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Definitions.
§ 1. Entities.
An arithmetical function, or A.F, is a function fin), defined for
every positive integral value of the variable n.
The quantity f(n), considered alone, is called the nth element of

the A.F.
Woe shall in the following use square brackets to denote an A.F, thus:

PO Y- F2) A B); e T8 o RN Cleel)
or shortly, when no confusion may arise,
[f®)] ... : e (1.11)

Every A. F. shall further be regarded as an algebraical quantity, or
shortly, a number.
1n order that every ordinary complex number k& may also be con-
sidered as an A. F., we define
E=1[r0,00, ... The i wsa (105 2)
thus the quantity % is defined as an A. F., all the elaments of which are
zero, except the first, which has the value &,

21
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The A. F. thus defined must be distinguished from
[®] = & K %, .00,
every element of which has the value k&,

bl 8)

Two A, F. are crlled equal if and only if their corresponding elements
are, equal,

§ 2. Operations.

To add (or subtract) two A. F, is to add (or subtract) their corre-
Spon‘ding‘ elements ; thus

(/)] £ [9(m)] = [(n) = g(x)). ... - (2.1)

To multiply an A. F. by a quantity % is to multiply every element by
k ; thus

k[ f()] = [ .f(n)]
In particular : ;
k=2%1,000...]l=k.1, . (2.21)
(£ = |1, 1, 1, i ] = B[1], w (2.22)
To multiply two A, F. is to form a new A. F., as indicated by the

formula ’
(7)) - [g(n)) = [dg (). g (d) ] - (2.3)

the summation S being cxtended over all divisors d of n, Tt should be
noticed, that (2. 3) includes (2. 2) as a special case. :

(2.2

To divide an A F. [g(n)] by another [ f(n)] is to form amew A. F.
[b (u)), =atisfying the condition

o] = [£m)]-[d ). .. o (2.4)

The A. F. [2 (n)] will be called the quotient of the two given A. F.,
and denoted

12 () = [9()] . [ fim))-1. o (2.41)

It will be seen later, that the formaiion of [ (n)] is not always
possible,

There is now no difficulty to prove, that the associative and commu-
tative laws for addition, as well as the associative, commutative and
distributive laws for multiplication, are valid in our extended alge-
braical domain. We are therefore already in a position to construct an
algebra, involviog the four fundamental operations, excluding division in

certain cases (@8 when the first element of the divisor is zere, while that
of the dividend is different from zero),
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§ 3. Connection with Dirichlet’s Series.

It will be well to note at this stage an important connection between
our algebra and the theory of Dirichlet’s Series (D. 8.). Let for tbis

purpose
3 Q fin)
F(s) = 2 w313
n*
"21

define an ordinary D. 8. associated with the A. F. [fin)), a correspondiyg
series G (s) being constructed for [g{n)].
1t will be seen at once, that the series
F(s) % G(s), Fs) . G(s), Gis)/F(s)
where the terms have been rearranged so as to form a new ordinary D. S.,
are associated in the above manner with the A. F.’s
[fin) £ g(m)], [£n)]. [g(m)), [g()] . [f(m)j7Y,
respectively.

We are thus led to the following general definition :

4 function, algebraical or transcendental, of a given 4. F, [ f(n)] isthe
new A, F., associated with the ordinary D. 8., whick we obtain by leiting the
given function operate in the usual manner on F(s), and rearranginy the
terms, provided this process is possible and unique.

In other words :

The funotion !
YL A()] = [9(n)] T no(3h2)

is defined by the equation
: Y{F@®)} = G() e85 3)

It is clear, that this general definition includes the former ones as
special cases. It is further evident, that our resul's can never be con-
tradictory, as long as the process indicated in (3.3) is uniquely deter-
mined. Even if this were not the case, the definition would remain valid
under certain restrictions. In the following, however, multiple-valued
functions will not be considered, unless otherwise stated.

In addition, it is to be noted, that questions of convergence of the
D. S. invelved need not be considered, ths developments being purely
formal, as will be seen towards the end of the paper, where’ the units of
our algebra are discussed. *
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By means of the general definition, the entire algebraical analysis is
now applicable on arithmetical functions, regarded as algebraical entities.
In general, we may State that the first element in each A F, operated
upon follows the laws of ordinary algebra, while for, every element of an
order n > 1 a new theorem is obtained, the nature of which depends on
the decomposition of » into prime factors, becoming more complicated
with 2. Hence, for every theorem of ordinary algebraical analysis, we
obtain an infinite set of new elemental theorems (identities).

I will now first discuss the process of division from another point of
view. Then I will show, how a few known results in the theory of certain
elementary A, F., appearing ino the theory of numbers, may be found in
an extremely simple manner and easily extended. I will then pass over
to the discussion of a few elementary analytic functions of an A. F.,in
order to show the bearings of the theory. Further, the extension into
other domains of mathematics, notably the €alculus, will be briefly referred
to. Finally, the units of onr quasi-linear algebra will be discussed.

It has been thought necessary to give a few individual examples from
certain sets of elemental theorems obtained, In general, these examples
are carried out for » = 6, this number beivg sufficiently complicated to
show some of the most prominent features of the set of theorems studied.

To use a more complicated n for this purpose was out of the question, the
space available having to be considered.

The process of division in a special case.
§ 4 The 4. F. [p(n)].

We defiae the important A, F, [x(n)] as follows ¢
)=l

w(n) = 0, if n is divisible by a square (other than unity).

p(n) = (— 1)% if n is not divisible by a square, % being the number
of (distinct) prime factors of #,

The A. F. thue defined plays a leading part in the theory of the dis*
tribution of the primes.

(See : Encyclopidie des Sciences Muthématiques, T. 1., 17 —E, Landaun,
Handbuch der Lehre von der Verteilung der Primzahlen, B. 11.—F. Halberg,

Infinite Series and drithmetical Functions—Journ, 1.M.S., Vol, 1X, p. 174,
ete.) y
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§ 5. A theorem by Kronecker, and its conscquences.
In Kronccker’s Zaklentheorie I, p. 264, we find the following theorem :
If [ f(n)] is an A. F. such that
flmm') = fim).f(w'), .. seseesi(51)
for ali positive integers m, m', (f(}) = 1), we have, in the notation of (3.1)
- <}
'n) f(n
ﬁ-‘t?) e o oy

n=1
e -

Translating this theorer: into our present nctation, we obtain :

If the A. F. [ f(n)] satisfics furmula (5. 1), then

[f(n)]-* = [w(n) f(#)]. ... e iy . 8)
1p particular, f(n) = 1 gives
{11! = [} fec .. (5.31)

Elementary arithmetical functions in the theory of numbers.

§ 6. Some general results,
When [f(n)] is any given A. F., the A. F. [{(n)], defined by the
equation

Y(n) = .1-2.. £f(d), s (6 2D)

is called the * numerical integral” of [ 7(#)]. (See the first and last
Teferences under § 4).
In our present notation this formula becomes

(v()] = [1].[1(»)], .. v (6.11)
from which follows, by (5.31)
[f)] = [p(=)] . [¢(n)], o (Bl 12)
which is nothing else than the well-known identity
f(n) = S () ¥ (:—;) : . (6.2)
a:n

Assume for the moment

Fo) = 3 fd) h (2)
. a:n

G(n) = S g(d) A (Z}
a

in

i s a(0n3

[/(n)], [g(n)], [h(n)? being three arbitrarily given A. i,
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The relations (6 . 3) may be written

[Fn)] = [f()] . [A(n)]7 "
[G(m)] = [ gn)].[R(0)] S " w (6.31)

Hence, by multiplication
)] . [&(m] = (9] [F()], .- - (6.82)

or in ordinary notation
G () = L o (6.4
L Swe()=geer() oy
d:n d:n

The epecial case kfs) = 1 of this theorem has been treated by
'E. Cesavro (See: Emcycl, l. c., p. 231).

Let
o(n) = ;.%1 e (R). )
oo o(n) —oin—1) = pn). .. . (6.51)
[o(@)] — [o(n — 1)] = [n(n)]. v (6.511)

M. {ew)] —0].[c(r—1)] =1 = [1,0,0,0, ,..], (6.52)
by (6.31).

Hence for n > 1, supposing ¢ 0) = 0, we have the identity
Sod)=Sod—1). .. v (6.6)
din a:in
The last result may be generalised.
Let the A, F. [f(n)] satisfy the relation (5.1), and assume

B(n) -}ilf(k)- 6T

Thus 3
G(n) — 6(n — 1) = fin), v (6.71)

or (6] —[6(n — D] = ()], ... . (6.711)

Division by [ f(n)] gives

[0m)] _ y 4 [B(n — 1)] ;
70 R e (6.27)

or, by (5 L 3)| 4
[9(”)] [f"(”\ f(n)] =1 + [B\ﬂ —_— ')] [/.((u) 'f(n)]_ 45 (6. 7.“.)

4
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Hence, for # > 1, supposing 6(0) = 0, we get

Sown(3) £() =S o0—0n(2) 1(3)
= fl.f(v). .. (6.8).

where the sum in the last expression is extended over all positive integers
9 < n and prime to #n, this result being obtained by actually carrying out
the operation [0 (n)1/[ f(n)]- S

The identity between the two first expressions of (6.8) may be
established by subtraction. We get

2{9(@-6(«1 —Dip (:;) f(:;) =S (@) p (r:) f (3)
A a:n

= f(n) 5 n(d), by (5.1)
a:n 5
= 0, when n > 1, in conseqnence of a well known property of y(7)

As an example, consider the case = = 6 We have
#Q1) f() {FQ) + 7(2) + fB) + f(4) + f5) + f(6) } +
+ £(2) 7(2) {101) +£(2) +1(3) } + w(3) fB3) {S(1) + £(2)} + 1(6) A16) f(1)
= f(1) = f(5) 5
p(D) FO) LA + 12) + f(3) +f4) + f(5) } +
+ p(@) A2 L) + 1)} + p(3)FB) (1) = f()) + £(5);
provided (5 . 1) is satisfied.

In either of the above ways we may also easily prove the corre-
sponding identity

2e(d),b(d)f(g)=zo;d—l)y'd)f(i’:), i 69)
ad:n ad:n

valid under the same condition as (6. 8).

§ 7. Some special cases.
We will now deduce in a very simple manrer some of the propaﬁies
of the arithmetical functions : '
t(n) = the number of the divisors of = (including 1 and =) ;

f(n) = the sum of the divisors of n ;

¢(n) = the number of positive integers << » and prime to n.
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(For more details about these functions, see Engycl., 1, c., or the above.
mentioned paper in this Journal). .

We verify at once the following formulm : —

[tn)] = [1]%; e o))
[f(n)] = (1] [»]; s (203)
[d@] =[1]-1.[n]; .. e T.9)

(the last being equivalent to the fact, shat the numerical integral of $(n)
8 n)

Multiplying (7. 2) by [1], we get, by the aid of (7. 1)
0.1 [ = (132 (n] = (] Ce)} (s

or in ordinary notation

Sf(d) — Sd.: (S) ; wee(1, 41)
d:n

d:n
Similarly, multiplying (7. 2) by (7 . 3) and using’(7. 1), we have

[ f ] = [${w)]. [112 = [$(n)] . (¢(n)], L4008

which implies
=S ¢@.t(2). w (7.51)
d
fo=ge().
Squaring (7.2), ws obtain, by m~ans of (7.1)

[fen2 = (132 ) = cem) e

7/
[d;zn {]

[t n)).[n y(n)], e (156)

I

which may be written
.‘ ?ﬁf‘d" f (2) =4~2 a.4a).t (;) v {7.6D)

The results (7.41), (7.51), (7.61)are originally due to J, Liouville,
(see Encycl., L. c., p. 232). Many more similar formule could be deduced,
especially by inventing new symbols for the new A. F., as they appear.—
The following additional example must snffice.
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Multiplying (7 . 2) and (7. 3) in a different manner, we obtain
[ f )] . [P(w)] = [(n12 = [n.tm)], oo

or using the ordinary notation
n.t(n)=2f @). ¢( Z) : Yy
a:n

We note further, that formula (5.3) becomes,. for [f(n)] = [n], »
(which A, F. satisfies (5. 1)
(n]=1 = [n. p(n)l. o cay s (7.8)
Consequently, we have, by (7 .2), (7.3) and (5.31)

Cf 1= = Cum1 T ()] = [Sa.w@ p(]) ] - 7.2
a:n

(b1~} = [13.[n. p(m)] = [2 d.,,,(d)] . T 219)
d:n

22
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DOUBLE POINTS AND LINES.
By M. BmimaseNa Rao.
(Concluded from page 135).

PART IIIL

; Correspondence.

§ 1. One-to-one correspondence.

Given a triangle ABC and an ortkologic triangle A’B’C’ which we
have denoted by the notation (P, A, &, p), it is evident from the reciprocal
relation between P and D, that there is a one-to-one correspondence
between P and D. The equations for determining the double point given
in page 126, show that when P moves on a line, D moves on a conic and

vice versa ; and generally, any curve of degree # is changed into a curve of

degree 2n by this transformation, The transformation leaves a triangle in-

variant for the D locus and another for the P locus. If P is a point such
that AA’, BB’ and CC’ are parallel, D becomes indeterminate and may be
any point on the axis of perspactive of ABC and A’B'C’.S This axis of
perspective is therefore a side of the triangle invariant for the D locus.
Similarly when D is at a vertex of the invariant triangle, P becoms indeter-
minate and may be any point on the axis of perspective of ABC and
A"B"C"” (D, — N, — pu, — g), which is therefore a side of the invariant
triangle of the P locus.

The case when A'B'C’ is the pedal triangle of P (ie. » = p = 2=1)
is interesting geometrically ; and we will therefore discuss in the follow-

ing some of the properties of the invariant trianglss, D,D,D; and P;PyPs3
of the D and P loci.

§ 2. The orthopoles of the sides of an invariant triangle.
Taeoren XII.

D,, D,, Ds are respectively the orthopoles of the sides of P,P,P, with
respect io ABC.

Lot LMN be the pedal triangle of P such that AL, BM, ON are
parallel. Now if the pedal triangle of a point with respect to ABC is in

8 See foot-note on page 285, Vol. XpJ, 7. M, S,
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perspective with ABC, itis known that the locus of the centre of pers-
pective is a cubic. Consequently AL is parallel to an asymptote of this
cubic. Since there are three asymptotes, there are three positions of the
centre of perspective, say Q,, Q,, Q; and three corresponding positions of
P. These are the verticies of the invariant triargle P,P,P,. If the
double point D is any point on the line D,D,, P is at P, and if it is any
point on D, D,, P is at P,. Hence if D is at D, the point of intersection
of D, D, and D, Dy, the position of P becomes indeterminate and may be
apy point on P,P;, showing that the double point of ABC and the pedal®
triangle of aby point on P, P is D,. Now since’ the double point of the
pedal triangles of two pomts is the orthopole of their join, D, is the
ortbopole of P, P;. Similarly D,, Dy are the orthopoles of P;P, and P,P,,

§ 3. Properties of the triangles DDy Dg and P, P, B
We will now es*ablish some properties of the two invariant 'trianglea.
TaeoreM XI1I.

The triangle DD, Dy is inscribed in the circum-circle of ABC and
circumscribed about the Steiner’s ellipse of the medial triangle of ABC.

If A, p, v be the direction angles of P, P;, the orthopole D, is the
mean centre of the vertices of the pedal triangle of any point on P, P; for
the multiples, a sec ™, b sec p, ¢ sec . Since D, is the double point of
ABC and the pedal triangle, the ABC-areal co-ordinates of D, are
a sec A, ete., showing that D, lies on the circum-circle of ABC. Similarly
D,, D, lie on the circle ABC.

1f LMN be the pedal triangle of P, D, Dy is the axis of perspective
of ABC and LMN. Since AL, BM, CN are parallel, the centre of pers-
pective is at infinity. Also the axis of perspective being the triangular
polar of a point at iofinity, it touches the Steiner’s ellipse of the medial
triangle of ABC.

The corresponding theoren: for P, P, P; is the following : —

TrEOREM XIV.

The triangle PP, Py is inscribed in a circle concentric with, und radivs
three times that of the circum-circle of ABC.

If LMN be three points on the sides of a triangle ABOC, such that
AL, BM, CN are parallel, the area of LMN is twice that of ABC,

AR
o ° loc, cit, Vol. 1V, p. 21,
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Further if the perpondiculars at L, M, N to the sides of ABC concur at
P, P lies on a circle concentric with and radius three times that of the
circle ABC.

Tugorem XV,

D, is equidistant from PoP, and the pedal line of Dy with respect to
ABC.

Let XYZ be the pedal triangle of any point P on P,P,. The double
Lp(zint of ABC and XYZ is D,, _

Given D,, the construction for finding P is as follows:—Draw
D,L, D,M, D,N perpendicclar to the sides of ABC and produce them to
L', M, N’ such that D, is a point of bisection of LL’, MM’, NN’, then
P is the double point of ABC and L’M’'N’.

Since D, is a vertex of the invariant triangle, AL, BM’, CN’ are
parallel, and P is any point on the axis of perspective of ABC and T'M'N’,
ie, to say P,P; is the azis of perspective, Since L, M, N, are
collinear (on the pedal of D,), I/, M, N’ are also collinear. Consequently
P, P; passes thromgh L', M’, N’ and the thzorem follows,

THEOREM XVI.
T'he orthocentre of D, D, Dy is the median point of ABC.

Let 8 be the point on the circle ABC diametrically opposite to D,.
The pedal line of D, is parallel to P,P, by Theorem XV, Therefore the
pedal line of S is perpendicular to PPy, and hence passes through the
orthopole of Py Py, viz.,, D,. Since the pedal line of S passes through its
diametrically opposite point D,, this pedal line passes through the median
point of ABC.%

Also, the pedal line of a point passes through the isogonal conjugate
of its diametrieally opposite point. Therefore the pedal line of S which
is GD, (G is the median point of ABC) passes through the isogonal
conjugate of D;. Therefore D, and similarly D,, D, are the foci of para”
bolas touching ABC whose axes concur at the median point of ABC.
But, if the axes of three parabolas escribed to a triangle are concurrent, it
is well-known that the point of concurrence is the ortho-centre of the
triangle formed by their foci. Hence the resalt.

10 W, F, Beard's theorem, pege 25, Gallatly’s Mnd;;no Geometry,
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The last theorem suggests the following :—
TueoreM XVII.

The orthocentre of P, P, P, is the ortho-centrs of the anti-medial triangle
of ABC.

Since G is the ortho-centre of D,D,D;, GD, is perpendicular to
D,D,. P,P, is parallel to the pedal line of D, with respect to ABC
which is perpendicular to GD,, for GD, is the axis of the escribed para_
bola whose focus is D,. Therefore P,P; is parallel to D,D;, and hence
the triangles P, P,P, and D, D, D, are homothetic, the homothetic centre
being the circum-centre of ABC.

If LMN is the pedal triangle of P,, AL, BM, CN are parallel, and
D,D; is the axis of perspective of ABC and LMN. But if the pedal
triangle of any point with respect to a triangle is in perspective with the
triange, it is known that the perpendicular through the point on the axig
of perspective passes through the ortho-centre of the antimedial triangle
of the fundamental triangle.

Therefore, if H’ is the ortho-centre of the antimedial triangle, H'P,
is perpendicular to D,D;. But D,D; is parallel to P,P;. Therefore
H'P, is perpendicular to P,P,. Hence the result,

In conclusion, it is noticed that the ratio of similitude of the triangles
D,D,D, and PP, P, is easily seen to be — f, ie., D, and P, are on
opposite sides of the circum-centre of ABC. Hence when any one of the
six points D;D,Dg P,P,P,, (say D,) is given, the remaining five are
determined in the following manner :
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1,0t O be the circum-centre and G the median point of ABC. Join
D, G and produce it to meet the circum-circle of ABC at K, Bisect GK
at right angles by D,D,. Produce D,0, D0, D,0 to meet the outer
circle (centre O and radius thrice that of circle ABC), These meet in
three points which possess the properties of Py, P, P, mentioned above.

The correspondence between P and D may now be stated as follows :——

Turorem X VIIL

< ¢

If D is the double point of the triangle ABC and of the pedal triangle

of P with respect to ABC, then P, P, P,—correspondent of D, sunsidered as a
point of DyD, Dy, 1 the isogonal conjugate of P with respecs to Py i 2

If P moves on a line, D moves in general on a conic through D, Dy D,
When the line passes through P,, the conic breaks up into the line D,D;
and a line through D,. Now the double point loci of a pencil of lines
through P, form a pencil through D, and the two pencils correspond
anharmonically. Hence P,P, corresponds to D, D, because the double
point corresponding to P, is any point on D,D,. Similarly PP,
corresponds to D,D,. The circum-centre O of ABC corresponds to G,
the median point of ABC since G is the double point of ABC and the
pedal triangle of O.

Therefore we have,

P, (P,P,0P) = D,(D,D,GD}.

1 the points D,, D,, Ds G, D be considered as belonging to
D,D,Dy, their correspondents with respect to the homothetic triangle
R AP SR ate respectively Py, Py, Py, G', D’ where G' and D' are on GO

GO DO :
and DO produced such that oG i s 3.

Therefore P,(P,P30P) = P,(P;P,G'D).

Since G is the ortho-centre of D,D,D,, G'1is the ortho-centre of
P,P.P;. The lives P,Py, P,P,, P,0 are the isogonal copjugates of
P,P,, P,P,, P,G' with respect to the triangle P P, P,. It is now easily
seen that D’ is the isogonal conjugate of P with respect to P,P,P,, and
hence the result,
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SHORT NOTES.
Invariants of a Conic.

The Boolians °f; R gnd @+ B —2he0m @ g gyagiinvariants of
81

sin®
a conic for any change of cartesian axes, and are largely useful in ex -
pressing matrical properties, The equivalents of these for transformations
in homogeneous co-ordinates are obtained in Jones’ Algebraical Geometry,
p. 513, in an involved manner. In Salmon’s Conic Sections, at p, 351
(6th edition), are found the values of these quantities correct to a congtamt

multipliers. The present note arrives at their exact values, from first
principles of linear transformation.

1. The formul® of transition from oblique cartesians (z, y, ) with
z = 1 to a system of homogeneous co-ordinates (2', ¥/, 2'). when the co-
ordinates of the vertices of the triangle of reference PQR are (z,,,),
(23,9, ), (23,95, are,

z = ax, ¢’ + Bz,y '+ Y7 }

y = oy, v + By,y + Yys2'
z = az,@ + Bz,) + Yyz7

where az’ + By’ + yz' = 1 is the identical relation in the homo-
geneous system.

AR,

Also if (7, m, ») and (7, m’, #’) are the tangential co-ordinates of a
line, in the two aystems, then

m = Bzl + yom + z,m)

V= oz, + yym + 2,n) }
n' = y(rgd + yem + z4m)

In either case, the modulus of transformation g is equal to 2:]3Y5
nw

where % is the area of the triangle of reference.

2. Let S = az? + by* + ¢2® + 2fyz + 2gzz + 2hzy transform into

B = a2 + by’ + ¢'2' + 2f'y's + 29'2'a’ + 21’7y’
by means of the substitution (1).

A denoting the usnal determinant with the constants of the conic

we have B = As.s’
AU — A.FI
oF T 41(3)

The tangential equations of the conic are, corresponding to
S=0and 8 =0,
S, = Als 4 Bm® + Cn? + 2Fmn + 2Gnl + 3Him =0
and S, = A/ 4 Bw't + On'2 + 2F'm'n’ + e = 0.
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Therefore the function x,’ must, by the substitution (2), transform
into %s,, where % is a constant. Hence the discriminant of x;.—%k. 3,

must be equal to that of x,’ multiplied by the square of modulus of trans-
formation (2).

SIS B e ) Wy
s 10N
But A = Az2and &, = A2,
b 31 Rl |
while by (3), Ny =g A.
"5 ks = Esv
; so that k = ga.
Als + Bm® + Cns 4 2Fmn + 2Gal + 2HIm
Hence = -
2 sln? w
d ' _A''S + B'm'? 4 C'n’3 4 2F'm'n’ + 2G'w'l' + 2HVm’
an 2 = 4a2‘52y257

are equivalent, in the sense that each transforms into the other, by sub-
stitutions (2)

3. Also, the function
2 2 r2 r
OF — Plips o T I w2 — 29 m'n cos P sesene
P ) a" = Ve By
is equivalent to
ngivﬂ.tﬂmcosm.
fin2 o
where p, ¢, », P, Q, R denote the sides and angles ofsthe triangle of
reference.

For, by substituting from (2) in £/, the co-efficient of 72 is found to bs
P, + 92y + r2r,2 — 2qr cos P w2y ...

43%°

But the value of the numerator of this fraction is exactly
:n?s (vide Askwith * Analylical Geometry of the conig section” p. 282.]
w

4. Thus, combining the results of §§ 2 and 3, we see that the function
SN (Aa)
will transform into
CTRC L U9 e {B)
by means of the substitations (2).

When X is such that the discriminant of (A) vanishes, for the same
valoe of A will the discriminant of (B) vanish. So the roots of the two
equations

As'2 pe )‘As‘ (x333y9) I, + as (4870932Ys) I,=0

and A 4 2 Lis (a +b——2}zcos:o)+xi(ub_hz)ginaw.:o’
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must be the same. Identifying the two eyuations, and using the result (3)
a+b—2hemo __ I,

tai =1
we obtain b ;in'w , 432 )
ab — i3 _
and sind w 45’&193'7"

=-P' :q’ ,T’_ , 97
where I, = a B+bﬁa+c§§ 2f B_)}cosP— ......

andl, = A'a* + B’ 32 + C'y' + 2 F' By 4+ 2 G'yx + 2 H' a8. .
5. By way of illustration we proceed to obtain the equation giving
the squares of the semi-axes of the conic
S =aed + by + 02 + 2fyz + 2922 + 2hay =0
in general homogeneous co-ordinates.

Transforming to cartesians with the axes of the conic as co-ordinate
axes, let S transform into

= | A
B0 Pet L)
where r , r, are the semi-axes.
Hence, by formul= (4) of the last section, we should have
A e A BT ]

4dorGivats T ;;?ﬂi

I 1 e 5
e (7 +5 ) ®)
I e

47-)92?25: i rl"r?'
Now, »,2, »,2 are the roots of the equation
2
e L+L)e+1=0... 6)

T_li;i 3 rq?
So, eliminating ¢, 7,2, r,3 from (5) and (6), we obtain,
1362 + 1 1, A (x2827%) ¢ + 4A323%Y%8: = 0
as the equation whose roots are the squares of the semi-axas of the
conie S.

Tt may be noted indpassing that this can be readily applied to Mr.

A. C. L. Wilkinsou’s question No. 1038 of this journal.* Taking for S the

point equation to the conic whose eqnation in tangeutial areals is given, and

makinga =8 =y =1, 3 =2 R sin A sin B sin C, we get the resnlt in
question, ;
G. A. Sri¥rvasay, ¥

* Vide J.1. M. 8, vol, XI, p, 188, and vol. XII, p, 70, for ather solutions,

23 e—— 3
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Note on Question 248.
Q. 248. (8. NARAYANAY, R.A., L.T,):—Shew that the trilinear
equation of the Steiner’s envelope of a triangle ABC is
sl4 coss B . cos? O . sin® A
4+ 23l°m sin A cos B (sin a — B + &iu® O)
4 xlsma (cos? C sic® C+ 2 cos A . cos B.sin A. sin B, cos? O — 4)
4 2sl8 mn (3 sin? A + 3sint A + 7cos A .sinaA .sin B .sinC

— cos B cos C . sin B , sin C)
where l = aa, m = b3, n = cY.

Let 6, 4, ¥ be the direction angles of any line.
We have

acos O 4+ beos P 4+ ccosdy =0.cuueinees G asintastiasses(l)
asin® + bsin @ + ¢sin y =0....

SRR L e ),

From (1) and (2) we havesin2 (P — &) = BIDB A ., Jacivcasnabsianssoy (D)
andsin 2 A .sin 20 + sin 2 B . sin2) + sin 2 0. sin 2¥ = 0, caoaesfd)

The equation of a pedal line is
ltan 6 + mtan @ + n tan y = 0,

The tangential equation of the envelope is got by eliminating
0, 9, ¢ from

Now tan 6 (tan Q — tan $)3 = k™ (p — 7)s

. &inB.cosB .sin2 (P —) _
&5 T T ) =kN(p —v)2,

But sics (Q — ¢) = sin' A.

% Rin 2 6 .8in 2 A "
e s N —
cos? O . cos? P . cos® Y AN (o =obcot A

and from (4) we have

A — p)*cot A + w (v—x)s cot B + v (x—p)8 cot € =0...(5)
which is the taogential equation of the envelope.

From the equation of the reciprocal of the general cubic (Cayley’s
Colleclad Works, Vol. 11, pages 328-9) we form the reciprocant of

P (p—02 & gp (0 — ) + ro (A—p)h

The reciprocant is a sextic, but contains the factor (/+ m+n)% On
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division, we obtain a quartic the co-efficients of whose typical terms afe:
given below : —

Pid 2mén 2mns m2n® 28mn

gt L plariiee Lo fiptgrs e Bl profabrl G phas el
P +1 !p%?2 +1 [ p’¢r — 4 |plgr + 19
pgr: + 2 |prg® +2 | P2 +1 [ + 10

pr® +2 |[pg® 42 [p¢r —8 |p® + 6
grfiie -t 20 L mEi ok Giipgrd s B pg S0
9 — 8 | pgr® + 24

2r° + 6

g 1+ 916

g%r? 411

qr LR 0R6

In this put p = cot A, ¢ = cot B, » = cot C, and multiply through-
out by tan® A ., tan® B . tan? C. Observe that the last three terms in the
co-efficients of m®s and m®s® contain the factor pg + ¢r + rp,ie,
3 cot A, cot B = 1. The equation of the envelope will be found to be

sittan® A + 2 3 m® (tau’ B —tan B tan C + 2 tan® A . tan’ B)
+ 3 m®n? (tan* B + tan? C — 4 tan B ,tan C— 8 tan® A . tan B . tan ()
+ 23 mn {2tan® A + tan’ B + tan2 C + tan B .tan C+ 6 tan® A
(tan® B + tan® C) 4 9 tan? A . tan? B.tan*C} =0 (6)

1f the expression given in the question be divided by
cos? A . cos? B . cos? C, and the result expressed in terme of tangents,
we get for the co-efficients of 2 m’n, m®n®, 2 I*mn,
tan B (1 + tan® A) (tan B—tan C, +tan® A tan B (tan B + tan C)
(tan B + tan 0)* + 2tap Btan C {1—4 (1 4 tan® A) } ;
and 3 tan® A (1 + tan2? B) (1 + tan C) + 3 (tan B + tan C)®tan? A
4 7 tan® A tan B tan C (tan B tan C—1) — tan Btan C (1 + tan® A),

The first two co-efficients are easily seen to be identical with those
given in (6) and the last after a little simplification by the use of the
relation tan A + tan B + tan C = tan A tan B tan C.

It is easily seen from Geometry that the Steiner’s envelope touches
the side BC in a point L which is the isotomic conjugate of the projection
of A on BC. It cuts BC in two points D, D' which are the projections
on BQ of the extremities of the circum-diameter parallel to BC,
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The equation of AL is m tan B—n tan C = 0
AD .. m (1 + sin A) 4+ n (1—sin A) = 0
AD' ... m(l —sin A) + n (1 4 sin A) =
s. AD, AD' are represenfed by
m2 + n2 + 2mn {1 + 2 tan2A) =
1f M, E, E'; N, F, F’ denote similar points with respect to CA, AB,
the conic
S=xPtan®* A—2 s mntan BtanC =0
touches the envelope at L, M, N. The six points D, D', K, E', F, F’ lie
un a conic
S = 312 + 2xmn (1 4 2 tan®A) = 0.
The equation of the Steiner’s envelope may therefore be put in the form
S8 + 4imn L =0 (7)

ave eee

where L is a linear expression.

The first twelve terms of (6) and (7) will be found to agree.
paring with (6), L may be shown to be equal to
k(t+m+n)+ K {I(tan B— tan C)* + m (tan C — tan A)?
+ n (tan A—tan B2 },
where ¥k = — > tan* A . + 2 s tan? B . tan? O
+ 7 tan® A . tan? B . tan® C.
and ¥ == tan A . tan B, tan C.

By com-

M. Broimasena Rao.

Leaves from a Lecturer’s Diary.

Many of the elementary properties of points and triangles are but
particular cases of theorems relating to circles, and are easily recognised to
be such when the point is identified as a circle of zero rudlus Thus in
parallel columns : —

(1) The perpendicular bisector
of the line joining two points is
the locus of points equidistant
from them.

The locus of points the tangents
from which to two circles are equal
is a line (the radical axis) perpendi-
cular to the line of centres.

The three radical axes of three
circles taken in pairs co-intersect
(at the radical centre),

(2) The perpendicular bisectors
of the sides of a triangle are con-
current (at the circam-centre).

(3) The circle of Apollonius
described on a segment of the line
joining two points is the locus of
points at distances from the pair
of points in a constant ratio,

The locus of points the tangents
from which to two given circles are
in a given ratio is a circle coaxal
with the given circles.

* ® .
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The asymptotic formula for (u)!, when n is large, real and
positive, is JF(: )”. To Newton 1is due the evaluation of

n

2 *C,, whatever n may be, in the simple form 27  Kequired

r=0
n

the sum when n is large of 2»"Pr. Obviously no simple formula can
r=1

be given for its exact value; but asymptotically the sum bebavet like
e X (n)!; for

nP =
! S [(ﬂ—')
=n![l+—- + l S A I—J
Yol 2! n— 1!

= n! x ¢ when n is large.
Even when n = 9, 9! X ¢ = 986110,

The sum 3°P, actually calculated = 986409. The approximation,
however, is always in excess by unity neglecting the decimal fraction.
» * *

With respect to a triangle ABC, the isotomic conjugate, @, of the
symmedian point K, will have the trilinear co-ordinates (1/a°% 1/b% 1/c*),
which are of course the reciprocals of the co- ordmates of the point
(a, 8. 6°).

(2) This latter point may be easily seen to be the pole of the line
joining the Brocard point.s Q, ' of the triangle with respect to its
Brocard circle,

(3) It can be easily seen that the original triangle and its first
Brocard triangle are in perspective, the ceutre of perspective being Q.

(4) Anpother interesting property is that the centre of gravity of the

triangle QL. coincides with that of the origival triangle ; for the «-co-

s g 2 2,2
ordinates of 2, Q, £’ are respectively aﬁﬁﬂ? times o%a, ch'

ab? and hence the x-co-ordinate of their centroid is 2—3A ;- which agrees

with the corresponding co-ordinate of G.
™ » » *
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SOLUTIONS.

Question 1007.
(Alpha) Prove that, if
S, =11 —2!' 4 3! — 4! 4 inieienny
11)—2@2)+3BD—4@) + e =1—28,
PO -—2 @)+ FBEY—82 @)+ ... =58 —2
and generally 3 [(—)r! w* (n!)] is of the form « S, + B,

where « and 3 are integers (positive or negative).
¢ ©

then

Solution by Martyn M. Thomas, S. Krishnaswami Iyengar and
Tiruvenkatuchari, Hemraj and others,

(e o]
(i) Left side = 2 (—)y-ln.n!

o a5 @
= S(—)n-l {(n+ 1) —1}n! =2 (=)= {(n41)! —n'}
ne=l n=1
= (@I —3T4 41— . )—(1—21 $81—..)
=(l—S)—So=1—28
L]
(i1) Left side = (—*"1n2n!
ngl

[+ 8]
=2(-)n—1 (A(+ (n+1) + B(x + 1) + C) n!, where A =1,
n=1

B=—3C=1
o
=S Gl {98t Dl v al)
=]
=@B!—4! +5!—..) —3 (2! —3! 44! — )41 —2! +3!1—...)

=(So—1142)—38(1—8)+ 8 =58 —2
o0

(iii) Lieft side = 2 (—)"-n*n!

n=1

o]
= S (—)" ! {A( + k) (n + k—1) ... (n+2) (n+1) +
= n!
oy B (ntk—1) ... (n4-2) (n+1)
4+ O (n4k—2 . (r41) + o + L(e+2) (n+1) $ M(n+1) + N
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where A,B,C...L,M,N are numerical constants which can be obtained by
comparing co-efficients of different powers of n.

a0
= S (=)=1 {A(n + B! + B(n+ k—1)! + O(n+4—2) ! + ... Lin+2)!

n=1

+M@4+1)! + Nat})

- A48 =24k +@+)! —.J+BEI—(14K)! + (245)!—..)
+ O(—1)! k!4 (k+D)!— ]+ LB —4! + ) + M (2}, <3!
g e WL gl )

= A (S, — const) + B (const — S,) + .. + L (8, — const)
4+ M (const — 8,) + N S,

= & S° 5 B-
where «, @ are numercial constants, pesitive or negative.

Question 1008.
(MarTYS M. THOMAS) :—If I, be written for the integral

L3

f 2 Gos 2w log (2 cos 5) dz,
3 <

Inf1 et ik (_).L
prove that SR Zn (n+ 1) (2at+l)’

and deduce that
1 1 1 w
0 I = (1—3-{--5 ...:!:-27':1—)—47.
Solutim by V. Tiruvenkatachari and K. B. Madhava and several others.

Integrating by parts

~

I, = J‘” cos 2nz log (20042 )dn
o
L3
1 . 2
= Q;,[“m 2 nz ]Og(‘ZCOG;i)] °+ ;; :" sin 2nz tan;dr.

Sl —nl, =1 flw tang[sin2(n+l) z—sin 2nz]d;c
o

SR
; T 2@n+ 1)
whic" establishes the first part,
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Writing successively # — 1, n — 2, .., for nin the above and adding,
we have

1 1 1 1
n].—l‘—g[—‘g‘f‘-&—---ﬂ:z—;—l-].
Bug

=
I, = fz cos 2z log (2003?) da
= 2

™

=}—f2 sinZz:t:m?'rls:-"l (l-—l)
£ 2

Hence

1 1 1 T
I, = [1_34'3—--..:1:2?_]]—-—;—-

Question 10850.

[ 2]
-1
(K. 8. SrINIVASACHARL, M.A, L.T.) :—If (az2+bztc) = Spnx",

-]
find in terms of a, b, ¢, = the value of 2 p: @2n

Solution by Hemraj, Nagendranath Dutt and G. R. Narayan Aiyar

This question is given in Hardy’s Pure Mathematics. (Ex, 26, p. 160,
2nd Edition).

We suppose that a, b, ¢ are real and that b2 < 4 ac : ; then the roots of

azt +bx + ¢ = 0 are conjugate complex numbers. If o and 3 be the roots,
4 = p cis ($), B = p cis (— ¢),

where 1 =a8 =° and = b*
e P Spean cos ¢ G Jme e o Q]
Now
s ey =1[ e 1 g\ [ __ 2!
axl4br+c  al (z—a) (x—&)] a;,d ( —E) ( —E)
=_1‘ i 1=msm{n+l)¢
aa g3 2‘1 SB 2 ¢ sin ¢ppn
0

_sin(n 4 1) ¢
whence p, = ——Pm

iR O R Sy (ST U Toovranees Jraserenans (2)



. u 'xﬂ_n sin? (n+l)¢zn
= 2 g B T ptnsin? ¢
=] o
& N sin (n+2)¢ sin (n41)¢p & sin (n 4 1) ¢ sin ne @*
: 2 sin P sin ¢ o' sin 2¢ p'*
o
o QD (n+2)b sin (n4 1) o @ sin (n+ )¢ sin np 27
2 s ¢ * ¢® 5in 2¢. .07 2 c?sin ¢ p®” 'sin 2¢
o
_ Qein (142)¢ sin (n+ 1) 2
o S ¢? sin ¢ pan * sin 2¢
o
+ = i (m+2)¢sin(m +1)¢ e
P2 2 ¢? sin p P» sin 2¢p
o
[ n41
= x - ™
= (1+IT’) 2[25!!1 qus] ‘@ P oin 03
o 1
el z 1 X an mainZ(ﬂ‘-{- e
C'(l+/‘T‘-’)sin2¢' T,,XS P g
B x TS Q an & zn o
- (143) (-3) e SH =S wen @
o o

z s | 1 1
= 1 — = - — ——
< (1+P') ( P') ez —al' z — B
=P+ 1
Pi1—2 ' a% —a's (a2 + B + c?

— ¢ + ax 1
¢ — ar’ a2rs — (b2 — Zac)z + o8

from (1).
Changing &.into 2, we get the result,

Question 1051,

(A. C. L. WiLkineoN) :—If ABCD is a cyclic quadrilateral, the poiuts
A, B, C, D oceurring in this cyclic order, the sum of the reciprocals of the
perpendiculars from A, C on their Simpson lines with respect to the
triangles BCD, ABD respectively is equal to the sun of the reciprocals
of the perpendiculars from B, D on their Simpson lines with respect to
the triangles ACD, ABG respectively,
24 =
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Solution by Hemraj, Kewalramani, V. M. Gaitonde and G. S, Mahajani.

Draw BL and BM perpendicular to CD and AD,
ML is the pedal line of B with respect to AACD.
Let BY be perp. to ML, then from the similar triangles BMY and

BD1, we have BY . BD = BL . BM,

\

\

i
'
‘
i
'
i
i
'
1
i
i
:
i
'
]
i
i
)
1
'
i
i
'
|
y

\
c D
. i IBD s e I e
(i BY BL.BM BA .BCsinAsnC
BD sin B

2AABO . sin Asin O

If p,, ps, ps, s be the perps. from A, B, O, D on their pedal lines
with respect to BCD, etc,, then

1 AL BD sin B e BD sin D
Py Py 2AABC .sin Asin C 9/AACD .sin AsinC
2BDsin B, o

= AB [BC.CD . DA sin A sin Bsio O sin D
where o = quadrilateral ABCD.
1 2AC sin A &

o 1
Similarly — — = .
R yp,+ps AB. BC.CD . DA sio Asin Bein Csin D

NGO B () 1
Rl T o s el ]
Additional solutions by V. V. S. Narayan and S. 8. Ramakrishnath

But

Question 1052,

(A. C. L, WiLxiNsox):— If the circle of curvature at any point P of
an ellipse be drawn and O be any point on the tangent at P, prove that
the straight line joinirg the points of contact of the other two tapgents
from O to the ellipse and its circle of curvature, the other common tangent
and the tangent at P are concurrent, .
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Solution (1) by Hemraj and G. E. Narayana diyar.

Take the tangeut and normal at P as axes. Then the equations of the
conic and the circle of carvature are

2y = as + Py + by and @' 4yt — 2y = 0.

Since the points of contact of the other two tangents from O (,, 0)
to the conic and the circle are on its chords of contact with respect to

them respectively, they are on the lines
. .

S ey el
Yy = = r and y ar, .
The points of contact are respectively
{ 2z,(1 — &r,) 2az,?
L+ (ab — h*) 2,7 L + (ab — A%) 512}
2z, 2az,?
and { l + a%,? 1+ a’.u‘ﬁ}'

The line joining them meets y = O at the point given by
Sh
o e ey =)

Again if 2 = my + ¢ be the common tangent, then

h* + 1 — 2hc — 2amc = abe® and a%* — 1 4 2ame = 0.

e S MR

o a® + h? — ab’
Hence the result.

Solution (2) by V. M. Gaitonde.

On page 261 in Russel’s Pure Geometry (2od Edition), it has been
proved that :—Tf a system of conics have three point contact at A and pass
through D, a fixed line through A cuts them in P, P’ ..,... and another
fixed line in Q, Q' ......, then all the lines PQ, P'Q’, ...... are concurrent
in a point on AD,

Now if AP and AQ coincide, the lines PQ, P'Q, ...... become the
tangents at P, P’, ......

Hence the tangents at the intersections of any chord through A with
the conic and its circle of curvature at A, meet on AD where D is their
common point,

Reciprocating tbis theorem, we get the desired result at once,
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Question 105 4.
[MarTrN M. Tmomas]. 1f 8, denote the sum of the squares of the

fractions _i 5 é : :]:}, il ; and if p, denote the sum of their products taken
r
two at a time, prove that
1

= oo

"C, 8, — *04 (82 + p,) + "05 (S5 + ps) — ... &c. =

Solution by G. 8. Makajani and others.

S: 4+ pr = coeff. of «? in
-1

Obyiously,
(Ut 2D L+ %27 (1 + @3 (147)
The left-hand side = co-efficient of x* in
= g s "Co i
4 (z) = Txan U+ a0 (0 +ap) + ... &

Now, the sum can be easily obtained thus :

U. siiterm _ _ n—7+ 1
Uy—r @ r—i term Tt o

U (z+r)=Ueraa(r—n—1) =sayV,
S Ur(r— n) = Ve Uiz +n) =V, —V,..

n
o) (a;+n)2 Uy=V1i—=Va1=V1 =T, (z + 1) =C,=n,
1

since Va1 = Un(n — n) = C.

1
Siteg ()Pt
¥nooz )
n

and the co-efficient of % in ¢ (&) = —,.
n

Numerous identities can be deduced by equating co-eflicients of other
1n particular, equate the coeflicients of £ and we get,

powers of x,
nCyo,— "Cqoa + "Cg 0, — = L,
n
1 1 1 1
where ¢, = I+ -2+ 5 + e
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Question 1055,

(ENQUIRER) :—Show that

1 1 1 5 79 1 (278 B [0 5 1
. pao Tt = guitewee— o

Solution by M. M, Thomas and N. G. Leather.
1

srmmaLa=BlmL (=)= (1))

|
23]

Now

el
LB 5T 1

R AR daE 4.

-+ B8 LT L

Question 1058,

[M, K, KewaLraMaN1]. If 3 cos « = = sin & = o, prove,

cos 2 (pe+9B8+rY) _ cos 2 nx + cos 2 n8 + cos 2 ny gin—2
@p) (29 ! (2r)! (2 n)! e
and a similar result for sines, p, g, » being any positive integers subject

to the coudition that p + ¢ + r = n.
Solution by G. 8. Mahajani and N. G. Leatker.

Puta = cos & + 138in &; & = cos B + 7 sin B
¢ =cos Y + %sin Y.

Then consider the coefficient of z*” in the expansion of,
cosh az cosh bz . cosh cx .

:.:1 2 g
e [“ B Ao —]

z' b2 g7 c? 73 c2r g2r
e TR —_—— +— 1 — . =i o
[l v = J [+5T 4 a1t ]

¢ _ cos Z (patgB+ry) + isin 2 px+98+ry)

L b
Silp) 1(2g) | (&)} (Jr) 1{29) ! (2r) !
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Now, cosh az . cosh ba . cosh cz =
:\, {cosh (a +b+c) © + scosh (a+ b—e) 3]

= 2-2 ( scosh 2ax), [since Sa = O by bypothesis].
and the coefficient of z* in this is
a2 4 b 4 2" g9 _ I cCo08 2nG 41 = sin 211&_2211_._,.
(2n) ! (2n)!

« Eence, equating the real and imaginary parts, the result follows.

Io fact, more generally we bave

(b+c)? (c+ n)’zq (a+b)" ol sa’? +(za)™” gin—1
2p)! (29! @2n)! (2n) ! 2
where p+g+r=n,and p, g, r are 4 ve integers including 0.

Question 1057.

(M. K. Kewarramant.): —To prove that
2 (atb+oyr btect+d) (c+d+a)" (d+atb™

(2p) L Zq) (2! (25)!
9 -3 s i
=20 [& o + 3(0 +a)’” + s(a—a—b)-"]
where 20 = a+b+c+d;and p+g+r+s=n; &c.
Solution by G. S. Mahojani and N. G. Leather.

As in the preceding queetion, it is easy to eee that,
the left side =coeflicient of x°* in the product,—
cosh (@ + b + ¢) ®. cosh (b + ¢ + @) ® cosh (¢ + d+a) & cosh (d+a+b)a.

= 2-3 [ cosh 3 (a+bto+d) x + = cosh (a+ b+4c+3d)z +
cosh (a + b—e—d)z ]
== 28 [ cosh 60 x+ > cosh 2 (o + @) & + scosh 2x (0 —a — b)] ;
and tha coefficient of ?” in this is obviously

(dn)! {6" e 4 227 3 (0 4a)?" + 2 3 (o—a—b,™ %

21‘5 3

[qn o+ 3 (7 + @) + 3 (F—a—b) ]
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The method can be extended to five or more quantities a, b, ¢, @, € .cves
where p+ g+ 7+ s+ t+ ...... =n.

Question 1058.

(N. P, PanDYa) :—A fixed ellipss is intersacted by a variable parabola
in four points, A, B, C, D. TIf the axis of the parabola be always perpendi-
calar to thes axis major of the ellipse, tind the locus of the centre of
gravity of the quadrilateral ABCD.

Solution by N. G. Leather.

2 k w? YR
Let the equation of the ellipse .be e + o = 1

and that of the parabola z2 + 2gz + 2fy + ¢ = 0, where (4 2f) is the
latus rectum.

Any poiut on the ellipse will be (a cos 8, b sin 6) and this point will
also lie on the parabolz if a? cos3@ + 2ag cos § + 2bfsin O + ¢ =0,
whence [as + ¢ + 2bfsin @ — a®sin2 0]2 — 4 a2g2 (1 —sin® 0) = 0
e a* sin B — 4a% bf 8ind 6 + etc. = 0
.~ if 6y, 6,, Og, O, be the eccentric £s of A,B,C,D,

S sin 6, = éif

as
But if %, g be the co-ordinates of the centroid of A,B,C,D,
_bzsing, _b,_ b,

yrEE e B ey

where ! is the semi-latus rectum of the parabola.

.. the locus of the centroid is two straight lines parallel to the major

: £ “ he 3 . .
axis of the ellipse and distant 28 ! from it on either side.

Question 10686.

(S. KrisENASWAMIENGAR) :—If p be the radius of curvature of the
curve »™ = a™ sin mO at the point whose distance measured along the
curve from a fixed point is s, prove that

(m—1) (n + 12 0t — mm + 12 ) m(m — 132 = 0.
ds? ds
Show how to solve this equation, and hence find the.equation of

given curye in terms ofep and s,
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Solution by Martyn M. Thomas, N. G. Leather and several others

Taking the derivate logarithmic differential & = cot mg.

A
o ¢ =m@and ¥ = (m + 1)6.
2 rdr r B 7
0 =r—= ST 1 A S e T e . R U
dp 2 (r sin mB) sl L )
dr
e L cosec mf — r cosec m@ cot mO . m . LE;}
o o ds l+m\ds ds
= e ()
1+ m
A _l—m/( . d8 Ay \ _m(m—1)cosectmO
ds? l+m( fofte iy mcﬁ ds )— d+m)’p
. @ _ mm —1) o ooecs mo. w0 (2)
dss (1 + m)?
Eliminating 6 from (1) and (2),
Pd’P m dP) — m(m — 1)
ds® m— 1 \ds 1+ m, Th
s apP P __ dp
To solve th el by -
o solve this, put — p and hence T
& o dp m 2 — mm — 1)
P (m—l)PlI (1 + mppP
Putting p? =
du B 2m _2mm — 1) s s
W=D = T+ m)iP which is linear io u.
_ 2m
Since the integrating factor it @ m — 1, we get
o %m i O9mim — 1) 8m — 1
PR e O T fp m—1dpP

o m — 1)\ 2 __m
(w5m) e

2m R i P
2, = Cpm— 1 s (m—“)
_2m
. ap {(‘Pm_l_ m— 1)\ 2 %
zls (m + 1\) } &

oe s + C = f P

Y

Voot T (2] }

m + )
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Let Cﬂm—la(;‘%.})gsecﬂ#a;
then logarithmic differentiation gives

o Lzo 2tan ¢. d¢

)

|

m
m—1 m—1

Sos40'= ’”“fmap e (’"—‘ )‘ %feecsz.dqa.

m+1

C 2m

For a parabola we have m = — 1, and for a rect, hyp. m =
while for a lemniscate m = 2, and for a canlloldﬁ m = 3.

—

Question 108686.
(P. A. SuprAMANI A1vaR) :—Solve completely

ary (di)9+(x!—-ay‘-‘—6);l—z—zy=0-

Solution by G. R. Narayana Ayyar.
Change the variables to s and ¢ such that y? = s and 23 = ¢.

The differential equation now becomes
ds\ ? ds
) AR e B e ) e
a ( t) + (t —as —Db) =l

4 'Diﬁerentiating with respect to ¢

ds ds %

T {24:(E+t—aa-b}—0.

i LR,
de

or 2atj—:+t—as—b =0 .

ds
M stant.
g =0 any con

Hence oue solution is ate® + (¢t —as —b)e —s = 0.

Changing to the criginal variables, the solution is
ca*(ac + 1) — y*(ac + 1) —be = 0,
be

ol B .o ase
: y i ac + 1

From (2)

Another solution is obtained by eliminating ‘%’ between (1) and
.

.

25

[N

—3,

(2)

(3

(4)

(3).
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The solution is
1 (as + 6 — t)®

deo ekl =) e
T 4+ (t — as — b) e 0,
i.0. (t—as—0)2 4+ 4ats=0.

Changing to the original variables the solution is
(z®* — ay® — b)* + daz?y® = 0.

This is the singular solution as it does not contain any arbitrary
constants,

Question 1067.
(V. THIRUVENKATAPHARI) :—Show that

T log sin x log cos z 1
it e e i (T . ? }
f e de = 1 ¥J41r- {(log 2 + =mlog2 — 5

° A/8In T cos @

Solution by Martyn M, Thomas and several others,

~
Now [* sin?®*— 1z cos®®—lg dz=1 T(=)TYB)
f ° 54 ! Thet+d)’
Differentiating under the integral sign, successively with respect to
&, 8, we have

x
4 f’ (sin 2)®* ~ ! log sing. (cos @)>® ~ ! logcos x dw = # L8
° as

R

Y g;g:ff)» [H(ue)—u-)} {¥(a+p5)—+(B)}
—¥@+8)]
where ¥ (a) —quz Puttinga = } and 8 = }
1; log sin = log cor z 2
fc—m = lLIjl':{-l'(g)-ﬂv(.)}” *'()]

= }‘Lﬂ’ [{(—c—2log?)— (—c—alﬁgQ—.z) }"}.]

sy 41*&3} (g 2.4+ 3) "= 7}

(Pﬂ {(log 2 + mlog2 — ﬁ}
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Question 10869,

(A. C. L. WiLkiNsoN) :—Normals PA, PB, PC, PD are drawn to a
hyperbola ; PA meets the hyperbola again in A’, PB in B, PC in (',
PDin D' If A’B'C'D’ are concyeclic, prove that the locus of P is an
ellipse of which the equi-conjugate diameters coincide, with the asymptotes
of the hyperbola.

Solution by N. G. Leather.

Let the hyperbola be zy = ¢% w being the angle between tho
asymptotes, taken as axes of co-ordinates.

The co-ordinates of any point can be writteu( ep, 0 ) 5
v

Lot %y, k3, k5, 2, be the parameters of A, B, C, D and p,, py. py, P4
those of A’, B', C, D'
The normal at A can easily be shewn to be
ky(fey? — cos w) @ + Xy(k cos w — 1) y — c(k,t — 1) = 0. (i)

Writing @ =cp, y = ¢/p, we find the parameters of the points in which
this normal meets the hyperbola in the form
(p = k) [Ry(k," — cos w) p— (k" cos w — 1)] = 0,
3 _ k?cosw —1
i P17 Bt — cos oy
and similar expressions for ps, p, and p,.

Now if A, B, ', D’ are concyclic A’B' and O'D’ will be equally
inclined to either axis of the hyperbola, i.c., the angle between A'B’ and
one asymptotes will equal the angle between C‘[)' and the other asymptote,
the angle between A’B' and C’'D’ being =+ w.

Also the line through the origin parallel to A’B’ will be 4 = — 1
© P
and the line through the origin parallel to C'D* will be ¥ = — 2L

I wi
Ay
)
2

Hence the required condition obviously is p, p; p, p, = 1.

o IL (k2 cos w) = Ky kg loy by T (k,® — cos w).
If (2, y) be the co-ordinates of P, we see from (i) that k,, k,, by, kg
are the roots of ck* — (z + ycos w) &° + (xcos w + y) k —o = 0O,
Bykyeg by = — 1,
and k%, kq*, k.2 %,? will be the roots of .
o[22 —1]" — A[(z + ycos w) A — (@cosw + v =
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s I0 (kcosw—1) =c*(l — cos® w)? — cos w [(z + y cos w)

— cos w(z cos w + Y));

and k, kg &y ky 11 (k2 — cos w)

= — |c%(L — cos? w)? — cos w { (z +y cos w) cos w

— (zcosw + ¥) } *}

Hence the required locus will be
9¢? sint w — o cos w sin 4 w — y? cos w sint w = 0,

that is o + y? = 2¢* sec w,

wlich is an ellipse whose equi-conj

ngate semi-axes coincide with the
asymptotes of the byperbola.

e——

Question 1071.
(T. P. Travept, M.4,, LL.B.):—

It 8, =107 $2r-! ,(n——l)c"'1+3"‘"‘ 5 (n—2,c"2+ wl.(n— n°,
prove that

Te=n
8= Pha ot atl Ll e
r=1
Solution by M. V. Ramakrishnan and G, E. Narayana Aiyar.
On expansion

S, m 1 17 42070 (n— 1L 45— 4+ 1 (1)

r=n
S S e S et SR SR RS
rél

¥

I

n

il [v St 421y —1% 4 32 n_zcr—”+......]

I

r=\{
= 4+ T O
4 {n—10+2n—14 20,01 ¢ 420 1a—1""}
4+ (n—27 ¢ 3m—2"1 4 3t 4
iz

O+ — 13+ (L4214 (143 4 e (147
9e 4 31 4 477 4 L. + (1 +n)—1
IHL £ Q0 4 B 42 4 (n 1),

=glayg gty 9%t
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Question 1072.
(T. P. Triveol, M.A., LL.B.):—Prove that

L a2l

/2
fo Jtan z.log (tan «)dz = 372

fﬂl! Ztan r.log (tan 7) dz -_-f; (%——l) :

0

!

Solution (1) by K. J. Sanjanas, M.A. (2) by Martyn M. Thomas, M.A,

(1) We have f:lz (tan ﬂ-’)%—l ds = J‘wlz (sin x)qa——l (cos a')l—zu az .

Differentiating with respect to a,

2 =
2f:;’ (van a,-)m s .log tan & dz = —

n2 cos a7
2 sinam’

a being taken to be positive and less thau 1.
Puta = §; 2 f:,z J(tun z) . log tan & dz =%’ ; hence the first
result should be T?%2./2.
i 3 1 cos 72°
Putti a =3 2]“’ 5 (tan z) . log t o e
ng = § g (tan x) . log tan @ dz T st 7o

10 + 2./5 WL 4 SR ANV

n

x[2 /2 5l
(2) Now f tan"z dr =f sin”z cos "2 dw
0 5

P("—t—‘) ()
ar (Bl es

eEne I—mn 1+n
I‘( > )I* ( _f__)_ - tcosec (4;2 ) x
21 (1) o D e
Differentiating both sides with respect to n,

~[2
f tan 'z log tan @ dz =E{—- cosec (lji' ) . cot l+4n) ™
° & = 2 "2
/2
f tan?z log tav & dZ = {—— cosec L cot } i
0

=§-{(— Ji) (— i)}7 =27§.

=
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/2
Also tantx logtanz dx = 1-'{ — cosec 3™ cot 37 } T
0 b7 5] 5 )z

= 1;{ (= cosec 72) (— cot 72) }g
e fain 8RB et W
T 2 'cos’18° L &' 1 ‘104205

e i
8u 4 > X

Question 1080,

(S. MamarnvaN) :—The focus S is

ellipse, P;S cuts the ellipse again in

in Py ; and so on.
major axie.

joiced to any point P, on the
Q. Q8 cuts the ellipse again
Sbow that SP, ultimately tends to coincide with the

Solution by X, J. Sanjana ard S. Ranganathan.

Let a,, ay,...a, be the eccentric angles of PPy P and 81 Fgees
those of Q,, Q,,.... The equation of P,SQ, is
2 cos L‘;b‘ +% sin L'f'ﬂ’n cos L._ﬂ‘ 5
as this line goes through S, we have

8008‘#9— cosa{—ﬁ,’

which gives cot ’ng =o Lt e tan &1,

The equation of Q,8'P; is

@ o e E T Bs+ug Bi,—a
per et il f =3 " "2 2
= COi D) {-b sin D) cos ST

a8 this line goes through S’, we have

— e cos "3—'%& = cos ﬁ;‘b,
5 / B 1—e¢ a
which gives cofiiale— tap 22
. 2 I +e 2
: .3 1 —6 )2
Equating, we gst cot =2 = (‘ cot &1
- L+
Continuing the process, we shall have cot 27 o (! —e) 2n-2 cot 1.
2 1 +e 25

hence, proceeding to the limit, as n ~ %, cot 'Lz" = 0,

Therefore ax=2(n t 4)r, and SP coincides with the major axis ultimately.
2 e —
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QUESTIONS FOR SOLUTION.

1126, (V. RaMmaswami Aivar, M.A)):—Given a triangle ABC;
prove that the orthopolar ellipse of every point P is inscriked in the
Steiner’s tricusp, that is, has triple contact with it; and each of its
auziliary circles touches the nine points circle of ABC.

1127. (K., J. Saxsana, M A.) :— Prove that there are two and only
two Tacker circles of a triangle which touch a given straight line in the
place of the triangle. These circles coalesce when the given line is one
of the sides of the triangle. e o

If O and K be the circum-centre and symmedian point of a triangle
ABC, T, the centre and R, the length of the radius of the Tucker
circle tonching BC, prove that

KT,:T,0 = b3 + o8 — a2:b2 + ¢ + a2 and B, : R — bo: 02 + o

1128. (K. J. Saxsava and M. K. KewarLramant) :—If .S, = the
sum of the products p at a time of the first r natural numbers (,S, = 1),
show that

’S e .SI fBS = p— l _11_2__ ~

(Y St 0 [4 3rllog 2)2]

S -3 S,

By er o

1129. (S. Marmart R10) :—Find a number which when multiplied
by 2 or 3or 4 or 5 or 6 or 7 or 8 or 9 gives in each case a product which
contains the same figures as the number itself.

1130. (A. A. KrisENaswAMI A1YANGAR):—Piove that a triangle
ABC in which tan A = tan2"+1 B and tan 2B = m tan C where m, n
are positive integers, is right-angled and isosceles.

1131. (A. A, KrisuxaswaMI A1vancar) :—Solve in positive integers
the equation 9z* — 516asy® + 7168y* = 23

1132. (N. Dorat Rasan):—If O, I, H, be the circum-, in- and
ortho-centres of a triangle ABC, and if the circle OTH passes through one
angular point, prove that it also passes through another angular point.
Find the necessary condition. (Snggested by Q. 1037 of Prof. Wilkinson).

1133. (N, Dorar Rasan):—Show that, in an epicycloid, where the
radius of the fixed circle is n (integer) times that of the rolling circle,
the feet of the normals to the curve from any point on the fixed circle
form the angular points of a regular polygon. Show that a nearly
similar theorem holds for the tangents.

1134. (N. B. Mitra):—If p is a positive integer == 0 (mod. 3)

w2 1
=i = e 2)°.
64 log 2 18 (log 2)

r=p
prove that = Cs, 27-7 (2r — 1) =€ (med. 7) where C, dénotes 2p+1 C",
r=1 .

.
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1185, (N. B Mitea):—If z is a prime number of the form 4m +1
(m > 1) prove that the sum of the products of the first = natural num,
bers taken n — 2 at a time is divisible by the sum of the cubes of thess
natoral numbers. ;

1136. (Selected by T. Krisana Ra0):—Parallel lines through the
focilof an ellipse meet the tangent at the vertex A in P, Q and the lines
joining P, Q, to the other vertex A’ meet the circle on AA’ as diameter
again io R and S. Prove geometrically that RS is a tangent to the ellipse.

1137. (MarTYy M. THomss):—Two particles moving with velo-
Cities 1:% are at corresponding points of a curve and its #th negative
pedal. Show that the diff rential equation of the original curve is

Al 2 2
:1{194,, 4 -\/(k.-+ ays — g7,
where ‘a’ is an arbitrary constant.

Each radius vector of the curve = b cos (0 sin a) is diminished by
bcos a. Show that this new carve and its negative pedal ecan be
described by two particles simultaneously with velocities sec a : 1.

1138. (R. VyrayNatmaswany):—If the product of three quater-
nions in every order is a vector, the axes of the three quaternions are
|| to a plane,

Prove this and relate it to the following theorsm :

*If the product of three homographies in every order be an invola-
tion, the double points of the homographies belong to an involuation.’

1139. (R, Vyray~ATHASWAMY):—If LoD 7, are homogenous

co-ordinates in # dimeneions, find the complete curve of intersection of
the following surfaces ;—

Toty — 2,3 =0
Ty — T8 =0

R T

Tn-2 Ty — 22, = 0,

1140. (R. VYTHYNATHASWAMY) :—If the super-osculation points of a
rational space-quartic ure coplanar, prove that the carve can be conically
projected into a plane tricusp, Shew also that the locus of the vertices
of projection is a conic through the supcr-oscalation pointes.
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