to which they are
perpendicular.

Case (ii). f(AC)=f(BD), j(AB)=f(CD), ¢ (AD)=0.

From § 18, we have, AB=CD and AC=BD, as a resualt of the first
two relations, the third condition ¢ (AD)=0 gives, by §17 (3)

AB’4CD*—AD*—BC?_4 AC*BD*—(AB*+ CD*— AD?*—BC?)?

AC*;BD—AD°—B(C? 4 ABCD*— (AC*+BD*—AD*—BC**
which reduces, in virtne of AB=CD, AC=BD, to

2 AB*—AD—BC*_4 AC'—(2 AB*—AD*—BC?*)*
2 AC—AD™—BC® 4 AB'—(2 AC’—AD*—BC?*’
2 AB*—AD*—BC®*_
2 (AC*—ADB?)
4 AC'*—(2 AB*—AD*—BC*)® e
£ (AB"—ACYH+4 (AB+ AC*— AD*—BU®)(AB*—AC").

Thus either AB=AC,

or 2 (AD?4-BC*—2 AB*)(2 AB°+2 AC*—AD?—B(?)
=4 AC'—(2 AB*—AD*—BC?)’,

whence

which gives :
— (AD?+BC?)?+4 (AB*4 AC*)(AD*4-BC*)—4 (AB*+ AC*)* =0,
or AD*+BC*=2 AB*42 AC".
This relation is impossible, for, if X is the middle point of BC, we

have

AD*+4 BC*=2 (AB*+AC?) =4 AX*+ BC?,
whence AD=2 AX.

Also, since AB=CD, AC=BD, the triangles ABC, DCB are equal
and tberefore AX=DX. Therefore AD=2AX=2DX=AX{DX,
whence AXD would be a straight line and the tetrahedron degenerates.

Thus we have only the tetrahedron for which

AB=CD=AC=BD.

Writing AB*=u, BC*=y, AD*=z, and taking account of the above

equality, we find
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{(AB)=f(AC)=f(CD)=f(BD) =yz=X\ say,
f(AD) =4 2z —2 yz—z*=u say,
fBC)=4 2y—2 yz—y*=v say.
The three shortest distances are
b=a  §u+NI=B0+N) . s+N)=y(+N)
B=y S a@+N)=y(r+x)J  a(+N)=Bv+N\)
These all intersect in the point
(4N, u+N, a4\, v4N).
Case (iii). 4(AB)=¢(AC)=¢(BC)=0.
Writing 1=AB*+0D?% m=AC>+BD? n=AD*4+BC*
7 I'=2AB.CD, w =2AC.BD, 'n=2AD.BC,
the conditions are

l—n _  m—n
mi—(l—n)’ U*—(m—n)>
m—1 " n—1

2 —(m—1)> T (n—1)*

n—m _ l—m
P—(n—m)> n*—(—m)*

None of the denominators can be zero, since the condition a pair of
opposite edges may be parallel, say AB parallel to CD, gives
1 AC? —AD*—BC*4+BD*®
¢ AB.CD
Conversly, if any denominator were zero, a pair of opposite edges
would be parallel and the tetrahedron would degenerate.

Maltiply the above conditions together and we get
(=B =2) =0
whence a = =y, and we have the tetrahedron for which
AB*+4CD*=AC*4-BD*=AD*+ BC".

Tn this tetrahedron the opposite edges are perpendicular and from

§ 11 (1), we have
F(AC)(BD) =f(AD)f(BLC) =f(AB)[(CD);

whence from § 16 the four perpendiculars from the vertices intersect
in a point, the ortho-centre, and vhe shortest distances intersect all the
perpendiculars ; thus the shortest distances between opposite edges must
also meet in the orthocentre.

In this tetrahedron the centroid bisects the line joining the ciroum-

centre to the orthocentre,
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Denote AB?% AC?% AD® by 2, v, z; then
CD?, BD? BC® are k—a, k—y, k—=
whence k=AB’+4+CD*=AC4+BD*=AD*+ BC>
Calenlating f(AB), ete., we find
fAB)= (2 +y+z—k)(e+k—y—=)
D) = (k—e—y + ) h—e-+y—2).

Write z4y+z—k=N\, k+e—y—z=p,
k—a+y—z=Y, k—a—y+z=p;
we have F(AB)=X\p, f(AC) =\, f(AD)=X\p,

HCD)=wp, f(BD)=pp, f(BC)=pv.
The equations of the shortest distances become on omitting factors
as k¥, which cannot be zero since it is 2 BC?,

sp=aX ; 5p—_—,8';,1 ; szyv} :
Bp=yv aN=yv J  ax=Lp
these intersect in the point (l’ _l,l, L , which must be the orthocentre
Npvpe
as above proved.
The circumeentre is (ki ks, ks k1), where by § 11
k,=BD*(\v+4vp+ xp)—CDZ.)\p—ADﬂ.vp
=3+ PN+ Vp+NP)—5(¥ +p)Np—z (N +p)VP
1

=\pvp <%_F+’%+%)'

Thus the circumecentre, orthocentre and ventroid are
<__1_+i+i+1, e ) (L T l>, @¥1111)
N p v p SANENSRTCR G 70 2
and the centroid bisects the line joining the circumcentre to the ortho-
centre.
Case (iv). f(AC)=f(BD), ¢ (AB)=0, ¢ (AD)=0.
We may write the two latter conditions

AD*$+BC—AB'—CD* _ AC4+BD'—AB!—CD’
FAD)+/(BC)+f(AB)+f(CD) f(AC)+f(BD)+j(AB)+f(DC)
AP CD'—AD*-BC* __ AC'HBD'—AD (B

=~ FAB) 1 ICD) T J(AD)+f(BU)  JAC)FF(BD)+(AD)+/(BOY

excluding the case where one of the numerators (and therefore all)
yanishes. This being Case (iii) already investigated, we have
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F(AC)+f(BD)—{(AD)—{(BO=— { J(AC) +(BD)+f(AD)+f(5C) }

ST f(AC)+f(BD)*0,
and with the first condition, we get

F(AC)=f(BD) =0.
The conditions now become
f(AC)=0, f(BD) =0,
AB’“’+CD2——AC2——BD”+AD2+BCQ——ACQ—BD2:
f(AB)+7(CD) f(AD)+7(BC)
We shall show that either AB*4-CD?=A0?4BD*=AD?+4 BC? or
this case redaces to (i).

For, since f(AC) =f(BD)=0, we have from § 11 (5).

f(CD) { BD*++ AC*—BC*—AD? } =f(AD) { BC*+CD*—BD* }

f(BC) { AB*4+-CD?*—AC*--BD* } =f(AB) { BD>—~BC*—CD* }.

By use of these relations the above condition rednces to

f(AB) { AD*—AC*—CD* } +f(AD) { AB*—AC*—BC*} =0;
also from § 11
f(AB) { B®*—BD*—CD*® } —f(AD) { CD*—BD*—BC* } =0
whence (BC*—BD?—CD?)(AB*—AC*—EC?*) +
(AD?*—AC*—CD?)(CD*—BD*—BC?*) =0. et (@)

This is only one of fonr possible ways of expressing the condition.

We have in virtue of f(AC)=F(BD)=0, four relations, viz.,
F(CD)[AB*+4-AC*—BC*] =f(AD)[AC*+BC*—AB?]
f(AD)[BD*+ BC*—CD*®|=f(AB)[BD*+CD*—BC?]
f(AB)[AC*+-CD*—AD"] =f(BC)[AC*+AD*—CD?]
F(BO) BD*+AD*—AB?] =f(CD)[BD*+ AB*—AD?].

Denote the coefficients of f(CD), f(AD), f(AB), f(BC) on the left-
hand side by @ @, @ @, and by 1, Ya, Y5 Yus those on the righthand side ;
then from conditions (1) we get

212y~ Yo = Boy + Yalfy = Ly + Yl =T+ YaY =0k
whence we derive

2y —2yy =0, @y — 24y =0.
But these are equivalent to
f(AB)—f(CD) =0, f(AD)—f(BC) =0.
Thns, unless AB*+CD*= AC+BD?*=:AD*+4 BC?% we are led to
Case (i).
17
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§ 21. We may note however, that the condition
(BC*—CD?—BD?)(AB*—AC?>—BC?) 4-
(AD*—AC®—CD?) (CD*—BD*—BC?) =0
in conjunetion with f(BD)=0, is impossible.
For, write BD?+4-CD?*—BC*=2a
BC*+BD?*—CD?=2b
AC’+BC*—AB*=c
CD24 AC?—AD®*=d
AC*=z, CD2=y;
and we find BD?=a+b, BC*+y=a-+b,
AB*=a2+4+y—a+b+tc, AD*=a-fy—d.
Substitute these values in f(BD)=0, and we obtain
2y(a+b)—2a*=bd+ ac.
Thus, if bd4ac=0, we have y(a+b)=a’ which gives
4CD%BD?*=(BD*+CD*—BC?)?®
or BD+CD=BC,
whence BCD would be a straight line.

B E——— 0 GRS
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SHORT NOTES.

————

Curvature and Torsion of Curves on Surfaces.

The equation to a surface, referred to the lines of curvature and
normal to the surface at a point as axes of coordinates, is
2 2=2%/p+y*/ Pa+¢(2, y) e (@)
where @,, p, are the principal radii of curvature, and ¢ involves third
and higher degree terms in « and .
Let B be the angle which the tangent at the origin to a tortuous
carve through the origin makes with the axis of #, and a the angle
between the principal normal to the curve and the axis of z. Then,

evidently,
l,=a"=cos 8, m=y =sin 8, n,=2 =0,
ly,=pa"=sgin O sina, m,=py"=—cosB sina, n,=pz"=cosa,
1,=sin Bcosa, m,= —cos Ocosa, n,=—sina,

corresponding to the direction cosines of the tangent, the principal nor-
mal and the binormal; dashes denote differentiation with respect to
the arc of the curve.
Differentiating (1) twice we have, at the origin,
o_ 2% y* cos’@ , sin’

P P P Pr

that is, £05 aos0 T 5D il
i P P:

Again, a point on the curve near the origin is denoted by
(a/ds, y/ds, #'ds) or (cosB ds, sin@ ds, 0). The principal normal at this
point has for direction cosines (l+1, ds) &c.; and the normal to the
surface is (—cosB ds/p, ,—sin@ ds/p, , 1) approximately.

If (a+da) denote the angle between these normals

cos (a-+da)=—I; cosO ds/pr—m, sin® ds/p.+n,+n, ds.

Proceeding to the limit ard remembering that n,=cosa, and

Ny =—ny/p—n;/d, by Frenets Formulae (C), we get

da _1 cos@_{_m2 Slne+s—1119.

e 5 =
g 1 1 da
Hence 31__—_31119 COSG<E—I-’—1 = SN

19tk October, 1912. K. A. Erapy, M. A,
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Squaring the Circle.

Let PQR be a circle with centre O, of which a diameter is PR.
Bisect PO at H and let I be the point of trisection of OR nearer R.
Draw TQ perpendicular to PR and place the chord RS=TQ.

" Join P8, and draw OM and TN ||’ to RS. Place a chord PK =PM,
and draw the tangent PL=MN. Join RL, RK and KL. Cut off
RC=RH. Draw CD ||’ to KL meeting RL at D.

Then the square on RD will be equal to the @ PQR d.pprummabely

For RS*=_5.4%
where d is the diameter of the circle.
PS?=2142
But PL and PK are equal to MN and PM.
PK®= S1Ld" and PLﬂ—gllzdﬂ
Hence RK*®=PR*— 2
and
K
RK_RC_ 113
Br RL RD™ 27V 355
a.nd RC—_—%d.
d 355
RD:§ i3 =r4y/7, very nearly.

Note—1f the area of the circle be 140,000 sq. miles, then RD is
greater than the {rue length by about an inch.

12th May, 1915. S. RAMANUJAN.

e
e
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The Sine and Cosine Series.

Euler arrived at the well known expansions of the sine and cosine by

the development of Deuwoivre’s theorem
lco8.70 41/ —1 sin 20 =(cosB++/—1 sin@)".

In the following note I shall derive the expansions frowm the formula
of sines given in our ancient Suryu-siddhanta without the use of imaginary
quantities.

I shall first deduce the peculiar furmula of sines given in the Surya-
siddhanta. The usnal formul® for the sum and difference of two angles
are given in the Siddhénta-siromani under the name of samds-bhdvana and
antar-bhdvana. They are

sin (A +B)=sin A.cosB-+cosA.sinB e (B
sin (A—B)=sin A.cosB—cosA.sinB e R (2)
From equation (2) we get
cos AsinB=sin A.cosB—sin (A—B),
Substituting this in equation (1) we get,
sin (A+B)=2 sin A.cosB—sin (A—B).
=2 sin A (1—vers B)—sin (A—B).
=2 sin A—2 vers B.sinA —sin (A—B).
=sinA+ {sinA—gin (A—B } —2 vers B sinA

Writing 76 for A and O for B in the above equations, we get the

following general formula
sin (n+1) B =sin nB8+ { sin 768 —sin (1—1) B } —sin2B. 2 vers B. (3)

This is the very formula employed in the Swurya-siddhanta for
calculating the sines of 24 multiple arcs contained in a quadrant.
Although this formunla may not be of use when great accuracy is
desired, yet it is unrivalled in simplicity, as it employs a single
multiplier throughout the calculation. It has excited the wonder of
renowned western mathematicians, and has no less taxed their talents,
as the following quotation shows—

Delambre, as quoted in Warren’s Kala-sankalita, says :—* That pro-
cess is extremely carious. One finds nothing likeitin the trigonometry of
Ptolemy and in order to find some vestige of it, one must, after having
vainly poured over all the authors on irigonometry, come to Briggt
who knew that divisor, which he seems to have found out by the facs
in comparing the second differences obtained by other means, for
Briggs himself was not aware that it was the square of the cord of the
differential arc 6A.°

I shall work symbolically a few consecntive values of sin (2-41) 0,
when 7 is equal to 1, 2, 3, 4 &e.
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Let @=sinB; and =2 vers 6. Then according to the method of
working given in the S'urya-szddhanm, we have

Sines Difference
sin 0°=0 a
sinf= « multiplied by = +az
sin20 = a—ax a—aw
2a—aw® 55 r= +2uz—aa?
sin38 = a—3 ax+ aa® ‘u—3az+az®
3a—4dax+ az® o 2= +3av—4aa’+ az’®
sind0 = a—6ax+ Hax—azt a—6az+ Sar’ —ux®
4a—10az+6a2—aa’
&e. &e.

"T'he law of the co-efficients of the terms of the series for sines may
be formualated. Let us take for example the series for sind0. Here in=4.
4=The number of combinations of n things taken (n—1) at a
time.
10 =The nnmber of combinations of (72+1) things taken (n—3) at
a time.
—=The number of combinations of (7z-2) things taken (2—5) at
a time.
1=The number of combinations of (#-3) things taken (r—7) at
a time.
The series may therefore be written symbollically, according to the
formula of combinations, thus :
(m+1) () (n—1).,
SIcO:3
(1z+2) (n+1) (#) (n—1) =2
1-2:34°5
We may, without departing from the hypothesis of » being an
integer, conceive = to increase to infinity, and O to diminish to zero ; so
that 20 shall be any arc #. It is also plain that when the arc@ is
diminished to zero it becomes equal to its sine a; so that nB=na=4.
Also, when a=0, 2a=0, 3a=0 &c. ; and when 8 is irnfinitely diminished
twice its versed sine becomes equal to @? since

sin #B =na—

92
z=2 vers 9———— =—— =a? in the limit.

Therefore the terms az, az?®...become a°, & ...vespectively ; and
if we make these substitutions in the preceeding formula, we get

sinﬂ:ﬂ—(na—'_a) ]('Za% Um—a)
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Therefore, finally, we have
ed T N g
sl =853t 12345 1P3amET
So far as I am aware, I lave not been anticipated by any mathe.
matician in deriving the above formula in the mapner indicated.
The formula for cosine may be similarly dednced :

For, if we make nB=1m; sin 28=1 and when O is diminished
indefinitely

sin (n41) O=cosO ; sin n0=1,
{ sin n9—sin (n—1) B } =0,
—sin 28 X 2 vers B=u.
Therefore cos®=140—=, in the limit.

cos0°=1 multiplied by z= 4=
cosO= —u —a

| 5% T= 2—7?
cos20= — 24 a2 — 2z a*

1— 3e4-a° % =+ x— Sz 4 at
cos30= — 3x44a® —a —3z4 4a"—a°

1— 62+ 52 —a? 5 r=+4 a— 6a*45z'—at
cosdf= — 4x+4102>—62° 4t —4a+-102>—6°+a*

1—10a + 1oa* —Ta* o'

&e. &e.

The law of the co-efficients of the terms in the series for cosine is
formulated thus: the co-efficient of
9nd term —combinations of u things taken (n—2) things at a

time,
3rd term =combinations of (n2+1) things taken (n—4) things at
a time,
4th term —combinations of (n+2) things taken (n—6) things at
a time,
&e. &e. &e.

If we go through the successive steps and make the necessary
substitntions, we get
I3 .2 B°
corf =l—1+ 1og4 123456
The question of the convergence of _the series has not been con-
sidered here! as the object of this note is only to point out a new method

of obtaining the well-known series.

HE

Poona, 17th May, 1913. V. B. KETAKAR,
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Unification of Notations in the Theories of
Potential and Elasticity.

First circular.

Tt is unnecessary to explain at leogth the great advantages that
wonld follow if nniform notations could be established by international
cooperation in all branches of pure and applied science.

In Mathematics and Theoretical Physics, the subjects in respect of
which an attempt io this direction may at the present time be made
profitably are undoubtedly the theories of Potential and Elasticity, pro-
vided that the subjects are rot taken in too wide a sense, and that a
suitable organization for securing international agreemeni can be sef up

A. Range of subjects.

1. Since it is not to be expected, that the same terminology or no-
tation can be used for the sate concept in all languages, the termino-
lozy and notation should be so chosea that they may be translated as
easily as possible from one langunage to another.

2. Tt is proposed in the first instance to establish nniform notations
for the quantities which occur in the theories of the equation for the
potential and of the differential equaticns which belong to the theory of
elasticity for isotropic media. It would be possible afterwards to
extend the conventional notations that may be agreed upon in regard to
the theory of potential to more general partial differsntial equations of
elliptic type, and in regard to the elastic differential equations to the
corresponding equations for aeolotropic media. The rotations shoanld
conform as lar as possible to existing notations.

B. Plan of organization.

The Committee of organization, herewith, by means of this first cir-
cular, makes application to Astronomers, Mathematicians and Physicists
who work at the two theories named above, and requests them to
cooperate with it to secare the desired nniformity, and in the first place
to assigt the Committee by answering the following question :—

What are the notions and notations in respect of which
it is desirable to establish uniformity ?

The answers which are received during this year will be arranged
as soon as possible, and in the conrse of the year 1914 a second circalay
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will be issued asking for snggestions as to methods by which the desired
uniformity may be brought about. Since it is not be expected that the
suggestions which may be received will be in complete agreement with
each other, it is intended to issue a third circalar in the Spring of 1916,
setting out the points in dispuote, and to arrange a disoussion thereon
ab the next international Congress of Mathematicians in 1916. A fourth
circular to be issned in 1917 will contain a report of this discussion and
provide an opportunity for those who shall not have been present at the
Congress to express their views in writing.

All the proposals and contributious to the discussion will be sifted
and arranged, and the Committee will in a fifth circnlar (1919) state the
points in regard to which agreemenrt shall have been obtained and take
a vote on thuse in dispute. The voting will take place at the internat-
ional Congress of Mathematicians to be held in the year 1920, and an
arrangement will be made by which those who do not attend the Con-
gress may record their votes in writing.

The Committee will declare the result of the voting in a sixth
circular in 1921, and it is intended that a printed siatement of the
terminology and notation that may be agreed upon shall be published
shortly afterwards.

Please write to the following address (in English, French, German
or Italian.)

Herrn Arthur Korn, Charlottenburg, Schliiterstrasse 25.

The Committee of organization
for the establishment of uniform notations
in the Theories of Potential and Elasticity
by international corporation.

Max Abraham (Milano), Alfred Ackermann-Teubner (Leipzig)
Robert D’Adhemar (Lille), Paul Appell (Paris), Serge Bernstein
(Charkow), Kristian Birkeland (Kristiania), Wilhelm Bjerknes
(Leipzig), Marcel Brillouin (Paris), Orest Chwolson (Petersburg),

Eugéne Cosserat (Toulouse), Francois Cosserat (Paris), Gaston
Darboux (Paris), Paul Ehrenfest (Leiden), Henri Fehr (Geneve),

Leopold Fej'er (Budapest), Richard Gans (La Plata), Heinrich Graf
(Bern), Sir George Greenhill (Lionden), Jacques Hadamard (Paris),
18 ;
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Wilhelm Hallwachs (Dresden), Fritz Hasenohrl (Wien), Tsuruichi
Hayashi (Sendai), Pierre de Heen (Licge), Gavid Hilbert (Gottingen),
Gustayv Jager (Wien), Eugen Jahnke (Berlin), Paul Ko6be (Leipzig),
Walter Konig (GieBen),Arthur Korn (Charlottenburg), Horace Lamb
(Manchester), Emil Lampe (Berlin), Sir Josepk Larmor (Cambridge),
Otto Lehmann (Karlsruhe), Eugenio Elia Levi (Genova), Tullio-
Levi-Civita (Padova), Leon Lichtenstein (Berlin), Augustus Edward
Hough Love (Oxford), Roberto Marcolongo (Napoli), Max Mason
(Madison, Wis.),Friedrich Wilhelm Franz Meyer (Konigsberg) Albert
Abraham Michelson (Chicago), Gosta Mittag-Leffler (Stockholm),
Ernst Richard Neumann (Marburg), Niels Nielsen (Kobenhavn),
Wilhelm Oseen (Upsala), Michel Petrovitch (Belgrad), Emile
Picard (Paris), Friedrich Pockels (Heidelberg), Demetre Pompeiu
(Bukaresti), Georgios Remundos (CABnrat), Karl Schwarzschild
(Potsdam), Carlo Somigliana (Torino), Waldimir Stekloff (Peters-
burg), Orazio Tedone (Genova), Francisco Gomes Teixeira (Porto),
Esteban Terradas (Barcelona), Vito Volterra (Roma), Albert
(Wngerin (Halle), Otto Wiener (Leipzig), Stanislas Zaremba
Krakow).



139
REVIEWS.

Introduction d la théorie des Nombres Algébriques par Dr. J. Sommer,
translated from the German by A. Levy. 15 Franes. Hermann et Fils
Paris.

The rich harvest reaped in Analysis after the introduction of the
complex guantity could hardly fail to suggest to mathematicians that a
similar generalization in the Theory of Numbers wonld similarly reward
the investigator. The great German mathematician Gauss was the first.
to attempt this genevalization in his classical researches into the theory
of Cnbic and Biquadratic Residues. The extension of the integer
concept, thus introduced, was limited however to these two cases;
the further attempt to extend the integer concept to quadradic equa-
tions, the square of whose discriminant is a positive or negative integer,
presented the great difficulty that the (fundamental theorem that any
integer can be resolved into prime factors in one and only one way
no longer held good. Kummer was the first to suggest the way ont,
but it was R. Dedekind (Diriclhet-Dedekind, Vorlesungen iiber
Zahlentheorie) who finally showed how the difficulty was to be overcome
by replacing the integer concept by that of the ideal. Practically the
whole of the recent theory of ideals is due to the great German
Mathematicians Kronecker, Hilbert, Hensel, Minkowski and Bachmann
all of whose works must be regarded as classical. Weber also, in his
Lehrbuch der Algebra, 'gives a masterly description of the theory.
It will be seen therefore that this difficult subject has been neglected by
all other nations, and as Prof. Hadamard points out in his preface to
this work, it is only recently that the University of Paris has inau-
gurated a series of lectures on this subject. So, in England Vol. IT
of Mathew’s Theory of Numbers, in which he hoped to give an account
of ideals, has never appeared. Above all the modern theory is "chiefly
indebted to D. Hilbert whose lectures at Gottingen and whose superb
Theorie der Algebraischen Zahlkérper in the Jahresbericht der
dentschen Mathematiker-Vereinigung of 1897 must ‘long remain the
standard treatment in this subject. Hilbert’s work however is so
condensed and difficult that all studentsdesirous of becoming acquainted
with the modern theory of numbers will welcome the elementary intro-
duction, under review and more so as it is largely based on Hilbert’s own
lectures and has received the benefit of his personal criticism.

Dr. Sommer’s book comprises three sections; the quadratic field
which is treated in great detail, with varions applications; an introduc-
tion to the miore general field illustrated by the cubic field ; and an
introdnction to the relative quadratic field. The discussion of the
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quadratic field i3 complete in itself and can be read by any one with
only a moderate acquaintance with algebra. [t is showa that all ideals
can be divided into a certain number of classes whose nnmber can be
determined and which ara of definite types possessing a certain set of
characteristics. A table at the end gives classes, types and characteristies
of all ideals of a quadratic field whose disceiminants lie between —97 and
101. Applications, such as to prove that the equations a*—py* = %1, forp
prime, admit of integral solutions only when p =7 (mod. 8), or p=3
(mod. 8), according as the upper or lawer sign is taken; or if py, p,
are both =1 (wmod. 4), the equation p,2®—py*=+1 always admits of
integral solutions, show only soms of the simplest theorems obtained.
A discussion of Fermat’s “Last” Theorem is given with proofs of
Kummer’s extension that no quantities of the form a+17/3 where a, /2
are integers, can satisfy either 2"+4y*=2z", or a'4-1y'=z% The connection
between tha ideal theory and Gauss’s classical work (Section V of the
Disquisitiones Avithmeticae) on the representation of numbers by
quadratic forms and the theory of composition of forms is summarised
in Chapter III, which concludes with the geometrical represcntation of
ideals including Klein’s extension to forms whose discriminant is real-
While the quadratic field is only a special case of the more general
theory its peculiarities are snch that it undoubteldly deserves a special
study and the stadent who has mastered this portioun of the book shonld
have no difficulty in entering on the general theory as represented by
the discussion of the cubic field in which only the fundamental ideas
are developed leaving the study of the laws of reciprocity and the divi-
sion into types for more advanced study.

Tt is to be regretted that while the general discussion is admirably
clear the proof sheets r:ust have been very indifferently loohed over, as
the number of minor misprints is- excessively large though only
in a few instances presenting any difficulty to the reader in following
the argnment.

A .C. L. W.

The Calculus for Beginners by J. W. Mercer, M.A. 440 pp. (Cambridge
University Press). Price 6 sk.

This book is written mostly for students of Physics and Engineer-
ing, and the whole treatment is inductive. In the first two chapters
covering 74 pages the author deals with dy/d» as a rate-measurer and as
a gradient. The examples given for the purpose are mostly numerical.
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The fuanctions considered are «?, 2° and 1/2. In the third chapter the
differential coefficient of #” is obtained and the algebraical signs of dy/ilz
and d%y/da® are carefnlly explained and illustrated. Chapter IV is devoted
to a discussion of maxima and minima valnes and many of the results
obtained are graphically illustrated. In the same chapter the poiaf of
inflexion is defined as the point at which the gradient is a maximum or a
minimum and the condition for inflexion is elegantly obtained. In the
next chapters, which is on small errors and approximation the bulk
modulus —o» dp/dv of a fluid is obtained and illuitrated. In Chapters
VIto VIII integration is dealt with ; the determination of areas, volumes
of revolntion, moment of inertia, centre of gravity, work, and mean valne
is considered at length. In the next three chapters differential coeffi-
cients of more complex functions are discussed. There are also small
chapters on approximate solution of equations, integration by parts and
by substitution, and polar coordinates.

There is no donubt the work will be helpful to the class of stndents
for whom it is meant.

SRS
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SOLUTIONS.

Question 410.
(P. A. Supramaxta Aivar, B.A., L.T. ) :—=Solve completely

d_/) 231 g8 z/ (77/ ay\*® Jy) 2] &
14+ = =a|l 2
{ [ (]L az/) J a.|_ T\

Note by A. O. L Wilkinson, M.A., F.E.A.S.
The solntion of this equation can be written in the form
@ = [cos($ar®+ b)du+-c
y=/[sin(3au’+b)du-+d
whele b,c,d are the arbitrary constants of integration.

Question 413.

(M. KannaN, B. A. L. T.):—Shew that the Apollonian circle
through the vertex A of a triangle ABC cufs the nine-points cirecle and
the polar circle of the triangle at cos (cos A;sin C—B) and cos™
(Rp~" cos A sin C—B) respectively, p being the radius of the polar
circle.

Solution (1) by J. C. Swamzinarayan, M. A., and (2) by V, B. Naik, M. A.

(1) If O, the middle point of BC be taken as origin and BC and
a L to BC through O as coordinate axes, the equation of the Apollonian.
circle through A will be

2% -yl —aw (+b%)/(*—b) +a*/4=
and its radius = abe/(c*—b?%).

The equations of the nine—points circle and the polar circle will be

a4 y*—Ra sin (C—B)—Ry cos (C—B)=0,
and 2°4y*—2 Ra sin (C—B)—4 Ry cos B cos C+a*/4 =0,
thence if the Apollonian circle cuts the nine-point circlz a1l the polar
circle at angles ¥ and X respectively,
s ‘JJ:% Ra sin (C—B) (*+b)/(*—1*) —a’/4
R abe/(c*—b?)
_2Ra (e +5?%) sin (C—B)—d® (¢>—0b°)
4 R abc
=sin (C—B) { 2¢°+2b>—4 Ra sin A } [4bc
=sin (C—B) { 26>+ 2¢*—2a* } /4bc
=sin (C—B) cos A
R sin (C—B) a (+1%)/(c*—b*)—a’/2
2p abo/(c*—b%)
=Rp~'cos A sin (C—B),
whence the result follows,

and cosX =
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(2) The equations of the Apollonian circle through A, the
nine-points circle and the polar circle, ave, respectively,

fsinC—ysinB

— = —I= 1
s sin(B—C) 20 M
U—3(acosA+ LBcosB+ycosC) I=0 ... S (2)
U— (acosA+fBcosB+4ycosC) =0 ... Bk (B

where U =0, and I=0, are the equations of the circumeircle and the line
at infinity.

The radii of these circles are 2 R sin B sin C cosec (B—C), R/2
and

By Cathcart’s Theorem, two circles whose radii are R, and R, and
whose equations are

U+(a+mfB+ny) I=0

and U+(@'a+m'fB+n"y) =0
intersect at an angle 6, given by:
RL;{:).S_G =1+ (leosA+mcosB+ncosC)+ (I cosA + m/cosB 4 #'cosC)
+ 1 - man 4w’ —E(man’ 4+m'n)cos A AR (D)

For circles (1) and (2), the right hand side of (4) is found to be
cos A sin B sin G, and for circles (1) and (3) it is 2 cos A sin B sin C.
cos@=cos A sin (B—C), for (1) and (2).
and cos@=Rp~" cos A sin (B—C), for (1) and (3).
Additional solution by T. P. Trivedi, M.A., [.I.B.

Question 419.
(P. A. Susramania Iver, B.A., LT.):—Solve completely

Py dy ldy 2 sa* 1 "o
e e

Solution by K. J. Sanjana, T. P. Trivedi and B. R. Seshu Aiyar.

Put Yo =v; then 2yyz+y*=v,
and 2yys+2y e+ dyy, =v,.
Hence vy =Ray f y2+y—"+2—y’}
L s
o LN ol o
=2y (5"*‘-;17_,)—” (a"*‘:vT);
s Po_ 0 12
da T

2

3, 2,
which is a particular case of j_i—wv:wv,



144
The solution of this (see Forsyth, § 112) is

—_ 2 1 i a ax — X
V=2 Idw) (Ae™ 4 Be ™).

It isfound that y%z—a? {%aﬂ(Ae"”-}- Be"""‘)—:l—‘na(Ae“'“—Be‘“")} ¢

e ,1‘1*0‘2 AT Be—T% a A _Be—9*
./—a:"(E + Be )—;3(3 o)

Question 422.
(D. D. Kapapra M.A., B.Sc.) :—Shew that
a, b7 Cy d: e, f
AR b e ’ a+d, b+e, c+f (a—d, b—e, -c-—f]
i ibaliE o o e e C R e R e e
f’ a’ b’ (4
G (O e R 0 D
On & i
Additional solution by R. T'ata, M.A.
The determinant on the left side is equal to the determinant whese
first three columns have for their constituents the sams of the consti-
tuents of the 1st and 4th, 2nd and 5th, 3rd and 6th columns, respectively ;

bte, c+f, atd e—b, f—c¢, a—d

thus

A= a+td, be c+f, d, e i
U+fl (L+£.l, b+e, ’G) ds e
b+e, o+f, atd, b, ¢ d
la+d, b+e, c+f, a b, ©

]
c+f, o+d, b+te i ayb
bte, otf atd o f al

This is equal to the determinant whose last three rows have for
their constituents the differences of the constituents of the lst and 4th,

2nd and 5th, 3rd and 6th rows:
A=| a+d, b+e, c+f) d, € f

1.e.
c+f, a+d, pte 6 ok €
b+e, c4f, a+d, b, c, d

o, o, o, a—d, b—e, G“f,ll
o, f—e¢ a—d, b—e,

a—d

o ol

] ) o, e—b, f—o
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= a+d, b+te c+f a—d, b—e, c—f
c+f, a+d, b+e|X|f—ec, a—d, b—s

b+4e, c+f, atd e—b, f—c, a—d
The result may also be obtained directly from § 151 in Mnir’s

Determinants.

Question 426.

(K. J. Saniana, M.A) :—BC is a fixed chord of a given circle
and A any point on the arc BAC; P, P’ are isogonally conjugate
with regard to the triangle ABC. If the ‘powers of P and P* with
respect to the circle are proportional to their respective distances
from BC, prove that the loci of P and P’ are circles, and that AP : AP”
is consban$ for all positions of A. (Suggested by Q. 393).

Solution by V. V. Satyanarayana.
Let PD, P'D" be L" to BC. Let BP,CP’ meet in O and out the
circle in K,K’. Join the necessary lines as in the figure.
Then BP. PK =power of P with respect to the circumcircle,
andis WEOBLPIR— . of Pl . i, - i
Now, it 18 given that
BB RIPKE
BDE GBS
But PD _ BPsinZOBD _ BP.OC_ BP OK
PD" CPsinZ0CD’ CP.OB CP OK'

19
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BP.PK _ BP OK
BESOK:

Thus PR OK"

. KK’ and PP’ are parallel.

Now since KK' is antiparallel to BC (since BK'KC is cyolic), it
follows that PP’ also is antiparallel to BC.

Hence BPP'C is cyclic ; and as P and P’ are isogonal conjugates,
it is easy to see that the circle BPP'C passes through the incentre
I (Q. 393, solved in J. I. M. S., Feb. 1913). It is evident from this
solution that the ratio AP : AP’ is unity.

Addational solution by N. Sankara Adyar, M.A.

Question 428.
(S. P. SiNcaravpLU MuppLiag, B.A.) :—Obtain the sextic whose

2m 4w, 8w 107 167 ‘ 2077
roots are 2 co~-71 2(:0571,2(,(» 57 , 2caS=—— 51 QGOle and 2cos” o1 -

Solution by T. P. Trivedi M. d., L. L. B. and B. R. Seshu Aiyar.
The roots of y**—1=0, are given by cos (\ +zsm\<) where »

has all the values from O, 1, 2...to 20.

Agaiu, the roots of

9
y?"—1=0 are given by cosiilr—f—i sinzg‘"

, where k=0, 1,2...to 6.

Thus the roots of

yr—1 20

y —1 21°
where ! bas all values from 1 up to 20 excluding those which are multi-
ples of three. These may be divided into seven pairs of reciprocal

=0, 7. of y*+4y"41=0 are given by bOs——f-ts'n

roots.

)
Put y-{—%::; then z2=2 cos%}zzj) and the equation Y4774 1=0,

i.e., y7+1+i7:0 becomes 2"—7z°4142*—7z +1=0.

Rejecting the factor z+1=0 corresponding to the root 2 coslffr,
we have the equation required
28— 2 — 620 62" 82°—8z4-1 =0,
The roots can also be written in the form
2m 4 8w 16m 327 64w
LIRS T2 AL S

ot

2 cos




147

Question 430.
(M. BHiMASENA Rao) :—If P is the centre of a conic touching the
sides of a triangle ABC at points where the normals are councurrent,
“ shew that
(1) the line joining P to its isogonal conjugate passes through
the median point of ABC,
(2) the perpendicalar from P on the polar of P with respect to
ABC passes throngh the circumeentre of ABC,
(3) cotPAB+cotPBC+cotPCA = cotPAC+4cotPCB+cotPBA .
Hence if a ‘concentric conic be inscribed in the pedal triangle
of P, the normals at the points of contact are also concurrent.

Solution by R. Tata, M.A.

Let DEF be the points of contact of the conic with the sides,
dividing them into parts (a,a,)(b;b,)(¢e,), respectively, it is readily seea
that the equnation to the conic is

Vmﬁ S sz? +/bacy =0.
The coordinates of the centre P of this conic are proportional to
be(byao+-aby), ca(byds+b1a,), ab(ab; + boyas,)
4,0,
Eon
since a;4a,=a, b;+b,=b, ¢c;+c,=c¢, and a,b,c, =a.b,c,.

The line joining P to its isogonal conjugate will pass through the

median point of ABC, if

or By s

1 1
e d

T

b 2 Tl 0

15 ‘eh & o

c Cy aby
S s iy iz e, 17bs a
e. if =( 322 Foff S 193 AL Y
i a\b; o +b(c2 al)+c<ag bx) 9

SCIeNE iy b, _ b, Ca as
ab, bT?e Eg“a‘% [;1 GTx
z.e. if € 616500, +a a,896b,+b bibouc, =c ¢,c,ab,+a ayabe; +-b bybacay.
z.a if ¢ 616y (bay—ab,) +b bib, (aco—cay)+a aa, (eby—bc,) =0
Z.e. if ¢ 0165 (by@a—b1) +b bib, (ay0o—wicy) +a aya, (b, —e,b,) =0
t.e. if c(ey—¢a) +b(by—by)+a(a;—a,) =0
z.e. if O e %5:022+b2‘2+a22)
which is true, since the perpendiculars to the sides of the triangle at
D,E,F are concurrent.

z.e. if
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(2) Again the trilinear polar of P is
a ,8 Yo

=0.
bl a, a,b,
The join of P and circamcentre is

a b, cos A f

yes a, cos B [=0.

ab,

Yy cosCi

£

These will represent two perpendicular lines if

ab
Zcos c—cos B4 2 1
by Cy 3Cq

cos A— by

@y a,b,

—cos A [b————‘ BosiB a5 coSiA A-{—ﬂ (a,b, cos A—b, cos C)]

Cy

—cos B [ﬁ @, cos C — ’blcos B) = (b1 cos B—a, cos A)]

—cos C[ a-ﬂ cos A—b, cos C)4— (a.z cos C—q’JcosB) =0
by ‘ 5
This when suuphﬁed reduces to

%__ b1 (o0s C A cos B %__%1) (cos B-+c
(771 az)( 0s C+cos A cos B) + (ﬂl Cﬂ) (cos B+cos C cos A)

+ (EQ—C_‘) (cos A+4cos Beos C)=0.
Gl b
Since cos A+-cos B cos C=sin B sin C, etc., this is equivalent to
e h)+m=q
bl ag
which has been established in (l)
(3) Denoting PBC, PBA by 6,, 8, ; PCA, PCB by 6,0, ;

; .; PAB,
PAC by 8,8; we have
sin .(B—-el): _1} oR sin (B— N ) a
sin 6'; a ~ ein O Y
cosB—sin B cot@,:cl: ete.

cot B, +cot B,4-cot B, =cot A+cot B+4cot C

s U R G
c,8in B a,sin C b, sin A’
and cot 8, +cot B, +cot By =cot A+cot B4-cot C

Cy Ay by

" &, sin B b sin C_e; sin A’
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».  cot B;+4cot B8,+cot B, —(cot 9,’+cot. 92+ cot 6, )
1 b f_’ & 23 b):O, from (L).

smA i o smB c2 sm (J b1

Question 432.

(A. C. L. WiikinsoN, MA., F.R.A.S.)) :—The rectangular hyper-

bolas 2’ —y*—2 az 42 By =4c (ce—a.,(?)%, and @y =c* are so related that
triangles can be inscribed in the first that are circamscribzd to the
second. Show that the locus of the centres of circles circamscribing
these triangles is the conic

(Ba+ ay)’ =4c*(zy+a B —c?).
Solution by Appuw Kuttan Erady.

Let 2®+y°+2gz42fy+k*=0 be the circamcircle of any triangle in-
scribed in the first and circumscribed to the second. Then for all values
of \, the conics

2xy —2¢°=0
and 2 (N+D)+° (N—1)+22 (\g—a)—2y (\f+4)
+ O\ —de Ve—a ) =0,
are so related that triangles can be found which are circamsecribed to the
first and inscribed in the second. :

The condition for this is (in-the usnal invariant notation) 82 =4A0"
where A=2¢% B =—(\k>—4c Ve —afB) and =2 (Ng—a) (Nf+2)
—2¢* (\2—=1).

Hence (Nk*—4c /o2 —a ) _QB)z 16¢° { (\g—a.) (\f—f—,@)—og (N—1) }
for all values of \.

k*=16¢* (fg—c®), and —8ck® 1/ (*—afB) = 160 (Bg— af).
Ehmmatmg k between these two equations, we have
4 (fg—") (P—aB)=(Bg—af)’
or (Bg+af)*=4c (fg+ af—c%).
Hence the locus of the centre of the circle is
(Bz+ay)*=4c* (zy+af —c?).

Question 433.
(J. C. SwAMINARAYAN, MLA.) :—If

f@@y...wy) = pu(@ + agvy+- age, . -+a,z,)?
+P( @+ bss+ ... b,,,)*
+Ps( z3+-c, - Cnxn) +... +Pua"nﬂn
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shew that - :
of Sy G i
Ox® ' Ow0z, Ox,0,° A " Dwom i
aﬁ',f agf @2 f . o f
Ow,0m, 0% | 00w Sl " 92,0z,
Seer GO O oY
9z,0w;, 0%,0v, Ox,0%, il SO

iz equal to the continued product of pypaps...p,,.

Solution (1) by BE. R. Seshu Adiyar, (2) by T. P. Trivedi M.A., L.L.B.,
R. Tata M.A., V. D. Gokhale M. A. and
N. Sankara Aiyar, M.A.
*[The resnlt is incorrect ; the product shounld be 2" p; ps...p,.]
(1) The given determinant is the Hessian of f (2, @s...2,).
Let Xj =+ a4 ...... Gy

Xo=2y+4 by~ ...... b,

Xn=wn
Since the Hessian is a covariant, we have for the above trans-

formation

S e e (e
oz, day o, Ry 35123{2’ X,
e ) K )

where  =the modulus of transformation and F denotes p,X;*+p,X .24
"'P')I.Xft?' ?

Also .= 1k ay, a,

1 DA

0 (6] 1 c;

=il
0 0 0 0 1
Hence the given determinant is equal to

oF OF oF ‘ 2p, 0 0 0
8 s s
DU, =) e o :
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=2" pypa . cooeniBp

(2) We have 86_22=2pl = ng =2pya,; ete.

SS'T =2p,a*y+2p, : 55;: =2p1aaag+2p:0_ .

8] =2p1a5’+ 2pabs+2ps 5

89«'88‘; =215+ 2pabsbi+2pace; obe. |\
50%4 5

Thus the determinant is equal to

Po Prly ‘ Py
‘ Prlsy P13 Py PiGals Py beyeen Pr0aly+Paby
‘. Py, P1@.Gg+ Dby Pt pabi+ps,

|
1
|
|
1
|
|
|

Py Pr0p@atpobuy  Prauastpab,cst P P |

Multiply the first column by a, and subtract it from the 2nd,
multiply it by a; and subtract from the 3rd, ete. The determinant now
reduces to

P Pabs B o Paby |
P'zbeu Pebs + Pay - oo Pabibytpicy \’

2"p, 50 ;
B0 |
P‘.‘bn A0 L) o Pu

Repeating the procebs with the b’s, ¢’s, &e., the determinant is easily

seen to be equal to 2"pps.ieeee.e Py

Question 439.

(S. P. SixcaraveLU Mupauiar) :—The circle of curvature at P to the
Folium of Descartes passes throngh the node and cats the curve again
at Q. Shew that the envelope of PQ is a rectangular hyperbola. Also,
find the locus of the mteraecuon of the tangents at P and Q to the
Folium.
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Solution by G. Ramachandran and H. V. Venkataramiengar, B.4.

Let the equation of the Folium be 2°+-y®=aay.
The coordinates of any point on the curve are
at at?
The equation of any circle through the node is
2*+ y*+ 292+ 2fy =0.
The points of intersection of this circle with the cubic are given by
the equation

2ft* - t°(a+2g) + t(2f + @) + 29 =0.

For the circle of curvature at P, these points are P and Q and
3t243tt, =coefft. of *=0.

o t+t,=0.
Hence, Q is the point—#, and the equation of the chord PQ
thz—ta+y =0,

which touches the rectangular hyperbola 4ay=a’
Again, the equation of the tangent at P is

t x(2—t%) —y(1—28) = al?,... Seachr (1B)
and that of the tangent at Q is
—t 2(248)—y(1+26°) =at® ... e ()
The required locus is obtained by eliminating ¢ between these

equations.
Adding (1) and (2)
@ t4y+at=0.
Substituting in equation (1)

2t o4 2yt2=0. ... ?=—zfy.
Hence the locus of the intersection of the tangents is
o'y =avy,

which is the Folinm itself.

Question 440.
(P. V. SpsA0 ArvaRr) :—Show that

5 sinf”

@ | TR eneT L
: sinh gz D I e
o o] ~igd

2 cash Prsin re do= f—- s
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Solutions by K. Appukuttan Brady, M.A,, and V. K. Aravamudan, B.A.

) © : ;
1) &iﬂh—&?—: cos 1@ dv = (’)Pi:c:ln: A Mm, dao
% sinh ga L%, —a% 2
@ . .
e(?+zr)a:_e—(p+zr)z
=1 : - dx
3 el o
* o—ine_ ,—(
—ir)e__ —(p—ir)z
+3 g - £ S
o G e
X q(p+2r)_ —m(p+2r)
o z —_——
=2_§" e ;i —e 1 dz
o AR G
O (P=2t)" —‘n’(p—ir)z
s DNEE=Cl g A S gl
+-2——g- e q —e 7 dz
o T2 % o — T3
T, m(p—4ir | T m(p—ir)
=—tan—L T 4 _tan—=; .
29 4q 2q
[Williamson, Integral Caloulus p. 142.]
P . P
-1 [hooT——i = Bln‘p—q
=~ A = s N A et R
= CUSﬂ(}J_;’_ = )uosﬂ(-p') £r)f5 25 c05P_17+ coshZT
2q 2q
@ w . .
(2) PQ—‘.)ShTP%:sinn:.d‘z; = epa,+e—pz. ezra,__e-—-m—a,dm-
o sinhga = AP, 27
® ] . ;
] 8(p+1r)a.:_e—(p+z'r)z
= = = dx
o e — e
. B
1 e(_p-—“')x_e-—(p—z"r).z:
et 7= = dz
° e — e

20
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e, w(p+tir) = mw(p—1r) :
o UL SR AV R LS &
o an 2 4iqtan o as in (1)
T SeroT
o hard L
a0 ) 2 e
2q 2q q

Question 443.

(K. ArpukurraN Erapy, M.A.) :—Points are taken on the principal
normals to a curve in space at distances from the curve equal to ¢ times
the circular curvature. Prove that

2) =02 +5{m5(8)}
=
where s refela to the locus of the poxnta in question.

Solution by I. . Seshu Aiyar.
With the usnal notation the equations of the principal normal are

/3 = ", 1, D
where the distance of (XYZ) from the foot of the normal is ¢ times the
circular carvature. Thus, we have

X—x-{-cl /P, &o.
s dx dL ¢ dly_cly dp
] ds( bt p' ds prds
__l,+ 3 °Z dp Frenet’s Formulae.
P P B P
dY d7Z

Similarly for —

Squaring and addmg we get, since (dX)*+(dY)* -*-(a!A)2 (ds)?,
s _ ey dly cl.dp
) Z‘l : ( X p«f p ds
=(1—— Tt (ol
<’ P2> +pffrﬂ+ P‘( ds

if we remember that % +m?+n%=1, &c., and Ll,+mm,+nm,=0, &c.,

Question 444.

(J. C. Swauinagavay, M.A.) :—On the base BC of a triangle ABC
equilateral triangles BPC and BQC are described. Shew that the
bisectors of the angle PAQ are parallel to the axes of the maximum in-
cribed ellipse of the triangle ABC.
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Solution by V. K. Aravamudhan B. A., and G. Ramachandran.

"'he maximum inscribed ellipse is the momental ellipse of the A at
the ¢.g. and its axes are the priociples axes. If these be taken as
coordinate axes and it A,B,C be (24), (@), (@y,), the coordinates
of the mid-points of the sides where the ellipse touches them are

Tty Yot Y
( 22 ! 2J),etc.

Now by the principles of dynamics,

z w"d, or Xz, =0, Xy;,=0;

Sl sz"' X, 1/2';'.% =0, or Swyy, =

Now, agamn, the coordinates of P,Q are given by
_ e = (a—yy) Yot Y, £/3(@—T)
= 5 e/ e L V ,2,,,2,,“,.

To prove the question, it is enough to show that AP and AQ are
equally inclined to the @ axis.
The condition for this is

Yot s— 2 —V/3(@—2) _ Yot y—20+V3(@—2) ¢
Ty By — 2@, 4-/3 (Yo —3) Byt @y — 22—/ 3(Y2—Ys)
By using Xx;=0 and 2y, =0, this reduces to
3,y + (22— ) (Ya—Ys) =0,
or 2y, + (@a+35) (Ya+¥a)+ @ —2) (Ha—y) =0,
or Y2y, =0, which is true.

Additional solution by N. P. Pandya.

Question 445.

(D. D. Kapapia, M.A., B.Sc.) :—The equation of a family of curves
is f(z,4,a)=0, where a is the variable parameter. It the envelope of
this family of curves has a contact of the second order with the corve,
prove that at the point of contact

of OF Ol Ok
Oa’ 9yoa Oy Oada

=0.

Solution by K. J. Sanjana, M.A. and K. Appu Kuttan Erady, M.A.

If the curves A and B, B and C, of the family cut at P, Q respectively
P and Q lie nltimately on the envelope. If the envelope has contact of
the second order with B, it has ultimately a third point common with
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B; but this must be a point of a contignous curve, as it is on the enve-
lope. Hence A and B, or B, and C must toucli. Bat points of contiguous
intersection lie on the curves'

1=0. X

Hence, applying the condition of tangency, we get
&f @ (8
a% &)

o~ d O

9y 9y \du

which is the given condition.

As ultimately a is infinitesimal and the curves A and B, or Band

—(0)

touch, we shall farther have g_gj;:O. (Wolstenhol me, Q. 1813 2ad Ed.)
>

Additional solution by H. V. Venkataramiengar.

Question 446.

(A.C. L. WiLkIxsox, M.A,, F.R.A.S.):—In Mr. Swaminarayan’s Note
on, “ A generalised form of Claraint’s Equation ™ J. I. M. 8. Vol. IV,
No. 6, discuss the cases where b=1, and a+b=1. Illustrate by solving
the equation (y—=ep)* =4 py.

Solution by N. Sankara Aiyar, M.4. and E. B. Seshu Adyar.
Case (i): b=1. Here
y=m ap+k y“ p.
Interchanging the dependent and independent variables, we get

dzx
—_ L ::k n’ h =
qy m Y where g dy

ie Bl e 1
JEER Sy
» n_m-]
( =)=t
Y
. k a_an
t.e. —m Sicto
’y ﬂa—-“in
. 13
z.e. w=cy” 4——y".
a—m

Case (ii): a+b=1. The equation is
1y =map+ky® p=*
Let log y=2/m, so that p/y=g/m. Then, dividing out by y, we have
L=maply+k(p[y)' ™
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1=agq +k(g/m)"=5,
Whlch can be solved by the known methods.
Tlustration : (y—pw)*=4 py. Here

11
y—pr= :4:2 p‘-’f-’.
¥= P»’cﬂp'
_ Thu comes under Case (ii), where m——l a=b=74; the transformed
equation is
a4
: I =uq==20g
Solving for ¢

Hence z:‘g——Zw j:% (1—a)2+log c.

2 a
7.€. 10gy=%—-2mi§ Q—a)=

Quéstion 447 -

(G- RamacHANDRAN) :—Constract a triangle ABC having given the
restangle contained by AB and AC, the median from A to BC, and the
sum or difference of the angles ABC, ACB.

Solution by N. P.. Pandya.

(1) Let m be the given median. Then
m?=b*4c¢>4 2bc cos A.
This determines the A, if B4+C is given.
(2) Again 4m®={b+c)*—2bc(l—cos A).
4m*~+2bc(1—cos A)=(b+c)®
Also 4m?=(b—c)*+2bc(1 +cos A).
5 4m2®—2bc(1 +cos A)=(b—c).
4m® 4 2bc(l—cos A) _ (b-{~c)2
4m?—2bc(1+4cos A) ~ (b—c)?
_tan® 3 (B+C)
tan® 3 (B—C)
(1+0987A)w(71+cos B— C)

(1—cos A)(1—cos B—0) C)
This gives (B4 C) when (B—C) is known, and the A is determined,
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Question 448

(V. V. SarvaNaRAYANA) :—In any triangle ABC, circles BQRC’
CRPA, APQB are described shew that QC.RA.PB =QA.RB.PC.

Also, if (z,2), (4,5") (5,2) are the distances of (Q,R), (R,P), (P,Q)
fiom BC, CA, AB respectively, prove that xyz —a'y/'z".

Solution by (1) K. J. Sanjana, T. P. Trivedi and N. P. Pandya ;

(2) by G. Ramachandran.

(1) Because AP, BQ, CR are the radical axes of the @s taken two
and two, they meet at a point O ; draw OL, OM, ON. perp. to BC, CA,
AB.

Also draw QB’, RC' perp. to BC: RC”, PA’ to CA, PA”, QB” to
AB; and let d,, d., d, be the diameters of the circles in order.

By Euclid, VI-C, QC.BQ=QB".d,=ad,; so also
[RC.RB=#d,. RC.RA =yd,, PC.PA=y'd,, PAPB=2zd,, QA.QB=2"d,.

Multiplying alternate equations and cancelling, we get

SCH B Sonye
RBPC-QA ™~ a'yz"
e QB OT y_OM =z _ON,

Again D= = goalsp i =re == ——

Z QB” ON’ @ OL'y- OM
Hence Iﬂb‘yf =1; and QC'RA.PB=RB.PC.QA.

For T

(2) The triangles BPO and AQO are similar, since PBO=QAP
being angles in the same segment, and AOB is common to both the
triangles.

?_B.z.A;Q e 123—9_0
BO A0’ QA AO
QC_CO .4 AR_A0
BR™ BO’ CP CO-
i PB QC'RA=QA-RB-PC.
For the second part, vzd- : Casey’s Sequel to Euclid, Book, VI., Prop.

Similarly. and

12, page 76.
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QUESTIONS FOR SOLUTION.
468. (N. Sankara Arvag, M A.):—Solve the equation

E dJ+?LL,J_
R

469. (S. Ramanusan) :—The number {1-+|2} is a perfect square
for the values 4, 5, 7 of n. Find other values.

=

470. (S. KrisENAswAuI AIYANGAR) :—If p, o be the radii of cur-
vature at corresponding points of a curve and its evolute, prove that

= {8y —ys(L+ %) } [yo"

471. (K. J. Saxiana, M.A):—Prove that
1a® 132! 135 a° &+2'\/(1— @)

‘ Foni T
and find the sum of
: 24 a® | 246 o
SEtare o T
™ w®
2 $ A I cos L cos2z
472. (SELECTED) :—Evaluate mdb; GFayds.
(o] o

473. (A. C. L. WiukinsoxN, MLA,, F.R.A.S.) :(—PQRS is a spherical
quadrilateral such that ‘PR and QS are quadrants. If A, B, C are the
intersections of (PR,QS), (PS,QR) and (PQ,RS) respectively ; prove
that

(i) cosPA. cosPB =cosQA. cosQB,

(ii) cosPA. cosPC +cosQA. cosQC =cosAC.

474. (N.P. Panpra):—P is a point en a parabolic mirror (vertex
A, focus S). A ray proceeds from a point L on the axisof the parabola,
is reflected at P, and meets the axis again at M. If N is the geometrica,
focus of @ small pencil from L after reflection at P, prove that
SL. MN = A 8% 1+sec’a) tan’a,
where 2 a is the angle between SP and the axis,
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475. (K. Arpukurray ERaDpY, M.A.) :—The space bounded by the
coordinate planes and the surface (z/a)”+ (y/b)"+ (2/c)" =1 is filled with
an elastic fluid without weight. Prove that the pressures on the curved
surface reduce to a single resultaut whose line of action is
a(z—Na) =b(y —N\b) =c(z—\¢)
where N\ =2[T(2/2)]*/3T(1/r).I(3/n).

476. (Zero):—Solve the difference equations
d*x dx;, p
ﬁ"?‘b dAt"-i— o(@ g w1 —22;) =0,
where [k=1, 2,.........n—1], on the supposition that z,=o0=u,,.

477. (V. V. Sarvanaravaxa):—ABC is a triangle of given
perimeter. If the vertex A is fixed and BC is of constant length, find
the locus of B when C describes (1) a straight line, (2) a conic.

478. (M. T. NaraNieNGAR) :—If S, H be the foci and O the centre
of the maximum inscribed ellipse of a triangle ABC, prove that
AS-BS'.CS4+AH'BH-CH=2 AO-BO-CO.

479. (S. P. SiNGARAVELU MoDELIAR) :—Shew that the equation

(a® —10z%y>+ 5ay*) cos 5 a4 (y°*—10y 2?4+ 5y2*) sin Sa
—Sar*4+ 202" —164°=0,

represents the sides of a regular pentagon, and find a similar equation
for the sides of a regular heptagon.

480. (V. Ramaswayi Aivar):—If a straight line cut a three-cusped
hypocycloid at P, Q, R, S, show that the extremities of the tangent-
chords touching the tricusp at P,Q,R and S lie ona rectangular

hyperbola.
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