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The following gentlemen have been elected members of the Society :

(1) The Hon’ble Mr. Justice J. J. Heaton, I.C.S.—Judge of
H. M’s High Court, Bombay ; and Vice-Chancellor,
University of Bombay :

(2) Mr. C. S. Anantaram Aiyar, B.A., Acting Under Secretary
to Government, Newplace, Mylapore, Madras:

(3) Mr. Vishnu Dattatraya Gokhale, M.A., Teacher, Nutan
Marathi Vidyalaya, 11 Kasba Peth, Poona City (at con-
cessional rate) :

(4) Mr. Solomon B. Reuben, M.A., Formerly : Fellow, Deccan
College,—Law-Student, 8 Y.M.C.A. Quarters, Girgaum,
Bombay (at concessional rate) :

(5) Mr. Shrimukhrao Laxmilal Mehta, B.A., Fellow, Gujarat
College,—1304, Raipoor Haziroo Street, Ahmedabad (at
concessional rate) :

(6) The Rev. T. Noronha, Ph.D., D.D., S.J., Professor of Mathe-
matics, St. Aloysins’ College, Mangalore.

2. According to Art. VIII (d) of our Constitution,: the Committee
have reappointed Messrs. M. T. Naraniengar, M.A., and D.D. Kapadia,
M.A., B. Sc., as Hon. Joint Secretaries for the current year.

3. The following alterations in Art. VIII of our Constitution
have been approved of by the General Body, and consequently the
amendments will come into operation from the current year :—

Art. VIIT—line 1, read “ every two years” for ¢ every year” ;

VIII (b)—lice 2, read “fwo every two years” for “two each
year”

VIII (¢)—line 10, read * in the year vn which the nominations
are due” for in each year.”
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4. The Aundited Balance sheet of accounts for the last year, as
well as thelBudget forthe current year are given below according to

Art. X of our Constitution.
55,

The following books have presented to the Library—

Blementary Algebra—by Messrs. W. M. Baker and A. oy
Bourne, 9th Edition, G. Bell & Sons, London 1912. 4s/6d.

Madras University Calendar.

nation Papers, Volume for 1912.

Poona,
31st March 1913. §

Balance

Receipts.
BS. A
Subsecription Arrears 636 0
Do. Current 1,211 3
Do. to Journal ... 156 5
Miscellaneous 112
Total ... 2,005 4

MADRAS, )
11th February 1913. J

,0 1913, Vols. I & II, and Bxami-

D. D. KarADIA,
Hony. Joint Secretary.

Sheet for 1912,
Eaopenditure,

P.

(] \ Debit Balance for 1911

8 ‘ Books and Journals

0 | Library

0 ) Journal Printing ...
| Ordinary Working Ex-

penditure .

i Balance to 1913

8 E Total ...

C. PoLLARD,
Hon.

RE: VAP
69 111
681 14 2
265 5 0
506 5 6
24267 16
240 3 7
2,005 4 8
M.A.,

Treaswrer,

T have examined the Treasurer’s books and vounchers, and the
monthly stutements and vouchers of the Secretary, Assistant Secretary

and Assisvant Librarian and declare the above statement as correct.

MADRAS, } S. NRAYANA ATvaR, MLA., E.S.S
14th February 1913. Auwuditor.
Budget for 1913.

Income. ) Eopenditure.

RELC VAT RE.ATPS

Balance in band 218 9 10 | Library Boeoks 450 0 O
Subseription Arrears 500 O O | Periodicals 650 0 O
Do. Current . 1,500 0 0 Library Expenses... vien 28OS0

Do. Journal 2050880 Jeurnal Printing S DO OSSO

Miscellaneous AR Ordinary Working Ex-

penditure s =20 0SB OSE0)

Balance to 1914 250 O O

Motal iy 23320080 Total ... 2,340 0 O
MAURAS, 0 C. Porrarp, M.A., &

[1th February 1913. g Hon. Treasurer.
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On Tetrahedral Co-ordinates.

By A. C. L. Wilkinson, M.A., F.R.AS.

It a,B,y are the aveal coordinates of a point, a+ /S +y=1.

Also (a,/3,y) is the centroid of masses a,B,y placed at A,B,C the
vertices of the triangle of reference.

If, therefore, referred to any rectangular axes the coordinates of
the vertices of the triangle of veference are (2,1), (#x¥s), (%:,7s), and
(2,1/) ave the coordinates of (a,/53,y), we have

¢E=Qﬂf1+3ma+)’ma
Y :ay1+3.'/t+)'3/ﬂ}
which are the formulae of transition from cartesian to areal coordinates.

These simple relations enable ns to solve readily problems in areal
coordinates.

§. 1. A similar method applies to tetrahedral coordinates.

Writing—

@ = ar, + LBz, va,+ 0,
Yy =ay,+ BYs+Yys+ 0y,
L= a:1+B:2+Y:::+a::
l=a+pB+y+0
we find for the sqnarvs of the distance between (a,f,y,d) (a',8,y",0")
Yw—2)=E[(a—a )z +(B—B")u+ (y—y )+ (3 —0")w,]®
and reducing by means of (a —a')*=—%(a —a’)(B—/") ithis becomes
—¥ABNa—a)(B=LD) .. e (IR
§. 2. The anyle between two straight lines :
Any straight line can bs written
o e R Y Y O O ’
S e e T
where o is the distance betwaen (a,f,y,0) and (a’f’y'd") and also
L+ m~4n+p=0.
The point at infinity on this straight line has coordinates (I,m,,p).

Thus the direction cosines of the straight line referred to the rect-
angular axes ave (kXlz, kZlyy, kXlz) where the sum of the sqnares is to
be unity-

Thuas for the angle batween two straight lines (4,m,n,p)(L',m/n',p")

cos O =kk'E(la,+maytr, 4+ pa) (Vay+m'e, 0w+ pay) ;
replace U/ by——%(l’nz-{-Z’n—}—l’p-}—lm'+ln’+Q/), and we find
. cosB =Kk Z[(Iw’ +Vm)E { e+ 5(z 4.’ } )]
=—3kKE(ln +Um)AB?;
and by putting U, Py equal to Lm,n,p, we find
—EXlm AB*=1, 2
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Thus
cosB = _1_12(17’2' :'-_ZTL)AB'f o 1)
V—ZABIm +/ —ZABTm'
Baample 1. —The straight lines AB, AC of the fundamental tetra-
hedron are given by

, S (ol e )
and cosBA.C:_}.‘l?(ABj:IgAiJC—BCQ) and it is easy to see that the

formula (1) gives that angle corresponding to the directions determined
by L: m:n:pand I': m': 2 : p’ where the square roots in the denomina-~
* tor are to be taken positively.
FBazample 2—The condition of perpendicularity of AB, CD is seen
to be AC*+BD?*=AD*+4BC*
Baample 3.—The condition that the line joining the middle points of
AD, BC should be perpendicular to AD is BD*4 CD2—AB*—AC2=0;
and if ib is also perpendicular to BC, we have BD®—-CD*—AC*4+AB*=0
whence we obtain BD=AC and CD =AB; a result easily seen geome-
trically.
§. 8. The shortest distance between two straight lines.
Consider the straight line
aeal R By Vi O Ol r
l " n P _'\/:ﬁ%
If (2',y,2") is the point («’.4',y",0") by multiplying these ratios by
2,0y, 24, etc., and adding we obtain
z—a' e ol == r:
o fmautnz,tpr, 07 V—ZABIm
Thus as in § 2 the direction cosines of the straight line ave
ﬁt@%; "%4‘&1’ &e., where D =+/—EImAB>
Now the shortest distance between two straight lines is given by

e, S ,
o' —a’, y —y’, =" |

|
} \) I’Ly v, =p sin e
l k” }L" V’, |
Consider
QR SO | @y, @y @ 2y @y 21 l
u'uv ”7 Y”v 8”1 ‘ | f/h yﬂ, yrn ?/4 = [L’” y” Z“ 1 { r
L, mi n. p, | | & 2,%, 54 | N p2v0 LSy
i ety s AR et e NG ‘LL, 7' 0
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Therefore the shortest distance between two straight linés in
tetrakedral coordinates is given by

« 8y

: a 2 5

psin@=6V | T )7’1 SP ~(D.D’),
U m' 7 p

where @ is the angle between the straight lines determined in § 2, and V'
is the volume of the tetrahedron of reference.

TFor the shortest distance between AB and CD we get immediately

p sin Gz—ltvf
AB-CD’

a well known result.

§ 4.  The angle between two planes.

Take the equations of the planes BCD,...of the tetrahedron of
reference, as Liz+myy+mnz+p, =0, ete.

é A. BCD(ZI%+7'11./+”1"+P’)’ etc.

Any two planes La.+\I,8+Ny+Pa_0, I/a+MB+Ny+P0o=0,
when referred to the rectangular axes become
¥z { ABCD.L+ ACAD M+ AABD.NL,+AABC.PL } =constant,
and a similar equation in I/, M’, N, P".

Thns

Hence

vs 6 — EABODLL +PABCD.AACD.(LM' 4 L/M) cos 12

Denominator

1)

where cos 1§=lllg+mlmg+nlnﬂ:cosine of angle between the faces
BCD and CAD of the fundamental tetrahedron, and the denominator is
the square root of the product of the two expressions got by writing
L'M'N'P’ equal lespectwely to LMNP and conversely.

To determine cos 12 we may proceed as follows :

Draw AX. BY perpendiculars on CD. The coordinates of X are
easily seen to be

= y = g

0 0 AD*fFCD*—AC* AC4CD*—AD®

and so for Y.

The equations of AX, BY are

o=l LB Yo )
—2CD* 0 AD*+CI -.-CD- D*'—AC® AC'+CD'—AD”
a Bty ins A G)

aud 0 —20D° BD+ oDﬂ—BC"BCZ+oD2:W'
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By § 2 we can write down the cosinelof the angle between these
straight lines, and after considerable reductions, we find
4AA CD.JABCD. lcos 12 =2AC.BD*+24D%2BC*—24AB%.CD?
—(AC*+ AD*—CD?)(EC*+-BD*—CD?») ... (2)
We may verify that this and similar expressions give the cosines of
the dihedral angles of the tetrahedron. For, by projections of three
faces on the fourth, we have equations like

ACBD cos 13+AABC cos 34 AACD cos 22=AABD ... (3)

and these equations will be found, on substitution for the cosines, to be
identically satisfied. Otherwise, as in § 2, Ex. 1, the expression for cos12
is actually the cosine of the angle between XA and YB; that is, the
cosine of the dinedral angle between the planes ACD and BCD of the
tetrahedron.

Substituting in (1), we have

e SABCDPLL — & B(LM + L/M)f(CD) o
[EABCD’L’— 1SLMACD)]* | EABCDAL* — 1L/ Mf(CD)]*
S f(CD)=2ACBD*-+ 2AD*BC*— 2ABCD*—

(AC*+ AD*—CD*)(BC*+BD*—CD?).

The adoption of the sign requires justification. Since parallel
planes are given by L+ K, M+K, N+ K, P+K, we have only to verify
that the numerator is unaltered by increasing each of (LMNP) by K.
Tt this is done it will be found that the coefficient of M’ is zero in virtue
of the relation (3). Or, by taking the origin of the rectangular system
within the tetrahedron, we may easily see that in (1) the expression
Lla+ mymo+nn, stands for the cosine of the angle between the perpendi-
culars from the origin on the planes BCD, ACD and is the sapplement

A .

of the angle defined as cos 12 in (2).

§. 5. The perpendicular distance of a point from a plane.

With the notation of § 4, the perpendicular from (a',ﬂ',y',&') on
La+MB+Ny+P6=0 is given by

Yol { ABCDLL+++ }  3V(La'-+MB 4Ny +P'6)

VE(ABCDLL+ + 4+ )2 { ZABCD*L*—1YLMf(CD) } G
§. 6. These results may also be established from statical consider-
ations. Itis at once obvious, by resolving the conples into forces along
the sides of the fetraliedron, that four conples in the faces of the tetra-
hedron represented in magnitude and direction by the areas of the faces
BCD, DCA, ACB, ABD are in equilibrinm, and the axes of these conples
are the inward drawn normals to the faces,
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* Take (hmyny) (Lamans) (Lmgny) (Lmgn,) as the direction cosines of
these inward normals.

A system of couples represented in magnitude and direction by
LABCD, MADCA, NAABD, PAACB, acting in the four faces of the
tetrahedron, have as their resultant a.conple whose axis is

L.,ABCD +M.I,ADCA +N.LAABD +P.[,AACB,
Thus the plane of the resultant couple is
La+4MA+Ny+Po=0, or any parallel plane.
Consider two sets of couples (\,w,2,0) (\,)',2,0") whose axes are

(lymmy), ete.  If R,R” are the magnitudes of the 'resultants and (lmn)
(U'm'n") their axes, we have

RIC—ENG IR DN
Rm=XN\m;, Rim'=XN\m,,
Rn =X\n, R'n’ =XN\'n,
whence R2=YN\*—2Y\p cos 1\2-, RE=EN"—EN'W’ cos f'.’,,
RR cos®=ENN —E(Mp/+ N p) cos 12,
there being no difficnlty about the signs.
Replacing \,\'...by LABCD, L/ABCD...we obtain the result of § 4 :
§. 7. The following statical theorems are well known :
If R is the resultant of a system of forces P,P,......
and R’ is the resultant of another system P/ ,P,,......, then
R:=XP,2+25P,P, cos P,P,
RR’ cos RR' =Y RIPcos P B

RR/.7. sin RR'=%P,.P/.p sin P, P/,
where 7, p are the shortest distances between the forces occurring in
the third expression. They may be established simply as follows .

Take (Lymyy) (Lsymgmg) as direction cosines of P, Py
(Lm,n) (U';m/ ") as direction cosines of R,R
Then Rl =%P,, , Rm =¥P,m, , Re=YEmn,

R =SP./I, R =3P /m, Rn'=5Pn/
whence the first two resalts follow at once.
For the third result, it P,, Py actiat (a,bne,) (a5504,c5"),then the six
components of P, are
P,1,, P,m,, P, P, (b, —1:C,), P,(le,—n,a,), P,.(m,.u,..—-l,,b,.)
Consider now two forces only P, P, and denote their six components
by X3,Y1,%;,Ln,M;,N; and X,...N,; we have
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E(Xl S5 Xz) (Ly+ L) = EX L4 Xo1y)
= P, P,E[1(12:hy— 1ms65) +Lo(,6, —11:5,) |
=P,P, | a,—ay, b;—by, ¢;—0s | =P1Psp, 5106,
by My, LT
Ly, Mgy Ty
where p;a, O, are the shortest distance and angle between the forces.
Hence 2(X,+Xo+.+X,)(Ly+ Lo+ .+ L,) =EP,Pp, (S e (@)

Taking two sets X...Li...X'...I/... and applying (1) to the combined
system and thre two separate systems, we obtain the third result.

§. 8. Consider any straight line OP as A,\
the seat of a force. Let it meet the plane | P
BCD in O and let OX be its projection from [ \ /
A on BCD. /| \
|

To resolve the force into its six compo- !
nents along the edges of the tetrahedron, we
resolve OP along OA and OX and then B
resolve OX along the sides of the triangle
BCD and O A along the three edges of the D
tetrahedron that meet at A.

Byo |
Ayo | =0
| m 2 p |

Now the equation of OX is

also, the tetrahedral coordinates of any point in the plane BCD are the
areal coordinates of the same point with respect to BCD.

Hence the components along BD, DC, CB are proportional to

BD(0'm—y'p), DC(y'p—0'n), CB(B'n—y'm).

As the resolution of the force inta components along the edges of the
tetrahedron is unigue, by similarly considering theintersections with the
other planes we find for the six components along the edges BD, DC, CB,
BA, AC, DA, where sigus must be regarded, the etpressions
C [B”)/,BAIQ’B AGYQ

T,n lLm |

a’!B’
BDJ P, 1 /

S3YEllo apply the theorems of § 7 to two sets of forces whose six
components are given by the formulae just obtained, we have

2= FBD(8'm—B'p)*+25BD.DC(3'm—B'p)(y p—d'n)cos BD.DC
+2EAC.BD (y'1—a'n)(3'm—f4'p) cos AC.BD.,

o)
o]
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By comparing coefficients it will be found that
Ri=(a'4L'+y +0' VL[ —AB%n]
RR'cosB =(a'+8 +y +0 ) a "+ " +y ' +0") X[ —LABX(Im/ +1I'm)]
RR’ psin 9 =XAD.BC D“Zf Hfi'ﬂ i i“l,,{a, ‘ ‘/;1}: U psin ADBO,
where py,p,,p, are the shortest distances between opposite edges.

Taking account of the relation AD.BC.p, sin AD.BC =six times the
volume of the tetrahedron, we see that the third expression is identical
with that found in § 3 where the determinant has been expanded by
Liaplace’s method.

§. 10. Tsogonal conjugate points.

We may easily establish that for two points (a,A,y,0) (a’,83",y,0")
which are such that

G O e 3 NGl
ABCD® AACD: AABD®* AABC?
the planes through any sdge and ths two points ars equally inclined to
the faces throngh that edge.

Call the points P,P" and calculate the angles between the pairs of
planes ABP, ABC and ABP’, ABD. These will be found to be equal.

These planes are 20 —yu =0 7 79 —yw =0

u=0 2=0)
where a,y,z,ulare written for the cnrrent coordinates.

Hence the cosines of the angles between these planes are

yAABC? 4 2,0f(AB)
AABC.[0AXBD*+y*a A BC*+ 18y f(AB)]®
S e OAABD -+ %y f(AB) :
AABD.[0”AABD*+y?AABC* 4 {é'@"’y'f(fﬂ3):|TL
and these are eqnal in view of the assumed relation.

The isogonal conjugate of the centroid of the triangle (1,1,1,1) is
the point (ABCD%AACD}AABD%,AABC?).
The 8 self isogonal conjngates are
(£ABCD, £AACD, +AABD, +AABC)
and these are cenfres of the 8 spheves that can be drawn touching the
four faces of the tetrahed n.
Further, isogonally conjugatz points are foci of conicoids of revolu-
"tion touching the four faces of the tetrahedron. For consider the
conicoid whose tangential equation is
* 9VE(La).X(La’) =K*[EABCD — 1SLMf(CD)]
where Ei:, - od’ e
9v: ABCD?
7
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This represents the envelop= of a plane such that the product of
the perpendiculars from two fixed points is constant and is therefore a
conicoid of revolution having the two fixed points for foci ; further it 1is
satisfied by the planes (1,0,0,0), etc.

§. 11.  Relations connecting f{AB), f(AC), etc,

Since V= 4, AB2AC2AD? ) 1 cosv cosp
cosv 1 cos\
! cosp  cos\ 1
ol 2AB* , AB*4-AC*—BC% AB*+AD*—BD?
288 AB*+AC*—B(C3, 2AC? ,AC* 4+ AD*—(CD*
|AB*+ AD*—BD? AC®+AD*—CD?, 2AD?

Border the determinant with a column AB? (AC? AD? 1) and a row
(0,0,0,1) and sobtract the bordered column from each of the other
columns. Next border by a row (AB%, AC?, AD? 0,1) and a column
(0,0,0,0,1) and subtract the bordered row from the first three rows ;
we obtain the well known expression

288V = O “BC - BD  ABR A
BC?, 0, © @D L AGCH T
| BD3, CD2, 0, AP 2SSl ‘ =A say.,
l ARTT ADE . ADY 0, 1|
‘ 1 1 1 10

It will be found by expansion that
(1) the minor of AB?*is f(CD)
(2) the minor corresponding to the zero in the first row and
column is —16 AACD?®
(3) the minors of the last row or column give the coordinates
of the centre of the circumseribing sphere and a function
depending on the radins of the circumsphere.
Thus for the reciprocal determinant we have

A‘:}—IGAACDQ, f(AD), Ff(AC), f(CD), K.,
; f(AD), —16AABD?, f(AB), f(BD), K,
f(AC), f(AB), —16AABC?, f(BG), K,
i f(CD), f(BD), f(BC), —16ABCD? K,
| K., 0%, K,, KR
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Considering the second minors we obtain
F(AC) f(BD)—f(AB) f(CD)=(AB*+CD*—BD*—AC)A ... (1)

16.A ACD216A ABD*—f(AD)*=2ADZA ... ... (@)
From § 4 (2) we have
G
°08 24= 1 RACD.AABO
S 3V.AC .
whence sin 24«27&@&6551—]3_0 e (3
Again BC2.f(AD)+BD*(AC)+ AB¥(CD) +K,=4

—16AACD2BC*+f(AC).CD*+f(CD).AC*+ K,=0
—16AACD*+f(AD) 4-f(AC)+f(CD)=0
These are obtained by multiplying the first row of the reciprocal
determinant by the first, second and last rows of the original deter-
minant.
‘We thus obtain
16 AACD?*=f(AD) L+ f(AC)+f(CD) - ... Za ey
A =2BC*f(AD)+(BD>+BC?—CD*)f(AC)+ (AB*+ BC*—AC*)j(CD)
=2BD(AC)+(BC*+BD>*—CD?)f(AD)+ (AB*+ BD*—AD*)f(CD)
=2BA%f(CD)+ (BD*4 AB*—AD*)f(AC) 4+ (BC*+ AB*—AC®)f(AD)
the last two results being written down from symmetry.
Hence we have
f(CD) { BD*+AC*—BC*—AD* } =f(AC){ BC*—CD?*—BD*® }
—f(AD) { BD*—CD*—BC* }
f(CA) { BA?4+DC*—BC*—AD® } =f(DC) {BC*—AC*—AB*}
—f(AD) { AB*—AC*—BC*? }
f(AD) { AB*4CD*—BD*—AC* } =f(CD) { BD*—AD*—AB*? }
—f(AC) { AB*—AD*—BD* }

and similar relations between any other set of three ... e (®)
Consider | —16AACD?, f(AD), f(AC)
f f(AD), —16AABD? f(AB) | =—Ac=
f(AC), f(AB), —16AABC®

Replace —_16AACD? efc, by the expressions (4), and we get on
expanding the determinant :
EHBC)f(CD)f(BD)+ Zf(AC)f(B T1)) SXE— NI S (E)
where X denotes f (AB)+f(AD)+f(BC) +f(CD).
Again K;+ Ko+ K+ K,=4, and from expressions as
f BC*(AD)+BD*(AC)+ ABY(CD)+K,=A,
and the similar expressions for K,K,,K; we get

SABY(CD)=432V® ... sy
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§. 12. The di) ection cosines of a straight line perpendicular to a plans -
1 portliie '8 ond Y_?,?./:—_-ij:é’ is perpendicular to the plane
x s v P
La+MB+Ny+P5=0, then any plane L'a+MB+Ny+P5=0
which cuntains the given straight line is perpendicular to the given
plane ; whence
YN =0 and X[e LL'— (LM 4+ I/M)f(CD)] =0
are identical, where @ is written for ABCD? etc.
Therefore N =al.—Mf(CD)—Nf(BD)—Pf(BC)
P =bM—Lf(CD)—Nf(AD)—Pf(AC)
v =cN —Lf(BD)—Mf(AD)—Pf(AB)
p=dP—Lf(BC)—Mf(AC) —Nf(AB).
In particular, the straight line throngh (a’,4”,y/,6') perpendicular
to a=0is
B B’ Y Y 8'—01 (1)
= D) e ey,
where a=16ABCD*=f(BC)+f(BD)+(CD).
The condition the points where this straight line meets a =0 and
the three other points in the plaves 8 =0, y=0, 6 =0 should be coplanar

is (dropping accounts)

o B+a;(CD> y+af(§,r)) 5+af(aBC)
a+BHCD), e y+Bf(ZLD)’ 5.+ 8140, o
U g D) o st
(53 C
; . S5f(AB)
6f(BO), Sf(Au) y el 0
fee e &

adding the rows we notice that it is divisible by a+8+y+0. .

Border the determinant by a horizontal line 0,0,0,0,—1 and a
vertical columa 1,1,1,1,—1. Maltiplythe bordering colamn by a,8,y,6
respectively and subtract from the first four rows ; we get

—a, f(CD), f(BD), f(BC), =
§OD),  —b f(AD), f(AC), %
HBD) fAD),  —o faB), £ 7%
f(BC), f(AC), f(AB), —d, %

a £ Y, 6,—1
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Expand in terms of products of the elements of the last row and
column and by use of the theorems of § 11, it becomes

—Aa+b+c4d)—A% (‘%?Jr%‘i‘) L)

or E(af*+ baa)y5+(a+b+c+d)u8y5=0.

Dividing this by the factor at-L+y+ 5, we have, for the surface
which is the locus of points such that the feet of the perpendiculirs on
the four faces of a tetrahedron are coplanar, the equation

b d
§+2}-+%+ Sy [Salmon. Edited by Rogers §121 Ex. 17.]

Otherwise, it is the locus of the foci of all paraboloids of revolution
touching the four faces of the tetrahedron.

For if (a’R'y'8') is a focus its isogonal conjugate must lie in the
plane at infinity a-+/A+y+6=0. Thus the locus of (a’, By 8) s
%+%+$+§=0’ where a, b, ¢, d are written for the squares of the
areas of the faces of the tetrahedron.

eh e

§13. The surface E+E+;+E:O has been investigated for the
special case of a=b=c=d. Compare Cesaro, Calcolo Differenziale ed
Integrale, p. 458, from which the following section is taken :

For a tetrahedron whose opposite edges are equal the faces are all
similar triangles and the three straight lines joining the middle points of
opposite edges meet in a point and are mutually orthogonal. Take these
lines as axes, or what is the same thing, considering the rectangular
parallelopiped that circumseribes such a tetrahedron the axes are at the

centre of the para,llelopiped and parallel to the edges of the purallelo-

piped.
The faces of the tetrahedron are

e gy e B SRR
= bt N 5+1=0, ete,

and the surface is X(1/p)=0, where p is the perpendicular on any face.
Substituting, we get for the surface,
zyz QRS e
}\i’w+% (F+E+;’T_1) =0
Consider the section of this surface by the series of planes z=0, to
z=7; they consist of a series of ellipses inscribed in the series of rect-
les in which the parallelopiped is cut by the planes, starting from

.
ang

2 2 € )
e —1,and ending up with the diagonal T-Jri:(), counted as a double

T";ﬁ
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line and then passing into a series of hyperbolas. Similarly. the series
of planes 2=0, to 2= —%, may be considered.

The diagonal plane ﬁ+ Z_ 0 cuts the surfacein a parabola ; for, writ-

ing Z.:Y:.i/ f--‘ AZ—~———<, where k"‘*}—:;—{- 5, the surface becomes

i(kQ:LV 1.1. ’V) (

L r GO E-H0)

which, for Y =0, reduces to the section Y =0, X=X\, and the parabola
Xﬂ+ 1+;‘25V—O
From these indications the general form of the surface can be
realized.
§- 14.  On the hyperboloid containing the four perpendiculars from the
vertices on the opposite faces.
Copsider the plane through AB perpendicular to the plane BCD ?
by § 4, it is
Yf(BC)—6f(BD)=0.
Similarly the planes through BD perpendicular to BAC, and BC -
perpendicular to BAD are given by
af(AB)—yf(BC)=0
af(AB)—§f(BD)=0.
These three planes intersect in the straight line
af(AB) =yf(BC)=¢f(BD)
p__alfsing through the vertex B. There are three similar lines through
the vertices A,C,D.
The four lizes thus obtained are generators of a hyperboloid. For
consider the hyperboloid
{f(AB)f(CD) —f(AD)f(BC) } { ayf(AC)+B5f(BD) }
+ {f(AD)f(BC)—f(AC)f(BD) } { aBf(4B)+y5f(CD) }
+ { F(AC)(BD)—f(AB)f(CD) } { Byf(BC)+abf(AD) } =0. (1)
It is easily seen that £

¢ 1 1 1
Cl:*/.b:-_, == __
f(AB) f(BC) j(BD)’
satisfies 1t identically, and is therefore a generator ; from symmetry the
other three lines through the vertices A,C,D are also generators.
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Again, consider the four perpendicalars from A,B,C,D on the oppu-
site faces ; from § 12 (1) they are:
Sl e R gl R
—a j(CD) J(BD) f(BO)
GL el Y

F(CD)  —b f(AD) F(AC

S RdaEb s =10 S0 &l
fBD) f(AD) —c f(AB)

U T S IS

F(BC) F(AC) f(AB) —d J

Tt is at once seen that these straight lines are generators of fhe
hypetboloid (1). Cp. Bell : Coordinate Geometry, § 111 Ex. 35
Suyppose the first two perpendiculars intersect, we see that
f(BD) f(AC) =f(BC) f(AD);
whence also the last two perpendiculars mast intersect and “the hypet-
boloid containing,the four generators reduces to the pair of planes

o f(AC)—f f(BC)=0,y {(AC)—03 J(AD)=0.

(Mo be continued.)
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Mersenne’s Numbers.
By Balak Ram M.A,, I.C.S.

The following method of obtaining the factors, if any, of the smaller
of Mersenne’s Numbers has been in my possession for four or five
years; but I did not publish it partly because I thought it was too
simple to be new, and partly becaase I wished to obtain some new results
before publishing the details of the method. Pressure of other duties
having prevented me from devoting attention to the problem, T was glad
to communicate last year the method to Mr. V. Ramesam who had
obtained by another method the smallest factor of 27 —1. My method
enabled him to factorise the number completely. The resnlt on being
published, attracted the attention of Lt. Col. Cunningham, who wrote
to Mr. Ramesam asking for details of the method. Mr. Ramesam has
very kindly suguested that [ should publish a note on the subject, and
I gladly accept the suggestion, as there seems to be a possibility (though
a slight one) of the method not having been previously applied to the
problem in hand. ;

The reader is referred to Ball’s Mathematical Recreations and Essays

for a full account of Mersenne’s Numbers, and to the conclading

portion of the present paper for resalts obtained since Ball’s book was

published.

1. The problem is to determine the integral values of » for which
27—1 is a prime. If # is composite (equal to zy say), then 2*—1 and
2¥ 1 are obviously factors of 2“—1; it is therefore not necessary to
consider any but prime values of . Primarily the problem is not the
determination of the factors of 2”°—1; but, so far as I am aware, none
of the nambers hitherto considered have been shown to be composite
without one or more factors being obtained, though theoretically it is
possible to prove the composite character of a number without factoris-
ing it.

Let p be the number, ¢ be a number prime to p, and 2 the lowest
number giving ¢*=1 (mod, p) ; then if z is not a factor of p—1, p is not
If however z is a factor of p—1, we cannot say whether p is

a prime.
These statements follow from the generalized form of

a prime or not.
Fermat’s theoren.

2. I will illustrate my method by considering the nnmber 27 —1
a number known to be prime. All factors of 2"—1 (2 an odd prime)
are of the form an+1i, and also of the form 8b+1. Further,
there must be an odd number of factors of the form 85—1, The factors

>
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of 22—1 are thus of the form ka1, and \a-+63, where a is written
for 8 x31. We may therefore put
29 —1=(ka+1) (Na+63)
where the factors are either prime, or (if composite) have factors of
these forms and no others.
3. 1t is easily shown that
1 —1=140a’+196a°+40a + 63
i.e,=(ka+1) (Na+63)

kN.a+463 k4N =140a*+ 196 a + 40 S D)
k-+N=40 (mod, 62)
=404-62 p, say ; oo ()

the more nearly equal % and \ are, the smaller p is.
Substituting for X\ in (1), and dividing out by 62,
4% (9 —k) 4+« 4+ p=9 (mod, 31)

or (2k+14)*=p+1 (mod, 31)
< e +1 is a quadratic residue of 31 oo B
Again, (ka+41) (Na+63)=2"—1

gives us 4(k+2) (N+1)=2 (mod, 5),

or (B+24N+1)° v(/.—1—7—)\+1)—

or (F+N+3)*=2+ X say.

The possible values of X®are 0, 1, 4 (mod, 5); also 24 X* must be
a quadm.t\c, residune of 5 ;

e X*=4, and (k+ N\ +3)’=1 (mod, 5),
or (62p +43)°=1.

Solving this congruence we get

p=3 or 4 (mod, 5).
Similarly =1, 2,10 or 20 (mod, 27).
Combining the two, we get
=28, 29, 64, 74, 83, 109, 118, 128, (mod, 135.)

Introducing the condition that p+1is a gquadratic residue of 31,
we see that the lowest possible value of p is 128.

4. Returning to the original equation, we see that if either k& or \

1

is 5 or more, the other number is <}4;9 and therefore p<<112. Thus
the only possible factors are those given by k<5, and N<<5. Of these
eight numbers the only prime is that covresponding to N=1. Hence if
311 is not a factor, 2" —1 is a prime.

> Taking 311 to be the modulus,
1=312=2%39=2" (39—311)=2" (—17)=[2" (—17)]=2". (289)
=21 (—22)=2" (—11)=[2'" (—11)]*=2" (121).

8
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B 1 is not=2" (mod, 311)

: 2" —1 is a prime.

5. I applied this method to 2%—1, and obtained the following

results : —

a being 8x 41 =328,

(ka+1) (Na+247) =2"—1 =189a* 4325 a’+ 820>+ 169a + 247
+N=5482n
K +8=(2k—16)*(mod, 41)
P+3k=2 (mod, 8)
N—%k =1 (mod, 8)
H=2, 7, 9,10, 12, 17, 22, (mod, 25)

or : =1, 3 (mod, 5) are excluded ;
and if =0 or (4 mod, 5)
it maost be =9, 10 (mod, 25)

=6, 22, 33, 42, 49, 60, 67, 76 (mod. 81)
Also p=136" (mod, 7)
=1267-8 (mod, 11)
=157-9-10-12 (mod, 13)
=24:57-8911-12-14 (mod, 17)
=0,47-89'1216-17-18 (mod, 19).
These did not require long caleulations. I next drew up a table,
the typical row of which was

': ' I
8lm+4 : I { 1 l \
S G il n ool il i
By using the various moduli (5, 7,...19,and 41), one by one and putt-
ing crosses in the cells belonging to inadmissible numbers, I fonnd
(again without long calculations) that
p>82:644 22,

i.e., that the smaller factor was less than 4%a. Omitting such values
of N as made (a\ 4247) a multiple of primes=<41,T got \ =43, 40, 34....

N =43 gave w =190 +92, which was inadmissible ;

\ =40 gave afactor, the other factor being 4a’+217a°+47a 41,
which can be proved to be a prime.

6. The pecaliarity of this method cocsists in the fact that the
nearer a factor is to the square root of the number the more easily it is
found, The range of values for w extends to 4 (2"—1)/w? bat may be
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reduced considerably by trying all factors given by & and \ equal to
1.,2,...7, where ! is some convenient number. Within the range, the
possible values of p are (as seen above) reduced by using various test-
moduli, 81 reducing the number to 1/8, aad every other modulus re-
ducing it (generally speaking) by half. In some cases, 25 is a good
modnlus to employ instead of 5.

7. It should be noted that if the residue of either & or N\ to the
base a is known, the residue of the other number and of w is also
known. For larger numbers it may be necessary to take the factors to
be Ka’+%k,a+1 and Lia’4+ N\ \,a+¢, where ky, N\, are known and both
less than a, and K, L are to be determined.

8. The following information supplements that given in Ball’s
- Recreations :—

(1) 27 —1=228479 x 48544121 x 212885883.

The smallest factor was found by Cunningham ; Ramesam factorised
the number completely.

(ii) 2%°—1 is declared by two independent computers (Powers and
Terry) to be a prime, Mersenn asserted that it was composite.

(iii) 150287 is a factor of 2!%*—1. [Cunningham.]

(iv) 730753 is a factor of 2™ —1. [Cunningham.]

(v) 43441 is a factor of 2" —1. [Woodall.]

(vi) In aonouncing a factor of 2'*—1, Cunningham asserted that
all factors below 200,000 of all Mersenne’s numbers had been discovered.
Woodall’s subsequent discovery of ‘a factor of 2''—1 showed that the
assertion was no¢ quite correct.

[N. B.—It is noteworthy that for every number factorised so far
either £ or \ is less than a.]
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SHORT NOTES.

The Distribution of Primes.

The following results in the theory of numbers have been obtained
by Mr. S. Ramanujau of Madras, and are published for the information
of mathematicians. Proofs will be supplied later.

1. The number of prime numbers less than e is

1 1 it 1

{o o]
) where S\,+1:1\71+2’\Tl+3»— +4;i—'1-1+ 1

J’ adw
o a;.S,,-“ ll,(.vH)
2. The number of prime numbers less than » is

2 (2 (logn 4 lognw\" 6 (logm\° 8 log n)
;lB_g '“"*—) +3 B4 27 > {_SBG 27‘-) +7 By +---},

where B. == s 185= O B,,—-:), &c., are the Bernounllian numbers.
3. The number of prime nowmbers less than # is
[ Vn Vn W
ge W TiE ao 1T e D
logz 2 log z 3 logz 5 log @
JAE B e s
C~¥/n v Vi Va
1 v de 1 da 4o 1 da __1_ da
+F loga 7 log @ 10 loga 11 log @
Jp 5 3 o
47 5) 7
" a/n \/)l/ ‘\/'IL
1 o du 1 dw 1 w1l dax
TR log = 14 loga ' 15 logz 17 log @
J R B - I

where p=1-45136380 nearly.
The numbers, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15,17, 19 etc., above are

the natural numbers containing dissimilar prime divisors. Thus the

numbers 4, 8, 9, 12, 16, 18, 20 etc., are excluded. The signis positive for

an even number of prime divisors and nezative for an odd number of
prime divisors.

In practice, as soon as a term becomes less than unity, we should
stop at the next term where the asterisk is marked and not anywhere ;
asterisks should be marked over the terms corresponding to the
numbers 5, 7, 11, 14, 17,...; hence the first four terms are absolutely

essential even when 7 is very small.
4. In the above theorems unity is not considered as a prime

number.
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For practical purposes

7l L e [2 Je—1 5
f logz~ " {lo n+(10 n): " (log n)® (bog n)F 7
. log g g (log

where 0 is equal to

2 1 4 8(l—§)
(3—5> Then {m—ﬁ( }
1 B 26(1—8) 81— 2382
(log n)? {2§30+8(T5) 208 ) ( )} S
6 denoting (k—1log »). It would be adva.ntageous to choose & to be the
integer just greater than log n.
In accordance with the above formula the namber of primes
less than 50 is 14:9, while the actual number is 15,
o 300 is 61-9, . ' 62,
,, 1000 is 1682, i iy 168,
and so on.
S. NARAYANA AIYAR.
27th February 1913.

A set of Simultaneous Equations.

On page 94 of the Journal Mr. S. Ramanujan has discussed the
solution by ¢ partial fractions,” of the following set of equations :—

O L s e emp e

2y Y1+ 2o Yo+ T Yt R e
2 Bl . 2

2,7+ By Wy’ - -, Ylr=ay

Y 1"714‘351?/22”‘14- S e —
where @y, @ayeee@y 3 Yy Yare-Yn are 2n unknown quantities.

Following Burnside and Panton (Vol. IL, p. 106), we may find the
values of @,2,...@, in terms of the y’s and thea's, by solving the first n
linear equations s1mu1ta,neously Thus, we have
1’ Y1 '.1/13 LY ylu—l Zy

& 8 By e e B ay

5 54 gihal T SRt y =0, etec.

Sp—1 Sn Spt1 ere Sap2

: 2
where sy, =23, + Y A oo oY



62

Similarly by solving the 2ud, 3rd,...(n41)*” equations for (2,y:)s
(2592)...(2,y,), we have determinantal results differing from the above

only in having (21).....-. , in place of ay,......
And so on for ayy,’, &Y ... ... Y, ; ete.
Hence, these determinantal equations may be rewritten
o, X 4 @A, + R A ()
2y X+ @A+ e @y A, =0
2y X+ @A+ ... g oA — ()
Zih "X+ a1 At - e gy, A, =0.
Eliminating 2, X5, Ay, A, ooee A, from these, we finally obtain
1 1 a (T et T |
Y 23 A e Ay ‘
s
! Y° a Ay --- Quyo | =9
|
L1
Kt [C77EE1 Qyppa oee Oay

an equation of the n*” degree in y whose roots are i, ¥, ... ¥,- When
the y's are known, the a’s are known too.

Practically, the labour involved in the reduction of the above deter-
minant is as great as the work of finding the B’s in Mr. Ramanujan’s

method ; and both methods are equally tiresome.

25th April 1912. M. T. NARANIENGAR.
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The Face of the Sky for May and June 1913.

Sidereal time at 8 p.m.

May. June.
H. M. S. H, M. Sa
1 10 35 38 12 37 Sk
8 161 L B8 Ak 13 S 27
15 RIS (RS 13 33 3
22 11 58 26 14 O 39
29 12 26 2 14 28 15

From this table the constellations visible during the evenings of
May and June can be ascertained by a reference to the positions as given
in a star atlas.

Phases of the Moon.

May. June.
D e R D A N
NS WeEMTonEe e S 6 S BINES A4 piay s F TSty SR 0 78 AT,
Hhrst @uartier St Ol 35 S5 58S 2 AR ST D) i 4.
Full Moon 20 0 48 Ta e SR TSRO
Tinst, Q@uanter 500 98 50 34 A e L 5L 268 ST S
Pianets.

Mercury is in superior conjunction with the San on June 2, when it
bhecomes an evening star. It is in conjunction with the moon on May 4
and with Neptune on June 24.

Venus attains maximum brilliancy as a morning star on May 31
and is in conjunction with the moon on June 1.

Mars is in conjunction with the moon on May 2, on May 31 and ‘on
June 29.

Jupiter is stationary on May 6. It is in conjunction with the
moon on May 24 at 3-53 A.M. and on June 20.

Saturn is in conjunction with the moon on May 8 and June 4.

Uranus is stationary on May 13 and is in conjunction with the
moon on June 22 at 1-38 A.m.

Neptune is in conjunction with the moon on May 11 and June 7.

[Erratum.—The phases as given in the Februnary number of
the Journal were for May and June instead of March and April].

V. RamEsay,
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Occultation of # Tauri (1681 B.A.C.)
9-20 p.m. Saturday, i15th March.

As I was sitting on the beach last evening trying to recognize the
brighter stars as they began to appear in the twilight I noticed a star of
about the second magnitude in the line joining the centers of the sun and
the moon. I guessed that the distance between the dark limb of the
moon and the star was about 1° and that as the time was then
6-45 v.M. an occaltation wounld occur at about 8-45 pw. I therefore
procured a pair of binoculars to observe it better. As the star neared
th e moon’s limb the limb began to show in contrast with the light of
the star. I was able to follow the star until 9.20 p.m., when as if by a
Jerk the moon swallowed up the star. As I was not acquainted with
the star I made a map of that portion of the heivens relative to the
bigger stars. I was this morning able to identify the star as £ Tauri;
and it is of magnitude 1-8.

I calculated that for the path that the star seemed to take the
occultation woeld last for 1 hr. 5 min.,, a1d at 10-15 p.a. I turned to
the sky to watch the reappearance of the star. The most remarkable
thing was that the darker limb of the moon was traceable now only, with
great difficulty. It was not until 10-35 p.r. that I was able to see the
star again. Bat it was then quite clear of the moon’s disc and the glare
of this portion of the lunar disc made it impossible for the star to be
recognized even as a pin head until it had separated from the disc by
about 2”. T calculated that the star must have emerged about 5 min.
before and that the occultation must have ended at about 10-30 p.ar.

MADRAS, N. SANKARA AIYAK.
16th March 1913. §
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SOLUTIONS.

Questlon 295

(S. RAMANUJAN) :—If a/ff =11, shew that
a0 a0

2

__a;—

e
oz e e da
e e R S

(=] =]

Solution by the Proposer.

@
cos 2 nz 1
Since f —ds=———"—
& cosh mwz 2 cosh »
© » o
2 9
— e " dx s cos 2 axz
Va ——=9%/a 3 S = 2 i3 de
coshaz™ cosh 77z
c ° o
= — a2z — [ 2
| ~\/1 S gy
coshrz a 2 3¢
o Jd coshF:
o)
= iz
ol e dal .
e TR |Iince a/fs -=mr.
\Z cosh Pz’ )

o

Question 3064.
(ZrRo) :—Explain a simple method of rationalizing the equation
4 3 2 1 b
25 4 a5 4- bas 4 cxd +d =0,
and discuss the rationalized form of the general equation f (2'/)=0.
Solution by M. R. Sadasiva Tyer.

Put 2=2° we get

24 a8 4-6224-cz4-d =0 PR (18)
Multiply (1) by (2) and substitute for z* and we get
az' 4 b+ s+ dz Lz =0 e )
similarly, we get bz' ezt +df+wzfaz =0 ... e )
ezl de’t xz* +azz+ha=0 ... e (B
dz'+ aztaxz’+ baz4cx=0 ... S (D)
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9

Bliminating z, 2%, &% z* we get the result of reationalization, which
is the persymmefric determinant
1 a b c d '

a b c d £
| & ¢ d z and =050 ... (6)
3 c d TS ol S bl

d A A e cw

Similarly, f (2}/#)=0 may be rationalized. Writing a=2f, we
get a persymmetric determinant of the p”‘ order.

The other factors of the determinant (6) are easily seen to be
derived from the given expression by mnltiplying the terms by w, "
w?, w, 1, where w is a primitive root of 2°—1=0.

Question 37I.

(K. J. Sanians, M.A)) :—1, I,, I, I, are the centres of the four con-
tact circles of a triangles, and N, N,, N,, N; the nine-point centres of
the triangles formed by their respective points of contact; prove that
NI, N,,T,, N,I,, N,I,; are concurrent.

Solution by M. Bhimasena Rao, R. Tata, M.A. & G. Ramachandran, B.A.

Let ABC be the given triangle and L. M, N. The points of contact
corresponding to I. It is well-known that the inverse of the nine point
circle of LMN with respect to the circumecircle of LMN 1is ithe circum-
circle of ABC (Casey’s Sequel, Bk. VI, Prop. 12). Since a circle and its
inverse are co-axal with the circle of inversion, it is evident that NI
passes through the circumcentre of ABC, throngh which point N, I,
N,I,, N,I; pass for a similar reason.

Analytical solution by J. O. Swaminarayan, M.A.

Question 392.

(A. C. L. Wikrsson) :—If in Question 313, the circle TQQ' be re-
placed by any conic throngh TQQ' touching the ellipse at P, the radii
of enrvature of the two conics at P are in the ratio 1: 2.

Solution by J. C. Swaminarayan, M.A.

Take the tangent and normal at I’ as the axes of # and y res-
pectively Then 1he equation of the given conic can be putiin the form

aa? 42 hay+by*—2y=0 e e ()
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Now, Q) is a chord of (1) and T is the pole of QQ’ with respect to
(1). The conic throngh QQ’ touching (1) at P, can be put in the form
(1) +Ny{aza'4byy'+h (@y+ay)—(@y+y) +=0 ... (2)
where (2',y") are the coordinates of 1. (2) will pass throngh T if
14X\ o =0.
Hence the equation of the conic TQQ' assumes the form
az*y + zy (Y h—ad)—y*(ha! +1) —yy"=0 et (3
The radins of eurvature of (1) is (1/a) and the radins of curvature
of (3) is (1/2 a)
Hence the result.

Question 398.

(A. C. L. Winkinson, M.A., F.R.A.8.) :—A hyperboloid is described
having for generators the edges AB, BC, CD, DA of a tetrahedron
ABCD and with its centre at the centroid of the tetrahedror, shew that
the algebraical sum of the squares of its axes is equal to

T(BAC*+3BD2— AB*—BC*—CD*—DA?)
and that the absolute values of the product of the axes is three times
the volume of the tetrahedron ABCD.

Solution by R. N. Apte, M.A., P.R.A.S., and J. (. Swaminarayan, M.A.

If B, O are the angles between the generating lines at the points
A, C respectively.
o pla— o b kel P — @ — b P)
s T T
where p, p’ are the perpendiculars on the planes ABD, BCD from the
centre of the hyperboloid a?/a’+y*/b*—2*/c*=1. [See : Frost, Art 212.]
Generally, putting(4s®*=alg. sum of the squares of the axes, we have
cot @ p (=5
cot O p (r7—¢%) b
where 7, " ave the distances of A, C from the centre.
The centre is at the centroid G.

525 r=GA, »"=GC,
4 p=the perpendicular CN from C on the plane ABD
4p = ) AN 2 BCD
But vol. V of tetrahedron={ CN.AB.AD sin 6,

AB2+AD*—BD"

o @ P +aD" — Bl
and el 2 AB.AD
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Similarly, for sin @', cos 8.
cot §_p (AB'+AD*—BD?)
cot8’ p (BO*4+-CD’—BD?)
From (1) and (2) Al Al D

)

2 BC*+CD*—BD¥

T siet RIS SRS (3)

72— AB'+AD'—BC*—CD*
Now if g be the centroid of the triangle BCD and E the middle poiné
of BC, :

3 )3
)

and

2 t&E2+AD3£3 Ag+% DE?

2 9 Ag=6 AE’+3 AD*—2 DE?;
and 2 (AE+BE?) =AB® +AC? 2 DE*+2 DE*=BD*+CD?

16 GA?=9 Ag*=(3 AB*+3 AC’+3 AD*—BC*—BD*—CD?)
s0 16 GC*= (3B0?+3 CD*+3 CA*—AB*—BD*—DA?).

Hence from (3)
3 AB+3 AC>+3 AD*—BC>—BD*—CD2—16 5> _
4 AB>+4 AD°—4 BC*—4 CD? X
AB*4AD?—BD?
AB*+AD*—BC*—CD?’
L {3 AC*43BD*—AB*—B(*—CD>—AD } =4s

Question 4oI.

(S. P. SiNGARAVELU MUDELIAR, B.A) :—A straight line is drawn in
the plane of a parabola, through the foot of the directrix. If the plane
of the parabola be vertical and its axis hovizontal, shew that the
time of quickess descent from the straight line to the parabola is
/2 L cos 28/g (2 cosO +sin 20), where € is the inclination of the straight
line to the vertical, and I the latus rectum of the parabola.

Solution by V. B. Naik, M.A., T. P. Triveds, M.A., L.L.B., and others.

If PQ is the line of ¢uickest descent from the straight line
to the parabola, then PQ is the diagonal of the rhombus formed
by the normals at P and Q to the straight line and parabola,
and the verticals through P and Q. The tangent at Q to the
parabola is, therefore, pavallel to the given line and hence
makes an angle 9 with the axis. The coordinates of Q are
(atan’d, 2atan ), the vertex of the parabola being the origin
and its axis the axis of #. The equation of the line through the foot of
the directrix is @ cos O—ysin O+4-acos ©=0, and the perpendicular
from Q on it is
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a tan?® cosO—2 a tan® sinO+a cosO=a sec@—2 asin®O secO

; —a cos20 secB.
This perpendicular is evidently the projection of PQ on the normal
at Q and makes with PQ an angle=1} (7/2—8).
& PQ=a cos 20 secB sec (11/4—0/2.).
Again, PQ makes with the vertical the same angle and the

acceleration down PQ is g cos < l;—% 3
Hence the time down PQ is equal to
e A SR o(7-9) ]
[2 PQ/g cos (7 E)J = [u a cos 20 sec B/y cos = -‘2)
1
=4 a cos 20 sec 6/y (1+s1nB)]>
=+/2 1 cos 2 B/8 (2 cos O+sin 26).

Question 402.

(7. C. SWAMINARAYAN, M.A.) :—Prove that
il

( VA=< ) (tanh—'5)dz= T
z 4 g
o
Solution (1) by V. B. Naik, N. Sankara Adyar, and T. P. Triveds,

(2) by K. Srinivasan, M.A., (3) by M. R. Sadasiva Aiyar, and
the Proposer.

(1) Since, when, o<<|z| <|, tan h“::::{-%"-f--;-f- ...... , the given

integral
1
_$ | #vaon,
241
n=o0 ] .
™
@© L o 3]
=\ 1%;?7:?5 ede, putting z=sinB.
mn=0
0
o0
sy A 1l3 2n—1 ) ( 1
a2 <2'4 """"" 2n (2n+1)(2n+2)
n=0



=0
ar

1 = L
Also f sin—'zdz =f 2 ¢cosddp = ’—qtsincb—i— cosq‘;] 2
o o = )
™
__2_—1.
me T
2

Given integral = — ('" 1) =

(2) Let z=tanh y; the integral is equa.l to
8
sinh y—y coshyd

)
sech’y dy= {k—t wnh y ] — | tanh y.
Slnh_/ 5 sinh® y
o o
© oo
ey sech y dy.

= sinh y
(=]

o
O™
4 e 5 —2Y le" =TV B e }

DNow S
s ©
o °
:22(271:—1)
:2(11_1+3i2+51'~' """""" )=%
And set.l*xy:l_j‘_e;:_}—'?.a(e—3 it L e )
: fo sechy = zzj (—1yre ey =28 — 11(_1)"
_.H(l——-}-- ...... ) :2%:7—2‘.

ar

Hence, the given integra.l_%—- =
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(8) Let I denote the value of the given integral. Pat z=sin 6,
8o that dz=cosBd6.

av
=

T C‘isg tanh—1(sinB)d0
o

LJ =

= [(log tan9+ cosG)(t&uh"smG)J

o

™
2

= {log tan%ﬁ—cos@} secBdB.

o
: BN G SR S
Now, since Lit (log tan§> (tanh ‘st) =Lt (smelog tang)
log t.a,n_e-) o
cosec
; cosecG =L cosece cot@‘Lt Sy
-n' I "

2 log ta,ng
= dO
" cosB

—J- logs n) 2.dz, where ::tfmg
o 2

=

¢

H
wl 3 m' 3 L___.ﬁ

logz(1+ 2242+ ... )dz

J
{% 3‘+5’+ }

r\.l 2
1;.| ek
o

[f

»plﬂ

Question 406.

(K. J. Sanjana, M.AY) +—1If m,, m, m, be the medians and s,, s,, s, the
symmedians of a triangle ABC, prove that
(1) Z[a(®>+c?). sy my] =% abe (a*+b°+c?)
(ii) ¥ [a(b*+c?) 8/ ] =24 AR,
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Solution by V. B. Naik and several others.

If 6 and & be the angles which the median and symmedian through
A, make with BC, 8'=m—(C—B+8), then
L =
T T O=B4O  in (O—B) ot B-+-c0s (O—B)
=3 sin (C—B) [cot B— cot U]+cos (C—B)
sin C sin BT .
= J , by reduction,

-1

= 2 i sin B "sin C
b4

SEOTeE

2be
Also m, s ~1=—n-5x'm1 _bgi X 1 (20°4-2c*—a?)
a’be
2+
Hence (1) Ela(b+¢?) sy my] =abeZ(b?+ %) —LEa’be =% abeXa?,

(1) E[a(d®+c*)s;/m,] =6 abc=24AR.

=bc—

Question 409.

(S. P. SINGARAVELU MooDELIAR, B.A.) :—@Q is any point from which
four normals are drawa to the ellipse a2®+by*=1, whose centre is C. If
Ny, Ny, Ny, N, are the projections upon CQ of P, P,, P, P,, the feet of
the normals, shew that

YXCP2*—CQXCN,=2(1/a+1/b).
Solution by T. P. Triveds, M. A., T. I.. B. and others.

Let Q be the point (%,k) and Py, P,, P, P, be the points @y, v, , s, y:
etec. ]

Equation of OQ is\ky =k2 and that of P, N, perpendicular to CQ is
kly—y)+n (z—a)=0.

a N, is (h“’1+7~y1) h (h‘l‘l'*']"./l)l‘.

TR o f e a R

Similar valunes exist for N,, N,, N,

o CQCN,=ha,+ky, and CP® =>4,

= YCOP2—CQEZON, =Za+ Yy, — h¥z —kXy,.

But P,P,P; and P, lie upon the ellipse az’4-by*=1, as well as on the
Apollonian hyperbola

2y (a—>b)+bhy—ake=0.
Hence @, @,, @,, x, are the roots of

qz! (a—b)’+2 abl |(a—b) 2"+ { ab(bh’+ak®—(a—b)® }
2°—2 bl (a—b)—b"R* =0,
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Similarly %y, %., ¥, 94 are the roots of a similar equation in y with
and b interchanged, as well as % and & interchanged.

e L e e
a—b (a—b)? a
2 ak o 2 a’%*—2 abh? | 2
DY jp e e e S e e il
Y1 e Y1 (a—b)" 7
Thus

ICP;/—CQ XCN, =g+%, on simplifying.
a

Question 410"
(P. A. Supravania Iver, B.A,, I..T.) :—Solve completely
c?z/) le Y (I_/ d? Y <c1y
Jv: GhETT dl dx’ l‘1+
Solution by K. J. 'Sanjana, V. B. Natk, M.A., J. (. Swuminarayun,

and others.

Dividing by #.*, we have

At+vdy o, _ Aty
o Sl =G
Yo Ys
e e dp Oy g, (i
Ya ds —dez " dz s
Hence the equation reduces!to
_d 1
[;: =ap’, which glves; =a(s—cy)-

ds ; :
Thus d—f:a(s—cl), so that s =c,+ 3 as®—ac,s, which may be written

2h = as®4-bs+c.

Question 412.

(MarTYNY M. THoMas) :—Apply the theory of moving axes to solve
the following. ¢ At every point of a plane carve a Jine is drawn mak-
ing a given angle a with the normal; let the envelope of the line be
termed the a-evolute of the curve. Prove that the a-evolute of the
B-evolute of any carve is the B-evolate of the a-evolute of the same

[M. A. Degree examination, 1911, Madras.]
10
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Solutian by A. C. L. Wilkinson M.A., F.R.A.S., V.B. Natk, M A.,
and others. ‘

Take movinr axes so that the origin moves along vhe curve, the
axis of @ being a tangent to the curve and the positive direction of the
normal the axis of , the positive direction of rotation being from @ to y.

The point of contact of a straight line az+{-by—+c =0, and its
envelope is given by its intersection with ‘
db
“ds
Tor if s is the element of arc, 9 the ungle of contingence, (@,y)
(X,Y) the coordinates of a point P referred to the axes at any point of
the curve and the axes at a consscutive point, we have, by projection,

da de @ b
fimiag By : Zy. —a—a=0.
%ds+y +(Zs+p9 pw @

the relations
X =2—0s4-y, Y =y—a0i.
Thus the consecutive line to av+by+4¢=0, is, veferred to th= con-
secutive axes, (a+0a) X+ (b-+0b) Y +c+0¢=0, and on substituting for
X, Y their values in terms of @, y, we get the result stated.

The a-evolate of a curve is given therefore by

@ cos a—y sin a=0, (1)
and its point of contact with its envelope is given by
y cos a4 sin a—p cos a=0. (2)

Solving (1) and (2) the point of contact is given by
z ZEL i
r— L 0 coupol
cos . sin @
The S-evolute of this is given by a straight line through this
point making an angle a +,@—-':—: with the normal to the original carve :

this evolute is therefore the envelope of
(z—p cos® a) cos (a+fB)+(y—p sin a cos ) sin (a+3)=0,
that is of @ cos (a4B)+y sin (a+B)—p cos a cos 2=0.
The symmetry of this resalt proves the theorem stated.

Question 414.
(R. Tara, M.A.):—TIf DEF iz the pedal triangle of ABC, and
D'E'F’ that of its symmedian point, shew that
a. DD’ +b. BE +c. FF' =0,
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Solution by J. O. Swaminarayan, M. A.

Let K be the symmedian point and let H be the ortho-ventre. Let
P, @, R be the middle points of BC, CA, AB respectively.

Now BK®*—CK*+ OK“—AKZ+AK2—BK"=0

2a PD+7b QE-+2C RF = o (D)

blmlla.lly, because

BH*—CH*4-OH?*— AH*+AH*>—BH*=0
S 2a. PD+2b. QB +2¢. RF =0 )
Subtracting (1) from (2) and dividing by 2, we get '
a. DD/ +b. BE' 4-c.FE" =0.

N.B.—This proof is quite general and consequently the given result
holds good in the case of the pedal triangles DEF and D'E'F’ of any
two points X and X'.

Addztional solutions by V. B. Naik, M.4., and
M. R. Sadasiva Adyar, BL.A., B.K.

Question 415.

(A.A. Krisanaswamr Arvancar):—If s, =1"+ 2"+ ... 42", and 6p=,0Cp
shew that 14450 6181 Casat oo 40,1 5 =(L4-n)".
Solution by N. Ganapati Subbai Iyer and several others.
(] 4 1) —n" =y e Cpgn T
n g(n——l) =cyte(n—1)4c(n—1)+.. +o,~l(w—1)’—’

ar_or -ou+o1 20y 2P . +c Al
and 2'—1"=¢, o140y 2w ot=c, CRlfee
Adding all these resalts,i we get
(1+4n)" =14cesetcisi 0ot 618
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Question 416.

(M. T. NARANIENGAR) :—1If [, I ; m, m" ; , #” are the distances of tho
foci of an inconic from the angular points, shew that the areal co-ordi-
nates of the centre of the conic are

4—1‘A(mm' sin B+nn" sin C)&e.

: Solution by V. B. Naik and N. Bhimasena Ruo.
Let S, H, be the foci, O the centre and S’ the reflection of S in the
side BC
Since O is the middle point of SH
A BOC=1(ABSC+ABHC)
=L(ABS'C+ABHC)
—(ABHS + ACHS')

~(BH-BY' sin HBS
% +CHOS’ sin HOS')
5 = Now B&'—BS, G5 =08,
\L/ LHBS =B, ZHCS =C.
SI

5. ABOC =1(mm sin B+4-nn’sinC).

Other Soluiions by J. C. Swaminarayan, T. P. Triveds, N. B. Pendse
and N. P. Pandya.
Question 422.

(D D. Karapia, M.A., B.S.C.) :—Shew that—

d, e, f, @ b, ¢, |
[Fcs oy Ty ()
l b, ¢, dye f;, a

| a, by cnd, e,f = ‘I a+d, b4e, c+f l. \’ a—d, b—e, c—f \
o b ot | c+f, a--d,bte | | f—¢, a—d, b—e |
1 e, f,a b,c, d i b+e, c+f, at+d \ e—b, f—c, a—d 1
|

|
|
|
|

Solution by K. J. Sanjana, T. P. Trivedr, and Appu Kuttan
Erady, M.A.
The determinant on the left is divisible by a+4-b+4c+d+e4f;
so also a—b4-c—d~+e—f, atwb+wec+d+ we—+w?f,
a— b+ wc—d +-we—1wf, a+1*b+we+d+we+wf,
a—wb +we—d 4+ wre+wf,
are seen to be divisors, where w is a complex cube root of anity. The
numerical facter is clearly unity.
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The factors of the first determinant on the right are similarly
found to be a+b4c+d+te+f,
a+wb4w'c4d+we+tw, a+wb-4we+d+wetwf ;
the factors of the second determinant are the three remaining divisors of
the left side. No numerical factors are required in addition. Hence
the result follows.

Other solutions by V. D. Gokhale and V. K, Aravamudan.

Question 425.

(R. Srinrvasay, M. A.): —Shew that the envelope of the polar of
the focus of the parabola u®>=4ax, with respect to any rectangular
hyperbola which has fonr point contact with it, is a parabola having
the same axis as the given parabola.

Solution by G. Ramachandran, T. P. Triveds and V. K. A ravamudan, B.A.

The equation of the rectangular hyperbola oscunlating the parabola
at the point “£” can be easily shown to be

@ — 2wyt —1y*+ 20w (32 42) — 2ayt’+ a?t* =0.
The polar of the focus of the parabola with respect to the
rectangular hyperbola is
Sax(l+t2)—aty(14-1*)+a’(t* 431+ 2) =0 ,
(z.€) a’t* — aty 4+ (3aw+-2a%) =0.
The envelope of the abhove line is
yr=4a(3z+42a),

which is a parabola having the same axis as the given parabola.

Question 435.
(R. Tara, M.A.) :—If the lines joining the symmedian point of

ABC to the middle points of the sides, make angles 6;,6,,0; with them,
shew that,

cotB; +cotB,+cot8,=0.
Solution by V. V. Satyanarayanan and S. Krishnaswamiengar.

Tet K be the symmedian point, AP the perpendicular, and AD,
the median corresponding to BC.

We know “the lines joining the middle points of the sides of a A
to the middle points of the corresponding altitndes pass through the
symmedian point.”

Hence, DK passes through M, the middle point of AP. That is

cot B, =2 cot LZADP =cotB—cotC.

Similarly cot B,=cot C—cot A, cot B;=cot A—cot B.

Hence cot B,+cot 8,4-cot B;=%(cotB—cotC)=0.
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Question 437.
(A. A. KrisaNasamr ArvaNGar B.A.) :—Obtain the following pro-

perty of Bernoulli’s numbers—

B4n+1 B1+‘) Bm-—l B; + + 'nJ—" B*z:ul Bm+1 2141
[47 2 '2 lén |4< 2nt+4 22 ] 2 202
B

=(4n-+5 448

Gadr

Correction and Solution by G. Ramachandran
and V. K. Aravamudan B .

The first term on the leftt hand side should be 9Bim. Bl
|4m,—i—2 2

Now
z 2 B; a2 B
= t_ SNl R o W B : A A
2% % N B T R T

[vide : page 106, Ex. 149, Edward’s Diff. Cale.]
Squaring both sides and collecting the coeflicient of «'*** on the

right hand side, we get
f B4ﬂ+1 Bl Bvill—] E; BQIL-'-I BZ!.LAI)
1]4»4—‘].&4— &n |4 s ] ntd [2n §

B°n+1 l:Bm-)-l 2L B1u+1

tRat2 |>7ﬂ-i |4m+4:

But th‘—z— 14 ‘)d cot_}
__‘,— ( ’) _il_ 2 i AL 2,L4lt+,.
T 1 TG |2 B“] 7 e |4L+4)
B 1 Bj 3 dpn Binas anga )
o _{1 4( s BT47+ ...... o+ (4t ),4 o }
Bquating the co- efﬁment oot
pﬂ.’.ﬁi& Bin 25 B okl .+ B’IL-L :B.)li\}
[dn+2 2 |_—Ln ]4 T g4 2o S
B21r+1 Bﬂu«;—l)_ Bdu 18 3 D dn+s
+]27?1+72 [2rn+2 |4n+4"(4 ar )lé 4
B B B B Bapss Bs
9] er:l e 2 e dI e B e ) 25 1n—
& lin—{— .% e Iiz: + ik [7114-4 ].Zn
B‘Jn +1 B” 1+1 B
; + L (4 Bants
TRtz @2~ GVt
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QUESTIONS FOR SOLUTION.

447. (G. RAMACHANDRAN) :—Construct a triangle ABC having
given the rectangle contained by AB and AC, the median from A o BC,
and the sum or difference of the angles ABC, ACB.

448. (V. V. SATYANARAYANA) :—In any triangle ABC circles
BQR(, CRPA, APQB are described. Shew that QC.RA.PB=
QA.RB.PC.

Also, if (z,2"), (i1,y"), (z,2") are the distances of (Q,R), (R,P), (P,Q),
from, B, CA, AB respectively, prove that ayz =a'y'2.

449. (S. KRISONASWAMI ATYANGsR) :—Istablish the resnlts

e S R e 1Lt
IR T A TP )
450. (K. ArruxurTaN HRaDY, ML.A.):—If A,B,C...are the minors
of a,b,c ... in the determinant | « L g |, and if

h b f
g e )
al+hm~+gn_ hl—{-lboﬂ—in _gltfm+cn
Z N m i . 7’)74 e
prove that

Al+Hm+Gn_HiA+BmtFn_ GI4+TFm4On

! m 7

Hence, prove that the cone (absfgh)(zyz)=0, and its reciprocal
are coaxial.

451. (K. J. Sanjava, ML.A)) :—Shew how to find pairs of isosceles
triangles with rational areas such that the perimeters are in one given
ratio and the areas in another given ratio. Haample: the perimeters
are as 25 : 9 and the areas are equal.

452. (A. C. L. Winkinson, M.A., F.R.A.S.):—In a tetrahedron
in which the opposite edges arve perpendicular the perpendicnlars from
the vertices on the opposite faces meet in a point O. TIf G is the centroid
and A,B,C,D the vertices, prove the following constrnction for the points
of contact of the ellipsoid of revolution inscribed in the tetrahedron
with one focus at O:—produce AG to A’ so that GA’=GA, then A’O
meets meets BCD in the point of contact of the ellipsoid with the
face BCD.
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453. (S. P. SINGARAYELU MoprLiaR, B.A. I.T.):—A hollow
right cone is filled with a homogeneous liguid and held with axis
vertical and vertex down. Find the parabolic section of the cone on
which the thrust is a maximum.

454. (A. A. KRrISHNASWAMI AIYANGAR) :—If s, =1"4+2"+3"+...n",
prove that
2Cr8 4 (2101 —,C1)8,0+(,—2C1 —,1Ca+,C5)s,—5 4 ... to 7 terms
=(n"t'—n)/(n—1).

455. (J. C. SwAMINARAYAN, M.A.) :—From an external point O,
a tangent OT apnd a secant OPQ are drawn to a circle; D is the middle
point of PQ and TD cuts the circle again in A. If any other secant
OXY is drawn and AX, AY cut PQ in R, S, prove that RD=DS.

456. (Seuzcrep):—If f(2) is a continuous function of #, not
necessarily satisfying the conditions for expansion as a Fourier series,
prove that—

1 2 &)
= f(2)Pde=a"+3 (@:*+b,%),
[, ten D) e

277
n—1

where ag,yas, ... bo,by,bs...are the Fourier constants of f(z).

Shew also that

2
a2+ El{ aysinna+ b, (1—cosnaz) } =f f(&)de
n o
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