—

).

Bw 2, NizIM
> R
iy 2bo2-




R S e T e B B B B O B W

Silver Jubilee

(lommemoration Yolume

B ot N

<3k BETISTHe, o3
i -
N

JOURNAL VOL, XX

/
2 -
AR VL VL VL VL VL VELVLVEL DL TEVEL VDEVL VL DL VL

Published by D)

The Indian Mathematical Society






0eutedt, BRI I ISR ISR SR IR IR IS IR AT I AL NN ICIR MR NI CIR I NI SR SRR WA WY
il S XX DD IR IR XX XEXE KX S ORI X X X

ottt

Soeteon
estos

WRXR

% %
: THE JOURNAL :
S &
Z OF THE :
kY K
% e

.,
0

3

X

or!

i

*
L3
: INDIAN MATHEMATICAL %
B ..
4‘0 0’4
x o‘c
:s: 3
oxo 0‘0 3
os‘ 0"
O‘C .‘0
‘s‘ -t'
v‘o 0‘0
o“ = .‘v
+ : 3
¥ &
%

..
jooge!
20t
tooge o

o
A

Ry
Q

" EDITOR:
R. VAIDYANATHASWAMY, M.A,, D.Sc.

Seeteses?
eogeeqeyersee,
RIRIIN)
Catiaaiarte?

Z;I JOINT EDITOR : kS
% A. NARASINGA RAO, M.a, LT. %
% %
.’ oz-
':' 0’;
* 3

3 a5
& I
¥ X
" o
* VOLUME XX &
¢ B
3, &
% X
':~ o’o
% %
kX kS
& 1
KX K4
kX S
k3 1933
o o
3.

o .
3, 3,
3 K
3 3
&, &
:§: :::
3 I
2 o‘o
- . 3

- TRICHINOPOLY : k%
k3 ST. JOSEPH’S INDUSTRIAL SCHOOL PRESS %
X — %
;S D3
e 1934 e
-? :;:
kX ®
B O e R R R frstotors

~—~






CONTENTS

SUCCESSION LIST OF OFFICE-BEARERS

GENERAL REPORT

DETAILED DAILY PROGRAMME OF THE CONFERENCE ...

His EXCELLENCY’S SPEECH AT THE OPENING OF THE CONFERENCE

LIST OF PERSONS FROM WHOM GREETINGS AND CONGRATULATIONS

WERE RECEIVED

REPORT ON THE PROGRESS OF THE SOCIETY

PRESIDENTIAL ADDRESS BY RAO BAHADUR P. V. SESHU IYER ...

BUSINESS MEETING
DISCUSSION ON SCHOOL MATHEMATICS

DIsCUsSSION ON COLLEGE MATHEMATICS

ADDRESS PRESENTED TO PROF. M. T. NARANIENGAR

PrROF. NARANIENGAR’S REPLY

PusLiCc LECTURE ON MATHEMATICS AND RELIGION BY
BAHADUR P. V. SESHU IYER

Li1sT OF PAPERS COMMUNICATED TO THE CONFERENCE
DONATIONS TOWARDS THE EXPENSES OF THE CONFERENCE
1.1ST OF DELEGATES WHO ATTENDED THE CONFERENCE

FuLL TEXTS OF PAPERS PRESENTED TO THE CONFERENCE

RAO

Pages
ix—x
1—2
2—6
7—8
9
10—17
I18—30
31—32
32—34
35—36
37—38
38—40
41—A47
47-—52
53
54—55

57—248






List of Papers Published

Ananda Rau, K.—On the behaviour of elliptic theta functions near
the line of singularities

Bell, E. T.—An Algebra of Numerical Compositions
Blaschke, W. (Hamburg)—Hexagonal 4-webs of Surfaces in 3-Space
Chowla, S.—Contributions to the analytic theory of numbers (II)
Hayashi, T.—A Japanese Problem ..

Kosambi, D. D.—The Problem of Differential Invarl'mts
Krishnamurthy Rao, 8. —Collineations in n-Space

Krishnaswami Ayyangar, A. A.—Qriented Circles

Miller, G. A.—Groups generated by an operator of order 2 and
an operator of order 3 whose commutator is of order 2

Mukherjee, K. K—The Normalisation in Wave Statistics

Nagabhushanam, K.—On the transformation Theory of Dynamics
in the manifold of states and time

Neville, E. H.—Iterative Interpolation

Ramamurti, B—A covariant specification of the simplex inscribed
in a rational norm curve in a space of odd dimensions and
circumscribed to a quadric inpolar to the curve

Ram Behari—Equilateral osculating quadrics of ruled surfaces ...
Rao, C. V. H—The &-Conic from a projective standpoint

‘Rao, G. P.—On a Method of computing gravity anomalies
Shah, S. M.—Abundant Numbers

Siddiqi, Raziuddin.—On the equation of Heat Conduction in
Wave-Mechanics ...

Sivasankaranarayana Pillai, S.—On the sum function of the number
of prime factors of N.

Srinivasiengar, C. N.—Singular solutions of ordinary differential
equations of the second order

Venkatachaliengar, K—On series whose terms as well as the sum-
function are continuous in an interval, and which converges
non-uniformly in every sub-interval

Watson, G. N.—Proof of certain identities in Combinatory Analysis ...

Pages
148—156
120—138
182—184
121—128
178—181
185—188
193—203
204—2I1
145— 147
244—248
236—243

87—120
189—192
212—221
176—177
222—225
139—144
226—235

70—86
157—172
173—175

57— 69



141

170
174

239

244

1)

245

247
247

B Read “ line 5 from below, (omitting foctnote, if any). ”

2 and in the
rest of the
paper

3B

6

6B

9
14
21

8

footnote,
line 2

8,11,19,20
11
14
16
18
footnote,
line 3
7
10

10
15, 18,19, 20
10

12
11B, 7B
Eq. 15
2
1B
22
5 and
throughout
the paper

4

8B
4B

ERRATA

Sfor
p=a
_ Tur
log
Aitken

v

o (2)
2
Clairant
Ta ()
Xkl

Zky (r-1>
xck-13s41

components the col-

lineation

el

s
Cpg

vl
r=p=-1
Psq

s

Qs
n="n

ar+ 1 = h¥Ma + )

read
P=vx
I
log
R. A. Fisher

»

o (2v)
2

Clairaut

| T ()]

ks 1

Zhky (r—13s

ck_1ys il

components
collineation

/

e
Ds
€p g

5
=1
v~ps—1
Psqy

v—38

Ds
n-k

@+ 11— h¥ar =)

51
%

5 3
P +P

ot 46
PPyg+ I*g5 + 1%

t

#*

" 5
P +P
24 46

P+ Itg5 + 15,

of

the

insert ... (5-1) at the end of line 7B instead of

17 +=m?+-n?
2m*+n?
Vi

@

T

&1, T2

f 27 Ba t/h)

exp. | v

»

(2

24-m? +n*
2+m2?+n?
(Vi)

(0 3%

77

T
X1 X

xm { L2mi Bt Jl Iy

h

»

-

[line 11B

/



THE PRESIDENTS OF THE INDIAN MATHEMATICAL SOCIETY

R. N APTE 1912—15 i H

E: W MIDDLEMASI'
NEo—=

C L WII KINSON




Succession List of Office-Bearers

Patron

His Excellency Sir George Sydenham Clarke, F.R.S., G.C.M.G.,
G.C.I.E., Governor of Bombay.

Presidents
Prof. B. Hanumanta Rao, B.A., LS.O, veo 1907--12
» R. N. Apte, M.A., LL.B., F.R.A.S. ... 1912—15
»  E.W, M1ddlemast MA ... 1915
Dewan Bahadur R. Ramachandra Rao B.A. vee 1915—17
Prof. A. C. L. Wilkinson, M.A., F.R.A.S. o 1917—21
H. Balakram Esq., M.A., 1.C.S. e 1921—26
V. Ramaswamy Aiyar Esq., M.A, ... 1926—30
Prof. M. T. Naraniengar, M.A, e 1930—32
Rao Bahadur P. V. Seshu Aiyar, B.A.,
L.T., LES. e 1932—
Secretaries
V. Ramaswami Aiyar Esq., M.A. we. 1907—10
»w D. D. Kapadia, M.A, B.Sc. .. 1910—22
Rao Bahadur P. V. Seshu Aiyar, B.A.., L.LE.S. 1922—26
Principal N. M. Shah, M.A. (Cantah.) ... 1926—28
Rai Bahadur G. S. Chowla, M.A. (Cantab.) .. 1928—29
Prof. Mukund Lal, M.a. ... ... 1929—32
S. B. Belekar Esq., M.A. ... ... 1932—

Asst. Secretaries

S. Narayana Aiyar Ksq., M.A. . 1907—10
Rao Bahadur P. V. Seshu Aiyar, L.E.S. ... 1910—15
Prof. P. R. Krishnaswamy, M.A. .. 1915—17
» C. N. Ganapati, M.A. ... 1917—20
,» N. Raghunatha Ayyangar ws  1920—24
, G. A. Srinivasan, M.A. o 1924-—25
,, A. Narasinga Rao, M.a. s 1925—27
,» V. Gourisankaran, M.A, e 1927—29
S. Mahadevan, M.a. eee 1929—



X

Treasurers

Prof. K. J. Sanjana, M.A. ... 1907—10

The Rev. C. Pollard, M.A. ... 1916—14

S. Narayana Aiyar HEsq., M.A. L. 1914—28

S. R. Ranganathan Esq., M.A., L.T. ... 1928—
Editors

Prof. M. T. Naraniengar, M.A. L. 1907—27

Dr. R. Vaidvanathaswamy, D.Sc., F.R.S.E. o 1927—

Joint Editors

Rao Bahadur P. V. Seshu Aiyar, B.A,, L.T.,

1.E.S. . 1917—22
Prof. K. Ananda Rao, M.A. ... 1922—a7
- A. Narasinga Rao, M.A., L.T. Lo 1927—

Librarians
Dr. R. P. Paranjpye, M.A. L. 1907—22
Prof. V. B. Naik, M.A. Lo 1922—

Joint Secretary and Asst. Librarian

Prof. D. D. Kapadia, M.A. and | -
V. B. Naik, M.A. f ... 1907—10

E)

Assistant Librarians

V. B. Naik, M.A. ... 1910—16
V. A. Apte, M.A. Lo 1922—29
S. B. Bondale, M.A. . 1929—32
R. P. Shintre, M.A. . 1932—



REPORT

OF THE

Eighth Conference & Silver Jubilee Celebrations

OF THE

Indian Mathematical Society

(Bombay, 21st (o 24th Decender 1932)

General Report

At the invitation of the Bombay University, the Eighth Con-
ference of the Indian Mathematical Society was held at Bombay on
the 21st, 22nd, and 23rd December 1932. The Society was fortunate
in securing the gracious patronage of His Excellency SIR FREDE-
RICK HUGH SYKES, p.c,, G.C.LE., G.B.E., K.C.B., C.M.G., Governor of
Bombay and Chancellor of the Bombay University who delivered the
Inaugural Address on the openinz day. V.N. CHANDAVARKAR
Esq., B.A,, Bar-at-law, Mayor of Bombay, was the Vice-Patron of the
Conference. Mr. and Mrs. Chandavarkar were ‘At Home ' to the
delegates on the 23rd evening, when the latter had an opportunity of
meeting the elite of Bombay.

Besides the reading of papers, there were two discussions, one
on the teaching of Mathematics in schools and the other on the
teaching of Mathematics in Universities. The Society hopes that by
thus providing opportunities at its several conferences for teachers
of Mathematics in Schools and Colleges to meet together and
discuss improvements in courses, syllabuses, and methods of instruction,
it is helping to bring about a higher standard of mathematical
instruction in the country.

There were three public discourses all of which were well
attended ; the first by Dr. MEGHNAD SAHA, D.Sc., F.R.S., on ‘ The
Present Crisis in the Science of Dynamics ", the second by Dr. R.
VAIDYANATHASWAMI, D.sc., F.R.S.E, on ‘“The Nature of the
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Continuum ”, and the last by Rao Bahadur P.V. SESHU AIYAR,
B.A., L.LES. (Retd.), President of the Society, on “The Nature of
Mathematics and Religion.” ®

The 24th December was devoted to the celebration of the
SILVER JUBILEE of the Foundation of the Society under the
Presidentship of the Rev. J. MACKENZIE, M.A.,, Vice-Chancellor,
Bombay University, and included the presentation of an address to
Prof. M. T. NARANIENGAR, M.A., Editor of the Society’s Journal
for nearly two decades from the foundation of the Society. Eloquent
tributes were paid to the valuable services rendered by him to the
Society. After the Jubilee Celebrations, an excursion was arranged to
the Elephanta Caves where light refreshments were served. The
Conference terminated on the steps of the Appollo Bunder late in
the evening on the 24th December.

The Society wishes to take this opportunity of expressing its
gratitude to His Excellency Sir F. H. Sykes, Governor of Bombay,
for opening the Conference and for his kind words of appreciation of
the Society's work and his good wishes for theé success of the
Conference; to the Rev. J. Mackenzie, Vice-Chancellor, and the
other authorities of the Bombay University for their kind invitation
and co-operation; to Mr. and Mrs. V. N. Chandavarkar for their
delightful ‘“At Home "; to the Principal of the Royal Institute
at which the meetings were permitted to be held; to the Secretary
and members of the Reception Committee who were responsible for
the excellent arrangements; and to all those, members as well as

others, who had contributed their share to the success of the

conference.

Detailed Daily Programme of the Conference
Wednesday 21st December 1932

10-15 A.M—INAUGURATION OF THE CONFERENCE AT THE
COWASJEE JEHANGIR HALL.

His Excellency was received at the steps by the members of the Reception
Committee led by The Hon’ble Mr. Justice Mirza Ali Akbar Khan, Ex-Vice-
Chancellor of the Bombay University and Mr. V. N. Chandavarkar, the Mayor
of Bombay. The President and Members of the Managing Committee of the
Society, the Foundation Members and the members of the Local C.ommlttee
were then presented to His Excellency, who was then taken in procession to the

hall.
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Mr. Justice Mirza in welcoming the members of the Society, referred to the
great value of such Conferences and hoped that the presence of the Presi-
dent Rao Bahadur P.V. Seshu Aiyar, Mr. V. Ramaswamy Aiyar, the Founder
of the Society and the other distinguished Mathematicians at the Conference
would serve as an inspiration to the younger generation. He then spoke of the
efforts of the Bombay University to advance the study of Mathematics and,
wishing success to the Conference, requested His Excellency toinaugurate
the Conference.

His Excellency then delivered the Inaugural Address and declared the
Conference open. (The address is printed on pages 7-8.)

Prof. K. R. Gunjikar, the Secretary of the Local Executive Committee, then
read a letter from the Rev. Dr. Mackenzie, Vice-Chancellor of the Univer-
sity and Chairman of the Reception Committee, regretting his unavoidable
absence from Bombay on the opening day and wishing all success to the Con-
ference. He also read out a list of distinguished persons and Institutions who
had sent Greetings to the Conference on the occasion of its Silver Jubilee. (The
list of those from whom Greetings and Congratulations were received is
printed on page 9).

The President of the Society then thanked His Excellency on behalf of the
Society and referred to the keen interest in the cause of learning which
prompted His Excellency to agree to open the Conference in spite of his
arduous duties. He also thanked The Hon’ble Mr. Justice Mirza Ali Akbar
Khan for his words of welcome and Mr. V. N. Chandavarkar for consenting to
become the Vice-Patron of the Conference.

11 AM.—CONFERENCE SESSION WITH RAO BAHADUR P. V. SESHU
AIYAR IN THE CHAIR.

Report of the Society's Activities by Prof. S. B. Belekar, Hon.
Joint Secretary.

At the Secretary’s request Prof. D. D. Kapadia summarised the activities
of the Society during the past 25 years. (The Secretary’s report
is printed on pages 10-17).

Presidential Address by Rao Bahadur P, V. Seshu Aiyar,
President of the Society.

(The Presidential Address is printed on pages 18-30).
12-30 P.M.—BUSINESS MEETING OF THE SOCIETY.

(A report of the Business Meeting and the resolutions passed
thereat appears on pages. 3I-32).

2 P.M.—LIGHT REFRESHMENTS.
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3 P.M.—VISIT TO THE ORIENTAL LIFE ASSURANCE COMPANY’S
OFFICES.

At the invitation of Mr. L. S. Vaidyanathan, the delegates paid a visit to
the Oriental Life Assurance Company’s Offices where they inspected the
several calculating machines and the automatic Sorting and Recording
Machines used by the Company.

5 P.M.—DR. SAHA’S PUBLIC ADDRESS ON “THE PRESENT CRISIS
IN THE SCIENCE OF DYNAMICS."”

Thursday the 22nd December 1932,

8-30 A.M. TO 9 A M.—READING OF PAPERS.

(For the list of Papers read at the Conference vide pages 47-52).

9 AAM.—GROUP PHOTO OF MEMBERS OF THE SOCIETY AND THE
MEMBERS OF THE RECEPTION COMMITTEE.

9-30 TO II-30—READING OF PAPERS (Countd.)
11-30 TO 2 PM.—INTERVAL.

The Local Committee had arranged for the meals of those of the delegates
whose place of residence was far removed, and for whom it would have
been very inconvenient to go and return in time for the reading of
papers in the afternoon.

2 P.M.—DISCUSSION ON THE TEACHING OF MATHEMATICS IN
SCHOOLS with Rao Bahadur P. V. Seshu Aiyar in the chair.

(For details regarding the discussion @/de pages. 32-34).

5 P.M.—RECEPTION COMMITTEE “AT HOME” TO THE DELE-
GATES.

6-30 p.M.—DR. VAIDYANATHASWAMI'S PUBLIC ADDRESS ON
“THE NATURE OF THE CONTINUUM ".

Friday the 23rd December 1932.

8-30 TO II-30 A.M.—READING OF PAPERS. (Contd.)
11-30 TO 2 P.M.—INTERVAL.

As on the previous day the Local Committee arranged a feast
to the delegates who had thus an opportunity of having an
informal talk on many topics concerning the affairs of the

Society.
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2 P.M.—DISCUSSION ON THE TEACHING OF MATHEMATICS IN
COLLEGES.

(For details regarding the discussion vide pages 35-36).

5 P.M.—MAYOR’S “ AT HOME".

There was a large number of invitees including the Chief
Justice of Bombay, the Municipal Commissioner, the Post
Master General, and many other prominent citizens of Bombay.

Saturday the 24th December 1932.—Jubilee Day.

11-30 AM.—JUBILEE CELEBRATIONS COMMENCE WITH THE
REV. DR. MACKENZIE IN THE CHAIR.

Prayer by Students of the Roval Institute of Science.
Tributes to the services rendered by Prof. Naraniengar.

The Hon. Secretary gave an account of the work of the Society in its
earlier days and paid a warm tribute to the Founder Mr. V. Ramaswami
Aliyar, and Prof. M. T. Naraniengar, the first Editor of the Journal. The Presi-
dent, the Founder, Principal Menon, Dr. Vaidyanathaswami, Prof. Arunachala
Sastry, and several others spoke eulogising the signal services rendered
by Prof. Naraniengar to the Society. '

Address to Prof. Naraniengar.

An address in appreciation of his services was then read by the President
of the Society and presented to Prof. Naraniengar amid loud checrs. The text
of the address will be found on pages 37-38.

Prof. Naraniengar's Reply.
(This will be found on pages 38-40).
Vote of Thanks.

Prof. Gunjikar on behalf of the Local Committee and Prof. Belekar, the
Secretary of the Society, on behalf of the Managing Committee of the Socicty
expressed the thanks of the Society to all those whose valuable help had been
responsible for the success of the Conference; particularly to His Excellency
the Chancellor and the Vice-Chancellor and the other authorities of the
Bombay University, to Mr. and Mrs. Chandavarkar, Justice Mirza, Prof. Saha,
Dr. Vaidyanathaswamy, Rao Bahadur Seshu Aiyar, Prof. L. S. Vaidyanathan,
Mr. K. S. Ramachandra Iyer, President of the South Indian Associatign,
Matunga, who had accommodated the delegates, to the Press and the Broad-
casting Service. The thanks of the Society for the excellent arrangements
made by Prof. Gunjikar and the Reception Committee and the devoted band
of volunteers were proposed by the Secretary of the Society.
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The function concluded with a vote of thanks to the Rev. Dr. Mackenzie,
the Chairman of the Jubilee Celebrations, and after garlanding the Foundation
members of the Society.

12-30 p.M.—LECTURE BY RAO BAHADUR P.V. SESHU AIYAR ON
“THE NATURE OF MATHEMATICS AND RELIGION.”

1-30 P.M.—EXCURSION TO THE ELEPHANTA CAVES.

The fresh sca breeze was a welcome change from the heated atmosphere of
the lecture room and the members and delegates were in a very hilarious mood
when the three motor launches began to race towards the island, where tea
and light refreshments were awaiting their arrival. The party returned
late in the evening and parted after mutual greetings and cheers for the
President and the local Secretary.
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His Excellency’s Speech
at the Opening of the Conference.

(Bombay, 21st December 1932—10-15 A.M.)

-

MR. PRESIDENT AND GENTLEMEN,

It gives me very great pleasure warmly to welcome this,—the Indian
Mathematical Society’s Conference,—to Bombay and to the University. I regret
that my engagements have made it impossible for me to do more than pay you
this very brief visit; but I am glad indeed that I have found it possible to be
here at the opening of the Conference, not, I am afraid, to make a formal
speech, but to have the privilege of addressing you a few words of welcome.

I may say that I am impressed by the importance of the work which you
as mathematicians are doing. To the general public mathematics is not, and
probably cannot be, an absorbingly interesting subject. One meets many
people who have painful memories of their early endeavours after mathematical
truth. Whether the pains which have so often accompanied the study are due
to the subject itself or to the manner in which it has often been taught I am
not prepared to say. In addition to trying to develop mathematical research
and to encourage young mathematicians, work for which I know vour President
does so much and for which he deserves all our thanks, I am much interested to
learn that you are devoting time at this Conference to the discussion of
methods of teaching. If you are able to devise means whereby the study of
mathematics may be made more attractive to the average boy and so develop
original and sound thinking, and whereby it may be made easier for the average
person to apply mathematical methods to the varied material to which they are
applicable, you will deserve the gratitude not only of the School-and College-
going population but of the whole community.

I should like to take the opportunity also, if I may, to congratulate
you on what I hear as to the value of the papers that appear in the
Journal of the Indian Mathema'ical Society. No one who knows any-
thing about modern scientific developments can have any doubt what-
soever of the supreme importance of mathematics for the sciences, There
are innumerable modern discoveries which would not have been pessible if
the mathematicians had not prepared the way. We used to think when we
heard of mathematicians busying themselves with such subjects as the Geometry
of space of » dimensions that they were about as far removed from reality as
Alice was in her adventures in Wonderland. But we now learn that a great
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deal of modern Physics would have been impossible if these adventurers had not
prepared the way. Equally fanciful seemed to be the conception of non-
Euclidean space. The mathematicians seemed to say “Let’s pretend ” and the
pretence turned out to be truth. Again, T am told, the mathematicians were
for long years. unconsciously preparing the way for the whole theory of
Relativity. Facts like these will encourage the mathematician in the prosecution
of his researches. We are all familiar with the old story of the Cambridge don,
who said with pride regarding a theorem which he had discovered that the
beauty of it was that it could never be put to any practical use. 1 Dbelieve no
one will say to-day, in the light of mathematical history, in regard to any new
discovery, that the time may not come when it may not be of service in
illuminating some great field of enquiry. The mathematician need never
apologise for undertaking any line of research, however far removed it may
seem to be from any utilitarian end.

There is another practical application of mathematics which in these days
has assumed a position of great importance, and to various aspects of which I
have no doubt you will be giving some attention in your Conference. I mean
Statistics. It is astonishing in what a variety of ways and to what a variety of
material statistical methods are now being applied. It is a branch of mathe
matical science that has often been suspected and not infrequently made a sub-
ject for wit. There is no doubt that in the hands of unskilled persons statistics
may be abused, but this fact does not in any way detract from the great value
which they have, and are increasingly being found to have, in the elucidation
of the material with which many sciences deal. It is not merely in the physical
sciences, but quite as much in the sciences which relate to human life, and in
many of the practical arts, that statistics have their place. We may be far
away here from the high disinterestedness of the Cambridge don, but scientists
and practical men unite in acknowledging their debt to those who have elabo-
rated the statistical methods which are now at their service.

Let me, in conclusion, express to you my good wishes for the success of
your Conference, of which I shall look forward with interest to reading the
proceedings. Your work may attract less public attention than that of many
Conferences. You will probably have little to say to the plain man, or even to
the educated man who is unskilled in mathematics. But you have the satis-
faction of knowing that you are rendering a greater service to the community
than it is possible for most people to realise. And it may be a source of some
encouragement for you to recognise that even among those of us who have
little specialised knowledge of your work in its higher reaches there are many
who have a high appreciation of its importance and its value both as a great
branch of human knowledge and as a fundamental auxiliary to the sciences and
the arts.

With your pei‘mission, and with no further words other than again wishing

that your work may have the greatest possible success, I have now the privilege
of declaring this Conference of the Indian Mathematical Society open.
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Prof. R. N. Apte. 35. Mr. C. B. B. Clee.
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Mr. R. H. Beckett. 37. Mr. D. C. Pavate.

Dr. A. Weil, Marseilles. 38 Mr. Lalji Naranji.

Mr. R. P. Masani. 39. Mr. A. N. Surve.

Mr. M. R. Ingle. 40. Mrs. Fyzee.

Sir Dinshaw Wachha. 4I. Principal Fyzee.

Sir J. B. Petit. 42. Major S. L. Bhatia.

Sir C. V. Mehta. 43. Mr. Marshal.

Sir H. P. Dastur. 44. Mr. M. A. Karanjawalla.
Dr. Sir J. J. Modi. 45. Mr. J. B. Boman Behram.
Sir Joseph Kay. 46. Mr. Ellis.

Sir Reginald Spence. 47. Dr. D. A. D'Monte.



Report on the Progress of the Society
BY

Prof. S. B. BELEKAR, Hon. Joint Secretary.

LADIES AND GENTLEMEN,

It may not be out of place on this happy occasion to review briefly the
early history of our Society :

Prior to its foundation, such Professors and others interested in Mathe-
matics as could afford to do so got a few journals on their own account, but
there were no facilities for the interchange of ideas among workers in the same
field, and almost everyone was ignorant of what the others were doing. It is a
curious fact that a devotee of the subject not himself engaged in teaching should
have conceived the formation of a society for bringing together persons engaged
in advanced studies and research. It was Mr. V. Ramaswamy Aiyyar, then
Deputy Collector at Gooty, who in 1907 addressed a few friends interested
in Mathematics for securing facilities for advanced studv in the subject
by way of Mathematical books and journals. About twenty gentlemen respon-
ded and the formation of the ‘ Analytical club” was announced in the Madras
Papers on the 4th April 1907. From the very outset the non-parochial and
universal character of the Society was in evidence. These first twenty founda-
tion members consisted of two mz2n in revenue service, two Engineers, a
Superintendent in the Accountant General’s Office, while the rest were teachers
in Colleges. Classifying by provinces, there were three Professors from the
Bombay Presidency, and the remaining 17 from Madras.

The original idea was only to subscribe for periodicals and to circulate
them among the members, but even at that stage higher ideals such as equip-
ment of a Library of standard books of reference and the publication of a
journal were kept in view. In spite of his arduous duties as an Executive
Officer, the founder spared no pains to promote the interest of the Society and
issuing circular after circular had a suitable constitution framed, the affairs of
the Society placed on a secure basis by the end of that year.

With the scholar’s freedom from provincial bias, the headquarters of
the Society was located at Fergusson College. Poona, in the Bombay Presidency.
Principal R. P. Paranjpye was made the first Honorary member of the Society
and undertook to act as Honorary Librarian which office he held until very
recently, when more important duties in the cause of the country forced him to
leave the library to his able lieutenant Professor V. B. Naik.
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The next two years were taken up by the preparation for the starting of
the Journal. With the co-operation of scholars such as Principal Paranjpye,
Professor Wilkinson, and others, the first number of our Journal appeared in
February 1909 under the distinguished Editorship of Prof. M. T. Narainiengar,
Professor of Mathematics in the Central College, Bangalore.

. Meanwhile the membership was steadily increasing and with it the work
of circulating journals and periodicals —in 1908 there were two Assistant Librari-
ans, Profs. V. B. Naik and D. D. Kapadia, both at Poona. A clerk had been
appointed, and 30 Mathematical journals and periodicals were being purchased.

The idea of holding conferences was remote in the minds of the organisers
of the Society at this stage. They were busy with drafting of constitutions and
framing of rules for the efficient working of the circulating Library. By
December 1910, the membership had reached 126, the managing Committee had
undergone a change in personnel, the Secretaryship had changed hands and the
Society had changed its name twice—once from * the Analytical Club ” to the
“Indian Analytical Club” and then to its present name THE INDIAN
MATHEMATICAL SOCIETY.

The Society has been very fortunate in having in the early period of its
life, a succession of indefatigable Secretaries to whom the Society owes
its rapid progress. We must not however forget that they were strongly
supported by learned men like Principal Paranjpye and Prof. Wilkinson and
administrators like Dewan Bahadur Ramachandra Rao and Mr. Balak Ram, to
mention only a few names.

The Society made steady progress under the paternal care and guidance
of its Presidents who were men of experience, the late Mr. Hanumant Rao who
was the Professor of mathematics in the Engineering College at Madras, the
late Mr. Middlemast, Principal of the Presidency College, Madras, Dewan Baha-
dur Ramachandra Rao, then a Secretary to Madras Government, Prof. A. C. L.
Wilkinson, then Professor of Mathematics and later the Principal of the
Deccan College, the late Mr. Balak Ram who though engaged in administra-
tive work could easily give lessons in advanced mathematics to many of us
professors at Colleges. Next came Mr. V. Ramaswamy Aiyyar, another
administrator whose love and devotion to the subject is embodied in the
large number of interesting notes and questions that he has sent to our Journal,
Prof. M. T. Narainiengar who ungrudgingly placed at the disposal of the
Society, his profound scholarship by editing the Journal for nearly two decades,
and finally our present President, Rao Bahadur P. V. Seshu Aiyyar who has
served the Society in almost every capacity as Joint Secretary, Joint Editor,
and nbw that he is the President, the Society will make rapid progress under
his guidance.

The Society has to-day on its rolls nearly 300 members from all the
provinces in India and outside including 9 Honorary members and 23 Life
members. Of these about 60 are non-professional, that is, are not actively
engaged in the teaching of Mathematics. About 130 ordinary members haye
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been admitted at concessional rates in order to place the services of the Society
withtin the reach of a wider circle of persons. Among the honorary members
are eminent Professors of world-wide reputation such as Prof. Whittaker, Prof.
G. H. Hardy, Prof. G. A. Miller and Sir C. V. Raman.

Another name whose memory will be fondly cherished, not only by the
Society, but by the whole of India, is that of the late S. Ramanujan, F.R.S,, and
it has been a matter of considerable anxiety to our successive Presidents to in-
stitute a befitting memorial in his name.

Donations and other Financial Support.

It is a striking feature of the finances of the Society that its mainstay is
the subscription paid by its members. During the last twenty-five years only
two noteworthy donations have been received :

(i) Sir Ratan Tata. ... Rs. 500 in 1910
(ii) Mr. Balak Ram, 1.C.s. ... ., 1000 in 1922

Tt is, however, a matter of pleasure to record that recently the Universities
of Madras, Bombay, and the Annamalai University have sanctioned annual
grants ranging from Rs. 100 to Rs. 200. The Society takes this opportunity of
expressing its thanks to these bodies for the encouragment they have thus given
to it.

The main activities of the Society are connected with—

(1) The central Library at Poona which circulates the Periodicals to the
members ;

(2) The publication of the Journal;
and (3) The Biennial Conferences.

I shall take these one by one. As regards the Library, Prof. V. B. Naik
has kindly supplied me with the following account of its working since the
foundation of the Society for which T am very thankful to him.

The Library of the Society.

Soon after the starting of the Indian Mathematical Club, it was felt
desirable that the circulation of mathematical journals and books should
proceed from a central place which should also be the Headquarters of the club.
The honour of this selection was coriferred on Poona, and Dr.R.P. Paranjpye,
head of the Fergusson College, was appointed the first Honorary Librarian, with
Prof. V. B. Naik also of the same College, as Honorary Assistant Librarian.
The whole stock of books and journals belonging to the Club was transferred to
Poona and located in a part of the Library Hall of the Fergusson College,
which also made the services of one of its clerks and of a peon available at a
nominal charge. In 1909, the Library consisted of two large book-cases,
containing 247 books, of which 10T had been presented to it, together with 146
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volumes of mathematical journals. Since then the Library has been growing
both by the addition of standard works on mathematics, and of volumes of
journals received in exchange or acquired by purchase. The list attached
herewith gives the volumes of Mathematical Journals available in the Library.

Catalogue of Periodical Literature Availuble in the Soctety’s
Library at Poona.

Years

I. Abhandlungen aus dem Mathematichen Seminar, Hamburg 1923-1930

2. Académie des Sciences ... 1907

3. Acta Mathematica ... 1882-1932

4. American Journal of Mathematics ... 1007-1932

5. American Mathematical Monthly ... 1914-1932

6. Annales de ’école Normale Supérieure ... 1864-1932

7. Annales de la Faculte des Sciences de Toulouse ... 1887-1923
8. Annales de I’Observatoire de Paris ... I885-19I13

9. Annals of Mathematics ... 1800-1932
-10.  Astrophysical Journal ... 1888-1932
I1. Bulletin of the American Mathematical Society ... 1906-1932
12. Bulletin of the Calcutta Mathematical Society ... 1013-1032
I3. Bulletin des Sciences Mathématiques ... 1885-1032
14. Bulletin des Sciences Mathématiques Astronomiques ... 1870-1884
15. Crelle’s Journal ... 1906-1932
16. Current Science ... 1932

17. Jahresbericht der Deut. math. Vereinigung 3 ... 1027
18. Educational Times ... 1907-IQI8
19. Jahrbuch iiber die Fortschritte der Mathematik ... 1868-1914
20. Japanese Journal of Mathematics ... 1924-1932
21. Journal de Mathematiques Elementaires ... 1006-1914
22. Journal de I'école Imperiale Polvtechnique ... 1796-1867
23. Journal de I’école Polytechnique ... 1854~-1804
24. Journal of the Science Association, Vizianagaram ... 1023-1924
25. Liouville’s Journal ... 1836-1924
26. L’Intermediaire des Mathematiciens ... 1804-1914
27. Mathematics from the Educational Times ... I863-1913
28. Mathematical ngette ... 1897-1932
29. Mathematical Questions and Solutions ... 1916-1917
30. Mathesis ... 190I-1917
3I. Mysore Half Yearly Journal ... 1927-1932
32. Mathematische Annalen ... 1860-1932
33. Messenger of Mathematics 1903, 1907-1930
34. Monthly Notices of the Royal Astronomical Society ... 1017-1932
35. Nature ... 1004-1927
36. Mathematics Teacher ... 1908-1921
37. Nieuw Archief voor Wiskunde Vols. ... 15-18

38, Nouvelles Annales de Mathematiques ... 1842-1923



14 Conference Report

39. Philosophical Magazine ... 1880-1932
40. Philosophical Transactions of the Royal Society ... 1906-1932
41. Popular Astronomy ... 1907-1932
42. Proceedings of the Edinburgh Mathematical Society ... 1896-1932
43. Proceedings of the Cambridge Philosophical Society ... 1902-1932
44. Proceedings of the London Mathematical Society . 1865-1932
45. Proceedings of the Physico-Mathematical Society of ]’\p"m 1927-1932
46. Proceedings of the Royal Society of London ... 1905-1932
47. Publication de la Faculte des Sciences de 'University

Masaryk
48. Publications di 'Universidad de la Plata
49. Quarterly Journal of Mathematics ... 1006-1927

1030-31

50. Rendiconti del Circolo Matematico di Palermo ... 1914-1932
5I. Revue de Mathematiques spéciales ... 1006-1913
52. Revue Semestrielle des Publications Mathematiques ... 1927-1932
53. School Science ... 1905-1920
54. Tohoku Mathematical Journal ... 1006-1932
55. Transactions of the American Mathematical Society ... 19071928
56. Transactions of the Cambridge Philosophical Society ... 1I011-1Q14
57. Transactions of the Royal Society of South Africa 1927-1932
58. Wiskunndige Opgaven Met de Oplessingen Vols. ... 14-18

The small space which the Library Hall of the Fergussen College could
afford having proved insufficient for the needs of the Library, the Fergusson
College made a large room (28 x 19') on the second floor of its amphitheatre
available for the purpose. The Library now consists of 450 books, and 1775
bound volumes of journals, stored in 9 large book-cases, together with 125
unbound parts and current journals.

Even now the place is far too crowded with book-cases, leaving little
room for those who desire to read in the Library, and a moderate sized building
for the Library on a site within the premises of the Fergusson College or in the
immediate neighbourhood, is badly needed.

Principal R.P. Paranjpye and Prof. V. B. Naik continued to hold the
offices of Honorary Librarian and Assistant Honorary Librarian respectively
up to the year 1922, when the former resigned owing to his having accepted the
office of Minister of Education of the Bombay Presidency. Prof. V. B. Naik
was then appointed Honorary Librarian with Prof. V. A. Apte as Assistant
Honorary Librarian. The former has continued to hold the office while Prof.
Apte’s transfer to the Willingdon College, Sangli, necessitated his being
replaced by Prof. S. B. Bondale, and later by Prof. R. P. Shintre, the present
Joint Honorary Librarian.

The work of circulation of journals is now being carried on by a clerk
working under the direction of the Joint Librarian, From the beginning, this
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work has presented a number of difficulties which had to be tackled with great
care and delicacy. It is needless to go here into a detailed account of how
improvement has been steadily effected. In the earlier stages, valuable
guidance was received from Mr. V. Ramaswamy Aiyar, the founder of the
Mathematical Club and its Secretary. Mention must also be made of a
valuable suggestion made by the late Mr. Balak Ram, sometime President of
the Society, according to which any journal, instead of moving direct from one
member to another in a circulation group, does so through the office of the
Library, from which it is re-directed without additional charge to the receiving
member. While these, and other improvemsnts, have greatly facilitated the
work of circulation it has not yet been possible to eliminate all irregularities.
The Honorary Librarian solicits the co-operation of the members in making
this part of the work of the Library free from delays, mistakes and losses.

A catalogue of the books in the Library was first published in 1912 and
revised and classified both according to authors and according to subjects in
1928. A further revised catalogue is under contemplation.

The following are the names of gentlemen and institutions from whom
books and journals have been received in presentation :—

University of Madras Prof. A. A. Krishnaswami Ayyangar
University of Bombay Sir Thomas Muir
University of California Prof. William Arthur

Universidad de La Plata
University of Cambridge

» R.F. Davis
»  Manmohanlal Agarwala

University of Sydney » T.Sunder Rao
Academie des Sciences, Paris Mr. Balak Ram
Cambridge Philosophical Society Prof. S. C. Dhar
Carnegie Institute of Washington ,,  H. P. Petit:
University of Amsterdam » B. P. Reinsch
National Research Council of Japan » G. H. Hardy
University of Illinois Sir Ronald Ross
Calcutta Mathematical Society Dr. N. Kryloff
Macmillan & Co., London 5 Vaidyanathaswami
Messrs. George Bell & Sons Mr. G. V. Ramdas

,» G.B. Brown : Mr. Venkatasubayya

»  B. G. Teubner Leipzig Prof. Swamynarayan

Prof. E, H. Neville
»  G. N. Watson

» D. M. Mehta

»  P.V.Seshu Aiyar

w C.T. Preece »  Krishnamachari

5  Srinivasan » V. B. Naik

,,  Rangacharya » R.D. Karve

» S. B. Bondale Dewan Bahadur Ramchandra Rao
Mr. V. Ramaswami Aiyar
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The Society is deeply grateful to all individuals and institutions who
have placed their valuable publications at its disposal.

The Journal

The first number of the Journal appeared in February 1909 and
the Journal has since appeared every two months thus fulfilling one of the
original objects of the Society. The usual features are (i) Original Papers,
(ii) Short notes and reviews of books, and (iii) Questions and Solutions.

Many of the questions that have been published have been of consider-
able interest most of them being original. The whole range of elementary
mathematics has been well covered and from the constant stream of questions
and the number of those who solve and extend them there can be no doubt that
genuine interest is felt by our members.

The Editors of our Journal are giving special attention to the question
of making our Journal better known. One of the ways of doing it is by
promoting exchange relations with other similar Journals. About twenty-five
Journals are, at present, received in exchange.

The following are the names of journals received in exchange :—

Abhandlungen aus dem mathematichen Seminar, Hamburg.

1.

2. Académie des Sciences.

3. Acta Mathematica.

4. American Journal of Mathematics.

5. American Mathematical Monthly.

6. Annales de I’école Normale Supérieure.

7. Annals of Mathematics.

8. Bulletin of the American Mathematical Society.

9. Bulletin of the Calcutta Mathematical Society.

10. Bulletin des Sciences Mathématiques.
11. Jahrbuch iber die Fortschritte der Mathematik.

12. Jahresbericht der deutsche mathematiker Vereinigung.
13. Japanese Journal of Mathematics.
14. Mathematical Gazette.
15. Mysore Half-Yearly Journal.
16. Proceedings of the Edinburgh Mathematical Society.
17. Proceedings of the Cambridge Philosophical Society.
18. Proceedings of the Physico—Mathematical Society of Japan.
19. Transactions of the Royal Society of South Africa.
20. Current Science.
21. Publications of the Universidad de La Plata.
22. Wiskundige Opgaven met de Oplossungen.
2 Nieu Archief voor Wiskunde.
24. Tohoku Mathematical Journal.

25. Revuede Mathématiques.

Rendiconti del circolo Matematico di Palermo.

N
oY
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27. Proc. of the Royal Society of London.
28. Transactions of the Camb. Phil. Society.
29. University of California publications in Mathematics.

Conferences

The success of the first conference at Madras encouraged the Society to
arrange periodical conferences and we have been meeting almost every two
years. The conferences were held at almost all the University centres. The
details regarding the numbers of delegates present ‘and of the papers presented
is given below.

No. of
Delegates Papli?é ?efad

present
First Conference, Madras ... 70 13
Second . Bombay ... 50 16
Third p” Lahore .. 41 15
Fourth . Poona .. 49 28
Fifth . Bangalore 42 30
Sixth 53 Nagpur ... 39 39
Seventh ’y Trivandrum ... 75 31
Eighth i Bombay . 04 35

There is usually besides the reading of papers, a programme of public
lectures of a popular kind and discussions on topics of common interest
such as methods of teaching, curricula of Elementary Mathematics, and
teaching of mathematics in Indian Universities. These conferences provide
occasions for the members from all parts of India to get into personal touch
with one another.

In conclusion, the Society is deeply indebted to the Bombay University
for the liberal grant towards the expenses of the conference and to His Excel-
lency who has been kind enough to grace the occasion with his presence.

The Managing Committee wishes to place on record their thanks to the
Local Reception Committee in general, and to the Chairman in particular, for
their hospitality and excellent arrangements for the guests. Our special thanks
are due to Mr. V. N. Chandavarkar, Bar-at-law, the popular Mayor of Bombay
for the keen interest he has evinced throughout the session of the conference
and for being a Vice-Patron, and to him and to Mrs. Chandavarkar for the
magnificent “ At Home,” they gave at Mount Pleasant Road.

Also the Managing Committee appreciates the efforts of Prof. K. R.
Gunjikar and his band of volunteers which have contributed so much to the
success of this conference.

M 3



PRESIDENTIAL ADDRESS
BY
RAO BAHADUR P. V. SESHU IYER, President of the Sociely.
Ladies and Gentlemen,

I consider it a high honour and a great privilege to be assigned the
function of delivering the Presidential Address before such an educated and
enlightened audience. This Conference of Mathematicians and those interest-
ed in Mathematics is the eighth conference convened under the auspices of
the Indian Mathematical Society, at the kind invitation of the University of
Bombay ; and with it is also to be associated the celebration of the Silver
Jubilee of the Society which, founded in 1907, has completed 25 years of its
existence. To have the honour of presiding over this Jubilee Conference is
indeed a high privilege. But every privilege is also accompanied by a great
responsibility, and I feel I am not competent to discharge that responsibility
efficiently and satisfactorily, and I would have very much liked that some
one like Dr. Paranjpye, abler than myself, had been chosen for the task.
But there is no helping it since it is the mamoo! that the President of the
Society delivers the Presidential Address at the Conference. If there are
any shortcomings in my address—and many shortcomings are bound to be
here—I request you will be pleased to overlook them, remembering that you
have put me on to this position.

Before I proceed to the main part of my address I beg leave to express,
on behalf of the members of the [ndian Mathematical Society our feelings
of thankfulness to His Excellency, the Governor of Bombay, for having con-
descended to open the Conference with an interesting and inspiring speech;
and to The Hon’ble Mr. Justice Mirza Ali Akbar Khan for welcoming, on
behalf of the University, the delegates and others to the City of Bombay and
to this Conference with such warmth and heartiness. In this connection, I
may mention that it is in the fitness of things that we meet in Bombay for
the celebration of the Jubilee of our Society. For, Bombay is virtually the
headquarters of our Society; in fact, in the very first letter announcing the
formation of the Society, when Poona was proposed f)r the headquarters, it
was pointed out that, ‘ Poona is next to Bombay a postal centre for all India,
and it is practically Bombay as regards the rest of India’ Turther, Lord
Sydenham, then the Governor of Bombay, was its Patron. It is gratifying to
hold the Jubilee Conference here in Bombay and to have it opened by the official
successor of our first Patron, His Excellency Sir Frederick Sykes. Thus our
Conference has begun its proceedings under very good auspices, and on behalf
of this Society I assure His Excellency that every word of his speech will be
treasured up with great devotion in our minds.
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On the occasion of this Jubilee Celebration, it is desirable that we briefly
survey the life history and work of the Society with a view to know
what has been achieved in the past and what remains to be done in the
future towards the realisation of the object of our Society, viz., the promotion
of mathematical study and research in India. Hence with your permission I
proceed to make such a survey.

Mr. V. Ramaswamy Iyer, the founder of our Society, whom we are
happy to have in our midst today, and who must be equally happy to take
part in these celebrations, having conceived the idea of forming a small
mathematical society, sent out on 25th December 1906 a proposal to a few
mathematicians in the following terms:—

“I believe several friends interested in mathematics have felt the
present lack of facilities for seeing mathematical periodicals and
books. This is a very great disadvantage we are suffering from. I
propose, therefore, that a few friends may at once join and form a
small mathematical society and subscribe for all the important mathe-
matical periodicals, and as far as possible, for all important books in
higher mathematics. We may call the society * The Analytic Club”
for the present and have it in view to give it a broader basis with a
suitable name by and by. Our work immediately will be to obtain
all the important periodicals and new books and circulate them to
members.

* % * * *

If half a dozen members could be counted upon to join immediately
and each subscribe Rs. 25 per annum, we shall be able to make a
good start. Members should be prepared to make a further sacrifice ;
each member should send the journals and books he receives on to
the next. This, in effect, would be to add Rs. 5 to one’s subscrip-
tion. I hope friends interested in Mathematics will not consider this
a too heavy sacrifice . . ... I propose to counsider the Club formed
as soon as three friends have agreed to the proposal making with me
four members.”

The founder’s enthusiasm for the formation of the Society was such as to
make him resolve on forming it even with only four members ; and his humble
and immediate aim was to subscribe for a few mathematical periodicals and
circulate them to members. After a short period of three months, he an-
nounced in the Madras Dailies the formation of the Society on 4th April,
1907, with 20 gentlemen enrolled as members. Such was the humble origin
of the Society; and it is fortunate that 12 of those enthusiasts prepared to
make such sacrifices for the formation and maintenance of the Society, have
been spared to us till now, and we must feel happy to have five of them
present in our midst to-day to witness this celebration.
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After the Society was formed in 1907, new members were enlisted, a
constitution was framed and progress reports of the Society were issued every
two months. In the progress report of August 1908, a few original questions
set by the members were published for solution, and in the report of October
1908, for the first time, an original article “ On the Cardioide ” by Principal
Paranjpye, now Vice-Chancellor of the Lucknow University, and another on
“ The Nine Points Circle” by Mr. M. T. Naraniengar appeared. The enthu-
siasm evinced by the members to send in questions and solutions and to
contribute articles to the progress report prompted the Managing Committee
to resolve to issue regularly a journal of the Club as its organ. The Club
having in the meanwhile changed its name into the “Indian Mathematical
Club,” the first issue of the journal appeared in February 1909 under the title
of “ The Journal of The Indian Mathematical Chub.”

The idea of the regular issue of a journal was not in the original letter
announcing the formation of the Society. It was the enthusiasm shown by
the members that led the Committee to insert in the constitution of 1908 of
the Club the following provision:—

“That the Committee may take such steps as they may deem fit
towards the development of a mathematical journal as the organ
of the Society.”

Soon the Committee resolved to issue a Journal regularly and the first issue
as mentioned above came out in February I1909. At that time the strength of
the Society was 79 and the number of mathematical periodicals subscribed
for by the Club 34.

The development of the Society as evidenced by the increasing strength,
the enthusiasm of its members and the quality of the journal was so en-
couraging that early in I9II the name of the Society was changed into “ The
Indian Mathematical Society » and a new constitution was adopted. Practi-
cally it is that constitution slightly modified that is in force even now. In
1911, the strength was 132 and the number of periodicals obtained rose to 40.

Thus we had first the Library and the circulation of books and periodicals
and then a Journal as the organ of the Society. The next stage of develop-
ment of the Society consisted in the holding of periodical Conferences under
the auspices of the Society. A few years after the formation of the Society
and specially after the regular issues of the journal began to appear, the mem-
bers became naturally anxious to meet in person the several friends who
contributed to the journal questions, solutions, short notes and the original
papers; and an attempt was made in 1913 to hold a conference; and though
the members were anxious to meet one another, there was not a sufficient
number of members coming forward to read papers before the conference, and
since the reading of papers was considered to be an essential feature of a
conference, the idea of a conference had to be dropped. The question was
taken up again early in 1916. Then too there was not an encouraging response
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to the appeal for original papers and the idea was about to be given up. At
that time having known, as Assistant Secretary, the intense feeling amongst
the members for a conference and fearing that the dropping of the idea of the
conference would be a great disappointment to members, I offered to run the
conference with success if it should be held in Madras, and I undertook to get
at least a dozen papers for the conference. My offer was readily accepted by
the then President, Diwan Bahadur R. Ramchandra Rao and the Secretary
Prof. D. D. Kapadia, whom I am glad to see now in our midst today. Accord-
ingly the first Conference was held in Madras in December 1916; it was
opened by H. E. Lord Pentland, the Governor of Madras. The Bombay
Government offered facilities to its mathematical officers to attend the confer-
ence by granting them leave and travelling allowance. There was a satisfactory
gathering of members and 13 original papers were read by 1T different authors,
and there were in addition a number of excursions and socials. The following
were the remarks made at the Conference by Principal Wailkinson who
delivered the Presidential Address on the occasion :—

“I consider it a great privilege to realise that I have now become
personally acquainted with many known to me previously by name
or reputation only . . .. . . I doubt not that, until our next meeting,
we shall cherish pleasant recollections of this present gathering and
endeavour to maintain by correspondence that personal interest that
must necessarily be created during the course of the few days we are
able to associate together.”

Equally great was the satisfaction that the other members felt after
the Conference. Incidentally, the Conference stimulated some of our members
to attempt to produce original papers to be read before the Conference; and
the Editor of the journal too was glad to find in these papers enough matter
for the journal for at least a year. The net result of all this was that the
Managing Committee of the Society decided to convene conferences once in
two years. Ever since, we have been holding conferences almost regularly
once in two years. The conference work of the Society, as I shall call it, thus
formed the third stage of its development.

So much for the past. Coming to the present and the immediate future,
there are two fields of work demanding the immediate attention of the Society.
Oue is the conduct of an enquiry into the present condition of mathematical
teaching in our schools and colleges and the nature of the examination papers
set at the University and other public examinations, with a view to bring
about some wholesome reforms in connection therewith. The other is a better
organization of the research work in mathematics that is now attempted in-
dividually and spasmodically by our members and others capable of such
work. These two fields of work have been left to me, as President, by my
predecessor as a legacy, as he putsit. On these I shall dwell in detail later
on,



22 C'onference Report

Now, then, to summarise our past work and to survey briefly our present
position :—

I. We have gone on enlisting new members and our strength, increasing
from the original 20, now stands at 300 in rouand figures, consisting of 9 honor-
ary members, 23 life members, and 266 ordinary members.

2. Our library commencing from the purchase of a few periodicals for
circulation contains now 2,225 volumes of which 450 are books on higher
mathematics, and 1775 are back volumes of periodicals, and we are getting
nearly 50 journals for circulation amongst our members, of which I am glad
to say about 30 are being received in exchange for our journal.

3. Our own journal has completed 24 years of existence appearing once
in two months during this period. It is now on a fairly high level attracting
exchange copies of high class journals.

4. We have bzen holding our conferences almost regularly once in two
years, thus effecting that personal contact amongst the several workers, which
contact is so very useful in stimulating research work, apart from the social
amenities arising therefrom. Incidentally, these conferences stimulate our
members to attempt to produce original papers to be read before them, and
these papers form good matter for our journal.

Thus, Ladies and Gentlemen, we have every reason to be proud and jubi-
lant over our past work and present condition on this Silver Jubilee celebra-
tion day of our Society. If we have reason to be proud and jubilant it is
but our duty to refer thankfully to the several gentlemen who have mainly
contributed to bring about this condition.

First and foremost is the founder, Mr. V. Ramaswamy Aiyar, M.A., whom
we are fortunate to have in our midst today and but for whose unabating
enthusiasm and indefatigable energy the Society would not have come into
existence and developed to such an extent. Rightly we have paid our tribute
to him, though very inadequately, when we presented him with an address in
token of our appreciation of his services.

Next, and quite on a par with him, comes Mr. M. T. Naraniengar the
first Editor of our journal, who took up that work as a labour of love and
stuck to that post for full 18 years and spared no pains to bring it up to
the high level it occupies today. And it is but proper that we present
him with an address on the occasion of this celebration of the Silver Jubilee
of our Society. Then I must mention Dr. R. P. Paranjpye the first librarian
of our Society who admirably organised the library and the circulation of the
periodicals and who in addition was the right hand of Mr. V. R. Aiyar and
an earnest collaborator with the editor, specially in the earlier days of our
journal. Then thz gentleman who deserves to be specially mentioned is Mr.
D. D. Kapadia who did yeoman service as the Secretary of the Society for full
twelve years from I9I0 to 1922, and it was during his regime as Secretary
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that the Society developed in all the directions mentioned just now. The
gentlemen who next deserve special mention are the successive Presidents,
Messrs. B. Hanumanta Rao, R. N. Apte, E. W. Middlemast, R. Rama-
chandra Rao, A. C. L. Wilkinson, R. Balakarm and the successive treasurers
Messrs. K. J. Sanjana, C. Pollard and S. Narayana Iyer. I have for obvious
reasons omitted to refer to the present office-bearers and other active workers.

Having dwelt at some length upon our past work and present condition,

I shall now pass on to the two topics already reserved by me to be dealt with
in detail.

The first is the conduct of an enquiry into the present condition of
mathematical teaching prevalent in our couatry and the nature of the papers
set at the public examinations. The subject was touched upon at some length
by Mr. A. C. L. Wilkinsoa in his Presidential Address at the Second Conference
held in Bombay in January 1919, and at that Conference a Committeeiwas
formed to conduct the enquiry, but unfortunately that Committee never work-
ed. Again, at the last Conference at Trivandrum a discussion on mathemati-
cal teaching and examination took place and as a result thereof the Managing
Committee was asked to take the necessary steps to conduct the enquiry. The
Committee has not proceeded far in the matter since the Secretary appointed,
viz., Dr. Weil, left our country and since the President appointed, viz., Mr. R.
Littlehailes, the late D. P. I. of Madras, has also now retired from service.
Thus it will be seen that this work has not been taken up in right earnest
by the Society. Unless the members of our Society and others interested in
the improvement of mathematical teaching realise the need for such an enquiry
and co-operate in the work with earnestness, nothing can be achieved. It is
just to make them realise the need for such an enquiry that I

propose to
dwell at some length on that topic.

This conduct of an enquiry and report on mathematical teaching is one
of the methods mzntioned in the constitution itself for the furtherance of the
aims of the Society, viz., promotion of mathematical study and research in
India, and it is satisfactory to note that there is to be a discussion on the
teaching of mathematics in Secondary Schools at this Conference. As one
who has bestowed some thought and attention to it, I may, as an introduc-
tion, touch upon some important aspects of mathematical teaching in our
schools. What I may be saying now is based upon my experience in the
Madras Presidency and the adjacent States, but I believe that more or less
the same conditions prevail elsewhere.

It is a common complaint with all that mental work, specially mental
arithmetic, has been greatly neglected, so much so that a student cannot men-
tally multiply tivo numbers containing two digits each and that even to do
the simplest operations he wants pencil and paper. Our ancients were clever
in mental work; they could mentally calculate in no time the interest on
capital, the price of any quantity of an article at a given rate, etc. They
could mentally do an ordinary problem in square and cubic measure. Even
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now the old people in the villages do such work mentally, but our present

day students require paper and pencil for such work and very often they go
wrong.

One consequence of this neglect of mental arithmetic is the non-preval-
ence of the practice of rough checking of the results arrived at to see if they
are at all likely. For want of such rough checking, in the examinations our
students are found to give very absurd answers; a result which is to be in
tens gets to be given in lakhs, or one which is to be in thousands of a unit
comes to be given in thousandths, say through an oversight in the placing
of the decimal point.

Another undesirable practice now obtaining in school teaching is the
drill in long and complicated or tricky problems, drawn from imagination
and having no relation to the real life around and the simultaneous indiffer-
ence to problems occurring in real life. This is mainly due to the neglect of
teachers to observe real life and to find out what problems occur therein.
A movement was set on foot in America some twenty-five years ago to find
out the applied problems that occur in real life and to publish such problems
in journals like the School Science and Mathematics. Some such movement
must be started in India and real applied problems published in journals
devoted to clementary mathematics or in the elementary portion of our journal.

A third defect in our school teaching is that elementary mathematics is
taught in India without any reference to the History of Indian Mathematics.
The subject is handled in our classes and text-books as though there was no
mathematics in ancient India. The subject consequently grows like an exotic
plant in our country and is rendered dull and uninteresting. On the other
hand, if the methods and processes in vogue in ancient India be given some
prominence in the handling of the subject, giving the names of ancient Indian
mathematicians in whose works such methods are to be found, it would rouse
considerable interest in the students for the subject and also a feeling of
patriotism will be ingrained in our young students. The other day I read in
an educational magazine that even in teaching plant and animal life teachers
in England do infuse a feeling of patriotism by saying that this plant is our
plant and this animal is owr animal meaning thereby the plant or animal
found in their motherland.

Of course, such mixing up of ancient Indian methods and processes with
those found in English and foreign books requires some effort on our part to
study such methods as were in vogue in ancient India and to fit them into
the methods now in use. If the principle of setting our mathematical teach-
ing before a historical background with historical references be recognised,
there are our friends like Mr. A. A. Krishnaswamy Aiyangar quite willing to
do such work for us.

Another defect in the mathematical teaching is the want of attention on
the part of the teachers to the fundamental concepts of mathematics. It is
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a well-known fact that in recent years mathematics has grown both at the
top and at the bottom and it is very desirable that our teachers in Secondary
Schools should be familiar with the main work done at the foundations of
mathematics so that they may be able to have clear ideas for themselves and
to avoid imparting wrorg notions to their students which they may have to
unlearn at a later stage. The pity is our teachers do not realise that they
themselves have to learn much as regards the fundamental concepts. A
teacher of the lower secondary stage once boasted to me that he knew all
the fundamentals required for his classes. Then I asked him what exactly is
meant by the formula: Area=LxB. Is there any meaning in multiplying a
length by a length? Then he realised his ignorance. Again, another teacher
of the high school stage, a graduate in mathematics, once told me that he
was satisfled that he knew all the fundamentals required for high school
mathematics. I then questioned him regarding the proof of the Remainder
Theorem given in the text books which is usually as follows :—

When f (x) is divided by (x—a), let Q be the quotient and R the remainder.

We have
&) R T iy
x—a Q- x—a . e Ty
multiplying by x—a we have z" “
@) =Qu-a) +R. . =
Putting x=a we have : - e

. S e 500 008
f (a)=R. Thus the Remainder is the value of f (x n .r=:z? s

1 questioned the teacher thus, “ since division by zero is excepted, the first step
which involves the division by (v—a) has a meaning only when x4, and pro-
ceeding from that step at the third step, x is put equal to a. How far is this
reasoning logical?” He was non-plussed and confessed his ignorance. The
same story we have when we consider some of the college lecturers. Many such
instances of self-satisfaction on the part of the teachers of mathematics can be
cited, but this is not the place nor the time for such citation. The point is
we must make our teachers realise the need for their acquaintance with the
fundamental principles of the subject, so that mathematical teaching may be
based on clear notions on the part of the teachers. In this unfortunately, the
ordinary text books used in the schools and colleges, even books written in
England, do not help us much; they even mislead us. So we have to be
careful in the selection of our text books.

Again, one chief aim of mathematical study is to lead the students to
clear thinking and accurate reasoning, which are so very essential to every
civilized man. Hence subjects like Demonstrative Geometry or Algebra must
be taught so as to lead to such clear thinking. There are many improves
ments suggested in the teaching of geometry by the London Mathematical
Association and in the Board of Education Circulars, and many text-books
have been written on lines suggested by them. But still I am afraid things

M 4
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are not what they ought to be. So far as geometrical teaching is concerned,
on account of too many books following different sequences and the difficulty
caused by a foreign language being the medium of instruction, the teaching
adopted does not secure the end. No doubt students do get by heart and
reproduce the geometrical proofs in the examinatlions but few of them can
be said to have clearly grasped the logical reasoning involved. This state of
affairs demands an enquiry and methods must be suggested for securing a
better teaching of the subject.

Then mathematics is often considered a dull and uninteresting subject
and is dreaded by many pupils. We mathematicians must devise methods of
handling the subject so as to remove that horror and make it really
interesting.. My own belief is that, granted some common sense on the part
of the pupils—there is that common sense in most of them—we can so
handle this subject as to rouse their interest and secure their attention and
thus make the subject loved by them. Oae of the means is to take advant-
age of their spontaneous activity and make them do things for themselves.
They must be encouraged to collect data from real life around and set
problems to one another. Also with simple apparatus and measuring instru-
ments they must be made to observe and measure angles, lengths etc. and
thus procure data for problems in square and cubic measure and mensura-
tion. As already mentioned by me, applied problems connected with real
jife must be manufactured and given by the teacher himself. Further, the
students must be shown the usefulness and application of mathematics to
other subjects, such as Physics, Geography, Domestic Science, etc. i

This last point leads me on to dwell a little on the correlation of
different branches of mathematics with one another and of mathematics with
other subjects. Till recently, the several subjects of mathematics like arith-
metic, algebra and geometry were kept in water-tight compartments and the
methods of one were not to be applied to another. For instance, algebraic
methods were not to be applied in solving problems in arithmetic and
algebraic symbols and formulae were not to be used in geometry. But now
things are gradually changing for the better. However, even now, in the
earlier stages, such as the elementary and lower-secondary, there is not that
correlation generally effected. A lot of concrete work as in Kindergarten and
Montessori methods must be done closely associated with the teaching of
arithmetic in the elementary schools. Unfortunately, these methods are not
taught at all, and even if taught, they are doue without any relation to what
the teacher of arithmetic does in his classes. We must see that this correla-
tion of different branches of mathematics is effected from the earliest stages.
In this connection, I may say that in ancient Indian mathematics, these
subjects of arithmetic, algebra and geometry are all mixed up and the whole
is dealt with as one subject of * Ganitham v For instance in the * Ganila-~
sara Sangraha’’ of Mahaviracharya there are nine chapters dealing with the
following subjects: the arithmetical operations of multiplication and division,
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simplification of fractions, extraction of square and cube roots, summation of
arithmetic and geometric series, solution of simple, quadratic and indetermi-
nate equations, mensuration of plain and solid figures, the geometry of the
shadows. In addition to this correlation of different branches of mathematics,
the teacher must try to correlate his mathematical teaching with the other
subjects of physics, geography etc. by ascertaining from the teachers of those
subjects what mathematical problems occur in their subjects and giving such
problems to his classes.

I am afraid I have dwelt a little too long upon the teaching of mathe-
matics in Secondary Schools; I now proceed to make a few remarks on the
teaching of mathematics in Colleges and Universities.

As already mentioned by me, much has been done in recent years ‘at the
foundations of mathematics. No doubt serious difficulties attach to such
topics as irrational numbers and ratios, complex numbers, limits, the notions
of infinity, continuity etc. These difficulties are made evident by the fact
that, in spite of the attention these topics had received during several cen-
turies, a satisfactory treatment has been found only within the last 50 years.
But the diffizulties have been overcome, and it is desirable that every student
of higher mathematics should be acquainted with the underlying concepts and
a satisfactory treatment of those topics. But I regret to have to remark
that, judged from the answers of candidates in the Honours examinations and
from the recent books written by Indian authors who are all Honours men
or M, A’s, these topics are not well or clearly grasped by our Honours stu-
dents. In many cases there is not even an attempt to understand the princi-
ples involved bzcause it does not directly pay in the examinations. There is
a tendency on the part of the students, as complained of by Prof. Hardy in
the preface to the first edition of his book ‘ A Cowrse of Pure Mathematics,” to
rush through the book work and the underlying principles in order to pass
on to exercises bearing on the book-work. This is in a way countenanced by
the examiners throuzh the nature of their papers. It is a pity that in our
country, examinations are given too much importance; they are made to
largely determine our classrcom work through such undue importance.

1

The examination papers are such that a student may be specially pre-
pared or crammed for the examination and get a creditable pass without his
understanding the fundamental principles.

The evils of examinations are well kaown; they are no sure test of a
man’s knowledge. At best, they are a necessary evil. Nobody has yet devis-
ed any other satisfactory method of testing a student’s knowledge, and hence
they are necessary, but in regard to the evils they must be remedied and it
is certainly a hard and difficult task. A number of heads must be put to-
gether to suggest improvements in the examination system. At the last
Conference, the whole question was well discussed, and as a result thereof, a
resolution was passed, viz., that it be a recommendation to the Committee of
the Society to take immediate steps to institute an enquiry into the present
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state of mathematical teaching and examining in Indian Universities. I here-

by appeal to you all to render every co-operation to the Committee in the
conduct of that enquiry.

My own opinion in regard to the examination papers is that the old
Cambridge system of giving a number of book-works with one or two pro-
blems under each should be given up. Even in Cambridge that system has been
given up. We must have more searching questions set so as to find out
whether the students have clearly grasped the fundamentals involved. For
this we must have some essay questions requiring a connected discussion of
the topics questioned upon. How many such essay questions should be given
in a paper will depend upon the topics and the mental capacity and develop-
ment of the students. If possible, we must also have some papers of such a
nature as may be allowed to be answered with the help of books taken into
the examination room. Since there is to be an enquiry into the whole system,
I do not take up any more of your time by dwelling on this subject, but
shall proceed to the next topic reserved by me for consideration, viz., the
better organisation of mathematical study and research.

I am sure you will all agree with me when I say that we in India have
not studied all the modern subjects that are engaging the attention of Euro-
pean and American mathematicians. There are many branches of mathe-
matics such as groups, several kinds of functions, transformations, differential
geometry, tensor calculus, relativity, integral equations, calculus of
variations, statistical mechanics, etc. etc., which are not studied in India to
any great extent. Of course, there are stray mathematicians here and there
acquainted with some of them: all credit to them.

It is very desirable that the Society as a body or the members in groups
take the necessary steps to promote the study of the several subjects by our
young men. Our founder, Mr. V. R. Iyer, in his Presidential Address at
Bangalore in 1926, did throw out some suggestions as to how we may by
forming reading circles, promote the study of some of these subjects. I wholly
endorse his suggestions. But since little or nothing has yet been done in
that direction, I propose to quote his own words once again here and appeal
to you to give effect to his scheme. The following are his very words:—

“ We should try to see that not only certain branches of mathe-
matics but the whole field should be cultivated by our members, based
on the principle of study in close association. The whole field is
recognisable as falling into so many divisions and sub-divisions,
which are not water-tight compartments, but have vital connections
with one another. T should like to place before members the idea
that there should be a few of us studying each of these divisions of
fields. Taking any one of these fields, the progress that can be made
in its study will be generally as follows: first one must be eager to
enter the field. At this stage he is a mere entrant, an embryo. Then
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by study he develops into a learmer. After this stage with some
enlightenment he becomes an interpreter of the subject. In this stage,
he sees that many of the things learnt are not essential and are mere
cobwebs in the mind. He sweeps them out and takes hold of the
essential. Finally, one rises to the stage of a master. Here he brings
a fresh light of his owa into the subject, becomes a discoverer and
extends the scope of the field. We can rarely rise to be masters,
but we can all be learners and possibly rise to be interpreters by
close study. All these stages of progress are symbolised by the letters
of the word ‘MILE’. M is the stage of the master, I, the stage of the
interpreter, L the stage of the learner and E the stage of the entrant
or embryo in the subject. Applying this philosophy in order to culti-
vate any particular branch of mathematics in our Society, I would
like to catch some of you, younger members of the Society, as en-
trants and put you into a compartment, stock around you. all the
. books on the subject, find a senior member, if possible, to serve you
as interpreter and find you also a master, if possible. I want
to see created in our Society many such groups of interested mem-
bers, of all grades of advance, to study the different fields of mathe-
matics, so that none is neglected in our Society. Success can
only be slowly realised; but we can make an effort from now to
secure our progress in all branches, by means of such compact
groups consisting of masters, interpreters, learners and entrants. It
may be said we have not got masters or interpreters for many
subjects. But the Committee have power to appoint honorary

members, and we can cast about the wide world for finding such
men to assist us.”

Thus his scheme is quite complete and ship-shape; ounly we must have
the earnestness to work it up. On the occasion of this Jubilee of our Society,
the greatest tribute we can pay to our founder—a tribute which would please
him most, is for us to solemnly resolve to give effect to his pet scheme by
each one of us offering himself to be enrolled as an entrant, learner or inter-
preter, as the case may b:, for some one branch or other of mathematics,
thus forming compact little groups to study the different fields of mathe-
matics. In thus asking you to resolve, I would specially appeal to those who
are engaged in the teaching of mathematics, whether as teachers, lecturers or
professors. They are the people who ought to regard themselves as wedded
to mathematics and to feel bound to do their best for the promotion of its
study in all its branches. They have also got greater access to books and
periodicals than others not directly engaged in such teaching. Also many
mathematical teachers are to be found in any University or College area and
hence they can more easily meet and discuss on points occurring in such
studies. I hope that at the business meeting of our Society, the necessary
steps will be taken to give effect to the scheme.
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Such an intensive study in groups of different branches of mathematics
must necessarily lead to much research work on the part of our members
and the consequent production of original papers on mathematical subjects ;
and incidentally, our journal too will have ever flowing matter contributed to
it §0 as to enable it to gradually improve in quantity as well as in quality.
With a view to encourage such deep study and research, it is the earnest
wish of the So:iety, specially of my predecessor in office Mr. M. T. Naran-
iengar, that we should raise a fund, to be called the * Jubilee Fund’, in order
to enable the Society to found a Research Prize, to be awarded by it once a
year or once in two years as funds permit. With this view an appeal was
sent to the members of our Society to subscribe liberally for the Jubilee
Fund, but till now only about Rs. 500/- have been collected. I take this
opportunity of making a special appeal to our members and others interested
in mathematics to liberally subscribe for the fund so as to enable the Society
to institute a Research Prizz and promote mathematical research in our
country.

Gentlemen, I have given above a brief history of the Society, what it has
done in the past and what has to be done in the immediate future. That is
all- right; but before I close I must also refer a little to our present financial
position and to the indifference to the Society shown by some of our
members. I do this with great regret, but with the hope that with a public
appeal from me and with your co-operation things will gradually improve.

I am sorry to say that at present we have only Rs. 6790 to our credit in
the bank. Of this, Rs. 3,450 represent the total of the composite sum paid
by our life members, which sums were mecant to be kept as capital, the
interest alone to be spent on current expenses. Though we have today 265
ordinary members, only about 122 are paying their annual subscriptions
regularly. The others are in arrears and some of them awfully, so that,
though on paper our strength is 265 today, the subscriptions realised last
vear and this year were much smaller than the collections under subscrip-
tions from members in the year 1919, when the number of ordinary members
was only 186. This shows that a larger proportion of our members than before
are in arrears now. An earnest attempt will soon be begun by the Committee
to collect these arrears and also to enroll new members, and I would take
this opportunity of appealing to all the members to persuade the mem-
bers already enrolled to pay up their arrears and also to persuade others
interested in mathematics to join our Society.

In conclusion, I beg to appeal to all those present here and others
interested in mathematics to render their hearty co-operation to the Indian
Mathematical Society in its efforts to promote mathematical study and
research in India, and in the words of its founder, “to hold the banuner of
mathematics aloft, as the Motherland marches to glory with the rest of the

world.”
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Business Meeting

Minutes of the business meeling held in Bombay at 12-30 P.M. on
21st December 1932,

RAO BAHADUR P. V. SESHU AIYAR, LE.S. {Retd) in the chair.

I. A proposal to collect contributions and meet the cost of printing the
Society’s Jubilee Memorial Volume was moved by Prof. K.S. K. Ayyangar
and unanimously accepted. Rs. 50 were immediately collected and promises
for Rs. 235 have been given. (Vide attached list.)

2. The sense of the meeting was in favour of the publication of the Jour-

nal in two separate parts. The question of the amount of the subscription for
each part was left to the decision of the Managing Committee with the sugges-
tion that the subscription for each separate part should not exceed Rs. 5 and
the subscription for both parts together should not exceed Rs. 9.

3. The meeting recommended, at the suggestion of Prof. Kapadia, Prof.
Naik and Dr. G. S. Mahajani, to the managing Committee to consider the feasi-
bility of charging different rates for Part I and Part II. Prof. Arunachala
Sastri, Prof. Naik and Prof. Kapadia were in favour of making the elementary
part cheaper. Also it was suggested that the second part should be run on
lines similar to the Mathematical Gasette and the American Mathematical Monthiy.
The meeting could not finally decide these matters in the absence of the Joint
Editor and the Treasurer. So it was left to the managing Committee to finally
settle the details about the subscription, size and periodicity of each part.

4. It was resolved to publish a special appeal for funds, with the recom-
mendation that the special appeal should occupy a prominent place and

be printed on coloured paper so as to attract the attention of every
member,

5. The next item before the meeting was Prof. Hansraj Gupta’s sugges-
tions regarding the composition fee to be charged for Life membership. The
meeting was in favour of the principle involved but as the Treasurer was not
present at the meeting, it could not be ascertained how far the proposed scale
would adversely affect the revenue of the Society. So it was unanimously
resolved to refer the matter to the Managing Committee with the recommend-
ation that an attempt be made to evolve a graduated scale of compounding
payments on the following lines :—

Rs.
At the end of 10 years’ membership ... ... 100
v IS5, , e 78
» 20 - ... 50
’ 25 " ... Exempted from fur-

ther payments.
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6. It was suggested by some members that the Managing Committee
should consider the feasibility of appointing Agents at different centres to
collect subscriptions for the Society.

7. The President proposed a vote of thanks to the Principal, Royal
Institute of Science for the use of the buildings for the Conference, which
was unanimously passed.

Special donations for the Jubilee Volume.

The following donations have been received so far:—

Rs. Rs.
Dr. G. S. Mahajani 15 Prof. S. K. Abhyankar 5
,» K.R. Gunjikar 15 D. M. Mehta Esq. 5
Father R. Rafael 10 S. P. Kharas Esq. 5
T. K. Venkataraman Esq. 10 N. D. Doctor Esq. 5
Prof. M. L. Chandratreya 5 Prof. P. K. Kashikar 5
,» J. N. Dharap 5 —
,» M. K. Kewalramani 5 Total 95
» S. M. Shah 5 —
The following donations have been promised :—
Rs. Rs.
Rao Bahadur P. V. Seshu Aiyar 2§ S. S. Pillai 5
Prof. K. S. K. Ayyangar 25 A. A. Krishnaswamy
Mr. V. Ramaswamy Aiyyar 15 Ayyangar 5
Prof. M. V. Arunachala Sastry 15 Prof. B. B. Bagi 5
., D.D. Kapadia 15 A. L. Shaikh Esq. 5
Prof. M. T. Naraniengar 10 Prof. G. V. Bhagwat 5
Dr. R. Vaidyanathaswamy 10 ., D.B. Patravali 5
Prof. S. B. Belekar 10 , K. D. Panday 5
., V.B. Naik 10 e
., A. Narasinga Rao 10 Total ... 190
Principal Hemraj . 10 —_

Discussion on School Mathematics
THURSDAY, 22ND DECEMBER 1032, 2 P.M.
The following outline was drawn up and circulated to the members before
the meeting.
Outline of discussion suggested.
School Mathematics

1. Stages:
(a) Middle school stage;
() School Leaving stage:
(i) for those continuing their studies in Mathematics further.

(ii) for others.
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Discussion on the teaching of Mathematics. 33

2. Aims of teaching Mathematics :
(i) Culture;
(ii) Utility;
(iii) Discipline ;
(iv) Preparation for higher studies.
Their relative importance
3. Curricula:

(a) Examination of the present syllabuses in Mathematics
(1) in secondary schools,
(ii) for the Matriculation.
Their suitability ; adequacy ; difficulty
(b) Suggestions for improvement by
(i) the inclusion of elements of Trigonometry, Solid Geo-
metry, Calculus,
(ii) exclusion of certain topics.
4. Arrangement of subjects :
Proper stages for beginning different subjects.
5. Examinations:
Suggestions for their improvement.
6. Need for Experiment :

Suggestions for experiment.
Discussion

Prof. Kar of the Secondary Teacher’s College, opening the disctr--ion,
complimented the teachers in Madras on their superior training and equip-
ment. In the Bombay Presidency he considered the Middle School Mathematics
course deficient as it excluded Algebra and Practical Geometry. Algebra as a
continuation of Arithmetic could be taught much earlier than at present. The
subject of locus in Geometry was very badly taught and badly learnt. In his
opinion the present Matriculation Course in Mathematics was too simple for
the clever boy and too heavy for the average one. His suggestion was to make
parts of the present curriculum with some additions, optional for the Matricu-
lation. He regretted that mental Arithmetic was neglected in schools.

Mr. D. N. Patankar felt that the F. Y. A. course ought to be grouped with
the Matriculation and there should be bifurcation like the Junior and Senior
Cambridge Examinations. Junior Matric. Examinations should be held in
vernacular and senior Matric. in English. At the Middle school stage, instruc-
tion should be in the vernacular. English should come after the stage of the
6th standard.

At present the papers were of two hours duration and the marks allowed
were 50 marks for Arithmetic, 50 for Algebra and 50 for Geometry. By this
M s
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arrangement the boy could get through by studying only one of the subjects.
He s.uggested 75 in Arithmetic, 100 in Algebra and 100 in Geometry, the
duration to be three hours.

Myr. C. B: Shaikh pleaded for a more rational teaching of the multiplication
tables and their use in problems. This was often very unsatisfactorily done.

Mpr. M. R. Paranjpe said that the Matriculation course included Arithmetic,
Algebra and Geometry. He felt that Arithmetic ought to stop at an earlier
stage.

The Matriculation student must know something of trigonometry, similar
figures, approximations, probability, graphs which should be statistical rather
than analytical, and logarithms. :

Dr. G. S. Mahajani asked if nothing should be taught to the child which is
simply to be memorised and which does not appeal to the imagination. In his
opinion we should depend more upon the child to memorise rather than to
imagine. He pleaded for the teaching of Mathematics being made interesting,
by bringing in historical references and by teaching by association of ideas.

Mr. M. R. Ingle agreed that there was a dread of Mathematics because
teaching in the middle schools was bad. He was for a special minimum for
passing in Arithmetic.

Myr. K. S. K. Iyengar felt that in the school stage it is very difficult to make
Mathematics more interesting than what it was at present. In College classes
however, it was quite possible to do so. Everything depended on the teacher
who must have capacity to inspire ideas in the minds of students.

Mensuration ought to be a compulsory course in the Matric. Examination.

Myr. Mirchandani pointed out that the average student was much more
deficient in Arithmetic than in any other subject of study. He felt that it is
very essential that more stress should be laid on Mental Arithmetic in Schools
than at present.

Mr. S. K. Abhyankar’s view was that it was the mechanical nature of teach-
ing that was responsible for the existing low standard in Mathematics.

The cultural value of Mathematics should be brought home to every stu-
dent.

The Chairman, Rao Bahadur P. V. Seshu Aiyar, in winding up the
discussion pointed out the need for frequent meetings of the kind to discuss
defects in present day teaching.

Prof. K. R. Gunjikar before proposing the vote of thanks to the Chairman
announced that they were contemplating a Mathematical Colloquiem in Bom-
bay one object of which would be to bridge the gulf between different classes of
teachers and bring them more closely together.



Discussion on College Mathematics
Friday 23rd December 1932—2 P.M.

PRESIDENT: Rao Bahadur P. V. Seshu Aiyar.

The following outline for guiding the discussion was circulated before the
meeting :—

I. Stages:
(@) Intermediate stage;
(b) Degree stage (i) as a Principal subject,
(ii) as a Subsidiary subject,
(c) Post-graduate stage.
2. Aims of study and research in Mathematics.
3. Curricula:

(a) Examination of the present syllabuses ;
their suitability, adequacy, difficulty ;
() Suggestions for improvement by rearrangement, inclusion of
new topics, exclusion of certain topics.

(¢) Question of rigour.

4. Present system of Examinations.
5. Post-graduate studies and Research

Discussion

Opening the discussion, Prof. V. B. Naik raised the question as to whether
some of the subjects which are being taught now in the B. A. should not be
taught at the Intermediate stage, and whether the course in Mathematical
Astronomy should not be replaced by one in Electricity and Magnetism. The
B. A. course was not enough for a student to do research in Mathematics for
the M. A. Examination.

He invited opinions as to what should be done to initiate research work in
the (Bombay) University ?

Prof. L.S. Vaidyanathan pleaded for the introduction of a group on Actu-
arial Mathematics, Statistics, and Economics for the M. A. Examination, as a
B. A. in Mathematics was very well equipped for these subjects and there was a
great demand for well-trained actuaries and Mathematical Economists.

Dr. Vaidyanathaswamy felt that in teaching Mathematics the aim should
be to instill in the minds of the students sound general Mathematical ideas.
The object should be to enable students to get a glimpse of certain fundamental
mathematical ideas like groups, transformations, potentials and so on. Provided
this principle is accepted, there was no objection to teaching Actuarial Science,
but he doubted how far it was practicable to introduce it in the general course.
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Stress should be laid on Practical Mathematics.

Mr. K. S. K. Iyengar complained that far too little of Analysis was done
in the Honours course. It was necessary to teach the elementary Theory of
Functions and also something of the foundations of Mathematics. One must
not be tied down by the traditional syllabus.

Father Rafael pleaded for the proper teaching of Geometry. The subject
must not be taught from the point of view of Examinations only.

Dr. Ram Behari was for rigour. He regretted that the I. C. S. and other
examinations controlled the courses a little too much. There should be
societies in Colleges and students should be asked to read papers and students
should be encouraged to frame questions.

Mr. Krishnaswamy Iyengar: The object of Mathematical teaching is to
give ideas about Mathematical discipline.

Prof. Bagi regretted the division of subjects into compartments in the
B. A. Hons. papers. -

Prof. B. S. Kalelkar wanted a proper framing of the M. A. course which
was defective at present.

Prof. S. B. Belekar wanted to know the opinion of the delegates about the
stage at which Pure and Applied Mathematics should be separated.

Prof. Gunjikar pointed out that there were certain definite stages in the
student’s career and different aims that should be kept in mind at each stage.
At the School Stage utility should be the sole and principal consideration, as the
course was compulsory. At the Intermediate stage it was possible to go further
as generally only those students who had any mathematical ability, offered the
subject, but there too it was necessary to recognise that a number of these
would give up the subject and take up others for the Degree course. For
this class of students the courses framed on the lines suggested by Prof.
J. Maclean were to be introduced in Bombay. At the degree stage the students
should be given a sound training in the subject which should be treated rather
as a Science than as an Art. Too much drill and complicated examples should
be avoided.

He felt the present tendency to insist too much on rigour in the early stage
of Calculus was not sound. He thought that the Intuition of the students needed
development first and rigour should come afterwards. In the B. A. course too
it is necessary to distinguish clearly between Calculus and Theory of Functions.
He doubted the value of the present Essay Paper in the B. A. Examination as
the range being limited, there was a tendency among the students to cram a
number of likely topics.

Principal N. M. Shah, on the other hand, believed that a rigorous treat-
ment was not necessarily prejudicial to the creation of interest in the subject.
[ntuition could easily lead into dangers, as seen in text-books which used
Differentiation and Integration of Infinite Series indiscriminately. He was for
the retention of the Essay Paper at the B. A. Examination.




ADDRESS

PRESENTED TO

M.R.Ry. M. T. Naraniengar Avergal, M.A.

DURING THE

SILVER JUBILEE CELEBRATIONS

To
M.R.Ry. M. T. NARANIENGAR AVL. M.A.,

First Editor, Journal of The Indian Mathematical Society.
DEar SIR,

On this auspicious occasion when we are met to celebrate the Silver Jubilee
of the foundation of the Indian Mathematical Society, it is but fitting that we
should recall with affection and gratitude the services of all those devoted
workers who laboured unceasingly in the past to bring it to the position it
occupies today. Among these pioneer workers, there are few to whom the
Society owes as much as to you, its distinguished foundation editor, who for
nearly two decades have conducted almost single-handed the Journal which is

the embodiment of the creative activity of the Society in the field of Higher
Mathematics.

Tt was in 1907, a quarter of a century ago, that in response to an invitation
from M.R.Ry. V. Ramaswami Aiyar a band of enthusiastic devotees of
Mathematics formed themselves into the “ Indian Mathematical Club ” for the
advancement of Mathematical study and research in India. The framing of a
suitable constitution on an all-India basis and the arrangements for the purchase
and circulation of the leading Mathematical periodicals absorbed the early
attention of the Society, and the nzed was soon felt for a medium to enable the
members to exchange ideas and to serve as a stimulus to independent study
and research. The success of the new venture was largely dependent on the
choice of a competent Editor, and the Society was exceedingly fortunate in
having secured your services for this work.

Looking back at this distance of time, one appreciates the formidable
difficulties which lay in your way. The idea of research in Mathematics was
not then as familiar as it is to-day, and the Universities and educational
institutions in the country thought mainly in terms of examinations and
syllabuses. The number of those undergoing higher courses in the subject was
exceedingly small and of these few had any experience in writing papers, and
in many cases the task of scrutinising papers for publication involved also the )
task of rewriting them. Often the necessity of issuing the Journal in time
compelled you to step in with contributions of your own within a few days,
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and the earlier volumes of the Journal bear eloquent testimony to the readiness
and the fertility of your response on such occasions. To add to these, there
were few printers with experience of mathematical work and the task of getting
the matter through the press was by no means a light task.

These services do not however exhaust all that the Society owes you ; for
as one of the first Secretaries, as a member of the Managing Committee for
several years and lastly as President of the Society your suggestions have been
of the greatest help in the conduct of the work of the Society.

By your single-minded‘devotion to the work you undertook, as a labour
of love, your high sense of duty, and the saintliness and simplicity of your life
you have set a noble example which will be long cherished by those who have
been privileged to know you.

Wishing you many happy years of useful service to the cause of
Mathematics and to the Country,

P. V. Seshu Alyar, We subscribe ourselves,
President. Dear Sir,
Indian Mathematical Society Your fellow-members of
Bombay, 24th December 1932. The Indian Mathematical Society.

Prof. Naraniengar’s Reply

MR. PRESIDENT, LADIES AND GENTLEMEN,

The Committee of the Indian Mathematical Society has placed me under
a deep debt of gratitude by voting an Address for me on this important
occasion. The honour done to me gains special significance inasmuch as it is
associated with the Silver Jubilee Conference of the Society.

I may be pardoned if T refer to my personal feelings in the matter of the
propriety of such a function 5 years after my retirement from the Editorship of
the Society’s Journal. Further, the little services 1 may have rendered to
the Society in my capacity of Editor, do not deserve to be made much of, and
it is really flattering to find that the Committee have discovered merits in my

services worthy of public recognition.

The Society was founded in 1907, but the Journal was started only in 1909.
For a few months previously, the Progress Reports issued by the Secretary used
to contain Mathematical Notes and Questions. The Progress Report for
October 1908 included the first Mathematical Note by Principal Paranjpye,
and the first Question to be published was one by Balakram. The solution
of this Question by Professor Wilkinson was published on P.520of Vol. I in

April 1909.
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The First Secretary (Mr. V. Ramaswami Aiyar) while announcing my Joint
Secretaryship humorously referred to me as the P. R. S. of South India:—
meaning that I was to be the “ Progress Report Secretary ”” of the Society, and
generously admitted me to the rank of the Bengal Mathematicians of that
high order. 1 little imagined then that Mr. Ramaswami’s P. R. S. would be
the recipient of the present honour.

Let me briefly refer to the office-bearers who co-operated in the task of
editing the Journal. Mr. S. Narayana Aiyar, M. A.,, of the Madras Port
Trust Office was the First Assistant Secretary appointed by the Committee to
supervise the Journal Printing at Madras; and he did his share of the work
with commendable zeal. Mr. Narayana Aiyar had to resign the Asst. Secretary-
ship in 1910, and his place was taken up by Prof. P. V. Seshu Aiyar. On Mr.
Seshu Aiyar’s election to the Committee in 1915, Mr. Krishnaswami, M. A., of
Pachaiyappa’s College succeeded the former as Asst. Sec. Owing to the
continued illness of Mr. Krishnaswami, Mr. C. N. Ganapati, M.A., had to relieve
the former towards the end of 1916. The Journal was thus in charge of the
Joint Secretary and the Assistant Secretary for about 8 years. The disinter-
ested services of the several Assistant Secretaries during this period are laud-
able. In March 1917, a Journal Committee was constituted for the better man-
agement of the Journal affairs. Professor Seshu Aiyar was appointed Joint
Editor under the new arrangements. When he became the Secretary in 1922,
Prof. K. Ananda Rao succeeded him as Joint Editor. Prof. A. Narasinga Rao
relieved Mr. Ananda Rao in April 1927 ; and when I retired from the Editor-
ship in June 1927, Dr. Vaidyanathaswamy was appointed in my place. Ever
since, the Journal is being conducted by Dr. Vaidyanathaswamy and Prof.
Narasinga Rao with the greatest zeal.

From 1923 onwards, the Journal is being issued on a new plan : ‘ original
articles’ appearing with continuous paging; and ‘notes and questions’
appearing separately with continuous paging. The Progress Report of the
Society is now issued as ‘extra’ matter. According to the present plan, each
volume takes two years to be printed. Thus: volumes I to XIV correspond to
the first 14 years (1909 to 1922); and volumes XV to XIX correspond to the
next 10 years (1923-32).

I must confess that the editor’s work was by no means easy at the
commencement. In the first place, there was considerable difficulty in selecting
a suitable Press to print our Journal; next, there was the inherent arduousness
of editing mathematical matter and passing the proof-sheets.

After trying several Printing Firms, we entrusted the printing to the
Kapalee Press owned by Messrs. S. Murthy & Co. of Madras. Though the
printing was not everything desirable, we got on fairly well with them till 1919,
and the first eleven volumes were issued from that Press.

In 1920, there was a change and the printing was entrusted to Messrs.

Srinivasa Varadachari & Co., Mount Road, Madras. It is gratifying to note
that this firm is doing its very best to satisfy the requirements of the Society.



40 Conference Report

As regards the Editorial Work, our main complaint was about the
slovenly manner in which Manuscripts intended for publication in the journal
were prepared and sent up. There was often difficulty in deciphering ‘ Con-
tributions.’ I had invariably to make press copies of Questions and Solutions
and prepare diagrams drawn to scale for making blocks. The work of editing
all the solutions to a single question would often involve several hours of close
scrutiny and fair-copying. I remember an ‘ Honours Student’ once sent up a
solution of a problem by V. Ramaswami Aiyar occupying 20 pages of
analytical work, while the geometrical solution of the problem did not occupy
even half a page.

The proudest achievement of the Society was perhaps the discovery of
the great South Indian Mathematician—the late S. Ramanujan, F.R.S. His
contributions began to appear in our Journal in I9II, and his ‘ first article’ on
¢ Some Properties of Bernoulli’s Numbers ' attracted considerable attention. It
is however a sad confession to have to say that the Editor’s work in connection
with Ramanujan’s contributions was by no means light. Ramanujan saw
intuitively many things and could not bring himself to the level of an ordinary
student of mathematics. His ‘first article’ had consequently to be referred
back to him no less than three times.

Among its Contributors, the Journal had the privilege of counting many
distinguished mathematicians. To name a few: C. V. Raman, Balakram,
Wilkinson, G. A. Miller, V. Ramaswami Alyar, Philip E. B. Jourdain, K.J.
Sanjana, V. Ramesam, Rev. Steichen, R. P. Paranjpye, W. Gallatly, Homer-
sham Cox, T. Hayashi, P. V. Seshu Aiyar, W. ]. Greenstreet, £ H. Neville...
were some of our ‘carly’ Contributors.

The future of the Journal is linked up with ¢ Research in India’; and it is
the bounden duty of the Society to create facilities for the research scholars on a
permanent basis. Our Silver Jubilee ought, in my opinion, to be availed of for
founding a ‘Jfubilec Prize’ under suitable conditions. My appeal to members
in this connection may be fresh in the minds of those present here. The
Universities—particularly those of Bombay and Madras—, should help the
Society liberally in realizing these laudable objects.

The Journal provides for three Classes of Contributors, viz.—

1st Class; 2nd Class; and 3rd Class.

It should therefore appeal to all grades of mathematicians, from the highest to
the lowest.

May we not hope that all Lovers of Mathematics will derive their
inspiration from the Journal and endeavour to keep the torch of knowledge ever
burning to the lasting Glory of our Society !

In conclusion, let me thank the Committee once again for the honour
shown to me today.



PUBLIC LECTURE
ON

MATHEMATICS AND RELIGION
By
RAO BAHADUR P. V. SESHU AIYAR

There are many points of affinity between Mathematics and Religion. By
Mathematics, I mean here the Philosophy of mathematics and mathematical
methods, and not the developed Science of Pure or Applied mathematics; and
by Religion I mean the Philosophy of Religion and not its ethical aspect or the
daily practices or rituals of religion. Both in contents and in the methods
mathematics and religion have much in common between them, so much so, that
if religion should be properly evolved it must follow the methods of mathe-
matics.

Both start from the Universe. By Universe I mean all that you can
imagine or conceive to be in this world consisting of the Solar system and the
Starry region and all the aspects of the World viz, the physical, mental, intellec-
tual and spiritual; mathematics paying more attention to the physical or the
material side of the universe and religion to the spiritual and mental side of it.

While saying so, I am afraid I may be treading on contentious
grounds. For, I know that some may start from God and consider the
Universe as His creation, and it may be considered a blasphemy to make
religion start from the Universe. Whatever that may be, one trained in
mathematical methods will be inclined to start only from the known and
proceed to the ultimate. That procedure alone will appeal to reason and people
who do not like to bring in reason for their aid in understanding religious
principles may do just as they please, and mathematics has nothing in common
with them. Such people will have to face many difficulties; one set may
start with some idea of God and a particular revelation, and another set may
start with some other idea and some other revelation and so on; and there will
be conflicts between these as we have already found in this world by bitter ex-
perience, and you have what may be called the clash of religions. But if religion
is to be approached with a precision and definiteness for which mathematics is
noted and studied by mathematical methods, a common philosophy of religion
will evolve out of such a search, and by common consent that philosophy may be
made to give us also the ethical aspect of religion. I proceed to show how
such a study can be made and how mathematical philosophy and mathematical
methods could be used in that study.

I go back to the starting point and say once again that both mathematics
and religion start from the Universe. Now I find some mathematicians demur-

ring to that statement of mine. They may say that in mathematics we start
M 6
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from numbers, points, lines, forms etc., and proceed to build up the science of
mathematics. What they say is quite true. In the logical development of
P\athematics we no doubt start from numbers, points, lines etc., but if you look
into the history of mathematical philosophy, you will find that we had first the
material objects of the Universe and that we have, gradually abstracted these
notions of “ number’, point’, ‘line’ &c.

The truth is that you had the human being with his sense organs, the
mind and reasoning faculty and you had the universe around : and then by
observing, studying and applying his reason to the physical phenomena
and material concrete objects in their various aspects of quantity,
size, form etc. man has gradually evolved the science of Mathematics. Similar-
ly by observation, study and application of reason to the mental and spiritual
phenomena of the universe the science of Religion, as depicted in our Vedantic
Philosophy for instance, has gradually been evolved.

Now coming to the content of mathematics and of religion, we have in
them both what is called thefinite and what is called the infinite, finite etymo-
logically meaning * that which has an end,” 3=ddd. in Sanskrit, and infinite
meaning that which has no end (SF-IFFI endless). In mathematics we say that
space is infinite and time is infinite. Similarly in religion we have Eicae
SEed ; WIS FFAUET ; etc. By so saying we only mean that the human mind
cannot think of an end to space or to time. Here a question may be raised as
to whether ‘finite’ is fundamental and thence * infinite’ is conceived as ‘not
finite’ or whether * infinite’ is fundamental and thence  finite’ as ‘ not infinite”?
This is very difficult to answer. The fact is they are correlative terms like
light and darkness. All knowledge is differentiation. Just as one ctannot have
a clear conception of light without experiencing darkness, similarly we can-
not have a clear conception of finite ’ without the notion of * infinite’ or what
is not finite. But ‘infinite’ is etymologically ‘ not finite ', This is a negative
conception. In Sanskrit we have a term denoting a positive conception viz.
'l‘ﬁ which when gquantitatively viewed may be taken to mean ¢ infinity ’.
This notion is fully brought out in the upanishedic saying.

quAg: qUaE
quTi, qAgE=AT
qoTeq qUIATET
QiR ARSI
The last two lines mean that “if infinity is taken away from infinity what
remains still is infinity » i e infinity is the balance left over. In order to havea

clear conception of infinity and to understand the meaning of the above lines we
may resort to mathematics for help.

Take the integral numbers 1, 2, 3, 4, etc., they are infinite in number i.e.,
not finite ; for after any number # there comes the number n+1i.e, the series
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of numbers goes on without end. Of these take the odd numbers I, 3, 5, 7, etc.;
they are also similarly infinite in number. Take the even numbers 2, 4, 6, 8, etc.
They are also infinite in number. Thus from the infinity of integers if we take
away the infinity of odd integers, we have the infinity of even integers still left.
Here it may be thought, that the infinity of all the integers is bigger than the
infinity of the odd integers or that of the even integers. It is notso; they are
the same kind of infinity ; thatis to say, there are as many even integers as there
are integral numbers, no less, no more. To make this clear we resort to the notion
of one-to-one correspondence between the elements of two groups or classes and
to the notion of cardinal number based on such one-to-one- correspondence.

One-to-one Correspondence

If there are two groups of objects (or elements as we shall call them
hereafter) to be compared as to their quantity or similarity, a rustic who does
not know even counting sets up a correspondence between the elements, setting
an element of one group to correspond to an element of the other, and sees
whether the two groups exactly tally. If he finds an excess in one group after
setting up such a correspondence he considers that group to be bigger or to
contain more. If there is an exact tallying between the groups he considers
the two groups to be equal. -This setting up of one-to-one correspondence
between the elements of two groups does not involve the process of counting or
the notion of ‘number’. For instance at a meeting there is such an one-to-
one correspondence between the group of seats and the group of persons pre-
sent at the meeting, provided every person present is given a seat and a seat
accommodates only one person and no seat remains unoccupied. Without
any counting or knowing their number, we can say that there are as many
seats as there are persons present and there are as many persons as there are
seats. Again in a monogamous community, like the Christians, where there
is only one wife to every husband and one husband to every wife, there is an
one-to-one correspondence between the group of husbands and the group of
wives, and we can say without counting or knowing their number that there
are as many wives as there are husbands and as many husbands as there are
wives.

Two groups which have that one-to-one correspondence between their
elements are said to be similar or equivalent. They are also said to have the
same potency or power. They are also said to have the same cardinal number.

Now with this explanation of one-to-one correspondence and the defini-
tion of power or cardinal number, we can easily see that the group of integers
and the group of even integers have the same power or cardinal number ; for we
can set up an one-to-one correspondence between the two groups as follows :(—

Write the two groups one below the other thus

I, 2, 3 4 5 ..
2, 4, 6, § 10,
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In so writing we have made any number # in the group of integers corres-
pond to 2n in the group of even integers and made any number p in the group
of even integers correspond to piz in the group of integers. It will thus be seen
that corresponding to every integer in the first group there is one even integer
and only one in the second group, and corresponding to every even integer in
the second group there is one and only one integer in the first group. Thus
there is an one-to-one correspondence between the elements of the group of
integers and those of the group of even integers, so that we can say that there are
as many even integers as there are integers or the infinity of integers is of the
same kind or nature as the infinity of even integers; neither more nor less.
Here one may ask “ Well, Sir, the integers include all the even integers as well
as all the odd integers, and so is not that infinity greater than the infinity of
even integers?” No! itis not so; the two infinities are the same. In fact
that is one main characteristic of an infinite group, viz., that it can be put into
one-to-one correspondence with a part of itself. Some Mathematicians define
infinity itself thus:—An aggregate is said to have an infinite number of elements
if it can be put into one-to-one correspondence with a part of itself. One that
cannot be so putis said to have a finite number of elements. We can now
clearly understand how infinity is such that when an infinity is subtracted from
it, the remainder can still be infinity, i.c.

qutEr AR
qUIRTERIE |

Next we have in Purushasuktham which describes the Purusha (the
Ultimate or the Absolute), different kinds of infinity, as it were, hinted at.
There Purusha is described thus:

qEaERiNIges:
AEHIITHTHIIA
g | FAdr g
S SIGECENED
geY TIE 94
agd 3= 97
SMIF@ERTAA IFHATAUERT
TqIEIaET qigH!
AA ST T
G SR R GUT
fawgemrad &y

‘Here Purusha or God is described as an infinite being transcending all
space and all time which are themselves infinite. Ordinary people who do not
know anything of infinity or different types of infinity are likely to consider this

description of Purusha as purely imaginary or mystic. But a mathematician
who has studied about transfinite numbers or different types of such numbers
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can easilfr give a meaning to such descriptions. What I maintain is that
whether our ancients understood such different types of infinities or not, we
having the ideas of transfinite numbers can assign a meaning to such expres-
sions as

AT GET: OV WA [T AT Bragenad XA

I'shall explain how it can be done. We have all seen the infinity of
integral numbers ; we shall call that infinite cardinal number a. Let us consider
the infinity of positive rational numbers [a + ve rational number is of the form
Plgwhere pand ¢ are positive integers]. They are also infinite in number and
they appear to be tremendously more infinite than the integral numbers. For
between any two rational numbers, however close they may be, there are an
infinite number of rational numbers. Though the rational numbers when
arranged in order of magnitude are sq closely packed, the infinity of rational
numbers is the same as the infinity of integers. This can be easily shown thus :—

Every positive rational number is of the form plg where p and g are
positive integers and so we can arrange the rational numbers in the form given
below :—

L I L A -
2/ 3733 2

2/2/ 2 2 i E
3/3/3/3 3
/385 3

Every positive rational number is included in this double series consisting of
rows and columns. The rational number /s for instance is found as the sth
term in the rth row. Of course there are repetitions. Now if we take the num-
bers diagonally one after another as shown in the ﬁglxre we will also be reaching
every rational number which any one may mention; we can thus assign a rank
to every rational number excluding all repetitions. In other words the group of
rational numbers and the group of integers can be put into an one-to-one
correspondence with one another. Therefore the infinity of rational numbers is
of the same type as the infinity of integral numbers. Such an infinity is called
a countable or enumerable infinity and the infinity of rational numbers is of
that type and belongs to the type we have denoted by @. Incidentally we have
also shown that we have a+a=a and na=a and also that axa=a or a*=a and

“a'=a and a"=a. Thus this infinity @ has these peculiar properties.

Now take the case of the group of real numbers consisting of the rational
numbers above described and irrational numbers such as v2 5, 7, ¢, etc. It is
shown in mathematics that they form an infinity of a different type altogether.
This infinity is denoted by ¢, the first letter of the word *‘ continuum.” There are
still higher types. In short we have in mathematics transfinite cardinal numbers
called ‘aleph’ numbers, and it is shown that given any *‘aleph’ number we can
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get an ‘aleph’ number higher than that, so that the ‘aleph’ numbers arranged
in an order go on indefinitely i.e., without any limit. Thus if Purusha is des-
cribed as transcending the universe of space and time, one who knows something
of these transfinite numbers can try to understand it, and can say that such
descriptions are not altogether imaginary or illusory. Again in religion we
have apparently paradoxical statements made about God or the absolute one;
such is
: gemearazfasy
e =Fa® 9 ad.

“ On account of subtlety, the absolute is unknowable; it is very near and yet
far away!” We have illustrations of such subtlety in Mathematics. For
instance take any irrational number say vz ie., the number which when
multiplied by itself gives 2 for the product. From the various steps in the
ordinary process of the extraction of square root we can see that this v2 lies
between T and 2; again that it lies between I'4 and I'5 or again between I'41
and I'42 and so on. Thus you can locate it as lying between two decimals
which differ from one another by as small a fraction as you please. Yet you
can never express it exactly as a terminating decimal. Of course it is not a
vulgar fraction. Thus vz which appears to be definitely situated between two
series of numbers I, 14, I'4I, I'4I4 ...... and 2, I'5, 142, T°415 ......
which go on approaching one another as closely as one would desire, yet evades
an exact grasp because of its subtlety, being a mere point. It appears to be
near enough and yetiif tried to be approached by means of a decimal, it recedes
farther and farther. Thus it is J{&d (far away) though HEas I
(near enough). W

I have given above some instances of similarity of ‘contents’, between
mathematics and religion. I shall now pass on to give an instance of similarity
of methods between them, and close the address You must have often heard it
said that mathematics is an abstract science. Yes! it is so. For instance we
have the natural numbers or the number concept. This is abstracted from the
observation of groups or classes of concrete things and from a comparison of
such groups in respect of quantity by means of *correspondence’. If two
groups have an one-to-one correspondence between their elements, we say they
are similar or have the sane number. «Number’ is thus the common character-
istic of all ‘similar’ groups i.e., groups which_have an one-to-one correspond-
.ence betweer their elements. If one asks “ what is that common characteristic? ”,
we can only say that whatever you can find in common between such
similar groups is that common characteristic. Not being able to define that
common characteristic, mathematicians have defined ‘pumber’ as a class of
similar classes, just as the best definition of ¢ man” is given to be * the class of men’.
Thus ‘number’ is an abstract concept derived from concrete groups of objects.
In religion too we have such abstraction. From the observation of the universe,
we find that all things are changing and are being transformed, they are transi-
ent, living only for a short time. Yet man cannot regard all these things as
having come from *nothing ’: he thinks that there must be a ‘reality’ which
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exists for ever i.e., efernal and out of which all the things of the universe have
come and into which all the things lapse or are absorbed at Pralayam or deluge.
This ‘Reality ’ he calls God. God is thus a ‘concept’ abstracted from the
observation and experience of the universe. If asked to define It, we can only
say that It is That which exists for ever, which undergoes no change, out of which.
all the things of the Universe have come and into which they merge at
Pralayam. If driven still further to give its exact nature, one only says that it
is fﬁ{ﬁ"'r (has no attributes) and it is not to be known by the senses or by
the ‘mind’, or one may define It as % (the universe). In fact the first name
of God in Vishnu Sahasranaman is 4. This is quite on a par with the
definition of ‘ number ' as the class of similar classes’. Just as ‘number’ is a
concept to be abstracted from °the class of similar classes,’ similarly God is a
‘concept’ to be abstracted from the ‘ Universe’. Thus even in method mathe-
matics and religion have much in common between them. From the instances
and illustrations given above one could see how a student of mathematics can
bring to bear his knowledge of mathematics and mathematical methods to the:
study and understanding of religious concepts and religious principles.
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1. R. C. ARCHIBALD (Brown University, America): George
Hermann Valentin 1848-1920.

2. B. B. Baat (Dharwar): On the determination of ithe real foci
of a real conic.

3. 8. K. BANERJT (Caleutta): On 1he steady rotation of «a wviscous
Sfluid. .

4, RAM BEHARI (Delhi): Fquilateral Oscilating Quadrics of Ruled
Surfaces.

The ruled surfaces whose osculating quadrics are equilateral
are determined.

5. ——— : A Thecrem on Normal Rectilinear Congruences.

“ There exist ©2? ruled surfaces of an ordinary congruence, the
osculating quadrics of which are equilateral, but there are only %!
such ruled surfaces if the congruence is normal.”

6. E. T. BELL, (California): An Algebra of Numerical C'omposi-
tions.

7. W. BLASCHKE (Hamburg)—Hezxagonal four-webs of surfaces in
3-space.
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8. S. CHOWLA (Benares): Contributions to the analytic theory
of numbers (II).

Let 7s,c (n) denote the number of representation of the positive
integer n as a sum of s positive A" powers. It has been shewn by
S. S. Piliai that 7,5 (n) = Q (log log n).

I shew here that, when & a fixed integer positive or negative,

=1 = Q (log log n)
ad+hyd=n
x>0, y>0

T also shew that 75,4 = Q (log n/log log n), assuming hypothesis K.
9. M. R. DORESAMIENGAR (Muysore): Tariff-Policy and Distribu-
tion.

A simple demonstralion has been given of Prof. Pigou's
formulse for differential taxation and under certain genuine assump-
tions, the rise in price to the consumers has been taken as a species
of taxation. The work begun in ‘Taxation as an instrument for
modifying inequalities in Distribution’ is thus continued. And the
disturbing factors that throw the °‘equality-maxim’ in ‘ personal
distribution ' into a dynamic state, are sh)_own in relief.

10. B. S. GAI (Bombay): On the rools of real cubic equaiions,

The paper constructs a table by the help of which one can get
a fairly good idea of the nature and relative positions of the roots
of ax®+bxt+exr+d=0.

11. HANSRAJ GUPTA (Hoshiarpur) :  Quotient and  Remainder
Series.

In my paper entitled *The Perpetual Calendar Formula " it
was shown that under certain limitations a set of n positive integral
numbers a1, a3, ... an, arranged in ascending order of magnitude and
such that ar—a-1=d or d+1, can be obtained by giving to 2 in order
the values 1, 2,..n in an expression of the form Qn (Fx+1). In
the present paper the limitations are more clearly brought out and
the sequences discussed in greater detail.

12. MEGU RaM GUPTA (Hoshiarpur): Two new perfect nunbers.
13. T. HAYASHI (Sendai, Japan): A Japanese Problem.

14. M. V. JAMBUNATHAN (Shimoga) : The Recardian Theory of
Rent: A Fallacy
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The Recardian Theory of Rent that the share of land, as a
factor of production is obtained only as a residuum, is questioned in
this paper. It is shown that the rent of land can be calculated
independently without any reference to the shares of the other
factors of production; and that it does not stand cn a different cate-
gory from the shares of the other agents of produection.

15. H. R. KAPADIA, (Poona): Some Muaterials for the Study of
Mathematics in Jaina Literature.

(1) the place assigned to mathematics in Jainism, (2) the
mathematical works of the Jainas, (3) different designations for
notational places, (4) 27 kinds of numbers and a reference to alef-
zero, (5) different types of infinity, (6) 14 kinds of series, (7) the
frequent use of permutation and combination and a few typical pro-
blems, (8) value of 7, (9) measurement of mountains, etc., (10) tables
pertaining to different measures, (11) the number of human beings
at any time.

16. P. K. KASHIKAR (Bombay): The Archimedian Solids.

This contains a proof (believed to be new) of the theorem that
there are only 15 different types of these solids. A general method
for the construction of card-hoard models of these figures is explained.

17. ————: The Concave Reyular Polyhedra.

This contains a modified form of Cauchy's proof of the theorem
that there are only four such polyhedra. Card-board models of these
and some other stellated polyhedra were exhibited and the method of
construction of some of them explained.

18. D. D. KosaMBI (Aligarh): The Differential Invariants of the
most general sct of curves defined by a set of sccond order
differential equations.

It has been shown by Professor Cartan, and follows by consi-
dering some works of mine from a new point of view, that the
essential differential invariants of the system ai+air, 2, #)=0
(i=1, ..., n) are three in number <’, Py o'; ; «; . The first two
and their consequences follow from my work quite easily and clearly,
but the last cannot be obtained by methods other than those of Prof.
Cartan.

19. A. A, KRISHNASWAMI AYYANGAR (Mysore): A Geomelry of
Sextuples.
M 7
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This paper furnishes a new and simple proof of the theorem
that the plane projective geometry of six points to a line is Pascalian
and unique, by showing that Pascal’s theorem may be regarded as a
property of a class of Latin squares. Fano's axiom is proved to be
true in this geometry and one characteristic property noted, viz., the
existence of sets of four triangles in perspective, which may be so
ordered that each triangle is inscribed in its adjacent one in cyclic order.

20. —— : On Geodesics.

When the equation of a surface is referred to non-geodesic
orthogonal parametric curves, it is shown that the differential equa-
tion of a geodesic can be put in the new form :

d duN? dv\*? du dv du dv

9w () vou (3) | - 53 (PG 2
where P=E +(x-2) Ei, Q=G +(v-u) G and ds is an element of arc
on a geodesic. The above equation immediately puts in evidence
the converse, viz., that Liouville's surfaces are the only ones for which

E. (L@’;)'+ Gu.((—lu-y is constant.
ds ds
91, ———: On oriented circles.

92. G. S. MaHAJANL (Poona): A definition of steady motion in
dynamics.
The author proposes to define steady motion as one in which
the kinetic and potential energies are separately constant.

923, S. L. MALURKAR (Poona): A4 note on a particular equation of
conduction when -radiation is taken into account.

Some years ago, in 1915, G. L Taylor found an expression for
the heat transported upwards by eddy conduction. He did not take
radiation into account and found that z%/4t was constant, where z is
the upward displacement and ¢ is the time taken from the initial
Following a few papers that we have published in the Indian
if Taylor's expression
By use of contour

stage.
Jowrnal of Physics, an attempt was made to see
could not be modified to take account of radiation.
integrals, a first approximation is derived.
924, K. NAGABUSHANAM, (Madras) Tensor theory of Jacobi's
Multipliers.

. da' _ da® da™ - 1.8
For the equations -j—gfl = (‘ng o = x> @0Y function M{z'a?...a")

satisfying g < SM-IK) — 0 is defined as a multiplier of Jucobi. Denot-
i=1 oxt

ing by (af) the contravariant components of the vector defined by
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the above equations, the condition for M to be a multiplier may be
written in the tensor form div. (MX/)=0. In this paper it is shown
that '

(i) every multiplier is a scalar density;

(ii) the condition div. (MX’)=0 is both necessary and

sufficient for the tensor M€ _ _ 2f to be derivable as a Stokes
2 eee o-

tensor of an alternating one; and

(iii) the famous theorem of Jacobi on the last integral
of the above equations when all integrals but one and a Multiplier
are known is a consequence of the more general theorem of Goursat
on the integrability of the system of differential equations
Z dx* = 0 where Z is derivable as Stokes tensor.

A X ... Ar-l *] &2 ... &Ko

25. S. H. NANAVATI {(Bombay) : Mortality curves.

26. A. NARASINGA RaO (Anvnamalainagar): The Melrical Geometry
of the cyclic n-point.

The paper extends to the cyclic n-point, the familiar properties
of a triangle associated with the orthocentre, nine-points circle, etc.

92%7. E. H. NEVILLE (Reading) : Iferative Interpolatlion.

28. B. RAMAMURT! {Annamalainagar): A covariant specification of
the wnique tetrahedron inscribed in a space cubic curve and
circumscribed to a general quadric inpolar to the curve.

If a space cubic curve ¢ be regarded as the carrier of a binary
parameter z, a set of six points on it may be specified by the binary
sextic a’, the roots of which are the parameters of the six points.
There is a unique quadric envelope Q, touching the osculating planes
at the six points and impolar to the curve. It is well-known that
there is, in general, a unique tetrahedron inscribed to ¢ and circum-
scribed to Q and that if there be more than one such tetrahedron
there must be o2 tetrahedra. In the general case if the vertices of
the unique tetrahedron correspond to the binary gnartic b*% in the
parameter, it is obvious that &'s should be a covariant of a®. The
object of this paper is to prove that 6% is the fourth transvectant of
a®. and itself.

929, V. RAMASAWMY IYER (Chittoor): Self-Reversible Functions.

30. C. V. H. RA0 (Lahore): The ¢-Conic from
point,

jective stanc-
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31. S. SIVASANKARANARAVANA PILLAI (Annamalainagar): On the
swm-function concerning the number of prime factors of a number.

Section I of this paper contains a simple proof of the results

g (x)=2 log log z+Ax+0 (x/loga)

and G (x)=x log log x+ Bx+ 0 (z/log )
where A and B are constants. In Section II by making use of
kpown result about the distributive of primes all the terms are found
out till the error term is reduced to the orders of z/log'x where ¢ is
any fixed positive integer. Section III is devoted to find out a better
result by assuming Reimann hypothesis. In the course of the proof

the following results are also proved:

G (x)=g (2)+Cx+0O (va) where C=Z—1——;
p(p—-1)

log @

o T -
g (0)=2 =(a/r); E(;’)m(l —y) -
r=I p
where (x) is the fractional part of x, and v is Euler's constant.

392. R. VAIDYANATHASWAMY (Madras) : An Extension of the Deter-
minant Concept based on Group-characters.

The Rice-Lecat conception of determinant in which the suffixes
are assigned one of two characters, the signant or non-signant, is here
extended by assigning to the suffixes characters which correspond to
the Abelian characters of a permutation group.

33, JAGESHWAR DAYAL VAISH (Muzaffarnagar): 4 Trigonometri-
cal Formula.

i i
. . . _ » !
The formula in question 18 sin 0 _'10,170(11} _1apprommate Y,
p(180-6) 4

where 6 is in degrees.

34, K. VENKATACHALIENGAR (Bangalore) : 4 new melhod of ob-
taining the product formula for sin a.

35, G. N. WATSON (Birmingham) : Froof of cerlain identities in

combinalory analysis.
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Proof of Certain Identities in Combinatory
Analysis

BY G. N. WATSON, Sc.D., F.R.S.
“ Five for the symbol at your door.’

On this occasion when we celebrate the Silver Jubilee of the
foundation of the Indian Mathematical Club, which has now
developed into the Indian Mathematical Society, it is fitting that we
should have in honour those mathematicians, now no longer with us,
who, in the early days of the Society, added to its renown and
increased its international reputation, whether by their administra-
tive labours or by their mathematical skill.

It is consequently appropriate to commemorate the name of
Srinivasa Ramanujan by making known a few of the most remark-
able theorems which he discovered and giving proofs of them.

The majority of the theorems which I propose to discuss are

concerned with two functions, G(z) and H(z), defined by the formulze
4 i

670 X
Gt =5 T - T
H(r)=1+ % i 2

b .
(l— L)(l— a (l—.l')(l—.l'g)(l—l‘ﬂ) W el
the indices of the powers of @ in the numerators of the (n+1)th
terms being n? and n(n+1) in the respective series.

The well-known Rogers-Ramanujan identities®™ are expressed by
the equations

G(l) =(1- =~ (L =291 - ")(L =2ty ... ..,
H%l-)‘“ (L= a)(L= (L= 2L =) .

where the indices of the powers of a2 in the factors differ from
multiples of 5 by 1 and 2 in the respective products.

Probably not many mathematicians would dissent from the
opinion expressed by Professor Hardy that it would be difficult to
find more beautiful formulee than these identities; but the primary
credit for their discovery rests with Rongers whose proofs of them

* For an account of these formula with various proofs, see Ra.m:mujan,
Collected Papers (1927), pp. 214-215, 344-340,

M 3
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were published some twenty years before they were independently
rediscovered by Ramanujan.

Among the formulae contained in the manuscripts left by
Ramanujan is a set of about forty which involve functions of the
types G(2) and H(x); the beauty of these formulee seems to me to
be comparable with that of the Rogers-Ramanujan identities. So far
as I know, nobody else has discovered any formulse which approach
them even remotely; if my selief is well-founded, the undivided
credit for the discovery of these formulee is due to Ramanujan.

Some of these forty theorems were communicated by Ramanujan
to Rogers, and the latter has published his proofs of nine of them *;
the method used by Rogers is substantially Schroter’s method of
constructing modular equations and it is a modification of the method
by which Jacobii proved the fundamental formule of theta-
functions. Ramanujan's methods of proof are not known.

In this paper 1 propose to prove ten theorems in all: six of them
are members of the set of forty which have hitherto been unpublish-
ed, and to which Schroter’'s method is not obviously applicable; two
of the theorems proved by Rogers are added, since they are reguired
in the course of provinzg the six new theorems, and I give proofs
whose main differences from the proofs given by Rogers are in mat-
ters of arrangement; as a preliminary I give proofs of the two
theorems on which Ramanujan based his work on the modular
equation of order 5, since they are continually required in the course
of proving the main theorems.

It is convenient to work throuzghout with the notation used by
Ramanujan for partition-functions and theta-functions; he uses a
standard notation for the partition-function, but his notation f(a, b)
defined balow for a theta-function is, I think, his own, and it seems
to me to be the notation which is best =suited for his type of work
on modular equations; he writes

a, 2)=(L+a)(l+ar)(l+ax®)1+ax?)...,

fla, ) =14 (a+ D)+ ab(a® +b3) + (ab){a® + 1) + (@) + %) +

:Og a}n(n+l)b;n(u~1),
n=—oo

() =flr, )=1+2x+22*+2.°+ ...,
Ylo)=flw, a¥)=1l+a+a3+a%+
(-a)=f-a, —a%),

X{a) =TI(a, 2?) = (1 + )1+ 23)(L + %)
* Proc. London Math, Soc. (2) 19 (1920), pp. 392-396.
T Ges, Math, Werke, 1, pp. 358, 505.
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In this notation, the formula for the factorisation of a theta-
function is *
Ha, b)=TI(a, ab)II(h, ab)TI{ - ab, ab),
and, in particular,
S(=2)=TI( -z, 2)NI( - 2®, )I(-a% ) = II( -a, 2),
by rearrangement of factors.

Tt is also easy to verify that
AL 2)=2¢_x), A -1, x)=0,
o() = p(a*) + 2 (),
X(—o)X(x)=X(-22), X(-)II(x, x)=1
(the last of these being HKuler's formula i) and (from the Rogers-
Ramanujan identities) that

_f(-2?% -a%) —-13) A= — &4
G(x) e , H(zx)= ‘f(—'r)

The verification of these results and of similar simple formulea
which are used later is left to the reader.

It is convenient to quote here various standard formulae (most,
if not all, due to Jacobif) which express Ramanujan's functions in
terms of moduli and quarter-periods of elliptic functions when the
parameter of the elliptic functions, usually denoted by exp. (~7K'/K)
is equal to a. It seems superfluous to give proofs of any of these
standard formulae; they are as follows

to(2);?=2K/m, {e(-1);P=QK/m)k,

{#(—an2= QK@) =p(x)e( - ),

(0} =m0, (W3 =GRk x,

\x P K i
= ZLE (i apye - Y

REY V!
AR L e 2KPRA
H—aP=""g s N2 =g,
. KAV
P =a)o =g 5o

When it is necessary to write down a modular equation in the
sequel, the second pair of moduli will, as is customary, be denoted
by X and X

* Cf. Whittaker and Watson, Modern Analysis (1927), pp. 469-473.
1 Ibid., p. 472.
| See Whittaker and Watson, Modern Analysis (1927), pp. 479, 488.
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The formulse which I shall prove are as follows:—

(1) {o(2)}2= (@(z9)? + A (A = 220)}2 L

X%
@ (W = ha)+ (- 2.

(3) G(x)G(a*) +aH(x)H(a) = {X(2)}?
142 +2at+ 20+ 200+ L

TA-20-ati-a% ..
; 4 _ (e ) _ 1+ 2%+ 2280+ 228 + 2.7+ ..
(4) G(r)G(a*) - xH(2)H(*Y) = (= 2= (L= 2 =,
. . . N 2 _ AL+ a2 +al+al?+ )
(5) G(2)H(-2)+G(-a)H(x)= X (l—xﬁ)’(l—.l-'*)(lr— P
92(1+ 20+ 2%+ 250+ ...)

(6) G)H(-2)-G(-H@) = T 5Tt -2% ...
(7) GlaMH(x) - 2*Gx)H(eM) =1,

(8) G(MH(-a)+a2?G(-x YH(2™)

)

o X(@E)X(a) _Rad o
T X(=2N(= ) X(=2X(= aH)X(
If G(2)G(a*) + 2"H(2)H(2*) =T,
and G(a¥)G (™) + 2*H(aH)H () =V,
then
(9) U+aVi= X(2)X(2)}3,
and

(10) UV +x={X(z)X(z")i™

The formulsz proved by Rogers are (3) and (7); an enunciation
of (7) had been published previously by Ramanujan®*. The essential
feature of all the formulee is that they express theta-functions with
various parameters in terms of other theta-functions whose para-
meters are the fifth powers of the parameters of the original theta-
functions. The formule, other than (1) and (2), may therefore be
regarded as types of modular relations in which transformations of
order 5 are combined with transformations of some other order.

Formulee (1), (2), (3) and (7) are proved by making use of quite
simple properties of quadratic forms 7. The quadratic forms appear
as indices, and, in order to avoid writing complicated expressions in
indices, I shall put ,

ES 213
where P is a quadratic form.

* Proc. London Math. Soc., (2) 18 (1920), p. XX.
+ Of course formulz (1) and (2) are very rudimentary examples of the use of quad-

ratic forms. I believe, however, that Ramanujan discovered these two formulee, not by
manipulating quadratic forms, but by transforming series of Lambert’s type.
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‘We now proceed to prove (1). Consider
e 8 (9.0 8 a

{e(x)}2=3 TF@mt> F{n®)
m= —o0 n= —oo

Fi{2m2+2n®}.

m, n= —oo

Take the values of m and n associated with any particular term
of this double series and choose the integers M and N such that

m+2n=5M+a, 2m—-n=5N +f,
where 2 and B have values selected from the integers 0, +1, =£2.
Since
m=M +2N +(x +28)/5,

we gsee that values of 2 and 8 are associated as in
Table:

n=32M ~N +(22-8) 5,

the following

T
i x 0 ‘ =1
|

B 0

When =« assumes the values -2, -1, 0, 1, 2 in succession, it is
easy to see that the corresponding values of 2m®+2n? are respectively

10M2+10N?-8M + 4N + 2,

10M?+10N?-4M - 8N +2,

10M?+10N°?,

10M? +10N2+4M + 8N + 2,

10M2+10N2+8M - 4N + 2.
It.is evident from the equations conunecting m and n with M
and N that there is a one-one correspondence between all pairs of

integers (m, =) and all sets of integers (M, N, «). From this
correspondence we deduce that

® oo s
> Fi{2n’+ 2%}

m, n= —oo

I

+3 F{10M?+ 10N2 - 8M + 4N}

&

F{10M2+ 10N> —-4M - 8N}
F{10M2+ 10N?;
F{10M2+10N?+4M + 8N}

+r>  F{10M?+10N2+8M - 4N}
the summations applying to M, N= —co to+co

+ o+ o+

T

v Ve v
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Now

°\§ FOM2+4M ]} = A%, x7),
5 F{10M? +8M} = flz, 27,
M= -

-
-

and therefore

{p(a) ;2= {p(a®)® + b fla, x* N3, )
also
fay (P, 27)=T1(r, 2OIL2?, 2"M1(2° ZOM(27, 2'(®, )
‘I‘[( - 10 x 10)1"
T ,.5 m)

#Ei(l,L) X(x)

(25, )'f(" )= e 5)17\ T2,

whence (1) follows immediately.
The proof of (2) is similar to that of (1). Consider

o0 o0
{F(L =2 F 2+ m) 2 Fipdtag

m= —0 n=—x

a0
=3 T{md+n>+m+nj.
m, n=—0
Make the same substitutions as before. When o assumes the
values -2, -1, 0, 1, 2 in succession, it is easy to see that the

corresponding values of
mr+ it mtn

are respectively
5M2+5N2- M +3N,
5M?2+5N?+ M - 3N,
5M2+5N2+3M+ N,
5M2+5N2+5M +5N +2,
5M2+5N2+7M - N+2,

Hence
A, @y =4f (e )t ) F el F, x%)}2
also
Fla, at) f(a?, a®) =11x, v 5Y T (a2, %) IT (&3, %) 1T (&, ¢ 5)1](1 , x¥) %
(- af, 2%}
(1125, 2%)

1z, 2) P PP
= lI(l 5)Lf(-t)} X(‘.L:')'f( .L)J,

whence (2) follows immediately.

To prove (3), consider

A, 2 f(=a%-a®) - (=)' Fim?+4n+mj.

m, n=—0w
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Take the values of m and n associated with any particular term
of this double series and choose the integers M and N such that
m+n=5M+a, m-4n=5N+43,
where « and 8 have values selected from the integers 0, +1, +2.
Since
m=4M+ N +(42+8)/5, n=M -N+(a-8)5,
it is evident that B=a.

From the one-one correspondence between all pairs of integers
(m, n) and all sets of integers (M, N, x), combined with the obvious
formula
mE 4 4An® + m=20M® + 5N+ (4 + 82)M + (1 + 2a)N + (a2 + ),
we deduce.that

2 AM4N
Al x)y =3 5; (=) Fi20M® 43N+ (4+8x)M+ {1+ 2N + (2% + a)}
a= -2 ; N=—o0
2

=3 F(a? + a)f{ — 212148 = @8~ [ = p3te, 22%)

a=—2
=R A =a%—a®)f(=a% - 2%+ 20/~ at, - 21— x, - 2%)
T8 ( -1, - 2)f( -1, - a%),
that is to say
JO= 2% = )= 2%, = ) + 2 f( - a4, - 2 A - 2, - 2*) = fla, )/ - a2 - a?).
Consequently

(|)¢> (=) 161 o(x)
GG () + 2 H(a)H(x) = ~ 12/ = (X(2)13= AT
(G +aB(@H() = ZUOSEIR e J(AOTY = (e O
and this proves (3).
Formula (4) is obtained immediately by combining (3) with (1).

We have, in fact,
[G(2)G(a4) = 2 H(x)H(ah)]?
=[G(2)G(a*) + 2 H(x)H(2)]? - 4rG(2)H(0)G () H(xh)

_ fola))? o ﬂ;lr“)f(—am)
e A D)

’ St e
and, since S (= =X(x),
we get .
[G(2)G{rt) = e H{)H () =[{o(2) 2 = 41)(}:3) L= 21M = D F=a)ie
__ie(an)!®
=)

whence (4) follows by extractiny square roots and taking care to
select the appropriate sign,
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We postpone the proof of (5) for a time and proceed to show
how (6) may be obtained by applying (1) to a combination of (3) and
(4). From (3) and (4) we obviously have ‘

_plx) +ola®) o(x) = o(2®)

Glz)f (-2 HEHA - %)’

and hence, by changing the sign of and combining the results so
obtained, we get

2vH(x)=

2G{a) =

SO (e o 5 — Ol = R ala®)e( M(,_L)
22G(a YH( - x) 22G( a)H(x) G(.I“)H(a:*){f( — )i
| fpl(= 21— L - 2t}

©

T GEYHGEH A -2
L 4eX(=a) {2
G H(@)X( - 2)i - 2%))
_ (-2 A= at)X( - 2?)
X(-a') (LA(-a?)y?
_ A)
A=
since (= %) = )X (= 2) = - 2) X(~a).

This gives (6) at once; we now deduce (5) from (6) in the way
in which (4) was deduced from (3), using (2) instead of (1). We
thus have

[G(a)H( =)+ G(-a)H(x)]?

= [G(2x)H(-2)-G(- ) H ()] + 4G () H(2)G( - 2)H( - )
I o AR VN Sl A €0
{f(-am))? A= x2)f(2)
42U AL 213 X(=al?)
F—ae (- X(-a?)
4 ((2?)5?
T -
whence (5) follows by extracting square roots and taking care to

select the appropriate sign.

In order to prove (7), T transform certain standard combinations
of functions of the types #(2) and ¢(a). These combinations are not
the same as the combinations used by Rogers and, as a consequence,
I find it necessary to use the modular equation of order 11 to effect
the final simplification. Consider
(a)p(at) = o - el —att) = }O, 1-(-1 R+ 22n%)

m, n=—-w
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Take the values of m and n associated with any particular term

of this double series and choose the integers M and N such that
3m+11n=20M +«, m—3n=20N + 8,
where « and B have values selected from the integers 0, *1, +2, +3,
+4, £5, £6, =7, +£8, +9, 10.
Since m=3M+11N + (3« + 118)/20,
n=M ~ 3N +(« - 38)/20,

we can construct the following Table of corresponding values of
z and 83:

: :
« | 0 | +1| 22l 43 x4 i5’16ﬁi7’i8 +9 | 10
| il il
| \ |
Blo £7| F6 | £1| +8 5 i2Ji9;$4'i3 10
‘ | | |
S I _
Since m+n=4M - 8N + (« - 28)/5,

it is evideut that m+n is even when, and only when, « is even.
Hence, since the terms of the series for which m+n is even cancel
we have to take account of odd values of « only,

’

When « assumes the values +1, + 3, £5, £7, £9 in succession,
it is easy to see that the corresponding values of 2m2+22n% are
respectively

40M?* + 440N+ 4M + 308N -+ 54,
40M? +440N?+12M + 44N + 2

40M?*+ 440N+ 20M T 220N + 30,
40M? + 440N+ 28 M + 396N + 94,
40M®+440N2+36M + 132N + 18,

Hence
ilp(2)P(@) = b( = 2)b( - 211)]
=.1‘27f(.1‘15, I"‘.’Q)f(x(ie’ a/,ST-})_*_n.f(le’ :c%)f(xms, IE!E)
+xI5f(x10’ Iao)f(l.uo, ISSO) + I”f(lﬁ, .'L‘“)f(l‘gﬂ, l.&lS)
+x9f(.1'2, xSB)f(Ilii, :L.*'.’SG)_

Again, consider
S, 2, 2a®) + (=1, = 2D =1,~a%)

= O‘% {14 (=1)"*") F{2m®+ 2202+ 2 + 22n)

M, n= —oD

‘We now have to take account of even values of « only.
Mg
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When « assumes the values -8, -6, -4, -2, 0, 2, 4, 6, 8, 10
in succession, it is easy to see that the corresponding values of
oam?+22n*+ 2m+ 22n
are respectively
40M?+440N% - 4M + 132N + 4,
40M?®+ 440N®+4M - 132N + 4,
40M?2 + 440N+ 12M — 396N + 84,
40M2+ 440N+ 20M + 220N + 24,
40M?2 + 440N? + 28M — 44N,
4A0M?®+ 440N+ 36 M — 308N + 56,
40M? + 440N2+ 44 M + 308N + 60,
A0M2+ 440N2+52M + 44 N +12,
40M2+ 440N2+ 60M — 220N + 44,
AO0M? + 440N+ 68M + 396N + 112,

Hence
I(L—-)__1 2F( 15, 22 f(x A5 p286) 4 g »f( 225 A2, 2118)
+ 23229, a8 ““ 2390) + (& %L)f(tms 242
+1an(_ .‘ .ng)f(‘bﬁﬁ, la,t).

Combining these results, we get
e (@)d(at) = (- a)d( = 2] = 23P(2?)P(2*)
— I[f‘(a’l-t, X "G _,' f(.l 3’)1 ]Lf(llﬂs 124’7) x-ﬂf(‘z,,,, 1418)]
— A2, a2 - 2R, 2l atse) - 2t (a8, 28]
Now it is easy to prove, by rearrangement of series, that
fl—a, -b)=fla®, at?) -aflbla, a*b%),
and therefore, on reduction, we get
Hb(x)d(alh) - & - 2)d( — 2] - 28 (a®) (L)
—af( -2t —a%f( -zt —a%) - 2P - 2, a0 - 22, —2%)
=zf( = a2 - 22)[H(2®)G(a?) - 2*G(2") H(2*)].

Now the modular equation of order 11, which is usually written

in the form
«/(k)\)+'\/(k’/\’)+2 VEAN) =1,

after multiplication by ®{z)®(al!) becomes (in Ramanujan’s notation)

428 (a)d(2™) + (- ) - “)+4Jf A= ) = Sla)bla").
On making use of this form of the modular equation to reduce
the preceding result, we immediately find that
2fl - ) - 2% = af( - 2 - 2P HEIG () -G HE),

whence we evidently obtain (7) by Wrxtmg 4/z in place of z.
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To prove (8) we use transformations similar to those used in
proving (6); by applying (1) and (2) to (3) and (4), we have

P(a) + D(2F)

G(2*)f( - 2?)

_ d(z*) + d(x °°)+ 2rv¢(18)+215J/(1 Aty
G(l“)f( x?) G(x")A( - 2?)

M) (6 + 21 (- 241,

2G(x) =

and similarly

(o) ~
_ o) — o(20) . 2.1"1,’1(.1:” ~g.1:5¢(.1'9”)
H(J—’")f( “1‘2) H(2*)A( - 27)
_ 2f(-2a®)
T OA-aY)

[DL"'H 218+ 2G( - at)].

Now, for brevity, write

T(x)=G(z")H( - x) — 2*G( - 2)H ().

Applying these transformations, we have
. - 222)
f‘i = 1‘8; ;E =) T(*)
=[G(2"7®) + 2 H( = 2*)][G( - 2*) - 2*H(2%)]
+ 22 [G(21%) — 2H( = 2M)][G( — a*) + 23 H(217%)]
=[G(= 2*)G(2'7) - 2 H( - 2*)H(217)]
+ 222G (G~ 24) — 2R H() H( - 9]
- (G H() - 22G ) ()]
—2G( = 2*)H( - a*) - 2°G( - a*)H( - a*Y)].

If we write U(x) and V(a) for the functions U and V defined in
the enunciations of (9) and (10), this result assumes the form
X(=2)X(= a)X(= 22)X( = 2")T(2) =U( = a") + 22V (- a¥) — 223,
when (7) is used to reduce the latter half of the expression on the
right.

We reduce the even part of the expression on the right of the
last equation in the following manner. It is evident that

X( = 22)X( = 2)X (= 2®)X( = 2")[T( - z) = T(¥)] = 4a?,
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We can get a second equation connecting T(x) with T(-=z) by
eliminating the rat.os G(z!'): H(a''):1 from the three equations
G{2MH(z) - 2°G{(a)H(2M) =1,
G(2MH( - 2) + 22G( - x)H(a) = T(a),
G H( - 2+ G- 2 (") = 7 ey

pes
for the result of elimination is the determinantal equation
H(x), - 2°G(x), 1 =0
H(-2z), 2°G(-2), T()
2 {
_ .l _ o _|
H(-2"), G(-a"),  roemm
which, by expanding in cofactors of the last column and reducing
the result with the help of (5) and (7), assumes the simple form
42°
1- T(1)1‘(—r)+ —1—)‘((—_3—0
We now write ¢ for —2® and we denote the moduli of elliptic
functions with parameters ¢ and ¢ by &, &* and X\, A’ respectively.
From the two equations connecting T(z) with T(-2a), aided by the
modular equation of order 11, it then follows that
[X( = 29X = 24)X(~ 2#X( - #)RIT( = 2) + TP
= 4[X()X( = @)X (gMX( = ¢)]* - 16¢[X{ - ¢*)X( - *))])* - 16¢°
= 4[X(@)X( - g)X(gMX( = ¢®)PP[1 - 2/ (4ANAN) = /(& A)]
= 4[X(@DX( = X (@MX( = gV (E'\)

s [X (= g2)X( = g2
- 41X X - X (X - ST

Hence, taking square rcots and selecting the appropriate sign,

we get
X(—aHX( - a*) 5 X{x)X(x®)

T( = x)+ T() =2 T o) (— P ~ 2X( = 29)X( - 277

wnd (8) follows immediately by combining this result with the for-
mula obtained for T(-2x)- T(x).

From the equation connecting U(-2*) and V(-a*) with T(z) it
now follows that

U - 2%+ 22V( = 2%) = X a?)X( — a)X (a®2)X( - a*).

Multiply this result by the result obtained from it by changing
the sign of a? throughout; we get

(U= 2912 = 24V = 291 = X(a2X( = 22X (@)X~ 2 {X( - 24X - 2]

- ’x< - IJ)X( - 2:44)}3.

In this equation replace —at by x and it becomes formula (9).
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Finally, to obtain (10), eliminate the ratios G(a*) : 28H(z¥) : 1
from the three equations

G(z)G(x*) + 2°H(2)H(a™) = U(x),
H(z*)G(x*) - 2°G(zY)H(a*) =1,
G(2)G (%) + 2 H (2 H () = {(X(211))2,

The result of elimination is the determinantal equation
G(x), xH(x), U(x) =0
H(a"), -G{z%), 1
G(a'h), 2®H(al), {X(aM)}2
which, by expanding in cofactors of the last column and reducing
the result with the help of (3) and (7), gives
Ux)V(2) + 2 = {X(z)X(2")}?=0;
and this is formula (10).

Of the set of forty theorems, probably about a couple of dozen
are more troublesome to prove than those theorems of which the
proofs have now been given.




On the sum function of the number of prime
factors of N *
BY

S. SIVASANKARANARAYANA PILLAT

Introduction
a @ ar
Let N=P1 D2 vevenaDry
where the p's are different primes and «’s >=1. Also let
r
F)=r; F(n) = 3 am
m=1
X ) <
glx) =3 f (n); G(x)= 2 Fn).
n=1 n=1

In the paper entitled * The normal number of prime factors
of a nmumber n"¥* Hardy and Ramanujan state that by elementary
methods, it can be proved that

glx)==x log log x+ Ax+ Olx/loga),

and
G(x) =2 log log a2+ Bx+ O(x/loga),

where A and B are constants. Further. they say, * This problem,
however, we shall dismiss for the present, as results still more pre-
cise than (1-23) and (1-24) (i.e., the above) can be found by transcen-
dental methods.” In the appendix to Ramanujan’s collected Papers,
a method is indicated for the proof of the above result. In section
I, I give a simpler proof of the result. In section II, by making
vse of known results about the number of primes not exceeding x, all
the terms are found out till the error term is reduced to the order of
a/loglr, where ¢ is any positive integer. Section IIL is devoted to find
out a better result by assuming the truth of Riemann’s hypothesis.

I
THEOREM I. gla) =2 log log x+Ba+0 (a/log x).

If p is a prime, the contribution to ¢ () due to p is the num-
ber of multiples of p, which do not exceed x, that is [ux/p}, where [x]
denotes the integral part of 2. Hence,
glay = 3 [x/p] = 3 a/p + O (a/log 2),
p<x r=v

* This paper was read at the Conference of the Indian Mathematical Society held
at Bombay in 1932.

** Ramanujan : Collected Puapers,
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since there are w7(x) terms, and 7(z)=0(z/log x), a result which is

proved by elementary methods. By elementary methods it can
proved that

> 1/p = log log 2 + B+ 0O (1/log z).

p=x

Hence, g(a)=2a log log x+ Ba+ O (2/log 2).

THEOREM II. G(r)=g(x)+ Az + O z), where A=73 ;Tpl——l)'
It is easily seen that
G@)= Y [/l + 3 [ep] s
: %
pr=x p=<x72
there being /& such sums, where % =[log z/log 2].
Therefore, G(x) —g(x) =3 3 [2/p]
p<xtir
=2 2 [=/p]
FERSY
= 3 > a/p’+ O )
P=<yx
the first summation extending from r=2 to r=[log a/log 2],
=2z 3 fl‘,+1ﬁ+ ...to [log z/log 2] terms 1 + 0\ x)
r<ve LT ph J

o oo —log x/logz ;
=7 E‘{ S l'i“o D XPJ_')I')}"'O(\/I)

yE P

c e s oY sonn
lPAiE»’.r ( »( ])—1)+ O (1)) +0(Wx)

= X

- 1 . 1
= Jp-n*o° (lpsz\w m>+o(\/l)

= Aax+ O(J: X \—};)+O(\/1~)

= A x + OWx).
Thus theorem II has been proved.

Corollary. G(z)=x log log x+(A+B)x+0O(a/log x).

be
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THEOREM IIL. g(x) = 3 = (2/r) where 7 (z) denotes the number of

primes <.
If (r+1)p>a>=rp, then the contribution to g(z) due to p is 7.
Therefore,

ox) = Ex

nMd

() (+1} 'm”(x“)

Now, we shall give an alternative proof for this theorem, which
leads to an important transformation formula.

Let (x) denote the fractional part of . If»is a positive integer,

and (r+1)p>a>rp, then (;)) e "p
Therefore,
glz) = 3 la/pl = 3 afp - 3 (a/p)
p=<x p=<x p<x
.oz n—1 . x-1p )
= - - 2 2 = - 3 (a/p)
p<x P r=l x__ X p=xfn
rép\r+l

where n is a positive integer not exceeding a. Thus,

x " 1 x n-—-1 2
gla) = 3 £-3 3 LS s ees ()
pex P r=1 xlrzpzxlr+1) P r=1 xjrzpz=x/(r+1) p<xn y2

- 3 £ g S s T (_)
p<x/n P r=1 xlrzp=x(r+l) piin NP
= ‘l" ” . X ) } _ - I)
r g xin i‘?. { ( ) 7~ +1 ? é%’/" ( b
TERCRRSC
= - 4+ ez Wd - nmT\- - (.2. ,
px/n P 7 21 r n) » 2’{/" /D) (A)

Take n> a:'; then, since 7 (x)= 0 when x < 2, We have

o) = 3 7@ = § ()

r= =

g ) x
Corollary }:1 7 (xfr) = x log log x+Bx+O(log 1)

The formula A is important. It is with the help of this, that
the results in the other two sections are proved.
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The result proved in this section is this:

THEOREM 1V. If n is any given positive integer, thenr

N ) R ( &
glx)=z log log z+Ba+ax ¥ + O Iog"r)'

(= log'z
f A\ A -1 }
. =@-1 ! = £ S
where he (¢=-1)! L 1+A.+ 10 e .t G-n1J

o +1
and As = lim{ § (log n) _ (log m)“ }

m—yoo | 1 n s+1

To prove our result, we want several lemmas.

Lemma 1. If sHi = s(s+1) . — (s+l—1),

(s+I1—-1)"1
(s-1)

The result is obvious.

then sHi1 <

Lemma 2. When 0<a<(1/3,

s (’5+l—1)‘1
= sI s A -+ SH ot @7 P v =
S=H: + sHi - « ! a O( GoD1 )
By lemma 1,

S<9%¥§%¥:f1+(1+ 1) a+(1+

+1-1

(s+1-1)y7" 2 }
< %_1—)!—{1+€a+820’+ """ f

_ (s+1-1y"1 1 . )
O( G-D)1 ’, since ea<l.

sHaoy sl
Lemma 3. If s>2, then % =51
sHia _ 1 s(s+1).....(s+h-2)

h h (h=1)!

1 (s=1)s........ (s=1+n-1)
s—1 hl

For

73
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Lg% (s-1)! HuAs
Lemma 4. If M = X (S—IL'—J;_,I:SA',
s=1 a=o  (log )

2

1 gt dt ( 1 >
then M = * 120 An & (log t)l”—l +o log”x
v 2

i

Now
M = % nis ((s+/1.—1) !) . A
s=1 15=0 h! (log:r)”“‘
=”-1 ﬂ”ib (h=1+s)!
n=o0 M =1 (log x)**s
1" * 1
< ¢ dt
oy A — “+
LS A S sy O(S ) #0)
1 5. 4
L% dr 1 )
T 1,2_ Ah% (logt)**1 +O(I0g”at "
Y2
X
. dt _
since \ fog"1F = ( 1 )
v 2
Now we

are in a position to prove the theorem.
given positive integer, then

)= 4L 1 L =1 ( 1 >]_
"('1)—‘FJ[ log.x * log*x * * log"x 0 log"* 'z / |

.01 1
A9 loor . V.
st log logax+ B+ O(lo e ) .

If » is any

and

Therefore, from formula A in Section I,

“(5)-7(5)-,2,6)

r=<xlr

o e i of —
=3 Llool —+ B + ()((100‘.Z 7)>u11) ‘

5 ()2 ol )
gilw(i ! r +0 » log ®/r

Let r=[exp.(n log log x)]. Then

s x
ga)= 2 —
p=ar

H[/\_

x : log r
log log ~;Lj=log log a + log (1 = Fog%r') f
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Therefore,
N e e L _ log r)
g(2)==z log log x+Bx+a log (1 .wlog p.
r ; - - - ’
S L>_ . (i) _x
* 12‘1_r ( t L +O(_log””x>' @)
Now

z x Sof 4 ak-DY 1! oz
- 5 TG )
(lov’”] [;f'_[_tl)

= \ -
* (s 1) 1 t(log - logl)‘

34‘

n .
=z 5 -1)! L),
w 2 (#=1} Tetd (log..x (say). (2)

1
L= ,5:21 t(loga — logt)®

log ¢
log «

=——1—> § L ) where a=
(log ) ;=1 (1 —a¥F

_(logl ) lél }{1+3H‘ a+sHe a®+ - -+ oHus a7 +O(%‘1;‘l)}
by lemma 2
(Ioglx)s{gél % +105§1;- l;ﬁl l_of,‘_/ oo
R e L ]
=(lo—glﬁ{log r+A.+0 (%)4- .........
e (U - a0 () ) oS8

¥ (log t) (I s log*r
T N )

Now, rz[(log x)"]. Hence
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n—s+1I n—s
1 E sHir1 (log » 1 Ar- sHs

(log x)s? h log x (log .z)S (log z)*
h=1

Ts =

n—3s

+ 0 (r log‘x 2 ]lz: ;) ) (log L)

h=o

=R; + Ra + O (R3)+O(E;Tx)’ say.

_ 1 1 (

Rs=0 ((log )" * log® x log r) log“,r)
log x
When s$>=2, by lemma 3,
n—s+1 .

_ 1 E log 7

By, w (s- D(log z)** =-1Hz log 1)
h=o0
_ 1 f 1 _ log 7 ”’5*2}
" (s—-1D(log z)7! [(1_log r)‘“‘ 1+0 log 1)
log @

1 1 1
~ (s-1L(og x-log 7y} " (s—-1)log x)}} * o(log"x)

When s=1,
n
1 (log r)" B ( _ log 1-) 1
Ri= 2 % \log « log| 1 log x +o(log".zr)
h=1
Therefore, when s>2,
Te= - 1 _ ]
fT (s-Dllog x-logr) !  (s-1log z)!
n—s - )
1 sHr A 1
£ 4 - 3
+ (log 1)*2 (log a)" + o (log" x)’ @)
h=o
and
n—1
_ _log 7 An 4
= log(l log r) Elo )L * 0(100"1) “)
h=o

Now, from (1) and (2),

_ _log r
glx)=2 log IO”I+B”L+.L]Og(1 Tog &

+a S}il(s—l)!T.c—r»Tr(%)+0(]0_g%) (5)
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Therefore, from (5), (4) and (3),

glx)=x log logz + Bx + log (1—11%7.)
og x

r

Iog n—1 A
- log(l - ) + A
log * ;.Ezo (log z)**1

x
S (s-1)! _ (s=1! Y
T 5:22 {(S—lmog:r—logr"l (s=1)logz)t J

” n—s ;
sHa- An x
+x -1)! =
sgz (s=1) ,20 (log z)s + O( Iog".r)

X z (s-1)! x .1 1
—r xr 3 by b
Sgl 7 (logx —log 7')5+0{ T (loga/ry+1 |

n n—s
=xloglogz+Bx+ax 3 (s-1)! S sHi - An
s=1 #S0  (log x)t*s

n—-1 (s_ 1)| >
= S — +
v sZ1 (logx)s O( log"x )

X
n—1
. - dt 1
=z logi +Bx + 3 Tow 1) Tog"z
z log iog x+ Bz +Z0 Ax & (log )1 +O(log"r)
‘ 2

-
x

- satrolige)

X

X
n—2
= 1t dt a
=awlogloga+Ba+ 3 A, \ L\ dL (‘
08 208 4 * = ’ & (log 7)*1 \zlogt+0 log"x)
g o

) =

n—1

A r - Ju
= x+Br+ ¥ X
r log log x + Bux 21 (loga)

+ O(-ﬁ ), where

i A, A
== - " - o . ..
Ne=(¢ 1).l 1+A +T!+ +(ht—1)lj

Thus the proof of theorem IV is completed.

Corollary. p2<\- (;) o (1—7)*100 Py where v is Euler's constant.
= B
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Now P<-t( ) »2x 5 - g(x‘)

= x log log 1’+BI+O(F§,;‘)

{ ] ol

- 1 x log log 1‘+B;L'+
1

n—1

n

hix
log a

But, we know that

w=x (z/n)=(1- ).

St
Hence i péx(a/p)x a -1
x . 7(x) )
e nz\/:.\’(‘q‘/") i

This result is interesting.

IIX

1 (log (log 21 *

ht ( )
- 3>
=1 (log 1) log”x

(log"r) J

Throughout this section, the truth of the Riemann hypothesis is
assumed. To prove the theorem in this section, we are in need of

some more lemmas.

Lemma 5 If 1<i<<al®, then
xt — —T it
_du g n-1)!-u + O (2'?)
logu m-—l (log w)*
o a2/3 23

where n = [log_g_l:] +1.

By integration by parts,

8 du L (m-1)! u

log « % (log w)™

Therefore,

x du 1 T (m=-1)!-u

"

log u" | =1 (log u)

\ (log u)’*Y

‘,1:2/3

(6)
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/
x/t
where R=n! R w@—ﬂ-
\ 213 (log )"
. & du
1 e O
Now, R<n! mes (log 2)**?
1Y (7'—1)!11.»1' & du
= Moo u + N! PR -
[rz;. (log u)"]JIs‘s N 228 (log w)™ 11
Now, (1) oDl 12 s Sog a
ow, logn a logn.‘l J:v 1 g T,
‘7/3
and @) log 1>(Iog a2y
{3
: 1 (2
i v >(2) '
or if » <! loga/log %,
or if » <-8 log a.
Therefore, when N =[-8 log a—1],
n! x _du
R<?2 N (o ,L)n-(-l R o (|og 2N
[ du
O((log 1):1) + N! \ 213 (log w)¥H )

- -~

(a & d
" \ u_
S (log,r u)\ : \ 23 (log u)\ 1 Jase (log u)™*1

N+

3 ' s )
" B3
=0 {( 2log x ) At 5 log ;1‘) o J )

Now,

- 8log z(log# - log log x)+ & log a —-8 log a (log § ~log log x) — log

=log @ {8 log (§x4)-%3>0

Therefore,

7 N4l
- 3 5
\ R (log lf)‘” =0 ((2 log > ! 6) 8)

3 N+1 s
2 log T) S
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Then by Stirling's theorem, )
log 3<-8 logx log loga - log logz +-8 logz log(-8)+14 log loga
=8 logx + -8 logx logi - -8 logx log logz + & logx +O(1)
<logx{-8 log(-8) —-8 + -8 logi + £} + O(1)
<logz{-8 log(l ++%)--8+3! +O{1)
<logz(-8 x -2 —-8 +-84) + O(1)
=2 logz+ O (1)<<¢ loga+ O(1) 9)

Therefore, from (9) and (8),

x
74
2218 °
Again,
U )
log { %g'”'% : =nlogn + 1 logn - n+logx - n log logz + O (1)
logx log 3
< 3 log loga - 3 loga:+4 log logx
% +logx — iosgx log logxz+ 0O (1)
log3 1 log loga )
X - == - = —=—= 1
glogi{ - gl 1y o)
< $logz+0 (1)
Hence,
x
n! R _%=0(1‘%). (1n
24 (log")
o a9

Hence, from (6), (7), (10) and (11), the lemma follows.

Lemma 6. When s<loga and r -[1y]
_ |log’r _ logir+1)  log'r s log” 1y _)
L r r+1 7(I+1) r(r+1) (1+
Now,
L= (r+1) log®» - 7 log® (r +1) — log’r
»(r+1)
= 1 f s=1 ( _];) S(S‘l) s—=32 2 ( _1_)
T+ 1 -leog rlog 1+7‘ + 3T log*™?*r log 1+7' + isa
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——L~ s 3s—1 s? -2 }
< r+1 { r (log 7) + 2172 (log vy 2+ .ovuene

{2 A @) )
S RS () )
<HEF () o £

Lemma 7. If s<log z, and r=[2'), then

T logsr _ srlogsg- .
8 = ,_Zr 1(e+1) ‘O( r )

Now, by lemma (6),

log 7 ( s log s~1¢ ’
+
Y52 W

IOg' (1+ )log 1)(1+ )(1+ﬁ1)‘_li‘a":])

L T - . e e e e e,

o ( (st +2

< Jogr 1+ ) — +7‘) + - - tos terms
log’r s s\?

<= {1+(l+r)+(1+r>+ ------ }
log*r ( S\’ _ ~(s log’r

=70 1+r) *0( r )

Lemma’8. If s < log z, and r=[2'3], then

+As+ O(s ~QF Log_‘r)'
. r

R

K s+]

log®t Iog
t=1 t s+1

where As is a constant depending upon s alone.

1 {(Iog(t+1) )ﬁl - (log /)“‘1}

s _1 ,S,, s-1 2( 1
=log® ¢ log (1+ t)+ 21 log*™!' ¢ log 1+—r)+ .......

. log® log*t (i log* %t s(s-1) loge%
5 +o( zﬂ)+0 21 e YT T ot )

M 11
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] t logst log* 12
og 0( g )"'O((o_%l)t (s41C2+5:1Cs +

Iogt (log l) (!ow‘ 1 - 2‘”)

log t (2‘ logsc‘)

Therefore,
L log _ (log(r+1)p* _ . < logdt
,31 ¢ s+1 _0(2 ,EI 2

r

_ [ os < Iogst}

017 ,21 (¢ +1)
2° log® r

—As‘l‘O(S'—T ),

by lemma (7). Thus, lemma 8 is proved.

Lemma 9. If r A[.’L/] and n= [lov 1] , then

log 7
log x

1 [ log m\" 52
(log 2 ¥ L saHnosea 750 ar) Ferbine

=0(a18).
From lemma 2,

1-0( it e i;’ff)" )
=O<log51‘rxx 1001) (3—2)1 ® 3,,_15-:2
zo(T—lE! 3") Qe

Lemma 10. If r = [r%], n= [I—O%], and

»
. 1

=Y e

s 21 ¢t (log « - log 1)

I=

log 7 ”_I A
then T1= —log ( 1= log 1) o (log l);.ﬂ

1 1
and Ts = G-1) (log v —log ) ' (s—1) (log x)"}

)

n—s+3
ye

o(75")

n—s 1
1 s° An sHr, O( &%) when s>2.

+
(log @) #=o (log a)*
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Proof.
,
-1 51 . wherea-= log z
(log x)* (1 - a) log x

sHao a” s+ OS¢ $41) }

»
L S%{l’*‘sﬁ].(t"‘...*’

ﬁr.an‘s g‘ (log #)~¢
(log )" 71 t

71 ;" (log 2)*~s*1 )
T b
(log )t L ¢ , (by lemma 2)

1 1N
w(logx)s{log’+A'°+O(r)+""
» sHu_s ((log 7')"7”1 - n-s (IOg T)nq
+(lOg _r)yrs\ m—s+1 + Ans+ O((Il 8)2 —i——-‘)

_nt st 1
+O((log s (loz 7) )J by lemma (8)

1 n=s+1  H,, /log r)” 1 1S Ay sHe
h log x (log =) =, (log x)*

- (log )™t 5=

‘o gan—s 2 loz ™\, +O-[,ns*1l0g - .i_E.g_T n-s+1
r(log x)° 2 (l = sHan 1 (log 2)* \log x
h=o0

og z
(12)

=R|+RQ+O(R3)+O(R4>1 say
ool
(e ()

R3=017(10g ) (1 100— r

-o{ ;e iorr ) o v (ea) |

o {3} -ol( kg

When s>2, by lemma (3),
n—s+1

Lo 3 ()

Ri= - Dllog 27

(13

(14)
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R S 1 .,
T (s-Uogxyr il (1~ log r/log x)*71

+ O(s-lH,._s+-3(log rflog )" "2+ s Hu_s.s(log r/log 2)* s*3+ - - - ) }
1

1
= - /2113
(s—1)logz =logr) ! (s—1)log x)! +0 (1/2'59), (15)
by lemma (9).
When s=]
=3 log 7 _ log » ——
= :~—l h 10"1) = log(l logr)+0‘l/1 ) (16)

y (12), (13), (14), (15) and (16), the lemma follows.

Now we are in a position to prove our main result in this

section. We assume the truth of the Riemann hypothesis. On
the Riemann hypothesis

-~ T

T (x) = \ Toz u+O(\/J. log a),
v 2
and s Loioglogz+B+0( 1B
p<x P x

Therefore, when r= [2!/%], by (A),

=3, 5% 57 ()-m(2) -

X
=y

5, ()

J?\ L\/‘

a
r

=z log log:. + Bx+O(W xr log x)

510 2) () cken ame (- 00

= z log log ?+Br+0( 23 log x)

'[\/l

aft xf :
r ¢ y ¢ / 5
+ S au \ ( %) )
=1 \ log u log = Vo8 T

2

-
= z log log % + Bx+ _2 g l—%+0(z‘-’/3 log x)
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xft
) r
xlog log £ + Bx + S {[ (nz—l)'u
r =1

+O(x!5
m=1 (lU" )™ ] | (e )}
x[r

(by lemma 5)

85

. r ” (m~-1)1
=x log log =~ +Bx+ ¥
g log * xé[z mél log x —log ¢)"
f S _ (m=1)1
1

(Iorr x —log r™

+O(2%? log )
- 1
=x log log —’~+B:L+a, \ (s-1)I' s
s=1

171 t(log = — log {)

7
- X

(m—=1)!1 i
m=1 (log z — log » )™

O (a?

3 log )
- M)+ Ba
log «

~wtog (1-dEr), 4 f

x log log 2+ x log ( 1

(s-1)!
log x 5—2 \[(9—1) (log L'—log ryl
- (s—=1)! L (s=1)! sHs Ay
- AL LN D
(s=1) (log :J:)“‘lj v s=1 k%o (lof" )t
(by lemma 10)
n
_ S (s=1)! /8
x 21 (log z=log 1) +O(x log )
el (s=1)!
=zxlogloga+Br+a 3 —
sZ1 (log x—log »)y°
n—1 —
(s—1)! RS AL (s+h-1)!
R = e
s=1 (log a2y x S:Zl a=o M (log a)*s
_ o 1)! 5
Ij‘l(ogx-lovi)‘+o(l log a)
—1 G
—xloglongrB.):—t,} (s—N)! -
5-1(10g ay
n—1 n—nh
An "2 (h+s-1)1 x-n!
+x S Dk v 28 log
1]‘ o ! sZ1 Uoga)tts (Iog.r-—logr)“+o(l log x)
n—1 (\_1_1)
= log . - S S 4
xlog logx+Bx—x s21 (log aF
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2 (s-1)1 5T A,

. szl Ty Ar 23
+ .1,32_1 Uog 2) j20 1] +0O(x223 logx)
. @) 53
since oz z-logr) — O(2?#)
s hs 203
=xloglog x+Bx+x 21 (log T)»S—JrO(x-- log x)
s= 8 !
A, A )

where ]ls:(S"l)!{—l‘f‘Ao‘*‘_ll'P +(S—_1v)—!)'.

Thus we have proved the main result of this section, namely
the following

THEOREM. If n= []03g I] and the Riemann hypothesis is true,
then
%‘ hs F 0228
g(x) = xloglog x+Ba+a 2, (og 2y + O(2%*/% log z),
where
( Ay As. )
s=(s— f4 = ol e o ow o e 2Ol
he=(s—-1) L 1+A 11 + G-11 J "
and

A

As=Ilim

{ % (log n¥_ (log a)*1 )
m—yoo & o

-1 n s+1 J
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The problem with which this paper is concerned is the
computation of the numerical value of a tabulated function u(x) for
a value of = which is not one of the points of tabulation.

1. Lagrange’s Polynomial

The solution is simplest when linear interpolation is adequate,
that is to say, when the interval between consecutive entries is so
small, in relation to the rate at which uw(x) is changing and to the
accuracy demanded, that the principle of proportional parts can be
used. If only a few significant figures are wanted, this condition
may be attainable, but in the vast majority of cases it would imply
tables so enormous as to be altogether impracticable, and the
condition is not regarded even as an ideal.
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The principle of proportional parts may be expressed in the
form that for calculation in the interval from a« to b we substitute
for the function w(ax) the known linear functicn

Zl))__?ft wla) + %-:—Z u(b)
which has the same value as u(z) at @ and b. The immediate extension
of this principle is to substitute a determinate polynomial which agrees
with w(x) at a number of points ai, a3 - - - a@+; the polynomial of
lowest degree with this propérty is Lagrange's polynomial, which is
of degree m—1 and can be written down at once in the form

(r—a)x—a3) - - - (z—an)

(a1 =l —as) + - - (a1 - an) uler)

(2-—a)x—ay) - - - (@=—as) .
(az— a3 aa —az) - - - (a2 —an) ulaz) +
(x~a)z—as) + - - (x—an) w(an)

(an— ) an—=az) = =+ (n—an_y) *

Theoretically, this expression for the polynomial is final, but as a
formula for computation it is open to serious objections. For a
value of x with - ten or a dozen significant figures, the labour of
evaluation is immense. The terms are all of the same importance,
and all equally heavy to evaluate. None of the intermediate steps
can be shortened by means of subsidiary tables, since it is out of
the question to tabulate such a function as

(z - a))(x = a3) - -+ - (2 — ax)

(a1 = el = az) -+« + (@1 — an)
for independent ranges of values of =z, ai, a3, - - - ar. Lastly, if an
additional point «.41 is introduced, the polynomial is changed not
only by' the addition of the term with u(ax;1), but also by a modifica-
tion of each of the original terms; in effect, what is calculated is a
new value, not the change to be made in an old value, and however
little the new value may differ from the old, the work of evaluation
is as heavy as if the two values were entirely unrelated.

2. Everett's Formula

In the case of greatest practical importance, in which the
function is tabulated at regular intervals, the Lagrangian formula
can be modified. Let 2 be the interval between consecutive entries,
and let 8, ® be the fractions (x—a)/l, (b—x)/h into which a divides
the interval ab; let %ux, d'ttxy = = + - » be the even differences of u(a),
defined by i

Sur=u(x+ 1)+ ulx =n)=2u(x), *ur=3%us), .o ...
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Then Everett has shewn that the function wuaus (x) defined by
i () =Ey (@) wa = Bz (b) 22a+ Ey (P) $*cta— ... ...+ (=)" Ban () 3% e
+Eo (8) us = By (6) 3%us + By (0) 8*wv— ... ...+ (=)" B (0) 8wy

where Ex () denotes &(l-)4-d?)... ... (P=-)12r+1)! and
Ear (6) denotes the same function of 0, is a polynomial of
degree 2n+1 in 2 which agrees with w(r) at the 2n+2 points of
tabulation from a-»k to b+nk; in other words, this is the Lagrangian
polynomial, differently arranged.

Everett's formula appears completely to meet the objections to
Lagrange's. If a is between « and 0, the terms in each line diminish
in importance, both bhecause each coefficient is less than one quarter
of its predecessor and because, for any function in which interpola-
tion can be feasible, the differences also decrease. The coefficient of
& w. is a function Eu (b) of one variable &, and the coefficient of
6”us is the same function of the complementary argument 6, which
is 1-9; the range for which this function is wanted is the definite
range from 0 to 1, and therefore tables of this function can be
vrepared for use, independently of the function «(z) and the interval 4.
Also the values of x for which the differences 3%, d'w, - - - - are
required are the values for which wu(r) itself is being tabulated, and
if the interests of the user of the tables are the sole consideration,
these differences can be printed in line with the function ; in practice
this does not add to the task of the original computer, since the
calculation of differences is invariably part of the work either of
building up or of checking a table. Lastly, to include the offect of
an additional point on each side of &, we have only to add an
additional term in each line, without revising previous calculations:
each pair of terms gives the modification due to the introduction of
the corresponding pair of points. We may in fact regard the formula
as the expression of wu(x) by means of an infinite series:

w(x) = {Eu(D)wwa + Eo(0)ets} = {Ex{)o%ua + Ea(0) s} + { Ba(h)o i + 14(0)8" us}

But in spite of the formal perfection of Everett's formula,
experience in actual use makes us critical. If twelve places of
decimals are wanted in the argument, with a tabular interval of -01,
the values of 6 and © must be taken to eight places. The Everett
coefficients are not tabulated, and it is not to be supposed that they
ever will be tabulated, at an interval of -0090 0001, and on this

account alone the formula is harder™ to apply than is at f{irst

* For methods of applying Everett's iormula in such casces, sce British Associa-
tion Mathematical Tables, vol, 1, p. vil.

12
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apparent. The provision of differences adds, and sometimes adds a
great deal, to the size and expense of a published table, and yet if
they are mnot given, their computation, simple as it is. takes by no
means a negligible fraction of the time of a complete interpolation.
The convergence, though certain, may be very slow; if it was not
for the diminishing of the differences, five double terms, that is, ten
products, would be necessary to advance the accuracy by three places
of decimals, but in practice this extreme case would never be
allowed.

3. Taylor’'s Thecrem.

There is a classical alternative to the use of Iverett's formula.
Given the requisite material, the value of w(a) for an untabulated
value of x can be calculated by means of Taylor's series, which we
may compare with Everett's series by writing it in the two forms

3

LT
w(a) = wa+Ohw'at o Rt oo s

5
[
() =ws —ohw's+ 120y -
21

The product h¥u* 2 is of the same order as the difference 3 ur, and
since the Taylor coefficients tend to zero much more rapidly than
the Everett coefficients, the Taylor series has much the Dbetter
convergence. The Taylor coefficients 9" 1 are not better tabulated
than the Everelt coefficients, and even the powers 0" are not tabulat-
ed at an interval approaching 071, but the Taylor coefficients are
much the simpler for the computer to determine for himself.
Further, if anything at all is to be given in addition to the principal
function u(x), there is more satisfaction in providing a number of
the derived functions w'(z), »”(x), = = - -, which may be expected to
have an intrinsic interest, than in providing differences which are
aids to computation and nothing else. Also, as we have indicated,
we may approach u(x) by means of a Taylor series from each end
of the interval and so check the result by two computations which
are independent of each other ; it is not quite true to say that there
is only one Everett series applicable at a given point, but other series
which can be used as a check involve considerable formal modifica-
tions.

The arguments, however, are not all on one side. It is not to
be disputed that derivatives add more than differences to the burden
of producing a table. Their computation is not mechanical, and does
not serve to check the values of wlr). Also we have to remember
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that in any case only ewen differences are tabulated. For a given
degree of accuracy, more derivatives than even differences are wan-
ted ; also the »" even difference is comparable with the 2r" deriva-
tive ; for both reasons the provision of derivatives is a very much
more serious undertaking than the provision of differences. Moro-
over it is an undertaking which must be carried through completely
if interpolation by means of Taylor's theorem is the object. Kach
column of differences is an independent help towards computation
by Everett's theorem, and the compiler, if he is not prepared to give
all the differences that will be needed, can still save the user about
half the labour of differencing by giving &% alone. But to evaluate
derivatives that are not provided involves numerical work on an
altozether different scale, and to give the first two derivatives when
six were wanted would still leave the use of Taylor's theorem im:
practicable. ’

4. Osculating Polynomials.

The conclusion that for purposes of interpolation we are no
better off with two or three derivatives than with none at all is one
that we are reluctant to accept. Everett's formula replaces w(x) by
a polynomial which agrees with «w(r) at any convenient even number
of different points. Taylor's theorem replaces wu(x) by a polynomial
which agrees with w(z) as closely as desired at one particular point.
If in order to estimate the wvalue of u(x) at a point r, we replace
w(x) by a polynomial determined by the condition of agreeing with
u(x) at a given number of points, the closer these point3 are to w,
the better estimate of wu(r) we shall expect. Suppose for example
that we are given tabulated values of «(r) only, the best quintic is
likely to be the one which has the same values as w(x) for the six
points from «—2h to b+2h. Tf we are given the values of the first
derivative at « and 0, we can in effect replace simple agreement at
the most distant points @ -2 and b+2k by double agreement at the
nearest points « and b. If we aro given the values also of the
second derivative, then agreement of the third order at « and b may
replace any agreement at other points. The quintic with treble
agreement at two points may be slightly inferior to a quintic obtain-
able from Taylor's series, but it is certainly much superior to the
Everett quintic, and if two derivatives but mnot five are available, it
is well worth while to utilise the doubly osculating quintic if we can.

When we use Everett's formula we recognise only one form of
magnitude of order n, namely, the. 2t difference o"u(xz). When we
use Taylor's theorem we recognise another form, 7" WY If we
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propose to depend on polynomials of an intermediate kind, we are
implicitly introducing a whole group of intermediate magnitudes not
only of the simple forms 48"% w0 (ir), A28" 20 (x),... " 80"V (&), but
also of such complicated forms as differences between two of this
kind. The possibilities are so bewildering that we may despair of
being able to take advantage of them. If osculating polynomials are
desirable, a general formula of which Everett’'s and Taylor's are the
two extreme cases must be complicated; we could hope to deduce a
general formula from Lagrange's expression by considering the effects
of coalescence, but since, as we have already said, computation from
this expression is impracticable anvhow, we can not expect to reach
“in this way a manageable formula. We must approach the problem
differently.

5. The Fundamental Principle of Linear Interpolation.

We are saying that a function »(2) has agreement of order o
with a function w(x) at s if

ws)=uls), v PN =wT(), - T =u )
agreement of the first order is mere equality, and to say that
agreement at s is of order zero means that the functions are not
known to have the same value there. Let p{x) be the polynomial

of degree a+¥1+¥:+ ... +v,+3-2 which has agreement of orders
% Y1, Y2, . .. ¥, B=1 at a, e, 3 - - - ¢, b, and let g(x) be the poly-
nomial of the same degree which has the same agreement at
c1, ¢z, - - - o but has agreement of orders «—1, 3 at a, h. Consider
the polynomial f(a) deﬁned by
-
f(z)— 11(1)+ ()

By Leibniz' theoram

o b— Sr X - m ( _ }

mipy= — = () + - R m-13 - mlv,. -
forla)= o ) b-(z ne) 217 (2) (i),

It follows that for any wvalues of 2 and m for which both
p " x)=q " V(x) and p " (x)=qg " (x), £ (+) has the same value as
p " (x) and ¢ (). Henece f(x) has the same agreement with «(z) as
plr) and ¢/a) at ¢y, ¢z ....... ¢r; at @, although the common order of
agreement is only -1, the value of ¢'"(2) does not affect that of
f™{x) and f(x) has agreement of order «, and similarly at b, f(2)
has agreement of order 8. That is to say, f(a) is the polynomial of
degree at+rvi+ra+..v»+3-1 which has agreements of orders
2, ¥, Y, - c-¥.3ata, e, ¢ - e, b: with a unit increase in
degree, f(x) combines the agreemsnts of p(x) and ¢(x),
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To say that, if X is any value of r, then

PRy = oA g E 28 oy

O-a b—a

seems a mere tautolozy, but suggests another way of looking at the
formula. For p(X) is the estimate of «(X) formed by substitution of
pla) for w(x), and ¢(X) is the estimate formed by substitution of g(a)
for u(z). These are pure numbers, and the formula asserts that an
approximation fiX) of a higher order to the same required value
w(X) is calculable by linear interpolation between p(X) and ¢(X),
provided that the polynomials p(x), ¢(a) from which p(X), ¢{X) are
implicitly derived, have the necessary measure of common agreement
with w(ax).

This is the principle whose application it is the purpose of
this paper to describe, and we deal first with problems in which no
multiple agreement is postulated, and then with more general
problems. In each division of the paper we begin with the simplest
cases.

6. TIterative Computation of Lagrangian Approximations.

From two values ua, us of w(2) we have one first approxi-
mation L to u(X). given by

buj 2(‘_//
et S S J
Las b= U ml

This is the value at X of the linear function /w () which agrees
with u(r) at « and b. If we are to combine with Lw a different
first approximation, the latter must come from a linear function
which agrees with w(x) at one of the two points a, . If this
second function is /ic (a), the corresponding first approximation L.
is given by
c- X=-b

up+ ~— — e
c-b """ c-bp O
and from Law and Lic we have an approximation Mame of the second
order; the points at which /lw (2) and 7w (2) differ being « and «,
we have to interpolate between L and Ls by rezarding X as
belonging to the interval ac:

c=-X X-a

Maie= ~— Lav+ =
c-a

c—ada

Lic=

Lue.

Similarly a fourth tabulated value s gives another first approximation,

d-X X-c
Lei= f] :'C‘ e+ {‘ZT; Ud,y
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another second approximation,

d-X X-0
M vea = 10 Loe+ J-0 Lici,
and an approximation of the third order,
f =2 -
Noabei = = Mane + Z—a Mica.
d-a d-a

It follows from our fundamental theorem that the number N is
precisely the value at X of the cubic which agrees with u(x) at
a, b, ¢, d.”

More generally, the value at a of the polynomial of degree
n which agrees with «/1) at n+1 distinct points is obtained by a set
of tn(n+1) linear interpolations. We have already remarked that
computation from the explicit expression for this polynomial, as
given by Lagrange, is laborious if not impracticable. Linear inter-
polation, however, is one of the most rapid of numerical operations.
What is required for computation is a process; whether or not a
general formula corresponds to the process is irrelevant.

‘It is seldom in mathematical tables that the interval of
tabulation is irregular. There are nevertheless two imporlant pro-
blems which are solved when a practicable process for effecting a
Lagrangian interpolation is known, and in the next two sections we

deal with them in turn.

7. Inverse Interpolation.

To find the wvalue of a for which n{x) has a given value U,
all that is necessary is to regard & as the function of w which
acquires the values a, b, ¢, . . when « has the values ua, w, ey . ..

An actual example will shew the manner in which a scheme
of interpolation is conveniently arranged. The positive root of the

equation ~

AT+ 284t -480=0
is easily seen to lie between 1-9 and 2; the trinomial .."+28x*-480
can be tabulated as a function wu(x) of r, and the evaluation of the
root is the determination of the value of @ for the value 0 of .
The first step is the calculation of a number of values of u(x):

U, = «(1-90) = - 2571402 61000
Uy = «{1-91) = - 14-62541 67393
Uz = u(192) = — 3-30746 39222
Uz = 2(1.93) =+ 824394 35400
Uy = u(1-94) =+ 20-03258 30120
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We now think of z as the function of « whose values are given by
2(Up) =1-90, and so on. Considering 0 as a point U in the interval
from U, to Uy, dividing this interval into the [ractions

3-30746 39222 11-55140 74622, 8-24391 35400/ 11.55140 74622
that is, -28632 5622, -71367 4378, we see that the corresponding linear
approximation X,; divides the interval from X; to X5, that is, from 1-92
to 1-93, in the same ratio; thus this first approximation is given by

The central interval is flanked on one side by the interval
from U; to Uz; U divides this interval externally, into the fractions
14-62541 67393/ 11-31795 28171, - 3-30746 39222/ 11-31795 28171,
that is, 1-20223 1641, - -29223 1641, and the corresponding linear
approximation X, which divides the interval from X, to X in the

same ratio, is given by
Xi12=1-92292 23164 1.
The iinear functions aas(w), a1:(e) to which the approximations
X, Xi2 are implicitly related both agree with the function .(«) for
w="Uy; the first of them agrees with a(ux) also for «=TU; the second
also for w="U;. The quadratic function a2 () defined by
w—-U; Us—u
X123 R e _'n-;( - QL2
a1as(w) U, s, u) + 7o U, via(u)
therefore agrees with a(u) for the three values U, U, U, and the
value X of this quadratic function for the value U of « divides the
interval from X;; to Xy in the ratio in which U divides the interval
from U; to Uz Since in fact U divides this .last interval into the
fractions
14.62541 674 / 22-86936 028, 8-24394 354, 22-86936 028,
that is, 63952 02, -36047 98, we have the quadratic approximation
Xy = Xg + -36047 98 (X3 - Xas) = 1-92288 45465 5.

To obtain a cubic approximation we must find a second quadratic
approximation, and this in turn requires a third linear approximation.
Taking the interval from U; to Uy, which flanks the central interval
on the other side, we have for the fractions into which this interval
is divided at U the values

—-8-24394 35400, 11-78303 94720, 20-03298 30120/11-78903 94720
that is,—-69928 8823, 1-69928 8823, and therefore
X=X = -69928 8323 (X, - X;)=1-92300 71117 7.
The fractional divisions of the interval from U, to U, being
3-30746 322/ 23-34044 693, 20-03298 301’ 23-34044 693,
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that is, -14170 41, -85829 59, we have
Kage= Xan+-14170 41 (X3 — Xo3)=1-92288 36411 3.
The two quadratic approximations Xya3, Xg3¢ agree as far as the
fifth place of decimals. To find the cubic approximation Xja, we
have to interpolate between X and X, or more simply between
X3 —1-92288 and Xa, —1-92288, in the ratio in which U divides the
interval from U; to U, that is, by means of the fractions

14.6354 / 34-6584, 20-0339 / 34-6584; thus

X3 =1-92288 41644 7.

The cubic approximation now found utilises completely the data
on which its value ultimately depends, namely, the values of Uy, U,
U, Uy it is the value for #=0 of the cubic a1zdw) whose values
for U, U,, Us, Uy are 1-91, 1-92, 1-93, 1-94. To improve upon it we
take into account the value of U, with the corresponding value 1-90
of X,, and we find in succession

14-62541 67393

X = X+ ‘1'1’_0'88’60 93*6(')5(}(1 - Xn) =1-92318 95850 5,

3-30746 39 .
ﬁ;m(}(m - X,2)=1.92288 28643 7,

8-2439
Kinas = X]i:\—gﬁ)sso
The two cubic approximations agree to the seventh place. Inter-
polating between the concluding figures 3842 and 6447 with the frac-
tions into which U divides the interval from U, to U, we have an
approximation of the fourth order, 1-92288 41530 6 which is in fact
correct to the ninth place. The complete scheme of approximations
is best shewn in the following form :

19 2 288 41
- 25-71402 61000 0

N

erz = Xlg =

(X125 — Xino) = 192288 41384 2.

318 95860 5
- 14-62541 67393 1 28643 7
. 292 23164 1 394 2
- 3-30746 39222 2 45465 5 530 6
286 32562 2 644 7
+ 8-243Y4 35400 3 36411 7
300 71117 7
+ 20-03298 30120 4
The positive root of the equation x4 28x"! - 480=0 was calculated by W, B. Davis
by Horner's method to 42 places (Educ. Times Reprint, v. 7 11867) p. 108). The evalu-
ation was used as an example of inverse interpolation by fcrmula by Whittaker and
Robinson (Calculus of Obseruvations, D 61) and adapted by Aitken Prec. Edinburgh Math.
Sec. Ser. 2, vol. 3. p.71) to illustrate the process of iterative linear interpolation  Aitken
however worked from one end of his range, and his scheme consists of the approxi-
matiens which in the notation of this paragraph arc
Koy Xaer Xouy Koss Xoiw Kosur Xor1 Xiramr N1zt Ky )
The final approximation is necessarily the same, except perhaps for an accidental
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figure retained, but the approximations in earlier columns do not cluster round the limit
as closely as in the scheme used here, and a scheme which cent!res on the tabular points
nearest to the required value of the independent variable avoids the necessity of consi-
dering, Fowever roughly, the relation between the points used and the accuracy to be

-~ attained ; the construction proceeds automatically, and since the tip of the triangle is
always reached by interpolation in the strict sense, not by extrapolation, the possibility
of unsuspected fluctuation is removed.

8. Bridging.

The conflicting interests of the producer and the user in the
matter of the interval of tabulation are often best reconciled by
adaptability in the interval. That an interval as small as -01
is necessary in one part of the table, is no reason for using
this interval throughout if 05 is usually adequate. But the change
of interval introduces anomalies in regard to interpolation mnear the
point of cbange. Suppose that eighth differences are to be allowed,
and that the interval is to be -01 for values of « from 0-00 to 2-00,
and -05 for values from 2-00 upwards. It is of course possible to
treat the two parts as independent tables, and to interpolate near
=200 in the same way as near the heginning or end of any other
table. If central differences are being used, this implies that the
compiler must calculate the function for the values 2-01, 2:02, 2-03,
2-04 in order to be able to provide u(2:00) for interpolation bhetween
1-99 and 2-00. The differences at 2:00 for use between 2-00 and 2-05
correspond to the larger interval, and come from the values 1-80,
1-85, 1-90, 1-95, 2-00, 2:05, 2-10, 2-15, 2-20, 2-25 of a; the first four of
these are already available in the lower table, but it is manifestly
absurd to accept the slow convergence due to these distant values if
the values at no fewer than eight other points between 1-95 and 2:05
are known, explicitly or implicitly. If backward differences only are
used between 1-95 and 2-00, the compiler has not to calculate any
auxiliary values of u(x), but for a value of @ between 1:38 and 1-99
the interpolator is using the values of u(x) at 1-90 and 1-91 instead
of the values at 2-00 and 2-05.

To meet these difficulties, Pearson, a powerful advocate of
large intervals, gives ¥ “ bridging formulae,” with numerical coeffici-
ents, for a number of the most useful ratios of the two intervals.
Not merely are formulae required for the intervals immediately on
the two sides of the boundary, but each interval in which any values
from across the border are to be utilised requires its own formula.
Iterative interpolation replaces each formula by a scheme of
coefficients.

* Tracts for Computers; 1L
M 13
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For example, in the case imagined in the last paragraph, if
we denote by 6 and & the fractions 100 (X -1-98) and 100 (1-99 - X)
into which X divides the interval from 1-95 to 1-99, the scheme is
as that given on sheet I (page 99)- The structure of this scheme is
evident, and it is hardly worth while to record for reference the
many variations that may occur.

9. Iterative Linear Interpolation with a Regular Interval.

In inverse interpolation and bridging, we are applying iterative
interpolation to cases in which the interval is irregular. But even
for a regular interval, the process is not subject to the same critic-
isms as direct substitution in KEverett's formula. The burden of
printing differences is avoided altogether, and no subsidiary tables of
coefficients are wanted, so that, whatever the number of figures
involved, the full value of the argument is used throughout. The
convergence takes place, so to speak, under the computer's eye, and
the arithmetic is subject to an automatic check. The actual scheme
of coefficients is shown on sheet II (page 100).
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Each approximation when computed finds its proper place in a
corresponding scheme; the number is to be found at the vertex of a
triangle which contains just those lower approximations which are
used in the course of its calculation, and the base of the triangle
contains the tabular values on which the approximation actually
depends. The approximation can be identified by the arguments at
the extremities of the base; if these are « — mh and b+ nh, we denote
the approximation by Uw, « Either m or n may be negative, since
a=mh is identical with & —(m+1)n. It is important always to
remember that Uu.. is a perfectly precise number, namely, the value
at X of the polynomial of degree m+n+1 which agrees with w(x) at
each of the m+n+2 tabular points from a-mh to b+ nh. Since X
divides the interval from « - mh to b+ nh into the two parts (m+0)h,
(n+ ®)h, the approximation U, is derived from adjacent approxima-
tions of a lower order by the formula

(n+D) Unmpna + (m+8) Un_y, »
me+ o+ 1

U =

a particular case of the general formula of §5,and if to this we add
the initial condition

Uniyetmry = wla— mh)

the whole table is implicit.

To illustrate the uncanny convergence of a regular scheme,
we may take the function log, cosh x, with which Whittaker and
Robinson (l. ¢. p. 41) and Aitken (Marh. Gazette, v. 16, p. 21) use the
values from 0:360 to 0-370 at interval 0-002 to interpolate between
0-364 and 0-366. Aitken's argument is 0.36536 6, implying 6 =-683,
b=-317. The scheme of approximations, guarded by a digit in the
thirteenth place, is:

0-02 836 4619 69
0-362 785 52378 05
37425 554
4 815 73796 65 5 654
47847 538 0
6 846 10474 38 7 965
43017 164 49

8 876 62389 89 3504

22977 164 = PN
70 907 29521 80 ol %
i@aker and

the simple

\Le2-bo

The required value is therefore 0-02836 46196 97,
Robinson evaluate the function for . =0-3655.
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values =%, & = I the approximations can be computed in a few
minutes. Omitting the column of tabulated values, the scheme is:
0-02838 4987 557
39860 600
4 404
31304 948 2
6 406
47495 502 . 0
3 064
28475 002 .

In each case the value, to the twellth place, is given without the
use of the entry for 0-389, which must be introduced, although it is
superfluous, in any process which depends essentially on an even
number of tabuiar values. If the two five-point cubic approximations
had not been so close in our schemes, the elements derivable from
another entry could have been added without any modification of the
work already done.

For a more elaborate example, the reader may use the data
given in the next parazraph to evaluate Si 22-12742 983. The
calculations can be checked, for the scheme of approximations given
there consists of alternate columns of the scheme produced by
straightforward application of the scheme of coefficients set out in
this section.

10. Quadratic Interpolation.

If in the formula for U..» we substitute for U.,»-1 and Um-1n

their values in terms of Umu-a, Uw-t,ea and Uw-1,501, Unm-z,»
respectively, we have
Uy n =

(n+ )N -1+ U, na+ 2+ D)+ 0 Uncy,nna+(m+0) (i =1+6) Uy, »
(m+n)m+n+1)

a formula for quadratic intarpolation, by which we can miss out
alternate columns of the schems, and reach an approximation of
assigned order in fewer steps. Similarly by substituting now for
Uy nezy Un-r, n1, and Umes, » we ecan find a formula for cubic inter-
polation and advance by steps still longer. This process can he con-
tinued, and at length in any specific case we have a formula expres-
sing Um,n in terms of the tabular values from Uu,—cmis t0 U_niry »
that is, from w(a—mh) to w(b+nlk), a formula which can be nothing
but a version of Lagrange's polyuomial, adapted to the special case
of. the regular -interval. Iterative linear interpolation and the single
formula are seen as the extreme members of a chain of methods of
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reaching what is ultimately the same result. But at each change
from one method to the next, the complexity of the coefficients neces.
sarily increases, and as the number of steps is reduced, more time
is needed for the construction of the formula and for the computa-
tion of the coefficients, and less of the work that is done is of any
use in the calculation of any further approximation. The most eco-
nomical method may well be uneither at one end nor at the other of
the chain. Experimental evidence is wanted, but since the effect of
complexity in the coefficients seems soon to be overwhelming, cubic
interpolation is probably not worth consideration. Quadratic inter-
polation does deserve a few words. The scheme of coefficients is
given on Sheet ITI.

In this scheme the first approximation shewn opposite w(a = #k),
for example, is calculated as
H1+0)0ula—-2h) —(2+ 6)0ula— 1)+ {2+ 6)(1 +6)ul(a).
The last two approximations indicated are Uy, ; and U, ;. and these
may be combined linearly to give the approximation Uy,

This scheme is much simpler than is at first apparent. In the
first column, the set of coefficients
s (3 0)(2+0), H2HO)N(1L+6), H1+6)0, —1i6b, Lbll+)db,

HL+ )2+ ), L2+ D)B+b)... ...
which it will be convenient to call the fundamental set, occurs twice.
Now the differences correspording to this set are simply

e =(2F0), —(140), -0, b, (1+b), (2+D),......

and therefore when the product 16% has been found, the fundamen-
tal set can be written down very quickly. In succeeding columns
occur these same numbers, divided in the second column by 6, in the
third by 15, in the fourth by 28, in the fifth by 45, and so on, and
displaced upwards or downwards in the column. Thus two of the
coefficients in each group of three are found without trouble, and
since the sum of the three coefficients in each group is necessarily
unity, the missing coefficients can be inserted without reference to
any formula.

An example which has been used elsewhere® to illustrate
other methods is the evaluation of 8i X for X =2212742 983, from
values of the sine integral Si x at interval 0-2. With this interval

0 =:63714 915, & =-36285 085, 104 =-11559 5055 ,
and the fundamental set of coefficients is

......... 843300 1545, 4-79585 2395, 2-15870 3245, 0-52155 4095,
-0-11559 5055,

0-24725 5795, 1-61010 6645, 3-97295 7495, 7-33580 8345,

* B. A. Tables, I, p. x; Aitken L c.p. 62.
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The scheme of coefficients is therefore as follows:

21-2

f 4-79585
—12-22885
1 843300

f 2-15870

- 5-95455

l 4-79585
0-52155

{— 1-68025
2-15870

[— 0-11559
22-0 l 0-59404
/

1

[

\

f

1

f

L

-4

0-52155
0-24725
0-86833

- 0-11559
1-61010

1 — 0-85736
0-24725
3-97295

- 4-58306
1-61010
7-33580

. —10-30876
3-97295

23-0

where the middle coefficient in each. set operates on the
immediately to its left in the scheme of approximations,

2395
3940 ~
1545
3245
5640
2395
4095
7340
3245

5055
0960
4095
5795
9260
5555
6645

5795 J

7495
4140
6645

8345
5840}
7495

0-08692
-0-49242
1-40550
0-01926
—0-21995
0-79930
0-04120
0-59900
0-35978
0-26835
0-64472
0-08692
0-66215
0-35710
—0-01926
1-22263
-0-26384
0-04120

568
594
026

584
711 ~
873

930
683
387
117
315
568
958
626
584
472]

402
930

0-01648
0-42132
0-56220 I
0-10734
0-57294 >
0-31972
026485
0-59123
0-14391 §
0-48905 |

0-47618 -

0-03477 J

105

0-142 1
0-557
0-301
0-262
0-567
0-171

number

and the

flanking coefficients operate on the approximations above and below
this one. The scheme of approximations so constructed is as follows:

1-

61

60225 21386

60822 85319 651
61260 93649 582
61525 24777 566
61608 37366 566
61510 35866 566
61238 32456 569
60806 11397 601
60233 62873 701
59545 94323

44197
54480
86534
86247
03923
46189
50598
12547

SO0 w oW

566

49625
56097
56640
55766
57819
43302

56 299

296
302
293
310

WO W o VUt
[l =

M 14
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The column on the left contains the tabular values from
Si 21-2 to Si 23:0, and the elements of the other columns are evaluated
in succession by the operations shewn in the scheme of coefficients;
for example,

0-26486 x 56640 5+0-59123 x 55766 9 +0-14391 x 57819 2=56293 6.

The figure in the eleventh place serves only as a guard.

As will be understcod from the detailed account of the calcu-
lations in § 7, the scheme of operations and the scheme of approxi-
mations are developed together, each from the centre outwards. The
first numbers to be calculated are the three terms nearest the centre
of the fundamental set of coefficients. From these are found the
two groups of coefficients which are to operate, one on the group of
functional values for the arguments 21-8, 22-0, 22-2, the other on the
group for the arguments 22-0, 22-2, 22-4. The operations are then
performed, giving the central elements in the first column of approxi-
mations. These elements agree as far as the fifth place, and since
a closer approximation would be obtained by interpolating lirearly
between them, we can safely assert that the required functional value
is between 1:61566 and 1-61567. Assuming that we need greater
accuracy than this, since otherwise we should not be working to
eleven places of decimals, we must compute two more of the funda-
mental coefficients, one on each side of those already known. We
then write down the group of coefficients which is to operate on the
functional values for 21-6, 21-8, 22-0, and the group which is to
operate on those for 22-2, 224, 22-6, and we perform the operations
indicated. Inspection of ‘the fowr approximations which are now to
be combined in groups of three shews the number of decimal places
to be retained in the coefficients operating on these groups, and the
next step is to write down two more groups of coefficients, the central
groups of the second column of the scheme of coefficients; four of
the six coefficients in these groups come from the first column by
division by 6, and the groups are completed by subtraction from
unity. The central elements in the second column of approximations
follow, agreeing to the sixth place; these would suffice by linear
interpolation for the determination of the seventh place, but nothing
is gained by an interruption at this stage.

11. Iterative Computation of Osculatory Approximations.

The only first approximations of which we have as yet made
use are those obtained by linear interpolation from the values of
u(z) at two distinct points. Developments from this basis are given
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by Aitken, and but for the remark that quadratic steps are impossible
except in a certain symmetrical case one would have thought that
the substance of the foregoing sections was already implicit in his
article. However this may be, when we incorporate into a scheme
of approximations values given by polynomials which have multiple
agreement with w(x), that is, which are partial sums of the Taylor
series for u(ax), we are definitely breaking fresh ground. The closest
linear approximations of this kind, if X is in the interval « b, are
e+ (X —a)u'a and w—(b—-X)u'v; regarding these as determined by
contact at ¢« and b respectively, while La is determined by inter-
section at both « and b, we naturally denote these Taylor approxi-
mations by L. and L or, turning the suffix into an argument for
typographical convenience, by L(e®) and L(#%). Since they have no
common basis, the approximations L and Li» cannot be combined
with each other. But each of them can be combined with La by
the elementary formula, and so we have two approximations of the
second order, M(a®h) and M(ab®), given by

oy 0Ky L KT
M(a?h) = b a L(a?) = b~ L{ab),

n_ b-Xo, X-a -
M(al?) = b_aL,ab)+ b_aL(b ),

which are distinct from the three-point quadratic approximations.
From these alone we can derive the cubic approximation given by

N(awt) =272

M(a®) + " M(ab?),
b—a

and we can also combine either of them with awny other quadraiic
approximation with which it is already in double agreement. We
have, that is to say, if ¢ is distinct from both « and b,

N(a?be) = %M(aﬂb) + }E{—}: M(abe),

2pe) = ET M () 4 0 2
N(u?be) = C_bM(tb)v C‘_})M(ac),

and also

Niat?e) = XM (b?) + 22 M(abe),
c—-b c—b

N(«bie)= E——)EM((JI)Q) + X-a M(b%).
c-a c—a

It is to be observed that N(a%c) and N(ab®c) are perfectly definite
numbers, the values at X of two special cubics; we have in each
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case two formulae for computing the same number, not two numbers
which we are denoting by the same symbol. In practice there is -
never any difficulty in seeing which line of approach to any parti-
cular approximation uses the smallest fractions and is therefore the
most efficient. If b is between a and ¢, we use M(abc) rather than
M(a%) to determine N(a2c), and M(b%) rather than M(abc) to deter-
mine N(ab’c).

In terms of the values of the functicn and its first derivative at
the three points a, b,¢ only, the approximation of highest order
is the value at X of the quintic which has the same value and the
same derivative at the three points. The cubic approximations
N(a®b?), N(abc) give the quartic approximation P(«*?%), the cubic
approximations N(ab%), N(b%?*), give the quartic approximation P(ab’c?),
and the quintic approximation required follows from these two quartic
approximations; the last three interpolations all utilise the same
fractions, namely, the parts into which X divides the interval ac.

Often we shall know the same number of derivatives at every
tabular point, but the use of a derivative at one point is entirely
independent of the use of a derivative at any other point. If for
example it happens that s is not known, or that we have reason to
suspect that the value given is not reliable, we can still obtain the
quartic approximation P(a®¢?), from N(a®bec) and N(abe?). Or if w'(x)
is tabulated at a wider interval than wu(x), or for only part of the
range of the table of u(x), we can still utilise such values of w'(x)

as we do know.

When the second derivative is tabulated, quadratic Taylor approxi-
mations of the form M(xu%), that is, e+ (X —a)w'a+ (X —a)® u’«, become
available. The approximation M(a?) is independent of any approxi-
mation found by interpolation without the use of second derivatives,
and it combines with M(a2b) to give N(a®%). There is no direct combi-
nation of M(a?®) with M (abc), but when each of them has heen com-
bined separately with M(a%), giving N(a?) and N(a®bc), the last two
approximations give by linear interpolation the guartic approximation
P(a*hc). The approximation Q(a?3c) uses in addition to the values of
u(z) at a, b, ¢, the values of w/(z) at @ and & and the value of u'(x)
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at b. The Taylor approximation L{a?), L(b%), M(b?) must be computed
directly :

Lia®) = wa+ (X = a)it's, L(6*) =us— (b - X)u's,

M(6%) = L(6%) + (b - X)2u" ;
the remaining elements in the scheme of approximations
\

L(ag)\ M(a%)

\L((tb)

/ M(ad?)
l,/ e >N (abz’)\\

L{6%) — M(2?)

. )
M(b%c
L(be) — e -

N(a®?) _
\P(ugbs)
Q(u?bic)

P(abc)

Up

N

N (b%)

Ue

are found by linear interpolation. If the scheme is built up in the
most natural way, each interpolation is performed on adjacent
members of a colummn, and the fractions required are the parts into
which X divides the interval from the first point involved in the upper
symbol to the last point involved in the lower. If in a particular
case P(a%?) and P(ab®:) differ so much that we are doubtful whether
Q(a?h®) is sufficiently accurate for our purpose, we must invoke an
additional datum, which may take the form of the value of wu(x) at
another point or of the value of another derivative at one of the
points @, b, c. For example, given u’%, we calculate M(a3) as
L(a?)+ (v - a)®u’s and add to our scheme, without disturbing the
results already incorporated, the approximations M(a3), N(.3),
P(2*6?), Q(¢®®); or given u’c, we calculate L(c?) and then add M(hc?),
N(b%c?), Pb3%c?), Qlab’c?).

To give schemes of coefficients hardly accords with the
emphasis we are placing on the adaptability and simplicity of the
iterative process; it is literally more trouble to verify the position
of an approximation in any scheme than to write down the coefficients
required for its calculation by mere inspection. If we give on sheets
IV and V schemes for the case of a regular interval, firstly when the
function and its first derivative are tabulated, and secondly when the
function and its first two derivatives are tabulated, the object is
rather that the reader by examining them may become confident of
the principle involved than that he should rofer to them in carrying
out a particular interpolation. The notation is that of § 9.
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Since each of these schemes ends in an approximation of the
eleventh order, further extension is of formal rather than practical
interest. In practice we regard the schemes as ending in two
approximations of the tenth order; if these two do not agree to the
order of accuracy required, either a mistake has been made in the
computation or the interval of tabulation is really excessively large.
As to the structure of the schemes, the pairs of fractions are the
same as in the earlier scheme, since always they are only the parts
into which an interval between tabular points is divided at X, but
whereas in the simpler scheme each pair figures only once, these
schemes are so to speak tessellated, and each pair occupies the whole
of one diamond.

In irregular schemes, in which derivatives are not available to
the same order at levery tabular point, there is the same kind of
tessellation, but the tiles are not equilateral. However irregular the
interval of tabulation, and to whatever extent the number of deriv-
atives computed may vary from point to point, it is always mnatural
to build up a scheme in which each element utilises all the data
available for values of x between the smallest and the largest on
which that element depends, though not necessarily all the data for
the extreme values themselves. In other words, the fullest use is
made of the data at points of any interval before that interval is
extended in either direction. Thus if s is known, and b is between
a and ¢, the scheme does not include M (abc); it includes M (ab®)
and M(b%), and it is from these, if «’» is not given, that N(ab®c) is
found. In a scheme of this kind, the number of available derivatives
at any point is shewn at once by the number of Taylor approxima-
tions that begin the row corresponding to that point, and each
approximation is adequately specified by the multiplicities at its ends,
without explicit reference to intermediate multiplicities. For example,
in relation to the first scheme of this section, U (m, n) denotes the
approximation of order 9(m+n)+1 which is the value at X of the
polynomial of degree 2m+n)+1 determined by intersecting u(x) at
a—mh and b+nh and touching u(2) at the m+n intermediate tabular
points ; similarly U(n®, n), U(m, n?) are of order 2(m +n)+2 and come
from polynomials which touch u(x) at a—mh and b+ nh respectively,
while U(mn?, n?) is of order 9(m+n)+3 and corresponds to the polyno-
mial which touches u(xz) at every tabular point from a=mh to b+nh
inclusive. These four approximations are all computed from lower
approximations by interpolation with  the same fract%ons
(n+ &)/ Gn+a+1), (m+0)/(m+n+1), since in each case the fractions

wanted are the parts into which X divides the interval from a—mh



Iterative Interpolation 113

to b+nh: the lower approximations are: for U(m, n), U(m ~12, 2) and
Ulm, n=12); for U(m, n), Ulm, n) and Umd, n-1%); for Ulm, n®).
Ulm - 12, %) and Ulm, n); for U(md, n?), Ulm, n?) and U(m?, n). The
apparent lack of homogeneity is due to the variation in the number
of suppressed symbols; in U(mn, n) there are m+n of these, and the
total order of agreementis 1+2(m+n)+1; in U(m —12, n), the m+n -1
suppressed symbols imply a total order of agreement of
2+2(m+n-1)+1,and for U(m? n ~1?%) the total order is 2+ 2(m+n—-1) +2.
Similarly if second derivatives are available throughout and the
interval is regular, the scheme is constructed of Taylor approxima-
tions together with approximations of the form U{me, n7), p,0=1, 2, 3;
there is agreement of order p at ¢ —wh, of order ¢ at O+ nh, and of
order 3 at every intermediate tabular point. The fractions for inter-
polation are the same as bhefore, and the lower approximations from

. . . -1 g TR
which Ul(mp, ne) is derived are U(n' ,2") and Unf, »” '), if p and o
are both greater than 1; if p=1, m must be replaced by (1« —1)% it
1 —
o=1, 2" by n-1%

12. Two-Point and Three-Point Interpolation.

One special case of iterated interpolation is particularly simple.
Suppose that the values of n derivatives are known at both « and b,
Without using values elsewhere, we form the three linear approxi-
mations Ul(a?), U(ab), U(?), the four quadratic approximations
Ula®), Ua), Uab?), Ub?), and so on, until we have n+2 approxi-
mations U(."), Ula'd) ... ... vee , U Y of order n. From these,
without further reference to tabular values, we can still form sets of
higher approximations diminishing in number; the n+1 approxima-
tions U(u*'b), Ula™?), ... .. ... , Ula b""') are of order n+1, the n
approximations Ul(e*"1?), Ul(a"d?) ... ..., Ule*""!) are of order n+2,
and at length we have two approximations, U(a"''0"), U(a"b"'), of
order 2n, and a single approximation U(e""! 2*°1) of order 2n+1.
Since the same pair of fractions &, 6, is used throughout these
interpolations, we have in point of fact

Ul ") = Y Ula? Y 4 (lli*‘ 1){/,:.6 Ula'b) + (il ;’ 1)4)"”6.'2 Ul 12) + -

the coefficients being the binomial coefficiente. But this identity is

not an aid to computation: on the contrary, to compute the value of

an expression of the form appearing here, iterative interpolation is

certainly the best method. It is interesting to compare the construc-

tion of U(a** ") with the use of Taylor's series alone. To find a

Taylor approximation of order 2n+1 we require derivatives of the
M 15
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first 2n+1 orders; moreover, to obtain a check on the computation
it is necessary to work independently from the two ends of the
interval, and only one of the two fractions 8, ¢ can be less than 14.
Only the first n derivatives are wanted if the approximation is
continued by interpolation; the product 6"*'@"*! takes the place of
%2 or $M*2 in governing the accuracy of the approximation, and
8d cannot be greater than +; also a check on the arithmetic is
afforded by a comparison of the two penultimate approximations
U("*0"), U(a"b"'). As a numerical example, take a function which,
with its first two derivatives, is given as follows:

ua=0-86602 54 u'a=0-13089 97 u'a=0-05935 61
us=0-96592 58 w's=0-06775 87 w'y=0-06620 32
and let 6= -75392 59, ¢ =-24607 41. The scheme of values is
0. 9 47 2
86602 54 6471 43 84 52 7 87
09 38 5 99
4134 29 5 38
30 60 6 21 6 00
96592 58 4925 21 7T 78
whence u(X)=0-94726 00. The function is in fact the sine, with
a=60°, b="175°, X="71° 18" 32"; second derivatives give seven-figure

accuracy with a 15° interval.

The same function furnishes a striking example of three-point
interpolation with second derivatives. Among the tables in the
British Association volume is one giving sin x and cos a to 15 places
of decimals with x in radians at an interval of 0-1, and it is ex-
pressly said in the Introduction that this table cannot be interpolated
to its own order of accuracy by the ordinary process. Indeed, 12th
differences would be necessary, and then there would be no check
on the result. Alternatively, Taylor's series could be used, taken to
the 9th or 10th derivative. But the required order of approximation
is attainable by means of the first two derivatives at three points
only. The whole process involves the calculation of three quadratic
Taylor approximations, followed by 27 linear interpolations, with 3
distinct pairs of coefficients each used 9 times. The work is com-
parable with that of interpolation from 8 tabular values, which
involves 28 linear stages, no two of which have the same pair of
coefficients, and it is well within the range of practical use of a
table. The reader who will take the trouble to work out a typical
example can hardly fail to be amazed by the complete invisibility of
the regularity which must exist in the numbers to account for the
convergence of a scheme.
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From
sin 38-1=-39023 62353 07945, sin 38-2=-48020 47804 38257,
sin 38.3 =-56537 52781 37025
cos 38-1=-92071 47661 74999, cos 38.2=-87715 64107 06919,
cos 38-3 =-82483 37933 32416
I find sin 38-24=-51489 75686 74725, and from

sin 37-6= —-09894 96575 59291, sin 37.7= +-00088 81568 05715
sin 37-8 = +-10071 70969 92503
cos 37-6=+-99509 24405 65539, cos 37-7= +-99999 96055 88666,

cos 37-8=-+-99491 51051 08673

I find sin 37-74=-04057 67647 89390.- The scheme for the latter
example is anything but typical, but it is delightfully instructive ;
throughout the range from 37-6 to 37-8 the even derivatives are small
compared with the odd derivatives, and it follows, as will be under-
stood from §14 below, that the convergence is spasmodic; actually
the numbers of digits ascertained in the several stages are 2, 0,4,1,
3,0,5, and the eighth stage is not reached, there being 15-figure

agresment between the two approximations of the seventh order.

For another example, let us compute again the value of Sj x
for x=22-12742 983, the function Si x being tabulated at an interval
of 0-2. By definition the first derivative ‘of this function is (sin )/,
and successive derivatives can be evaluated rapidly from the formula
sina - nSix )
——
where sin”".x runs of course throuxzh the cycle cos x, -sin x,-cos x
sin x, cos a,...We are given

Si 22-0=1-61608 37366 8i 22-2= 1-61510 35866

sin 22-0= -0-00855 13093 sin 22-2 = —0-20732 64206

cos 22:0 = —~0-99996 08264 cos 22-2= -0-97826 97014
and the scheme of approximations which results, utilising third deriva-
tives, is as follows:

Sittly =

1-61 566 5 6
608 37366 603 24675 35768 1400
283
9063 301
72329 311 300
545 92349 4744 299
44729 292 . 299
7173 299
303

510 35866 578 13541 64261 5807
whence Si r=1-61566 56299. 1t would have been better to retain a
figure, itself unreliable, in the eleventh place, to guard the tenth
place from accumulation of errors, but the result is correct. It is
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impossible by considering a page of figures to form a judgment of
the work involved in reaching a numerical result. In comparing the
scheme just given with accounts of other computations we must bear
in mind that if the method of this scheme was the anticipated
method of interpolation, the original table would be provided with
derivatives rather than with differences.

13. The Utilisation of Derivatives in Bridging
and in Inverse Interpolation.

It is evident that in bridging, any available derivatives on either
side of the boundary may be utilised; no new principles are involved,
and no complications are possible. The problem of inverse inter-
polation is different. The straightforward process is to calculate
derivatives of x as a function of u by the elementary formulae
do_ /e Lr_ Ful(duy &y [ yde el“ﬁ)_(@)” (2y
du dr dw*  dx? \da/ ' ddT | Tdx\da® da*) | Nda/,™
It is true that these formulas soon become heavy and inelegant, but
the first two are simple enough, and are worth utilising in practice.
In inverse interpolation the evaluation of the fractions into which
U divides the various intervals between tabulated values is a sub-
startial part of the labour. For an approximation of the eighth
order from tabular values alone, twenty-eight distinct intervals are
required, but it second derivatives are used, the number of distinct
intervals is reduced to three; also, as we shall see, in § 14, the latter
approximation is likely to be accurate to three more places of deci-
mals than the former.

For an example of the utilisation of a derivative in inverse
interpolation, we may return to Davis's equation 27+ 281%-480=0.
With w'(x)=72%+1122° we have «'(1-92)=1143-39894 578 and there-
fore, in the notation of § 7, the value of «'(U,) is the reciprocal of
this. Thus the first Taylor approximation corresponding to this value
of u, given by Xa=X,+ (U - U:)X',, has the value 1-92+3-30.../1143-3...
that is, 1-92289 26595 9. We can now combine X and X;; to form
one quadratic approximation Xjs, and Xz and Xy to form a second
quadratic approximation X,;;; the pairs of fractions involved are
those already used to form X and Xs;, namely, those consisting of
the parts into which U divides the intervals from U, to U; and from
U to Us. Thus we find

Ki22=1-92288 39929 5, Xa3=1-92288 42406 6.
and interpolating between these approximations with the fractions into
which U divides the interval from U, to Us we have the approximation
Xiz23, which although it is a cubic approximation, has the value
1-92288 41513 7, and is almost as close as the quartic approximation,
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Xonse Interpolating between Xjzs and Xiase with the fractions
into which U divides the interval from U, to U, we find that in
the quartic approximation X, the digits from the eighth decimal
place to the eleventh are 532 2, and since extrapolation from Xpas
and Xz, in accordance with the relation of U to the interval from
Uy to U; replaces the eleventh digit by 4, we can be confident that
the root is between 1-92288 41532 and 1-92288 41533. Had we set
out from the first with the intention of utilising the first derivative
at U,, the order of evaluation would have been X, X, X, Xig,
Koz, Xioas, Xy, Xz, Xomsy, Xizass, Xone Xz, Kozz, Koz, Xozess and
the three approximations of highest order would all have been
obtained by interpolation.

14. The Error in an Approximation.

From the practical point of view it is unnecessary to consider
in advance the convergence of such schemes as we have been con-
structing. The convergence is exhibited in the schemes, and affords
in itself a very severe check on the computation, for to proceed after
a mistake has been made is in effect to introduce a function which
is zero at all but one of the tabular points, and an analytic function
so defined fluctuates wildly in t!its numerical values. Nevertheless,
we may conclude by examining the two natural assumptions that
have been tacit in our work, namely, that an approximation of higher
order is likely to be better than one of lower order, and that an ap-
proximation is likely to be the more effective the more closely the tabular
points on which it depends cluster round the point where the value
is actually wanted. 'These assumptions are justified by the classical
expression for the difference between the function w(x) and a poly-
nomial approximation. Given ¢ distinct values a, «s,...ug of r, let
p(1) be the polynomial of degree n, equal t> oy +02+ ... +0; -1, which
has agreement with u(r) of order o, at «), of orders; at «,, and so
on, and let 1I(x) denote the product

(=) (@ =a) )T

a polynomial of degree n+1 in which the coefficient of "' is unity.
Let X be any value of @ distinet from oy, @z, .., determine the con-
stant A by the condition

w(X)=p(X) + £11(X),
and consider the function v(x) defined by

o) =wl(w) = pla) = A1T(x).
By hypothesis, both «(x) - p(r) and [I(x) have « for a zero of multi-
plicity o), as for a zero of multiplicity 6:, and so on, and therefore
s(x) has the same multiple zeroes. Also, by the definition of 4,
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v(X) vanishes identically. Thus»(x) has zeroes of combined multiplicity
n+2 for the values a1, a,...a:;, X of x, and therefore, by Rolle’s tlie-
orem, the (n+ 1)% derivative v "*!’(x) is zero for at least one value &
of x between the least and the greatest of ai, «, ..a;, X. Since p(x)
is a polynomial of degree n, p'"*!{(x) is zero identically, and since
I1(x) differs from 2**! by a polynomial of degree n, 11°"'V(x) has the
constant value (n+1)!. Hence for all values of .,

() =u M (2) = e+ 1),
and the equation v "*1’(£)=0 is equivalent to
f=u"(E) (0 +1)!
That is,

There is a value ¢ between the least and the greatest of the
numbers «y, «s,...ce, X, such that the difference «(X)- p(X) has the

form
w (&) 7 as .
(”’+l)!(X—u1) (X =—a) " . (X —u) "
Since the precise position of & is unknown, the practical value
of this result is to furnish limits to the numerical value of the

difference w(X) - p(X), in terms of the range of values of w"'! (x).

The advantage of values clustering round X is immediately
obvious. For example, if the interval is regular and X is between
a and b, additional derivatives at @ and & introduce a factor 6bA*
whereas additional values at «—-3h and b+3Lk introduce a factor
(3+6)3+d)% Whatever the actual magnitudes of these factors,
the second is at least forty-nine times as large as the first. Simi-
larly, with a regular interval, a three-point approximation of the
eighth order utilising second derivatives implies a factor {9b(1 +0)33,
whereas an approximation of this order dependent on tabular values
implies a factor

BA(1L+O)1+)2+6) (2+)(3+60) (3+2)(4+6);

the maximum value of 89(L+8), that is, of 6(1-8?), is 2'34/3, and the
ratio of the first factor to the second is therefore less than that of 427
to 22.3%.4, that is, than 1 to 972: the difference between the first ap-
proximation and the true value is likely to be only about one thousandth
of the difference between the second approximation and the true value,
This rough estimate has been used in §13, for although with
inverse interpolation the interval is necessarily irregular, inequalities
cannot in practice affect the order of the estimate unless the second
derivative is so large that the use of the more distant points is out
of the question.
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To appfeciate the effect of an increase in the order of an ap-
proximation, we may use the classical theorem that if M is an upper
limit to the modulus of an analytic function %(z) on the circum-
ference of a circle in the complex plane, an upper limit to the
modulus of #”""V(x) throughout a closed region I” inside the circle is
(n+1)! M/R""!, when R is the shortest distance between a point of
I' and a point on the circumference. It follows that if u(x) is
analytic, throughout a circle which has for diameter an interval ef
of the real axis which includes ai, «a,......a;, X a3 internal points, an
upper limit to the numerical value of «(X)-p(X) can be expressed in

the form
M(}Q‘L i (?.(;”2 72 . (Xfﬂsyr
R R ) e R’ ;
where M is a constant and R is the difference bhetween ¢ and the
smallest of the numbers ay, as,.........0¢, X or between fand the greatest

of these numbers, which ever of these two differences is the smaller.

For interpolation, in the strictest sense, that is, for a value of
X between the least and greatest of i, aa,...... ..ag the value of R,
like that of M, is independent of X, but for extrapolation, R may be
f-X or X ~e. Bveryincrease in the order of approximation adds to the
number of factors of the form (X — ax)/R, and if the only tabular values
of 2 used are values for which this factor is a proper fraction, every
increase in the order means an increase in the reliability of the
approximation ; this of course is not to say that the closeness of the
approximation must improve steadily, since at any stage it may
happen that the value of ¢ corresponding to a particular choice of
data is so close to a zero of w”*!’(x) as to imply a much hetter
approximation than could safely be anticipated; such an accidental
accuracy is not as a rule transmitted, and an approximation of
higher order may he in fact a worse approximation.

The form of the expression for «{(X)-p(X) explains at once
why we cannot expect to improve an approximation indefinitely by
taking account of more and more distant values of x, even if wu(x)
is bounded for real values of . With a fixed value of R, there is
no reason to suppose that values of ax for which X ~as is numeri-
cally greater than R are worth using. And for an integral function,
although R may be suppossd large enough to admit any particular
ax, the value of M necessarily tends to infinity with R, and therefore
a variable R defeats its own object.

156. The Discovery of the Iterative Process.

The first attempt to avoid the use of differences by direct
operation on the tabular values of a function was made by Ch.
Jordan, who published in Metron an interpolation formula giving
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7.1(.1*) in terms of the linear interpolate dula) +0u(b), the linear
interpolate +{(L+d)u(a - h) + (L+0)u(b+ 1)}, the linear interpolats
1@+ D)ula =20y + (2+0)u(b+ h)}, and so on. If these interpolates are
denoted by Uy, Uy, Uy, ... Jordan's formula is of the form
wW(X)=Vi-GV, +G4Vat - - - -
where G., Gu,...are coefficients, that is,
already familiar to computers as coefficients in a formula due to
Gauss, and V, is a simple linear combination of U,, U, U,,......U,
The work of calculating Vo, Vi, Va, - - - directly is not quite trivial,
and it was presently noticed by Aitken that they can be calculated
most readily as differences of increasing order at the midpoint of the
geries ...Us, Uy, Uy, Uy, Uy, U,,... and with this simplification of
Jordan's procedure it seemed to be established that for a table
unprovided with differences, it is quicker to find Jordan's means and
to difference the reflected series formed by them
the original function.

functions of 6 and &

than to difference
Nevertheless, the admission that the best way
to handle Jordan’s interpolates was to form differences from them
seemed a disappointing outcome of the attempt to avoid differencing
the original function, and Aitken, appreciating that the practical
advantage of Jordan's process was wholly in the first stage of
substituting the operation of linear interpolation for one operation of
differencing, succeeded in presenting the results of this first stage in
such a form that the same substitution could be made again and
again; on account of the symmetrical distribution of the data
provided by the first stage in Jordan’s process, each subsequent step
was a quadratic interpolation linear in the square of the variable, but
Aitken saw this peculiar form as essentially a process of iterated
linear interpolation from tabular values, and discovered the applica-

tion of the more general process to inverse interpolation and other
problems.

Meanwhile, in the hope of reconciling the advocates of Taylor's
formula with those of Everett's, I was attempting to utilise deriva-
tives as well as tabular values at more points than one. After
looking unsuccessfully for formulae involving differences of derivatives,
I approached the problem from the point of view of combining
different approximations of the same order. The simple formula
N(a22) =d? L(a?) + 240 1T(ad)+6* L(b*) pointed at once to the
general formula of 8§12, the decomposition
formulae

M(a®) = DL{a?) + 8L(ud), N(a®h?)=>M(a)+ 0M(ad?)

was the clue to the general theorem of § 5, and it remained only to
realise that the practical value of the process did not depend on any
possibility of building up elegant general formulae.

more
into the elementary
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Introduction.

Let 75, & (n) denote the number of representations of the positive

integer n as a sum of s positive ith. powers,
(1) r, e {n) =31 (hi...hs integers > 1, k=2, Aht+.. . Lh*=n)

In their researches on Waring's Problem, Hardy and Little-
wood have found asymptotic formulae for rs, k (n) for fixed A>3 and
all s exceeding a certain limit depending on /4. They have also
shown that a good deal of light would be thrown on Waring's . Pro-
blem if the following unproved hypothesis?, which they call Hypo-
thesis K, is true:

(2) 10,5 (n) = O(n®) for every positive ¢ (k>>3) HYPOTHESIS K.

A. E. Western has done some computational work which
supports (2) for k=3. His calculations indicate that**

(3) 73,3 (n) = O(log?n).
It is shown here that
(4) 73,3 () = Q (log n/log log ).
If Hypothesis K is true for A =4, then it follows that

(5) 73, d(n) = 0(11/8).
I show, however, that
(6) 73, «n) = Q (log n/log log n).

With regard to the number of representations of n as a sum
of two positive cubes, L.. J. Mordellit showed that

* The present paper formed portion of my dissertation for the Cambridge I'h. D,
(1931). ’

t Mathewmatische Zeitschrift, *23, 1925, 1—37 (4).

*" Announced at the meeting of the London Mathematical Society held on 23rd
April 1931,

1t In a letter to Prof, G. H. Hardy.
M 16
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) 2,5 () = Q (a(n))
for some 2(n)—> o (on the -other hand 73,3 (n) = O(n%) is trivial).
S. 8. Pillai* has improved (7) into V
(8) 13 ()=0Q (log log n).

I have generalized Pillai’'s method to show that if & is any
fixed integer (positive or megative) then

(€)) El =0 (log log n)
thkyt=n
>0, ¥y>0
This result should be contrasted with the foJlowing which
are due to van der Corput-Jarnik ¥, Oppenheim ** and Thue-Siegel 7t
respectively :

29 238m
(10) §1=O(n ) §1=O(n ) (k>0);
At kyi=n M rhym=n
X, y>9 x, >0
(1) »1=06:5), D1-00:) (k>0);
B kyi=n ARyt =n
x, y>0 x, >0

(12) 2 1 is finite (L<<TO).

At tkyi=n
v, >0
§1. Proof of (4)
We have 1
(13) 72 = (1) P+ (gal) PP+ (gs(0) P
where
o128+ 1) -2+ 1)°
(14) ()= T
P +1) 12035 -1)
(15) galt) = B+ 1)¢

* In a letter to Chowla.

+ see’ Jarnik : Uber die Gitterpunkte auf konvexen Kurven, Math. Zeitschr., 24 (1925),
500-18 (07-c8). 1

** Crellés Jeurnal 164, 1931, 133-135.

++ see, for example, Landau’s Vorlesungen iiber Zahlentheorie (1927), Bd. 3 (37).

* Landau, Vorlesungen iiber Zahlentheorie, 1927 Bd. 3, S, 216, The identity is due-to
Richmond and was used by him to prove that every positive rational number is
expressible as @ sum of the cubes of three positive rational numbers,
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- 22@-1)
(16) gﬂ(t)— t(L3+1)3
Now, gi(1)=4, g(1)=2, gs(1)=0, g5(1)>0 when ¢>1. It
follows that we can find an absolute constant 6>>0 such that all the
g's are positive in 1<t<<1+8, and further that if #, {2 are any two
values of ¢ in this range, then

17) (1) 7= gi(ts) (h#t3)
(18) gi(t) 7= galta)
(19) ()= gs(ls)

Let m be the least positive integer such that 1/m < 9, it
R S S T
m+1 m+2 m+3’

in (13), we obtain =» distinct representations of 72 as a sum

follows from (17), (18), (19) that if we put (-1=

“m+n
of the cubes of 3 positive rational numbers. From (l4), (15), (16) we

have for r=1, 2, ..., n
(20)
1 m+r+1 (m+r)
+_..7_ = ke
2 (1 m+r) 12 m+r )(u1+1)‘4 (m+r F+ 1)
_ m+r (m+ 2w+ (m+ r+1 )?
m+r+1 (e -+ )3
(21)
(1+ 1 ‘)=*ng+rr ) (m+2)P+(m+r+1)°*
g2 m+r m+r+1 (m+r)?
m+r+1 (m+1+1\’~(m+;)  (m+r) .
m+r (m+r)? A P (o 1)30
(22)
m+r+ N2 (e + +l)3 (m+7)? (e + )8
gs\1+—— 12 3 T 33 AT
m+r m+r (it ) Cm+rP+(m+r+1)%

In what follows numerals in thick print are to be regarded
as references to the equations of this paper. We now see that

2

(23) z=172 Iri [(ln+7‘)5(m+r+1)((m+r)3+('n+r+1)3)
=

(20, 21, 22, 13)
is a sum of three positive integral cubes in at least n distinct ways,
Let us take n>m. Then

n
<72 11 (4n® - 20 - 1622°) =72(2048)"™ (23)
and so, r=1
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(24) log = < log 72+ n log 2048+ 92 logn <10 n log n  (n>no).

log x
(25) n= Q iogl—ogx> (24)
(26) n < 73,3 (x) (23)
(27) 73 (2)=Q (ﬁ%ﬁ) (26, 25),

which is (4).
§2. Proof of (6)
We start with the identity * o

(28) (B2=2k)p+ 2k -1+ (A2 -1y =20k -k +1)*

and proceed in a manner similar to that of the last section.

§3. Proof of (9)

In this case our starting point is the pair of identities ?'

(29) L- k=2t +ky?

where
r 13— 2ks8 s 2r®—ks®
(30} == ) S+ Jes®’ y—; 3+ ks®
and
r® 3 3
(3]) ;Q,+/L**3‘=.'C —.l.y’
where
r i+ 2ks? s 2r¥+ kst
(32) x= ”; - 75— fs? 4 yfp 13— ks

We now prove the following
Lemma : If

(33) r=k-2%7V, s=1, p=1, k>0

*» See Dickson’s History of the theory of numbers, Vol. 2, page 656, reference
No. 222. See also reference No. 205 on page 654.

+ The origin of these identities lies in the fact that the tangent at a “ rational”
point of the curve x*+ky*=1 cuts it in another * rational” point,
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then
(34) ks’ mi-knd _ rPtks®_ om®-kad rd ks
P 7 - prv 3 P w5 e
md—knd _ rod+ ks
’Uzs 7)J+13 "

where the (m, n, 7, s, p, v="m0, N0, 7o, S0, Do, Vo)
(35) Moy Moy Ty Sou Py Vg (0<O<t+1) are positive integers satis-
fying the relations.

- 3 o3 - 54 7.0 8
(36) my re(rg + 2ks Jo " 89(2r9 -*—ks9 ) (31, 32, 34)

. = 3. 3 3 = 3 3
(37) 79_m9~1(me~1 2/6)!6_1 )s s, na_l(2m@_l k"e—l>
(34, 29, 30).

13)’ Yo~ pe(res - kses)

(38) p6=v9_1(me_]3+kne_
(34, 29, 30; 34, 31, 32).

for all 0<O<¢+1. Further
m

Tor1 T M1 )
(39) 2 <2 and 2 < = (0<<0<0).
o+1 o "ot1 )
Proof : Obviously .
(40) m, n, r, s, p, v are integers >0. (36, 33, 38).
Now
m r i+ 2ks® 1 r
(4L s 20+ ks > 2 s (36).
3 3 9(t+1)
(2) >l =Ly >64k 33). -
Let
(43) Moo gy Tow Sg P v9>0 (0<<b<h - 1)
me3
(44) P > 64k O<<o<h-1);
8

then, we shall show that
>0.

(45)  min, 7h, Nk, Shy Phy Uk

3
(46) % > 64k,
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When we have done this (43) and (44) will have been proved

for all 6 in 0<O<¢{+1 by induction (40, 42). We have
A7) ra sn >0
(48)  wnn, na > 0.
(49) pr > 0
(.SAD)V To _ gy mg_)® 2hng _°
Sg 1 20Pg 1 —kndy_y
m_
Lol (44)  (1<6<h)
4 n
6 -1
i 1 ma®
Th o T By
(51) s 7 64 nau_y® (60) > %
(52) w >0
Hence it only remains to prove (46). Now,
m ror 3+2ks 3 _
oy f- g e 1 (30)> 1
ng s 219 +me 2 s :1,8_1
Multiplying (41) by the equations (53), we obtain
mn 117
G 28 s
”_”’3 11 4500+ 5 3
(55) P g 2g,/. 2 (54, 33) 644k,
which proves (46). Further
m 7 s m
(56) 2 < 2(36); 2L o P
Mg Sq e+1 Ty

(37, 43, 44).

(36, 47).
(38, 43)

“(37).

‘(44).

(49, 61, 38).

(60) (1<)

(37).

and this pair of inequalities proves (39), and the Lemma has been

completely proved.

§3. Proof of (9)

Let M be the
follows from the equations (34) that if

(57) N-M (/;3- g 1)

then (A>o0)

least common multiple of p1, p2 ...

s Pr;o it



Contributions to the analytic theory of numbers (II) 127

(58) > 1 >t
A3 +ky*=N
x,y>0
From (38),
(59) v = p(r¥=ks¥); p=vimd+kn®); wmi=pn®- fes®) ;

pa=uvi{nn®+Em®); . ..
Thus,
(60) Py= (ms + ]’.‘113) (nns + ]c)ng) ...... (ma_l3 + /cn.e_lf‘)
x (7‘8.‘13 = ]A.Seil) ...... (7‘13 = A‘S]S) (7‘3 - f;‘ss) (59).‘

and p: is divisible by the product of pi, pa,..., P Hence M = p.
Further

2 8

(61) %<28 (mnn...ms_1 ) (rr;,..re_l) (60, 44).
(62) m=r(r®+ ks®)< 3+ (36).
(62) o= m(m® = 2Uen®) < m< 34 2t (37, 62).
(62) - my<3r*<8. 3“‘:) r*

3 4
(62) re<lm*<(3% 3% "

2 4 5
(62) ma<3ret<(3.3%.3%*
(62)

s -8 -2
(62) ro<lm-g* <32 3% .3 -t
2 4 9%-2 2t-1

(62) me1<Brt < 3.3 =3 L. 3t ot

Multiplying the equations (62) we obtain on using (61), (33), (57)

(63) log N < ct-4"

(64) loglog N < ¢t (83).
Trom (58) and (64) it follows that for A>0,

(65) El =0 (log log N).

o+hbi=N
A, ¥>0
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We shall now prove (65) for negative k. Let k>o0, as before.

Then,

(66) 21 >t (34)
.r";’k;r“;ON,

where
(66) Nj=M3(2° 143 +1)

and
(67) M, is the L. C. M of », Vlyurry Vi-1

But
(68) Mi=wt (59).
(69) v a<pt=M (39)
(70) M;<M (68, 69)
(71) Ni<N (87, 66, 70)
(72) ¢=Q(log log N)=20(log log N;) (64, 71)

From (66) and (72) it follows that (65) is also true for
negative A&, and the proof of (9) is complete.



An Algebra of Numerical Compositions
BY

E. T. BELL
California Institute of Technology, Pasadena.

The unrestricted partitions of 3 are 34; 1,2; 2,1; 1,1,1. A com-
position into parts of a prescribed kind is. a partition into parts
of that kind with attention to the order of the parts. As is well
known, the theory of compositions is much simpler than that of
partitions. We develop here a complete algebra of compositions, in-
cluding the new processes of differentiation and integration, from a
few definitions and postulates suggested by existing theorems. From
this algebra it is a simple matter to convert any algebraic identity
into a unique correspondent concerning compositions. The simplest
identities yield the known theorems on compositions.

The values of the numerical functions may be elements of any
commutative field. For simplicity of statement we have taken the
field of complex numbers as the field of values, as the generalization
to any commutative field is immediate and can be made by a few
slight verbal changes.

1. Definitions and postulates

Let X be a well-defined class of integers > ¢, where ¢ is a
constant integer > 0, and write K, = K. The vector or one-rowed
matrix (. . ., np) will be called a composition of n of degree p
over Ke if my, ..., npare in Kcand mp + ... +tnp=n.

If f (x) is single-valued and finite for finite integer values of
x in K¢, we say that f (x), or simply f, is a numerical function over K.
We postulate that the value of f (x) is in the field of complex num-
bers. A scalar is a complex number.

(1) POSTULATE.—If f is a numerical function over K. and if »
is an integer > 0 not in K. the value of f (») is 0.

This postulate permits us to take ¢=0 in further definitions
and postulates. Hence we may omit reference to K..

If = is not an integer > 0, f (z) iy not defined, and we say
that f (y) eaxists when and only when y is in K. (See also § 4 for
infinite summations.)

M 17
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(2) EQUALITY.—The numerical functions £, g are said to be equal,
f=g, if and only if f (n)=g (n) for all integers n>0, or, what is
equivalent, f=¢g if and only if f («x)=g (x) whenever f (z), ¢ (z) exist.

(3) ZERO.—The numerical function ¢ which is such that ¢ (x)=0
when ¢ (r) exists, is the zero numerical function. When there can
be no confusion, we shall write ¢=0.

(4) UNIT.—The numerical function » which is such that » (0)=1,
» (n)=0, n>0, is the unil numerical function. We shall write v=1
when convenient. For example, the 1in 1-f, if f is a numerical
function, is v.

(5) SCALAR PRODUCT.—If 2 is scalar, the scalar product of « and
the numerical function f is the numerical function ¢ defined by
af (r)=g (v) whenever f (x) exists. We write g=af = fa.

(6) ADDITION.—The sum & of the numerical functions £, g is
defined by I (2)=f (¥)+g (a), whenever f (2), ¢ (x) exist, and we
write A=f+g.

(7) MULTIPLICATION.—The composite, or product, fg of the
numerical functions f, y is defined by

o ()=fg (a) = 3 fG) g (n), (n=0,1,....)
the sum extending over all compositions (m, n:) of degree 2 of n.
Hence, by induction, fi . . . f» is defined for p>>2, and is
fio . fr=SA0m) o0 Felng), (n=0,1,...),

summed over all compositions (m, . . ., , np) of degree p of n.

If fi=- -+ =fp=f, we write /1 . .. fr=/s",

If the compositions are taken over K¢, where ¢ >> 0, then
A ... fpr()=0if p>n, and hence sums of the form

S x, S (n),
1

where the a» are scalars, are finite (over K., ¢>>0). This is of im-
portance in questions of convergence.

By definition, f'=v (see (4)).
(8) NILFACTORS.—If fy=0, f<0,y=0,in the notation of (3), each

of f, ¢ is said to be a nilfuctor (of composition, as in (7))

We dispose of nilfactors here by proving their non-existence.
Without loss of generality, for some finite integer s>0, let
() =0, (j=0,...,5), g(s +1)=0,
By (7), if fy=0, we have then
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FO) gn+s) + FDgn+s=1)+. .. + fF(n=-1) gls+1)=0,
for n=1,2, ... Now g (s+1)#0. Hence, taking n=1, we get f(0)=0.
If it be assumed that f(j)=0 for j=0, ..., { the induction is
completed by showing that f(t+1)=0. We have here

AO)glt+s+2)+ .., +f(W)gls+2)+f(t+1) y(s+1)=0;
whe_nce, Fft+1)=0.

(9) INDEX.—The least integer »n (=0) for which f(n)#0, is called
the index of f. If f#< (¢ as in (3)), the index cof f is a finite integer ;
by definition the index of a scalar is zero, and the index of ¢ is ™.

The index of f will be denoted by I/, Hence I =0 ; Ik =0, & scalar;
Iv=0,

(10) DIVISION.—If a unique numerical function / exists such
that fh=¢g, where f, ¢y are given numerical functions, we write
h=gfl=g/f, and call & the quotient of g by f. Necessary and suffi-
cient conditions for the existence of & are given later., We write

vif=f=1f.

(11) DERIVATIVE.—The numerical function f* defined by
Fn)=n+1)fF(n+1) (n=0,1,...)
will be called the derivative of the numerical function /. The
vative of a scalar is defined to be zero.

deri-

(12) ANTI-DERIVATIVE,—The numerical function f— defined
. -1
=0, F =L (=1, 2....),

by

will be called the wuntiderivutive of f.

(13) NOTATION.—Referring to (11), (12), we shall write
ar=r, 9VY="
This is consistent, since
9 (9f=0(a7 ="

(14) GENERATOR.—I[ «x is a scalar variable, the formal power series
Fl)=f0)+ADe+. .. +f (a"+. ...

is called the generator of f.

It was shown elsewhere* that the principle of equating co-
efficients in identities between generators holds independently of
considerations of convergence. For the exact statement of the
principle in this connection, we refer to the paper cited.

* E. T. BELL, Transactions of the Amcrican Mathematical Sociely. 25, 1923, 135-154.
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2. Indices

We first develop the necessary properties of indices as defined

in § 1(9). The least of the real numbers a, b, ¢, . . . will be denoted
by Min (a, b, ¢, ... ). The letters f, g, h denote numerical
functions.

15) I(fy=1f+1g.

The proof may be given, as it is typical of more complicated
ones which will be omitted. Let If=a, Ig=5b. If a=b=0, (15) is
obvious. Let a+5>0. It is to be shown that

n
_Eof(j)g(n-j)=0. n=0,...,a+b-1;

#0, n=a+b;
and we need discuss only

?
S fgla+b-p-j), p>0, a+b>p.

i=0
By the definitions of «, b, the value of this sum is

[ . .

S fla+jglo-p-J),

j=0
and (15) is proved if b<{p. If b=p, the value of the sum is £ (a)g(0),
which is different from zero. If #>>p, the sum has the value

‘p PN o
,20 g{Nfa+b -p+j)=0.
j=
The following are obvious from the definition of If:

(16) Iaf=1f =« scalar # 0;
(17) I10f=00;

(18) 1If o, B are scalars such that 2370, then:
I (a f+ B g)=Min (Lf, Lg) if If#Ig: if If=Ig=c, then
I(af+ Bg) =c if afle)+ Bylc)#0, ‘
1(x f+ Bg)>c if aflc)+ Bylc)=0.

Referring to (11) or (13) we have

(19) T =Tf-1if If>0;
1f>0 it If=0.

3. General Properties
As defined in §1, the rational operations of composition of

numerical functions do not generate a field over the field of scalars,
since the quotient g/f (§1, (10)) does not necessarily exist (§1(1)).
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(20) With respect to addition as in (6), wmulliplication as in (M),
and scalar multiplication as in (5), the set of all numerical functions s
a commutative ring over the field of scalurs in which the zero, unil
elements respectively are <, v as in (3), (4).

Division is covered by the following.

(21) In order that the quotient h[f shall exist, itis necessary and
sufficient that Th = If.

If h/f exists, let it be the numerical function g. Then h=gf,
and hence, by (15), Ih=Ig+1If. Thus, if A/f exists, its index is Ig,
which is equal to Ih-If. From this follows the necessity, since
Ig > 0. To prove the sufficiency let Ih=a, If=0, assume from what
has just been shown that a—-b > 0, and proceed as in proving (15).
This determines g(a—b+n) (n=0, 1, . .) uniquely.

(22) If h/f exists, then I(h/(f)=1h-1f.

We show next that derivation, o, as defined in (13), has the
formal properties of differentiation as in analysis. Thus, if « is
scalar, and f, ¢ any numerical functions, then

(23) 2af) =23/,
(24) 2(fg) =fog+gdf,

(25)  a(f/g)=(gof - 129/ g%
the last holding if and only if f/g exists.

To prove (24), write fy=h, If=a, Ig=b. Then [h=a+D, by (15),
and hence Xi(n) exists if and only if » = a+0. By (7) we have
Ma+b+p)=3 fla+n)g(b+m),
the sum referring to all integers m, m = 0 such that n+m=p.
Hence by (11),
hla+b+p)=(a+b+p+1) 3 Fla+ n)g(b+ m),
summed over n, m > 0, n+m=p+1. Thus

p+1
Kla+b+p)=(t+tb+p+1) EO Hu+j) g (b+p+1-j).
=

Again, by (7), (11),
Frgla+b+p)=30r+1) f(r+1)gls),
fala+b+p) =3(s+1)f(r) g (s+1),
summed over 7, s == 0, r+s=a+b+p. Reversing the order of summa-
tion in the second, we get for these two the equivalents
+1
’S (@ riflar) g @rpr1=))
j=
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P+
‘20(b+19+1"j)f(a+j) gb+p+1-j),
Fom

the sum of which is the expression for A'(a+b+ p) above,

Since 02=0, (24) implies (23). If Sflg exists in (25), let flg=~h.
Then, by (20), f=gh, and hence, by (24),
Fr=gh+gh'=gflg+gh;
whence, ¢*'=gf -g'f, and (25) will be proved if I(¢%) << I(gf’ -g't).
Since f/g exists If > Ig. It can be shown from this by (18), (19) that
Hgf’ - g'f)=21g,
which completes the proof, by (15).

In the same way, corresponding to partial integration, we have
here

(28) fely=fg-g3\f

From what has been proved we easily see the following com-
prehensive connection with generators as in (14), which permits us
to operate with them, if preferred, rather than directly with the
numerical functions.

7 If F(x), x). . ... s H(2), are the respective generators of
frg ..., h andif
R(F(2), G(x), . . ., H(z)=0
is a formal identity in x, then
R{(fig,...,Nh)=¢,

where § is as in (3).  The generalor of 3f is the formal derivative F(x)
of F(x) with respect to x, and similarly for 3°\f and integration.

4. Convergence
Formally we have

FlL-f)1= §Oolf'

e

for any numerical function f. Suppose for a moment that the sum
on the right is a numerical function, #, as defined in § 1. Then for
all finite integers n>0, & («) is finite, and f(1-f)'=¢%. Now the
sum in question will certainly be a numerical function if the class K¢
over which the compositions f are taken has ¢>0, for in that case
there exists an integer s such that, if »>>s, then f’(n)=0. But if the
compositions be taken over K, the sum does not terminate, since
compositions of all degrees »>>0 exist for all >0, and the sum does
not then necessarily represent f(1-f)"'. However, if f(0)=0, the
sum does represent f(1-/)' when the compositions are taken
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over Ki. Accordingly we make at least one of the following assump-
tions for any infinite series of the type

(28) mftoe P taf L
where f is a numerical function and aj, as,...are scalars.

(29) If the composilion in (28) are taken over Ko, then £(0)=0;
or (30) The compositions in (28) are taken over K¢, ¢>0.

If either of (29), (30) holds, we say that (28) is convergent. We
assume then that all infinite series of compositions occurring ‘are
convergent in the sense just defined.

5. [Iterations

Let f be a numerical function, «, B scalars. Then (§4) fe,

defined by

—
fa= 1-of

is a numerical function. Regarding fa as having been obtained from

f=fs by the operation R,

6D R r=f= L

We call fa the ath iterate of £ Such iterates include many of the
functions connected with compositions over K; that have appeared
in the literature.

=fHafibiea kL

By (27), if the generator of / iz F(x), the generator of f« is Fu (),

where

(32) F, (J‘)Ei%= EEI £, ()"

and, by (31),

B, _a F a+B
33) R (R = —< =R )
03 RUR) - =L /
RYR ) =R"R"/);
whence, -
o= 3 = 3 R
a-F8 r=1 B r=1

f = ; (_1‘)»~~1 a1 »fa); fa _fB= fzz fs . (1..)8)‘

By § 4 the infinite sums terminate for every integer n>>0 in Faip ()
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As will be seen presently, f, refers to total compositions, that is,
to compositions in which the degree is unrestricted. If the degree
is restricted to be <7, >0, the corresponding function is S, where

(34) fu"’7Ef+af2+...+a"1f';
and therefore

o FQ=aty
(35) f, TIoaf f(L=a"f.")

the limit of which as > is S
S QA =B =g A ~afT)=(a-B) f," I,
the limiting form of which is the last of (33):

F ()1 - 2(Fi2))]

(38 F,0 (@) = HOLZSIN 5 g o g

n=1
From (27), or from the definition of f, and of " =7f""", we get
37 fPr)=Fff"; T 1 F=1"/r"
hence, for the second derivatives
T = fa=F" 1 =2f ]
Thus the successive derivatives B’fa are obtained from

and so on.
¥(f'/f? by replacing f by f‘z and 3%/ by &fa. The next invariant of

this kind is /
£ (fzz )g]
-Gy -1
which recalls the Schwartzmn derivative. Since fa =f (1 -af)! ex-
presses f as a linear fractional function of f, the derivative in

question, {fa , f}, vanishes,

iy

‘a 3<f )

The above mvanant is thus redumble to

&) -e (5 - (5]

The f have simple interpretations for positive integer values
of a. Let tl:e compositions be taken over K, ¢>>0 (§ 1), The simplest
f, refer to enumerative functions with respect to these compositions.
Let An)=1 for all n in K., and let f(n)=0 if n is not in K. The
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generator of f(n) is then Sc(.v)EZr"‘, the sum referring to all ne,
where n: is in K.. In this case fi(n) is the total number of composi-
tions of n over K. and the generator of f; is Si(a)[l-Sx)]"'. For
example, if ¢=1, fi(n) is the total number of compositions of n into
integer parts >0; Si(z)=a(lL-2)"', and the generator of fi is here
2(1-2x)"', so that for this /3, we have fi(n)=2""L

Again, for the same K. f"(n) is the number of compositions
of n into precisely » parts in Kc. To restrict the magnitude of the
parts it is sufficient to define f(n)=1, n in K: and n<{m; fln)=0
otherwise.

Two further illustrations will suffice. ILet K:be the class of all
integers >0 that are congruent to ¢ modulo . Then
f==J
Sc(x)= 3 a™ = a°(1L-a)7},
n=0
is the generator of f(n),=1 or 0 according as n=c mod. b or n¥c
mod. b, and the generator of the corresponding f, is

(==}
af =

= 3 f, (n)a
=1

- € __ b
l-aa~a -

From the expansion of the left the explicit form of £, (n) can
easily be obtained. From the above, for this f,, we have the follow-
ing difference equation®,

f)—afn-c)- fa(“n -b)=0, n>Min (b, ¢).

When «=1, the function enumerates the total number of composi-
tions into parts in arithmetical prozression with first term ¢ and
common difference b.

Further examples of what are essentially the processes of this
gection, where the class concerned is that of all square or triangular
numbers>0, were given in a previous paper. The results refer to
elliptic and theta functions.*

Finally, there is an interesting connection between the functions
L g=1-f, 97 A, AT,
where f is any numerical function, and the compositions are over
any class. For, if A(a) is the unharmonic invariant
_(a®—a+1)
A (a) T alm -1
of the scalar «, then

A(f) =AY =A()=Alg)=A(-f)=A(-A").

* For a=1, b=1I, the result was stated by Cayley, Coll. Papers, Vol, 10, p. 16,
* E.T. Bell, Annals of Mathematics, (2), 23, 1921, 56-67.
M 18
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6. Implicit functions

We give this name to functions ¥ (¢(f)) of the numerical func-
tion f where ¥(¢(x)) is any function of the scalar z such that
¢ (f) exists. The properties of such function for simple choices of o,
Y give rise to an endless variety of theorems on compositions,
when combined with the definition of f? in (7). The simplest
theorems thus obtainable refer to enumerative functions, and are
given by taking f(n)=1 for all n in the class Ko concerned, f(n)=0
if » is not in K.

We may assume, for example, that ¢,/ are inverses of one
another, of the following kind,

# (WF @) = ¢ ((F@)) = F (),
provided F(x) oxists. The choice F(x)=1+z, ¢ = log ¢ = exp. gives

g= 2 Jfinl,
n=1
where F(n)=(-1"Yn, g (1)=1, g (M) =0, m#*1. By § 4 the sum is
convergent. The like for the circular functions and their inverses
give composition theorems for the Bernoulli and Euler numbers.

Of the same type is the following, obtained from exp. [x(1 -2)1
to which, after expansion, is applied the transformation 2z into
x(1+a)7?, giving exp. . Let f (n) == 1 for all integers n>>0, so that
f5(n) is the total number of compositions of =» into precisely
s parts>0. Then

n S fr s — l)u
> (-1F [1+ > *(|)] fom) =" n>1.
s=1 r=1 ¥ 2
PASADELA, } CALIFORNIA INSTITUTE OF TECHNOLOGY.
I6th June, 1932



Abundant Numbers
BY

S. M. SHAH
Muslim University, Aligarh.

Let an integer x be called an abundant integer if ;?: d > 2 x,
x

and a deficient integer if 3 d < 2 a.

d'x

Let A(n) denote the number of abundant integers << n; and D(n)

the number of deficient integers < n. Felix Behrend has proved in
his paper ‘ Uber Numeri Abundantes’ (Berliner Sitzungberichte 1932
XXII) that

Tim A(n) A(n)

e T < - 461; T < 47 for every n.
I propose to prove in this paper that

lim A O ey Nim A

P O - < -4454; —S e " > 2947

Let

As(n)=number of abundant integers <{n divisible by 2 but nctby3;
As'n)=number of abundant integers <<n divisible by 3 but not by 2;
Ag(n) =number of abundant integers <(n divisible by 6;

As(n)= number of abundant integers <(n divisible by 5 butprime to 6
Ai(n) =number of abundant integers <(n prime to 30.

We have

A(n) = Ai(n) + As(n) + Azn) + Ai(n) + Ag(n) (1)
Let o(v)=3d
d/v

X:(v) the main character modulo % so that Xx(»)=1 for

(v, k)=1, and X«(v)=0 for (v, £)>1

We have also
Xe(vp) = Xe(»)Xs(u) 5 Xei(v) =Xe(v)Xi(v)

S i) =" 400+ R(H(E) @)
r=1
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where | R(a) | <a.
Consider S Xso(v) ov) _ S Xao(v) E 1
v<n v v<n 1 v d
"1
= d§—1 a {Xaold) + Xao(2d) + + - - - - - + Xaol[n/d]d)}
2 Xio(d) .,
= 3 T M) Xa@)+ - + Xaof /)3
I Xsold) [ n 1
= d§=l——l #(30) 1 304 +14 | where I.=X(1)
- i’l % \m(d) n xml(li)
15 421 d? RS %1 d )
dn [ & kgu((l) T Xaold) ) 2 Xaold)
= =/ S - ¥ =2 3 ==
15 ld;]. d2 nE1l dr ) +E (Sd:1 d
T Xuld) _ 1
Now d%l = (1— )
1 , olv) _ 4 8 1 log n
N y<n Xaol ) v 15 75 *0 (72) +O( n )
327 log n
3
1125 0 ( > (3)
S X P o s N s )
Sv<n Su<n dj5v d
) S X.-(d) 1)
= () 1o A 2
Sv=<n () L d‘r"u d 2 df
s [Xla) 1) [y [ )
SoTd tE Xo(d) + Xo(2d) + + (,( )f }
s [ Xsold) | Xeld) ) [n o
= s | & vk I'«=XK (1
il d + IS (6) | 304 + T | where 1« M
_ _]1 < Xsn(d) i AN Xﬂ(d) log
15455 * 75 d<ns & 8 (Of’ n)
29n7?
_ 4
3375 +0 (log n) (4)
We have also*
1 - 0(21) 572 log n
1 s _ 87 log m). 5
N 9ren %) g 81 0 n ) =
1 , 0(311)_ 11=? log n
7_[5”%,, Xo(v) 3y 432 +0 n ) (6)

* Loc cit, Page 324.
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Further

S X (v ) 21/) S X )0(211) + S Xsw )0(2v) Si+ 3,

2= e o'da
5= 3 %0 o) 3 x4 olér)

- 4§<,.X3 (T')d%a {X‘("d) * %}
- 'U%u X&(v)j E dd) 2( d'l'u Zd)f
- e (301 P 3]
R ICRE B R
= {g dl) 4(1} {x3(d)+x3(2d)+ """ " X‘([IHJ d)}
) (e (D)
- d;n; { g XGL(Ad) * %Q} @) {12d+ I”J} Fesk @
_ d;n/l % xil(;-l) . %+ d:“:n/»l%(":]l %’4 + O (log n)
- 31"7'4 n 7t + O (log n) , (7,)

From (5) and (7)

. o(2)
22= Q?<n KS(V) 2v
- , o(4v-2) _ 5‘772_ 1172
= 2l %@l T = T e ) O {log n)
2
= ﬂfoi(log n) (8)

36
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We have As;+D _%4.0()
S X (v )0(5:;) ~ 24; +4D;
5! Z = n

3G fvo()
Farnro(3)
Hence by (4)

4 A5, 2 L) 2972 log »
5 7l+25+o( n < 3375+O n )

As _ 297* 1 log n

I

n < 2700 10 + n ®)
From (3)
3277' log n 1 0(1'
. NN
1125 © ) a2y, X ()
- 2A1+D
- n
Also 2 Xz ()= A, + D,
’ 4n
30 (30)+O(1)~ﬁ +0(1)

:227717 (10 n 2‘A\ B 71 (1
1125 " ) = 55 ro(5)
k()
n
Ay 32n7° 4 (log n
n < 1125 15) +0 n (10)

Tet Ay () = number of abundant integers divisible by 4 but not
by 3, and < m»; A’y (n) = number of abundant integers divisible by

2 but not by 4 or 3, and <n; D¢ (n) and D4 (n) deficient integers
similarly defined.
Then A, (n) + Dy (n) = % + 0(1)
A’y (n) + D'y (n) =l + 0 (1)
Also Ay (n) + Ay (n) = Ay (n); Dy (n) + Dy(n) = D2 (n)

Then since Dy (n) > 0,

Ay (0) < % + 0O(1) (11)
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Also

logny _ 1 _ 0(411——2)
5 to (% )—Mv% Xs (2w - 1) T2

= 2A°+ 3D’y

n

a(4v—2)> 2u-1+4v-2_ 3
4y -2 4v -2 2

_28%, 3 (1 _ A4, 1Y)
n +2l6 n+o(-n>f

= Bk, —1-+O(.L)
n

since

2 n 4
Ay (7 1 (logn)
n\(SG 4>2+O n

A Ayt ALy 77 l+o(10€")
3 n

7 n 18 (12)

Now
As () + Dy (n)

11 =2 logny _ 1
432 + O( n ) " 2
243(n) + % D3 (n)

n

_ 2Ag(n) 4 (1 As(m) 1N
N 7% 316 n +O(11>J
2

A Feo(3)

2
3
1= _ 2 log n
15 5 o) (3]

A Ay (n)+Ag (n)+ As(n) + As (n)+ Ag (n)

n n

\ 32 29 1,1 1 4 1 _/logn
<7r{—+ e L T 00( )

864 112572700 ~ 3 15
log n
4453 + o(——n )

n)

>

lim
n~—) oo

< -4454

and for every n > ny, (")

< +4455
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‘We now prove

lim A (n)
s T >-a7

Since the following numbers are primitive abundant integers :
(an abundant integer is primitive if it is not a multiple of a smaller
abundant number®), 6, 20, 28, 70, 88, 104, 272, 304, 368, 464, 496, 550,
572, 650, 748, 836, 915, ... ... 8085

A(,,,)>[éi] + [lt) + .. [3035
[6 ] [6 wl
N [Wg%] -t [mgs—w]

A_y(zl)>{1_(1"%) (“éio ( 8085)1 O()

= 29472+ 0 (}l)

2 "1;% A(”)> -29472 and for all sufficiently large n.

An o Looqn,

Added February 1934:—Since this paper was sent for publication,
Felix Behrend has proved (Uber Numeri Abundantss II) that for all
sufficiently large n

A(n)

<241 < < - 314

Combining this result with our result we have that for all sufficient-

ly large n

22917 < ”)< 314

* Dickson (1) Odd perfect and primitive abundant numbers. (2) Even Abundant
Numbers. American ]oumal of Mathematics Vol. XXXV (1913) 413-426.

[Received 1-5-33]



Groups generated by an operator of order 2 and
an operator of order 3 whose commutator
is of order 2

BY
G. A. MILLER, University of Illinois.

Let s and ¢ be of orders 2 and 3 respectively and suppose that
st®st is of order 3. Hence it results that sist® is also of order 3 and
that the following equations represent identities

si®stst® = ®stst®s ; stst®st = tsi®sls.

The two operators stst = Ch1 and ¢sts = (; are commutative since
tsts. sist = t si® st = sist isis.

The two operators €7 and ('3 are transformed into each other by s
while ¢ transforms C: into Ci and € into C;7' C;".  Hence #® trans-
forms () into C; and C; into C;7! Co7L

To construct an infinite system of groups which satisfy these
conditions, we may consider the direct product of three cyclic groups
whose common order is the order of () and suppose that the
generating cycles of these three groups are represented on three dis-
tinct sets of letters. If for C2 we take the product of the first of
these cycles into the inverse of the second, and for ; the second of
these cycles into the inverse of the third, then (1 C: is the product
of the first of these cycles into the inverse of the third. The sub-
group I generated by () and C; involves three and only three
subgroups whose common degree is twice the order of C; and its
order is the square of the order of ;. This subgroup is transformed
into itself by permutations which transform the three given cycles
according to the symmetric group of degree 3.

For s we may take the permutation which transforms the second
cycle into its inverse and the first into the inverse of the third, while
for ¢ we may take the permutation which transforms the three cycles
in order cyclically. From the permutations which generate I it
results directly that a necessary and sufficient condition that ¢ trans-
forms into itself an operator of A besides the identity is that the
order of H is divisible by 3, and when this condition is satisfied
exactly three operators of A are transformed into themselves by ¢.

M 19
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As these three operators are transformed‘into their inverses by s, it
results that the central of all of these groups is the identity. The
quotient group G/ H is the non-cyclic group of order 6, and the sub-
group generated by H and ¢ involves only operators of order 3, besides
those contained in H. When the order of /A is prime to 3 all the
operators of order 3 appear in a single set of conjugates under the
group (G generated by s and £+ When H is the four-group, G is the
octahedral group.

For each of the Sylow subgroups of order »” in this infinite
system of groups, m is even except when p=2 or 3. In these two
cases i is odd. It is easy to see that when p=2, m must always be
0dd since () €> must have the same order as ). On the other hand,
there is an infinite system of groups coming under the heading of the
present article in which m is even whenever p=3. The smallest
group which belongs to this system is the direct product of the
symmetric group of order 6 and the group of order 3. For s we may
take any of its three operators of order 2 in this direct product, and
for ¢ any one of its four operators of order 3 which do not generate an
invariant subgroup of this order. 7o construct the infinite system in
question we may proceed as follows:

Let A be any abelian group all of whose Sylow subgroups are
the direct products of two Sylow subgroups of the same order, except
that the Sylow subgroup whose order is a power of 3 has two
invariants such that one is three times the other. The independent
generators (), C: of /[ may be selected as in the preceding case
except that their Sylow subgroups when p =3 generate the same sub-
group of order 3. We may therefore suppose that ¢ transforms an
independent generator of order 3% of one of these subgroups into
itself multiplied by a second independent generator of order 377 in
H, while it transforms the gecond of these independent generators
into itself multiplied by the product of the -3rd powers of both of
The operator s may be supposed to transform the

these generators.
its inverse and the first into itself

second of these generators into
multiplied by the second. Hence s and ¢ may still be supposed to

satisfy the conditions imposed in the first paragraph. Each of the °
groups of the present infinite category of groups has a central of

order 3, while in each of those of the preceding category the central

is the identity.
To prove that the two given infinite categories of groups are
groups which come under the heading of the

composed of all the
only necessary to note that ¢ could not transform

present article, it is
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into itself a cyclic subgroup of the group generated by Ci and (- il
the order of this subgroup exceeds 3. It is at once evident that this
must be the case when ¢ is commutative with a generator of such a
subgroup since €, 'Cy7! would then involve the —2nd power of this
generator and this would be equal to it since ¢ transforms () into
7Y Gyl Tt could also not transform such a generafor into a power
of itself which is incongruent to unity with respect to its order since
s transforms into its inverse the co-set in which ¢ appears with res-
pect to . Hence there results the following theorem : :

THEOREM : Every abelian group involving only Sylow subyroups
which have two equal invariants, or -only such. Sylow  sub-
groups except the one in which the larger invariant is three
times the smaller, can be exlended by l(wo operators of order
3 and 2 respectively whose commulator is of order 3 so_as (o
oblain « growp which is generated by these two operalors,
and whose order is six times the order of this abelian groiwp.
Moreover, every group which can be generated by lwo such
operators contains such an invariant abelian subgroup.

It may be noted that the preceding theorem completes the
determination of groups defined by the orders of two generators and
the order of their commutator when any one of the following sets of
conditions are satisfied: (1) The two given operators are of order
9 and their commutator is of any given arbitrary order, (2) one of
the operators is of order 2 and the other is of order 3 while the
order of the commutator is 2, (3) one of the operators is of order
2 and the other is of order 4 while the order of the commutator is 2,
(4) one operator is of order 2 and the other is of order 3 while the
order of the commutator is 3 (the present case). (5) both of the
operators are of order 3 and their commutator is of order 2. The
following two general theorems aro perhaps the most useful among
those developed in determining these groups.

If a group is generated by two operators its commutator sub-
group is generated by the powers of these operators, and if a group
is defined by the orders of two operators and the order of their
commutator, it is isomorphic with the abelian group whose inde-
pendent generators have orders which are equal to the orders of
these two generating operators. (Cf. Proceedings of the National
Academy of Sciences, volume 18, 1932, page 665, and volume 19, 1933,
page 199.)



On the behaviour of elliptic theta functions
near the line of singularities

BY

K. ANANDA RAT,
Presidency College, Madras.

1. Let r=x+7y be a complex variable and let q:ei”. Then
the functions

30| 7) = 201+ 20" +2¢B 0+ L.

30 7) = 1+29+2¢* +2¢°+ ...

3,00]7) = 1-2¢+2¢* 2%+ .........
are, as is well known, analytic for >0 and have the line y=0 as a
natural boundary. In a paper ‘* published several years ago Hardy
and Littlewood discussed the behaviour of these functions as y—>+0
on the straight line =&, when ¢ is an irrational. In particular they
proved that if, when & is expressed as a simple continued fraction,
the partial quotients form a bounded set, then positive constants
K,, Ko exist such that

K. L K
= < 1300] &+ )| <7i

(1) Vy ivé

for y>0.

2. The object of the present paper is to show that the argument
used by Hardy and Littlewood can be used to formulate conditions
under which one or other of the inequalities

[ Ky

[35(01 £ +7y) ] <,‘,/—,?/

e K-

5(0] &+ i

|S¥( l 5.7/)|> 14/!/
holds for y>>0. These conditions are found to be both necessary and
gufficient and are given in Theorems A and B of this paper. By
combining these two theorems we are enabled to show that the con-
dition of boundedness of the partial quotients of the continued fraction
for & which was shown by Hardy and Littlewood to be sufficient for

(') The notation is that of Tannery and Molk Llenments de la Theorie des Fonctions
Elliptiques, Vol. 1I.  This book will be referred to shortly as T. M.

(2) G. H. Hardy and J. E. Littlewood, Some Problems of Diophantine Approxi-
mation (Il), Acta Mathematica, Vol. 37 (1914) pp. 193-238 (pp. 226-250),
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the truth of the inequalities (1), is also necessary. In the present
paper I have closely followed the ideas of Hardy and Littlewood, and
I have given the arguments in detail only for the sake of complete-
ness; they are not substantially new and different from the arguments
of Hardy and Littlewood.

3. Throughout the present paper & stands for a positive irrational
whose expression as a simple continued fraction is

1 1

£ =+
! cs + cg ¥ ... F et

pn/gn is the nmth convergent of the continued fraction, and f . is the
"
complete quotient corresponding to cs:1, that is
1
Ton=Cun® T3

nig

It is easy to verify the identity ¥’

1 9.

Ip,a, -’ w1l g

n

which we have to apply. We require a few lemmas to begin with.

Lemma 1. Lei7 = ax+iy, T =X+.Y, and let «, b, c,d be inlegers
such that ad =be=1. Then if y>0 and

c+dT
a+bT

(3) T =
we have
Yy 13010 = vT 18,01 T,

where the suffic m stands for 2, 3 or4 according to the lype of (he
transformation (3).

It is known that *

() 185 (017)) = |Va+b T 1801 T);
and it is easy to deduce from (3) and ad-bc=1 that
I S
Y= Ja+0oT |2
(5) [Va+bT | = Y'Yy

The result of the lemma follows from (4) and (5).

(*) See for example, my paper, On the boundary behaviour of elliptic modular
functions, Acta Mathematica, Vol, 52 (1928) pp. 143-168 (p. 149).

(*) T.M.p.4rl.
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Lemma 2, Let

qy
HMy) = —S—
(pn - :q")" + q’lz!/g '
then for
1
(6) A<y <o
g 741 a 5
we have ‘%’
1 = Cnin
() 2 0, < ¢ <q (G1+1);
2 ” n 2 ’
and there is a value v, of y in the interval (6) for which
(8) Dy )>1tqg c .
" n T
It is known that
. 1
Ip —ig | < —,
nil
and so
to |2 1
(9) Ip &g |2 <(']*r”<!/

nil
using the first of the inequalities (6). Also

(10) ary® <y,

since q”‘-’y <1 from the second of the inequalities (6).

By (9) and (10)
(p =g P+qky® <2y,

q 1
b LA )
and so b (y) > % a .

which is the first of the inequf;’.ities (7) to be proved.

To prove the second of the inequalities (7) consider
A
T (N) = —5—5,
FQ) o+ A®
where a is a constant greater than zero. By examining the sign of
F’(\) it is easy to see that F(A) increases as A increases from 0 to z,
and decreases as \ increases from a onwards. Therefore for A >0

1
F(/\)\<\F(’1):'—‘.
2a
(°) The inequality ¢(») >1g9. was proved in my paper referred to above

(pp- 150-153) by a combination of algebraic and geometric arguments. The proof given
herc is simpler in detail.
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Applying this result with R=qﬂy, a=|pﬂ~£qn|, and using the
identity (2), we see that

b (y) < L

2' ])ﬂ - &qﬂl

q

- 7"

= ————_ 7 ) o . ” ’ -'"\ .~-“
2lp"qu sq, [ - ‘.‘-“'Uu.

n -1
fﬂ +]
7!

<gaqle 1+1+l)
"N ng

;sl-

which proves the second of the inequalities (7).

To prove (8) we observe that if cx; =1, (8) follows from what has
been already proved. For we have seen that for all values of ¥y in
the interval (6),

P>t =tqe .

We next consider the case when cuyy > 2. We shall first show
that

11 3 ;
(11) q - q q
7yl n %

The latter haif is equivalent to a known result in the theory of
continued fractions. To prove the first half we observe that

qn +1

q - p"i] 1
n
and so
@i
—g > >c
q - LES nil
since ¢ > 2. Therefore
npl
hl,,;,fq_ _ + Tu
Ipll (lﬂ - L‘{IT; l "+1 ()H
< (e +1)+1
nil
=c +2
LER Y
< /”Il

x.“

(/n
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and so
1 . lp,q,~%l 1p,~ Sa.l
q * q* B ’
S| ” qn
. Ip - %aq,l
which proves (11). If we takey = —* " we have
» q
n -
1 1
B) < 41/" < Ty
PES] qu
and by )= L
Y 2lp —&q |
» £
D 1
2 p,g, —% ]l

Il
4 I =Q
/\\
e
3
:
+
<9
3
;
S~

> iqc

n on+l *

This completes the proof of the Lemma.

Lemma 3. ©® If T=X+iY and Y > 3%, then
<1300l T
l< ‘SF(OIT)lQ EE )

3 —mYi 5
3@ < lSz(O]T)[<‘2 e

=

—n¥Y/[t

4. To facilitate the enunciation of Theorems A and B below, it
will be convenient to divide the positive integers 1, 2, 3,... into two
classes according to the following definitions: The mteger n is said
to belong to the first class if one of p, 4, is even ‘, The integer n

is said to belong to the second class 1f both pn, gn are odd.

We can now prove the following theorems.

Theorem A. Let 7=£E&+iy. In order that a constant X1 >0 may

extst such that

[3s(01n)] < VzIT

it is necessary and sufficient that the partial quolients capn

forally >0,
lass should form a bounded set.

fm values of 2 belonging to the first ¢

(G) For proof see Hardy and Littlewood, loc. cit. pp. 227, 228, 230.
(") The other is necessarily odd.
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”
Let n=n(y) be the integer function of y defined by

1 1
o =y <
q, = q

LES1 n

’
2

so that as y =0, n—>co. If n, stands for (—1)%, the linear transfor-
mation
. pnﬁ] * 77” puT -
(12) T :?’W . (T =X+7Y)

belongs to the modular group since

npqg —np q=n?=1
” L

EOT | 1 » »
Therefore by Lemma 1 we have

(13) Vyl30ln)] = /Y180 T)I,
where the suffix m is 2 if pu., g« are both odd, and m is 3 or 4 if one
of pn, qn is odd and the other even .

By writing 7=£+7y, T =X+{Y in (12) it is easy to verify that
_P(y)
(14) A S

”

where ${y) is the function which occurs in Lemma 2; so that by
(M, Y>15

We divide the values of y into two classes: (I) those for which
n(y) belongs to the first class and (II) those for which n(y) belongs
to the second class.

Let y take values belonging to class IT. Then (13) is true with
m=2; and since Y>>} we have by Lemma 3
-

lSQ(OIT)|<ge

. 5 —nY/ 5
(15 YISO T < S V/Y e <3
Combining (13) and (15) we get the result that for values of y
belonging to class II

(16) Vyl30]r)| < 5/2.

Next let y take values belonging to class I. Then the suffix m
in (13) is 3 or4; and in either case by Lemma 3 (since Y >14)
(5) T.M. pp. 41, 24I.
(") AsY increases from § onwards, 7Y —log Y increases, and so for Y >},
—3(% +log 2)
e < TI.
M 20

—-nY/4 —}rY —logY)
VY e = e <
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an 1< 1801 T < 85
also by Lemma 2 and the relation (14)

fp—
(18) vy <~fem,
and so from (13), (17), (18) we have
19) Yul2010] < §atf/ et
&/u19:017)] \/2+1-

On the other hand by Lemma 2 there is a value y» of y in the
interval (6) for which
‘#(‘T/’n) > 1

% Chyy s
”n

and for such a value of y, the corresponding Y will satisfy

(20) YY>Ve 2

nil

and using (13), (17), (20) we will have
(21) Yyls0INI>L¥c 2
»il

The sufficiency of the condition enunciated in Theorem A follows
from (16) and (19), and the necessity of the condition follows from (21).

Theorem B. Let r=%+4dy. In order that a constant Ky >0 may
exist such that

X
[3s(017)] > Ty

for all y > 0, it is necessary and sufficient that the partial quotients cni1
for values of n belonging to the second class should form a bounded set.

We employ the same transformation (12) as above and use the
identity (13). The values of y are divided into two classes I and II
as in the last theorem.

First let y take values belonging to class I, so that (13) is true
with m=3 or 4. In either case we have by Lemma 3 (Y > 1! as
observed previously)

[3a(0l T) >4,
YIS0l T) >3-V

and so by (13) we see that for values of y belonging to class I
(22) Yyl > - VE.

Next let y take values belonging to class II, so that
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(23) Vyl3s01n) =Y 3000 T)
By Lemma 3
—wY [t
(24) 3011 > 5o
and by Lemma 2 )
c
(25) v = P - Ten g

q 2

"

and therefore by (23), (24), and (25)

™
=76+ 1)

(26) Yyl3 00l > &/~ 5e

On the other hand by Lemma 2 there is a value , of y in the

interval (6) for which

and for such a value of y we have on using Lemmas 2, 3

ol <27 < 3o e
VY < /{/?f;L1 +I
and therefore using (23)
(27) Yyl5:0|7) < g 'i/(’“—;‘ﬂ o S

The sufficiency of the condition enunciated in Theorem B follows
from (22) and (26); and the necessity of the condition follows from (27).

Combining Theorems A and B we get the following Theorem
which completes the result of Hardy and Littlewood:

Theorem C. Let r=E+iy. In order that constants Ky >0, Ko >0
may exist such that

X X
A\l/yv< [3:0]7)] < Uy

Jor all y >0, it is necessary and sufficient that all the partial quotients
¢ should form a bounded set.
n
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5. A few examples may be of interest. Let c1=1, ca=1 and let
all other partial quotients cs, cs...be even. It is easy to verify that
D1y D3y Psy.veare odd, po, p4, pe...are even, aud qi, ge, s, q4,...are odd. If
1, C3, C5,... 18 @ bounded sequence and ¢y, ¢y, cs... is an unbounded
sequence then the condition of Theorem A is satisfied but not that
of Theorem B; so that {/y[3;(0]|7)| is bounded and has the lower
limit zero as y —=0. If, however, ¢, ¢4, ... i8 a bounded sequence and
€1, €3, C5.... 18 an unbounded sequence, the condition of Theorem B is
satisfied but not that of Theorem A ; so that ¢/y|3(0|7)| is unbounded
and has a lower limit greater than zero. Generally if the continued
fraction is residually periodic ‘> to mod. 2, we can decide after a
finite number of calculations whether Theorem A or Theorem B
applies.

(1%) That is to say, if A, is defined to be I or 2 according as ¢, is odd or even, and
if the sequence A, A . . .is periodic. Cf. my paper, Additional note on the boundary
behaviour of elliptic modular functions, Acfa Mathematica, Vol. 53, (1929", p. 78.



Singular Solutions of Ordinary Differential
Equations of the Second Order

BY

C. N. SRINIVASIENGAR,
Bangalore.

PART 1

1. We shall start with the following resuit, which will be con-
sidered in detail in a paper (to be published later) on the singular
solutions of simultaneous equations.

THEOREM : Lel w(x, y, z2)=a,; vlx,y, 2)=0bbe the general solutions
of the differential equations y =d(r, y, z); 2 =is(x, y, 2). Let
wlx,y, 2)=0 represent « rvelation in virtue of which o first partial
derivative of dn or ¢y (or 1/, or 1/da) as well as a first partial deri-
vative of w or v becomes infinile. The singular solutions (if any exist)
of the given equations will be included in the equations

w(a, y, 2)=0 | (g,lz _ 9y . 2 = E’f)
¥ =1, or 2=y, J " dx’ da
Replacing now the equation
Fla,uy,y)=0 (1)

by the simultaneous system
F(r,y22)=0; z=y, . (2)

we can now write down as corollaries of the above theorem, the
following :

THEOREM : (1) Let wilx,y, ¥)=0 be «a relalion in virtuc of which
and of the equation F'=0, we have cither 3F[dy"=0, or a first partial
derivalive of F(x, y, iy, y") with respect lo any of x, y, y', or y" infintle.
Then the complete primilive® of wi (v, y, ¥)=0 might give singular
solutions of F=0.

. (2) If b (o, y, ) =a and P32 (v, y, ) =0*% are the lwo
first integrals of F=0, and if w: (x, y, y')=0 be a function in virtue of
* As regards the singular solution of w(x, ¥, y')=0, vide §§ 9—I0.

** If instead of ¢ =2, we have ¢ (v, v, 5. @) =0, then wy=0 will be a function in
virtue of which 0¢/da=0, or Oy/Sx or ou/dy or 5'«#/55 is infinite.
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which any of the first partial derivatives of ¢1 or 3 becomes infiniie, then
the complete primitive of wilz, y, y')=0 might give singular solutions
of F=o.

The conditions are of courss necessary conditions only, but
either of the prozesses (1) or (2) gives the sinzular solutions of F =0
exhaustively. '

It mav happen that w, or w: is independent of ', but provides a
singular solution—the only singular solution of equation (1) (vide § 8)

Some Remarks

2. (1) It may happen that either of the equations #;=a, da=>0
considered as a differential equation of the first order admits of
singular solutions for one or more values of the constants a or 0.
Such a singular solution may or may not satisfy (1). [vide: Johnson :
Differential Equations. §§81 and 83]. Conversely, singular solutions
of (1) are not necessarily singular solutions of some first integral.

(2) If we consider the congruence of curves ¢ (z,y, 2)=0;
dy(x, y, 2)=b where &\(x, y, ¥)=a, ¢z, y, ¥)=>b are a pair of
independent first intezrals of (1), the envelope of any siugly infinite
system of curves selected out of the congruence leads to singular
solutions of F=0. Otherwiss expressed, if E(z, y, 2)=0 is the focal
surface of the congruence (assuming that E involves z), E (z, v, 4)=0
will necessarily give solutions of (1), and these solutions are usually

singular.

[We know that the eguation (1) in general does not admit of any
singular solutions. This means that the corresponding congruence
bz, y, 2)=a; bz, y, 2)=b in the general case does not possess a

focal surface.]

Examples :

3. 1In one or two other papers, a distinction has been made

between singular solutions and “infinite solutions” * (or limiting
forms of the general primitive). This distinction will assume greater
prominerce and importance in the case of differential equations of
the second order.

* Vide a paper in the Half-Yearly Journal of the Mysore University. Vol. V. No. 2.
The nomenclature is from E. B. Wilson’s Advanced Calculus § 101.
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EXaAMPLE 1. y(1-log y)y"+(1+log y)y'?=0.
2 F/oy” =0 leads to the solution y =e which is however a particular case
"of the solution y = const. The complete primitive is log y=(x+ a)/(t +b)
The solution y=constant may be considered to be included in the
complete primitive by making « and b infinite in such a way that
alb=Fk. y=k provides an infinite solution. There is. no singular
solution.

EXAMPLE 2. ¢( ~’/(1+7/°) g+ E Lby? (1+u )2) o
Y

The complete primitive is given by the congruence of circles
(z—a)®+(y—B)2=2* where a, B, r are connected by the relation
¢ («, B,7)=0. When ¢ is written as a polynomial in 3", the equation
1+y2=0 satisfies the equation. The isotropic lines y+ix=A and
y—ix=DB therefore always furnish solutions of the given differential
equation, but these solulions will in no case be singulzr. Singular
solutions however exist which may be obtained by the rules in § 1.

To prove that 1+3%*=0 does not furnish singular solutions, we
shall compare the equations
22+ 3 - 2ax — 2By + (2 + B - 2) =0
and (y+ix— A)y-ix—-B)=0. If these are identical, we must have

-22=1A-B), 28=A+B, r*=AB-a*-3=

The equation ¢{«, B,0)=0 gives B in terms of a. Keeping a
arbitrary, the equation a®+y®—2xxr—-28y +a*+3*=0 gives the isotropic
lines y = tix+ constant.

PARTICULAR CASES OF EXAMPLE 2:
(1) ala =220y + 2ay’ y" (L + )+ (L+y2pP=0. *

Writing the equation in the form

+ (1+4*

o® (1—,3/,)ﬁ 2a (.‘L’ = 1(-—71/v)) =0,
y y

the complete primitive is (vr—-«)*+(y—-RB)P*=7% where o+ r*-2a2=0.

Putting « =§, =0, we obtain y= F=¢r+ const. Prof. Forsyth's state-

ment that 1+#?=0 gives singular integrals is an error.

* Forsyth: Theory of Diflerential Equations. Vol. II1. § 239
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The two first integrals may be written

v(1+y) - ay' £V Faz(i 1 %) -

b= -

P 1547 const.

b= ’1(1+l/”)‘(l+2/\/9(11(]+7/ N-a® ‘

e D L) =const.
142

From §1, we should expect singular solutions, if any exist, to
be given by 2ax(1+y?) - a? —0 This is verified to be true, and we
obtain on integration

g/+c=g sin’lx/zﬁ’ + gg}iz"zr)
a

(TT)** (i) 2%+4°— 2xy (1”1‘ y'®) " 21/(1";?/'Q) 2
Yy Y

2ay' (L+ y?) | 2y(1+y?) (1 +3%)8 —72

(ii) a4+ - F——e + - v
y y ¥y
T+y°  my(Ley?)
(iii) y—ma+ #\ + 2y Ty (1 - y?) =0.
Yy Yy

All the three examples belong to the general type considered
and their primitives can be written straight off. They are

(i) 22+4%-2ax—-2Wby+i’=
(ii) (x—a)l+(y—-0)=c® where a*+b*>=14*

(iii) 22+ +2a(x+wmy)+b=0,

For (i) what is the nature of the solution y/x = const.? This is
not a singular solution, but an infinite solution. For, writing the
at+ kP . .
primitive in the form y+ g a= 1—%, we obtain the solution
y/x=const. by making « and 0 infinite in such a way that a/b = const.
This fact can also be seen by writing a first integral in the form
xy ~y '
3% — 2% = 2xyy +iP
y/x = constant.,

=constant. Taking the constant as zero, we obtain

For (ii), we have the singular solutions
Y A LE k
tan! 2 =A+ (k-/ A o] —T:O)
x k 008 "4/ +4
For (iii), . the solusions z +my=const. provide infinite solutions.

** K, J. Sanjana : Journal of the Indian Mathematical Society, Qun., 1162.
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PART 1I

4. The geometrical interpretation of the singular solutions of
the differential eguation of the second order introduces us to the
subject of “osculants” or " osculating envelopss ". The osculunt of a
" singly infinite system of curves may be defined as a curve having

contact of the second order wilh cvery curve of the system.

Consider now a doubly infinite system of curves f(z, y, a, b)=0,
If the sinzly infinite system given by b=0(a) possess an osculant,
we must have at the point where the osculant touches a curve

f(x, y, a, b)=0 (3)

ef |, of db _

da * b da 4)
of | of _ (aef 3 db _?;)i 41) 5)
ox | oy Srea © droh da / bJBu B b da

These eguations of the osculant have been obtained otherwise in
Forsyth : Theory. Vol IIL. § 245,

Eliminating = and y from (3), (4), (5) we obtain a relation
Aa, b, db/da)=0. Let the general primitive of this be G(a, b, ¢)=0.
Eliminating « and b between

[~
—0. of . 3¢ _3°G |Gy -
fx, y, a, b)=0; 571_0_/) a / Eb)‘o’ Gla, b, ¢)=0,

we obtain H (z, y, ¢)=0 which ¢ncludes the osculating envelopes of
Az, y, a, b)=

The singly infinite system of osculants so obtained evidently
satisfy the differential equation of the second order derived from the
primitive f(z, y, a, b) =0, since contact of the second order is equi-
valent to equality of curvature.

We shall obtain an alternate set of equations (I believe this
method to be new) giving the osculants of f(r, ¥, a, b)=0.

* The conditions that the envelope of f(v, ¥, a'=0might have everywh:rz contact
of the second order With the curves of the system are usuaally giveninth: form f=23;
Offox=0; 3*/ex* = 0. But in the present casz2, Cfazl:() is unsuitable as it
leads to an equation of the second order involving CL’ b/da®.  Consequently,
of &f _of f
ox ozby B]/ dxdx
matical Tracts. No. 20. § 5- 420

its equi-

valent viz =0 is employed. Vide Fowler: Cambridge Mathe-

M 21
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In the.general case, the osculants represent singular solutions of
the differential equation of the second order derived from
S (z, v, a, b)=0. It follows that the differential equation of the
system of osculants can be derived from one of the first integrals by
the process mentioned in the last theorem of § 1. Now the first

integrals are obtained by the elimination of one of the constants a
or b between

Az, y, a, b)=0 . (6)
o , 2
iP(II‘, Y, a, b)ES£+g/ »b?c = (7)

The solutions of (6) and (7) for a and b therefore yield functions of
x, y, v such that a first partial derivative of at least one of the
solutions be-omes infinite in virtue of the singular first integral
wlx, v, ¥)=0. By the theory of implicit functions, the condition
that the solutions for ¢ and b may possess this property is that
dlf. &)
a, b)

assuming that f involves the variables rationally.

=0 (8)

The differential equation of Ihe system of osculants is therefore
oblained by eliminating a and b from (6), (7) and (8).

This fact is also deduced from § 2 {2) by using the fact that the
two congruences &i(r, ¥, 2)=a, ¢, y. 2)=0 and Az, ¥y, a b)=0,
of + afzz() must possess the same focal surface.
dx oy

5. Tt should be noted that in the above discussion multiple
points are left entirely out of consideration. The theory of contact
is usually discussed with reference to ordinary points only. It is
desirable to define contact of a given order at a point which may be
a multiple point for one or both of two given curves, and to establish
the conditions for contact. I shall not digress into this subject here,
and in the rest of this paper the osculants are considered to touch
the curves at ordinary points only.

6. If the osculants of v, y «, b)=0 happen to possess an
osculant of their own, the iatter will in general be itself an osculant
of f=0. The proof is easily supplied. In exceptional cases, this new
curve may be a locus .of double points of a ool curves of the
primitive. The new osculant in the general case is not included in
the original system H(z, ¥, ¢)=0.
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7. For a differential equation of the second order, can there exist
a singular solution which does not represent an osculant of a system of
curves selected out of the general primitive ?

In order to answer this important question, it is first necessary
to have a clear idea of the nature of the general primitive of a
differential equation. The general equation F(x, ¥, 3/, ") =0 admits of
a general primitive involving two arbitrary constants. This is a con-
sequence of the fundamental existence-theorem of Cauchy. Now it
may happen that the general primitive ¢ (x, ¥, @, b) breaks up into
two factors g(x, y, ¢)*x Ax, ¥, a, b) where ¢ involves only one arbitrary
constant. This solution g(x, y, ¢)=0 may not be derivable by the
rules of § 1 for singular solutions, so that g (x, y, ¢)=0 must be
regarded as forming part of the general primitive.

Let us next sfart with a given equation f(x, ¥, @, )=0 and form
the corresponding differential equation ¥{(x, y, v, y’)=0. Then it is
incorrect to presume ithat f (v, y, a, bY=0 always represents the complefe
general primitive of FF'=0. There may often exist an additional solu-
tion g¢glx, y, ¢)=0 such that for wvalues of =z, y, # satisfying

D O . . .
g (r,y, ¢)=0; y = —-5—('/. B—Z’ the property of wuniqueness in Cauchy's

existence theorem holds. The solution ¢ (x, , ¢)=0 should bhe
preferably called non-singular on account of this property coupled
with the fact that it may not be obtainable by the rules of § 1.

These facts will be illustrated by some of the following exam-
ples. That the answer to the question raised at the beginning of this
section may be said to be in the affirmative at least in a sense, is
seen in Example 9.

EXAMPLE 3. F=32%"+2y3-62y =0.

This equation is derived from the equation (y+0)*=a*+«. The
differential equation is obviously satisfied by y=constant. What is
the nature of this solution? It is not obtained by means of the
equation oF/dy”=0, so that it cannot be a singular solution. This is
3a*-2yy |

2y
The value b—>0 gives ¥ =0 which is therefore included in the gene-

ral first integral. Butif in the primitive (y+b)*=2"+a, we change
b to 1/c and put ¢=0 on simplification, we do not obtain y = constant.
Cauchy's existence theorem holds when the initial values are chosen
so that 3’=0. For these reasons, I call (y+0)*=2%+a as the incom-
plete general primitive and y=constant as the residual primitive.

confirmed by writing down a first integral in the form b=
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EXAMPLE 4. 9 y'++8y"=0.
Incomplete general primitive: {(y+ a)®=(x+b)?

Residual primitive : y constant.

_4-9%

A general first integral is given by « 9,2
N

As a0, ¥y =0.

It may be addled that when we solve the given equation by
s , P ¢ .
writing ¥ =p, ¥ =p£, the equation p=0 is at once thrown out,

giving y= constant.
EXAMPLE 5. F=(y —ay)*-6xy°=0.
Incomplete primitive: (y+a)=a+10.

Residual primitive: y = constant.

. F
In this case, ¥=0, ?~,,=0 lead to y =0 which is however not a

cy
singular first integral, for it is included in the general first integral
3y'(y +a)?=2z, when a—=>c. The curves y=constant have no special

geometrical significance in relation to (y+a)*=a*+0.
EXAMPLE 6. F=(y?*-2yy")*=9yy *=0.
Incomplete primitive: (x +a)*=yly - b)*
Residual primitive: y=constant.

(The particular case y=0 is however included in the former, as

may be seen by writing ¢! for b and putting c=0 after simpli—~

fication.) y =0 is included in the first integral 3y-b= 2r/~ y when
b= cc. y =0 is also given by F=0, oF/2y”=0. The curves y=cons-
tant happen to represent nodal loci of the primitive when a is varied.

EXAMPLE 7. 2(1+y)y ' +y*=0.

Incomplete primitive: (x+y+a+b - =4y +u)

Residual primitive: y=constant.

EXAMPLE 8. F=d4y72+24y%" +8y - (9y "+ 27y 6)=0.

Incomplete primitive: (z-0P=(y+a)l(l-y-a).

Residual primitive: y=constant, which is the nodal loci for

variation of the parameter 0. y'=0 is not given by the equations
F=0, sF/ey"=0

EXAMPLE 9. The primitive (x-cP+p=3(x-cly+d® leads to the
equation (4% +2yy - 2¢) (¥ +2yy* —y'y).+ ' =2 (7' =9) =0.
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A first integral is given by
(x=cP~ylx-c)+y’y -y=0
or Ar—c) =y £V - 4%y + 4y,
There is no residual primitive. Forminz the y”—discriminant of the
differential equation, it may bs verified that y=0 satisfies it. »=0

also satisfies the differential equation. It furnishes a singular
solution. Does this represent an osculant of the primitive curves?

#=0 meets any curve of the primitive at the point x-c=a
or aw or aw? where w is an imaginary cube root of uunity. The
values of 3’ and 3" at this point for the primitive are found from
the equations

(x-cP-y@-c)+y’y -y=0
. Ax-c)-y'(x—c) =2 + 4y + 2y =0.

We obtain at (c+q, 0), ¥=a and y"=0; similarly at (c+aw, 0),
¥ =aw and y"=0. Contact of the second order between the primitive
and the line y=0 is thus impossible if ¢¥0. But when a=0. the
point (¢, 0) is a mnode, and the value of 3" for the branch of the
primitive touching y=0 is evidently mnot zero. y=0 is thus not an
osculant in the sense employed.

The differential equalion thus possesses a solulion nol included in
the general prindtive and not consliluting « proper osculanl of the
primitive.

The following will be an expianation for the occurrence of the
solution y=0. TFor the initial values y=0, y =0, the differential
equation will be satisfied by every value of y” ie. any curve touching
the z-axis will satisfy the differential equation at the point of
contact. The z —axis itself therefore furnishes a solution throughout
its length.

EXAMPLE 10. (y+c)2=(x+a)® is the primitive of 84'y"=9. When
¢ is kept constant and « is varied, y+¢=0 gives the cuspidal locus
which is an envelope as well. This however does not satisfy the
differential equation. A nodal or cuspidal locus which is also an
envelope is thus not necessarily a singular solution.

8 We shall next consider the case where the differential
equation admits of only one singular solution. This happens, as has
been mentioned in § 1, when a first integral H(x, y, ¥')=a is such
that the surfaces ¢(x, y, z)=a admit cf an envelope whose equation
involves only x aund y. This case is found to occur whenever all the



166 C. N. Srinivasiengar

curves of a doubly infinite system of plane curves can be enveloped by
the same curve. 1lf E be the envelope and P any point on it, every
one of the singly infinite number of curves of the system passing
through P touches E there. In the general case, we may expect
one curve out of these, to have contact of the second order with
E at P. E thus appears as an osculant of a particular co! curves of
the system. The eguation of the envelope therefore provides a
solution of the differential equation of the second order satisfied by
the system, and the solution will in general be singular. In
exceptional cases, however, there niay be mno curve of the system
which has contact of the second order with E at any point along it,
and yet B may furnish a sclution. (I have found that this solution is
usually particular or is an infinite solution). These facts will be
illustrated in the course of the following examples:

We shall first consider a general type: .
LA, v, a. 0)F=d(x, ¥
FEvery curve of the system touches the curve ¢(x, y)=0. We shall
show that if (a1, 1) is any point on & =0, it is possible in general
to find values of « and b such that the corresponding curve has
contact of the second order with & =0 at {1, 71).

Since the curve f>=¢ has to pass through (x, ) we must have
F(x1, v, @, b)=0. The values of ¥ and y” at (a1, ) for the curve
fi=¢ are given by the equations

o¢ o ,
Zf( =+ ¥
E;/l ox1 O
\. <2 <g
of o A\ b, b,
res +2{ =5t 2 <yt Y
2 f.(some expression) > Ll ch y . oy St
L2,
Yy
oy
, od b -
The first equation gives y = “m S Writ‘ng down the

value of y” for the curve & =0, we easily see that it is equal
to the value of y” given by the acond of the above equations

bf i y =0. If therefore we determine a and b so as to
011 Ol/
satisfy the equations
f(.l‘x, ¥y, d, l))=0 (9)
d2f oo _ of éi=0’ (10)

dr1 d; Yy om
the corresponding curve [f(x,y, @, »)2=d{x, y) has contact of:' the
second order with ®=0 at (xi, »). In general, therefore, »=0 is an
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osculant of a ool of curves selected out of the system f2>=d, and the
system possesses no other osculant.

In exceptional casss, however, it may be impossible to sclve the
above equations for « and » at any point whatever along the curve
b=0. The equation ¢ =0 will nevertheless be a solution of the differential
equation derived from f*=¢. 1If (21, 11) be any point on the curve ¢ =0,

o [ db
then for the set of initial values z=2a1, v=wy, ¥ = - bl" ‘biz}’ e
X Y

differential equation will be satisfied by the value of " corresponding
to any curve of the system f?=¢ that passes through (a1, y1). Assuming
in the general case, that the singly infinite number of curves passing
through (a1, 1) do not all have the same curvature at (a1, 1) which is
different from that of &(x, )=0 at the point, it follows that for the
above initial values, the differential equation will be satisfied by a
certain singly infinite number of values of 7", and lhence by any value
of y’. This being so at any point along ®(a, y) =0, it follows that @ =0
itself must be a solution of the differential equation. It is also clsar
that whether this solution be singular or particular, it satisfies the
equation dF/dy”’=0 where F =0 is the rationalised differential equation
of the congruence. ‘

EXAMPLE 11. (x4 ay+0)2=a’-y.

The corresponding differential equation is
(@2 =y {2e—y =2V =yt = (=)@ =W — Ly R -y 2
a?-y=0 is the only singular solution and the only osculant of the
primitive curves. [The point (0, 0) presents an exception. The curves
of the system passing through this voint are (v+ay)*=2*-y. They
break up into y=0 and 2ar+a®y+1=0. The values of y” for a?—y=0
and for either of the degenerate curves are different].

The above is a typical example of the general case. It is unneces-
sary to give more examples. The following examples illustrate the
various possibilities of exception to the above general discussion.

EXAMPLE 12. (v +oy+b)2=y.

In this case, the equation (10) gives 1=0. The envelope y=0 is
therefore not an osculant. But z=constant constitute infinite solu-
tions, as is easily verified, of the corresponding differential equations.

EXAMPLE 13. bla+y+a)2=dla, y).

This illustrates a trivial case. The envelope @ =0, though not
an osculant, is a particular solution corresponding to =0,
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ExXAMPLE 14, {ay® — 22 - b)}2 =y,

¥=0 is an envelope of the doubly infinite system and is a cusp-locus
for the system ay*=2%x-0). The equations (9) and (10) determining
a and b such that the corresponding curve may have its ¥y and y”
equal to zero at any point (a), 9) are .

a1 - 0P=0; )* + 20 (2 - 0) =0

which are inconsistent when 2,70, y=0 is therefore not an osculant.
y¥=0 may be rezarded as the single infinite solution obtained by
making a—>; for the given equation can be written

1 12
a_ Ly gy L 3
Y o (x-b)a oY

EXAMPLE 15. {f(x, %, a, b)}*= (z, ).

¢ =0 is an envelope having contact of the second order -with
every curve of the system. All the singly infinite number of curves
that pass through a given point on the curve $=0 have the same
values of y and y" as the curve ¢ =0 has at the point.

9. I do not quite agree with the existing theory about singular
solutions of the second order. If w(x,y,y)=0 be the singular first in-
tegral leading to the singular solutions of the first order, then according
to the present theory, the existence of a singular solution of the
second order requires that the curves defined by w (z, y, ') =0 should
possess an envelope which has contact of the second order with
every one of the curves. This condition is however not in general
necessary. Any singular solution of w (z, y, y')=0 will satisfy the
differential equation of the second order, in a large number of lypes of
equalions. In other words, for the existence of a singular solution of
the second order, it is sufficient in many cases if the curves
w(z, y, ¥)=0 possess an ordinary envelope (not included in the
curves themselves) and not necessarily an osculant.

To explain this, let us suppose for the sake of simplicity that
w(x, y, ¥')=0 is rational in x,y and y. If S (z, y) =0 be its

i lution, the t ti —0; o 0wy
singular solution, the hree equations w i gy Py Yy 37

. , oS/ oS . 2 & .
are all satisfied by the value y' = Yy é—z/ in virtue of the equation

S(z, y)=0. Now from the last theorem of § 1, in order that w(z, y, ¥ )=0
may be a singular first integral, one of the general first integrals
dy=aor ¢;=0 should involve u =0 irrationally or transcendentally.
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A wide class of examples is obtained by taking the first integral in
the form

bz, v, Y= (2,9, v)+{w (2, 9, ¥} " =0 where n>1.
The differential equation of the second order is
1-Lin bf , . of ' 1 dw  dw ,
w T y +b’ b.1+by Bz/’y) 0

It may be rationalised if required, or we might eliminate a
from the equation (¢ —f)*=w, and obtain the differential equation in
the form

@Jr@ v 2 Y _(_l)ﬂn,wﬂ of [ OF ., ¥,

o x b’ 2>—x+b_/ +bz/

The singular solution of w=0 evidently satisfies the differential

equation of the second order, since we have simultaneously w=0,

br_u,= " bﬂ)+ aﬁ]y’ =0. It must be noticed that for the initial
oy dx Oy

.

values of =z, y, y satisfying the singular solution of w=0, the
differential equation of the second order is satisfied irrespective of the
value of y".

EXAMPLE 16. Let ¢(x, v, y)=22+y -V y—ay —y°=
The differential equation of the second order is

22z +y Ny = xy' =y + (2 + 2 )y =0.

The equation y =2y +y* leads to singular solutions of the first order
viz. y=cx+ct Its singular solution 2*+4y=0 satisfies the differential
equation of the second order and constitutes the singular solution of
the second order.

EXAMPLE 17. A more general case than that discussed is ob-
tained by taking
B
d=flx, v, v, Vw )=a, (k>1)

w being rational in x, ¥, ¥ as before.

We obtain the differential equation of the second order in the
form

of bl/ of )11,k+ df duw blu Ew ) 0.

$+ by bz"/ Gy \ox + bz ¢

w=0 and the singular solution of w=0 obviously both satisfy the
differential equation and yield the singular solutions of the first and

gecond orders respectively.
M 22
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10. It becomes necessary to explain the exceptional examples
wherein the singular solution of the singular first integral does mnot
satisfy the given differential equation.

EXAMPLE 18. (1+a¥y" -y (2xy’ + 12+ (% + xy - y)=0.

This example has been discussed by various writers including
Goursat and belongs to the extended Clairant-type®

by, ay” -y, 2%y -y +2y)=0.

The general primitive is given by

y=ax?+br+4a®+ b

The singular first integral is

2 YT 2 xt .
¥+ (?: + E)y —(1+a%y- 16 = 0, whose solution
viz, V1Gy + 42+ 2t — V1 + 22 - log(x + V1 + a?) =constant:

represents the singular solutions of the first order. The singular
first integral admits of the singular solution 16y +42* + 2*=0 which
does mnot satisfy the given equation.

We shall now explain why the general remarks of § 9 fail in
this case. By putting a for y” in the given equation, we obtain a
general first integral

A1+ a%) ~a@xy + 128+ y*+ay —y=0.
If we eliminate a from this by differentiation, we obtain in addition
to the given differential equation of the second order, another
differential equation of the first order. The result of differentiation gives
(a=y") (ax—x=2y)=0.
Eliminating a by using the equation 2ax -—x -2y =0, we obtain the
extraneous equation of the first order :
(z +2y') =222y — ay')
and this equation is satisfied by 16y + 428+ 2*=0.

In other words, if, as in § 9, we write

_ 2xy +ia” g ; VY BV s
¢1:mi/\/%+y(l+rz)—(ag+§)y -2/ V1+2% = q,

the singular solution of the singular first integral does constitute a
solution of the differential equation obtained by differentiating
a; but this differential equation happens to be degenerate,

Dz, v, ¥)=

* Vide Forsyth : Vol IIL § 237.
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breaking up into two equations, one of the. second order, and the
other of the first order; the solution in  question is for the latter.
Similar remarks are true if we start with any other general first
integral of the given equation.

2
EXAMPLE 19. y= - %y" +xy +y(y —ay")*

The complete primitive is
y=ax®+bx+ 2ab.

The singular solutions of the first order are given by

a2 i
YT I8 T3 T ‘
These curves envelop the curve y= — a 3/2 which does not satisfy the

given equation. The differential equation belongs to the same type
as the equation of example 18. A first integral is

. y= —£;;+.1‘g/'+a(y’ - ax)
It will be found that when « is eliminated from this by differenti-

ation, we obtain the differential equation of the second order foyellier
3
with the exlraneous equation ]/+L=()_

2

It thus appears that the remarks of § 9 are true provided that
the differential equation admits of two first integrals d\x, 5, y)=a,
du(x, y, y)=b which are such that when the constant is eliminated
by differentiation, we do not obtain any extraneous equation involving
z, 4.y, oronly x and . Examples 18 and 19 are examples wherein
this proviso does not hold. Such types of examples may be multiplied,
but there exist a large number of examples for which the statements
of §9 are true, and §9 appem 5 to cover the more general case.

When, asin §9, the curves representm" singular solutions of the
first order possess an ordinary envelope satisfying the differential
equation, this envelope also constitutes in general an osculant of
the primitive curves, though not in a way quite similar to the case of
§6. Let H be a curve of the system H(a, , ¢) =0 constituting singular
solutions of the first order, and let E be the envelope of the curves
H, touching H at P. We have seen in §9 that, for the initial values
of x, y, ¥y corresponding to any point P on E, the differential equation
is satisfied by all values of y’. In the general case, there will there-
fore be a singly infinite number of curves of the primitive that pass

* P Burgatti: Rendiconti del cir. Matematico di Palermo: Vol 20. (I905) pp. 256—264.
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through P and have a common tangent. Out of these curves, one
curve C will have its curvature at P equal to that of H, and a
different curve D will have its curvature at P equal to that of T.
H constitutes the osculant of a system of which C is a typical curve,

while E constitutes the osculant of a system of which D is a typical
curve.

It is extremely difficult to obtain examples wherein a singu-
lar solution of a differential equation of the second order does not
constitute an osculant of a oo! of primitive curves, chosen in some
way or other, although such examples are not altogether impossible.
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On series whose terms as well as the suin-
function are continuous in an interval,
and which converges non-uniformly
in every sub-interval

BY

K. VENKATACHALIENGAR,

Bangalore.

1. In the following paper, a simple method for the construction
of such series is given. Lebesgue ‘> has given a Trigonometric
series behaving in this way, and Osgood ® has constructed series
which converge non-uniformly in any sub-interval, but here the sum
function is not continuous.

2. Wae start by partitioning all positive integers into an enumer-
able infinity of groups, each containing an infinity of elements. Thus
the first group may consist of all those integers which are not
powers of any number, arranged in the order of magnitude; the
second, of square integers which are not higher powers; the third
of those which are only cubes and not higher powers; and so on. Let
these groups be represented by

leal, (o), [es], - - - - - [, - - - -

Now for simplicity take the interval to be (0, 1). We next take
an enumerable set of numbers xi, s, 23 * - - - everywhere dense .in
(0, 1), for instance the rational fractions. Lastly we define an
auxiliary sequence Si(z) thus:—

If n is the A% element in [a/], then
Sx(2)=0, for all values of z, if k4.
For k>4,
(i) Sa(x)=0 for all = such that, |z —z.|> 2/,

- 2. : 2 1
(ii) Sulz)=k { x - (.’/Z.'y_?) IE if ar— rSa< -
(1) See GANESH PRASAD Fourier Series.

(2) OSGOOD: Lehrbuch der Funktion theorie ; Bd 1,
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Gf1) Sala)=llm ~a) if .r,-,%g & < @

(iv) Sw@)=k(z-x) if ©» < z < 2 *;1?
2
(v) Sn(x)=k{ (1"+E)—:r}if xr + %cg x < xr +%

The graph ABCDEFG of the function Ss(2) is indicated in the

following figure.

A —2//v .lr+2/l~

Suitable modification is to be made if x, coincides with either 0 or 1.

Next let ar be any sequence which tends to zero when r becomes
infinite. Then the required sum function Tn(x) is defined by
Tu(.?:):(]r Sn(l)
if » belongs to the group [as].

3. Proof of the convergence of T.(x) at any given point (x).

Given any ¢>0, it is possible to find a number ¢ such that for

all r>¢, |aSw(z)| <e, sinee lim a,=0. Hence for all values n
r—>oo

belonging to groups whose indices are greater than ¢, we  have
[Ta(z)] <e.

Now consider the finite number of groups, [aa], T22] . . . . [od).
Now any infinite ssquence of values of n for which Tu(z) does not tend
to zero, and which belong to the above groups, should contain at
least one infinite subsequence, belonging to one of these groups. This
is however not possible. Hence we can find a value n, such that
Tu(z)<e¢, for all n>>no (x being fixed). Hence Tu(z) for all x tends
to zero as n—>co. Hence the sum-function is certainly a continuous

function of =x.
4. Proof of non-uniform convergence in any sub-interval.

If we take any sub-interval, there is at least one point xr in it.
Now consider only those Tu(z)'s for which n takes the values
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included in tha group [x], we see that for any n however large,
there are points in the intsrval for which Ta(x) =ar. Hence the
series i3 mon-uniformly convergent in any sub-interval.

5. It is possible to modify the argument suitably to construct
examples of the following.

S (z,y) is a continuous function of z for 0 <2 <1, when y takes a
fixed value yo belonging to an interval say [0,1];
also lim f(x,y)=¢(x)
¥50

exists at every point x, and #(2) is continuous in [0,1], and yet the
convergence i3 not uniform with respect to y. i.e. Aax,y) is not a
continuous function in (x,y) in the region considered.

Such an example can be constructed as follows, fa,y)=0 for all
irrational values of y, whatever # may ba. Wo can arrange ths
rational values of y in a sajuencze y, », ys, - - - Yry = = - where y-—9J.
And we may divide this seguence into groups in exactly the sime
way as heafore, and dafin3 ths sejuencas also in the same way.



The Q-Conic from a projective standpoint
BY

C. V. H. RAO,

University Professor, Lahore.

There are several ways of obtaining the equation of the conic
under reference. One method turns on interpreting the vanishing of
the middle coefficient of a quadratic equation. Secondly there is the
method of obtaining two circles by projection and then utilising the
elementary properties of the circle. Thirdly there is the straight-
forward analytic method, where it may be noticed that a certain
factor is thrown out with or without any reasons given. Finally
one may locate a certain number of points on the locus, and prove
as best as one can that the locus is a conic. We shall have to do
mainly with this last proof.

There is no proof available on purely projective lines, that the
locus is a conic. Reye must have sought for such a proof; and a
recent work on conics published at Warsaw draws attention to the
need.

The following proof is offered as meeting the need; it recognises
the fact that a proposition on conics may, sometimes, best be
established by an appeal to higher elements, the plane cubic in this

case.

We begin with a

LEMMA: Given two pairs of pecints A; By and A; By on a line
(or a conic), the fourth harmonics C; and C; of any point P on the
line will be a pair of the involution fixed by the two given pairs if
and only if the two given pairs are harmonic.

There is one exception, namely when C; and C; coincide at C,
and in this case P and C are the united points of the involution
fixed by the given pairs. Such a case thus arises when P is omne of
the united points of this involution, and in this exceptional case
it does mnot follow that A; B; and A: B; are harmonic, but only that

A;B), AsB:;, PP, CC are all pairs of one involution.
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Now consider two conics S, and S,. Take an arbitrary point P
and let py and p; be its polars in regard to the conics. We may
then consider 8,, S; and the conic consisting of P, and p2 as three
conics, It is known that the envelope of a line which meets three
conics in pairs of points of an involution is a curve of class three;
of such lines therefore there are thus three which pass through the
point P.

One of these three lines is the join of P to C the intersection
of py and pp; on this line CP we have pairs of points A,B, and A;B;
cut out by 8; and 8;, and the fourth harmonics of P with respect
to these pairs coincide at C. The points G, P are thus the united
points of the involution fixed by the pairs A;B; and A;B,, and these
pairs are not harmonic. On each of the other two lines possible
through P the pairs A;B;, A;B, cut out by the conics S, S, and
CiC; (the intersections of the line in question with py, p2) are pairs
of an involution, whence Cj;, C: being the harmonics of P in regard
to A1B: and A;B, it follows from the Lemma that A,B, and A,B?2
are harmonic. The class of the envelope required is thus two only,
and the envelope is a conic.

M 23



A Japanese Problem
BY

TSURUICHI HAYASHI
Sendat, Japan.

The enunciation of the problem is as follows:—

“There is a right circular conical frustum circumscribed about
a large sphere and many small equal spheres are arranged as in
the figure in a rosary form within the space over the surface of the
sphere and under the top circle of the
frustum. Given the diameter of the
top circle, find the diameter of the
bottom circle which is minimum.”

5\ BAIER
wa(oo)o)w

This was dedicated to a Budha
in a temple in Kazusa (near Tokyo)
prefecture in 1814 by SEITO BABA,
an able mathematician of that time,
and thereafter to a hero-god in a
Shinto (the indigenous religion of
| Japan only) shrine in Osaka pre-
e fecture in 1835 by RIKEN FUEKUDA,

also an able mathematician. Also
it was proposed and solved by Ko0zEN FUKUCHI, in the book
“ Juntendo Sampu’ second volume, 1847, compiled by SEIVO IWATA
a disciple of HWUKUDA, together with the case of a right regular
polygonal frustum. BEspecially the tablet dedicated by R. FUKUDA
was famous, because his teacher SHINGEN TAKEDA gquestioned the
result of R. FUKUDA, although SHUKI KOIDE, a contemporary
mathematician, supported it as true, and on that account FUKUDA
became a disciple of KOIDE thereafter.

The answer was:

The minimum diameter of the bottom circle is

VA8 ra+V8+4

3 x the given diameter of the top circle.®

* Even in the case of a polygonal frustum, the ratio of the corresponding sides of its
upper and lower bases is the same according to the proposer FUKUCHIL
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It is difficult to explain the methods for solving the problem
actually used by these mathematicians, because they are in peculiar
Japanese style. The following one is mine, but not theirs, and is
not so easy.

Take the plane section of the figure (an isosceles trapezoid),
passing through the centre of the large sphere, the two centres of
the top and bottom circles, and the centre of one small sphere, and
let the given radius of the top circle (centre A), the radius of the
bottom circle (centre B) (to be minimized), the radius of the large
sphere, and the radius of the small sphere be denoted by «, y, R, »,
rospectively. T.et the distance between the points of contact of the
two spheres with the side of the trapezoid, the distance of the point
of contact of the two spheres from the height AB, and the angle
between the height AB and the radius of the large sphere drawn
from its centre to the point of contact with the side of the trapezoid
be denoted by o, d, 6, respectively. Then

tan@=£—/—2%, y>=a; s (1)
d=R sin 6/2.
Again d=a -7 sin 6/2; a’'=a-r tan 6/2.
Therefore R sin ‘Z=CL—T tan g—r sin g'
ie., a—-1r tan 6/2=(R+r) sin 6/2 L. (2
But =(R+7r2-(R-r)?2=4Rr,
Therefore a-r tan 6/2=2VR;. . (3

Next, the distance between the feet of perpendiculars dropped from
the centres of two neighbouring small spheres upon the plane of the
top circle is 2r, and the side and base of the isosceles triangle formed
by joining the feet of perpendiculars to the centre A of the top circle
are o and 2r, respectively. Letethe vertical angle of the isosceles
triangle be é. Then sin &/2=r/a"

Put s = sin ¢/2 . @
Then r = (u-r tan g)s . (D)

From the four equations (1), (2), (3), (5), eliminate R, r, 6, and
express y in terms of ¢ and s.
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First, from (2) and (3)
(R+7) sin /2= 24/Rr.

Therefore sin 0 _ 2_\/E
2 R+»
Hence cos 6 _R-r
2 +r
2 sin Q cos g
But tan 6 = 2
cos? 2 - sin® g

R 2(R - r)\/R,

Hence by (1
y (1) y-a R'+72-6Rr (©)
But from (3) and (5)
Hence (6) changes into
R _ 2(1 — 45%)2s N
y—a 1+16s* - 6(4s%) "
Now from (3)
2V Ry S
a=r g, = 2V'Ry,
whence AL *4}’”
R 1-44°
Multiplying this and (7)
a_ _ 4
y-a ?-60+1
where {=4s%> Hence
4(2_1) — T-birl . (A)
a 14
whence y o (@-1F, ... (B)
a 4¢

The conditions of the problem require {>0, y>a.

Therefore from (A) {2 — 6¢ + 1>>0 and therefore if we put
h=3-2v3, f2=3+2V32 then ¢<<h, or t>=h

But t=4s5>=4 sin® ¢/2

So 4 sin® /2 < 3-20/g, or 4sin® $/2 > 3+2g
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But since 3+24/2 >4, the latter is not necessary for us. Therefore
4 sin? $/2 < 3-243

Now all the swmall spheres are in external contact side by side
without any vacant space between them. T.et their number be =,
so that ¢ = 27/n.

Then

V3Zovs AVe-

1< _3_22_‘/_2 - 7—22—1 < 0-208 < sin 12°

Therefore
180°<n-12°, i.e. wm>15.

Therefore the number of the small spheres is arbitrary if it
exceeds 15, the minimum being 16. If it is 16, then 2-6¢+1 is
nearest zero, and y is greater than « and nearest to «. This gives
the answer to the problem.

When the number of the small spheres is 16,

180°

t=4s>=4 sin® =~ = 4 sin® 11° 15,
and
sin 11° 15 =3V2-v5 1 v3

Substituting this in the expression of y, we arrive at the result:
The minimum y is

2FNDFVRRFNVY - -

g .

February 5th, ]932}
SENDAI, JAPAN.



Hexagonal 4-webs of Surfaces in 3-Space
BY

W. BLASCHKE, (Hamburg)

In a 3-Space with the arbitrary point co-ordinates x;; (=1, 2, 3)
we consider a ‘' L-web of Surfaces”

u, (v, a2, x3)=const.; «=0,1, 2, 3;

the wmatria (du,/dx) having the rank 3.
i

If we consider the intersections of one of the surfaces, for
instance, of the sheaf u,=const. by the surfaces of the three other
sheaves, we get om our surface a ‘‘3-web of Curves”. We consider
the speciél case, when all this 3-webs of curves are *hexagonal 7.
This means that they are topologically equivalent to three sheaves of
parallel straight lines in the same plane. In this case we call our
4-web of Surfaces hexagonal.

A special case of such a hexagzonal 4-web is given by four
pencils of planes.

In this paper, I shall prove a theorem of uniqueness.

A hexagonal 4-web of surfaces s except for topological trans-
formdtions uniquely determined by three Functions each of one variable.
The corresponding ex’stence theorem has still to be found.{)

Two years ago 1 found the following theorem(!):

The four sheaves of surfaces

1) ua(x], xa, a3)=const.; 2=0,1,2,3

in the 3-Space x, a3, x3 with

(2) rank (du,/ox,)=3

form a hexagonal web of surfaces, if it is possible to find operators

1 The following is related to the paper: _
W. BLASCHKE, Topologische Fragen der Differentialgeometric 19 (“Ti”)

Hamburg Abhandlungen 1930.
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. 3 d
(3) Ai=k2101k (x) dor Ia‘_k]?éO
such that the u 's satisfy the conditions
(4) + AL ue = 4+ Az o= + Ay uo,
A ur = - Arur= - Az uy,
- Ay ug =+ Ay uz = - Aj us,
3 —A|u3=—Agu3=+A3u3
and the operators the following rslations:—
(5) Doz = AsAhr=gi1 A,

Az — MAs=gals,
DAz = DAy =gzAs,
the functions g, satisfying the equation
(6) Nt+gatgs=0

and the differential equations

(7) Dagi=Asga= A3g;=0.

’

Given the u,’s, the A, are determined except for a common
constant factor A:

(8) AF=NA, g5 =g,
Writing for shortness
Ave i &g =gy e

we have (V) or '

(") gun=gan=gs=0.
Using (7) it follows from (6) by derivation

(9 gntgn=0, gintgr=0, gi3+gu=0.
Therefore knowing the derivatives

(10) g23, Gs1, (12
by (7), (9) we know all the first derivatives gi.

Let us consider now the derivatives of order n>2 of g2

(11) aikviiit
T
If one of the indices i, k...... !l is 2, we can using (5) and their
(n —1)"* derivatives change the order of these indices, so that the first

becomes equal to 2. Then we have
(12) G22t...0=10

using (7) therefore of one of the indices ¢, k,...I is equal 2, the
n'™ derivative of g is reducible to (n - 1)* derivatives.
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"

W. Blaschke
If one of the indices ¢, k,... is equal 1, we can assume again
that the first index 7=1, and we have
13) = -
( gglk...z g;z]k...l
from (9) and we can reduce again, if one of the indices %...... [ is equal 3.
Therefore the only cases, where no reduction is possible are the
cases
(14) g2333...3, G31111.-.1, Q122 -.2,
” ” ”
We thus see that:
If at one point O of our 3-space the derivatives of the
0% order g1, G2, G35 relation ntgatgs=0 ;
kL G912, 923, In; no relation ;
e 22, G233, G3ns

are known we are able to calculate all derivatives gir...: of
the functions ¢: in this point.

There exists a ‘‘completnes theorem ™

found by @&.
@. Howe(®), that by the derivatives of the

Bol and

‘ composition functions ”
g. in one point, the operators A: and therefore the web is uniquely

determined except for topological transformations.

If we introduce along the curve Aj i.e.

daxy: das: daxs=a, 1 a : a.
il i3

through O the paramater /i determined by the conditions A (1:)=1,
and #=0 at O, we have

d'"
9233 = “gps 92(0).
"

Therefore:

Given each function gi along the curve Ain (indices modulo 3)
through the same point O, this funclion satisfying at O the intlial
condition

(g1 + 0o +93)0 =0,

the hexagonal web i3 uriquely determined.

I do mnot know if it is possible to prescribe these three fune-
tions (each of one variable) arbitrarily.

Singapore, March 1932.

(2) Hamburg Abhandlungen.



The Problem of Differential Invariants
BY

D. D. KOSAMBI,

Fergusson College, Poona.

The classical problem of characterizing a surface regardless of
the co-ordinate system used, was shown by Gauss to be that of deter-
mining its invariant curvature. For the general » dimensional
Riemannian space, the solution depends on the Riemann-Christoffel
curvature tensor. In fact, we say after Lie and Ricci that all essen-
tial differential invariants of such a space are given by the curvature
tensor and its successive covariant derivatives.

Further generalizations of the concept of space, such as those
with an affine connection have an additional number of invariants,
as the forsion, and other well-known tensors depending on the special
type of connection or parallelism used. I have shown elsewhere *
that a geometry can be associated with second order differential
equations, the paths being integral curves of

(1) T+aiz, z, 1)=0

There are two procedures for obtaining differential invariants ;
the first (my own) is motivated, but incomplete; the second is more
powerful, but has a slight disadvantage in needing a good many
a priori assumptions.

With the tensor-invariance of (1) and their equations of variation

2 u"+a"_’ W+ o yu'=0

we deduce the existence of a vector differential operator, the bi-
dertvate ;

D (u)i=u+1 o W
(1) can now be written as
3) D (2 +(a = fa 27)=0

* Cf. D.\D. Kosambi: Math. Zeitschrift vol. 37 (1933) pp. 608-618.
E. Cartan: Ibid, pp. 619-622,

M 24
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It is seen that

@ fmai- fal i
is a vector, a first differential invariant of the system. The second
can be obtained by reducing the equations of variation to the normal
form:

(5) D¥u) = Piu'

e

Pi = —a£‘+%.2;ka" R éa" -1 ok o + +a ot
j 2 d sk At T i 5isk )
The mixed tensor P’ corresponds to the Riemann-Christoffel ten-
sor in this scheme. Our invariants are thus ¢ and P’ with the two
differential processes ’

6) d/ea” and D
For more general connections, we may use
) D) = u + v u

where the V’j are only restricted to having the same law of

transformation as o' .

The consequent scheme of invariants can
7

be deduced from the preceding intrinsic invariants, with the one

invariant of the connection :

of =14 of  — i
®) PR Y

It is, however, not at all clear that all invariants have been so
obtained. 7o settle this important point, we follow the procedure of
Prof. Elie Cartan of Paris, the second procedure mentioned above.

The space considered is now of 2n+1 dimensions in z, z, f, the last
being an absolute time-like parameter. We take
9) W = dal- 2t dl A~ 0
and ascribe to this Pfaffian, a vector character under all admissible
transformations. A tensorial operator is then defined a priore,
AR, i i, r i 7 k&
(10) D (u)! = du* + Y ow + LA

The difference @w’é - A wfd can be expressed as

; i _ gi _ g Y N
(11) @wé - A w' = 65 dt 6d ot + (Yk’ 7’rk)wd W'y
where : .
(12) Bd = dﬂ:‘i + ot dt + Y" u)'d
This is also tensor-invariant, w"d = 9; = 0 being equivalent

to the original system (1). In all succeeding formulz, we eliminate

dr, dr, by the use of the Pfaffian differential vectors in (9) and (12).
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A first set of differential invariants now appears as the coefficients
of the various linear and bilinear terms in df, w, 8, in the expression
D 6"3 - A Gid

An intrinsic choice of coefficients would be one that minimises
the number of these invariants, and for that we must choose
i i i =

v =3 = iaf
k Tk kr Tkir

Another differential invariant appears in computing (DA - AD) u*
and the full intrinsic set is then seen to be:
. i i i
(%) x* ¢ P REPHTH
The invariantive vector differential processes are now {/iree in
number to be obtained by writing

D(u)' = D(u,)i dt+u

1l

i

ke ik
w +u O
kod

/ HA
where
- i N i N i )
i w cr Ou W i
(14) D(u) = +ac,—-a"— +La u
d¢ ox 3.0k He
2 i r i 1 1 r
123 =wu —goa u T ga uw
Ik e 2w T 2 ks

For the most general connections of this type, we shall have to
- add the following invariants of the connection:

6 = Yau —v 6 =ta -

J 37 ¥ jk Toisk Jk
It is seen that with proper restrictions on our absolute parameter
and the transformation group, no further differential invariants are
to be obtained, except by using the differential operators on these.
There are differential relations between the invariants, but nene that
prevent the set from consisting .of independent members. The
various special types of spaces hitherto considered can be described

by the vanishing of one or more of these invariants.

NoTE: I find that not even the procedure of Prof. Cartan in-

cludes all the differential invariants for the transformation group [A]. :
—i ik _

z =F [z---] t =t

These can be derived from the rather arbitrary but classical
procedure of alternating all fundamental operations which are ten-
gor-invariant. This, in essence, is the method of Christoffel for the
derivation of the invariants from compatibility conditions, and is
equivalent to calculating the Poisson brackets for a system of linear
partial differential equations.
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The fundamental differential operations which carry a vector u
into another are:

(15) Dui=ii+4L ot o ch' =yt !
4 dxd 35 ot

In the preceding, I only considered the first two. We find on
alternating upon a vector wu':

(16) w o o=ut =0 (b“ )’]

37k yko3d

The alternant of D and 3/dr is another operator, precisely the
covariant differentiator suggested by Cartan :

(17) (Du’) - D(u' )=u’ s u.“, . —gu’; , d.';k +ru’ a1;1 &
The rest give us 1mmed1ately
(18) /],k—ZIf;k/j=§u a’;r’j_!k
1) w i T Riu, — %, R,
where Ll 1 R
(20) (Du")/A - Du', =w (R -P'_ )+u' P
j [i ir isr A
d . w2, , bar
(21) bffDu Dbt_ubt vl —ul 5
o i _ ai) 2 i 9%
(22) o /5 ot s bé‘za;r;j B ;rTﬂ
Thus, for intrinsic invariants, the fundamental list is:
(23) @t P,J' a‘;i HERR

The rest are derivable from these by means of the operations

bat D and 2/2x. The following relations are seen to hold for the
invariants:
(24)
i =5t
T 6:;
Dai=-g
i o gt
e i
T "
—El,k,l R m;k;l,m
De = — Pi ! + _a_i
i ot
&t =_P1, —J.U’Rl +\iai
I3 r2 Ol 3k

Thus, the term 311_; can be omitted from P’Ej without destroying its
ot

tensor invariance.




A covariant specification of the simplex inscribed
in a rational norm curve in a space of odd
dimensions and circumscribed to a
quadric inpolar to the curve.*

BY
B. RAMAMURTI, Annamalai University.

1. Regarding a twisted cubic Rs as the carrier of a binary
variable #, a set of six points on it given parametrically by the
binary sextic af, determines a unique quadric envelope .Q, touching
the osculating planes at these points, and inpolar to the curve. In
general, there is a unique tetrahedron inscribed in Rz and circums-
cribed to Q. If the vertices of this tetrahedron correspond to the
binary quartic &, it is known that bt is the fourth transvectant of
af with itself. The object of this paper is to extend the above
result to a space of odd dimensions.

Taking a norm curve Ras_y in a space S of 21 -1 dimensions,
a set of 4n-2 points on it, given parametrically by the binary
(dn - 2)-ic a2, determines uniquely a quadric envelope Q, touching
the osculating primes at these points and inpolar to Ran-i. There is,
in general, a unique simplex T inscribed in Ra:_1 and circumscribed
to Q. If the vertices of the simplex are given parametr.cally by the
binary 2n-ic b, it is evident that b should be a covariant of a2,
In this paper it is proved that

biﬂ”E(ﬂlﬂg)'i PN ((l]()‘u)‘ .« . (Un,lfln)4 01,/9 5 ¥ om (71:,62
where et 2= %=+ - =an " ?
2. The following correspondence between quadric envelopes Q
in Sss_; and linear line complexes L in S considered by Dr.
Vaidyanathaswamy, is required for our investigationt.

An inpolar quadric Q' determines a pencil of simplexes inscribed
in Rau_; and self-polar with respect to Q. Any simplex inscribed in
Ran1, and given parametrically by a binary 2n-ic «?, can be made
to correspond to the common point of intersection of the osculating

* I am indebted to Dr. R. Vaidyanathaswamy for suggestion and criticism in the
preparation of this paper.

+¢On the rational norm curve 11’ R. Vaidyanathaswamy Jowr. London. Muth. Soc.
(1932.)
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primes to a rational norm curve R:: in Sy at the points on it,
given parametrically by «?". Then the pencil of simplexes deter-
mined by an inpolar quadric Q' corresponds to a line in San
Dr. Vaidyanathaswamy has proved that

the lines in San corresponding to inpolar quadrics @' outpolarrto a
quadric envelope @ belong to a linear complex L.} ..(2:1)

In general a linear complex L.in Sss has one singular point, and
it has been proved that

the singular point of L in S corresponds to the simplex T in-
scribed in Ran-1 and circumscribed to Q. ..(2-2)

We shall now obtain the equation of the linear complex L and
its singular point.

3. If & and n?®" give parametrically two of the simplexes in-
scribed in Rgn_) and self-polar with respect to Q', Q' intersects Ran_
at the points given by (&n) & 12 Let the quadric envelope Q
touch the osculating primes of Rasj at the points given by a#*™%,
Since Q is inpolar to Ras.; and Q' is outpolar to Q, a/**"® is apolar
to (En) Elﬂyh]ntﬂn—lz. Hence

(&n) (a&P Y am)™ =0 ..(31)

If the simplex &2* be represented by the point in Sgn whose co-
ordinates are

ar=48" & (r=0, 1, 2,...... 2n), the equation of the linear complex
L corresponding to the quadric Q is
S Arsprs=0 ’ (r, s=0, 1,...2n)
where Prs=Trys = Xsyr, Ars=aras_1 = As2ro1
and =« is symbolically (=1) anaCr @ " lag” ...(3-2)

4. When the equation of the linear complex L in Sg: in

Dr. Weitzenbdck’s ccmplex symbolic notation § is (Ap)?=0, the prime
equation of its singular point is (2A? . . A®)=0 where A, Ay ... As
’ ...(41)

are equivalent symbols.

The points z and y are conjugate points with respect to L if
(Az)(Ay)=0. Hence the points y conjugate to the point given by
(1A2... A,®)=0 lie on the prime (AA2... A?) (Ay)=0. We shall now
prove that (AA%.. A% (Ay) vanishes identically, so that the point
given by (wA:® . . As?) is the gingular point.

+ Meyer : Apolaritdt and rationale kurven. Page 370.
§ Weitzenbock : Invariantentheorie. Pages 73—90.
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To prove this, consider the following identity in ordinary symbols.
(amgas... ...aanasmi)(ay) =
((102(!3...09»:4.1)(&1!/) - (aﬂ‘]as...agn+1)(agy) . ¥ + ( - 1)9‘" ((lG]...(lgn)(agnHy)

To get the corresponding identity in complex symbols, we arrange
the symbols in each term in the same order a, ai, . . . aas, aamsi and
then substitute the complex symbols A for @ and a1, A; for a. and
a3, and so on thus we have

2 (AA2. AP (Ay)+2 (A2A, A2 LA (Ay)... +2 (APA2. A% A) (Any)

Let now A, A,...As be equivalent symbols. Then interchanging
A and A; in the second term, A and A; in the third term and so
on, we have

2n+1) (AA...A.%) (Ay)=0

Hence the point given by (%A%..Ax?)=0 is the singular point
of the linear complex L.

5. From (2-2) the simplex T inscribed in Ras.; and circums-
cribed to Q is given by the 2n-ic 5", which corresponds in S to
the singular point of the linear complex L.

Hence
Uo (25} sen WUan
b= Ao A o Ao
Ao A, — Aj,on where ur=0aC» [SUE Tatd

Ang Bmg o Ana
AfLO An,[ aee Aﬂ.QN ...(5'1)

It remains to express 4" in ordinary symbols,

Now Ars=AfAs=A1vAls= veeens = AnrAus
S ArXs_1 T XeAr_1 T R,y AY,5-]1 T R S5A]yr_] == Anyr SphyS—1 = XnyS—1 Xnyr_q

in equivalent symbols.

Hence substituting ordinary symbols for the complex symbols
ArA;s, we have the coefficient of the highest term namely #%", to be

i &0 &1l .en e 1,901

| 10 .o cee ®X],2n—2

| &g X2 “es “es X2y9n—1
0 @20 eon o Ag,9n-3 __.(5.2)

. son “ea see : e
xny  Any Os,2m 1
0 &Ano sae see O, 292
where asyr=(=1) o0 1Cn asg®™ 71X as,a" =(=1) au_1Cr as 2771

if we suppose ae=0a2=ds ... =any=1,
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Lemma 1. The determinants of the matrix formed by the first
two rows of (5-2) have each the factor an?.

Taking the (r;+1)th and the (»:+ 1)th columns, the determinant
is ( = 1)'1“:3 mCr 2nCha (7'1 —173) 0114”717717'3. Since n<(2n -1 and
ra<{2n -1 and r27r), the degree in a;>2.

Lemma 2. The determinants of the matrix formed by the first
four rows have each the factor (a., —a2)'. Considering the determi-

nant formed by the (r1+1), (r2+1), (r3+1) and (r4+ 1)th columns, we
have on expanding, and omitting a numerical factor

2‘{).1 - 7‘2) (rs - 7.4) (a“hhlfrl—rg (131'("_1~'3_r4 + (1‘14"‘1”3 Ty (1314"71”'17'9)

the summation corresponding to the permutations (12)(34), (23)(14)
and (31)(24). The above expression being homogeneous in apn and
asy can be regarded as a polynomial in ap/an. This as well as
its first three derivatives with respect to ai/aaz;, can be shown to
vanish when ain/as=1, by making use of the identity

S+ + s+ ) i —rai s —rey =0 [k=0, 1, 2, or 3.]
Hence (an—a2n) is a factor. Or if we introduce the variables
a9, aga etc., the factor is (anaxm — anan)* =(aw:)’.

From Lemmas 1 and 2, and the symmetrical nature of (5-2) in
the equivalent symbols, it follows that (5-2) has the factors

((110-3)4 PP ((110»)4 (Ovul (lu)* Clug' e 0"12'

Noting that in the above product, we have the requisite degree
namely 4n—2, in each of the equivalent symbols, (5-2) is but for a
numerical factor, equal to

(alag)* (alan)‘ ((ln_] (.In)4 0112 .. Clm'l.

This is the coefficient of the leading term in b2, It is evident
from its form that it is a semi-invariant, the corresponding covariant
b, which is sought for in this paper being

(alaz)* (alag)“ - bW (ma-;)* ... (ana an)* al,tg ag,tg P 611:,19.



Collineations in n-Space*
BY
8. KRISHNAMURTHY RAO, B.A. (HONS.)

The object of this paper is to study how quadrics and sub-regions
of order & (<n) in a space [n] are transformed by a given point-
collineation. In other words, given the latent orders or the invariant-
sequence of a point-collineation, we shall find the latent orders or
the invariant-sequences of the collineations induced in

i. the an+7l terms IL‘}E, T2y o v o X7Xsy 0 o
and ii. the line-co-ordinates.

(z1, 2o, . . . 2n) being the homogeneous co-ordinates of any point in
the space [n]. We shall also find whether a given sub-region
is latent or semi-latent with respect to the collineation induced
in its regional co-ordinates by the given point-collineation and
establish a formula for the species of that sub-region.

SECTION A
Transformation of Quadrics:

We shall, first, obtain the invariant-sequences of two types of
collineations, for immediate application to the problem of quadrics.

1. TYPE I. Let

S1: a=amitag; ay =axatas;coc o+ ar =ax

(s>r)

Ser ) =Bty y =Byatys; - - - ; y =Bys
be two collineations in canonical form, in the two systems of vari-
ables, the z's and the y's, each having a single invariant-factor. We
know that S; and S, can, for the sake of convenience, be thrown in
the forms :— ’

Si1: 21 = aay * axs; Te= axz + ar3; ... Tr = aar
(s>7)
Set ' = By1 + Buzs ' = Bya + Bys; ... ys = Bys

Let S be the collineation induced by S; and S, in the rs quanti-
ties ay, (A=1,2,---7r;1=1,2, - -s)

* I am greatly indebted to Dr. R. Vaidyanathaswamy for suggesting this problem to
me and kindly discussing it with me.
M 25



194 8. Krishnamurthy Rao

It is clear that S has a single characteristic-root «8, and that
our problem will not, in any way, be affected by putting a8=1. Now
the matrix S can be written.

l ccoo .. O
occo. . O
e e e 1)
OC C
OO0 C
which is a matrix of order » in the matrix elements O and C,
O denotes a null-matrix of order s and C stands for the matrix

cO- -

i1 1 0 . . 0
o 11 . . 0
0 0. 0 11
o o . . 01
of order s. Again it is clear that S is equivalent to the matrix
c 10 .. .0
‘O CcI1IOoO. .0
e ?)
O .. .0¢CT
O . .. OO0OC

of order r in the matrix-elements O, C and I, where I denotes the
unit-matrix of order s.

2. QConsider the following matrix M of order rs. Let Di* re-
present the kth element in the first over-diagonal of M. Let each
element in the principal diagonal be unity, and let

D1S=0; D19371=D123=0; Dlﬂs—-E:Dlxs—lzD],’;s:O, e e e e e

Dlrsfr+]=D17's—r+‘J= . e . = D1’$=0;

every other element of Di being unity. The Ds of M is obtained by
replacing the unit elements of Dy by zeros and the zero e.le'ments by
unity, and then moving D, parallel to itself into the position of Ds.
All the other elements of M are zero. If in M, we bring toget.her
the first s, (2s¥% (3s)", ... ., (rs) rows and columns together with-
out affecting the other rows and columns, then M will be in.the f'orm
of a direct product of a canonical matrix with the single invariant-
factor (A —1)**""}, and another matrix M; which is of the same -form
as M but of order (r—-1) (s—1). Applying this process successively,
we obtain the invariant-sequence of M to be

(s+7r=1), (s+7r=3), (s+r=5), - - -, (s—r+1) (r terms).

3. We shall now establish by the method of induction that S
can b.e reduced to the form M. Let R be the minor-matrix of S
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obtained by cancelling the last s rows and the last s columns. R is
of the same form as S but of order (»—1)s.

Assume that the invariant-sequence of R is
str—2, str—4,-- - s—r+2. (r = 1)terms

Then there exists a matrix Z such that Z'RZ=M’, where M’
is a matrix of the same form as M but of order (r—1)s. It is also
clear that Z is in its normal form. From (2) of §1, we see that the
collineation S can bhe written in the form

I’(k—1>5+lzxck—1:s+l+‘rck—1}5blﬁ—l+a'k + [l:]" 2y (3_1)]
P i S

b i (k=1,2,----, 7).
p being zero for £ =r and unity for A£=1, 2, - - (»—-1)

xks=

First apply to the collineation S the scheme of transformation.

L= [z x,+ - - - F 215 P e

—[’Zk,(r_g)snx(r_l:sf]+Zk,(r~2:.s+2x:r—1>s+-3+ e +2k,1'»1) 'Tr.s]
h=1,2,----, (-1)s;

¢ - . -

‘.(1‘—1)5—{-[ = l(l’—])s-l—] [Z 1, 2. .. N S.]

Then the matrix S will be transformed into T, in which the
elements outside of the boundary of the minor-matrix R remain
unaltered, while R itself is transformed into M’. That is, the collinea-
tion T, can be written as follows:

B ko841 = Tack-ys el F Tch-15s 1041 [t=1, 2, - (s+ k)]

(a) X klsem = Xikolossm + Thsem :

(m=s—k+1, s—=A+2, .., s) k=1, 2,...r—-2)

1)
r-a;sil xfr»fS:S—rl x(l—:;oehl + x(*—d)sn—l
() =12 ..., (s-1DL
-1y = Xr_1s s
”r =x +d li=1,2,...,(6-1)]
(r=1.s+1¢ (r- 1:5+¢ cr=1)s+241
S PO
Secondly, applying to T the transformation
«— o £ - 1)
(=742 &, g)ei2= Tpoapeir® B _yoipy

[k=1,2,...,(s=-r+2)]
the other variables being unchanged, we obtain the collineation T,
which is the same as T except for the equations (b), which are now

of the form
x’ =z + [k=1,2,..,G-r+1)].

(r=2.S+k (r—2:s+k =254k +1
.

a =x +x -
(r-23sst 235 4i ro1.sel [l=s=r+2, s-r+3, ..., s]
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Finally'by means of the transformation
& . =x -z (I=1,2, ... k-1)
(r—1y sys—r+k

(r—1) sye—r4k (r=l-1)s+s-r ksl

x x

r—k>stm r-kysym (r—k-1>S4+my1 .

[n=s=-r+k-1,s-r+k-2,..... , 115 k=1, 2, ... (»=-1)]
the other variables being unchanged, Ty will be reduced to the
form M. Thus we have shown that the matrix S, of order »s, can
be reduced to the form M, on the assumption that the minor-matrix
R of order (r ~1)s, which is of the same form as S, can be reduced
to the form M’, which is of the same form as M but of order (r=1)s.
That is, we have shown that the invariant-sequence of S(rs) is

s+r=1, s+r=3,..... , s—r+1 (» terms)

on the assumption that this law of sequence holds for all values of »
up to r—-1. But we know that for the case r=2, s=s, the sequence
is s+1, s—1." Hence, by induction, we obtain the invariant-sequence
of the type I collineation to be

I. (s+r=-1), (s+7r=3), (s+7r=5),...., (s=r+1) [r terms s>r]
4. Collineations of Type II

Let 3 be the collineation of Type II, induced by

2 s
rri=axtars; e=axztarz; .- -5 Tr=0Tr
in the ;.1C: terms i, TxTit1, Tilpiz, « - - » I&l, arranged in the

order (k=1,2,. .. 7).

Also let S be the collineation of type I, induced by
Ti=axi+axy; Ta=axataxs; ... Tr=aly
Yi=ayitay2; ye=ayrtays; ... Yr=2y

in the 2 quantities arranged in the order,

r=1.9
TrYry Talas « o o+ > T Yr (k=1,2,. .., 7\

It is clear that the matrix S can be derived from the matrix S
by the following process:

Add the 7
(r+1); (2r+1)% (Qr+ 2);  (3r+ 1), (3r+2)", (3r+ 3¥rs .o s s
cs {r=Dr+1 (-2, oL, @D 3)
lumns to the !
ZPOuil Sn.l (T + 3)1/( M 4[/! (7. + 4)!‘1- (2,. + 4)1h < s ,rlfr’ (2,.)”14, (3,.)&/: s e, (7. - 1),.({/ )
~ k] ¥ £l . 4

columns respectively, and then cancelling the rows a.nd coluv:.nns fms-
dicated in (3), Therefore > is equivalent to the minor-matrix of S
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ob(:aillled by cancelling the rows and columns indicated in (3). Also,
since the rows and columns of S and M correspond as they are,
is equivalent to the minor-matrix >; of M obtained by cancelling in
M the rows and columns indicated in (3). Now, if in 3, of order
(r+1)7/2, we bring together the »”, (2r—-1)", Br-3)" ......
Hr+1)»" rows and columns, without affecting the other rows and
columns, then 3; will be reduced to a direct product of a Canonical
matrix with the single invariant-factor of index (2r—1) and a matrix
So of order (r-1)(r—2)/2, which is of the same form as 3, but
only r=r=-2, Hence by successive application of this process, we
will finally obtain the invariant-sequence of 3 ie. of > (type II)
to be

f21'—1, 2r=5,2r-9,....,1 [(»r+1)/2 terms if » is odd], and
II.
12/'—], 2r=52r=-9,..., 3 [»/2 terms if r is even]

Here it may be observed that the sequences T and 11 are but an
extension of the results of Art. 2, Chapter VII in Hilton's * Linear
Substitutions’.

5. Problem of Quadrics

Let the given collineation, possessing any number of characteris-
tiec-roots and any number of invariant-factors, be taken in its
canonical form C,

' =pri+ag; ala=pratas; ... Am=plm
Moo= @i om=da1; M=d3; . . .. .
w=0B: m=b; m=0by; . ....
..... P <1
where ;i > a: > a3 > ...3; hh =bs>=0b3 = ... ; etc

Then it is clear that the matrix of the collineation Q induced
by C in the quantities (.» xs) is a compartite matrix, some of whose
components are of type I and the rest are of type II. Hence to
obtain the invariant-sequence of Q, we have only to apply the
following

THEOREM * The invariant-sequence of a compartite matrix is the
compound of the invariant-sequences of its component parts.

* c.f. §10. (A). of ‘The Invariant-factors and Integer-sequences’ by R. Vai-
dyanathaswamy, Jour. Ind. Math. Sec.—June, 1924.
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SECTION B

6. Transformation of Lines

- If (a1, @2, . . . aw) and (y1, 4o, - . . y=) be any two points on a
line, then the co-ordinates of the line are defined to be the acs
quantities

ey, —xp) (ky t=1,2, ... 2

Let C be the Canonical form of a given coilineation and let A (of
order ») and B (of order s) be two components the collineation in the
a's and Jet A’ (of order ») and B’ (of order s) be the corresponding
components of the collineation in the y's (co-gredient with the x's).

A =ay=aritars; i=arstars; .. .3 Xr=—oaxs
B = 3;”“ = /341:“1 + B.l:'+:; 5% e ] .1:'r+s= BJYHS

A" = yh=aptoy; Y=oyt 3 Y=oy
BI = y"+1 = Byr:—l & Byr«:‘.} : Teen 'I/'r+s= Byrfs )

Let L be the collineation induced in the ,.sC: quantities
(.Tk y,-a, _T/k) (ky1=1, 2, ..., 7r+s)

by these two components. Then it is evident that L’ is a direct
product of three collineations I,’, Ly, Ls’, where

(1) L, is the collineation induced by A and A’ in the quantities
(xy-xy) [h,1=1,2, - - - 7]

(2) L. is the collineation induced by B and B’ in the quantities
(.Tk_z/l—;rl_r/k) [k, I=7r+1, r+2, - - r+s]

3. L is induced by A, B; A’, B’ in the quantities
(JTL?[L—'.III]//) k=1, 2, - - r3l=r+1, r+2, - - - r+s]

On actually writing down the matrices Ly, Ly, Ls, it will be
found that L and L, are each in their canonical forms having the
single invariant-factors of indices ,C: and sC, respectively ; whils Ly’
is of type I, so that its invariant-sequence is

s+r-1, s+r—3,---,s-r+1 (r terms; s>r).

Now, since the collineation L, induced by C in the .Cy; line-
co-ordinates, can be expressed as a direct product of components of
the types L1, Ly, Lg, the invariant-sequence of L is easily found.
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SECTION C
7. Transformation of sub-regions of a given space [n].

Let (e1, ea, . . . ex) be the m reference points of the given space
[n]l. Let A be the given point-collineation with the single latent
root o and let

- Ty 725 « o « 3 Tm
be its latency-sequence. Also let the first 7 reference points be
latent, the second 7 be semi-latent points of the first species, and so
on. Now arrange the first 7 latent points in the first row, the second
r. semi-latent points of the first species in the second row, and so on,
so that points in the same column are corresponding points.i With
this array of reference points in view, we can denote any reference
point by the double-suffix notation ep, where (p+1) is the number
of the row, and g the number of the column in which the point
appears. The first suffix p denotes the species of the point and the
second suffix ¢ gives all its corresponding points. (Points in the
same column have the same second suffix ¢ and are corresponding
points). So we can write
A epg=oclpgt epo, g
8. Now consider a sub-region of order & defined by the & points
eplql, e”g"; wa e kg e”k"';
We shall study how this sub-region is transformed by A ie. we
shall find a formula for the species of this region. Let
R

== e vw s ow €
Pray g, P2,

where the right member is a progressive product of the es. We
know that, if & is the least positive integer such that
(A —«)fe=0,
then e is a semi-latent point of the (k£ -1)" species. Also, if & is the
least positive integer such that
(A —al) R=0,
where R is a sub-region of order p, then R is a semi-latent sub-
region of the (k—1,* species. With these fundamental principles,
we shall prove the following
THEOREM I: If E =e e ...e
® plq pgli f’sf]
is a semi-latent sub-region of species u and order s,
then its species u is given by the formula
pLAEpet+ oo o -+ ps—sCa.

+ If e and ¢ are two corresponding points with respect to &, then there exists an
integer >0, such that, ¢ being supposed to be of higher species than ¢, (a —ayfe=er.
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There is no loss of generality if we assume that
< pe<<ps.... <ps

for such an arrangement of the ¢'s only affects the sign of the pro-
gressive product, and still represents the same sub-region of order s.

Let B e

= e e [
v /’]q I’ga f’s-f’

we shall now find the species of E =T e, given v and p. Assume
! q s

s

that the species of E# is given by the formula

vrps—1 ... .. ...(5)
for all values of » from 0 up to »—1, and for all values of ps from
(s-1) up to (ps—1). If this hypothetical formula is to be true, it
must also be true for the case v=0 and ps=(s—1). But the species
of Eo es_,, ¢ is zero, for the only form for Bo is (o €10 « « - €5-1, q)

.

Hence we have 0+(s—1)-1=0. ie. I=s5-1.
Now A E_ eﬁg,= (B Be+Eooy) (a()ﬁsq +PPS—\,¢)
where B = o . Hence
(A =Ba)Eyep 4= BEvep notaBeiep, +Eore,

Multiplying both sides by (A =By P!, we have )
(A = Ba)* P Boep g =(A - Ba)trs! (BB ()/,s_lgq'*'aEv»I (ﬂ,,sq) ...(6) ]

since, by hypothesis,
(A - Ba)"’+p571 E;; -1 ?/,571 K =0.

Again the right member of (6) is equal to

(A - Ba) P} {B(BEU e, . q+aE:_~1 E”C‘ , q) +

s

e 2
a(BE:_l P -1.9 V-2 P s 7 |
s s

2 0 +2 B 5
= (A - Ba)tts {'B Eu (/’sfz,q « hi‘—l pf»sq }
since, by hypothesis,
(A - Ba )it Ev e = 0.

-1 P 154

n the general equation

) (D

By proceeding in this manner, we obtai

A +p 11—k (3 s e
(A - B . (8 Ev€p{k,q+m Ev_k b
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where Es_x is a sub-semi-latent* sub-region of the (v-k)” species

corresponding to E, and is a linear combination of regions of the
type J

e

po-lyae Bl agtt b ThLo4a

where the I's are suitable integers such that the species of each
such region does not exceed (v—k)

When k= ps, the right member of (7) is

(A =Ba) ™1 (BPE e+ o B e )
v og 'v,;bs psq
But (A -Ba) *IE e . (A - Ba)t Ev e
v o —1

oq

= 0 (by hypothesis)

(A =Ba)2s T E e = af(A —Ba)HIEy p e ...{8)
v Py s ta
- o—I+1 = s v—1 : .
(A = Ba) E‘}_i>s €, (A~ Ba) {BEUAP e, +oaBop 1, e,
s s s y q - 4
+E e 1
v~PSA: ek 8 )
=(A-Ba) « B e
V—Ps—l pa

Since, by hypothesis (A - Bz E , ep1,2=0
s

and (A -Ba) ! E ey q=
v—p —1 s—1
By proceeding in this manner, we obtain the general equation
_ -1 @ = (A= v—k—I+1 _k , (9
(M-8 B, e, —(A-Ba)LE ©)

When k=v -p, the right member of (9) =a? #5 (A — Ba)rs7i1 Eaep
q

=27 (A - Ba)s Ea e
P-1114

=0 (by hypothesis)

Thus we have proved that the formula (5), where 7= (s—1), holds
good for the case v=ps also. But we know that it is true for the
case v=0 and ps=(s—1). Hence it is true universally, the inequality

1 <ps Ps vee oen Ps

* If E, is a semi-latent sub-region of order (s—1I) and species v, then

(& —a-1) E.=E.—1, (& —a=1)2=E,.—,, oo (A —a-HY*E, = E, -
The regions E.—,, E.—s, Evyy © - - BEo—yx -+ are called the sub-semi-latent sub-
. B “ewm
regions corresponding to E, s
M 26 ./ ¢@ e,
£ Q"

[a

%. *®
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being always maintained. Hence it follows that the species of

(i) epiq epag fes is prspe-1
(i1)  ep1q ep2g €pag * - * is pr+(@-1)+(p:-2)
< = - - etc
(5-1) erra epg s« - epgis prH(p-D+(ps -2+ - - ~+(ps=s-1)

Thus we have proved that the species of

€pig Cpag = * quq
is given by .
prtpet - - -+ p—C

9. Next we shall prove the following
THEOREM II: If Enw=ep1q1 €pog2 + - - €
pqu
be a sub-region of order %, in which s of the ¢'s are
equal, the other g¢'s being all different, then the
species of E. is given by
pitpet -0 +p —Co

There is no loss of generality in assuming the first s ¢'s to be
equal, so that

B =etsa ‘?I’zq o epsq Bpsuqsn. o epqu
=E e e
3 ¢ s+1 =41 qu
First it can be easily proved, by the method of induction similar to
that in § 8, that the species of E.e is given by v+ psy;
S41 S+
Then we obtain the species of Ev e e to be v+ psii +pise

se1 Tsa 1 Tsanlsee
and so on, so that, finally, we derive that the species of Eu is given by
V4 psyqgtPspate o TPk
=p+pat - +ps—sCotpssr T Psiate - TPk
= pytpet - -+ pr=sCy
Now we immediately deduce the most general

THEOREM III: If Em=epiq: €p2q2 = * * Cb 7

Wk
be a sub-region of order %, in which s, of the g's are
equal to a,; sz of the ¢'s equal to az; - -+ - 55 of

the ¢'s equal to a, where

s, +st - - +81</c,
then the species of Em is given by the formula
pr+pet ot +pr—(5,Co+sCot+ - - - +5,Cq)
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10. Since this geometrical method of investigating the transfor-
mation of sub-regions of a given space [n] by a given point-colline-
ation fails to obtain easily the latent orders of the collineation in-
duced in regional-co-ordinates by the point-collineation, it will be
interesting to know whether the algebraical method, indicated in the
problem of the line-co-ordinates, can also be pursued in the case of
the regional co-ordinates. However, we shall conclude this paper
by explaining the duality between the two collineations induced in
the co-ordinates of a given sub-region S; of order k£ and in the
co-ordinates of the complementary sub-region Ss_x of order (n-— k).
Let S:iand Sa_x be defined by the first &£ and the last (n—%) of the
points

(Ty (o Trgy o oo Xyn); @y r22 o 0w Ton) (Xng,2ne o o o 0 Tin)
respectively. Then the co-ordinates (x,, 2. . . . am)(m=»Cr) of Sk are
the »Cr square determinants of order & formed from the first & rows
of the above array. If A be the matrix of the collineation in point-
co-ordinates and a its determinant, and if the co-ordinates y,ys,...ym
of S,u_r are taken to be the minor determinants complementary to
Z,, X3, . . . Tm, each divided by a, then it is easily seen that

Tyt Tt -+ Tmym
is an absolute invariant with respect to the collineation A. Hence
the two sets of variables, the 2's and the #'s, are contragredient with
respect to the transformation A. Therefore the two collineations, in-
duced in the x's and the pz's by the collineation A, have the same
invariant-sequence, so that we have the following important

THEOREM IV: If P and Q be the collineations induced by a given
point-collineation in the co-ordinates of a sub-region Sk
of order A and in the co-ordinates of the complementary
sub-region Su-t of order (n-k), then P and Q have the
same invariant-sequence.



Oriented Circles

BY
A. A. KRISHNASWAMI AYYANGAR, M.A., L.T.,
Maharajah’s College, Mysore.

§1. In order to secure precision in the treatment of angles and
common tangents between circles, we assign to the radius of a circle
a positive or negative sign and introduce the concept of orientation.
A circle is said to be oriented positively or negatively and has a
positive or negative radius according as it is described by a point
moving along the circumference in the anti-clockwise or clock-wise
direction. Dr. J. L. Coolidge v has given a treatment of the oriented
circle by both geometrical and analytical methods, the analytic
domain being the complex cartesian plane including the line at in-
finity. We investigate here certain results using the concept of the
signed radius r, and a parameter ¢ in the cartesian plane. We write
the equation of an oriented circle in the parametric form :

x=a+2r/(1L+1?), y=a+r(1-13)/(1+)

where the radius » may be a positive or negative number and ¢ takes
in order, all real values from +c to — co. This circle is briefly
referred to as (a, ai, 7).

The appropriateness of the parametric form lies in the fact that
‘7’ occurs therein explicitly in the first degree.

§2. Consider two oriented circles of radii 71, 73 given by
r=a+2Un/(1+2), y=a+nl-)/(1+H3) (1)
r=a+2Ursf(1+12), y=aatral =23/ +77) ...(2)

The X-axis is taken as the radical axis of the two circles,

so that a® - rP=ag® -1t ..(3)

t Vide J.L. COOLIDGE, A Treatisc on the Circle and the Sphere, Chap. X.
This work will hereafter be referred to as ‘ COOLIDGE .
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The equations of the tangents at ‘#;’ on (1) and ‘¢ " on (2), (tL17%82),
are respectively :

x-a Yy 1
n tla-n) 4 =0 ...(4)
thr a+r 1
and Tr-a Yy 1 [
re fla.—1) E =0 ...(5)
lars az+mr 1 E

If (4) and (5) meet on the radical-axis, we have

atr -t a+n) _ atr-t*{a—1)
4 2

ﬁl(az + "g),_',/'im,jf,(’,h)

Hence tt, = L
: Lilry =a,) = talrs = a2)
>+ aa r.o+ .
= pfe T Td by virtue of (3)
.- a, Po— e

©

Thus, when the tangents at ‘¢, °, ‘£,’, meet on the radical-axis,

r, +a,

£ty =
v ro— a2

(a constant)t ...(6)
and the relation between the parameters is symmetrical.

Conversely, when #i/x=% (a constant) we can associate with
each proper tangent to the oriented circle (a, a., r,) a unique proper
tangent to a definite oriented circle (a, a2, r2) such that the two tan-
gents meet on a given oriented line, which is taken as the X-axis.

For, we have only to put
1
ratas=hk(rn—a); ra-ax= i'(” +ay)

and get

D SRR A N A -1 ._l_l(.,l
12—2—?,(/.,+/‘_\) zfll(/v /\_), az 271(A 1.:) o /»41") (7

§3. The process by which the oriented circle (a, @, 7) is trans-
formed into the other oriented circle (a, as, 72) as in §2 is the

+ Vide COOLIDGE p. 354-
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well-known Laguerre Transformation or Laguerre Inversionft. We
wish to point out that this transformation is algebraically equivalent
to the linear involutory transformation of the typef

r=—ax’+By; y=-Bz +ay ...(8)
where  a=3(k+1);  B=i(k-1); and o=l '

Hence, we may deduce the properties, such as invariants, of
Laguerre Inversion easily from those of the linear transformation (8)

Obviously z? - ? = at-y? . (@) ]
xr - ymn = a'zh-yyh ... (ii)
(z-2)P=(y-y)P= @ -2-@ -y (i) | )
(y-y )W ax=-2) = Biat+1) .. (i) )

From (9), we infer easily the following:

(i) The linear transformation (8) changes the rectangular hyper-
bola 2?-y*=q? into itself and the tangent at any point on it into the
tangent at the corresponding point on the same hyperbola; the locus
of the intersection of the tangents at the corresponding points is a
diameter of the hyperbola;

(ii) The line joining corresponding points is parallel to a given
direction.

The result (9), (iii) may be interpreted as the well-known
theorem :

The common proper tangential segment of two orienled circles
remains tnvariant for Loguerre Inversion.

Hence, if two oriented cireles have proper contact, their transforms
also have proper contact.

In particular, an oriented circle and a point on transform inio

circles having proper contact.
Again, x=2" and y=¥ when z/y=B/1+a)=(k-1 )/ (k+1).

Hence, an oriented circle (a, a1, 11) can be transformed into itself, by
choosing % such that i+ ar=k(r —al)

Also, by choosing k& such that a1+ =Kk« — r), we can transform

the oriented circle (a, m, r) inlo a non-linear null-circle ; for if

z/y=alB=(k2+1)/(k* - 1), then y =0.

_
+ COOLIDGE P. 355.
+ We may conveniently put «=cosh 9, 8=sinh 6.
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Corresponding to the two values of %, there are two point-circles,
which are the images of each other in the fundamental line and are
evidently the limiting points of the ‘co-axal system to which the given
circle and the fundamental line belong.

§4. THEOREM : Three oriented circles simultaneously transform inlo
three other oriented circles of the same radius, only
with respect o any oriented line parallel to the line joining
the proper centres of simdlitude of the given circles taken
i pairs.

In particular, the transforms degenerale into point-circles, when
the fundamental line coincides wilh the line containing the
proper centres of similitude.

Suppose the given oriented circles (a, ai, 1), (b, az. 12), and (e, as, r3)
transform into three oriented circles of radius p, the constant of
transformation being %.

Then 2p=mn (k+1/k)=a(k=1/k)
=ro {k+1/k)~ adlk -1/k)
=13 (/& =+ 1/]&) - ((3(]1' = 1/,]\')
whence we easily derive
k=(ay— az+r1 — r2)/(ai — as — r1 + r2) = two similar expressions ...(10)
and a(rs = r3) + aalrs — ) + az(in —12) =0 ...(1oy

If the centres of the three oriented circles be taken as the verti-
ces of a triangle of reference for areal co-ordinates, we may write
the equations of the fundamental line and the line of proper centres
of similitude, respectively as

a1z + asy + asz=0... . (11)
and ma+rgy+rsz=0... ...(12)

The condition (10) shows that the lines given by (11) and (12)
are parallel; 7.e: the fundamental line is parallel to the line of proper
centres of similitude.

Conversely, we may take for our fundamental line any line, say
px + pay + psz =0, parallel to (12) and choose k& such that

e = Di—patr, —7Te _ pr=pstra=13 _ b2 Sl R Y ...(13)
Py-p2-TytT P2=ps= T2ty PPy Tt
where p,., p:, ps are the algebraic distances of the centres of the
given circles (or the vertices of the triangle of reference) from

P2+ pay + p3z=0.
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Now, each of the given oriented circles transforms into a circle

of radius p, given by
1 P2~ par, 8 e :
=% _pe_m—two similar expressions. ...(14)

When p=0, 1%1 =%:%§, i.e. the line of proper centres of simili-
. T2 T

tude coincides with the fundamental line; and vice-versa.

As an immediate a.pplical.tionr of the above theorem, we point out
a solution of the Gergonne problem, viz. to draw a circle to touch”
three given circles.

Regarding the three given circles as oriented circles we first
transform them into three non-linear null-circles or points, and then
re-transform the circle through these three points. The final circle
thus obtained has proper contact with the given oriented circles.

(N. B.)—(1) As observed already towards the end of § 3, there
are two triads of points into which the given oriented circles can be
transformed, and these are images of each other in the fundamental
line. Hence the circles through them are also images of each other
in the same line, which is therefore their radical-axis. Further these
circles are coaxal with their transforms. Thus, an axis of simili-
tude of three circles is the radical axis of two of the circles touching
them.

(2) The eight possible circles are obtained by taking all
the possible combinations in the orientation of the given circles.

§5. We now proceed to give an important group of dual theorems
in circle-geometry, the duality being exhibited between the angle
of intersection of two circles and their common proper tangential
segment. It is also interesting to notice that the group of theorems
involving angles and the duals thereof can be proved by mnearly
analogous reasoning making use of the corresponding dual princi-
ples—ordinary inversion and Laguerre-inversion.

Definition: If A is a point of intersection of two oriented circles
Cp, Cy, we define Apg as the angle through which the proper tangent
to Cp at A has to be turned in the anti-clockwise direction so as
to coincide with the proper tangent to Cs at the same point.

Let B be the other point of intersection of the two circles ; then
it is easily seen that
Apg+ Bpa= Apg+ Agp=Bpa + Byp=0 (mod. 2r) .. (15)
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Dually, lpg+mpg =Tpg+lyp =nipg+mgp=0 ...(16)
where /, m are the proper common tangents to the oriented circles
Cs, Cq and Ilp; represents the common proper tangential segment
measured from the point of contact of Cp to that of C, in the direction
of the proper tangent l; Iy, will be considered positive or negative

according as the direction of measurement coincides with or is oppo-
site to that of the proper tangent.

Dual Theorems

THEOREM I (a): If three oriented circles Cy, Cz, C5 meet in P,
then P12+P53+P3150 (IILO(Z. ,‘-)7T).

THEOREM I (b): If three oriented circles Ci, Ca, C3 have a com-
mon proper tangent p, then pa+ pag+ ps=0. ’

THEOREM II (a): If three oriented circles C,, Ca, Cs, be such
that Cs, Cs intersect in (A, A’), Cs, €, in (B, B’) and
Ch, Co in (C, C), then Aaz+ By + Cie7=0 (mod. 27).

This can be proved easily by elementary angle .considerations,
after inverting two of the circles into straight lines.

Similarly, we can prove that As+ B's1+C17%0 (mod. 27),

Since B'glz "B31 (mod, 277), by (15) above, Asy = Bay + C127%40
(mod. 2w7). Thus, we can prove that AptBnE£Cp70 (mod. 27),
if the oriented circles Cj, Cp, C3 do not have a common point.

THEOREM II (b): If three oriented circles Ch, Ca, Cs be such that
Co, C3 have (a, '), Cs, Cy have (b, V'), and Ch, Ca
have (c, ¢} as their common proper tangents,
< Hggtbaliclg?éo.

then

This theorem is readily proved by transforming the three given
circles into point-circles by Laguerre inversion, as in §4, and using
the invariant property of the common proper tangential segments.

THEOREM III (@) : If P, P P3 be three non-collinear points such
that the oriented circles Ci, Ca, (3 pass respectively
through the point-pairs (P?, P%), (P3 P') and (P!, P?),

and P! +P§ +P? =0 (mod. 2n), then Cy, Cy, C3 have a
23 31 12

common point.

This follows readily from Theorems I («} and II («).
M 27
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THEOREM III (b): If 1Y, 1%, I3 be three mnon-concurrent oriented
lines, in the same plane such that the oriented circles
Cy, Co, Cs have as their respective proper tangents the
tinepairs (2, ), (8 1), (1, P) ana B+ +B =0

2 31 2

then C,, Ca C, have a common proper tangent.

THEOREM IV (a): If P, P? ... P° be any siz coplanar poinis
and a series of oriented circles Ch, Cs, ... C drawn to pass
through the iriads (P, P, P%), (P!, P, P3),...... (P®, PS, P)
respectively, then

PP+ P+ P+ PP+ PP+ Pl=0  (mod. 2m).
13 35 51 2k 46 62

Since every three consecutive circles of the series C;, Co, ... Cs
taken in cyclic order, have a common point, we have the following
relations:

P? + P® + P? =0 (mod. 27).
12 23 2

PP+ P+ PP =0
23 3¢ 42

P4 + P; + P4 EO "
34 4 33

PP+ P + P =0
4 56 64

P + P8 + PE =0 "
56 61 15

PP+P +P =0
61 12 26

Adding these equations and using the relations

12 1

P+ P! =0; P>+ P? =0; (mod. 27) etc.
aQ 31 13
from (15) we get the required result.

The above theorem can be obviously extended to any number of

coplanar points. If any three consecutive points in the series be

. . . .
collinear, the corresponding oriented circle becomes an oriented

line.
Cor:
2 d = 3 B 1 =0 d. 2m).
If P;a +P;5+ P21=0 (mod. 27), then P%+ Pw+ PGE (mo )

Hence, if Ci, Cs, C; are concurrent, so also are Ce, Cy, Ce.
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If Cy, C;, C; degenerate into oriented lines, then evidently
P?S is the angle between the oriented lines P®P? and P*P* and so on,
so that
P23+ P;+ lezo (mod. 27).

Hence, the circles Cy, Ci, Cs meet in a point.

This result can be immediately recognised as the Miquel
Theorem. T

THEOREM IV (0): If I, I3 ... I® be any six coplanar orienled
lines and a series of oriented circles Ch, Ca, ...Cg, be drawn
properly tangent to the triads (15 I, %), (I, &, 8), ..
(08, 18, 1Y) respectively then

P+l 4P P P+ =0.

35 sl 2t 46 62

18 5

(2

The proof of this theorem follows on dualising the steps employed
in Th. IV (a).

This theorem also admits of an obvious extension to any number
of coplanar lines.
Cor: If li+l‘;»+l‘fl=0, then li1+liu+lln=0 i1 i.e. if the oriented

circles C,, C;, C; have a common proper tangent, then C., Ci Cs
also have a common proper tangent.

We conclude with the remark that it is possible to draw a very
large number of corollaries from our theorems IV (¢) and (b) 777

"+ COOLIDGE, p. 85. t+ I#id. p.363. Theorem 8.
111 Ibid. pp. 364-360.



Equilateral Osculating Quadrics of
Ruled Surfaces.

BY
RAM BEHARI, M.a. (Cantab.), Ph.D.
St. Stephen’'s College, Delhi.

1. The object of this baper is to obtain the condition that the
osculating quadric of a skew ruled surface be equilateral and to find
a new expression and a new geometrical meaning for Laguerre’s func-
tion.*

Several other new theorems on equilateral osculating quadrics
are also obtained.

The results of this paper formed part of my dissertation for the
degree of Ph. D. of the University of Dublin, and were obtained
under the able guidance of Prof. C. H. Rowe of Trinity College,
Dublin, to whom I am indebted for much assistance and advice.

2. Differential Equation of the Curved Asymptotic Lines.

Let the equations of the ruled surface be
x=p+lu, y=qg+mu, z=r+nu
where p, g, 7; I, m, n are functions of v, the arc of the base curve.
The fundamental magnitudes of the second order L, M, N are

given by
LV =[a1, x9, zul=[, p'+ul', 0]=0
. 1 Y1 21
where the notation [r1, a2, 211] denotes X9 ya 22
T Y 2n

MV =[ay, a2, xi2] =[/, p' +ul’, U']= Si(g'n —=+'m')=3, say.
NV =[xy, xs, x22] =11, p' +ul’, p” +wl"]
=2Ugr" =g )+ w Zli(n'r" = ")+ (@'n" - n'q")}
+u® Slm'n" - w'm")
=X+ pu +vu®, say,
where N=SUgr" -rq")
w= SUnr"=m'r)+(gn —n'q")}
v = Sl(m'n" —n'm").
* See WEATHERBURN, Differential Geometry, Vol. I1, (1930) p. 139.
DARBOUX, T héorie générale des Sur faces, t. 11, (1915), p. 41I1.
A. J. MCCONNELL, Applications of the Absolute Differential Calculus, p. 217.
FORSYTH, Differcntial Geometry, (1912) p. 104.

BLASCHKE, Vorlesungen iiber Diferential geometrie, Vol. I, p. 87.
GOURSAT, Cours d’analyse, t. I, 5 ed. p. 650.
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Hence, the geuneral equation of the asymptotic lines on the surface
Ldu®+2Mdudv + Ndv®* =0, reduces to dv. (2Mdu+ Ndv)=0. Hence the
differential equation of the curved asymptotic lines of the ruled
surface is

du _

dv
it being assumed that 3 # 0. (As we shall concern ourselves here
with non-developable ruled surfaces, we shall make this assumption
throughout, because 3=0 is the condition that the surface be
developable). Thus

- N/2M = — (A + pu +vu?)/28

d—u:u+Bu.+vu2
dv
A u »
wh = Y S - .
ere 2o BT YT e

3. Osculating Quadrics of a Ruled Surface.

The tangent to the asymptotic line at the point (w,v) is given by
xr—-p-lu y—q-—mu z—r-—-nu

prlut(e+But vl q +m'u+(z+ Bu+ru® ym v+ wut (2t Butyud)n

When w varies, the point (u, v) describes a generator and the
tangents form a quadric. Also since the generator and the tangent
to the asymptotic line are two distinct lines that touch both the
quadric and the ruled surface it follows that:—

The quadric generated by the tangents to.the curved asymptotic
lines at their points of intersection with a generator touches
the ruled surface all along that generator.®

4. Condition that the Osculating Quadrics of & Ruled
Surface be equilateral.

We shall first obtain the required condition by taking for our
base curve an orthogonal trajectory of the generators, so that 2ip'=0,
and shall ther apply the result to find the required condition when
the base curve is any arbitrary curve.

The quadric osculating a ruled surface along a generator is
equilateral if the two tangents to the curved asymptotics which are
perpendicular to the generator lie in perpendicular planes through
the generator, because then the generator and these two tangents are
three mutually perpendicular generators of the osculating hyperboloid.
Now the points on the generator at which the curved asymptotics

* BIANCHI, Lezioni di Geometria Differcnziale, Vol, I. P. 394.
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are perpendicular to the generator are given by the two values of u

that satisfy a+ Bu+7rvu?=0. These two values of = must belong to

the involution formed by pairs of points along the generator the
tangent planes at which are perpendicular and hence must be
harmonic with respect to the roots of 1+ 2Bu+ An*=0, the condition
for which is r-8B+aA=0.
Hence

y=BB+aA=0 is the condition that

the osculating quadric of the
ruled surface be equilateral.

Substituting the values of «, 8, in y—8B+«A =0,
we get 3 {[», p", N-ZUp' [V, p", N=3'plp, 1", -0, I, 1],
ie. (22 =UZUp, p", ll=[pZlp -V, 1", 1.
Since p'XI -U'Sip =p' (12 +m>+0'>) = U(U'p +n'q +n'?’
=pd(pw =Uq)-nw'(l'r —p'n),
the L.H.S.=[m'(p’m/ = U'qg) —n' "+ = p'n’), p*, 1]
- w’ n q"
- 2’{ J I'r'=pn’ pm -1q [ * I m n }

_ 4 m’ n' < p q" "
n'g —-r’m’ U -pn p'm'=lq ! m n

by the usual rule for expressing the product of two rectangular arrays

when the number of columns exceeds the number of rows, as a sum
of determinants.”

ol 0

*%

=3Zp"l'.Zllg'n —r'm’).

spin'g —»'nl) Zln'q —r'm)
RHS.=[p3p -, U, 0=lg(pm =Uq) =y -pn)l, 1]

" 7 ” "o "
=| & PRIV MRS VR B
gn —mr U7 pn D aq m 7

=pl 0 ,22"1”2?[ £
> qn—m;) g - m'r) ol Zlgn = m'r)

Il

Ipl - Epl"=0, which s the required condiltiont  that the
osculating quadric  be equilateral, when the base curve s an
ort]zruonal iraje('toTJ of the generators.

* See BURNSIDE and PANTON, Theory of Equations, Vol. 11, p. 34.
** See BOCHER Introduction to Higher Algebra. p. 63.

+ This condition retains this form also when v is not the arc, but any arbitrary
parameter.
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{ REMARKS :

(i) This condition is identically satisfied for a right-helicoid
whose equations are r=u, y=uf(v), z=kv. Hence,

A right-helicoid is a ruled surface such that all its osculaling
quadrics are equilateral.

(ii) Consider the ruled surface whose generators are parallel
to a fixed plane. Then

v=3Sl{m'n" —n'm")=0

The equation of the curved asymptotic lines reduces to the
linear equation
dot, A, B

Qs 25 1 =0.

Taking the fixed plane as the plane of xy, the equations of the
surface can be written in the form

x=u, y=v+fu, z=F(v).

Here 3= l(gn’ =»r'm')= —f' F’,
p=21{mr" = m)+(gn" - n'g" )y =f'F"~-f" F’,
A= Ugr" -7q")=F".
.. the equation of the curved asymptotic lines becomes

du F" " " ’ P
v F F’ (f"F"=f"Fu=0
The equations of the tangents to the curved asymptotic lines at
the points (%, v) where they cut a generator v, are given by

x-u _y-v—fr Z-F

(du/dv)  1+fuwu  F’°
where v is constant, but « varies; and
du_ X (f" F"=f" F)u,

w oy F Ty R F’

Eliminating % between these equations, the equation of the
surface generated by the tangents to the curved asymptotic lines at
the points where they meet a generator is

2B - (z-F) F"2f F’'

(y—v-fx)F' - (2-F) , ( N

e =F'+1(z- - -
(z-F)f

(4-1)

¥

which being an equation of the second degree, represents a quadric.



316 Ram Behari

This quadric is the quadric containing three consecutive gene-
rators of the ruled surface and is therefore an osculating hyperboloid,

but as these generators are parallel to a plane, it is an osculating
paraboloid.

Equating to zero the second degree terms in the equation of the
Hyperbolic Paraboloid, the equations of the two director planes are

2=0, and ((y-r% =3 3BTy pope 2

=0.

These two planes are at right angles if

1/F" f Fo -
1 2(]5" f‘) +27F,—0, i.e., if f'=const.=¢, (say),
that is f=cw+ca *

In this case all the generators meet a line perpendicular to the
z-plane. Hence any three generators determine an equilateral
paraboloid.

The equations x = u, y = v + (a1 + ¢)u, 2z = F(v) show that for
u=—1/c;, we get x= —1/ci, y= —cs/ci which are the equations of the
axis of the right-conoid.

Incidentally we get the

THEOREM : If the osculating quadric of a ruled surface whose
generators are parallel to a fized plane is always an equilateral
paraboloid, the ruled surface is a right conoid.}

l.et the base curve now be any arbitrary curve and let =z, ¥, 2
be the co-ordinates of the point where the generator mests it, p, q, r
being the co-ordinates of the point where the generator meets an
orthogonal trajectory of the generators. Also let the parameter be
arbitrary for the curve (x, ¥, 2).

Then we have

p=x+RI ... .. b el med
Sop =2+ RUHIR, L. L
p'=a"+RI"+ 2R +IR", ... ... ..

The condition Sp"l'— Sp'l”=0, that the osculating quadric be
equilateral becomes
SU(z"+ R+ 2UR +IR") — SI"(2’ + RI'+IR)=0
ie. Sla’— Sl'a’ +2R(S1*- 2 U")=0. ...(4-2)

* Cf. Nouvelles Annales de Mathematiques 1924. P. 144.
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But Sip'=0 . Sia’+RIU+IR)=0, i.e. R'= - 3.
Putting this value of R’ in (4-2) we get
Sa’l'= Sa’l"+ 2312 (S - 31 =0,
which is the requirved condition that the osculaling quadric be equilateral,
when the base curve is any arbitrary curve.

When the arbitrary base curve is an orthogonal trajectory of the
generators, >la’ =0, and this reduces, as it should, to Sa'l' - Sa'l”=0.

5. A new geometrical meaning of Laguerre’s function.

Take a curve on the surface as the base curve and let a, y, =z
be the co-ordinates of a point P on the base curve and X, Y, Z the
direction cosines of the normal to the surface at P. Also let
I, ma, ny; la, mae, mz; ls, ma, n3 be the direction cosines of the tangent,
principal normal and binormal to the base curve at P. Then if &
is the angle between the principal normal to the curve and normal
to surface at P we have

X =1, cos ¢+lssind, Y=ms cos ¢+mssind, Z=ng cos d+n; sin .

We know that the condition that the ruled surface formed by
the normals along the curve has equilateral osculating quadrics is

>: Xz — E X'2"=0

Denoting differentiations with respect to s by dashes and making
use of Frenet's formulae, we have

X'= - cos ([)(L{ + b) -1y sin &+’ +sin f,bj"i +13 cos bdy’
6 p o

= —[; cos & (1 - d)’)+lg sin @ (l - é') - L cos b, ..(5-1)
[0} . a 2
. s gy in % (1 :
SXat =3 X, =10 (-2 o (52)
; - 08 ¢
Also SX'a'=3X1= = coi =

- / @ 5 L fe .
LS4 S Xt = _a ,CQA)’ ie SX'a' = -Ll(( 08 (é) - SX'a",
= ds o ds 0 =
51) gives 23 X'+ (22 "j)) =0
Hence, ( gives 22 A ds\ p ’
9 cin &
(o A(cos Py, Esind (l - (_z,f)=0, from (5-2)
ds P o o
d /1 2 1_
e R +T v 0, wa(5-3)

M 28

i.e.
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where R, 7, v are the radii of normal curvature, geodesic torsion and
geodesic curvature of the base curve. Conversely, if

L(n ), %‘i’(ﬁ - #)=0,

ds P
we have SX’2' - >X'z"=0. For
dfcos D\_ d s o _
e )‘dS(ZXa,)—EX.@ +SX'x o (54)
Also differentiating > Xa'=0 twice by Leibnitz Theorem, we get
S Xz +23X'x"+ ZXa" =0 ... (55)
Subtracting (5-4) from (5-5) we get
SXa+ SXiat= - & »C—Oii”)-
ds o
. - / b
- ZXH-J _ 2X’.T”: _ i (&) —2S X'’
das 0
_ _ dfcos f#) _2sin r,ﬁ(}_ _ aS’)
ds\ p e o
" . - in &
since » X'z’ " SX'ly= s P (l - ﬁb’) from (5-2).
P p o
s SX"a2' - SX’a"=0 by hypothesis.
Thus we see that > X'z'— 3X'2"=0 is equivalent to Laguerre’s
’ d(l 2 1
: * ¥ = —| — - ===
function Io', Z\R +T N 0.

Hence ,
we get a new expression for Laguerre’s function Io wviz.
SX'z' -EX'2" and a new geomelrical meaning of Laguerre’s
function, viz. that its vanishing along a curve on the surface
is the condition that the osculating quadric of the ruled surface
Sformed by drawing normals to the surface along the curve be
equilateral.

COROLLARY.—If the curve on the surface is a geodesic,
1/v =0, and also 1/R= (cos b)/p=1/p, since ¢ =0 for a geodesic, therefore

if % =0 along the curve, we have p stationary. Hence

If the ruled surface formed by drawing normals to a surface along
a curve on it has equilateral osculaiing quadrics and if the curve
is a geodesic, the circular curvature of the curve will be stationary

-

* loc. cit,
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6. Some other Theorems on Equilateral
Osculating Quadrics

THEOREM 1. If a ruled surface R having equilateral osculating
quadrics be taken, and if the ruled surface formed by the
normals to R along an orthogonal trajectory of ils genera-
tors also has equilateral osculating quadrics, then the
orthogonal trajectory is of constant curvature.

For if 1, m, n are the direction cosines of the generator of R
which meets the orthogonal trajectory at P (x, y, z), then since R
has equilateral osculating quadrics, we have 31"z =30'z"

But /= -1, sin ¢ +1; cos & where Ly, may, ny b, oma, nay s, mg, ng
are the direction cosines of the tangent, principal normal and binor-
mal to the orthogonal trajectory at P, and ¢ is the angle between
the principal normal (l,, m,, n,) and normal to the surface.

L U'=1sin & (lﬁ + L‘) =15 cos b +cos b ([7) —l3 sin &-&"-
o p o

o Srp=spobocesd(l (5,); St = Sy =2
P o \o P
A ) ‘
so that SUa'+31'a'=25 'z v B Sl~n—> since Sl'a"= S1"x".
ds o
2eos é (1 - as')= ‘—Z(Si" ’f)) . e (61)
o o} ’ ds o

Also since the ruled surface formed by the normals to R along
an orthogonal trajectory of the generators has equilateral osculating
quadrics, we have

o COSQS ‘Zsiné (1 ’
K : SR 2 (= - )=0 o (82
ds\ p )+ e o ) ©2

From (6-1) and (6-2), equating the values of (% - ¢>’>we get

_p _d(sin 05) _ o d [cos cf>>_
200565(13 p 23111‘15(]0 p
i d)
that is sin & & §Bl——r) + cos ﬂ5 cos q’)) 0
(l p
that is
08 & sin & sin & cos b
0 8 (S2 2 DY g (S cond )
sin g P P P P o° e )

"=0, that is p=constant. Hence the orthogonal

trajectory is of cens*ant curvature, which proves the theorem.
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We proceed to examine whether the converse is true, i.e. if a
ruled surface R possessing equilateral osculating quadrics be taken
_and if an orthogonal trajectory of the generators has constant cur-
vature, then is it true that the ruled surface formed by the normals
to R along the orthogonal trajectory also has equilateral osculating
quadrics ?

Since R has equilateral osculating quadrics we have as before

d (sin &\ 2 cos 95(1 J;
s\ p )—T G—Sﬁ)from (6-1)

Since p=constant, this gives 1 cos @ (305’ - g) =0.
n

Hence either 1/p=0, or ¢=7/2, or 3 ' - 2/0=0.

Now if the ruled surface formed by the normals to R along the
orthogonal trajectory also has equilateral osculating quadrics, we

(4 L_O.Sb) + Ziil?ﬁ.(L - #)=0,
ds\ p e 5}

s ob P
L “’—1“—-(306'—~):0.
P c

which is satisfied if 3¢'-2/0=0. Hence,

must have

THEOREM II. If a ruled surface R wilh equilateral osculating
quuadrics has an orthogonal trajectory C of ils generators
which has constant curvature, the normals alony C generate
a second ruled surface with equilateral osculating quadrics
except (possibly) when C is an asymptotic line on R.

Again if the normals to a curve of constant curvature generate
a ruled surface which possesses equilateral osculating quadrics, we

i 2 .
have as before ﬂ;—é<3§b’ - 8) =0 so that, cither =0, or 3¢ -2/0=0.

Hence either the curve of constant curvature is a geodesic, or
for it 3¢ —2/c=0. Disregarding the exceptional cases when b =0,
or n/2, we also get the following results :—

THEOREM IILI. Jf two ruled surfaces inlersect along a common
orthogonal trajeclory of lheir generators al a constart angle,
and if this trajectory is of constant curveture, then neither
or both have equilateral osculating quadrics,
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Conversely, if two ruled surfaces, both having equilateral osculating
quadrics inlersect at a constant angle along a common
orthogonal  (rajectory, then this trajectory has constant
curvature.

Otherwise

THEOREM IV. If « ruled surface with equilaleral osculating
quadrics 1s formed by normals to a curve of constunt
curvature, we get o« second ruled surface of the same kind
if we rotate each generator through a constant angle in
the normal plane of the curve.



On a Method of Computing Gravity Anomalies.
BY
G. P. RAO, M.A., F.R.AS.

In the Transactions of the Cambridge Philosophical Society (Vol. VIII,
Part V, p. 694: 1849) Professor Stokes has given an elegant formula
for computing the elevations of geoid above the spheroid of reference
from known gravity anomalies. Following his method of transform-
ation of a series of spherical harmonics into a definite integral, a
method is herein developed of solving: the converse problem, namely
of computing gravity anomalies from the known elevations of geoid
over the spheroid.

It is well known that if a distribution of matter is such as to

make the surface r=R{1+ }u») a level surface under the potentials
n=1

of its rotation about the polar axis and the gravitational attraction,
the value of gravity at the level surface is

g=G [1—§111 (*1 - cosﬂB) + 2 (u—l)'m]
2 5 n=2

where R is mean radius of the surface, m is mass of internal matter,
un is a Laplace function of order n, small compared with unity, and
mG is centrifugal force at the equator. Let g, be the gravity calcu-
lated according to Clairaut’'s Theorem which applies to a generalised
oblate spheroid. ILet r, be the radius vector of the spheroid measured
from the common centre of gravity of mass and volume. If r=7.+ Ar,
and g=g¢g.+ Ag, then

Ar=Rus+us+u,+ - - - - ) (1)
Ag=Cus+2uz+3ug+ -+ -) A2)

Now, as is well known, the geoid or the earth's sea-level surface
is an equipotential surface nearly spheroidal in form. The eievations
of the geoid above the spheroid of reference are known from the
observations of plumb-line deflections at a great many stations scat-
tered over the surface of the earth, and are usually exhibited in the
form of contours for all the geodetically surveyed areas of the world.
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It is required to determine the anomalies of gravity due to the known
undulations of the geoid from the spheroid. Let Ar=RF(6, ¢) and
let « be the angle between the directions determined by the co-
ordinates (r, 0, ¢) and (¢', 6’, ®’). Also let a2 denote the ratio #'/r.

Then
_1
(1-2x cosa+2?) *=Py+ P+ P+ Py + -+ - - - (3
where Py, Py, P, - - - . are Legendre functions.
Expanding F(0, ¢) in a series of Laplace's functions and equating

terms of the same order

o LTI L b i g
un= = .0\0 F(0',¢') Pu sin 6'd0°dd . (4)

Substituting in (2) we get

(m(2m
Ag= % so \0 F(0, )15 Po+2-7 P3+39 Py+ ---1sin 6 d6 d¢’ ...(5)
Denoting the series within the square brackets by S, it is easily

o= ®
seen that S=2 3 #»* Pn— 3 aPu — > Pu ...(6)

n=2 n=2 n=2z
Putting 2 =1 in equation (3)

_1
(2-2 cos a) ¥ = Py+P,+Py+Py+
since P,=1 and Py=cos %, it follows

S Pu = 1 cosec a/2-1-cos 2 (1
n=2
oy 1
Let S aPy 2" =y
n=2

x o e d . |
x rdr = Py 2" = (1-2x cos a+ua?) ‘-Po-Pix

6 n—2
d %
y = *7[(1—2 2 co8 a+a?) ® —-1=x cos a]
da

cos a=a — cos o
(1-2 = cos x+a%)p? i

Putting =1 in the above, we get

20

- _ -
”22 nPa 1 cosec /2 cos & ..(8)
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oo
Again let S 22Pn 2" =g

n=2

ey -
e 03 #n-1
gdr = 3 nPpa’=x S n Psax = av
Jo n=2 n=2

2(cos a—x)
(1-2a cos a+a?)372

- T COS «

3r (cos a—a) cos a —2x

c = . —_ =
(L - 2x cos a+ 22)5/2 (1-2x cos a+ 2P cos &
Putting =1 in the above, we get
oc
22 n® Pun=1% cosec x/2 - cosec® «/2 -cos a - (9)
ne

Substituting (7), (8) and (9) in equation (6)

S=1-

1 cosec? =
c? z
2

1
Using this in equation (5) and replacing F (6',¢') by Ar/R we get

G 1 (" 2m 1
S —— 3 %\.: TR
Ag = R in &0 SD Ar (1 4 cosec 2)811}. 0'd0’do ...(10)

If the radius vector to the station at which the gravity anomaly
is sought is taken as the axis of spherical polar co-ordinates, and if
the angles «, 8 correspond with the 6, ¢ that refer to the north pole,

then the expression for Ag becomes

G 1 ™ 2m
Ag = R ZWSQ &0 Ar fla) dz dB w.(11)
where fl@)=1 sin a -} sin 2 cosec?® a/a

In practice, the integration ls effected by numerical summation,
A series of concentric circles are drawn around the station at which
the gravity anomaly is required, and within each of the gones bound-
ed by these circles, an average value of Ar is determined. Let Ar,
be the mean value of Ar over an entire zone bounded by the radii
a1 and a, and let f («) be the mean value of f(2) between the limits

&« and oo

Then Ag = = 3 Ar,. £2) (3, —a) . (12)

=@
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If #(z) is a function such that j Sfla) da=d(x)

(a2 = 21) (as -

then f,,,(:z) = 1—'— S ’ f(cl) da = fl?l) [(,b(ae) - ‘.i’(’ll) ]

8
where b(a) = L cosec a/2 — ¥ cos a

Therefore, a working form of the formula is
Ag = 35 Ara [Bla) - b)) ..(13)

This formula enables us to compute the gravitational effects due
to the deviations of the geoid from the spheroid of reference. When
these effects are removed from the gravity anomalies reckoned from
spheroidal formulsz, the residual anomalies are then more localised
and are likely to be of industrial interest.



On the Equation of Heat Conduction in Wave-
Mechanics

BY
M. RAZIUDDIN SIDDIQI, M.a. (Cantab.), Ph.D. (Leipzig)
(Hyderabad— Deccan)

Introduction

It has been shown! that in a crystal, the equation of heat con-

duction according to Wave-Mechanics takes the non-linear form :
3 o? du
1. o u_ Qou_ .
2 BJ.TE! ot P(“v Ty [)’

r=1
where 8 is a constant and P is non-linear in u.

In this paper we consider a special boundary value problem for
this type of equation, and prove the existence and uniqueness of
the solution for the particular equation

'u  du  Puw 1 du_

ox T 2 | 22 @ ot

2

w

for the boundary values:
z=0, 7 and all g, z;
u=0 for y=0, 7 and all 2, z;
z=0, m and all x, y;
u=Hz,y, z) for t=0 and all z, ¥, 2

Finally, we remark that the method holds egually well for the
more general equation L

We consider the partial differential equation
u w w1 du
gL T, - = Eoye 1
2% oy 02 @ ot “ @
where ¢ is a real finite constant, and determine its solution which is
unique and regular® in the domain?
o<, Oy, O<<e(m, 0<4, 2)

1 R. Peierls: Zeitschrift fur Physik, (1930). .
2 We say that a solution is regular when it is continuous in the whole domain, along
with all its derivatives that enter into the differential equation.

i ici i val for a, y,sasm Itis
3 For simplicity, we have taken the length of the interval v, ¥, .
obvious that aﬁy three constants a, b, ¢ can be taken without any material change in the

process.
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and which satisfies the boundary conditions:

u=0 for x=0 and x=7 for all y, z and ¢ in (2),
#=0 for y=0 and y=7 for all z, 2z and ¢ in (2),} (3)
u=0 for 2=0 and z=7 for all z, y and ¢ in (2),
u=fx, y, z) for ¢{=0 and all z, y,'z in (2) (4)

We assume that f(x, y, z) can be expanded in a multiple Fourier
Series *

Sz, 9, 2) = 3 ¢, , sin lz sin my sin ne, (5)
L om,n
and that the series 2 (Z+m?+n?) |c,,, .|is convergent.

l,mn

For the solution we write
wx, y, z; 8) = 3

Uy, (£) sin Lz sin my sin nz, ) (6)
Iy my, n

and assume, for the present, that the series in (3) is absolutely and
uniformly convergent in the domain (2).

Evidently, (6) satisfies the conditions (3). If we determine v,
so that for all /,mmn >1

Ly

vl, ey (0)261, Ny N (7)
then the condition (4) will also be satisfied. Further, we have:
uMx, y, 25 t) = , ”2; . Fy ., » (1) sin lx sin my sin nz (8)
where
- T - T
Fl,m,ﬂ,(l)= _%\ \ \ wa, B, v; t) sin la sinmfB sin ny dadBdy
“0 ~0 “0
= 2 aPer arp aus v(E)erp  v(#)vpo (9)
KA
vop
with
- ™
w, =2 in Ax si in 2 d (10)
aty, =" sin Az sin va sin Iz da.
b ]

We assume ° now that the series

S o@+mPanty,, 1) and 3 de,, fdE

1, m, n, 1 m, n,

4+ The summation extends from I to =c, unless otherwise stated.

5 Of course, all the above assumptions about the uniform convergence of the
series shall be proved later,
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are absolutely and uniformly convergent for all 7. Then we get on
substituting the series for » and u«® in the differential equation (1)
- 3 (BP+mP+nad) VY s 1) sin Iz sin my sin nz

Lm,n

1 d[m,n sin 1z sin 7 "
— = in l2 sin 7y sin nz

q* dt ¥ !

Iym, n
= S Fioma(t) sin lx sin my sin nz. (11)
1, m, n
Therefore

dvt, m, »

L £ g2+ m2 )ﬂ)ul’ " n(z): - qQFz, . ”(l,) 4, myn=1,2,..) 12)

The solution of this differential equation which satisfies the
boundary condition (7) is given by

2 2 2 2 2
X ) —q dEm Aot _ e t +m b =3
I't, my N (/) ,CI, iy n€ (] \ l my (E)dé
“0
2 2 32 2
= —q (& bmo e M *q”! i Vn 2U=3
c.’, niy e (_7 dB (13)
<0

« E u(l> a(m) (Lin,? L(B) ’L‘(B).

KAp Y Ap MO A wpo
vpaT
If we write
b W =E+nl+nHv, () v =2+ ni+n®) ¢ (14)
" Lyen Lymyis I, myn Lymy 1

then we get

¥
by g 1 Iy my n

92 2 2 ¢ 92 2 2
- q‘(i = = Ot 9/ 19 P P -q (8 Fm JE—8>
= e - P+ nd nz)\ e od
Yo

) md “n)

aAP a,}‘7
KP L
S B(3) H(3), (15
S Erv e o) AR AR (5

A/\u
vpa

(I, m, n=1, 2, . « .« ).
This is a triply infinite system of non-linear integral equations

for the determination of the iz, m » (). We solve this system by
successive approximations, and for this purpose write

2 2 2
0 20) 4w 0
0> _ e g2 FmoEn 3 (]6)

1 Y
Ly my B Iy my %
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and for » >1

ks —q“'lg+m2l u2 it 7;;2 Q+ ﬂ) -3
2L —q2L St DU—§)
7 =y e — o2+ ni®+n2
Iy my n Iyny n q (l ni n ) € dE
.
(4]
(g2 () [€13] (r—1) r—13

G B Yue D () )

x,‘%u (E+ A2+ 8 )(1,a+pg+og)xA,L per
" 17)
Lemma 1.
o
For all kv, 1=1,  |agl/k» <80 (18)

™

We have @y, sin ka sin va sin la da.

HV
3 |0
"y

0

On integrating twice by parts, we get

P
(€3] 9 2
. d . .
N sin lo —(sin Aa sin vx) dx
K 77'.43\ da.z( s,
Y0
™
2 T T . X
=-n sin la { — (A2 +2?) sin ka sin va + 2Av cos Ax cos vajda,
v 0
Therefore
W c"
E’w‘ - 2 E+v? \ |sin A« sin vz sin la|da
S ':Tlﬂ C‘lvi g
T
4 kv .
e 7 0
T |cos fx cos ve sin Ta|da.
o

(€3]
lo | 8
Now since k, v are = 1, we have for all [, W\(s ik

which proves our Lemma.

Lemma II. The series

t

o o *qgilzﬂ*rug-l 119)(1-5) D omy Andl Y g N g o 2
S PR+ mE+ w3\ e £3%vTap - j(k“+h + 12 (v + p* +0?)
Lym,n Yo (19)

is uniformly convergent for all ¢ and all kK, \, i, v, p, 0 = 1.
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We have, for all ¢t >0
t

a2 2 2 i* 2 2 2
—-g (3 +tm +n H0-5) -q (l +m #n )2 q (l +m tn )3
e dd=e dd
“0 ‘0
23 2 2 2 2
= { e [CAE T IR S U A } / qQ® (1°+77L2+77,2) v (l +m +n 3t
1

< (B +md+n?) (20)

Further we have, for a properly chosen constant A,
oy (€7} [€1D] (€3] (H3) (€3]
la | | e |

lale: aAp a;,ur < am» a/\p lp.(T _83 A
EHAT @)1+ pt o) G At o’ 2ma® (21)

from (18). Thus we see that the series (19) is less than

N 1 8 A
S (2 2 ,9) ., L L
Lom,n P+ m® +n) U+ nﬂ +n%)  2mt
3 8% 76 64
— 3 = - 6 <
= 8 A . (2 - & g A (2%)

Therefore the series (19) is uniformly convergent.

According to the hypothesis, the series 3 |vimn| is conver-
I, m,n
gent. We write
E l')’l,m,u! = C. (23)
In, n 3
r=
From (17) we get, if > | d)[ (l) | converges for all ¢;
5, mn PE
. r 76 A ( - =13 ] 2
S 1 ()] <c+STA Sole
L omn Lynyn l 27 ‘\ max I3 ';’ " l l,m‘n( ) I I ’ (24)
rd
which shows that S | & (1) | is also convergent for all ¢

1, om,n Lygn

Now from (16) we have

0>
Max > |3 ()] =c; (25)
l,m, n Lymyt
substituting this in (24) for r=1 we get :
S ¢ 647°5A
& I3 < ¢+ -2,
, m‘?‘” s I,m,u() I 97 ¢ (26)
We assume that ¢ < 27/25670A < 1, (27)

. 1y
Then we get Sl )] < 2 (28)

1 m, n lymyn
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Substituting (28) in (24) for »=2, we get
S |0 64” A (2e2 <2e. (29)

l,mmn by

(t)l <ect+—=

on account of (27)-

In general we get for all r>>1,
(r>

> ¢ 1< 2 <1. (30)

7
1, my, n Lyinynt

We shall prove now that the series

38T - 270 |
t)— !
F=0 Lomn " imn " ln (31)

is uniformly convergent for all 7.

We have from (17).

(r+1) _ ¢” N ,“}( .
b (t)- @ (I)= PA(E+mP+n?) AT Vs
Imn Imn
~0
o my . o 1> -
a a a 2 ¢ - -1y
x 3 T Ty e A{sﬂm,‘ (3) B (B) =B, (@) B, (a)} %)
KAR (.2 2 2
,,,,,,(»c AT+ 8 (4 pP oY)
. 29 g 9 afll a(m) )
=q 0 +m tn) ({-§) S .
= _q2(12+m2+n§) e s x K%‘L I;l nxP . #qn _
0 e (=224 1%) (P + pP+0%)

I I{3) 2 -1 ’f"l) (r—-l) 1
x Al(b”)‘# <¢1‘P‘T d’l‘P” > ppu' ¢)< "/\H >J'.

Therefore on account of (22) and (30), we get

N (r+1>
2 e vl < 4’““‘

Imn

-2¢, max., |05 (1‘)- D(!") |

Imn Imn S dmn 33)

Repeating the same process » times, we get :

(r<12 ir:
s - 1<54”sz malees W= @1 (34)
Inn hnn Linn Imn Imn ban

and, therefore, summing over » from 0 to o, we have

2 §|¢' ()_ )<2(128”Ac>maX2l¢

r=o imn hmn

f»m( ) d) )I (35)
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6
But on account of (27), %Z.——AE<1, and therefore
§ ( 128W°Ac)’: 27 .
o 27 27 -1287°Ac (36)
Moreover,
1 ¥ — (]2 2 2 -
¢V -d (= -+ 0+ ne,xe G2 + i+ )t = 2)d
0
y amy ")
¢ 7 a)\ @ T 0) o
o Ky p i c
x S s S SN, W 3 3
:(2& u (N2 + )%+ p? +0%) KAp @ vpo @)
vpo
Therefore
S | S0 -0 | <Paac (37
Imn Linn Imn 27
On substituting (36) and (37) in (35), we get:
- 7+ > 27 64 o
S S b(t) — D1 Lo o AL
gy lym,n I I,n(z,n l,r(n,)u l 27 -1287°Ac 27 (38)

which shows that the series (31) is uniformly convergent for all ¢

From the convergence of (31) it follows that all the limits
lim (1) (L, m,n=1, 2,..c...)

r=yoc Intn
exist, and that on writing )
Gy () = lim (D) (39)
r=yoo

Lmn

the functions d), mn(!) are continuous for all ¢ = 0,

We see also that

Sle@l<22k<1 )
d e, n I,m,n
an
(t) = 0 = i 1 (2) \
Ho=3 410 = tim G ()

From the equation (17) we get for r =3

K ard 9 9
ora 9 2 — A2 ) 8)
= 2P 2), F(E P )(; N
f,ﬁl»m(f) =Y pun € ! e (]t"(l2 +m?+ nﬂ) € a3
0
% 2 a(m) a(lw a:n) QS (8) QS (5
R L Ap ko KL ) ypq) (42)

e (RN o)
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We put now, for all Im,n > 1.

(1) =

v c = me—— ¥
Ly ?+ m2 Prnd+n? Ef) ,m-» Limyn P4mPtn® hmn

(43)

The function v (£) satisfies the integral equation (13), and there-

lym,n

fore the differential equation (12)

Moreover, on account of (18) and (30) we see from (9) that the

series S | Fimm(t) | is uniformly convergent for all ¢ Also the series
Imn

S o@emta) v, ()] = 3 | brmal) |
Lintyn

Lym,n WPy l,n,m
is convergent from (40). This proves the uniform convergence of all
the series mentioned in the beginning.

We conclude therefore that
w (x, ¥, 25 1)=2 v, myﬂ(t) sin lx sin my sin nz (44)

is the required solution of equation (1).

We proceed now to show that this solution (44) is the only one
of its kind which can be expressed as a Fourier series whose co-
efficients are such that the series

S B+m+nd) | v ()|l and 3| dw fde¢ |

Lmn 1m0 Lmn Lymyne

are uniformly convergent.

If possible, let the Integral equation (15) have solutions c?)z»m (¢)

mn=1,2,..... ) other than the ¢mx (¢) found already in (39),
and suppose that the series 2 |cbzmu (¢)] uniformly converges, and
2 | (Plnm(l) t = @ < 2c. (45)
Imn

r+1)
& (#)]. We have for

Let us consider the series S |Pum (¢) = ¢ o
1

lLinn
all I, m,n = 1:
4
23 8 2 20, 2 2
t) = v e*ﬂ [CAEDTIE S AT QEUZ + 7)L2+ nﬂ) e q A Hm A U= ds

" lmn Imn

r+1>

* 0
<O Gm>  (nd
Ay Gl\p Qe

(K2 + 22+ 1) (1 + p* + 0%)

E é(,) (6) cb(r) 6
X

i KA M 7 VpU( ) ’
vpo

M 30
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ot
o 22 2 3 22 2 3
qsl"m(g): Voo e q Hm Ty _ qz PP+ me+ n%) S e~ G Hm 'y =g
0
> ny  (n) .
Qyeqy a)\p a‘/.m' i
x b} do
,(%‘ (& + A2+ 1B (1 + p? + 6?) gS ( ) ¢)71p0'
vpo
Therefore
t
D TN NV
;51 (t)—¢> . )= ~(P+m*+n?) e ds
mn
0
(€3] m> (n)
ey a?\p a,urr €2] >
{3 B ()= B @) By (3) }
X R -
K%‘ (E+ X+ 1)+ oo+ %) {‘Pm\# (3) 95?,?6(0) KAp vpo
vpo
W ey
o ; Gy Gyp @
= — P+ m+ »3)\ — -8 a5 x> CII Y o 3
= -g% mtn '03 o (KPFAE+ ) (12 + p2+ 0?)
vpa

% LB () (S108 = 67 @) )+ () (B0, B) = D () )}

Therefore from (22), (30) and (45) we have
z|¢u>éwwnl<iwmwcmu 3¢ (1) - ¢ (1)]

lm,n Lmm 1Lm,n Lym,n 1 mn Lymn

Repeating the process r-times, we get

7
2, 80 - 8 )1 <(Mxtiac Ymax 3 1E0= 00 | @4
lymn  Lman 1Lmn 27 Lmyn Lmn I,mn

Now on account of (27) 25(;,; é—C< 1, and since evidently

Max 3 | @ (t)-¢(¢)| is finite, therefore

Lo lym.an Lmn
lim 3 [ & ()+7 () | =0 (47)
r—>o0  lLman Lmn Lmyn
so that
b (1) = lim & ()=¢ (1) (48)
Iymyn roco Lonyn Lmn

Thus the two solutions v () and v (¢) are identical, and the solu-
Lom,n Lmn
tion |
u (z,y, z; )=3 v () sin Iz sin my sin nz (49)
Lmn Limn
is unique.
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Concluding Remarks.

Now let us consider the more general eguation (50)

bgzc;‘_Biu P 1 a;u=P(u z, Y, 2, 1)
ox? by3+bzz Q@ ot A

for the same boundary values (3) and (4). We assume that the
function P can be expanded in a power series of the form
S pla, gz 0w, (51)
v=2
where the functions p, are continuous and uniformly bounded along
with their first and second derivatives with respect to z, v, 2.
It is easy to see that nothing essential is changed by taking
3 p, (2,4, 2 Ou” instead of u® in the right-hand side of equation (1),
v=2
as all the leading stops in the demonstration remain the same. This
will be still further apparent on referring to a previous paper by
the author: Zur theorie der nicht-linearen partiellen differential
gleichungen vom paraholischen Typus; Math Zeitschrift 35 (1931).



On the Transformation Theory of Dynamics
in the Manifold of States and Time.*

BY
K. NAGABHUSHANAM.

§1. E. T. Whittaker in his Analytical Dynamics has constructed
the transformation theory of Dynamics in the Manifold of States.
Referring to the Manifold of Counfigurations, J. L. Synge suggests ¥
the study of the extremals of [fds where ds = 2 Ldt is not the
square root of a homogeneous quadratic form. In this paper,
I wish to study some aspects of the transformation theory in the
(2n +1)=Manifold of States and Time, in which the form

n
Ldt = > p-dqg -Hdt
r=1
is a Pfaffian of rank § 2z+1. Thus the study of the variational pro-
blem of a Pfaffian* of odd rank (2n+1, if the dynamical system
under consideration have n degrees of freedom) becomes essential.

~

Notation.

§2. The usual conventions of Tensor Calculus are followed. Any
repeated index stands for summation over the range of its variation.
The range of variation for » is from 1 to n, for j from 1 to 2n», and
for any other index from 1 to 2n+1,

The Trajectories.

5

§3. Let us denote by a! 2.2 the variables of the coordinate
system used. All of them are supposed to be on equal footing ; ordi-
narily, any variable 2/ does not separately stand for position in the
n-space, or momentum, or time. We consider the Hamilton's

* Submitted in April 1933, revised in March 1934.
+ Phil. Trans. Roy. Soc. A. vol. 226 (1927) 35-306.
n
§ The rank of the Pfaffian ¥ X, da’ is the rank of the matrix

r=1
‘ an a;y . . Qi
| @o1an . . A ‘
‘ i he o X; ¥ X
where au =~+—,— 77 -

| | i oxk bt
‘ @n @2 - . Qun |

XXy .o o X |

* Cf. G. D, Birkhoff: Dynamical Systems, 55.
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principle in the general form as 3 .[X; dxzf = 0 along the natural

trajectories, the symbol 3 standing for the difference in the corres-
ponding quantities on the natural and variant paths. We obtain *
the equations of the natural trajectories as the Pfaff's First System
of equations, viz

7y daf = 0 G =12 .. 2n+1) ...(1)

ik

ba%f; - b;f: For convenience the word ‘natural’ before

trajectories will be hereafter dropped, for we shall throughout refer
to them only.

where air =

A Subgroup of Infinitesimal Contact Transformations :

§4. The most general type of the infinitesimal transformations,
Saxi=et (i=1, 2..2n+1) ¢ being a small constant, which changes
X: dot into Xi dat+ed?, transforms the air’s into themselves, and so
the totality of trajectories into itself. We here consider the subgroup
which transforms each trajectory into itself, by transforming every
point of a trajectory into a neighbouring point of the same. On
performing the transformation, we obtaint

X: dat + e {awi & da® + dA)
where A = X; &, it being assumed that d and & are commutative.

Therefore the vector & is a solution of the system of equations
a  fdxt + dA = d9

ki
where @ is an arbitrary function; that is
ai & dat = d ($-A) =dy-

The &'s which are solutions of
aw & =0, [k=1, 2, - - 2n+1] .. (2

obviously give rise to a subgroup of the transformations. It is also
evident from a comparison with the equations of the trajectories
(1), that the vector & is codirectional with the trajectories. We
shall call this subgroup of +transformations the Infinitesimal

* B. Goursat: Lecons Sur le probléme de Pfaff, 21. The Hamiltonian equations
constitute the First System, when X; dx' has the form p,dq”— Hadt.

t Encyk, Math. Wiss. 1l A. 5 Partielle Diffi, Glei. 318
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Tangential (or shortly I. T) transformations, as & is tangential to
the trajectories. These play an important role in the present. paper;
and hereafter the &'s will stand for solutions of the equations (2)

The equations of the trajeciories may be written alternatively as

dazt _ da® _ _ da®t?
o e ses  aee = Tfam+1l
Y - o

The Poisson’s Bracket Weights:

§5. The minors (with the proper sign) A* of aix in the determinant
|aix| constitute the contravariant components of a symmetric tensor
of order two and weight two.

1f ui and ©; are any two covariant vectors, we write

fwi v} = A™ us vk
It is evident that {ui ax} = {wi wele
If £ (atz? . . ™)) is a scalar, and w: any covariant vector
we write {f we} = A % wk -

If f{at2? .. 2™} and @ (a? a® . . z2"*1) are two scalars, we write
P
{f O} = Ak Bf 97 _ w0 fi -
! 2z dz® ol
These expressions are scalars of weight two and will be called the
Poisson's Bracket weights®

The Poisson’s bracket weights as symbols of the
I. T. transformations :

§6. Consider the system of equations ai =0, ({=1,2 - 2n+1)
If we substitute A¥ Vi for &, where (Vi) is any covariant vector, the
equations are obviously satisfied, for the coefficient of every Vi is
zero, or |ai]=0. In order to exclude the trivial case == .. =
gil=0, (V:) should be such that A®V;#0. This condition can be
physically interpreted as the non-incidence of the contravariant
direction of the trajectories with Vi; for, if A¥Vi#0 at least for one

: 3 of a0

* Clebsch’s expression for the Poisson’s Bracket (f¢)= A" 3{;" b,T’* s, where & =
| aix | is here modified by dropping the division by a which vanishes identically
in the present case.

See E. T. Whittaker, loc. cit (3rd edition), 311 example 2.
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value of %, then A¥ V,V:0.* This condition may be rewritten
ik Vy#40, Again, if & Vi#%0, we have A* Vi Vi#0. Hence AMV;#0
at least for one value of k&, for otherwise every coefficient of
Vi in A¥ V; Vi is gzero, giving A* ViV=0. Thus the condition,
A¥ V=0 for at least one value of £k, is identical with the condition
£V 450, i.e. identical with the non-incidence of (&%), and (V&)

With every covariant vector (Vi), non-incident with the contra-
variant direction of the trajectories, we can associate a system of
#'s and hence an L. T. transformation. The increment in a function

N . . . sz O ; .
Aal - - - a™1) due to this transformation is of = & & 5;{“ which is
proportional to

) of
A% Vi Sai = {ka}

We have thus

THEOREM 11: The increment in a function f due 1o the 1. T
transformation assoctated with (V) non-incident with the divection of the
trajectories is proportional to {fVi}.

Integrals of Motion

§7. Any function @(a!,2%...2*1) which has a constant value at all
points of any trajectory, .e. an integral of the Pfaff’s first system,
is called an Integral of Motion. Naturally we get sets of 2n indepen-
dent integrals of motion, for the First System contains 22 indepen-
dent equations. We shall denote them by b (j=1,2...2n).

* If we adopt the coordinate system in which X; dx' has the cannonical form
p+dg,—dT the matrix |l aix || becomes, on taking the variables in the order ¢*¢*...¢", ppn T

0....010....00
0....0010..,.00
0....00010..00
o 00 010 |

—I10.,..00..... 00
0-10..00..... 00
00-10.00 ...00
0....0-I10....00

0 ....00.....00

All the A#’s except A(*7+1) (3/+1) are zero. The nonvanishing of A* V; for at
least one value of & here reduces to the nonvanishing of A(27+1) (2#+1) V(,,+,,, and hence
to the nonvanishing of A(2#1) (2741} V,4¢ Vau#g. If the transformation of coordinates
considered be nonsingular A% V: Vi cannot vanish in any coordinate system.

+ The corresponding result in the manifold of states is: The Poisson’s Bracket of f
and an arbitrary function is a symbol of the most general type of infinitesimal contact
transformation.

See E. T. Whittaker, loc. cit., 303.
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Since ¥ has a constant value along the trajectories, 39 for the
I. T. transformations is zero, so that {¢¥ Vi}=0, when {Va) is non-
incident with the direction of the trajectories. In the trivial case
{OV:}=0.

The converse that, if {¥Vi}=0 for (Vi) which is non-incident
with the trajectories, ¥ is an integral of motion, is seen to be true by

]

the consideration that all I. T. transformations are obtained by put-
ting X & for & where X is arbitrary. If for the I. T. transformation

with the symbol X(f)=£& bfi , 89 which is proportional to {9V}
is zero, then for any I. T. transformation with the symbol
X(f) = X& % &b which is proporticnal to X {fVi} is also zero.

Thus ¥ is constant for all L T. transformations at the point under
consideration ; and this property holds at all points of the trajectory.
Therefore 89@=0 along the entire trajectory, or ¢ is an integral
of motion.

The trivial case is excluded now. We state

THEOREM 25.—If € is an integral of motion, and (V1) is non-
incident with the contravariant diveclion of the trajectories, {9Va} =0
and conversely.

§8. We shall next prove

THEOREM 3. If f and § are two scalars, and if at least one of
them is an integral of motion, {f ©y=0, and conversely.

Firstly, if ¢ is an integral of motion, then by theorem 2
9y = {9f) = {9, ofidx'} =0.
Similarly if f is an integral of motion.

. oW ..,
T.et us next suppose that {ff}=0. Either ﬁi & is zero or not.

If bb & 0, then by theorem 2, f is an integral of motion, for
20 00 . oY
{f 50;;‘} =0, If S:;“i & =0, we get Sa . dat' (=d¥) vanishes, where
da' _ da® _ _ da™?
? - T:z’ = "= :"’“TT )

Hence d¥ =0, along the trajectories, or ¥ is an integral of motion.

* The corresponding result in the manifold of States is: The Poisson’s Bracket of
two integrals of motion is constant.

See E. T. Whittaker, loc cit, 320.
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Functions which are integrals of rank two for X: dx*

§9. TFor the Pfaffian Xida® (of rank 2n+1) any function ©,
which is such that the substitution @ = constant, d¥ = 0 in Xidzx
depresses the rank by exactly two units, is called an integral of
rank two. Such functions are Integrals of the Pfaff's First System.

THEOREM 4. Any. integral of runk two for Xidx' is an inlegral
of molion, and conversely. ’

Time and the Lagrangian Function:

§10. Any function Z(a! - - 2®%') which is such that the substi-
tution ¢=rconstant, and dt=0, in Xida' depresses the rank by one and
only one unit, and the differential consequence dt=0 must necessarily

be made use of to depress the rank may be taken to denote a measure
of Time*.

Let us write the equations of the trajectories in the form

dx2vt 1

=‘EQT1‘=8.
If ¢ =§d.£i =§i§t'€. so that
dl/ Bﬁ; ¢ Hence Xi dat=X; &g =Xi &f dt/ E%Ef = L dt
where L =X :” é\% &

Now o S X:dat=0 reduces to o \ L dt=0 along the trajectories.

The function L may be called the Lagrangian Function for the
measure of time ¢

§11. We shall consider in this and the succeeding paragraphs
special coordinate systems of the type (95, Deasy..Dany, £), where the
©0's are integrals of motion, and ¢ is a measure of time. In such a
coordinate system, the First System of Pfaff becomes.

j ,1.—-d‘\_/ # & ,jLO vn)—o, ai dt=0.

3 (299412

Since # is not an integral of motion, aigrs1y=0. We may state this as

THEOREM 5. In the coordinate system (Qc,...Qon, t) any com-
ponent of the bilinear covariant ais, involving the suffix
2n+ 1 vanishes.

Since the Lagrange Bracket expressions in the Manifold of States

* Not being an integral of motion ¢ changes along the trajectories. The restriction
that df=0 must necessarily be used to depress the rank is necessary to treat the theory
of the Hamiltonian from the view point of the rank of Xidxv. Results appear elsewhege.

M 31
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correspond to the components* of @iz in the coordinate system of
independent variables, we may display the result of theorem 5 as

ajeonin =[G, t]1=0, (j=1,2- - - 2n+l)
a form which puts one in mind of the similar result in the 2n—
Manifold, viz. the Lagrange Brackets of two integrals of motion is
constant.

Next we shall prove the converse.

THEOREM 6. If in a coordinate system (x'...2**1), [27a®*1]=0,
j=1, 2...2n, the coordinates z'...x* are integrals of motion, and z***!
s a measure of time, where the x's are all functionally independent.

The equations of motion now become
a; ;dzi=0, (J, j=1, 2...2n.)

The determinant ]aj,j | #40%. Hence the variables dz!, dz?...dz®" in

the linear Homogeneous equations must be separately zero, t.e.
Z1=c1,...Tan=can must be a system of 2 independent integrals of
motion, the ¢'s being arbitrary constants, z*'!, being independent
of 2'...2%, is not an integral of motion. Hence the substitution
221 = constant, dx?*1=0 cannot depress the rank of X: da’ by two
units. The substitution reduces the number of independent variables
to 2n. Hence the Pfaffian cannot have its rank after the substi-

tution greater than 2n.

Thus the substitution depresses the rank by one and only one
unit. Also the Pfaffian cannot appear with more than n differentials
in zl...2®, the z's being independent integrals of the First system.
Writing it as X, dao’+ Xonq dx®™Fl it also becomes evident that the

« E. T. Whittaker, loc. cit.,, 298.

2n+1 2n-+1 2
ik dx X

b
bx

_ A @atl) @nt+lD _ A
T Jajrj'—A = oxt oxt

with the usual notation. In the coordinate system (3)=(g*...¢"% p1..p,, T) in which X;dx:
has the cannonical form p, dg*—dT,
K(Em‘—l) D g5 Kj,l I=o0; (7', 7=1,2...220)

s INY | by ox .
Hence |a., .| = <__’_) - But| _— |5£0 since all the transforma-
J'i o XL ox ox
px2nil
tions considered are non-singular. Also — cannot be zero, for if, in the

[k
transformation from (x) to (x), ¥2++1 which is not an integral of motion does not
explicitly depend on x2#+1 it becomes a function of _,__.1...;9”(=ql_“qu._p1_“1,") which

are all integrals of motion.
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differential consequence dz®*'=0 must be necessarily used to depress
the rank.

§12. If we consider the cannonical form pdqg™—dT, all the ¢'s and
p's are integrals of motion; and in the cannonical coordinate system
the trajectories can be looked upon as the flow of time. The problem

of finding the integrals of motion is therefore identical with the re-
duction Xidz' to the form p, dg’ - dT.

I thank Dr. R. Vaidyanathaswamy for his kind help in prepar-
ing this paper.



The Normalisation in Wave Statistics
BY

K. K. MUKHERJEE.

Section I

In some of my papers V already published an attempt has bheen
made to establish a relation between the classical Mechanics and the
Wave Statistics and also to find an expression for the current. But
the condition of normalisation iz, L‘- DD dr=1, where D is the
conjugate of D, the phase-density; which has been adopted there
by analogy of Wave Mechanics does not clearly bring out the physical
meaning of the problem which is the striking feature of Wave
Statistics. Again, the particular constant v7z. V4 taken above is not
essential, in as much as it may be replaced by any constant whatever.

The object of the present paper is to obtain the results of the
papers referred to above by adopting a normalisation condition which
is better from the physicai point of view.

It has been shewn by Kar ‘® that the number of electrons per
unit phase volume having energy E. is given by

L+ — En " a j «
N exp [dntd = En } exp. { t4mE, t/h} exp. {+ 27K, t/h}

D.= ‘5 .’l’I” .’1’2" . l K7
(1)

where x; and a: are functions of ¢'s and p’s respectively.
n "

Again, if we integrate throughout the volume V at a particular
instant, we have from Equation. (1)

v LV
N (datd=Ea) PR
& D drq drp = 3 XD " el s {£2miEat/h} rlna72”(quncirpn
Yo

Y

o

(1) K. K. Mukherjee—Physikalische Zeitschrift. 32, 485, 1931.

K. K. Mukherjee—Journal of the Indian Mathematical Society, Vol. XIX (1931).

K. K. Mukherjee—/ndian Physico-Mathematical Journal, Vol, III, No. 1, Jan. 1932.
(*) K. C. Kar. Zeit. f. Phys. 61, 675, 1930.



The Normalisation in Wave Stalistics 245
Now, for the n™ elementary volume AT» =qun dr,p”. rlT,,n may be

taken as a small constant. Hence we have
v v

& Da dr1, . =g exp. { ﬁ‘ké—;gt } exp. { £27i(Ex t/h} & T dr, .
Yo “0
...(2)
v
7 - En i 2 .En t”
or, Du= N@ exp. {f—-‘-—l%_——} exp. { rﬂlv——“} \ T2 qu”
*.0
_N [Untd—En } X 3
_.q) eXD. L—’—“KT C .T]" .’12” qun. ...( )
o

as V is large.

It may be remarked here that xs (p/po) =2 (¢/qs) because of the
relation p=uag, proved before; and so Ty, in (3) may be regarded as
a function of ¢'s.

Now, Equation (3) gives the classical value of D» if we take

oo

Q& x we dr, =1 ..(4)
- 7" ” t ]
“0

which we adopt as the normalisation condition in Wave Statistics.
And as the left hand expression of (4) represents the average of
o T it is clear that normalisation, as we conceive it, is nothing
but the process of averaging. It may also be pointed out that in (4)
we have taken the product of x1 and a: waves of the same ele-
mentary phase volume, the n' one in this case. The a1 and a2
waves belonging to two different elementary volumes cannot
influence one another. This would mean mathematically

-

C Sarlp (1735 qu:O. (;D’J:-!'l

Section II

With the above normalisation condition we proceed to establish
the well-known law P=M of classical mechanics.

We have shewn in a previous paper ‘* that the velocity of the
x1 - waves is given by
v=VUB-V)m ...(8)

(2) K. C. Kar and K. K. Mukherjee—Zeit. f. Phys. 59, 102, 1929.
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Hence we have
p=mv=4/2m(E-V) ..(6)

Again, we have from classical mechanics

P=[r. pl=[r, v2m(E-V)] ..(T)
Hence we have (. c.)
P= [ d VIm(E - V)] ..(8)
m____VAE-V) v) d
\/Zm(E V) m (E V)] (9

Now, for an electron mox}ing in a field, E is constant and thus
"we have from (9)

= —[r, grad V] ...(10)
And denoting the statistical average of P by?. we have
P=C x P arixadr = -C &[r grad V]zi azdr=M
We shall next find an expression for the current in wave statis-
tics.
If we differentiate (6) with respect to the time, we have (cf, Eq. (10))
. (l S —
= L4/ _
P 7t 2m(E-V)
= —grad V. ...(11)
Now, the differential equation for ai-waves is

A+ 5"’ - Jar1=0 ..(12)

Introducing the new variable Di=a1 exp. {2miEt/h}, it becomes

oy =Lt (A 87 L v)D1 _ ..(13)

d7im

Again, the wave equation for r:-waves namely

A a-.:+8"” (B -V) 2;=0 .(14)
»
S
= g =3 ) d =
where, Ny Py + Py + Py and p=aq (15)
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may, on introducing the new variable Dy=x; exp. { - 27iBt/h} be written

: h 817 m
= — 2 ...(16
D: 47rz'm( =Y )D (26)
. 2 2 bﬂ
where L = g g

Sa: T 5gE Tt 37
Bql bq2 A

Now, from (11) we have
7 (on 3)=-0{ma grad v ar el
-c [— Sx grad (Vadr + (Vi grad = dr] ..(18)
Again, because

S(A;rl grad a3 + Axs grad 2;)dT =0,

equation (18) may be written in the form

—_Ch S h ( ’mV d d
P~ 9w 4mim )11 grad o a7
h 87imV
+ N amim A - e ).rg grad a1 dr]
'"V)Dl grad D, dr

{_ P 2 mV
a2 ‘T) D; grad D f]T]

and with the help of (13) and (16)

Ch[(Cy .
=2 [\ (D1 grad D.+D; grad Dg)d.- .(19)

2w dmim

Ch [ h A - 872

Hence we have

p= 27715])1 grad D; dr

Ch
=om Sll grad a; dr ...(20)

which is our expression for the wave statistical average of impulse

Again, from (20) we have

~_ Ch S
v — Zmim Y grad x. dr

..(21)
Now, if we denote the current by S, we have S= +e v
Hence using (21), we have
S=+ e *2;1.;2511 grad x, dr ...(22)

(*) Sommerfeld— Wave Mechanics (Engl), D. 247.
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We next proceed to show that for a circular orbit the above wave
statistical expression for the current leads to the well-known Bohr
value.

: . . £
Now, because the current is a vector having no gradient along

7 or 6, we have from (22), since x1 or z:=C.R.P,'(cos 8)e"®,

_ ____enh ( o
8=+ 2mmy sin 6 G le %s di
- enh ...(23)
2Tma

where a (=7 sin 6) is the radius of the n" Bohr orbit.

9

9
nh?

If we substitute in (23) the value of a, viz. T e get
S=+e. L ..(24)
nh

where v is the well-known Bohr value of the velocity in the n* orbit.

We may remark also that Fermi's **’ expression for the current
can be easily reduced to the form given in (23) as has been shewn
in a previous paper.t®’

In conclusion my best thanks are due to Dr. K. C. Kar, for his
valuable advice in preparing this paper.

Physical Research Laboratory,
Presidency College, Calcutta.

(*) Fermi, Nature, December 18, 1926.
(5) K. K. Mukherjee—Journal of the Indian Mathematical Siciety, Vol. XIX, (1g931).
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