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Complex Roots of Equations.
By M. T. NARANIENGAR.
Introduction.

It is proposed to discuss in this paper graplic methods of visnalising
the complex roots of an equation. To this end Argand diagrams ave
freely used, and complex roots obtained as the real intersections of two
plane curves. The method of the Theory of Functions of Complex Vari-
ables is briefly indicated towards the close of the paper.

The paper is conveniently divided into three Sections: (1) The
First Section treats of equations up to the fifth degree by means of the
elementary methods of curve tracing; (2) In the second Section,
Approximations to Complex Roots of a general algebraical equation, are
developed by means of Cauchy’s expansion and Taylor’s theorem, and
incidentally a * Method of dealing with the Intersections of Plane
Curves” is referred to and its connection with the properties of Polar
Curves explained; (3) The third and last Section is devoted to a brief
discussion of Transcendental equations.

The Post Script®deals with simultaneous equations involving two
Complex Variables.

The computation of imaginary roots of Numerical Algebraic Equa-
tions has not received much/attention on'the part of mathematicians.
There is a reference to a modification of Horner’s method so as to apply
to imaginary roots on page 12 of MaTHEMATICAL Movocrapas, No. 10.—
The Solution of Equations by M. Merriman®. Mec Clintock in 1894 pub-
lished & method of development in series of the roots of an cquation by
means of his Calenlus of linlargementt. His method can be used for
approximate computations when the series is convergent. Lambert in
1903 gave ont a similar method of expansion by Maclaurin’s formula,
applicable to Algebraic, as well as, Transcendental Equationsf, This
method consists in introducing a second variable into all the terms but
two of an equation and putting it equal to unity after the expansion of
the first variable is obtained by Maclaurin’s theorem.

Dr. I, 8. Macalay in his Algebraic Theory of | Modular Systems, 1916,
No.19 of Cawsripse Tracts, gives the following further references:
Transactions of the American Mathematical Society, No. 8, 1902; and
No. 5, 1904.

Shefller, Die Auflisung der alcebraischen and transzendenten Gleichungen
Braunschweig, 1859; and Jelink, Die Auflosung der hoheren numerisehen Glej.
chungen, Leipzig, 1865.

t Bulletin of American Mathematical Soc., 1894, Vol. I, p. 37; also,
Journal of Matlematics, Vol XVII, pp. 89—110,
I American Philogophical Society Proceedings, Vol. 42.

American
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Section (1).
1. Consider the quadratic equation )
24 2pz+¢=0. (1)

We may write its roots in the form (z4-1y) withoutlloss of genera-
lity. Substituting in the equation and separating real and imaginary
arts, we have

(@ =y +2po+9)+ 2y (a+p) =0,
which is equivalent to the two equations
(@*—y°+2pa+q=C. } @
y(v+p)=0.

Drawing the curves (2), we find (v,y) as their intersection. In
other words, the Argand representations of the complex roots (x4-sy)
are the real intersections of the Cartesian curves (2). Itis quite easy
to see that these intersect cutside the axis of & only when the roots of

Iig. 1

Y

/
N\

the quadratic are complex. In this case the graphic points A, A’ wil]
represent the complex roots

{ —pEiVg—p'} [see Fig. 1.]
2. Next, sappose the equation is i
f(@)=5"+3pz* 43¢z 7 =0. e (3)

Proceeding as before, we have
5 ;
fatin=f@)£iy f @)~ L1 w)F 2f"@ =0,
which breaks up into the two separate equations
J@) =4y £ /(0)=0 7
Y@ =4y " (@)] =0 §
The factor y=0, in the second equation leads to f(x)=0, determining
the real roots ‘of the proposed equation. The complex roots (when
they exist) are represented graphically as the real intersections of
f@) =3 y* f"(z)=0 o (4)
f'@=tyf"(=)=0.
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Now the cubic and conic represented by (4) can be readily traced
and their intersections obtained ; or (4) may be reduced to a cubic equa-
tion in z by eliminating 3*and the veal roots of this resulting cubic
obtained. The corresponding real values of y will then give the
graphic points, required.

[ef. MacRobert’s Theory of Functions, pp. 16—19.]

3. The biquadratic equation f(<)=0, treated similarly leads to the
intersections of the curves
f@) =1 ¥ 5 "@+y*=0, B
F'@=1 9§ @=0,
which are of the 4th and 3rd degrees respectively.
The elimination of y* between {hese gives an equation in % which

may also be used for locating the real values of @, but the process is
tedious.

4. Instead of the Cartesian (z++ty) for the complex root, we may
take the standard form #(cos @%7 sin 8). The auxiliary curves corres-
ponding to the complex roots will then reduce to

™ cos nO4py"t cos (n—1)0+pa"? cos (n—2)0+ ...+, =0,
7 sin @4 p;r"! sin (n—1) O+ py"? sin (n—2)0+ .. +Pn =0.

5. In connection with the method of this section the following
hints on curve-tractng may be of use :

Suppose 1'(x,y)=01is any plane curve. Then in relation to the
curve the set of points in the plane of the curve may be grouped into
three classes :

(i) The group of points for which F(s,y) takes a positive value ;
say, the positive group.

(i) The group of points for which I'(s;y) takes a negative value ;
say, the neyarive group.

(iii) The group of points for which F(a,y) takes a zero value ;
say the zero group.

The last group defines the curve, and the other two groups ate se-
parated by it. Thus the whole plane is divided into compartments of
positive and ngative points, whose boundary is the curve itself.

Now, let I’ be any positive point and  any negative point. Then
by the principle of continuity we infer that there must be some point
between P and @ lying on the curve, which can be approximately
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found. The method, though laborious, is useful in locating a curve coii-
sisting of several branches. Further, its essential importance as a me-
thod consists in its negative character; it does not require any know-
ledge of points on the curve, as in the usual method of curve tracing.
By this method we can locate a curve of any degree'in relation to two
points taken at random.

[ix. 1.—As an illustration, let us consider the equation 2" —4:—2=0
[Cajori: Theory of Iquations, p. 29].

The auxiliary ourves being denoted by P and Q, we have

P=r* cos 50 —4+ cos O —2=u"—102"y*+5ay* —4s—2 =0,

Q=" sin 50 —4r sin O=y(52*—10a%*4-y* — 1) =0.

(I) The P—curve:—Considering P as a quadratic in y*, we find

that the discriminant

D =1002°—202(»" — do—2) = 40(2s° 424 + ) and is positive for all
values of z not lying between O and—48, since D=0 for a=— 48
nearly.

Hence y has real values except when  lies between these liwits.

Again all the values of y will be real only, if ¢=(s*—da—2)/z is
positive. The latter changes sign when 2 =152, —51,—1-24 nearly.

Fig. 2.

p
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Thus the following cases arise
(i) ¢=+, when >152;
(i) ¢=—, when 1'52>2>0;

(iil) ¢ =+, when 0>a>—51;

(iv) ¢=—, when —51>a>—124;
(v) ¢=+, when —1'24>u.

In case (i) y has four real values,
(ii) y has two real and two zmaginary values,
(iii) y has jour i{maginary values, if 0>2>—'48, and four
real values, if— 43>z> —'51,
(iv) y has two real and two imagsnary values,
(v) y has four real values.
(2) The Q— Ourve :—This consists of the axis of # and two hyper-
bolic branches as is easily seen.
[N.B.—The asymptotes to the P and @ curves are cos 58=0,
sin 58 =0 respectively].
A tracing of the curves is given in Fig, 2, .
Their real intersections furnish the roots of the quintio, and they are
A, B, C, corresponding to the real roots;
D, E, corresponding to the imaginary roots.
Their approximations are
+1:52, =51, —1:24; +12+144y/
The approximation to D is found by changing the origin to (0, 1/2),
50 that Q comes

y'=9}§2w", nearly ;
and P becomes (on substitution for y)
500"+ ga' —1 20,
whence ¥'=%1="12
_5y/2 1 _
=g
or p= =,12!; y=1/2+4y =144,

It may be remarked here, that the P and Q curves are
orthogonal always; and that the P—curve cuts the axis of z in f(=)=0,
and the Q—curve in f'(z)=0.

By Rolle’s theorew, therefore, it follows that if P crosses the axis
p times, Q crosses 1t in of least (p—1) times. If all the voobs of f(z) are
real, P au@ @ will never cut in real points,

Ex. 2. As asecond example, we may take the ocubic

2—2z—9=0,

y



. Here

=; (h —y*—1)=0.
The graphs are as under.

Vig. 3,

The roots are +2:24 ; —1'12+165y/ =T,

6. The method of *rvectors’ may he employed in a few Lypical
cases, as the following examples will show :—
Ex. (1): To solve 2:°4-2:41=0 ... iEn was UGL)

Let OB represent the vector =, then z* is representied by OC, where
A A
AOB=BOC, and OA.0C=0B*; 50 that the equation is written
OA420B+200=0, o (i)
Fig. 4.

Q
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Now, since OB bisects the angle AOC, equation (ii) requires that
200C shonld be eqnal to OA.
Putting OB =+, we have

21¥=1, op P =%

. i
r=-=,
V2
Also 2r=—2 cos AOB, from (ii.) F ]
cos AOB= —} .
Ve
AOB=135".

Tlence, the value of z corresponding to OB is
» (008 135°4-1 sin 135%) = — % 1.

Ex. (2) #*—9:—12=0.

Here = is easily written in the form [{/3++/9] and the several
valoes of = are therefore

a+b, ad+bha’, aa’4ba,

where a=+/3, b=1/9, a =cube root of unity.

Hence, we obtain the following construction for the roots of the
cabic.

Describe concentric circles of radii 4, b; inscribe equilateral tri-
angles A;A,A, B;B,B, in them as in the figure.
Fig. 5.

Then the roots are represented by
2 0%, 2 0Z,, 2 OZ,
where 7, 7, 7, are the mid-points of A;B;, A.B,, A,B,
Ex. 3. z/—18:2—48:—39 =0.

1 1 5
In this cas e z=ad 4-ba*+ca’,where «=3"b=3%¢c=3% and a‘=1.
construction for the several values of z corresponding to the four valnes
of a is as follows:
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Draw concentric circles of radii a, b, c;inscribe squares in them
a8 shewn in the figare. Then the four roots are vepresented by 3 0z,
3 0Zy, 3 0%, 3 O%,, wheve 7, 7, 7, Z, are the mean centres of A,B.C,,

A,B,C,, A,B.Cy, AB,C,

7. The vector method can be successfully employed in the case of
a cfreulant equation of any degree whatever.

For, we know that the roots of such an equation of the nth degree
can be written

aa4 ba’4 ... la=>

where a”=1. [Barnside and Panton : Theory of Equations, Vol. TI, p. 62.]

To represent the roots graphically draw concentric circles of radii
a,b,c,...l and place in them reguhr n—sided poly(rum

Then the roots of the Lucnlant equatxon are given by
n0Z,, w0%Z,,.....n0%,
Ziy, ZizesssssZiy, being the mean centres of AB.... 1L, A.B,C,. B.C,..., the
suffixes having a period ».
8. The general cubic and biquadratic equations can also be solved
by the above method.
The circnlant equation of the third degree is

which is the same as

o' —=3abs—a’=1"=0;
comparing with &'+ ga4-»=0, we have

=—3ub, r= —(a"4b).

)
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Thus &b are the voots of
41t —g*/27=0;
and the graphical represeniation of »is asin § 6, Ex. 2.
L

6
Again, the circulant equation of the fourth degree is

; — a b c|
| ¢ —a a b
| &
|- ¢ —z a
a b ¢ —a|

which reduces to
=20 (P42 ac)—4 b (@+c*)+b° (=4 a ¢)—(a*--c*)*=0.
Comparing with o*+g 2*+ 7 24-s=0, we have
g=—2 (b*+2 a c), r=—4b (a4,
s=b% (b"—4 a ¢)—(a*—c?)"

Eliminating a and ¢, the cnbic equation for b* is
41 4 (F =1 )t—F& =0,
which is identical with the * auwiliary cubic ’ of the biquadratic.

The difference between Euler’s method and this method, however,
consists in the expression for the roots of the guartic in terms of those
of the cubic. According to Eunler’s method the roots of the quartic are

Va4Vt
Vh—=Vt—Vt
—Vh+Vh—Vi
—Vh—Vht+Vi;
whereas our method gives them in the form
—bx(a—c) 7, bt (atc),
b, a, ¢ standing for
=V Vs 1=1) =% Vs (140), 3 Vi (1 +7) =3 Vi, (1=7)
respectively.
Section (1I).
Q@ We shall comsider in this Sectiontapprosimations to complex

roots of an algebraic equation by means of Cauchy’s theorem, iz :
fO=f @+6=a) F@+ ET) @+

This series leads to the following approximations, provided there is
a root in the neighbourhood of a point a.
The first approximation is (a+7,), such that
@)+ £(2)=0.
S hy=—F (a)[f (a). (i)
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The second approximation is (a+hy+hy), such that
f (@+h)+h, f' (at1y) =0,
/ o Ry o0 ’
ie. f@+h f(a)+ Q'}f (a)+h, f (2) =0,
o hy=—3 [f @] [ @)/ (@) (i)
And so on.
These approximations ave gruphically equivalent to the following
construction :
Corresponding to @ in the z—plane, let
A be the point f () in the w—plane,
A e os f (@) in the same,

B“C

then hy=—f (a)/f (a)
=0B/OA’ [Make OA" Ol=0B*=0A"

In other words, %, is the vector equal to OC in the figurs whose
vectorial angle is equal to A’OB.

The first approximation to the root is thus

a+hy =a; say.
Similarly, the second approximation is
a+hy +hy, =ay, say.
And so on, for further approximations.

Fig. 8

The actual complex root z of the proposed equation is therefore
graphically determined ar the point of convergence of the polygon
0@ a a...
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91. The assumption that
: a=u+h
is a better approximation thau a depends upon the following results :
: () _ \"
G ol
7o) > i—a

where o is a complex root or real root of f (5). Now, wheu « i3 an ap-
proximate complex root, the corresponding partial fraction on the right
side will have its modulus very great when z=a.

f(@)
1F(a)
that is, | 2, | = — f,{( . is small.

Hence is large when @ is an approximate complex root.

(i) ﬂm—(@+muw+“10+
“L [ (a), since hy=—j(a)/f’ (a).
Fa) _ht 1"(a)

F@=2 fay
And in general ‘E‘a; is_small for a similar reason as in (i).
- T (a

Hence | is small.

| 7(a)
f(@)

‘Phus f () is & betler approximation than f (¢) under the circum-
stances. :

9:2. The degree of approximation in taking a,=a-h, instead
of & may be investigated as in the usual methods for real roots.

10. The approximations found in the last article may-also
be directly obtained by separating the real and imaginary parts at each
stage of the approximations.

Thus, putting fla) =042,
J(a)=a' 428, &c.,
we have
w=u+10 =f(@412y)
=a+if+ (stiy—a—if) (@' +i8')+ ...
Kquating real and imaginary paris:
wv=c+[ (s—a) a'—(y—F) B'1+...
=G4a,+dy+.., s2y5
=R —a)Fd (= B)]+
=64 bt Lat ..., say.
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The first approximation is thus the intersectiom of the straight
lines
a+a,=0, 8+8 =0,
which are obviously rectangular.
- It may be observed that all the successive approximations are
orthogonal, being conjugate functions.
11. The approximations here investigated are capable of inter-
pretation by means of ¢ the theory of polars’ of a binary form.

For, corresponding to any point a, the (n—1)th polars with respect
o u and v are easily seen to be identical with the first approximations in
§10; and therefore, the first approximation is geometrically interpreted
as the point of intersection of these polar lines, which are at right
angles, Similarly, for further approximations.

12. A general method of dealing with the intersections of two
plane algebraic curves suggests itself from the preceding,

Take any point in the neighbourhood of a point of intersection and
construct the polar lines of the point with respect to each curve. Then
the point of intersection of these polar lines will be a first approsimation ;
similarly we can construct further approximations.

Section (11I),

13. In this last Section we shall apply the method of approxi.
mations to investigate the complex roots of a Lranscendental Kquation.

Consider the equation

222008 2,
which readily breaks up into the two equations
=w—cos v cosh y=0,
Q=y+sin 2 sinh y=0.
The I and Q curves are traced by writing thew in the forms

cosh y=u sec z,
sin & =—y cosech y
aml using the lambda table (vide : A. Liodge’s Dz}ﬁ Calc., p. 82), aleng with
the ordinary mathematical tables.
A tracing of portions of P and Q. prepared with reference to the
subjoined tabular values, follows :
Table (1) : cosh y=sec B =a. sec =.

" 611 om .| sm2 |
cos 9 \ 0 ’ 156 | 0 - For
| _ values of »
I 90° ‘ ; g1° oo | between ‘
1=

o | 3T/2 & 5m2.

Yy w
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Table (2) : sin @==—y cosech y; sinh y=tan 6

371/2:270" 301°40’ 326°3" 342°31 [ 360° |

| o 0 1] 2] 8 o ‘
| e | 0° 49°36’ ‘ 74040 J 84°17 | 90° | For values of]
| | & - 3
| sin 1‘ Y — 351‘ —558 | —3003 | [ 0 « between 5
/ l and 2.

238°20" | 213°57" | 197929’ ]‘ 180° ‘\
Fig. 9.
A .
P P
Q ]
Z
H
i
1
[
i
1
251
o
Ny
L el 58%T 5%
= <

From the diagram it is obvious that the P and Q curves oross in
the neighbourhood of the point

[2=58;y =25].

To determine the first approximation, we take the equations
’ ap’ ap’
P+h 7+]‘ZZ?_U
+£9Q
Qh Tkt o,
where P’, Q stand for the values of P and Q, whenlz=58= a, say s
y=25=/, say.
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Writing sin @ =sin 5'8 =sin 332° 19’
=— 4645
cos a =cos 332° 19" = ‘8855
sech £ =sech 2:5
=cos 80° 40'= -1622
fanh £ =sin 80° 40'= 9868
from the tables and solving the two equations for & and &, we et
L="074, k =-039.

Hence, a first approximation to the complox root in the neighhour-
hood of (a, B) is

4=5874; y=2139;
or c=5R8744-2:539 7.
14. We might have proceeded more divectly thus—
f(e)=z—cos z=(a—cos u)+(:—a)f (a), approximately,
where a=a+74 ; so that
t—a=—(a—cos «)/f a)
=—(a—cos a)/(1+4sin u)
s=a—(a—cos a)/(1+sin a)
=(a sin a+cos a)/(14-sin a)
=[(a+iB) sin (a+74)+cos (a +18))/[1+sin(a+iR)]
=a,+1f3,, say.
Caleulating a,, By, we get for the firsi approximation
5874 4-2:5377
Other complex roots may be obtained similarly by drawing the
remsaining branche: of the P and Q curves and noting their inter-

sections.
Postscript.

15. Two simultancous equations involving tw) variables ave usually
represented by plane graphs and thew real solutions obtained as the
intersections of the graphs. When there are no real intersections,
however, the corresponding complex solutions of the equations may be
visualized as follows :—

(i) First Method.—Consider z, = as the nnknown complex quanti-
ties satisfying the equations
f(5, 2)=0, ¢(z, #)=0.

Write z=a+1y, 2= 44y in the above and separate the real and
imaginary parts, so that, we have four equations in the jour unknowns
@@y @ ).

Now, these four unknowns may be regarded as determining a real
point in space of four dimensions, and the resulting equations in them
a9 relating to fonr hyper-surfaces. The common points of these hyper-
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surfaces wonld conseqnently vepresent the complex solution of fthe
proposed equations. )

The difficulty of conceiving fonv dimensional space detracts from
{he usefulness of this method of representation.

(ii) Second Method.—In this method < may be associated with
a line in space in a3 much as four co-ordinates are necessary to determine
w line completely. Accordingly the two proposed simultaneous eguna-
tions on being split up into real and imaginary paris specify four com-
plees in space, and the complex solutions of the equations are geometri-
cally represented by the lines common to the fonr complexes. The
intuitive difficalties of the previons method exist in this case also, in so
far as line-geometry and hyper-geometry are intimately connected.

(iii) Third Method.—This is only a relic of the line-representation,
being a representation of the two variables z and 2’ by a pornt pair in
the same or in different planes. A few simple properties of the two
plane representation are discussed in Forsyth’s Theory of Functions of
Tiwo Complex Variables, § § 15—20.

(iv) Fourth Method.—Lastly, we may eliminate one of the vari-
ables =/, between the proposed cquations and treat the resulting equa-
tion by the methods applicable to functions of a single variable.

16. In simple cases, however, the vector method will be fonnd quite
snitable, as the following examples will prove :—

=u’, s+ =b; where b*>2a%

Buample 1.—Solve 2+
Tieb z=a cos O, 2 =a sin 6, where O is a complex quantity. Then

we may write

=a(cos « sec B—1 sin  tan ),
£ =a(sin @ sec B+7 cos a tan ),
a, [ being real quantities.

Pig. 10.
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Hence the fellowing construction for the veotors z, 2.—
In the figure OTi =a, OB=b, 0Q =PL, &c.; and we have
ON =OL sec cos a=a sec 8 cos a,
NZ=0Q sin a =PL sin a=a tan A sin a
072 =0N+NZ=u(cos a sec f—i (tan B sin a)
Again NP =a sec 4 sin a.
QR—a tan £ cos a ;

Hu\ £
\'B NP, and ZN =RQ.

In uthm words, o= ‘)‘T/4 ON=1b.

The vector solutions are thus O%, ZB, corkesponding Lo the complex
yuantities

1 b VG B—a)]
lisample 2. Solve =*/a*+?/b*=1, 242" =c¢; where ¢’ > u*+b"
Hele, we can write
a (cos a sec B— ¢ sin a tan B)

2 =b (sin a sec f+7 cos o tan B).

Proceeding, as before,

Y
P
L
Pig. 11.
/B
ol A< N > 5
/ S PO
Rz
:=6Z) Z=70=2ZN+XNC
b _
Also Chic (W+ Q>
Hence o=l xp, w:é RQ.
[
OPC=90° ian u,:.b~, a=c cus a cos f5; &c
[13

I'he vector solntions are thus 0Z, ZC, corresponding to the com-

. ub y/(c*=a’=Db%)

plex quantities
RCEYD)

a’c
@+

V3]
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The Function of Mathematics in Scientific Research.
By Proressor G. A. MinLer.

(Concluded from p. 225 of Vol. IX.)

This common ground of investigators may serve to explain the
fact that many of the most influential research organizations, like the
National Academy of Sciences in our own country, embrace all the
sciences. In recent decades there has been a tendency to organize re-
search separately in the various subjects in the form of national societies
named afier these subjects. In fact, there are those who think that the
latter have assumed such a preponderant sphere of influence as to threa-
ten the very life of the former as serious factors in research. On the
other hand, the maintenance of a common scientific life seems to be of
the highest importance in view of desirable interactions and special em-

phasis on what is most fundamental.

The history of mathematics has tanght us that some subjects which
were apparently far apart and which were long developed separately
were later scen to have most important common elements. The " dis-
covery of those common elements aud their development has led to
marked advances in the separate fields themselves. By way of illus-
{ration [ need only refer to the fields of Algebra and geometry so hap-
pily welded through the work of Descartes, Fermat and many others.
{imes the theory of groups and invariants has extubited

Tn modern
n supposed

mapy important connections between subjects which had bec
to be widely separated. The same tendency has, of course, manifested

itself in other sciences and may be assumed to become more dominant

as knowledge advances.

A pertinent difference belween the mathematical investigators and
scienoes is that the former are compelled to stay
with their problems until a solution is reached which can be proved to
be in accord with deductions from certain definite assumptions, while
the latter enjoy much greater freedom in regard to the stage to which
they may pursuc a problem before announcing results. Hence these
may hope for success in dealing with much more difficalt guestions than
the mathematician could reasonably hope to solve at the present time.
The limitations thus imposed upen the mathematician are compensat=
rds questions

investigators in other

ed, at least in part, by the finality of his results as
of rigor. Mathematical results cen never be disproved, other accepted
rosules have mever been disproved. Vith vespect to simplicity and
style, the mathematical developments oré seidom final, snd in mony
cases, they appear to admit endless variations.
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As instances of final mathewatical resalts way be cited the uuefal
tables which when once computed serve all succeeding generations,
Such finality may be said to be a goal of all scientific endeavor, since
the results enrich countless ages by increasing their capacity for ac-
complishments. In fact, such tables may be regarded as typical illus-
trations of the mathematical contributions to the advancement of
knowledge even if they constitnte a very minor portion of these contri-
butions. The fact that mathematical results have increased the capa-
city of the world for doing things may be emphasized by noting, in
particular, that in recent years prime numbers have been found which
could not have been proved to be prime by the method employed by
Bratosthenes, if the entire human race had been working in an orga-
nized manner on this single problem since the days of the ancient
Greeks.

The present seems to be an especially appropriate time to consider
the interrelations of scientific research in view of the rapidly growing
public appreciation of the value of snch research, Several decades of
comparative peace immediately preceding the present great and
deplorable conflict were unusually rich in great scientific triumphs.
As well-known instances we may cite wireless telegraphy and the
construction of the great Panama Canal, which became possible by
our advanced knowledge in regard to sanitation. The world-wide
liealth activities under the auspices of the Rockefeller Foundaticn and
the activities of our agricultural colleges in directing atiention to ad-
vantages resulting from scientific methods of farming are strong forces
working towards o popular appreciation of science. Since the wreat
liuropean war began it has become evident through the new elemonts
introduced by the submavines and other scientitic devices that the very
existence of a great nation may depend upon the scientific attainment
ol its people, and hence the question of scientific research has taken a
prominent place among those of national policy. It is perhaps signifi-
cant that our National Academy was foanded in the midst of the Civil
War.

Scientific research is as old as civilization and has often been pro-
tected by kings in a patronizing manner, bnt it is a new experience in
the history of the world to see kings turn to scientific research for
protection. For centuries governments have recognized the value of
science and huve provided with growing liberality for her development,
butnow they are calling to ber to save them from destruction. They have
noticed that in spite of many excellencies in other directions ihe 1gno-
rance of canses may entail their destruction as separate nations. This




812

new attitnde towards our fiell of work may at first tend to gratify us,
but a second thonght, reveals the fact thal it i3 franght with grave
dangers. Kings in government and finance ave interested in the dead
results of science instead of in the great living and growing organism
itself, whose growth seems to have just begnn and whose development
has always been more keenly inspired by love of truth than by hope of
gain,

Ts there not a danger that the sudden recognition of the great poli-
tical importance of certain types of research will have somewhat the
_same effect on science as the discovery of gold in California and in
_Australia about the middle of the preceding century had on the deve-
lopment of the regions concerned ? People flocked from one mining
camp to the other and often neglected duties which are essential for the
harmonious development of the resources of a country. Hence there
seems to be a special need at present to nrge our colleagues to remain
at their posts of duty, notwithstanding glowing reports of chances fo
amass scientific fortunes quickly in certain newly'discoveredigold fields.
The get-rich-quickly schemes in science should be scratinized as care-
fully as similar schemes relating to the accumulation of money.

The remaining at one’s post of duty in scientific research does
not imply a lack of support in the solution of pressing problems or a
lack of vacation trips and acquaintance with other fields of work. In
fact, such sapport and acquaintance are highly desirable. It is, how-
ever, a question whether the nomadic scientific life, which seems to
have become fashionable dnring the last few decades, at least in mathes
matics, is the one which will in the long run bring the best vesalts.
Science is not primarily a grazing country. Large tracts are suifed
for agriculture and mining. What is new is not necessarily good and
what is good is not necessarily new, and prophesies in vegard Lo the
great importance of certain new developments have not always been
fulfilled. On the other hand, it should be remembered that reasonable
hope and optimism are essential for progress, and that we need pros-
pectors as swell as miners in the scientific world.

It should be noted that the miner needs some of the gnalifications
of the prospector since he is apt to meet with ncw situations and needs
to take advantage of the available by-prodacts. In fact, while he is
mining for gold he may strike deposits of copper which are richer than
the gold deposits which he was primarily secking. Some of the richest
mathematical discoveries were made while the investigator was looking
primarily for other results, and even problems which have not heen
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solved at all np to the present have been the source of very nsetnl de-
velopments. [ undersiand that similar conditions hold in otber fields of
scientific effori and these facts point to the great importance of free-
dom on the part of the investigator, and, incidentally to the danger of
too much organization in scientific rescarch.

As a very recent instance of an unexpected mathematical by-pro-
duct, I may be pardoned for referring to a somewhat trivial case which
has, however, the important property that it can be understood by all.
Tt is well known that the theory of substitution groups was developed
for the purpose of clarifying the theory of algebraic equations and not
for the purpose of adding to the enjoyment of parties engaged in play-
ing games of cards. In fact, the stndy of such an advanced mathema-
tical theory as that of substitution gronps might appear to involve con-
cepts, which are at the opposite pole from those entering the minds of
people seeking recreation at card tonrnaments.

Notwithstanding this apparent wide sepavation, [ was pleased to
be able to say recently to a friend, whe desired to have each one of a
large party play once and only once with each of the others doring a
series of successive games, that an arraugement of the players meeting
this condition could be determined directly by means of substitations of
certain transitive groups. This should perhaps have been expected,
since a transitive substitution group is an ideal republic treating all its
etters in exactly the same way. Oun the contrary, an operation group
may have elemenss enjoying special privileges and hence it has more ex-
fensive contact in the actnal world of thought.

A little stndy of the stated problem revealed the interesting fact
that when the number of tables is any power of 2 the substitutions of a
well-known type of substitution groups and its group of isomorphisms
exhibit directly how the pluyers can be arranged so that each one will
play once and only once with. and twice and only twice against, each of
the others in a certain series of games, To make myself perfectly clear,
I may say that if 8 tables, or 32 vlayers, are involved, one can write
directly by means of a certain vegnlar substitution group of order 32 a
set of possible arrangements so that in 31 snccessive games each one of
these 32 players would play once and only once with each of the others
and {wice and only twice against cach of them. This was, however, nof
the first solution of the genmeral problem in guestion. In fact, about
twenty years ago Professor B H. Moore published a different solution
of it in Volume 18 of the Awmerican Journal of Mathematics under thg
fitle ¢ Tactical Memoranda,” :
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I have referred to this waticr here wmainly for the purpose of
emphasizing the fact that intellectnal penetration is often attended by
the most unexpected by-products, but I should also be pleased to have
people know that certain kinds of recreation can casily be enriched by
making use of results which the mathematician developed for a totally
different purpose, Science should and does enrich both work and play-
More than a thousand years ago ihe Hindu astronomer Brahmagupta
said :

As the sun obscures the stavs, so does the proficient eclipse the
glory of other asironomers in an assembly of people by the recital of
algebraic problems, and still more by their solutions.*

The playful (uestion, Where do the finger nails find so much dark
dirt to put under them ? may serve to arouse a thoughtful attitude on
the part of the boy who has been taught to keep his bands clean. In
fact, our play and recreation ave perhaps as fandamentally affected by
questions of science as our serious work and the victrolas and moving
pictures should have a markel influence on the popular attitude to-
wards science in view of the fact that they reach so many people. If
it is true that the greatest service which science is rendering the human
race is the reduction of superstition, it is clear that the efficiency of
ccience depends largely upon its popularity.

The hypothesis that space and the operations of nature arve dis-
continnons clearly excludes the hypothesis that they are continnous, but
it is interesting to note that the mathematics relating to the disconti-
nuous does not exclude that relating to the continnons. On fhe coni-
are the most helpful interrelations beiween these two types
Suoch a subject as number theory, relating decidedly
has been greatly extended by analytic methods

rary, there
of mathematics.
to discrete quantities,
relating to continuoas quantities, and, on the other hand, processes
relating to the stndy of continuous functions are largely based npon
those relating 1o the discontinnons.

This may perhaps tend to show that even if our hypotheses in
regard to the continuity of space and the operations of natnre have to be
largely modified, as scems now probable, the mathematical methods of
attack may require less modification than might at first appear to be
necessary. The langnage which mathematics has provided for science
inclades not only concepts relating to the continuous and the disconti-
nuous, but fortunately it also shows relations between these concepts
and these relations become more pronounced with its development.

I T. Oolebrooke,  dizebin with Arithmetic and Mcnsaration from the
Ssnekrit,” by Irahmazupia and Bhascara, 1817, p. 370
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In view of the age of this language and its contact with various
sciences it may be readily understood why mathematical history occu-
pies a prominent place in the history of science. In fact, the history
of science constitutes one of the fields where scientists may find common
interests most fully represented, even it the past is too rich in events
to be studied completely. Tt may therefore be appropriate on this occa-
sion to refer to a few recent developments relating to the history of
mathematics, especially since the interest in the history of scieuce has
increased rvapidly during recent decades, as is partly evidenced by the
efforts that are now being made to establish an institute of historical
scie ific research in our land.

One of the most interesting juestions relating to the early history
of n-athematics is the use of positional values of numbers and the closely
connceted use of a symbol for zero. Until a decade or two ago it was
commonly assumed by mathematical historians that the use of zero as
a positional number sywbol originated in India, and this view has not
yet been entirely abandoned, notwithstanding the fact that the Babylo-
nians employed numbers with positional value and a symbol which
seems to have fulfilled the main funciion of our zero several centuries
before the Christinn cra.  On the other hand, the first definite evidence
of tite nse of zero among the Hindus falls in the second half of the first
millennium of this cra.

In view of these facts it 1s extremely inboresting to note the early
use of zero, in connection with numbers having positional value, by the
Maya, a people inhabiting the Atlantic coast plains of southern Mexico
and northern Central Awmerica. One of the worthy alamni of your
university recently referred to this wmatter in the columns of Sciuycr in
the following words:

Special interest attaches to the ocenrrence of zero-symbols and the
principle of local value among the inhabitants of the flat lands of
Central America, at a period as early as the beginning of the Christian
era, if not much earlier. It would scem that in this invention, the
Maya in Central America possessed priorty over Asiatic people by a
margin of five or six centuries.

I further investigation will lead mathematical historians to agree
“hat the zero as a symbol iu o numerical notation with positional value
vas actnally fivst used in Awerica, according to the preserved records,
it will effect a very fundamental chenge 4s regards interest in the early

mathema ts ot the American aborigi

Unfortunately
these early mathemutical attainments failed to become the source of ex-
tensive further developments on American soil. They exhibit clearly
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that central concepts may be discovered independently and they direct
attention to the danger in trying to establish one souvce for a particular
concept in historical insvestigation. They also show that the small
strip of country marked now by Boston has not always been the intel-
lectual hub of America.

The history of some of the mathematical attainments of the Maya
people has recently been made more ecasily accessible through the
publication of “An Introduction to theStudy of the Maya Hieroglyphs,”
prepared by S. G. Morley and published as Bullettin 57 of the Burean of
American Fthnology, Smithsonian Institution of Washington. On page
92 of this bulletin a dozen different symbols for zero are noted and on
page 131 numbers varying from 21 to 12,489,781, and involving the use
of zero, are represented in the Maya notation. Tf is of interest to note
that the value of a unit in a higher position is always 20 times the value
of a unit in the next lower position, except in the case of the third place
where its value is only 18 times that of the second place.

In historical research and elsewhere,the mathematician seeks cordial
cooperation with other scientists, and he regrets that the confusion of
tongues, resembling the experiences at the tower of Babel, is making it
more and more dificalt to understand each other. In the case of
scientists this confusion is mainly due to a rapid growth of langnage
in various directions. May we not hope that as many theories which
were supposed to be distinct suddenly exhibited profound connections,
30 also this extensive language will tend towards unity and simplicity as
we see more clearly the fundamental underlying principles. Seience
knows no bounds in method or in subject-matter and the artiticial limi-
tations set by man for his own convenience in making a start must
break down before the onward march of truth. All science is a unif
and all scientific investigaton should be inspired by their common
interests

{ER Ld]c;ri. Sciknos, N. S., Vol. 44 (1916), p. 715,
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Astronomical Notes.
Eclipses.

The first eclipse of the year 1918 will oceur on June 8, when there
will be a total eclipse of the San. The eclipse will be visible as a par-
tial eclipse from the north-eastern part of Asia, the north polar regions
and the whole of the north American continent. The track of totality
runs from a point in the Bahamas Islands nearly to the Bast coast of
China ; as it runs right across the centre of the United States the eclipse
is likely to he well observed in spite of the war; the remainder of the
central track lies in the Pacific Ocean.

There will be a partial eclipse of the Moon on the night of June
23—24, the eclipse is a small one, magnitude 0135 and is invisible .in
India. *

R. A. S. Gold Medal,
The Gold Medal of the Royal Astronomical Society was awarded

this year to Mr. J. Evershed, Director of the Solar Physics Observatory
at Kodaikanal.

Astronomical Consequence of a Curvature of Space.

In Mon. Not. R. A. S. 1917 Nov. de Litterinvestigates the effect on
astronomical phenomena of a curvature of space taken in conjunction
with Einstein’s theory.

It is quite clear that two dimensional beings living on the surface
of a sphere of very large radius might couceive themselves to be rvesi-
dent on & plane, and a similar notion may be exiended to space in three
dimensions, but by extending our observations to « distance comparable
with the radius of curvature, we may hope to detect the difterence ;
hence it is to astronomical observations that we must look for any ef-
fect of curvature of space.

The new solution of Einstein’s equations leads to a form of space
with constant positive curvaturc. Such space may be either

(I)  Riemason’s spherical space in which all 8tre

t lines starting
from a point intersect again in the antipodal puint, whose distance from
the starting point is 7. R (R=vadins of curvature) along all lines, and
this is the greatest possible distance between two points; or

(I1) Newcomb's elliptical space, in which any two lines have at
most one point in common, and the largest possible distance betweepn
two points is 317, R.

4
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Tu () All lines ave of leugth 27R; in (IT) all lines are of length =lt

de Litter finds that (on the assumption of & corved space) no star
can possibly have a parallax less than a/R where a is the distance bet-
ween the Iarth and Sun.

Secondly it is found that the lines in the spectra of very distant
stars and nebulx will be displaced towards the red, producing a spari-
ous positive radial velocity ; a similar result holds in rectangular space
on Einstein’s theory, but the displacement is considerably augmented
in a curved space. In this way it may be possible to account for the
very large velocities of spiral nebule, which are certainly very distant,
should they turn out to be positive on the whole. de Litter makes a
number of estimates of the value of R, the data of course is some-
what scanty, since the smallest parallaxes are naturally the most un-
certain, and very few absolute parallaxes are known, while the number
of spiral nebula of which we have reliable determinations of radial ve-
locity is very small (de Litter uses only three). R comes out about
10" Astronomical Units.

If space is carved we should see an image of the sun at the anti-
podal point, that is the point of the sky opposite tu the sun, but opi-
uons appear to difler as to whether this image would be as large and
bright as the sun or whether it would appear as an cxtremely faint
star,

R. J. Pocock.
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SOLUTIONS
Question 329.

(M. Binuaseva Rao) :—If the pedal circle of I’ with respect to &
triangle ABC tounches the nine-points-circle of ABC, show that the sum
of the angles PAB, PBC, PCA is constant.

Additional Solution by the I’roposer.

The following simple result concerning the rectangular hyperbola
which may be proved easily by the anharmonic property of conics iz
here assnmed :—

ABCPQ is a rect hyp, perpendiculars QD, QE, QF are dropped on
the sides of ABC intersecting PA, PB, PC in A, B, C".

Then QD. QA’=QE. QB =QF. QC’ sse, (1)

This is the converse of the theorem. ¢If two triangles ABC and
A'B'C’ are conjugate with respect to a circle, they are in perspective ;
if P and Q be the centre of perspective and the centre of the circle
respectively, the conics ABC PQ and A'B'C’ PQ are rect hyp.

If P and Q be isogonal conjugate points and D'E'F’ the pedal
triangle of P
we have PD’. QD=PE'. QE=PF. QF we 1(2)

From (1) and (2) we see that when ABC PQ is a rectangular hyp,
QA’, QB and QC’ are proportional {o PD’, PE’ and PF', and being
parallel respectively, the triangles A’B'C’ aud D'E’'F’ are homothetic.
But we know that any inverse triangle of ABC-—call it LMN—
with respect to P is similar to the pedal triangle of P, the angle of

similitade being the complement of PAB+PBC+PCA. It{ollows there-
fore that A’B'C’ and LMN are similar and being in perspective, one
of the two alternatives arises —- either they are homothetic, or ABCP
is coneyclic as also A'B'C' P. The second alternative being rejected
since P is not on the circum circle of ABC, we see that A’B'C’ and
LMN are homothetic. Therefore D'E'F’ which is the pedal triangle of
P, A'B'C’ and LMN are homothetic taken two by two, and the angle of
similitude vanishes.

Hence PAB+4PBC+PCA is equal to one right angle,

Corollary. When a triangle ABC and its inverse with respect to a
point P are orthol ogic, the pedal circle of P with respect to either
triangle touches|the nine-point-circle of that triangle.

The ahove proof fails when P is on the circamcircle of ABC; but
in this case the result follows more easily. For properties of the points
of intersection of McCay’s cubic and the circumcircle of ABC, see
Mr. S. Narayanan’s paperon Three special points’ page 85, Vol. T
of the Journal,
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Question 427.
(S. Ramazuian) :—Express
(A +Buy +Cy?) (Ap*+ Bpg+ Oy
in the form Aw+ Buo+Co?,
and hence shew that if
(224 3zy + 5y°) (28 +3pg+5q°%) =204 3uv+ 50?,

one set of values of » and v, is
—r

w=2 (24y)(p+9)—2up, v=20y — (2 +1)(p+9).

Solution (1) by ¢ Zero’, (2) by S. Narayan.
(1) Let flay)=Aa4 Bay+Cy*=A(u—ay)(z—LBy),

then - J(r9)=Ap"+Bpg+Cg'=A(p—ag)(p—By),
where a and £ are the roots of AN*4- B\ +4-C=0
Now [y T (p)=A{ (z—ay)(@—By)(p—ag)(p—~B9) }

=A% { pot agy—a(py+qo) }
{ P2+ Lqy—B(py+gu) }
Bat Aa*4+Ba+C=0, and AR*+ B +C=0-
flea)f(p, )= { Apr—Aa(py+qu;—qy(Ba+C) } x
{ App—AB(py+2)—qy(BL+-C) }
=A(u—av)(u—Lfv)
=Au+DBur+Co?,.
where Ape—Cgy=uVK, A(py+q2)+Bogy=vya.
A general solution can be obtained by the following srtifice. Take
(a,b) such that
f(a, b)=a square
=c* (say).
Then f(ay).f(Pg)f(ab) = A'(v= ay)(z—By)(p—aq)(p—LBq)
(a—ab)(u—AD).
By virtue of the quadratic Aa’4+Ba+ =0, the product (z—a y)
(p—agq) (a—ab) can be rednced to the form (xv—av), where « and » are
rational functions of (z % pg a b)

Similarly (@=B1y) (p=8 q) (a=B b)=u— L.
< f@y) (2 q) fab)=A(u—av) (u—LBr)

=A"A w4+ Buv+ C?)
O o f(ay). f(p ¢) =AA *+Bur4Co?)
Hence fley). (fp 9)=Au?4Bu v'4 C2,
where uw'=Au/c, v =Av/c.

The general solution of the indeterminate equation
J(a, b)=c*

leads fo a corresponding general solution of the proposed gnestion,
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In the particular case of A=2, B=3,,( =5, one solution of
i 2u*+3ab+451° = ¢*

isa=1, b=-—1, ¢=2, and we easily write a set of values of 4 and o
different from those given by the proposcr.

(2)  A2’+Bay+Cy* may be casily thrown into one of the threo
forms

(la4ly)! + (matny?,
(le-my)? + (nn+y)?, (o4 my)*+ (z4-ny)?,

provided B*+4A(C<0.

Similarly Ap’+Bpg+Cg® may be expressed

And since (a®4-0%) (*+d%)
can be expressed as the sum of two squares in two ways, it follows {hat

(Az*+B ay+Cy’) (Ap*+Bpg+Cq?)
can be expressed as the sum of two perfect squares. Hence expressing
Au4 Buv+4 Co?

as the sum of two squares and comparing with the above form, the
valnes of wand v are easiiy obtained. Ttis clear that there ave 103
ways of doing this. The values of «, v given by the proposer for the
particular question constitute one of these ways.

And u :gp.r —%y—é(a:+g/) (41),

3 1 11
":§70+(:)‘*"’“ g'(-"'"r‘&/) (p+q).

constiinie another solntion.

Question 508.
(8. P. SiNcaravery Mopsriar):—I1f s, stand for the sum of {he
reciprocals of the firsi » natural nnmbers, find the saom of the infinife
series.

1, 1 /18y
*-g(%) '°2+3‘ (24 )
Rewiarks by H. Pr,

‘We are required {o evaluuie

o«
\ | 2 8
S= N (1) g,;* =it

2/‘ Yan n+1

n=0

2n—1) 1 1
Zoand s, =144

NI and s, ;=14 _.-)“* +72+1

where Gy =
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It is easy to obtain a variety of definite integrals, (simple, doublo,
and triple) for the velue of S but T have not been able to find o for-

mnla giving its nomerical value—-

S

1
As — g (1—=z). a™lr=
(1) J log (1 —z). a™lx T

0

1 / e \
S=—| de log (1—2). \,\u,f(—w)" ’
1) )

8} 7
e e}
Now (e sin® )% = S (—)" sin™ @
5 e 2 " 5
(&)
297 -
[ TNy
o 14w sin"e)"—' 520 (—=2)",
o

and

The integration with respect to @ can be easily performed, but the

result does not throw any fresh light on the snhject.

m T
. it (2 (2
(2) Again we may take a,, =%3 i b ’ = sin* ‘9 sec” i d@ d¢, and
“o VL)
we get

(3) We have 2,4 =y

uH,
‘a4l

=2(a, =y Tys1)

m

8 o [T cnm - .
=7,J 2 ' =3in”'@. sin®z. cos?q.d s
’ﬂ

oo

(—=1)"s, 4 18 the coefficient of
D= (=56 THED
' (n+1)!

and
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cos'd. }“(c—l)(f—z) (t—n—=1)
(CERyI

$in?*+0 sin?"t’¢

S = coefficient of ¢ quJ 2J- “
Mo %o

8 ( s? : g b=1
= coeficient of ¢ in-%,‘ 2J 2 [le ‘{f S0Si \ —14(1+sin’@ uos‘¢)l J
T o 30 sin¢l L

™
8 %[’2 a0 d ¢. cos*¢ log(1+4-sin°H sin’¢)
—‘"1J 0o sin’®. sin’¢  1+sin’@ sin’t )
(4) Another from of the integral may be obtained by using the
fact that
de
VI—2r cos O+72

=2nLa,? "

Question 59r1.
(A. H. Kusixaswant Alvavoar):—1wo circles intersect at A and
B; the tangents at the extremities of a double chord through A meet
in X. Shew that XY perpendicular to BX envelopes a circle.
Solution by ¢ Zero’.
Lot PAQ be the double chord. then
XPA + XQA = PBA + QBA = PBQ.

X

PBQRX 18 eyelic,
Now BP = ABsin(d4@) smn
BQ = ABsin (¢4a)/ sin yte
41so BP. BQ = BX. BA, since in the cyclic quadrilateral PBQX
PBA =¢= XBQ. 5 .
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Hence BX = AB sin? (¢4a)/(sin a sin )
= AB { (I1—cos (24¢4-2a) } /(2 siu a sin f7)
« { 1—cos (M4+6—L40)},
where 8 = ABX = (2¢—7+a+4).
In other words, the locus of X is the cardioide
r=ua {(14cos B+a—-20)},

shewing that the envelope of XY is a circle.

Question 6350.

(N. B. Puxora) :—Circamseribe an ellipse about a given triangle so
that incentre of ellipse may coincide with the incentre of the triangle.
¥ Soluti-n by C. Bhaskararya.

The areal co-ordinates of the in centre are

a:b:ec.

If Fy: + Gze +Hay =0 be the required ellipse, the polar w. r. ¢. if

of (a: b:c) ought to be identical with the line at infinity, a4y+4zs=
cG+bH=Ha+cF=Ga+bF.
F: G:H=a(a—b—c):b(b—c—a):c (c—a—b)

Hence the ellipse is

a (btce—a). y:4b (c+a—0b) zu+c (a4b—0c) ay=0,

To trace the ellipse put ;lez_, and sec where it cuts the bisector
of the angle A ; and so on.

Question 671.

(K. J. Saxians, y.a.) :—The numbers from 1 to 2"—1 being arrang-
ed on # cards on which the least uumbers are respectively 2°, 2' ... ...
2"-' as in Question 640, prove that the sum of the numbers on the »¢*
card is 23124 QMr-i -2

Solution by N. Sankara Aiyar and V. Anantaraman.

The tirst number on. the 7" card is 2'-' and all nambers will be
foand on it which when divided by 2" Jeave remainders greater than or
equal to 2",

Hence the numbers on thsl card are

(E- @4 D @2 D) o { @ 4

+2 4 1) 4.}

R2H 427+ @2+24 1)+ 5 b

(2 =24 (2" =21+ 1)+ o+ (@ =1}

SO = et (143454 +20_1) )
on—r4 o

+ T(O+1+ e 2701,

+{
T,
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g ('3”'2'“ )u+2n-r gy

= Q-1 Qui-ar QN 9r—2 (3»-,_ 1)
o Q- Qn4r—i__gn-1,

Question 682.
(3. Ramaxuvsax) :—Show how to find the cube root of surds of the
form A++/B; and deduce that

Solution by ¢ Zero.”

If a denote & cubic surd any expression in a can be written in the

form (¢+b a+4ca®) and further
(a+ba+ca®)’=P+Qa+Ra? (say).

"'hns, when either Q or R is zero, we have a binomial cabic surd on
the right side.

Hence we can write

V(A+¥B)=r%(a+ba+ca?),

and proceed to find the values of a, b, ¢, a satisfying the following:

P=A "P=A
Q=0 & & R=0
rRa’=B 3 rQa = B%

In lhe particular case stated, A=—1, B=2;
P=d’+b'a’+c'a" +6u.bct1
Q=3a’h+3ac’a’+3b%ca’,
R=3ab*+3a’c+3bc’a’,

and suitable values for a, b, ¢, r are seen to be

o=—b=c=1, r:l.
9

More generally if AQ=BP, we may put a=c and a=+/B, so that
R =0 reduces to
a*4-b'+abB=0

b=—m a,if B= (m-}—-l-
n

and we may, without loss of generality,

tea=c=1,b=—m.

The problem is thus solved, when B 1 of the form (m+.],‘
m

and A { B(le-nm)—m} ..B (B‘ h(m +bn»)+l ¥

B}
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Question 725.
(K. B. Mavuavi) :—Shew that

—— converges,

but that

(P dda

|

Solution by S. R. Ranganathan.
The condition for the convergence of
@ 28
142d sin® @

are fully discussed in Bromwich : Infinite Series, App. IIT. Art. 166. 1It.
is proved there that the integral converges or diverges with the series

a
2(7]/8"‘7),
i c., according as a>2(S+1) or a<<2(B+1).
Now taking £ =3, we get that

-0 2"
- dz

diverges.

14-2% sin? o

converges if a>8, and diverges if a <8.
Hence the results given in the guestion.
Question 8o0.

(8. Matnart 1Rao) :—Shew that the sum of all fractions which may
be represented by a rvecurring decimal of the form .ab ¢ d is 50, provided
atc=b+d="9.

Solution (1) by G. L. Gupta, M.A. and S. V. Venkatachalayya.
(i) Tor all values of ¢. b, ¢ and d the recnrring decimal ‘o bed
__abed—ab _ (10004 10(|7ﬁ+106+tl>—-(10a+ b)
9900 9900
_ 990a+99b+100 44 Y

9900

Bat here a+c=b+d=09.

(1) which may be written as
10(a+ o)+(b+_d):+—9t‘(10u+_k2
. 00

reduces {u

994+98(1024b) _ 994 98(ab) - &
9900 9900 s
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But since each of @ and b ‘may have any of the values 0,1,2,3,...9
ab includes all integral numbers from 1 to 99, besides 0.
Hence the wquiled sum

{(99%100)+98(1+2+43+...499) }
98 % 90 % 100} .
bl

qno

1
= 9900
9000{ ®

Note:—'There is a slight mistake in the printed question in which
the decimal reads (-abed).
Solution by H. Br. and (2) K. B, Madhava.
(2) The recurring fraction (. zlbcd.)
1000a+100b 410 +4
T 9999
_99.(10a+b)+10(a4c) 4+ (b+d)
9999

=50.

_10a+b+1
Cor
As a and b assume independently all values from O to 9 (inclusive).
the numerator assumes (once only) every integral values from 1 to 100,
The sum of the fractions is therefore
14243 +100_ g0
101

yaslatc=b+d=9,

Question 8o02.
(S. KRIsuNaswan1 IYrNr)\P) :—Prove that

2
. T'(n l) 4 =
O S\ rEni 35 == )]

(43 1 1
T(n4+1) " @m+2n+1)" (m4nt1)
o
F(m+3) 2 l‘(m+1)
F (m—{-l) Z’m+l T(m+ D)’
Solution by S. . Ranganathan and S.V. Venkatachallayya.
(1) This is the same as Q 664 solved on p. 69 of Vol. VIII, J.LM.S.
(i) We have, for 0 <2<1,

; 13 ,
(I-2a) * f1+§.v+§4 a4

(i)

\r(n+ ) o,
r(n+1)

-1
80 that, r(H(l=e) °=
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1 =
N, -1 N L gt
i, T | mrs
(2}

Er )|, ]
(1))

r(n-{— ) 1
T(1z+l) mta+1 i
e T+l _NW(r+3) 1
{ré s T(m+3) LT (n+I) m+n+l

t.e

g

In the above the change of order of integration and summation i3
permissible since the integral on the left is convergent and the terms
in the series on the right are all positive (of. Bromwich [ufinite
Series App. ITI, Art. 175. Theorem B.)

-L
By treating similarly the expansion of (l=2%) * weget

il T'(m+ ) W(n+13) 1
{r@ ) ﬁm'-iii’) >_Jl(n+l) @m+2u+1)

1

N STed 1
o r(“*‘vl—) (Cm+-2n+1)(m—+n41)
o
@
:Z T(nts) 2 1 3
T(zz+1) Im+2 dn+ 1 m+n+1)

_ e f TOn+3)_T(m+1)
=ihe {f(m+1) l(7n"+,)}

IT(m+3) 2 T'(m+1)
T(m+1) @Cm+1) I(m+32)

Question 810.
(T. P. TRIVEDL, YA, L.L.B.) :—Find the values other than zero which

satisfy the equations :i—

Ww=y—z; Yl=z—a; S=u—y.
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Solution by H. Br. S. Gangadharan, K. Suntanam, Kustur? Redds

18, Sc., and F. H. V. (lulasekkaran, B. A
We have
(A)
.7:,;‘..__3/.
24y +2=0;
@ty +: =0y B

and oty 2= Xab(y—2) = — (y —5) (=) (e—y) = — 295"
[The system of equations B is composed of the system A together
with the system derived from A by changing the signs of «, 7, =]
Let (2, ¥, £) be the roots of t' —pt*+ gt—r=0. Then from (13),
=2,
pg=3r-
and (P41 ) =0,
If #=0, we get p=¢=0, or
If »==0, we get g=—3, r=—p,; pg—-—t'n‘
Thus =, y, z are the roots of
t'—pt*=3t+p=0, where p*=—
Put p =pt+2, and we get
K +GI.L+16 =0,
The roots of this equation are

m=vz t B-2v2) _(3+2va)t

o= VE{ G—2VD) "w—(+2vE) Yt )

¥rom these we deduce the following types of values of «, y, =
100z = — 1532
100y = —1'1.5 ‘_452' approximately.
100:=  118—462.
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QUESTIONS FOR SOLUTION.

943. (Hrurar) :—If n be prime and
@@+1)(@+2)...(x4+n—1)
="+ Ay a2 Ay 2N LA
shew that all the odd A’s except A, are divisible by n*—

944. (SapaNaxD) :—Prove the identity

@) B¢ (@) 2= St (@) 2 .
1! 31
=3(20) —8,2"(22) 2+ 8,4 (2) at—......
o 4!

where S,,, 18 the »th Enlerian number and S, is the » the” prepared
Bernounllean number.

Deduce that log2 = l} ST

945. (Sapaxaxp):—TFill up the vacant cells of the following

magic square :i—
£ 1

946. (M. K. Kevarramast) :—Show that there are forty points on
the curve 2?/a*+y*/1* =8 Such that if tangents be drawn from them
to the ellipse «* a*+3%b*=1, the points of contac: have got their eccent-

ric angles in the ratio 1: 2.

947. (M. K. Kevarrauaxi):—A triangle ABC inscribed in any
lipse, touches a confocal ellipse at the points D, E, I' respectively.
Show that the ratio of the trisngle DEF to ABC=r/(2R), where 7, I?
refer to the triangle ABC as usual.

948. (M. K. Kevauravani):i—A perfectly elastic particle, acled on

by no forces is projected from the centre of a rectangle whose sides are
9q and 2b (a>h) to strike the bigger side first an'l then goes on re-
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bounding from ils sides. If it ever pass through an angular point
show that the direction of projection makes with the smaller side an

-1 N
angle tan (E 2”‘“‘; ) where m & n are integers, and if it ever strike
b2m+1
any point of the smaller side other than the extremities, the angle
~1 9, 1
must be of the form tan (2%
e of the form tan 5 Tm )

949. (C. Kuisuxavacuary):—With the usual notation for the
numbers of Bernounlli and Euler, show that

o £ 7 2 2
2 =B, 2 (2’—1)(22")—-&.’. (@—1) (:)+B32”(2‘—])< é‘)
- + (=) " B 2 (1),
(=1" By @t D=(-1" B, 2= @ =1 (*F1) 4
A, ik (g [ B :
(=1 By g = (P D)+ -z @-n ()
+ (et

950. (C. Krisunanacuary) :—Collect the co-efficients of #" in the
series—
1 @ 13 @? 135 z
= “d—aT2 (—ay 37 a—ap T
and show that its sum is zero when » is odd, and (—1)”
135 (2m—1) g,
SEG T when n is 2m.
951, (C KrisuNAMACHARY) :—DProve thal
E

) ‘ 4 (log tan 2) Ydu= L ik,
la 2:,14».
T an_1
g)[t _Uoglana) . @Dy, .
( )Jo coz @ (cos wsin z) ‘ 2 B,
0
'z ¥ o 21— 9an
©) 4 Uogtamaynt, @ _1)5,,_"2117
5 cos 2 4n
m o
(1)I4 (log tan ) ‘,b:v:’lJ"“B,t -

Cos 2 (cos mvam.r)“
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952. (Comyuxicarep 8Y MR. HemrA1) :—The polar reciprocal of an
equiangular spiral with respect to a rectangular hyperbola having its
centre at the pole and touching the spiral is the curve itself.

953. (Commuxicatep BY Mr. HeMRAJ) :—Two of the common
tangents to a circle S and a conic T meet in P and the other two in Q.
Show that P and Q lie on the same confocal to T.

954. (K. B. Mapuavy):—When asked his age De Morgan once
humorously observed: T am one of those whose age shall be in a cer-
tain year belonging to the centary of their birth the square root of that
year.” For, being born in 1806 A.D., he was 43 years old in 1849,
and 1/(1849)=43. Show that the same observation will be true in the
case of those born in 9 particular years in all subsequent centuries.

955. (K. B. MapHava) :—The 5th, 13th, 17th, 29th and 37th roots
(if rational) of a number end in the same digit as the number itself, the
numbers when fractional being expressed in decimals. Prove this pro-
perty and illustrate how it enables one to give out at sight the above
rational roots of big numbers.

956. (K. B. Mapuava) :—Find the years of the present century in
wkich the month of February will have (i) no full moon, (ii) no new
moon.

957. (MarryN M. THOMAS, M. A.):—From a flexible envelope in the
form of a surface of revolution formed by the curve s=f (y) revolving
about the axis of z, the part between two meridians the planes of whxjgh

are inclined to each other at an angle 4 is cut away, and the edges
m

are then sewed together. Prove that the meridian curve of the new en-

velope will be s=f (L.

"'L—‘l
Hence show that, if a lune of angle é; be cut off from an oblate

spheroid, the minor axis of whose generating ellipse is ¢, and eccentri-
city £, the meridian curve of the new surface of revolution will be the
3 3. e W
carve of sines e
¢

958. (Marryy M. THoMAs, M. 4,) :—Establish the formula

1 . ¥ q_¥ " - ” n—p oy -
B w[ e {7 (P amw)
where n>p>q>r.
959. (M. T. Nawaniunaan) :—The sides AB, AC of a triangle ABC
are produced to D, E such that BD =CHK=BC
1f the cucle ADE cuts the strarghttme All} in J, prove that
L
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