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ON THE FORMAL STRUCTURE OF THE
PROPOSITIONAL CALCULUS I*

BY

Miss S. PANKAJAM, University of Madras.

[Received 30 December 1g940]

The propositional calculus is the study of the set P
of all elementary (or unanalysed propositions) under the
three binary operations denoted by and, or, implies and
the unary operation of negation. The simplest of these
are probably the operations ¢and’, ¢or’ (in symbols x, +);
the other two operations depend upon each other, and
different views of them can be taken. For instance, the
riegation of a proposition is understood in somewhat
different senses in the classical propositional calculus and
in the intuitionistic logic, while the implication op’eratic.in
characteristic of the newer logics (e.g. Lewis’s logic of
strict implication]) has a different meaning from what
we attribute to the ‘Material Implication’ of the Principia
Mathematica.

The object of this paper is to study the bearing of the
possible meanings attributed to negation on the struc-
ture of the propositional calculus.

1. The Proposition as Meaning-Structure.

A proposition is not merely a statement of meaning
but has besides a ‘meaning-structure’. If for instance a
proposition (say @) is expressed by a sentence, then a

to ‘the departmental lectures on Symbolic Logic and In
delivered by Dr. R. Vaidyanathaswamy.
T Lewis (1).
V—17




50 S. Pankajam

grammatical transformation of the sentence a (e.g. chang-
ing the voice of a verb), though it may be held not to
affect the meaning, yet may alter the meaning-structure
and must therefore be considered to express a new pro-
position. Two propositions having the same meaning-
structure are said to be logically identical (in symbols=),
that is to say, each may replace the other in any logical
context. '

It may be admitted at this stage that this concept of
meaning-structure is not precise or unambiguous; its
connotation may however be fixed by the following
plausible postulates relating to the operations ‘ and ’,
‘or’.

A(1). a+b, a.b have the same meaning-structure as
*b4a, b.a respectively.

a+(b+c), a.(b.c) have the same meaning-structure
as (a+b)+c, (a.b).c respectively.

A(2). a+a, a.a have the same meaning-structure as a.

A@). a(b+c), (a+b)(a+c) have the same meaning-
structure as a.b+a.c, a+b.c respectively.

A(4). a+a.b has the same meaning-structure as a.

We note that the mutual distributivity of ¢ x ’, < 47,
is in conformity with the ordinary accepted meanings of
¢and’, ‘or’. Also, from the fourth postulate we can prove
that the relations a+& =105, a.b = a each imply the other.
For, if 6 — a-+ b, then from A(3), 4(2), 4(1) and 4(4), we
have a.b = a(a+b)=a; similarly if a.b =a, then b-ta.b
— b4a which by 4(4), A(1) reduces to a+b = b.

The postulates A(1)-A(4) thus make the set of
propositions P a distributive lattice®* under the lattice
operations of +, X standing for ‘or’, ‘and’. In sucha
distributive lattice, an ordering relation ¢ <’ may be
introduced by saying ‘@ < b’ whenever either of the

* For the theory from a very general point of view of lattices
in gener:l, and distributive lattices in particular, see MacNeille (2).
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relations b = @-+& or a = a.b (which have been shown to
be equivalent) hold in P. It is evident that this relation
is transitive and reflexive. Further, if a< b and b <a
then a=4 since each =a.b. It is natural to interpret
this ordering-relation as the original form of ¢implication’
in logic ; but obviously it is not possible to identify the
two at this stage as we have yet to consider the
‘negative’ of a proposition and its connection with
lattice-order.

The distributive propositional lattice P contains
‘unit’ elements o, 1 (necessarily unique), for among the
propositions in P are included self-contradictory or
‘absurd’ propositions and ‘logically-necessary’ proposi-
tions. An absurd proposition x is one which has no
meaning-structure whatever ; so that whatever the pro-.
position @ may be, a-+x has substantially the same mean-
ing-structure as «. This means x <a (w.r.t. lattice-
order) for every a. Also, it follows that such an absurd
proposition is necessarily unique in the sense of dattice-
order and is indicated by the element o of the lattice.
Similarly if » is a logically-necessary proposition, then
whatever @ may be, a.y has the same meaning-structure
as a. In other words y>a for every a and must be
identified as the unique element 1 of the lattice P. It is
clear that in P, afto=a=a.1; a.0=0; a+t1 =1 for
any a.

The relation of lattice-order in P to implication in
the logical sense, may be stated thus: Ifa < bin the
lattice, then ¢ must “imply’ 4 in any logic of propositions
of P. For, by definition .5 has the same meaning-
structure as @ or a+-b as b. Thus while the implication
relations which we may impose upon propositions of P
may be widely different from each. other, they must
necessarily satisfy the condition that ‘a implies 4> when-
ever a < b. This justifies our regarding the order-relation
itself as a specific form of implication (which we may call
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lattice-implication), which in consequence must be the
strictest of all possible implication-relations. =~ Whether
this is the same as Lewis’s strict implication or whether
it is identical with the logical implication claimed by
Emch* to be stricter than Lewis’s may be left an open
question. Suffice it to say that for any theory of the
. logical calculus which accepts our postulates A4(1)-4(4)
the above ordering-relation, i.e. our lattice-implication
must be basic.

2. The Negation of a Proposition.

With each proposition @, we associate a unique pro-
position @’ meaning ‘not-a’. The following considera-
tions he'p to fix the meaning of not-a.

N,. Law of Contradiction. &’ is logically inconsistent with
a, i.e. a.a’ is logically inconceivable: in symbols a.e’ = o.

But this property is not characteristic of the negation
a’, as there may be several propositions inconsistent with
as Acéordingly, among the propositions which contra-
dict a, we must give a unique place to the negative of
a—hence the next condition which expresses the fact that
@’ is in a sense the weakest of all propositions contradict-
ing a.

No.  Any  proposition contradicting a is less than a'.
In symbols, if ax = o, then x < &’ or x ‘implies’ «’ in the
sense of lattice-implication.

From the above two conditions on negation it follows
that a’ is identical with what is known as the product-
complementt of « in the distributive lattice P. (An
element a’ of P is defined to be the product-complement
of a if a.a’ =0 and for all x, a.x = o implies x < a’; if the
product-complement exists then obviously it is unique.)
Tt is clear that o and 1 possess complements namely

* Emch (3).
T MacNeille (2).
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or=1; 1’=o0. (This means that our postulates N;, N,
entail the negative of a self-contradictory proposition
to be logically-necessary and vice-versa.)

N;.  Law of the Excluded Middle. The usual meaning
of ¢’ leads to the further property that a+a’ is a logically
necessary proposition, in symbols a+-a" = 1.

N,. Law of Double Negation. The double negative
of a proposition is logically identical with the proposition
itself, in symbols ¢” = (a’)’ = a.

In order to examine the inter-connection between
these laws and their bearing on the structure of the pro-
positional calculus, we study in the next section the
propertics of the product-complement in a distributive

lattice P in which every element has a product-comple-
ment.

3. Theory of Simple and Normal Elements in a
Distributive Lattice P adnitiing Product-complements.*

It is assumed of course that P possesses a, o, and ,I ;
we denote the product-complement by a stroke ¢’’.

Simple and Normal Elements.

(1) An element a of P issaid to be a simple element
if it possesses the property a+a =1 where ' is the
product-complement of a.

(2) An clement a of P is said to be a normal element
if it possesses the property a” = a.

Fundamental Theorems.

THEOREM 1. (a+b) =da'.b'.

Since a.a’=o0, (a+b)a’.b’=o0. And if (at+bd)x=o0,
then ax = o, b.x = 0; hence from the definition of the
product-complement, x <a’, x < b’y 1e., x <a'.b’. Thus
@’.b" is the product-complement of a1 b.

* For the case of Boolean rings, the properties of simple and
normal elements have been proved by M. H. Stone. See M. H.
Stone (4).
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THEOREM 2. a < b implies a’ > b’.

For, since b6.0’=0 and a<b, ab’ <b.b =o, i.e.
a.br = o ; from which we have ¥’ < a’ (or &’ > ') by defini-
tion of the product-complement.

CoROLLARY 1. (a.b)" > (a'+0").

For, since a.b < a, a.b < b, we have from the theorem,
(a.b)" > a" and (a.0)’ > ¥, i.e. (a.b) > (a'+b').

CorOLLARY 2. In general, the converse (viz. @’ < &’
implies @ >0) of the theorem is not provable but if
a, b are normal elements, then a’< {0’ implies a” > b”
which is the same as a > b.

TrEOREM 3. (i) a<a”; (ii) a” =d'.

(i) Since a.a’ =0, a < the product-complement of a’
ie < a’.

(ii) Since the product-complement of «’ is a”, we
have by (i), ¢ <a” or «” >a’. But from (i) and
Thkeorer 2, a” < a’ from which we get a” = a'.

THEOREM 4. Every simple clement in P is a normal
element. ]

For, let a be a simple clement so that a+ae’ =1.
Then, a”=a”.1 = d’(a+a’)=a.a” (since a’.a” = o) from
which a” < a. But from Theorem 3 (i), @”>a. Hence,
(a+a)=1 implies ¢’ = a.

THEOREM 5. If everp clement 1is normal, then every
element is simple.

For, let us suppose @ is not simple so that (z-a’)z1.

But by Theorem 1, (a+a)”"= (@.a”) =0 =1 (a+a’).
Therefore, (a+a’) is not normal which contradicts our
hypothesis that every element is normal. - Hence, ¢ must

be simple.

TueoreMm 6. The sub-set S consisting of all simple
elements of P constitutes @ Boolean Algebra.
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Proor. We first show that the sum (a - 4) and
the product (a.5) of two simple elements are simple.
For, since a+a' = b+b"= 1, we have from Theorem 1,
(a+b)+(a+b) = (b+a)(b+b)+a'.b'=10b" +ab4a' b’ = 1;

hence, (2+4) is a simple. element. Again, using
Theorem 2 Cor. 1, we have a.b+(a.0)’ > a.b+ (a’+8")
which=(a’+a)(a’+b)+b" i.e. =a'+bybd =1. There-

fore, a.b4(a.b)’=1 or ab is a simple element.
[Incidentally, it follows from the above, that
a.b= (a’+b’) if a and b are simple. For, we have
Jjust now proved that (a.5)+(a.b)’ = 1 and also that (a.b)
+(a@’+8")= 1, and further we know that whatever ¢ and &
might be, a.b(a’"+5") = o and a.b(a.b)’ = o ; hence the two
equations a.b4+x=1, a.bx=0 have two solutions
x= (a.b)’, x =a’+b’. Butsince in a distributive lattice’
these equations cannot have more than one solution, the
values for x are identical, i.e. (a.0) =a'+4’. As a con-
sequence of this, we may deduce that when a and & are
simple, a.b= (a’+b’)’, for, since we have proved that
(a.b) is simple, it must be mnormal (Theorem 4).
Therefore, a.b = (a.b)” = (a’+0").]

Thus, since the sum and product of two simple
elements are also simple, it follows that the totality of
simple elements forms a sub-lattice .S of P. Next, we
observe that the product-complement of a simple element
is also simple. For, if ¢ is a simple element, then since
by Theorem 4 every simple element is normal, we have

@’ +a” = a’'-a = 1 by hypothesis, so that @’ is also a simple
element.

But since S is a sub-lattice of P, the product—comple-
ment of 2 in § is also the product-complement ¢’ of ¢ in’
P.  And since a+a’ =1 for any a in S, it follows that the
sub-lattice S is a Boolean sub-algebra of P, the product-
complement in .§ now becoming the Boolean compfcinent
in the Boolean algebra S.
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TuroreM 7. The set of normal elements of P is identical
with the set of product-complements of elements of P.

For, if @ is normal, a = ¢” = (&’)’, i.e. a is the product-
complement of a’. Conversely if a° be the product-
complement of any a, then from Theorem 3, a =a"”
= (&’)”, i e. any product-complement is normal.

4. The Propositional Lattice P.

We shall now apply the results of the previous sec-
tion to the propositional lattice P which as we have
seen, has a o and 1. We assume N, N, to be valid
in P, so that every element of P, i.e. every proposition
has a product-complement, viz. the negation of the
proposition.

(1) Each of N, and N, imply the other.

For, if the law of the excluded middle holds without
restriction in P, it would mean that every element of
P is simple. But by Theorem 4, every simple element is
normal’; therefore every element of P is normal or every
proposition is logically identical with its double-nega-
tion ; thus we see that the law of double negation holds
universally if the law of the excluded middle holds uni-
versally. If on the other hand the law of double nega-
tion holds, then every element of P is normal. There-
fore by Theorem 5, cvery element of P is simple, i.e.
the law of the excluded middle holds universally in P.
In this case, the lattice P becomes a Boolean algebra,
namely the Boolean algebra S constituted by the totality
of simple elements. (Theorem 6.)

(2) From Theorem 7, it follows that the elements of P
which are normal are identical with the negative propositions.

Thus if we assume N, N, N; to be valid in P, the
structure of P becomes such that every element is both
simple and normal so that P reduces to a Boolean algebra
S. The product-complement in the distributive lattice
P has now become the Boolean complement in § and
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the ‘lattice-relation’ in P (i.e. lattice-implication) is now
the Boolean ordering-relation. Therefore the calculus
of propositions S thus reached is identical with the
calculus of propositions in the Principia Mathematica
except for the notion of implication. For, in the latter,
‘implication’ or ‘material implication’ as'it is called,
requires the ideas of Truth and Truth Values while in
our propositional calculus the notion of truth has not
yet been introduced. Thus our lattice-implication which
has here become ‘Boolean implication® is not the same
as the matcrial implication of the Principia.
5. Intuitionistic Logic.

We next assume that AN, N, hold in the distribu-
tive lattice P, but N; is not universally valid so that W,
also cannot be universally valid. Then the structure of
P is that of a general distributive lattice admitting
product-complements, in  which every clement is not
simple and therclore there exist non-normal elements
also (Theorem 35). As in the previous section, we
apply the results of §3 to the propositional calculus P
admitting the ncgation laws N, N; but not N;. Thus:

(1) As alrcady remarked, the propositions for whicl the
law of double negation holds are identical wille negative proposi-
tions. o

This follows [rom Thcorem 7, §3<

(2) The relations of negation to © -’ and © 3’ are not
symmetric.

Tor, from Thecorem 1, §3, (e+0)" is identical
with «’.6” but it is not truc that in general (a.b)"
—a'-0’. That is to say, the necgative of a proposition
‘q or b’ is the proposition {‘not-a’ and ‘not-b’}, but
the negative of the proposition ‘¢ and b’ is not ‘not-a or
‘not-6°. Also from Theorem 2, it follows that the nega-
tive and the ordering-relation are not symmetrical with
respect to each other. Hence there is no question of the

law of duality for negation.
v—38



58 S. Pankajam

(38) dny  proposition for whick the law of the excluded
maddle holds satisfies the law of double negation.

For, by Theorem 4, every simple element in P is a
normal element ; hence the propositions satisfying the law
of the excluded middle form a sub-class of the negative
propositions. But there is no reason to think that con-
versely, every normal element would be simple, i.e. that
the law of the excluded middle would hold for every
negative proposition. This point is discussed further
below.

(4) Brouwer’s dictum of the absurdity of ihe absurdity
of the law of the excluded middle holds.

For, even though a4’ =« 1, we have scen that (aa’y”
=1 always.

The above are characteristic features of Intuitionistic
Logic. We next show that these properties are present
in the formal scheme  for Intuitionistic Logic developed
by Heyting™. '

6" Heyting’s Intuitionistic Logic.

" According to the set of axioms of Heyting also, the
set of propositions P form a distributive lattice with
respect to ‘-’ and ‘ x’ (‘or’, ‘and’). In the following
theorems taken from Heyting’s paper, we interpret his
implication operation ‘5’ as our lattice-implication ¢ <’
and for casy reference, quote Heyting’s number for each
theorem.

THEOREM 1. (4.5) b.adad’:>:b>a’, where a and b are
any two propoesitions of P and & is the negation of a.

This theorem is tantamount io the statement that
the negation a’ of @ in P is the product-complement of «
in P. For, since b.a>a and b.ada’ (by hypothesis) it
follows that b.a>a.e’. Therelore, b.ana’ :5:b.ayaa'.
Conversely since a.a’'>d’, b.a>a.a leads to b.asda.
Therefore, b.a>a’ is logically equivalent to b.a~ya.a’,

* Heyting (5).
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that is b.a =o0. Hence, Heyting’s theorem becomes
b.a=o0.>5.b <a’ which makes Heyting’s negation a’, the
product-complement of a. :

THEOREM 2. (4.31,4.32) +.a':D:ca” {or ad=a” }
THEOREM 3. (4.3) +. aDa”.

THEOREM 4. (4.44, 4‘:53).

(i) (a-+d) :oc:a'b or (a1 b0) =a'l.

(ii) (@’4-0") : 5 : (a.b)’.

THEOREM 5. (4.8, 4.45).

(i) r. (df'r(z')".

(ii) +. (ata’) :D:1a"Da.

Theorem 2 above, corresponds to Theorem 3 (ii) ofs
§ 3 and is identical with § 6 (1).

Theorem g corresponds to Theorem 3 (i) of § 3.
This theorem combined with the fact that a theorem of
the nature (a”>a is not found among Hgyting's

theorems, suggests that the law of double negation does
not hold for all elements & in Intuitionistic Logic.

Theorems 4 (1) and (ii) correspond to Theorem 1
and Corollary (1) of Theorem 2, § g respectively, and is
identical with § 5 (2).

TueoREM 5 (i) corresponds to § 5 (4).

THEOREM 5 (ii) corresponds to §5 (3).  But the
converse of this theorem (as mentioned above),
namely, that every normal element is simple, is not true in
general. In other words, the law of the excluded middle
is not valid for every negative proposition. Tarski* has
specifically proved this fact by matrix methods in a recent
paper, wherein starting from a set of alternative postu-
lates for Intuitionistic Logic, he proves that neither ¢« or

* Tarski (6) pp. 103-8. I am obliged to Dr, Vaidyanatha-
swamy for drawing my attention to this work,
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not-a’ nor ‘either not-e¢ or not-not-a’ are provable
formule in Intuitionistic Logic. This is also implied in
Heyting’s paper®*. It does not seem easy to state condi-
tions on a distributive lattice P which would imply that
every normal element is simple, though it is easy to
construct examples of such lattices.

In this connection, Frinkt points out the fact that
the totality of the negative propositions of an Intuitionistic
Logic forms a ‘ Boolean sub-algebra’ of Heyting’s* logic,
where the Boolean operations of product and complement
arc identical with the product and product-complement
of the lattice P but the Boolean sum is defined differently.
As a matter of fact, we can show that the Boolean sum
is the ‘normalised’ sum defined as the double product-
.complement of lattice sums in . For, if a’, b’ are normal
elements of P, then the Boolean sum which is known to
be (a”.b”)’ is the same as (a’+&’)” which is precisely the
normalised sum of @’ and . We have then the follow-
ing theorem :

THEOREM. The set of all normal elements of P form a
Boolean algebra N, in which the Boolean product and the com-
plement are the same as latlice-product and product-complement,
while addition is defined as “ normalised’ sum.

To prove this, it is only necessary to show that the
normalised sum of normal elements distributes and is
distributed by the product of normal elements in N.
The proof is substantially the same as that for a similar
theorem of Huntingtoni.

We may remark that since Boolean addition is not
the same as a lattice sum, it does not seem proper to call
N a Boolean sub-algebra.

* See the explanation under (4.45), Heyting (5) p. 5o.
T Frink (7). # Huntington (8).
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PATH EQUATIONS ADMITTING THE LORENTZ
GROUP—II
BY
D. D. KOSAMBI, Poona

[Received 25 January 1941]

In the first paper* with the same title, it was shown
that the fundamental ideas of the theory of relativity
could be applied directly to the trajectories of particles,
without assuming the existence of a Riemann metric.
The results of that paper are valid also for more than
four dimensions, with the corresponding extended Lorentz
group; in particular, to the Kaluza-Klein theory in five
and the Proca-Goudsmit in six dimensions. From the
analysis of Cartan and von Neumann dealing with the
theory of spinors, it is not to be expected that anything
of *importance could be obtained from a manifold of
more than eight dimensions, but the cases n= 5-8 will
not be without some value. These path-spaces constitute
the most general such extension of Einstein’s special
theory.

The results of my first paper cover somewhat more
ground than is apparent therein. Consider that the path-
spaces admitting Lorentz (= L) and similitude (= 8)
groups are derivable from three-dimensional observa-
tions, and have the trajectories of the ¢fundamental

particles”, x'= cx' as solutions:
TN 4 Y . )
% —p’iG(g)+2xiy(g) =o0;i=0,1, 2, 3;
2v(1)—G(1)+1 =o0. (1)

Here, as throughout the rest of this paper, the nota-
tion of (1) is,used, though later on, it will be found more

* Kosambi (1).
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convenient to make dircct use in formule of the quanti-
ties g=1+G, v =147v. Thesec paths become singular, or
indeterminate, for the origin of space-time x°, x!, 2%, x*=o0,
for which reason I have called them elsewhere (4)
cosmogonic instead of cosmological path-spaces. If
however, the observer is fixed as the space origin and lets
his time coordinate x° = ¢/ vary in accordance with the
cquations, we find that the equations reduce to

« 0

o a6} mi (5B mo. (0

This has the solution x° = a¢'", so that the relation
between the observer's time and the parameter = of the
path-equations is precisely that between Milne’s two time-
scales. Of course, I do not make the claim that all gf
Milne’s results are covered by the theory of path-
cquations admitting various special groups. For example,
Milne feels bound to express certain views on creation
and the deity*, whereas I amunable to venture upon theo-
logical applications of the theory of continuous gtroups.

The rest of this paper, then, will give rather elemen-
tary results in the theory ofsuch path-spaces, unifying
and illustrating some scattered work published in other
papers. T

1. The following formula are handy in calculations:
dx’
d+
bi=gb's xi=xg; X=pp; Y=xx; & =px,; {=2YXY
X, .= 2])1.; X, =0;Y = 2x,; Y . =o; Z’,-=,;c,»; Z .=,

—Zo=8n=8n2=¢gu=—1;8;,=0, 17, pf=x, 1 =

27 . -
‘_5.‘ i (le) fZX>, ; i ﬁ(x'ri""z[]i); é: *‘ j
e e me ! : of o
X¢ 2=V pr=2Z(1—-£), where F, P =t F .= a?(l 1)

* Milne, (2), 138-40.
t Kosambi, (3) and (4).
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and the tensor summation convention is used.

It is also convenient to know how to calculate the
contravariant tensor corresponding to any given covariant
tensor of rank two. This, of course, can always be done
by taking the normalized cofactors of the elements in the
original tensor matrix, but for our work the tensor will be
found to have the particular form :

Ty = Agy-t B+ Cpipy+ D pr Epiy. (1:2)
Assuming thercfore that the associated contravariant
tensor is of type
T = ag' 4 bx'x! - cp'p) 4 dx' pitepii, (1.3)
we solve the cquations T57T,,=s5}, which must be true
identically in the quantities concerned. We obtain
therefore,
ad =1
aB+b(A+BY - EZ)+d(BZ 1+ EX) =0
aD-1-b(CZ 1 DY) 4+d(4+CX+4DZ) =0
aC+c(A4+CX +DZ)+¢(CZ+DY) =0
ali1c(BZ-+EX)4-¢(A+BY 4 EZ) = o. (1.4)
Eliminating a from the first of these, the remaining fall
into two sets, which can be solved if and only if the
determinant
- A=(A+BY+EZ)(Ad-+CX+DZ)— (BZ+ EX) (CZ+DY)+o.
It is clear, of course that .1-« o is also a necessary restric-
tion ; it nced not be added that the equations (1.4) can
be solved for the coeflicients of 7;; when 7 ¥ is given.
The explicit solutions are :
a=1/A;0=A(A+BY +CX  DZ+ EZ)+ (BC—-DE)(XY_2%);
Anb =X (DE—-BC)—AB; Axd=2Z(BC-DE)—AD
Arac =Y (DE-BC)—-AC; Axe =Z(BC-DE)—-AE.  (1.5)
These formule become particularly important when
we have 7; as the fundamental tensor ‘o-f a- metric vpa'th-
space, i.c. of the form f,;,;, the condition A4 0 being
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‘then the condition for the metric to be non-degenerate,
and the variational problem to bec regular. For the

: : Y
special metric /= X »(X, £ wec have:

A=g¢p—2¢:; XC=g:+25¢22;
YB=2&¢,,; ZD=ZE= —2&¢..
The condition a =£o0 reduces to

p2 4 (1—28) ppo—&(1—£) g3 1-26(1—&) pp22 5= 0. (1.7)
This can be intcgrated for the cases when the expression

vanishes, and the degencratec values of the metric arc
then given by

Vo =PV(E—1)+QVE, (1.8)
where P, O arc arbitrary functions of X alone. This

includes the case Ad=o0 as well. Any other metric is
permissible, il it gives the paths desired as extremals.

2. In the previous paper (1), it was shown that
a path-space admitting L and 8 in additiont to "a
Ricmann metric was, if isotropic, nccessarily flat. This
result and its possible generalizations. really illustrate
a theorem in the projective change of connection for
the classical path-spaces: that such a change of conncc-
tion always exists if the space is projectively flat, so
that the ecquations of the paths become those for an
ordinary flat space.

Discarding the similitude group, the most general
path-spaces with a symmetric affinc connection admitt-
ing the Lorentz group can, as is obvious, always bec
put in the form:

.. Y A A
.\"—[)‘}—{.(A—I)—}-igB—}—Qx'i(C—I) = 0. (2.1)

Here 4, B, C are as yet arbitrary functions of X alone.

The similitude group applies if and only if all the three

functions are constants; the —1 is inserted, here, as in
V—9
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later path-equations, to give the simplest ultimate
formule. A Riemann metric must have the form :

=¥ /X4 pZ* X = é,-,-.i:fkf; e, B8, functions of X alone.
- = B - i
8 = xGitxzlil ; (gl = —a’(a-+p) £ 0. (2.2)

Also the covariant derivative with respect to (2.1) of
the tensor g; must vanish, These conditions can be
calculated by the usual method, to give:

a':aC; [3':/‘3<20—B)'—GB; (A.——C)Et—i‘A,G:O_. (23)
The dash indicates, as usual, differentiation with respect
to the independent variable faken here as log X.  As there
are, for any given system of paths, only two unknown

functions a, 3 to be determined, and three equations,
we immediatcly obtain a compatibility condition :

AJA-C'|C=A+B—C; AC:z0 (unless A= C=0). (2.4)
The latter part of the formule is simply the non-degen-
eracy condition in (2.2).

Direct calculation shows that the projective curva-
ture tensor of the path-space vanishes if and only if we
have '

A* - AB—1—24"=o. (2.5)

Now, for flatness, we must have in addition to (2.5), the
conditions : ’ -
AC—1=0; 2("+BC--C*| 1 =0. (2.6)

Of these, the condition AC—1 =0 1is crucial,
becausc it makes the other two conditions for flatness
compatible. ~ Morcover (if AC =1), the condition
for the existence of a non-degenerate metric reduces
precisely to the condition for the space to be projec-
tively flat. The relationship between our theory and
that of a projective change ol connection is furnished
by the fact that the function C((X) cannot be deter-
mined by three-dimensional (for the extended Lorentz
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group, (n—1)-dimensional) observations. Hence, if we
utilize the indeterminacy to obtain the existence of a
metric, we can always get projective flatness to coin-
cide with ordinary flatness. This gives us:

TurorEM 1. If A, B are prescribed, with A=~o0, and C
may be chosen at will, then the choice C= 1/ in equations
(2.1) gives a space w/zzc/t is both isotropic and flat; for the
given c/mzce of C, no projectively flat space can exist which
is not also flal in ihe usual sense.

The actual transformation carrying the metric of
(2.2) into a Hnt space can be found by putting ¥ = xy(X),

calculating xxf and setling it equal to the original

i

metric. The usc of (2.3) and the condition AC—1 =0
. C—1
leads to the function ¢ at once, ¢ == exp X(TIF)[ZX

If A4, B, C arc to be constants and a metric exists,
then there is no other choice possible for isotropy except
the one which also gives flat spaces. I'or the general case,
it is quite clear that choices of C exist which™llow a
metric and isotropy, but do not then imply flatness.
However, such a statement would mean that the function
C has an intrinsic position of its own although it cannot
be specified from (n—1)-dimensional observations.

3. To extend these results to more general types of
spaces, we shall first have to discuss the existence of a
metric under more general conditions. Any space whose
paths are deducible from (#z—r1)-dimensional ohserva-
tions, and admit the Lorentz group is defined by the
path-equations:

-

X ~0’Y{§(X, O—1) o ‘Z [2(X, )—=1}=0. (3.1)

These admit both L and 8 1fg and » are functions of ¢
alone. A metric exists for these spaces if and only if there
exists a function / satisfying :

Sfi=f =%l S =0, | i;_i{ 70, (32)
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where «'is obtained by regarding the paths as xi+ai—o,
Now the condition of non-degeneracy has been
discussed in the first section, so that it only remains
to reduce the equations (8.2) to an amenable form.

Y
Taking f= x exp H[X, ¢], and recalling that with f,

any function thereof such as log f will also be a solution
of (3.2), we get the equations:

H,= PH,4-Q P=¢(1—¢)g,1v;

H,=S/R - Q= —sg+v280,;
H,=0H[alog X  R= (1-¢)(g—¢g)+&;
H,=oH[os etc.  §=— (g—sg)+v—28, (3.3)

The notation has again been changed from that of my
i;)revious work to give the simplest final calculations.
Solving the above equations explicitly for H,, H, we have
a simple first order partial differential system which is
immediately integrable ifand only if H,,—H,=(PS/R
+Q),~(8/R), =o0. This is a differential equation, from
our present point of view, for the unobservable v in terms
of the observed function g, and inasmuch as a solution
exists in general, the metric exists unless the only possible
solution does not satisfy the condition for non-degeneracy.
If the metric be wanted directly, without troubling our-
selves as to the choice of v, it can be obtained by regard-
ing (3.3) as linear equations which can be solved for the
unknowns v, v,. We have:

o(eH,—1) 280, = (g—£g:) | (e—1)Ho—1 };

v(¢Hy 1) fog, = Hi—e(e—1)g8Ho 52, (3.4)
These give at once
2v=Hy+g{1—(¢—1)H, }. (3-5)

Substitution of this value in the solution for v, leads to
2}3[‘_{12——25 i—1)gH,, +§H1HE‘$(€“I)gH.§_H1
H(1—28)gH,+g=0. (3.6)



PATH EQUATIONS ADMITTING THE LORENTZ GROUP 69

The integration of this can be performed by the standard
methods of Monge, but it is simplified by the transforma-
tion /= log ¢4 2 log ¢. The new equation in ¢ has then
the form

12+ (I —8)gP2z+(3/26—2)gpo=0. (3-7)

This equation has been given* for g, » functions of ¢
alone, but our derivation shows it to be valid whenever
the path-space admits I and possesses a Finsler metric.
The integration is obvious, by the standard methods
such as that of Charpit, treating (3.7) as a first order
linear differential equation in ¢,. For g(_1+G in
Milne’s notation) not zero, the result is equivalent to
that of Walker (2, 166). Tor g=o0, we have at once
¢ = a(¢) +p(X), and the second term can be discarded
because it amounts to an additive perfect differential,
such as is admissible in any variational problem. The
metric for ¢=o0 (Milne’s kinematic case) is then

Yq¢(s)/X, the function ¢ being arbitrary, subject oply
to the condition of non- clegenemcy

When, however, the similitude group applies, the
situation is better treated in another way, though the
above methods are quite valid. Here, the metric, to
admit both L and 8, with relative invariance under the

Y @ 0
latter, must have the form }A(X“q,(g), and ¢ is given as

exp f(S/R)dg. The condition for this to be possible,
i.c. the condition of integrability of (3.3) when g, » do not
contain X, is (PS/R-+Q ), = o0, whichis PS/R4-Q —a—r1,
the constant « being the same as that which enters into
the metric. In this case, we can determine the proper
choiceof z, for any given g. and the existence of a metric,
as a solution of the Riccatian equation

* See (1), formula (12).
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,_ alg—¢g) g+ag

Y=g tig(t-g 2(é-~1)> (5 - (3:8)
The above equation always has the solution » — aa+ g/2¢,
but this always leads to a degenerate metric, and can
only be used to deduce the general solution :

v=aja-|-g/2&4-1/u,

wul g/g+1/2(s—1)—3/26+a/2(e—1)g } 4 1/(e—1)g = o.

(3.9)
As an application, it will be found that the metric spaces
which have identically the relationship ov = (which

need hold only for ¢ = 1 to give us the soluuons K= cx?
for the path- qul"tlloﬂ%) have a g given by
(1;—
F == .10
S 754_17141)\/5671’ (3 )
a, as in the metric; b, arbitrary constant.
So, the only sub-case which is also Riemannian is
v =g = 0, the *"kinematic” case again, metric ¥/X.
= 4.. Coming now to the question of isotropy, we note
that the theorem of Schur admits of a partial extensioh
to our general path-spaces, if the concept of isotropy is
redefined (3). This amounts to the restriction. that the
first curvature tensor P! of the space should reduce to the
form asi—xig,. This curvature tensor is, for the spaces
(3.1) admitting the Lorentz group and deducible from
three-dimensional observations, of the form
X?Pi= AXYsi X By x;— CZxp;+ Ep'(Za; =Y p;)
A=glor2(1—gv, | +&(2v,—0")—1; B=C:i-4;
C= 1+0g—0" 420, —4évy+0: | 26(1—£)g,—6g+8eg—2¢v }
—4£(1—¢£)gvs2 ;

E=¢(1-£)(2g8"- g+ (1—28)88'+ & —1+2(g1—£812) ;
av o w
where v, = 3 Tog X’ v, =7g, etc. (4.1)

For simplicity, I consider the case where both L and §
groups are admitted, and g, v are functions of ¢ alone.
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The condition of quasi-isotropy is, for these restricted
path-spaces
P=¢(1—¢) (288" —8"%) + (1—-28)gg’+ & —1=0. (4.2)
This differential equation has the integrating factor
g'/g*; the first integration gives
§(1—£)g"/g+g+1/g = const. (4-3)
The complete solution is best presented in the form

g=pVe(e—1)¥q(e—1/2) =3V (P—g*+4)- (4.4)

If we wish to make Pi=o0, we get three more equations,

of which only two arc independent, and admit the
common solution :

v = b(e=1)th e 1

2

- J/a -
8= 20VE(E—1) - (e 1) ¢

X f, b, ¢, any constants.
¢ >

°J

(4-4)
In spite of the apparent difference in form, it will be seen
that the form of the solution for g is precisely that given
in (4.4), with proper adjustment of the two sets of
arbitrary constants. Onc further adjustment can be
made by substitution of the above values ofv, g in (3.8):
the arbitrary constant ¢ in (4.4) must be the same as the
exponent in the metric; c=a. It is clear, then, that a
choice always exists for v which gives a metric, and whenever the
g is such that the space is quasi-isotropic (the condition of
quasi-isotropy being independent of v), we automatically have
Pi=o.

It does not follow, however, that the space is Hat
even then. To this end, it would be necessary and
sufficient to have an additional condition of =0,
which would bring us back to the symmetric affinc
connection discussed before. The facts of the matter
here are as follows. For any system of paths, and for a .
sufliciently restricted piece of a given path thereof, it is.
possible to choose a coordinate system making @ =0
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along the path. When, as here, we have a1l x'—o0,
the path has the_ equation of a straight line ¥ = o.
If, in addition, P! is zero, the cquations of variation
admit along the chosen path as base, solutions for which
the components of the vector variation are linear in the
parameter 7. This means that the whole infinite sheaf
of paths which can be obtained from the given path by
giving it successive ‘“small variations” all have the form
of straight lines. Beyond this it is not possible to go
unless & ; .., = 0, in which case alone is it possible to
assert that all paths become straight lines in the chosen
system of coordinates.

For non-homogenecous </, it is not possible to go cven
as far as the conclusions of the last paragraph. But the
discussion of that case is beyond our scope here.
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THE LINEAR LINE - CONGRUENCE
BY
C. N. SRINIVASIENGAR, Bangalore
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1. A linear congruence of lines is formed by the
lines common to two linear line-complexes. The lines
of such a congruence possess two transversals, and
the congruence is called hyperbolic, elliptic or parabolic
according as these transversals are real and distinct,
imaginary and distinct, or coincident. This paper is
devoted to the consideration of a number of properties
connected with hyperbolic and parabolic linear congru-
ences. The properties of a hyperbolic congruence will of
course be true for an elliptic congruence by the introduc-
tion of imaginary elements when necessary.

2. Taking the directrix lines of a hyperbolic congru-
ence as the lines x; =x,=0 and x; = x, = o, the line
coordinates p; of the ray of the congruence joining
(0, 0, x;3, x,) and (x,,x,, 0, 0) are given by
Prat Poat Past Dozt Pt Prz = X144 PXaXy1 O XpX3:1—X X3 O. (1)
Hence the congruence consists of the lines common to
the two special linear complexes p,,=o0, p,, = o.
Plucker’s fundamental identity reduces, for these lines, to

Prabz3 = P2yPis-
If a set of homogeneous coordinates are considered,
wherein

Xt Xt X0 Xy = Pyt Pog: Pass Pis (2)
we obtain from the above, the quadric surface
X X=X, X,. (3)

A (1, 1) correspondence is thus set up between the rays of

a linear hyperbolic congruence, and the points on a
V—1o0 ’
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quadric surface. This correspondence was set up by
Henzel*, who further transformed the points of the
quadric by means of a stereographic projection on a plane
from a fixed point on the quadric. Part of Henzel’s
work is devoted to the study of the correspondence
between curves on this plane and the ruled surfaces of
the congruence. Some properties of these ruled surfaces
can however be deduced from considerations of the
quadric itself directly in relation to the congruence. §§ 3-4
are devoted to these properties.

3. The two systems of generators of the quadric (3)
are
X, = 2X,;, X,=2X;
and X=X, X,=pX;.
Any a-generator corresponds, by (2), to

D1a= P24, P13 = \p2s
both of which are by (1) equivalent to x; = ax;, which is
a plane through one of the directrices. The points on
the a-generator thus correspond to the pencil of lines
Jommg the point (a, 1, 0, 0) to all points on the line
=x; =0. Slmﬂarly a p-generator corresponds to the
pencil of lines joining the point (o, o0, 1, u) to all points
on x; =x, = 0.
The points on the conic given by the section of the
quadric (3) and the plane
aX +bX,+cX;+dX, =0
correspond to those lines of the congruence which also
belong to the linear complex
ap14-+bpai-chzs+dpss = 0. (4)
But the lines common to this linear complex and the

* Four. fur reine und ang. Math. 173 (1935), 91-113. This paper
is followed by further papers: Henzel, Ibid. 175 (1936), 169-81,
Hznzel and Reutter, 178 (1938), 229-52.



THE LINEAR LINE-CONGRUENCE 75

complexes p,, =p,, =0 form a regulus, the quadric
containing this regulus being
ax X, bx,x, +cx,%;5+ dx,x; = o.

"This is the general equation of any quadric belonging to
the. congruence, and shows that there are w3 such
quadrics. Since three points on the quadric (3) deter-
mine a conic section on it, it follows that the quadric
through any three rays of the congruence is a quadric belonging .
to the congruence. 'When the conic breaks up into a pair of
lines, i.e. when the plane of the conic is a tangent plane
of (3), the corresponding quadric of the congruence
breaks up into a pair of planes.

The familiar property that four fixed generators of a
quadric of the same system cut a variable generator of
the opposite system in a constant cross-ratio, follows at
once by this method; for this configuration corresponds
to the lines joining four fixed points on one directrix to a
variable point on the other.

4. Let us consider a curve of type (¢, q) on the
quadric (3), i.e. a curve which cuts,any generator of one
system jp p points, and any generator of the other system
in ¢ points. This curve corresponds to a ruled surface
belonging to the congruence, which is such that through
any point on one directrix there pass p generators while
through any point on the other directrix there pass ¢
generators. In other words, we get a ruled surface of
order p+¢ on which the two directrices are multiple lines
of orders p and gq.

Conversely, the generalors on any ruled surface with two
directrix lines may be made to correspond lo points on a curve on a
quadric.

The osculating plane at a point on a curve on (3)
corresponds to the osculating quadric through the corres-
ponding ray of the ruled surface of the congruence. It
follows from § g that any osculating quadric of any scroll of
the congruence iiself belongs to the congruence,
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The statement that a skew curve on a quadric is of
order n and class m is equivalent to the following:"
A scroll of order n of the congruence has # rays in
common with any quadric of the congruence (the directr-
ices forming the residual intersection), and a definite

number m of osculating quadrics

generator of the scroll.

pass through any

We now write down the following properties of
“certain scrolls by considering known properties of corres-
ponding curves on a quadric, or vice versa.

A curve of type (p,q) on a
quadric is determined by pg-+p
-+ ¢ points®.

Through any point there pass
three osculating planes of a twist-
ed cubic, and the points of con-
tagt are coplanar with the given
point. *

A skew quartic of type (2, 2)
has 16 stationary planes whose
points of contact lie on four

planes.

A skew quartic of type (2, 2) is
touched by four generators, of
each ‘system, of any quadric con-
taining the curve.

A scroll of order p-+¢ with two
multiple lines of orders pand g
respectively is  determined by
Pg-+p+q transversals of ‘these
lines.

Through any ray of the linear
congruence determined by the
two directrices of a cubic scroll
of the first species, there pass
three osculating quadrics. The
quadric through the generators
along which the osculation takes
place passes through. the ray
considered.

A quartic scroll having two
double lines has 16 osculating
quadrics each of which has con-
tact of the third order with the
scroll along a generator. These
generators, which may be called

Jlecnodal  generators, lie four by
four on four quadrics.
A quartic scroll with two

double lines has four pinch-points
on each line.T

* Sommerville, Analytical Geometry of Three Dimensions, p. 307.

t Use § 3.
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If on a skew quartic with two
inflexions, we take four points
A, B, C, D such that their oscu-
lating planes pass through a given
point O, then 4, B, C, D, O lie on

77
“ If a quartic scroll with .a triple
line and a simple directrix
possesses two pinch-points

through each of which three’
coincident generators pass, then

a plane;

also if the osculating
etthe.curve again in

there are four generators of the
scroll whose osculating quadrics

pass through a given generator.
The five lines lie on a quadric
surface. Also these osculating
quadrics meet the scroll again in
four generators which lie on
another quadric through the
given generator. T

NO- oceed to consider some metrical’
prop yperbolic linear congruence. For this
purpose we have to use Cartesian rectangular coordi-
nates. Taking the two directrices in the standard form
y=mx, z=c¢and y =—mx, g =—¢

the coordinates of the middle point of the line_joiging
(@, me, ¢) and (B, —mp, —¢) are
_etp  _ ma—p)

Xo = T, b Yo T 2 » g = O.

Since the foci of any ray of the congruence lic on the
directrices, it follows that

The middle surface of a hyperbolic linear congruence is a
plane parallel to the directrices.

The middle envelope is the envelope of the plane
(x—20) Do+ (y—po)m’xo-+mez = 0,
as x, and y, vary. Hence,
The middle envelope is the rectangular paraboloid,
cz(1+4m?) fmxy = o.

* C. N. Srinivasiengar, 7. 1. M. §. (2) 2 (1936-37), 306.
f Use §3 to work out the correspondence between
properties.

these
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The equations of the ray having its middle point at
(x0> .}’0) are

X—% _P—Vo %
Yo/m T mxy, ¢
Solving for xy, », in terms of x, y, z, we get
¢(emx—yz) c(cy—mxz)
%0 () T g (5)

If (%o, »,) describes a curve on the middle plane z= o,
(%, », z) which is any point on the ray through (%05 o)
traces out a ruled surface.

6. The condition that the foot of the common
perpendicular between the ray through (x,, o) and the
ray through (x,4-dx,, »,--dy,)—points on the middle
plane—, should fall at (x,, y,) is worked out to be
(Dodxo+mxodyy) ( Podpo 41 x0dx,)
= (1 4+-m?%) (P} +m*x2-+c*m?) dxydy,.
Writing p for dy,/dx,, we obtain the differential equation
Ko Do P — P( I3+ A5+ T m?) ymix, yo=o0.  (6)
Putting x3 = £, »{ = 5, we obtain the general solution
in the form ]
2 2
D§ = rMg— MTS%%@ (7)
where A is an arbitrary constant.
From the properties of mean ruled surfaces,® it
follows that
The lines of striction of the mean ruled surfaces of a hyper-
bolic linear congruence are a jfamily of concentric conics on the
middle plane.
From (5) and (7), we obtain the equations of the
mean ruled surfaces as
A1 4-m?)

p— (62—z2)2 =0,

A
(cy—mxz)’ — 3 (emx—y2)*+

* Weatherburn, Differential Geometry Vol. 1. § gg.
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The singular solution of (6) represents four straight
lines, which are however imaginary. A straight line
Axy+By,+C =0 on the middle plane generates a para-
boloid in virtue of (5). Hence,

The mean ruled surface of any ray of a hyperbolic congru-
ence is a quartic scroll having the directrices as double lines.
The mean ruled surfaces of the different rays of the congruence
Jorm a singly infinite system enveloping four imaginary para-
boloids.

If g, and B, are the parameters of distribution of
the mean surfaces of the ray through (x5, »,, 0), and
if the ray meets one of the directrices in (a, a, €),
then the square of the distance* between (x,, y,, 0) and
(a, ma,c) is equal to —pg;B8,. Hence

—B1B2 = (Yo+m'x3+c’m?) fm?.
The two focal planes of a ray are the planes through it
and each of the directrices. If ¢ is the angle between a
focal plane and one of the central planes, 2¢ is the angle
between the focal planes. Also

tan® ¢ = —p,/8;,
so that
(Bi+B2)? =—4p.8, cot? 2¢.
Writing down the directions of the normals to the two
focal planes through the ray, and calculating cot 24,
we obtain after some simplification
242 2 2 2
BBy = 4 %o )’06;(;15 (r—m ).

Using equations (5), we obtain

Rays of a kyperbolic linear congruence for which the mean
parameter of distribution is equal to a given constant lie on one or
other of two quartic scrolls having the directrices as double lines.

7. We shall investigate a few properties concerning
asymptotic curves on scrolls belonging to a hyperbolic

* C, N. Srinivasiengar, Proc. Indian Acad. Sc. 12 (1940), 352.
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congruence, and we start with the following theorem due
to Snyder.*

Any asymptotic curve of a scroll belonging to a linear
congruence belongs to a linear complex. The linear complexes
corresponding lo different asymptotic curves are of the form
o+ ko'= o, where k is any constant, and o =0, o’ =0 are the
complexes defining the congruence.

The theorem is true for hyperbolic and elliptic as
well as for parabolic congruences. For the sake of
completeness, the proof will be outlined here.

Consider a generator of any scroll belonging to the
congruence. The polar plane of any point £ on the
generator with regard to the complex o+ko’ = o contains
the generator and hence touchesf the scroll at some point
‘0 on the generator. Let L, L’ be the double points of
the homography (P, Q). The locus of L, L’ as the
generator is varied is a curve cutting each generator in two
points. The tangent to this curve obviously belongs to the
cosnplex, and since the polar plane of any point on a
curve belonging to a linear complex is the osculating
plane thereat, it follows that the curve is an asymptotic
curve. To complete the proof, we must ascertain whether
the double points L, L’ are distinct from the points on the
two directrices. For a hyperbolic congruence, this is
easily verified since the polar plane of a point on a direct-
rix passes through the other directrix, and hence cannot
be the tangent plane at the point. For a parabolic con-
gruence, however, one of the double points is on the
directrix, and the locus of the other traces out the asymp-
totic curve. Any asymptotic curve in this case cuts a

generator in one point only.

* V. Snyder, Asymptotic lines on ruled surfaces having two
rectilinear directrices, Bull. Amer. Math. Soc. 5 (1839), 343.

t This statement is completely true only if we include among
the ;‘tangent planes”, the nodal planes at the multiple points of the
surface lying on the generator.
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8. Now consider the hyperbolic congruence whose

directrices are y = mx, z =¢ and y — —mx, z=—c. Any
transversal of these satisfies the equations
Q=pos4mcpy =0 and @’ =mp,;-1-cp,,= o, (8)

and the asymptotic curves of any scroll of the congruence
form a system belonging to the pencil of complexes
Q"S_AQ_’ =0, (9)
where q, o’ are the above expressions, and A is an arbi-
trary constant. The axis of the linear complex given by
(9) i.e. the unique line such that the polar plane of any
point on the line is perpendicular to the line is given by*
AMmx =0
oy : (10)
Z(14-2%m%) pac(14+m?) = o.
The elimination of x from (10) gives
mz(x°+ »%) = c(1+m?)xp.
Hence,

The axes of the linear complexes of the asymplolic gurves of

any scroll of a hyperbolic congruence are all parallel to the middle
plane, and their locus is a cylindroid.

9. If (x,»’, 2) is any point in space, the ray
through (¥, »’, ) is the transversal of the two directrices,
and is hence given by '

y—mx _ z—c  yimx  zic
Yemx'T Z—c’ Yimx T Ztc
which reduce to

x—x -y 2=z
” ’ 2 nd? o — 2 2\ - (II)
Yy —mx'z miex" —my'z m(c’—z2)

In any linear complex, if r is the
between a ray and the axis, and if ¢
them, we have the relation*

shortest distance
is the angle between

7 tan ¢ = a constant £, say.

* Salmon, Analytical Geometry of Thiee Dimensions, Vol. I1, p. 41.
V—11
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From the fact that the line (11) belongs to the linear

complex (9), we obtain

me(1—2?%)

I+ m2A2

All curves of a linear complex passing through a given

point have the same torsion®, which is equal to (sin? ) /4,

where o is the angle that the axis makes with the polar

plane of the point. For the complex (g), this expression

works out at (x’, ¥/, 2) to

I_ me(1—22)

o )\2(mzxfzr_kmzz/z_+ 02)_*_2‘\("”)) +cz I-4m )_1 (_y"+z'2—{-62m2)'

(12)

Now the torsion of an asymptotic curve is equal to

(—K)*, where K is the Gaussian curvature of the surface

at the point considered. From the form of the expres-

sion (12), it follows that for a given point (x’, ¥, 2’), when

we consider variable scrolls of the congruence passing

through («', ¥, 2’), there are two values of x for which K

is & maximum or a minimum. The asymptotlc curves to

these surfaces correspond to values of x» given by the

quadratic

(A241) (mx "y 62" 1 4m2) A mPx7 4 )P (22 462) (14-m?) }
=o0. (13)
We observe that the product of the two values of N is
equal to unity.

h =

10. . The argument in § 7 gives another result of
Snyder, viz. every asymptotic curve cuts the ray in two
points which harmonically separate the feet of the direc-
trices (i.e. the intersections of the ray and the directrices).
Hence, given one of the two points, the other point is
the same for all scrolls of the congruence that contain
the given ray. Let (', y’, 2') and (x”, »”, 2”) be such a pair
of corresponding points.

* Salmon, loc, cit.



THE LINEAR LINE-CONGRUENCE 83

The feet of the directrices, 4 and B, can be found
as the intersections of either directrix with the plane
through (x, 5", z’) and the other directrix. We thus get
their coordinates:

()4 ma) oy Fmx)

A="nrey > Hwe o f
o(y—mx)  —e(y/—mx)

BE ’ P ’ )
m(z'—c) Z—c

The planes joining these to any line, x = o0, y =0, must
harmonically scparate those joining the same line to
(x', »', Z) and (2", »”, 2”). Hence

(%' —n) (px"—ny") =0
harmonically separate »>—m?x? = 0. This gives

Yy —mPx’x” = o. (14)
Also from (11),
xl’_xl L ))I’-—y' N Z”—z’ I
o —mx'z  miex’—my’Z T m(cF—27) (15)

Solving (14) and (15), we obtain
4 4 14 C)}’ 7’lcx’ 62
(X sV ‘z) :<m_z') 72)'; El . (16)
Since zz” =¢2, the points form an involution range
whose centre is the middle point of the ray, as is other-
wise obvious.
The polar plane of (', 3, 2') w.r. t. the complex
Q41,0 =0 is given by
mx(c-+x1,2") + (2 0) = 2( Y Famx’) —c(x ) +ma") = o.
, (17)
The polar plane of (x”, )", 2”) w.r.t. the complex
Q-+ =o0 is given by
mx (2 +2s6) + y (A2’ +6) —z (A Y +mx’) —e (¥ +a,mx") = o.
(18)
The planes (17) and (18) coincide if ap, =1, ie. if
A;» Az are the roots of (13).
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Next, the torsion at (x”, »”, 2”) to the asymptotic
curve which is defined by the complex o4r0’=o0 is
obtained by changing (', »’, 2’) in (12) to (x”, 3", 2").
Using (16), this becomes

m(1—%)z?
(NG L 22 m?) L aa(ma’y +c T ml) + (M mi 4 ¢?) ]
, (19)
Putting A =, in (12) and rx=2; in (19) where xa, = 1,
the ratio of the two expressions is —¢?/z”? or—z"/z". )

We also observe that (13) remains unaltered if
7’/

%', ', 2 are replaced by =x”, »”, Z” given by (16). We
have thus the following results®:

Of all scrolls belonging to a hyperbolic congruence, there are
“two for which the Gaussian curvature at a gwen point P is a
maximum or a mintmum. 1he asymptolic curve through P of
either scroll meets the ray through P again at a point Q such that
the tangent plane at P (o one of the scrolls is also the tangent
plene cat Q to the other. The two scrolls having maximum or
minimum Gaussian curvature at Q are identical with the fwo
scrolls at P.

The ratio of the radius of torsion at P for the asymplotic
curve of one of the scrolls (o the radius of torsion at Q for the
asymptotic curve of the other scroll is equal to the negative of the
ratio of the distances of P and Q from the middle plane. Hence
the product of the torsions of the two asymptotic curves at P is
equal 1o the product of the lorsions of the two curves at Q..

Also, for either of the scrolls, the tangent planes at P and Q
are al right angles.

The last property is verified by using “equations
(17) and (18), after replacing x, by 1. The condition
for perpendicularity will be a consequence of equation

(13).

* See post-script, p. 9T.
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It is also verified that the asymptotic curves of the two
scrolls through P or Q. belong to conjugate® linear complexes,
for the condition that the complexes a; and i, should
be conjugate is A;n;=1I.

11. Let p, and p, be the paramcters of distribution
for the two scrolls having maximum and minimum Gaus-
sian curvatures at the point P. Since the tangent
planes, for cither scroll, at P and Q are at right angles,
we have by a known result

= CERTs (Kb =12

where the two values of r refer to the two scrolls, and
K5, K3 are the Gaussian curvatures at P and Q.
Hence, using (12) and (19) and Enneper’s formula for
the torsion of an asymptotic curve, we obtain

I me(1—x7) | m(r—2x3)z”
P AxF12Bx +C c(Ad2Bx4-C)\))
I i3 2 .
=2 similar expression in A,
o =me(x=23) - m(1—a7)27
A+ 2B +C\F c(Ari+2Br,+C)°
where 4, B, C stand for the expressions m?(x2| 2?) 4-¢,

mx’y ez’ (14m?), »7?+274 ¢7m’, respectively. Usmg (13),
we obtain,

11 m(@=27)(1=0)

BRT qACBy
If now (x,, ¥, 0) be the middle point of the ray, we
have by equations (5),
c(emx’—y'2) c(cy —mx'2")
W*Z’Z) s Jo= c_z?
Simplifying 4-C and .{C—-B°, we obtain

Xo =

I 1 m (m’ xoayoJ-r—c m? )

/)1 /Jo ¢ Yi-mixl 4 c*m?

* For the dcfinition of conjugate linear complexes,

sce
Sommerville loc. cit. p. 351. ¢



86 C. N. SRINIVASIENGAR

Using the results of § 6, we obtain
I 1 1 1

Db ‘31+E;
Hence,

If P be a variable point on a given ray, the sum of the
rectprocals of the paramelers of distribution of the surfaces
having maximum and minimum Gaussian curvatures at P is
constant, being equal lo the sum of the rveciprocals of the
parameters of distribution for the mean ruled surfaces of the
ray.

The result further suggests that when P is taken at
the middle point of the ray, p, and p, become g, and g;—
a fact which can be verified. Hence,

The mean ruled surfaces of a ray of a hyperbolic congruence
‘are also the surfaces having maximum and minimum Gaussian
curvatures at the middle point of the ray.

THE ParaBoric CONGRUENCE.

. 12. The rest of this paper will be devoted to the
parabolic linear congruence. The two directrices now
coincide. Taking x=y=o0 as the directrix, one of the
linear complexes can be taken as p;, =o. If

Q=ap,+bpist-cpratdpas-t-ePaut JPsa = O

be any linear complex, the condition that this together
with p,, = o should define a parabolic congruence having
the z-axis as directrix is that the quadratic in » which
represents the condition that 2+-Ap;, = o defines a special
linear complex, must have both roots infinite. Hence we
obtain f = 0; be—cd s=0. The polar plane of any point
on the directrix with respect to o will then be a plane
through the directrix. The directrix of a parabolic linear
congruence is therefore itself a ray of the congruence.

This leads to the following mode of generation of a
parabolic linear congruence.

Consider any plane meeting a given line | at a point O.
Set up a (1, 1) correspondence belween lines through O on the
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plane, and points on the line I. If OM be the line correspond-
ing to the point P on I, then the rays joining P to points of OM
generate a parabolic linear congruence.

Proor. Choose x =3 = o0 as the line /, and 2 =0 as
the equation of the plane, O being taken as the origin.
Let y = mx, z = o correspond to the point (0, o, ¥) where

Amr+Bm+Cv+D = o,

A, B, C, D being constants. The line coordinates of the
join of (o, o, y) and (x, mx, o) satisfy the relations

=0, Aps3;+-Bp»,+Ch;+-Dp,, = o. (20)

Since there is no term in py,, these determine a parabolic
congruence whose directrix is the line /. This proves the
result.

The polar plane of (o0, 0, y) with respect to the
second complex in (20) is given by

v(4Ay+Cx) - (By + Dx) = o.

If we choose x = o as the polar plane of O, and y =0 as
that of the point corresponding to y = «, we must have
B=C_C=o0. By an interchange of these planes, we could
also take 4 = D = o. Hence,

The equations of a parabolic linear congruence can by a
suitable choice of coordinate axes be reduced to cither of the forms

P12 =0, Py =kpy, (21)
or P12 =0, P2y = kpys, (22)
where k is a constant.

13. Our method of procedure furnishes a general
method of constructing ruled surfaces whose generators
belong to a parabolic linear congruence. If H is any
point on the z-plane, and if X is the pole of the plane
formed by H and the line ! with respect to the second
complex in (20), or its simplified forms in (21) or (22),
then HK is a ray of the congruence. If H traces out a
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curve on the z-plane, HEK will generate a scroll of the
required type.

Let the congruence be taken in the form given by (21).
Let f(x, ») = o be the curve on the z—plane, and (o, 0, y)
the pole of the plane joining the z-axis and the point
(x, 9, 0), with respect to the second complex in (21).
Then, from the coordinates of the line joining (¥, », 0)
and (0, 0,v), we must have yy=#kx. The ray of the
congruence through (¥, », 0) is given by

X ¥ R—v
x 0y -7’
where X, 7, Z denote current coordinates. Hence
—vX kX?
Ll PV S N,
—Y kXY

)T TRX=1Z ¢
The coordinates may be made homogeneous in the usual
way. Hence the equation of the scroll generated is
' kxy
f(k;w—vz 2 kxw;yz> = B
If the curve on the z-plane is of order # and does not pass
through O, the scroll is of order 2n having the directrix as
a multiple line of order n. If the curve passes through O,

the order of the scroll is reduced according to the nature
of the point O in relation to the curve.

The following particular cases are of interest :

(1) A straight line on the z-plane not passing
through O generates a quadric, the rays of the congru-
ence meeting the line being in fact the lines joining
corresponding points of homographic ranges on two skew
lines.

It follows that there are «? quadrics each of which
touches a given plane and has one regulus included in a
given parabolic linear congruence.
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(2) The conic x*{y=o0 generates the familiar
Cayley’s cubic scroll
kxdkxyw =9z,
excluding the factor x.
' (8] The conic j*fx=o0 gives only a quadric
kY’ +kxw — yz = o, together with x =0 twice.
(4) The semi-cubical parabola »* = x? also gencrates
Cayley’s cubic scroll with the equation
ky? = kx*w—xyz.
The folium of Descartes x*-- »’ = 3axy also generates a
Cayley’s cubic scroll.
(5) On the other hand, y*= x* generates
kxt = kxy*w—2)°,
a quartic scroll with a triple line. This surface is thé
‘Cayley scroll of order four. More generally, a Cayley scroll
of order m* has its generators belonging to a parabolic linear
congruence, and is generated by the curve y™—2 = xm—1,
The curve y"~' = x"7? also gives a Cayley screll, Hut
of order m—1.
(6) In my paper referred to, Cayley’s scroll of order
m has been generalized to the form
(xz+ yw)" = 2=y,
where m and » are integers, positive or negative. This
surface also possesses the property that the generators
belong to a parabolic linear congruence In fact the
curve y**" = x™ in the z-plane generates the scroll
’ ko gntm — (k- pz)n,
In particular, the conic xy =1 which corresponds to
n=2,m=-—1 gives
kxly = (kxw— yz)*.
This surface has been explained in the paper cited, but
we may add here that the surface is the limiting form

* Vide my paper, 7.LM.S. loc. cit. p. 304.
V—i12
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of a quartic with two non-intersecting double lines and a
third double line meeting both of them, when the first
two lines tend to coincide. The surface could be some-
what generalized into the form
ax*4-bxly+cx’y’ + (dx®Lexy) (kxw— yz) = (kxw—pz)?,

which corresponds to the general equation of the conic
on the z-plane. A similar generalization can be carried
‘out for the scroll of order 2z given above.

14. We conclude by working out for the parabolic
congruence the counterpart of the result of § 8.

We shall take x=jyp=o0 as the directrix, and usc
rectangular coordinates. The equations (§ 12) of the
congruence are then given by

D12= 05 @Pos+bpry+cpys+-dp,, = o,
where bc—ad s£0. The equations of the axis of the linear
complex ) :

apas+bpas+cprs+ dpi+apr =0

are

24ay+d  az—ixi+b  —ay—-x

T e = = T3
Elimination of A leads to the cylindroid

a(ax—cy) (Bz4v)
(Bz+v)°+B(ax—cp)?’
where «, 8, vy stand for bc—ad, a®+¢? and ab-+cd respec-
tively.

aytcx =

Combining this result with that of § 8, we may state

The axes of a pencil of linear complexes generate a right
cylindroid.

This result is in substance equivalent to that in
statics regarding the locus of the central axis of wrenches
acting on two given screws. But the method of work
here is geometrical*, and considers the two cases wherein

* The result for the hyperbolic case was first given by Plucker.
See Ball, Theory of Screws, p. 20.
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the linear congruence determined by the two screws
is non-parabolic and parabolic respectively. The para-
bolic case perhaps admits of a statical interpretation
and discussion worth investigating.

[Postscript. The results of §§ g-11 require a little
modification. What we actually obtain in § g is that at
any point P on a given ray, there are two extremum
values of K, but it does not follow that there is only one
scroll corresponding to each of these values. In fact, if
we consider a scroll through the ray and having a given
value of K at P, any scroll which can touch this at all
points along the ray has the same value of X at P. There
may exist an infinite number of such scrolls, the osculat-
ing quadric being the simplest example. For a value of
K intermediate between the maximum and minimumes
values, two such sets exist, since equation (12) gives two
different values of A. But when X is maximum or mini-
mum, the two sets coincide. The theorems of §§ 9-11
are valid if by the two scrolls having maximum and
minimum values of K at P, we understand any two Scrolls
taken from the &, and K,  sets respectively. The
words ““two” in line 12, and “ two scrolls »’ in lines
16-17, p. 84 should be read * two families > and two
families of scrolls respectively. ]



A GENERALIZATION OF LEGENDRE FUNCTIONS
" BY
P. KESAVA MENON, Universily of Madras
[Received 12 November 1940]

1. [Introduction. Legendre functions are defined as
solutions of the differential equation

d
(I_z-)2§—2z£+n(rz+1)y=o. (1.1)

This equation may be identified with the hyper-
geometric equation ‘

, d d 1 L/ ,d n ,d | ntI

[ (k-2 (2f ) (f+"F) b=o,
(1.2)

and hence the solutions may be obtained as hyper-

geometric functions. When » is a positive integer, the

differential equation admits of a polynomial solution and

a non-polynomial solution, both of which have well-
known properties.

I consider here the generalized hyper-geometric
equation

[ﬂ’(ﬂ'—?) (ﬁ-' _2; ) “'<7"“S_TI )_zs(ﬁ,_v}(s%x) )

n4-1 , n+2 , n4+s—1 .
X(i?l_i_-’—s )(ﬁ+ S“)...(ﬂ—}— . )]]:0, (I'S)
where o = z°d/dz>. When n is a positive integer, this has
one polynomial solution and s—1 other solutions. Several

properties of these solutions analogous to those of the
Legendre functions will be investigated here.
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2. The solutions of (1.3) are the s.functions
\'—(.S‘—’I)n-kf n4r4+1 n474.2 n4-r45—1

s b Ky > s Foouny Ky > z:
zrst-l [ #
S4r—1 S4+r—2 S+1 sp7r s=I r+1
L s s Ty g T e o J
r=0,1,...,,5—1, (2.1)
where
a,, a,

as; Z]
s——-l
bl, sﬁl
denotes the series

- a,a,...a 7;a,(a1+1)a2(a2+1) ..a(a, +1)

10,6, .0, 7 2V b, (by+1) .. b, (byy41) © s
The solutions are distinct and valid for {z|< 1. When n
is a positive 1nteger one of the solutions reduces to a
polynomial. If n is a negative integer —ps—¢, 0 <t 3_1
then £ or s—1 of the functions reduce to polynomials
according as {is not or is equal to zero. When |z]|>1, the
solutions of (1.3) are easily obtained by putting z = 1/’
and are given by

—n(s—1) 1—n(s—1) (s—1)—n(s—1) 1

> FOEEE —— Z
Zn(swl)F s ¥ s
st s—1
S—ns—1 —ns 41
f,. “as "? m——"
. (2.2)
an
(nyr narqa nLr4s—1 _
| _3—3 s Iy s 5 £ £
Z—(11+7)F
st s—1
TSNS r4-5—1 S+I s—1 r41
U5 7 s e T s e g
T=1, 2,..., §--T. (2.3)

When 7 is a positive integer, (2.2) reduces to a poly-
nomial. We shall have occasion, later, to study this
polynomial in detail.

3. We shall now obtain certain other forms of the
differential equation (1.3).
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. d
Now V== AT 5 Say-

Equa'tion (3) now becomes
[B—1)." . (9—s+1)—z(d—s—1.1) (9-+n+1)...
X (@+nts—1)] y=o0, (3.1)
which may also be written
d ds—! dsy
Z= l_z‘"‘ 71 (Z”““)’)] = g~k e (3-2)

In particular, Legendre’s equation is

d . d d?

Z‘%[Z_‘” Zié (zu+ly)} = dZ)Z) 5 (3.3)
an equivalent form being

dr ., d d?y

@z [Z‘("T” =& }’)] =" (3-4)

Working out the differentiations in (3.2), we get
(1= )’4—2( )(n FS—1,7—1)(rn—n—5+47) Sdrfl:'ré'z o,
(3-5)

where (i) denotes the binomial coefficient, and (a, p)

denotes a(a—1)...(a—p+1).

4. Solution in other forms.

Let n be a positive integer. Then it can be shown
that

"

EEH (ZS—- I)"
is a solution of (3.5). For, denoting (z°—1)* by u, we have
du
T (Z"—1) = nsz* . (4-1)
Differentiating this (n4s—1) times and replacing

dn
dz» by, we get (3.5).
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If we denote (2.2) by P(z) and (2.3) by Q (r, z), it is
scen that when » is a positive integer,
dn Pl n
P(z) = —(dz" ) 5 (4.2)

C being a determinate constant. When n is a ncgative
integer, it can be shown that

ro=c{7 [5G e

C being a definite constant. The Q’s may also be ex-
pressed in similar forms.  For, if instcad of equation (4.1)
we take the equation

nts—2
@(z‘;l):nss“‘uﬁ Z €25 (4-4)
=0
the ¢’s being arbitrary constants, differentiating it

. . & .
(n+4-5—1) times and replacing #1 by y, we still get (3.5).

Hence it follows that the nth derivative of any solution
of (4.4) satisfies (3.5). Now from (4.4) we get

Cot €124 oviCppn 25T
L R B T 2,

from which we casily deduce that
Js 2y
Q(ry, z2) = [1 ,,[( _.I)" ";c_?:)mtl]a (4.5)
where C' is a dcterminate constant.

5. The generalized Legendre polynomial.
Let

P (&) = m gl —1)". (5.1)

|

It is readily scen that P, [(z) frsjl %
n, S\~ '(n(S—I)]| ”' §
[Z"(I"”_n(s_l){ n(‘y’-—l)_l }. ,l(—s—l)—s+ Izn(s—l)—‘+ ]
1! rzx(ns—l)...(lzs—s+1)
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ns!

— #(s—1)

{nG—1) [l 5°

((—n(s—1) 1—n(s—1) (s=1)—n(s—1) __.

I 5 5 5 R s s R ]

e J_'l S—ns—1 —N54-1 ’
S“‘ PRI 5 J s

— I)..+”j' (n4-r)!

st (ET) 1 ()

—(=Dper mttyr o omgs— 14y, 1

s ? s 2 ? s
\ +r—1 S+1 S§Lr s—1 r-1
L S 3 -5 S 3 J- 2 s 2 b s ,
(n=ps—r, 0 <rLs—1). (5-2)

The following properties of P, (z) are casily proved.

(1) Pu (2) = p"P,, (p2), where p is any sth root of unily.

(5-3)
() When n is not a multiple of s
P, .(0) =o, (5-4)
and when n s a multiple of s
nls+1) n!
Poo)=(-1) * = (5-5)

(D ()

More: generally, when n is of the form ps—r (ogrgs—1),

S G (-I)H%V(rwr)!
1;_{? Z s"r' (Wfr) ( n+7) (5-6)
(i) P, (1) = 1. (5-7)

Proor. It is clear that P, (1) =1. Let us assume
that P, (1) =1 is true for a particular value (m—1) of
n so that P,,_; (1) =1.



A GENERALIZATION OF LEGENDRE FUNCTIONS 97

Then
« T dm
P, (1) =[W@,(z Sl
_—_—I d’n_l _ 5 " —
= (m___I)! Sm-—l;izm—-l{zx I(Z—I) l}]z:I
I m—=1
+ (. ..)W(Z‘“—I)"'"l—i—. ..]z -
=Pm—1.$(1)a
since

dln—r
I:dz,-,,_,.(zs -<1)""1:I =o0, if r> 1.
The required result follows by induction.
(iv) P, {p) = p~", where p is any sth root of unity. (5.8)
This is an immediate consequence of (i) and (iii).

6. We now proceed to prove a result concaerming
the zeros of P, ().

THEOREM. All the roots of P, .(z) = o lie within the
unit circle |z| = 1, symmetrically situated on the radial lines to
the poinls representing the sth rools of unity.

We first observe that if
Pn.s(a) = 0,
then P, (pa) =o. (6.1)

We next investigate the nature of distribution of the
zeros of P, ,(z) between o and 1 on the real axis. When
n is of the form ps—r, the origin is easily seen to be a
zero of order 7. We shall show further that there are

n(s—1)—r

exactl non-zero real roots between o and 1
Y bl

so that, since P, .(z) is of degree n(s—1) in z, our theorem

follows by means of (6.1).
V—13-



98 P. KesavA MEeNoN

Let y= (z*—1)", and let ™ denote the nth derivative
of ». Then at z=1,
Y =0, (t=0,1,...,n—1) ;
Yy =£o.
Also if n=ps—r (o r<s—1), we have at z=o0
) t=1,..., 5—1I
(gs—1) — ? ?
_J’ =0 ( ) b

]

|
1<y |

)r@ﬂ#o’ ? (63)
{

(6.2)

YD =0 (=741, 7+2,..., S—1I).]

By means of (6.2) and (6.3) we see that »® =o0, (t=1,
2,0 .0 5) has at least ¢ distinct non-zero roots in the inter-
val (0, 1). Hence it follows that the equation »**9 =o0,
(t=1, 2,..., 5) has at least s-+{—1 distinct non-zero roots
m (0, 1). Proceeding in this. manner, we s€€ that if
g < p, the equation y*~?=o0, (t=1, 2,...,s) has at least
(¢s—t—g+1) distinct non-zero roots in (0, 1). Thisin
turn shows that p®—9=o0 (t=7r+1,..., 5) has at least
(ps-t—-p+ 1) distinct non-zero roots in (0, 1) and that

) . n-r

the equation »® = o has at least (n—p), i.e. (n_ ‘st‘)
distinct non-zero roots in (o, 1). The required result
at once follows from this.

COROLLARY. When n= ps—r, the roots of

(—(s—-1)n+r nrI+7 nAS—T-47,
5 L] s T e e #) s 5 %
Foi | | —o
| os4r—1 ST s4r S—I T41

v :

B e T s 5 27 s

are all real and distinct and lie in the interval (o, 1).

7. Integral properties of P, ()
(@) If p, P’ be any two sth roots of unity then, for any path
of integration
gp,ZkP".I(Z)dZSO (k:Oa I,0e 0 n_‘I)‘ (7'1)

P
This is a particular case of the more general result:
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For any patk of integration

“ kﬂ{ﬁ"_ ”2 . k:O, I,...,n—1
g"-‘zdz" ‘=-‘(.z @) jdz = o (2',]':1, 2,...,5 ) (7:2)
The proof is easily supplied by repeated integration by
parts. Conversely it can be shown that the only rational
integral function f{z) of degree n(s—1) in z which is such
that _

aj " Li=1,2,...,5

d =

Lf(z)z =0 k=o,..., n—1 )

is of the form

(z) Aﬁgl (z2—a)"t,

4 being an arbitrary constant. If $(z) be any poly-
nomial of degree less than # it follows from (7.2) that

Sa. ‘ﬁ(é’)f(i) = O’ (Z.vj =1, 2,00, 5)‘ (73)
In particular, if p, p” be any two sth roots of unity,
gt
j $(2)P, (2)dz = o.

(0) If r be a positive integer or zero, and p, p* any two sth
rools of unity, then

nAT) 1 (pr T pr

rl (r+<1)(r171(+x).. .(r-i‘)r --ns)" (7-4)

The proof readily follows by integrating the left side
n times by parts.
In particular,

Sﬂ P,,' :(z)zuﬁ».’:jfldz = o, (/C =1, 2,.. ) (75)
(¢) For all values of k for which ihe integral
1
[P (2

is convergent, it is equal lo
kk—1)...(k—n42)
(F=nvits)(k—nt1+25).. (k—ntitns) (76)

[P ()2 —
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Proor. P, (z) is of the form az¢—D gant—D=s

Therefore
1 o 8

& _
LZ P, (z) dz_k_;_n(s_lﬂ- 1 + kin(s—1) +I—s+ Tt
The right side of this is reducible to the form

J)
[f+n(s—1)+1][A+n(s—1)+1—5].. . [k—nt145](k—nt+1)°’
where f(k) is a polynomial in 4. Suppose for the moment
that £ > 7z ; then, on integrating by parts n times,
1 1 du

[P, (o= 1] 24 (1)

k(k_r) (k—n+t1) .
ntse S (r—
k(k—1)ee(b—nt1)
= (st k—ng1).e(k—nt1)

Hence we find that ’

Sk =kk—1).. (hk—ny1), k>1.
Sinee -the form of f(k) is invariable, it follows that for all
k for which the integral is convergent

Sk =k(k—=1).. (k-ny1).

Thus we get the required result.

) n [Iz

8. Recurrence relations.
(a) We have by application of Cauchy’s theorem
1 S (F—1)"dt

n s(z) oxt 5" <t z)n+1 ) (81)

where C is any contour for which z is an interior point.
[ t: 1 )u
Now (i— ,)7 1

s__1\» 1)1 1)
— (o) (el — (e e (82)

Integrating both sides of (8.2) along C, we have

d d
n(S—I)Pn, :(Z)dZ‘I'EZPu—L:(z)_zd‘zpﬂ, s(z) = 0. (8'3)



A GENERALIZATION OF LEGENDRE FUNCTIONS 101

Integrating (8.3) we see that
n(sX1) d"-'

TzTF dz"“l '/:‘_I)" = ZPH, S(Z>—P¢x—l,s(z>' (8'4')

(b) Applying Lagrange’s expansion theorem to the
equation

,7_(z:a:z _IV (35)

where « is sufficiently small so that

ot ‘ (8.6)

s

|z—a|>
we get for the root ¢ which is such that
lei<lal,
the expansion
as—1 2 d as—1- 2 (2” du—l ar—1 n
S G P =
(8.7)

Differentiating (8.7) with respect to a, we get

oL 2 ”n
= 1+aP) (@) +a®Ps (@) 4+ .. o'y, ;(a)+. .. (8.8)
But since ¢ satisfies (8.5), we get
o0& I
0 1l (890

Substituting this in (8.8) we get

! = 1+aP, (a) 4P J(a)+... . (8.10)

I_zx-l

If we take a = p, an sth root of unity, so that £ =,p, we
see by equating the coefficients of &' on both sides of
(8.10) that P, . (p) =p ", a result which we obtained
earlier by induction.

Again, it can be seen that

o of
wge = (E=0g, (8.11)
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Dxpandmg both sides of (8.11) in powers of « and
comparing coefficients, we ﬁnd that

a1, a "
(n-—II)!d{z" 1( JI)
n—1

i" sas—1 "1
=Z n—p— l:( )(7-| I)'d[a’(T> (8.12)

r=0

Hence, making use of (8.4), we get

nkr I:Pn—-I,s(a) _(’lpn, s({’>]

n(s—1) 41
- Z :v'—}lv T [P"’ s(a)—ab, a)] (8.13)

I wish to express my thanks to Dr. R. Vaidyanatha-
swamy for his valuable suggestions and encouragement.
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