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The committee regret to have to report the premature death at
Chicago U. S, of Mr. B. K. Srinivasa Iyengar, M.A., who was an Asso-
ciate of the Society since August 1910. The deceased was a brilliant
graduate of the Madras University and held the post of Assistant
Professor of Mathematics in the Central College, Bangalore. He went
to America as a Mysore Government Scholar to study ¢Systems of
Kducation ’ some two years ago. In him the Society has lost an ardent
lover of Mathematics and an enthusiastic member.

Pooxa, ? D. D. Kapabia,

31st May 1918. § Honorary Secrelary.



On the addition Formulae for the Jacobian
Functions E and 11

In the following pages I propose to'dednce a few of the expressions fop”
Bu,+ Eruy+ Eu,+ Eu, and those for 11(xy,a) 4 11(u,a) + LI (ug, @)+ IT(us, a)
in terms of the sn, cn, dn functions of wy, uy, w,, «,, when w, + g+ uy=1e,
is congruent to zero.

§I. Preliminary.

1. To begin with let us establish a few preliminary results which
will be helpful to us in what follows.
For this purpose, let us consider the points of intersection of the

fixed curve

y'=a(l—a)(l—ke) . i)
with any arbitrary chosen parabola
y=14ma+na® ws (i)

Now, if any point (2, y;) be taken on the cabic (i), the equation in o«
su?(u, k) —u,=0, where k is constant,
has two solutions -+ u,—u;, and sll other solutions are congruent 10
these two

Again qinueao (sn%w) =2 snwen udn «, we have
u

[e] e o
[é—;(snm)J =4y
Let us choose %, to be the solution for whicbgz(suﬂu)z-{—w,; and
‘

let (2, y,), Where r=1, 2, 3, 4, Dbe the points of intersection of (i) and
(ii) ; so that ), @, @, @, are the roots of the equation
F (&) =(l+mztna’)*— H{(1—2)(1—ka2)=0 s (i)
and F (2) = (2 —a) a—a,) (e —2)) (@—24). . (i)
The variation Oz, in one of these abscissae due Lo the variation in
position of the parabola (i1) is given by the eguation
F'(w,)0m,—2(L+4-m &+ 22,)(0l 4@, 0m~+a",0n) =0t
Remembering that I+ z,+7 ©,2=1,, we obtain
Oz, _ +2(0l42,0m+a,n) . ()
Y, F'(2)
— J(=) suppose.

T Fe,)
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Then since zf(a) is of lower degree than F(a),
4 3 s
wf(z) _ N f@) =, e (Vi)
F(a) F (2,) w—z,

provided a,, 2y, @, @, are all unequal, and F'(z,) == 0.
Putting =0, in (vi)

r=1
e 6]
5,20
r=1
4
2314,:0
)'=l

Hence the sum of the parameters of the point of intersection is &
oconstant and independent ‘of the position of the parabola and it may
be easily shewn to be congruent to zero

Hence o long as u,~-u,4u;+u,=0, we may dedice relations be-
tween symmetrical functions:of s, ¢,, d,, (swhere s,, ¢,, d, stand for sn u,»
on u,, dn u, respectively) from the values of the symmetrical functions
" of the roots of the equation. L (diD)

2. We have from equations (iii) and (iv) above,

‘ _gm
2 LJ n e a)
r=1 r=1
e ]
1,55535‘:‘\/1;]z:9;33;4=;, s (B)
i
0606501 =V (T Sy (T ma) (1 =) (1 —2) = +m+" )
dadadsty =1/ (1 —B2;) (1 — B2, ) (1 — Kz ) (1 — W°m,)
=1+t :
AR R w8

- Hence oliminating I, m, » between (8), (y) and (§), we obtain the
-weh known identity of Gudermann

K —k%28,8,0,8,+ k?0y0,0,0,— Gy didyd == O, ore (A

where K=1—Fk"
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Writing in the identity (A) successively, (u;+K, u,—K), (u;—1K’,
uy+1K'), (u;+ K—iK’, u,—K +1'K) for (uy, u,) respectively, we obtain
the following relations quoted in Whittaker and Watson’s Modern Ana-
lysts (Revised Edition) from H. J. S. Smith, Proceedings, Lond. Math.
Soo. (I) X

(81840565 01€08,84) — Ayl +dyd =0 ... (AD)
F'2(518,— 8384) + dyddo 040 s — €102y d =0 we .. (A2)
s18adydy—Aydesys 4 Coe4— 016 =0 ... ... (A3)

3. Again, let us evaluate the fanctions

5% in terms of l, m, n.
d,
We have
4 4 4
2 LL[,_ 2&: 2 l4-ma,+nz®,
8, i &z, By
r=1 r=1 r=1
Zl +nEa, 4 dm,
,
1,5
_+
. = 50, \7+ ma, +n.l:
A ) 27 Z
B8 ZJ cy 1—z .._J l—z,

This function is best evaluated by substituting p, for l--z, and
forming the equation whose roots are the four values of p,. We can
then by easy algebraical processes deduce that

od, k"
Liec, n /’-{..—m:; n
Similarly from the equation whose roots are 1 —ka,, we deduce that
\O,0, Ukt mk 4 n (14 47)
id, n(n + mk*+ Ukt)

From all the foregoing, we are in a position to dedunce several rela-
tions. We shall select only such as will be useful for our purpose.

4, We have

}L:’:—,\/(Z‘s — sy s8. 5, 4 20100040, — 2 ) o (BD)
=1/(2—24d,° 4 2dyd.dady — 2k4518:8:51) .. (B2)
= —1 \e,d, (B2)

k"+(513u’5551)"l )
= 2 (B4)

WWZZf e e B9)
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PFurther, writing «,+K for «,in B3 :ind in B4, and u,—7 K’ for u,
in B5, we obtain

B e A (B6)

n (010a0a) T EH(dadudyd )L e d,

A L ST — Wikd (B7)
BH (didadsdy) = (1528251 L5,

=Rosisitacaoc N dy . (BB)
k'151525354+0102035425r0r

the summation extending to the suffixes 1, 2, 3, 4.

By eliminating 2 between the equations (i) and (ii) of § I, we
obtain the equation whose roots are ¥y, ¥a, ¥y, ¥4 Evaluating from this

4
equation 2 —jr, we can easily prove
r=1y
4
717= = { (8182880) 7 - (ei0a050s) T+ R (dadydd ) ) ' 2 s,c]:d., (B9)
r=1 :
§ IL. X B(u, k) when w4 u,+u,+u,=0.
5. We have B (u,, k)=[(dn’,) Ou,
=u, —-7\*’ [ (sn*w,)0u,
=U,— k’JJ" az 3
2 Yr
4 5
B (uy, By =— _, \‘ *"lai". o (E)
ey ~ = [ Y
Now going back to our equation (v) of § 1
u 6 LZLSE+ 2, am+z On)
’ F(z,)
By the method of partial tractions, we can easily prove that

4

.2 Al 1
Y0 and _a 1
j et Z r( = T
<
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4
o 5 . oA
. fr 1, K)=k(Z). ..
rom (E), 2 K(u,, k) =k (") ©)
r=1
4
Hence E E(u,, k) has for its values in terms of s,, ¢, d,,
r=1

each of the expressions in B 1—B 9 in § [ multiplied by &*.

6. E(unk)+EB(ug, k)+B(us, k) When Uy g+ ug=0.

In the above, putting u,=0, we ceduce that when u+usu%=0,
E(uy, k) +E(uy, k) +E(uy, k)

=V s+ o7 2esoi— = )
=kVI— 6 g — 0o+ 2010465 .. (D2)
=1/ (1 —dP—d,* —dg* + 2dydydg) .. (D3)
=—K sxsqs 5 .. (DY)
: 55y )

422 T e .. (DS
— i (010303) { G Ca L g =

2
K q i€y sz:q_'_‘_sicR .. (D6)

T addy b T h 4
§ LI EII(uy k, @) when uy+us+us+u,=0.

7. Now, since

II(u,, by @)= (k*sna cna dona sn? gy
(i b @) ) l1—Fk*snasn®u, “
% cnadn 2, _cna dna du, .
Xy, b, @)+ na °2 sua 1—%%n%a sn’u,
Then putting sn® u,=,; Wln’a= 5 ‘ink[;—u(_i:f:fa. ; and remember-
4
ing that 2 u, =0, we easily deduce that
r=l
1 ' 1 D=,
Z (uy, by a)=:p y {\~_m’ = } v (@)
re=l

Agan going back to equatxon (v) of § I,
Ow, +2(5l+a¢ Sm42,20m) j(:u\

¥ ¥z, )

(suppose).

4
E 1 32,_2 F(=,)
=2, Yy (\-z,)F \@y)
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Agsain from (iv) of § 1,
FON) =n(n —.u,)(\ =) (N =) ON =)

f(M f(,)
h(\) Z(\~a’ V()

since, f(N) is of lower degree thau F(\],

4
o 2 1o Br_f(N) +20 (l+m}\+n\)
1\-—@ y, FON) (7-,—:)7,\+n\l)°
r=
O (I+mN+n\%) a(l+m\+:ni)i) }

‘[ AN FaN = I mN AN

_a lo l+mn4n\?* —
L E s gy

H.
4
* S“ J.*l,,. a]“ =log l‘f“”’-)\-{-n,\j ‘u
1—‘1 N—z vy, ]+m\+n\ +'L
r=
4
NI (g, i) = 1 L i L St
e ‘ 1+l:1\+n\°.+iL'
=1
=4 log &, say. . (H)

Afrar substituting for \ and .

k?
sn’ fl+* F'sn'a— L Sne cna dna
3

1+ in
b = B —
l+ mA *an® a—rﬁ%. sn'e+" sna cne dna
n
Hence after substituting from (£), (y) of §1 and feom (3) of £ 11
respectively,
14 Psn®4Qsn ‘a—R sna ong dna

&=
1+ Psn’a+Q su'e+ R sna ‘¢na dna

where
=12(1020,04—81808:81— 1) = (dydodd | —Tisy5,8,8—1)

=L (ddud d —Focwe,—1+ k%),

Q =k*s898:5 45

= 2 E(u,,k),
r=1
which is already expressed in terms of s,, ¢,, d, in § II.
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8  Now putting #, =0, we have from sbove when Ut ugtu, =0,
IT (uyy iy @) 4TIy ky @)+ 11(u,, &, a)

. 14+-Usn%e—"V sna c¢na dna

=lye o gl i S =1L log (s .. (K
Ogl-}-U n®u—+ W sna cne doa ° e ey ()
where U =k*(c00,— 1) = dydyd,—1
= k[ 818,00,

W=TH(u, 1)+ K(uy k) + fj](f, Lk
=the expressions D1—D6 in § II.
= —k*s18:8, in particnalr
With these values

"1 cyeoc, + kPsna cna dna.s,s,s, (K1)
*a ¢,0,¢,— k*sna cnu dna.s;s,s.

_en’a+sn’e didydy+k*sna cna dna sis.e, (K2)

cna+sna.d,d,d,— a cna dna 8,8,

expressions easily remembered.

9. It will be interesting to deduce from the above the expressions
for § given in Dixon’s Biliptic Functions.

Taking U =12(sy8004d5—357)
and W=—F
the expression (K) above redm,e; to
sn’asn’u. )+k2“na s &(bﬂa 2 v]1+sv cna dna)

—s;.cna dna)

Q= (1—#*

(1—K%sn%asn®,) + ksn

dividing the nnmerator and denominator by l-k?sn*asn%ﬂ, we obtain

1+47%sna.sys,n(a+uy)
I T SR . M1
= 1% snawsn(a—u) (M1)
10. Again from the expressions for su u snu,. sn a sn (u+us—a)
obtained by substituting in tarn A =u;, B=u,; A=w+1,—a, B=a in

the formula

snA snB= (N)
we have 1—Asn 7, sn u, sn(uy+1u,—a) =
1-—F%n' 3 (a4 s) { L — ?sn3(uy —up)sn%5 (4 up—2a)
{1 R CER Y q(ul—” ) } 1—F5n? (uy+ 1) sn® 5 (uy 1, —2a)”

Writing—a for a in this equation, we have a second equation, which

divided by the first gives
Q= (1 —ksn®} (w,—ug) 30§ (4, + 1 —2a)

1 —Fk%n®; (1 — 1+ u+2a)
( 1—kn (u,—l—ug)snj%(u,-}-ug—{»Qa) (M2)
1 1 —k%snE(uy +uy)sn®s (w4 us—2a)
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Again from the formnla (N) above,
1+ksn A sn B= {liksn21(A+B)}{lq:}§§n (A= B)}
1—% sn*s (A+B) sn*; (A—B).
[1—A*sn*} (A+DB)sn*3(A—B)]*=
1 {1=ksn'y (A4+B) } {1—-F*sn'y (A=B)}
(1—K*sn® A so® B)

In this equation writing in turn

A=wu+a B=w+ta;

A=wy—a, B=u,—a:

A=wu+u,—u, B=a;
A=w+u,+a, B=a;
we gel expressions for the square of cach of the factors of the numer-
ator and denominator of the expression M2,
Hence we have after cancelling like factors in the numerator and
denominator,

g 1—%*sn? (u;+a) sn® (u,+a) }
Q1= s (D) B AW
‘ { 1—k*sn* (u,—a (y—a) + &
{1—Fk* sn%a sn?® (uy4u,—a) } . (M2)

{ 1—E*sn’ sn® Qu+ -+ @) b

St. Jehn’s College,
} F. H. V, GUILASERIARAM,

Jaffna, Ceylon.
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SHORT NOTES.

Pascal Hexagon.

The s concurrence of the Pascal lines of a hexagon inscribed in a
conic, is proved here by the properties of the Homographic Function,
Reference: The Note at the end of Salmon’s Conics and my previous
paper on “ the Homographic Function as an Operator.” (J. I. M. S, vol.
VI1IJ, p. 202),

1. Introductory : The properties connected with Pascal’s Hexagon
deal with cases in which three correspondences have their double points
in involution, No simple necessary conditions for this can be given,
but the following theorems give sufficient conditions and are applicable
in many cases.

Theorem I. If Sis a given correspondence and S, a variable corres-
pondence with given double points, then the double points of Sy S belong to a
fized involution.

Let I represent the involution determined by the double points of
S;and S. Then S, can be decomposed into the product of a variable
involution I, containing its double points and the involution I (J.IM.S.
vol. VIII, p. 202)

Thus S, S=LI- 8.

Again since I contains the double points of S,IS is a fixed invola-
tion I' containing the double points of S—(Ibid)

Hence SRSES

The double points ‘of S; S are the double points of I, T’ t.e., the
common pai® of,I; and I'. Thus the double points S, S belong to the
fixed involution I'.

Oor. In particular if Q be a correspondence of period three, the
double points of S, 2 S, S, belong to an involntion.

Theorem II. If I, I, I, be three tnvolutions having a common pair,
the double points of IS, IS, IS, belong to an tnvolution.

Denote the common pair by ¢, and the double pair of S by s’
Then by the theorem quoted above I, I, I, can each be split up into the
produot of the involution I containing ¢ and s and three correspond-
ences having p as their double pair. Hence putting IS=S', the
theorem is reduced to Theorem I.

Theorem III. If the product of three correspond; 15 an 1
n whichever order they areitaken, then thetr double points belong to an

Tarte

snvolution.
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If S,S,S, and S,S,S; are involutions, the product of S, S,, S;in any
order is an involution. (This follows|from the theorem that the para-
meter of the product of a number of correspondences depends not on
. the actual but only on the cyclicaliorder of the product. (vide: the paper
on one-one correspondence above referred to)
azx+b

2277 may be an involutio
ca+d y ¥ !

The condition that thecorrespondence
is a4d=0.

Hence forming!the products 5,5,S;, S,S,S; by the ordinary rules of
multiplication of matrices, we have, for the condition that these may be
involutions, the equations

(@1@s+ bi0o) ag+ (abat bids) o+ (6184 daea)bs+- (0rby+ dida) ds = 0.
and (ay0,+by01)as+ (b1 + bady )05+ (02014 dyey) byt (caby +dydy)d; =0,
Subtracting we find
6 dy—d b
oy da—ay by
¢; dy—a; bg
which shews that the double points of Sy, S;, S; belong to an involution.

II.  Properties of three Points:

Three points pgr determine two periodic correspondences
P prq|
qrp rqp

£ Q denote one of these, the other is Q?  The double points of Q
will be called the cyclic centres of pgr. (These must be distingnis-
hed from the so-called harmonic centres. The cyclic centres are
defined by a purely descriptive process while the harmonic centres, as
the name does mot indicate, are defined by a metrical property.)

(1). From the definition of the cyclic centres as the double points

=0,

and

, it follows that each of the involutions

of the correspondence l Zq’g;

(ppyqr) (gqsrp),"(77,Pq) contain the cyclic centres.

(2) Geomstrical Interpretation.

Let PQR be points on the fandamental conic corresponding to pgr-
Lot the tangents at PQR meet the opposite sides in P',Q,R, Then P’
represents the double pair of the involution (pp,gr). Hence (1) proves
that P'Q'R’ are collinear. The intersections of P'QR’ with the conic
correspond to the cyclic centres of pgr.

(3) TheoremIV. If a correspondence carries (pgr) into (g, st
- carriss the cyckic centres of (pgr) into the cyclic centres of Pqv.

S= P,q,',\ Q._.‘LITP\,le P:q:"‘:\v
Let S= ‘ proak Pqr
Then we see that :SQ =8, identically.

vy



344

Hence if 2 be a double point of Q
S(2)=Q2'SQ(a) =2'S(x) ;
so that S (2) is a double point of £'; which proves the theorem,
since the double points of Q and Q' are the cyclic centres of (pgr) and
(p'q'r") respectively.

I1I. Siz Points: Six points pgr p'q’s’ can be divided into two groups
of three, in 10 ways. From ecach division we can get six correspond-
ences by keeping one group in a fixed order and permuting the other.
Hence we get sixty correspondences (a correspondence and its inverse
not being regarded as distinct). t

If the six points are represented as the vertices of a hexagon inseri-
bed in the fundamental conic, the double points of these sixty corres-
pondences are the intersections with the conics of the sixty Pascal lines.

(1) We first shew that the double points of the six correspondences
which can be derived from the same division, belong three and three to
two involutions.

Consider for example, the division (pg7) (¥'¢'r')-

Tiet S,= |P,7,’, |, s.= 2971,
2ar i | 37

B 1?
If ©,Q° be the two periodic correspondences which carry the group

(p'q'r") into itself, we have evidently

§,=8, 8,=08, 8, =05,

v T
B =8/, 5y

Hence, by Th. I, Cor., the double points of 3,53, belong to an
involution I and the double points of S,,8,,% " belong to another involu-
tion I,

(2) Each of the involutions I 1’ containus the double points of the other

Let (#,t,),(t,'t.) be the cyclic centres of (pgr)and(p'q's’) respectively.
Tivery one of the six correspondences we are considering carries the
group (4ts) into the group (#'t,) (Th. IV.) Hence if ¢, ¢’ represent the
invol utions. (f,t), t.t.) and (hts'sty't) respectively, the double points of
every one of the six correspondences, must belong either to 7 or to 7,

Hence the double points of two at least of the three corresponden-
ces S, S, S, must belong fo one of the involutions 7, ¢ say ¢ and there-
fore the double points of the third also must belong to 7 (for we have
proved that the double points of 5,,5.,S; belong to an involution).

Henze I must be the same as 7.

Similarly it is seen that I" i1 the same as o',
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Now the product of 7 and ' is an involution, viz. (ff,t'ty). Hence
(Th. II, Cor. in the paper mentioned above) 7 and ¢ each contain the
double points of the other. This is seen otherwise also, for 7,4 are
represented in the plane by two sides of the harmonuic triangle of the
quadrangle ¢ttt

Thas the involutions determined by the double points of S,, S,, S,
and S/,8,,S," each contains the double points of the other.

Hence we see that ths stwty Pascal lines meet three by three in 20
potnts (Stetner’s points which form ten pairs of conjugate povnts w.r.t the
contc, each conjugate pair corresponding to a division of the siz points. (The
latter part is mentioned but not proved in Salmon).

(3) Kirkman’s Points.

Consider the cmrespondenues

ol T i X
qpr . 2gp |* Pprg
‘We have
S,8.S,(¢) =7
SS8(N =45
hence S,S,8; is an involution.
Again S8, (p)=r
8188, (1)=p';
hence S:1S.S, is an involution.

Thus every product of S;, S, and S, is an involution and therefore
the double points of S,, S, and S, belong (o an involution. (Theorem
IIL.)

Thus the Pascal lines corresponding to S,, S, S, meet in the point
(Kirkman’s point) which represents the double pair of this involution.
In the present case S,, S; are got from S, by permuting cyclically two
points in the npper group of S; and the non-corresponding point in the
lower group and also permuting cyclically the corresponding other
points in the opposite sense.

There are three ways in which this dounble permutation can be
made.

Thus three types of correspondences S.S; can he obtained from S,.
Hence every Pascal line contains 3 Kirkman points (and one Stei-
ner’s point.)

There are therefore @3}—3 or 60 Kirkman points.

R. VYrHYNATHASWAMY.
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Note on the Gamma Function.

Gauss® Formula.
®

For n a positive integer I'(n)= J' ¥y =(n—1)!
o

oo}
— L ey 1
T@=[ oo dem oy rm
o8]

®
f 29+% ¢=* dz, where a>0
o

o o]
f 2" ¢=% dy I 2" e dg
1-23..n o 1:2:3.::0 z 0

St D). e+ @ Sd@ Doty
J 2" e dn J.

" "™ da

(o] o

It can now be shown that the ratio of the two integrals tends to 1 asn
tends to infinity.
Suppose a to be between » and r4-1, where 7 is & positive integer, then

© @ 0
! o e do< J. o o g J’ ar T ¢~ g, we (1)
1 1 1

_L
atngl’

.1 =
also _‘ 254"%="% Jp lies between 0 and J 2" da, or
0

o
whence we have

J’ 2%" e = +S , where 0<<6<1.
a

o +1
Hence from the inequalities (1) we can write
@ ©
2] e e;, J‘ 2 1 I J 28 oMY g
atnt+1 r4n+l o o
® <%
J " " da J’ " 6™ da
0 o
8 o [
- . 2t g% dop
atntl r4n42 Jg
59 b
f z" =" de
o
e o)

2" " da

_1 1:23...(r+n)

— =

Consider ’;l P 123...n
m’l e_’l, dm

- (14%) (1+%) ...(1+% Vi



347

since there are only @ finite number of factors the limit as # tends to

infinity of the ratio of the integrals tends to 1, and hence
1-23...n e

T
B a(at1)..iatn)
The relation between the Beta and Gamima Functions.
(m+n).. S(m4ntp)

2.
Vllm)l‘(n) lim 123...p n+
1'(m+n) P>0 (D) (rr ) (1) (mtp) "

®
_ alsl _m+n a" du

B(m,ﬂ)—f A Jo Aoy

_(mtn)(mtn41). (m4nt p) P ?{"'H‘L S
n(n+41) (n4p) “‘o (142) mtn+p
m—1

_(m+n)(m+n+l)...(m+n+}L) 1 Bt g
o Ty (0 z (1—2) dz

A(n+1).(ntp)
(m-+n)(m+n+1).. (m+n+'u.) 1.237.“}4. S,
n(atl) . (ngp)y  ° m(m+1)...(m+p)

J” .'c"_"""(l-—:v)m‘ld;,
O e
|ty
°
If » lies between » and »+1
J" ST A g™y f gyt 1g,
el e e L N S
J.] ot (l—w)m—ltla: |-‘ ab* (l-—w)m—'lrl.u
[ ‘o
'J.+ +l(1 m—lu]m

i
J fIJI’L(l—a;)m—ldz i
J' 7+,L(1 m lda:
1.23...(p41)

Lt
K> ]z“(l )m ILIZ >0 m(m+1).. (m+p+7)

and

m m+1).. W(m+p)_ Lt _(u+D. (Rt
P20 (1))

1.2.3.. B
A. C. L. WILkINsoN,



348

A Diophantine Problem.
1, If aa’—y*=1 is a conic passing through the rational points
(p, q), (s ¢}, then we can write
1

pa* =cosh u, g=sinh u; }

¢'a® =cosh v, ¢’ =sinh v.

b} 1
sinh (utv)=gqp'a® tpqga®, }
cosh (utv)=ppatqy.

Hence, the rational points (¢p’ +pq'), (upp” £qq) lie on the conju-
gate hyperbola at—y*=—1.

The rational points may, therefore, be readily constructed as the
ends of chords conjugate to the radius to (p, q) or (¢, ¢'); and the pro-
cess can be continued indefinitely.

Ex. (1). 222—y*=1

Here (1,1) is an obvious rational point. Therefore, if (p, q) is
any other such, the points (g +7),(2p£q) lie on the conjugate y—=2t=1;
and so on. R

Ex. (2). 22'—3y°=L

Here, if (p, ¢) is a point, { (5p £6¢), (4p+5q) } is also a point on it,

! R
9. Tf az*+y?=1, we may put pa®=cos 0, g=sin 6, }O ’
1
pai=cos ¢, ¢ =sin &,
pE
and dedunce sin(0+2)=(g¢' +pg")a B
cos(B+4)=(app'—qq’-)
Thus { (q¢' +Pg ) pt/—q4') } 18 also a point on the ellipse ag®4-y*=1
3. When the equation is ar®+by*=1, put

1 1
pu=cos B, ¢l*=sin 0;
and suppose

P =cos ¢, ¢’ (ab)? =sin ¢,
so that (@, ¢')lies on

1

B +aby=1.

i Y
Fheo cos (0+¢)=(pp —bg1)a®,
sin (O+¢) =(gp +pga)b%
and the points { £ (g +apq); +(pp' —bgy) $ will also lie on ax’+by*=1,
being the ends of a chord conjugate to the radius to (p 9)-

A similar method applies to an’—by*=1.

Example : 20°—3y*=1.

Take the aoxiliary conic 12—6y* =1, which is satisfied by (5, 2).

Hence if (p, g) is @ point on 2.2 —3y°=1,

{ (5p+69), (5—4P) }»
also lies on the same, and so on.
M. T. NARANIENGAR.
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Note on Q. 831.

(Exgoirer) :—Kind by elementary methods the invariant relation
expressing the condition (hat hexagons may be inscribed in the conic
S =0 which are also circumseribed 10 the conic 8'=0.

[N.B.—The vesult guoted in Salmon’s Oonic Seotions, 6th Edition
p. 343, foot-note, contains an extraneous factor corresponding to degene-
rate hexagons. The result is given in Halphen, Functions Klliptiques,
Tome II.]

Solution by A. O. L. Wilkinson.

Fig. 1 Fig. 2.
§ 1. Consider a jointed framework aubcdef inscribed in a circle and
kept in equilibrinm by six equal and opposite forces P, Q, R acting
alongtad, be, of. (fig. I)
The conditions for equilibrinm give
P T = T Q _

o
e —E ¢ Tye
sinasind sinesind singsind sin b sin

sin e Sm—etc.
which ave symmetrical and thus the frame—work is in equilibrium.
Consider the force diagram for any point K (fig. 2) where Ka, KB
...... are parallel to ab, be......

Then abedef is a funicular corresponding to K.

Now the hexagon aBy6et is symmetrical abont O; thus considering

K’, a point snch that O is the middle point of KK, then K'a is parallel
to K§, ete.
3
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Thus defabe is another funicular and the corresponding sides of
these two faniculars intersect on a straight line parallel to KK

Hence ab, de; be, ¢f ; cd, fa intersect on a straight line NLM, the
Pascal line of the hexagon abedef, and this line is parallel to KOK'.

§ 2. Consider any funicular corresponding to O, the cenire of the
force diagram; in general it consists of a hexagon inscribed in the
triangle X,YZ,, formed by the lines dd, be, cf, whose sides meet the
corresponding sides of the funiculars abedef, defube in points lying on
two straight lines parallel to LMN or KOK'.

Consider a straight line NY,Z, parallel to a0§ and combplete the
funicular Z7,Y,X,7,Y,'X,; since corresponding sides of this funicular
and abedef intersect on a straight line parallel to OK, that is. parallel 1o
LMN, and L is the point of intersection of Z,Y , and ab, therefore LMN is
the line of intersection of the corresponding sides. Hence Y,X, passes
through L, X,Z, throngh M and 2,Y ) through N. But %Y, is paralle}
t0 O§ and hence to Y,Z,. Thus the funicular degenerates to the triangle
X,Y,Z; inscribed in the triangle X,Y,Z;, whose sides pass respectively
through L, M, N, :

§ 3. The pencil at K consisting of K4, K¢, KO and the line through
K parallel to B¢ is harmonic; therefore Leb, Lef, LMN, LX,Y, form a
harmonic pencil. .

Produce ab, cd, ef to form the triangle X,Y %, and b, de, fa to forw
the triangle X, Y, Z,.

It follows from the harmonic pencils at . and M that X, X,X, ave

collinear,

$4. The potnts Xy, Xo, X, Xy are colliuvar.

Consider the forces, P, Q acting at o, b; their resultant passes
through X, for they can be replaced by Tj Ty, and Ty, Ty, and thas
XX, is the resnltant.

Similarly by considering P, @ acting at d, ¢, X;X; is the line of
action of the resaltant.

Again P at 7, can be replaced by forces along Z,Y,, X4, repre-
sented by Oa, O and Q at Y, can be replaced by forces along Y%,
and X,Y. represcuted by a0, Of ; whence X, is also a point on the
resultant.

Similarly Y, Y. Y,V and Z,2,Z,7, are collinear.

Let XX, Y, Y. meet in g; then the moments about g for P, Q at

a, b is zero and that about ¢ for P, R atd, ¢ is zero and the P forces are
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equal and opposite, hence the sum of the moments about g for Q, R at b,
¢ i8 zero.

Hence g also lies in Z,Z,.

Now X,X,X; is the Pascal line of afe bod, Y,Y,Y; the Pascal line
of abe fed aud Z,Z,7; of afedeb. Thus g is the Steiner point of the
Pasgoal lines X,X,, Y,Y,, Z,Z,.

af, cd, be \

The point g is { bc, fe, ad  }in the usual notation.

de, ab, cf

§5. The four triangles X;Y,Z;, X,Y.Z., X,Y %, X,Y %, ure copolar
with a common pole at 4.

The three axes of homology of any three triangles which are
ocopolar with a common pole are known to he concurrent (a very simple
proof by projecting the line joining the common pole to the intersuction
of two of the axes of homology to infinity). The axes of homology are
seen to be

(12) the Paseal line LMN, (13)the Pasonl lins (22 o

(14) TN, (23) the Pascal line ‘;f ;f ZI . (24) LMN

and the axis of mology (34).
Hence the 3 Pascal lines
as_f be, de) (af, be, de cd, fe, ab
ccl fe, ab be, ad, be, ad, cf
ave concurrent and the axis of homolo;;y of the triangles X,Y,Z, X,Y,Z,
also passes through this point of conourrence of the 3 Pascal lines.

Thus the axis of homology of the triangles XY 7, X,Y Z, meets
LMN ina second g point, and we shall show that these two g points are
conjugate with respect to the conic. (Staudt’s Theorem).

§6. The awis of homology of the triangles X,Y,Z., XoY.Z, and the

Pagcal line LMN wre harmonic conjugates with respect to the Pascal lines
ab, cd, of ab, of, be
(cf, be, ad azm’,(b’;‘ de, af

Project LMN to infinity so that we obtain fig. 3, where ab, de ; be ef ;
sd, af are respectively parallel. Then X,,Y,Z, are the middle points of
XX, Y\Yy, 22, Also X,Z,, X,Zy, X,Z; are three parallel straight lines
and hence they meet X;Z; in three points U,V,W where V is the middle
point of UW, and this establishos the above theorem. Also since X, is
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the middle point of cf, we see ‘that in fig. 1 the point where jad meets
LMN is fourth harmonic with respect to Z, of a and d.

3
Pig. 3.
§ 7. Taking the conic of fig. 3 as a civele, since ud=be=cf and
Zis Y1, X4 ave their  middle points, we see that X,YZ, lie on a circle
inscribed in the triangle X,Y,Z; and concentric with the circle ubcdef.
Hence in tig. 1. the conics abedsf and X,Y 7, touching the sides of
X,Y.Z, have double contact, the Pascal line LMN being the chord of
contact ; and more generally if we take any other hexagon Jbedef
whose verties lie on the lines of action of the forces P,Q, K and whose
corresponding sides a'b’, d'¢ pass through N, etc,, the conics a'b'c’'d'?f all
have double contact at the same points with the Pascal line LMN.
[nfig. 3, y is the symmedian point of the (riangle X.Y 7, and it:
polar with respect to the circle X,Y %, is the axis of homology of X, Y%
and X.Y.Z, . hence the polar of g with respect to adedef 1s parallel to
she axis of homology of X,Y.Z,, X;Y;Z, and thus passes through the
point of intersection of LMN (the line at infnity) and the axis of
homology of X.Y.Z,, X,Y:Z; this was shown in § 5 tobe the inter:
section of the three Pascal lines, viz. the reciprocal g point. We thus
have a proof of Standt’s, Theorem that the two reciprocal g points are
conjugate with respect to the fundamental conic.

A. C. L. Wigiysox.
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Astronomical Notes.

A new minor planet.

Among the recent discoveries of minor planets is one of some
importance. This planet (as yet unnamed) has a perihelion distance
of 1'182 astronomical units, very little greater than that of Eros, so
that on certain favourable occasions it may approach to within about
seventeen million miles of the Earth, and will therefore be useful for
determining the solar parallax. The eccentricily of the planet’s orbit
is very great so that its aphelion distance is 3-879, Tis period is almost,
exactly four years. The planet is of the tenth magnitude and its dia-
meter about four miles. The planet was discovered by Wolf who
recently announced the discovery of a minor planet attended by a
satellite which moved through eight degrees in a little over half an
hour—a discovery of so startling a nature that one awaits its confir-
mation with some curiosity.

In connection with minor planets another point of interest ecours
to me. It has been known for many years that at distances frow the
Sun at which the motion would be commensurate with that of Jupiter,
there are no minor planets, any planets which may have originally
existed in these positions having hoen diverted therefrom by the
perturbing action of Jupiter. A recent investigation of the orbits of
the many huondreds of planets now known fnlly confirms these facts,
gaps being found at the ratios 2/1,7/3, 5/2, 3/3,3/L. It is however
found that for values of the daily motion less than 500" this avoidance
of commensurability does not hold and planets ave found with ratios

1/1, 4/3, 3/2.

T'he planets with ratio 1/1 are a special case, forming with Jupiter
and the Sun an equilateral triangle and illostrating Lagrange’s parti-
cular solution of the problem of three bodies; there are four such
planets known, usually referred to as the Trojan group since they are
named after the heroes of the T'rojan war - Hector, Patroclus, dc.

R. J. Pocock.
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SOLUTIONS.
Question 64.
(A. C. L. Wrkixsox, M.A.) :—Prove that no solation in positive
integers exists of the equatinns
—yi=yt—t=—
Solutwu by H. Br.
1. Lemmu. The equations
al= B4 5 =yi+ 05 ok
have no solution in integers, if §==0.
Proof : (i) A commun factor f of any two of the quantities is & factor
of the other two also. [Thisis easily seen except possibly in the case
where =2 and is a factor of B, y. In this case

(5)-(3)-

Y are both odd or both even ; hence the difference of their

£, L
squares is a multiple of 4; 7 ¢, § is even].

We may therefore without loss of generality take o, £, y, § prime
to each other. As the snm of two odd squares is not a square § is even:

(ii) By the ordinary rules, we must have

mi4ni=a=M4+N> .. ek son U(2)
2mn=%§; 2 M N=3§ .
or 3 mn=MN . (3)
where m n are co-primes and 7 is even; and M, N are co-primes and N
is even.
From (3) we get
either m=a b, M=3ac } &
n=cd N bd
or m=ab M=ac
n=cd =3bd } - B

a, b, ¢, 4 being prime to eauh uthel, and d being even. We take the two

cases separately.
(iii) From (2) and (4),
a? b4t d=9 o P bt d?
or b? (d*—a?) =¢* (d?—9a”)

92" .
— =an integer =v.

giving ==

8 a® is divisible by s*—b* which must therefore be the common

factor of a® and d°
As a, b, 0, d are prime to each other and & and ¢ are odd, v can

only be +1 or—1.
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1t v=1, d*=a*+c* which isimpossible as J is even and, ¢ ¢ are odd.
If v=—1, 9a>=h*+d* which is also impossible as b, d are not both
multiples of 3.
Hence the reiations (4) do nob hold.
@v) From (2) and (5) we get
@ b P =a GO AP
_ L 17 L

2

or

The lower sign gives 9 d*=u’+ ¢’ which is impossible as a, ¢ are not
both multiples of 3.

The upper sign gives

. a*=b+d?

A4 .. (6

an equation of the same form as (1).  Also u:’%< mitni<a.

(v) Proceeding in this manner we get a series of equations with
diminishing values of a, and nliimately arrvive at the equations
1=bl+d 2 =c,/+9d,
which have no solution (it d, =% 0).

2. To prove that the system of (\qnatmm

Y =y—st=0"—v

has no integral solution except the trivial one

(i) Clearly v, y, 7, © may be tmken to be prime to each other
without loss of generality at =2y —
We may solve this by putting
a4z=X, a—z=Y,

or we may apply known results in the theory of quadratic forms, and

noting that

=2 P—2=(2 y+:)—2 (y+2)°
we may at once put down
+ 2=:A*—2 D
2 y+z=A4+2B* - vee (1)
y+:=2AB S
where A is odd, and A and B are prime to each other.
Similarly + «=C"—2D’
y—{»‘Z”*C“—{»—Z D* &
y+z=2CD ®

" C being odd, a,nd C and D prime to each other.

Eliminating ¥ and =
A4 C*4-2B*+2D*=6AB=6CD ... e (9)
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As AB=CD, we put
A=pr,B=gs )
Cepe, D=gr }§

"lhen p, q, 7, s are prime to each other and p, r, s are odd

(ii) Sabstituting in (9)

PR P 4 200 2070 =6 pygrs

or (P 42¢7) (" +5%) =6pgrs

.. (10)

Now 724s* has no factor common with », s and p’+2¢* has no
factors common with p, g. Also #*++* is even, but is not a maltiple of 3

P°+2¢'=3rs )

2pg=124s* S
or 2p+q)(2g+P)=3C+5))
2(p—q)(29—p) =3(r—5)* )

(€3]

Tt follows that r4s may be put in the form 2a 3, where a, £ are
prime to each other, and 7—s may be put in the form 2y§ where Y, 6 are
prime to each other. As p’—¢’=—3/"+37s=a multiple of 3, and as
p and g are not both multiples of 3, one of these quantities p+g,

p—q is a maltiple of 3 but not the other. Two cases arise

(1) pAg=6a’
Py

p—g=20" 5
Eliminating p and g, we get
9az=L"+06%,

12)

or B, & are multiples of 3, implying », s multiples of 3, which is not the

case as 7, s are co-prime’s. .. (12) is inadmissible.

(2) In the second case
p+g=2aM
2+p=34 |
29—p=y" |
p—q =65
Eliminating pg, weo get
a3:82+at
:yl+9”l
This has no integral solations nnless §=0
If §=0, r==
A=C, B=D
Y=35
and finally

#l=yi=2 =,

(13)
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Question 378.
(J. C. SwaninaRavaX) :—Having given that
{ B o) —2E(fye) } =4e7+ 1) [Be—f 3o+ 25gh—af)ye)
bz 4 cy Qq.‘ _ay’ +bz — hm/

prove that
Pty

Remarks by H. Br.
The given expression may be written
[(n,+b+c)(:u’+yﬂ+:ﬂ)——(a:u’+by'+a:~‘+2fj/:+L’-g:a;-{-?h.vy)]“
=4(2*+ 1+ 2)(Az’ + By + C2* - 21yz 4 2G4 2Hay).

Take (2. 9, Z) to be co-ordinates of a point, the axes being sapposed
to be rectangular. As a-b-4c is an invariant of the quadric aa’+...
it s clear that the above expression retains its form if the axes are
rotated in any way. Conseqnently, the conclusions (whatever they be)
to be drawn from the data will also vetain their form unaltered if
the axes are rotated in any way. But the conclusion that is asserted
in the question does not satisfy the test.

To verify : Suppose the guadric referved to its principal axes, so
that f=g=h=0.

[(b+e)at 4 (c )y + (a4 b)) = 4@ +y 47 (boa® + cay’ 4 abz®).

Expanding and simplyfying we get

E(b—c)wt —2L(a—b)(c—a)y’s =

‘Which implies

V(b—e)aw £V (6—a).y £V (a-—b)z=0. e (L),
‘We are required to prove that
bzt+ey®_ca'+ad’ _ay’+ba?

2t ot oy
% :J[(b—c)m"+(Cf"a)?/:‘(ﬂ*b)f] =0 {
Plo—or—(e—ay+(@—0)]=0 .. . @)
@[ —(b—e)at+ (s—a)y’ +a—1)=*] =0 5

The set of relations (2) is not a necessary consequence of (1).
Question 723.
(S. Rayaxusan) :—If [#] denote the greatest integer in x and n is a
positive integer, show that

~[n n+2 [n+47 n7] w43
ofg]+ [ 1051 =61+ 5]
[+ V(n+D]=la+V+ D,
(1) V4V (n4+1)]=[V (4 +2) ],

Solution by H. Br.

(i) Put &(n)= L J+' Loy -"1 "-g{ :—IL % [,,4_3’1 ()
4

:ol
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Let rg] =k, 8o that n =6k+m, where m< 6,

_F? [zk+ ’"] —op. f%ﬁ | e,
~ #(n) =q¢(m), where m =0, 1, 2, 3, 4, or 5.
It is easily verified that ¢(m)= Oiand therefors also $(n)=0.
(ii) Putn=Fk"+aq, where a< 2k+1. Then L\/u 1=k.
Let n43=k'+a+3=(k+5%)
w4 =kt atl=(k+n)

We are required to prove [14\/n+3]=[14n+]
or, in effect, [3+&]=03+m

If a<k, O<m<t <y, 8nd [1+8]=[3+7]=0,
If a>k, i<n<t<l,and [1+5]=[i+ 7] =1
(iii) As before let n=F*4a, where a <2k +1.
Pat

n=k+a=k+8)3 ‘/-
nts=kta+r=(Gk+7n):, " (1)
ntl=ktat1=(k+<) >
We are required to prove
k [Vi+Va+1]=[Vén+2|
or in effect &.TQJ—[?Y,]

If a<<k, we have 0<E <n<<C<i, and [&+5]=[2n]1=0

If a>Fk, we have 3<E<<¢<I, and (& +5]=[2n]=1.

If a=F, &<}, and v, & are>{, but<<l. Thus [27]=1. We have
to show that [&+4¢]=1. If .‘.:%—.uY and c =3+ 2z, we have to show
that 2>a.

Substitating for & and & in (1), we get

$=2 (2k4+1)+2,
and —i=—a Qk+1) 4
(6—)(2k+1) = — ("2,

As « and z ave both less than 4, 242 is < 2(3)'< 4.

3 (z—w)(2k+1) is positive, or z—= is positive.

Hence in every case [£4=] =[27].

Question 836.

(MagTyy M, THosas, M.a):—At a given instant, the same star is
observed to be at the horizon of one place (lat. ¢,, long. L;); on the
prime vertical of another place (lat. ¢, long. L;) and at the zenith of
a third place whose latitude is nnknown, and long. L,. Prove that

cos (L;—L,) tan 5;4cos (L,—1,;) cot ¢3=0,
and find the latitude of the third place.
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Bolution by R.J. Pocock, S Muthukrishnan, K. B. Rama Iyer, A, K.
Anantanarayanan, B. D. Karve and 0. Krishnamachary.
Let the hour angles of the star be hy hy in the first two cases ; then
ha=L5—Ty3 hy=Ts—Lis;
and if § is the star’s declination §=d¢s
Alro tan §. tan ¢y=-—00s Ay,
tan §. cob dy= CO8 hy.
Eliminating §, h, hs, Wwe have
cos (Ls— 1) cot ¢;+cos (Ls—Ls) tan $=0,
or cos (Ly—Lg) tan ¢+ cos (Ly—L,) cot ¢,=0;
and tan ¢,=tan §=cos (L;—L,) tan ¢,
=-—008 (Ly—Ly) cot s

Question 843.

(LIARSHMIBHANKER N. Baarr) :—From any point C tangents CD and
CE are drawn to a cirole, and from any fixed point O on the cirola‘
chords OD, OE are drawn. 1f from any other variable point O’ on the
eircle, chords O'D, O'E are drawn cutting the former chords in P, Q and
the tangents in R, S; then prove that (i) the line PQ always passes
throngh C and (i) the line RS slways touches a conic.

Solution (1) by Hewraj; (2) by V. M. Gaitonds, 8. R. Ranganathan,

and O. Bhaskaratya, B.A. (Hon.)

(1) Reoiprocating with respect to O, we have :—

TP, TQ are tangents to a parabola 2t P,Q; and a variable
tangent cute them in R,S. Show that the lines through R and 8
parellel to TQ and TP respectively meet on PQ, and (ii) the locus of
the point of interseotion of fhe disgonals PS, RQ of the quadrilateral
PQSR is & conic.

Take TP, TQ as axes. The parabola 18

snd s veriable tangent is ?-\-2 =1 with the oondition %—q—%:l, e ()
g

i =2 ¥_.1=0
@ PR=-+3 1

and the peiot of interecotion of lines through R, S parallel to TQ, TP is
ewidontly (f, g). 1t livs on PQ, if



360

f_+.g_—1=0, which is (1)
a b

[For a geometrical proof, see Lachlan’s Modern Pure Geometry Art 272].

(i) PSE§+§_1=0 o (2)
Q,RE?+%—1:=O. G

Eliminating f, g between (1), (2), (3) we have the locus required, viz.
2t 4-aylab+y* /b —2aa—2y/b+1=0.
It has double contact with the parabola at P and Q. Hence the theorsm.

(2) (i) Let OO0’ and DF meet in K. Then by the quadrangle
construction for a polar, PQ is the polar of K. Also since K lies on
DE the polar of C, the polar of K always passes through C.

Thus PQ always passes through C.

(ii) Tt can easily be shown that R and S generate nomogrsphic
ranges on CE, CD respectively and that the ranges are not in
perspective. Therefore RS touches a conic touching the fixed lines
CD, CE.

Additional Solutions by 8. V. Venkatacholo [yer and H. B. Kopodia.

Question 846.
(3. MavmARL Rao, B.A ) :—Solve in positi7e integers 10*4-95% = 101*
Solution (1) by H. Br. (2) by S. V. Veukatachala Aiyar and N. B. Mitra,

(1) 10%4-95=0 (mod, 101)
Multiply both sides by (—17)*, and simplify. We et
39¥-4-1=0 '
or 2% 4-1=0 dia b sy 1Y

As 2 is not a quadratic residue of 101, 2°94+1=0.

Henceif , is the lowest positive value of » satisfying (1), 50 must be
an odd multiple of O .
i 1ro=2 or 10.

V29101024 + -1, 2,=101is obviously admissible.

Lo=2, g1ves
The general valoe of 2 15 any odd wultiple of 7 ;
or s I =20 k410 ; o,
the value of y can be deduced when % is known.
(2) Forming the residues to the modulus 101 of the successive
powers of 10%, we have
e e e e 210,110, 1 e

(the same 6% recurring after this), 2o~ . o LT
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Similarly the residues of 95% are : i

—6, 36,—14,—17,41,......
(the same set recurring).

In order that 10¥+95¥ may be divisible by 101, the snm of theu
residues must be zero. This is obviously the case when z has any of
the values 10, 30, 50,...... ; for, when » has a value of the form 24-4n,
the residue in the first case is—1, and when » has a (value of the form
5 m, the residue in the second case is 41 ;

Thoa the values of = having been found, the corresponding valnes

of y cai e easily caloulated.

Question 861.

(Communicated by Mr. J. H. Geacg, F. R. S.):—A heterogensous
medium 1s such that the path of every ray throngh it is & plane curve.
Find the index of refraction atany point.

Solution by Balak Ram.
If w be the index of refraction at any point, the differential

equations of a ray are
d /o da

o e ol

and " =2 78 2 -%—4IJ}LI’, de.

If the path is a plane cur torsion i3 zero. Simplifying the
determinant factor of the value of the torsion, we get

’ ’

D oy Bz l=0.
op op’ ™y
|9z By 3

We must have rela
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The first equation is equivalent to

4 ( efudsa%) =ve fuds dz.

This shows that the right hand side is a perfeot differential.

uds . .
) ?‘herefore vef ‘s independent of y and z Similarly by con-
sidering the other equations, we find that it is independent of =, and is
consequently a constant. Integrating, we get

0
L
3,
% =v(y~y),
aaiz':u(z—-zo);
or dp =0 (@)t (y—yo)dy -+ (s—2)d2].
Changing to polar co-ordinates, the new origin being taken to be

at (20, Yo 20)s
opn op 9
d“__aT,iH- ﬁd9+é\£"k‘d¢=1;rdm

Op_3p_g
96 B¢
or p=f()=F[(2—2)’ + (y—10)*+ (z—2)],

where (2, Yo %) is an arbitrary point and F is any funotion.

Question 874.
(S. MaLEART Ra0) :—Solve in primes
24+y=206, x+2=132, 54+ w=82.
Solution by H. Br. N. B. Mitra, C. Rrishnamachary, K. B. Madhava,

R. D. Karve, R. J. Pocock, G. Joshi and S. V. Venkatachala Aiyer.

As 2, y, 2, w are primes, and the value 2 is clearly inadmissible for
any of them, each of them is of the form 6k+1. From the given
relations if follows that # and y ars of the form 6%+1,|and 2 and & of
the form 6 41, The values of w that makeyw and 82—w prime ars

w=11, 23, 29, 41, 53, 59, 71,
z=82—w="71, 59, 53, 41, 29, 23, 11 ;
of these w=29, 53, 59 give prime values of » and y, as follows i—
z y : w
79, 127, 53, 29
103, 103, 29, &8 %
109, 97, 23, &9

P
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Question 87s.
(M. 'I'. NaRaN(ENGAR) :—P is any point on the circle of similitude of
two circles A, B; and Q, R are the inverses of P with respecl to A, B.
Show that QR is bisected by the radical axis of A and B.
Solution (1) Ly Hemraj, S. Muthukrishnan, and K. R. Rama lyer,
(2) by Hemraj, M. K. Kewalramani, and S. V. Venkatachala [yer.
(i) Denote the centres of A and B by Aand B, and the cirele of
similitude by C.
Since P is on C, %—ﬁ:.}, where ¢, 2, are the radii of A, B;
1

and since Q,R are the inverses of P w rt. A, B,
AP _ e BRe e
AN ander—eis
e AQ e, BR
iemal 1ﬁ\_P AQ
AQ BR BP BR
QR || AB z.e. the radical axis of A, Bis LQR, oo (1)
Evidently the circle PQR is orthogonal to A, B and C which is coaxal
with A, B,

Thus the centre of the circle PQR is on the radical axis and on the
right bisector of QR as well. Hence by (1) the radical axis bisects at
right angles QR unless it is parallel to QR, z.c, unless the centre of the
circle PQR is at infinity, 7.c.. unless P L01nn_1de~ with either centre of
similitnde ; even in this case QR is bisected by the radical axis,

(2) Taking the line of cenfres and the radical axis of A, B as axes
we have the equation of A, B in the form

P4y =2+ 5=0 Pyt —2ka+§=0.

Hence the equation of C is

zg+ir’ﬂ_2k::’_—+;:" +5=0. .. (1)
Now P (=, %) is any point on (1),
iyt — k7‘++“;,1+ 5=0: .. 2 - (2)

and Q is the point of intersection ol the polar of P w.z.f. A and the line
through the centre of A perpendicular to the polar; ie. the intersection
of the lines
@ —k)a+yy—key+§ =0, yv— (s —k) y—yk=0.
. o k—k o k+k :
Hence Q is };77;;;2% %+k;_>5.z.,y )
k—h k+1q
e e Y
Hence the esult follows at once.

Similarly R is
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Question 878
(S. N4RAYANA AIT4R, M.A.):—Show that
(=27 T'(n+1) B(—m,—r, n—r41, A

(1~ 22y (1-- ;
a" L S_Jr\r-}-ln in—r+-1)

vhen F denotes the hype]g,eommu : funciion
Hence show that
o
L I'(z)

7 L 0!
[A=F e Q=) Fga= ' (&7
J __zi(r—Ll)(’y—Ll) TZ=7
r=0
P(y—r, 2=, ).
Solution by K. B. Madhova, S. I. Ranganathan, (. Krishnamachary
and Sudanand.

L1 neither m nor i is a, po%ibive integer

w_ N Tl
A== ) TmoriDTex "
r=0
\\ l'(n+1) (Y

Rod getals = [la—r41) T(r41)

Hence the coefficient of (——x) in the product (1—a®)" (1—&* a*)
$=T
N '(n+1) T(m+1) S T(a-—r4+1) T(r+1)
Or(n—‘r-f— DI+ Tim—s+ T —s+ TG+ DI (n—r+4s+1)

s=1
l(n+1) \\ T(m+1) l“( +1)
T orF I+ D) u T(m—s+1 T(—s+1)
I'(n—r+1) K

T(n—r+s+1) " ]‘(s_,}_‘l)

l—(n T,l)ii Fl—m,—r, n—r41, k%),
r(na/+1) T'(r+1)
where the hypergeometric es contains only a finite, viz. r+1 {erms
Since neithier 7 nor » s a positive integer, the produet can be

summed for 7 fron O to = .

0
—Eay e S (5F) | T
(L #)" ) L.’Ol“(/-_l) r(7z—-‘r+l)

F(—m,—r, n—r+41,%).
I'he second result follows by » <imple integration, and putting

Hence

1

vmz——}j and n=-—s:
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Question 889.

(HeMrAT) :—Two parabolas have each double contact with a given
ellipse of semi-axes a, b, and their axes parallel to its axes respectively
PP, QQ', are the chords of contact, and p,, py the radii of curvature of
the parabolas ; and p, p’, those of the ellipse at P, Q. If the distances
of the chords of contact from the cenire of the ellipse are in the
ratio of its axes, prove that p p,=p'p,. In particular if the distances
are equal, then

a’ pip.=1 p'p,.
But if Q coincides with P, then
LT
PP P

Solutton (1) by K. Appukuttan Tirady and K. B. Madhava ;
(2) by C. Krishnamachary, S. V. Venkatachala Aiyer and Sadanund.
(1) Let the equations to the chords P P" and Q Q' be z—f=0 and
y—g=0 respectively.
Then the equations to the two parabolas are

e

1 5 .
AL 1 a0, e ()

2 2 1
%-}-%E—I—F(y——g)’:o. e (i)

For the ellipse at P,

y'.!— 2

+ =1
y dy_ =
paE e

3Ry L LS

B dat @ b \da/

For the parabola (i) at P,

o1 o b
b? ot ' at’
y dy_
F'?‘—F
y dy_ dy
Tt (d

Since the parabola (i) touches the elhpac at P, their curvatures are
2
in the ratio of their 3’% at P.
&
Hence in the notation of the Question
Leay PR R
P _ b \de i al f a® j_’
1. =g, F T
B d:z;) @t aty? I;+ 7
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And it follows from symmetry that at R,

Hence it f = g
a v

or

and if f=g,

or

a PP‘*b@P P
Also if P coincides with Q,

fx
=pand <, 4= —b_“ _l
and consequently Pﬂ-{-;l =
1 2
1
Ll

PP Py
(2) Let the eqnation of the ellipse be

2.6,

¥
+b”

and P, Q, be the points whose excentric angles are a, L.

If P' be a’, the eqn. to the parabola with its axis parallel to the
z—axis is

( yq I) {_co s St F.l_+gsinuj_'_u. -—cos(}%q, =0.
Since the axis of this parabola is parallel to the z--axis,
k=1,and a4+a'=0;
and the cquation to the parabola is

J+ cosu—(l+005“ﬂ) =0. w @

Similarly the equation to the p‘u‘a.boln with Q Q" as chord of
contact and axis pa.r'sllel to the y—axis is

+ smu—(l+smu) =0, « - e (2)

4 (a’sin’a - b“cos?u) (a%in*8 + b"coq“[?)
Now R=———r g —’—Zb_—‘ .
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Also we can easily find P1 P, the radii of curvature of the para-
bolas (1) and (2) at P, Q, and these arec given by

_ (o%in®*a 4 b’cos’cl)é; _laksin’ A+ b‘cus‘-’,{?):“,
= aboosta 1T ab sin’f3 §
The perpendiculars from the origin on the chords of contact PP’
QQ" are a cosa, b sin 4.
If these are in the ratio of the axes
cosa=sinf; pp,=p’p,
If these are equal, @ cos a =b sin £,
a'pp,=b'p'p,.
But if P, Q coincide, a =2, and the relation
g
—=—+—
P P Py
easily follows.

Question 898.

(HeMRAT) :—A parabola has double contact with a given ellipse of
semi-axes a, b and its axis parallel to either axis of the latter. Wind the
equation of the locus of the centre of curvature of the parabola corres-
ponding to the point of contact ; and show that

@B P o= { (Pr—p) @+ o8}, or { (Pr—py) Byt ) °
Where p,, @, are the radii of curvature of the curves at a point of con-
tact.

Solution by K. B. Madhava and C, Erishuamachary.
We notice that

=4 A (2+C) (1)
is a parabola with its axis parallel to the major axis of
v "
lﬁ(—l—g'—#b—l (2)
and having double contact with it, if
4ACH =b'4+4 A% (3)
The points of contact of (1) and (2) are
¢ 2 -
LIS Sy L
b* b
4
where  p,* (Ellipse) _-&’1112 (a*—u* e?) :%ﬁ (b*—4 A%ig? ey .., (4)

1

4 o
and P> (Parabola) :I(A-{-.H- C)i= % it

(L‘-—’LA"' wt 52)'; (5)
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whence the required relation is got by eliminating A between (4) and
(5) e between (4), and p; b'=4 A’ a* p..
b a
P = b(f‘ 5 (Pa—p1 &),
se. bty ' ={a (Pi P)+b oy}
Similarly the other result (when the axis of the parabola is parallel
to the minor axis of the ellipse) can be got by interchanging a and b.
To obtain the locus of the centre of curvature, we eliminate z, ¥,
A and C from (1), (3) and
Yy

£=2A+2C+3 2 and n=—4A’

Question 9o4.
(R. J. Poceck, B.A., B. Sc.) :—Show that
T ’,2"'*‘1)
d¢=2"""_ N\ 4

ﬂ2 sin® ,
o (1——5111 ¢> s r(z_":'_l> Znt Iy

Solution (1) by F. H. V. Gulasekharam and by the Proposer; (2) by
A, C. L. Wilkinson and K, R. Rama Iyer.

[Py ot gyl (21,
I_fow e d.b—4 a ),

by substituting z*=y

LS

(1) Consider

J 4 4

oy oitif 2L P o'y dad

whence 2% I*=2 syt wdy
0-0

d
J'm‘(f'/"‘ sin?” 20 i (1—35in’26) . 5, a0

0’0o

=%&J’IJ- 2 sin Y'¢ e (A—2in’d) g d¢
[+

o a“ dt de

T ) [Tt

indl
0 (1 _% sin'e) T
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This solution is suggested by a similar analysis, due to Forsyth
given in G. H. Darwin’s paper *On the Mechanical Conditions of a
Swarm of Metorites ” (Phil. Trans. Series A, Vol. 180 (1880) pp. 1—69 ;
also Collected Papers, Vol. IV, pp. 362—431)

oy * 1\ o dpt

Putting n=0, we get T (E) =2ntF 3,

where Fis the complete elliptic integral of the first kind, modulus L
From ]'(43') (E) =m /2, and Legendres formula connecting the

\7‘2-
complete elliptic integrals of the first and second kind, which for
modulus \712 becomes 2 FE—F*=}

3 7, we obtain
r(3 =mt@E-F)F;

and we thus obtain the expressions for

[e9) @ L}

j =", J’ e da

0

given in the paper quoted above ; and more generally

fma:"‘ e"“ dz= 1 T (

1 2n4-1
o 4
oan be reduced to one or other of these two expressions
lsiu‘¢ cosd
(2) Write sinz= ) 008 =
1—_2.Ein‘¢

; so that
1~%sin'¢’
singcos¢dd

cos z dz= (l_—31n'¢) 2 vi),_\/2sm u([.._em%)
B i - 2n+l)
1=2n :fo Sin: Ca=2 - ((%+1)
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Question 9o5.

(T. P. Buaskaka Sastri) i—Investigate the effect of precession and
nutation on the position angle of a double star.

[See : Ball’s Spherical Astro: p. 185, Ex. 16.]

Solution by C. Krishnamachary and the Proposer.
Liet 7 be the pole of the ecliptic.
P, the celestial pole at epoch T,
P, the same at » subsequent epoch T.
S, the principal star and ' his companion

Fig, 1.

also let the position angle at the first epoch be p,, and p that at the secong
epoch.
£ P m P,=the arc between the noles of the circles m P, and w P
=k
From the triangle P, S P,
cos § sin (p—p,)=—sin PP;sin ZP P, S.
But LPP,S=£LPP,mn—£LSP,m=£LPP,m—(90°+ a,)
=—(90°—£ P P, m)—a,.
2. cos § sin (p—po)=sin P Ppsin PP, 7 sin 4,
+sin P P, cos P P, 7 cos a,
From the triangle PP, m,
sin PP, sin PP, w=sin (w4dw) sin k& and sin I’ P, cos P Py mm=cos
(w+dw) sin w—sin (w4dw) cos @ cos k.
Making these substitutions, we get
(p—po) cos 6=[k sin w sin a—dw cos a],
neglecting small quantities of order higher than the frst.
e p—po=[n sin a—dJw cos a] sec ;.
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QUESTIONS FOR SOLUTION.

903. Correction : Insert at the end of the question the follow-
ing :—“ where the snmmation is extended only to odd values of n .

960. (V. Ramaswame Aivar, M.A):—Given a triangle ABC, if
a point P and the feet of the perpendicnlars from it on t-e sides and
altitudes of ABC all lie on a Cartesian Oval, show the negative pedal
of the oval with respect to P touches the nine points circle. Show
that the pedals of the inscribed and escribsd circles of a triangle, taken
with respect to the orthocentre, are cases of such ovals, illustrating the
property.

961. (H. Br.):—Show that
A=yt
2=yt 42

have no solutions in non-zero integers

962. (A.C.TL. Wikmvsox) :—If two circles are such that hexagons
can be inscribed in the one which are civcamscribed to the other, prove
that the sum of the products of the diagonals taken {wo at a time i3
constant and equal to

4R2 = (Ra_

2 '.!+ 4 R'l /.’.! }

(RP= ¥y )

where R, #, ave the radii of the two circles and ¢ the distance between
their centres.

963. (A. C. L. Wrukinson) :—1f two circles are such that
quadrilaterals can be inscribed in the one which are circumscribed to
the other, the ratio of the areas of these quadrilaterals is constant.

964. (H.Br):—If f(x,y) is a rational algebraic funciion of
« and y, such that f (—&, y)=(—)"* f (2, v),

(i) Show that

®
JO f (sin 26, cos QQ)JTGH

k
f(sin 26, cos 20) tan B. 4" o0, %0

_(=DF !
Twr a6 9

®©
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=( Tl) J 2 f (sin 26, cos 26). de" cot 6. d6
o
and
® m
(i) JO f(sin B, cos O) ;,\,—‘izg'_}f‘ J f (sin B, cos 9) d—e—,; e

where \ =cot 8 or cosec 8, according as
f(—2—y)=f (@ y) or —f (= ¥).

[The integrals are assumed to be finite.]

985. (HexraJ):—ABC is a triangle. A point J is taken on Al
ploduced such that I,J subtends at B or C an angle a where cot a =3
cot 2 C or 3 cot 3 B. Show that there exists a circle through A and J
which cats AB and AC in D and E such that BD=CE=BC.

[Suggested by Q. 959.]

985. (A. C. L. WiLkixsoN) :—Prove that
1-9(24 K5 +5h%* | 1-2(1+1)er’ 4 3K%," 1—2(14-2k%)s2 4 5k%s,*

T 2sedy 2s,04, 25,0,
= —3k%,8.8;
K 1K’
where §,=sD (T) sj—_—su_g., Byi=
966 (A. C. L. Wirkinsox) :—Prove that
. K K
E-30 (3 3)= ,Lu?
967. (M. K. KEwiLrAMANL M.A ) :—Prove that
s 35m*
5495 _4-5—5 5L 75485105 = 1104 .=
10425 =4 =D 4 7°48 -+ v

968 (V. ANANTARaMAN) .—Sum the series
11 1 ——1-+-1——+......

377711 15 19
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