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Multiplication of Infinite Integrals
By K. B. Mapuava, M, A,
(Continued from page 180, J.L.MLS., Vol. XI).
V. The Analogues of Cauchy’s and ‘Merten’s Theorems

By the analogue of Canchy’s theorem we mean the result that, if
©

J uy (@) da
o
is convergent, and if
fo o) L
Jr v, (%) dz
o
be also convergent, then will
®
f w, () do
o L
be also convergent. o (o)
In the case of “ Merten’s theorem ”, if
oo o
J- w0 (2) de and J' v (z)dw
o o
are convergent, we have to prove that
»
J w (2) dz
0
is convergent ; or, if it happens,
@
J wy (@) do
: 0
is convergent. e (52
Of these Mertew’s theorem * is the more general, for if
%0
J wy (2) da
o

is convergent, it is known that
jee
‘ w () dw
‘o

is convergent,

= Cf Bromwich : Iufimite Serees, p. 429.
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We will therefore prove oniy Merten’s theorem.
Since,
®
J' 0 () de
o

ia convergent, it is possible to choose a value x; of @, such that for all
values of @ > a;, we shall have

o
0 @=| v(a)de L Ry
© Ta 3
an & function ; that is to say 8 (2) >0 with 1/a.
We have obviously V=V(z)+06(). ... o (5°31)

Now,

T
; W @)= | uly) V@—y)dy from (531)
=50
@ B
=J w(y)[V—O(e—y)]dy from (531)
o

"
=VU(m)—j u (1)8(—1)dy
[(¢]

= VU(a)—H(a), say. Sy o (5'4)
Consequently,
[H@) | <| lum) | x 18@=y) | dy.
o
Now since O (2)—=>0 with 1/@, the numbers, 0, (2) [which means
the modulus of 8(z)] can have at best a finite upper limit, H, say ; and
iu addition, be such that for all values of # greater than some nuﬁxber,
eay z,, Oy(@) << &
sty &
Hence |H@) | < HJ}/ ‘111(3/)8-{-.] w, (y) H dy
o

T—1,

<& U4+ H[U(2)—Uz—2)]

Solim | HE) 1 <& U
>0 o

. (55)

which tends to zero because U(+) is convergent and when 2 is inde-
finitely great U(x)=U(x—ux).
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Consequently, proceeding in (5-4) to the limit as . s o, °
€
lim 5 E
@iy oJ wlekdo:s Il;n; W(z)
= lim V.U(z) —H(x) = U V. s 2 (58)
] S =
That is to say,
- J w (z) da
i -0 = 2 ; ’

converges, under these circumstances, to the vaiue U-V.

_ Hence the analogne of Merten’s theorem is- proved. It.:may
happen that in some cases W is also absolately convergent.

By proceed ng in a sumlam manner, bat replacing the signs of
equality in (5-4) efc., by inegnalitics on cither side, we have ‘“the
analogue of Hardy-Merten’s theorem” for tae infinite integrals
(Th. 4° of § II), viz. 5

o e
¢ [ u (z) do U, and J v (@)dw oscillates finitely between the
‘o o :

limiis V; and V, and Lim v (z) >0

2->0,
then :
%0 &
J dz J u (y) v (s—y) dy
0 e

also oscillates finitely between the limits 53 V,and U V,;; and m'Ly take
any value between these limits.

V1. The Analogue of Hardy’s first Theorem.

1n this theovem, as well asin the theorems following, we do not
assume the absolute convergence of the integrals U and V; they shonld
of course be convergent. We shall then write down the integral

©

f w(x) dz,

: °

and see what additional conditions could be set upon u () and v (2)
in order that the integral just mentioned may be convergent. .*°



Consider,

W) =[ u)V -y L s
o

2 2
=J w @)V (@—y) dy + J w (y) V (8—7) dy, where & is
o 13

some internal point

. -= I; 4 I, say. G e (6:1)
w E)
Now |[L| = '(E Lu@) 1.1V (e=y) | dy

Since V{z—y) has a definite finite limit, as y =%, it has a finite
. upper limit, say Hy, ia the interval 35 y < =z Also, let U be the
greatest of the values of %, (y) in the same interval. Then

@
I,| = v H, dy.
1LY = [ windy
=H, 0 (a=5). = o e (62)

Let us now choose & = \; @, where \; is a proper fraction, so that
z, &, x—% all tend to infinity together.

Consequently,
lim |L|<H,(1-%;)limaV
z=>® 5 &>
< K, lim 2 V, say. .. (621)
TR

Now consider I, where
3
1, :fu @) V (@—1) dy.
o

We can easily see that we have

3 z—% 05
L=[vwayx] e ay+ U@ -y ay
o o o

=TI 4 1, say. . (6'3)

[For, differentiating with respect to &, we have

e



2 L
W BV (e-B)=u (B)| o)y —v (m_a)jo u (y) dy
o

+ v (z—%) U (&),
which is true.]

k3
Now |L| <[ 10 |vt—y |dy.

0

Since U (y) bas a definite limit U asy 5 o0, it has a finite
upper limit, say H,, in the interval 0 <y < &. Also, let 75 be the
greatest of the values of v, (z—¥) in the same mtcrml, we hwo
already chosen &, so thal it tend- to o with z,

Hence
lim I H lim %
> ® I 3].<_ ! 2>
<K{ = oV (6.41)

Moreover since, in the limit that 500, & and z—% {end to the
same limit,

2 @© ®
: 1;“010 T J’o u(y) dax "(O o(a) de
=T V. (6.5)
Now proceeding with (6'1.) we find,
lim W) = lim I+1,41,
@->c0 >0
= UV+H, lim v (z—%). ?
T-—>m
+H;, lim v & g (6.6)
2=
= UV+K, lim a2 g
x>0
+K; lim K3 g (6-61)
>
=TV,

where K, and K, are some consiants.

The above will be true if lim av=0and lim g5z= o,
TS0 z_> @



g
that is to say, if lim 2 u(x)=0 ] o
S msm Nt 7y
and lim  a22(2)=0 H = €9
T o

Hence Hardy’s First theorem may Lo stated as follows = *

® : © d
Ifj w(e) d und‘ v(2) de are convergent and have the values
o "o

U and V; and in addition (6:7) arc also satisfied, the integral

®

e . ;
'( J):I u(y) v (#—y) dy converges to the value U, V,
o [0}
Ex.
< el ap a—1 5
J- (]Aul P ,7,-,/)‘ = a2 (7}/
o %0 A+ (1+a—y)
:23~ (0sec AT, O ale
g 2=l
Here ey 1
T op T
and 1t = 1 S

NG T
VII. Analogue of Hardy’s second Theorem.

Hardy’s sccond theorem is a generalisation of the first and is
easily obtained from (6°6).

In § VI, it was made clear that the internal point %, which is at
our command has to be so chosen thas a, &, and @ —% have all to tend to
infinity together; and in that article we took the simplest case &=\a.
Now there exists* a whole scheme of fanctious, say P (), viz,

log 2, I, (¢) [ie, lgilg @]; or £ (2), Z.JB (@) lay (@)ins
of which log @ is typical, which are such that they tend to infinity with
z; and if we set & of the same order of greatness as say,

* Cf. Hardy’s Tract Orders of Infinity.
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: lim =z
2 _and remember that e
4-'( ) T ogs

we secure the three conditions that we want.

=0

Now resnming (66), we have,
lim W(2)=UV< H lim [v.(c—&)+Ep] .-
T>xn >0
where H is the greater of the two, H; and H,.

(6.6)

Now 2 i and g5 can obviously be chosen such that the limit of the

expression in squared brackets is zero. g
p

If now 2 P(x)w(a)-0 S
and 2 o(x)/p(x)0 i = i - (71)

We have

lim ”VV(‘U)-—' U Vj

Fiardee

et O N
<vElsEs lim 1:@@) h)

I+ is obvious that we can choos2 an @, say @ S0 large that corres-
o an arbitrarly assigned small positive number & we shall have

3 +£#F_u) } 50,

ponding t
both

v o< 1’( Sy = o :‘b(z) for all values of @, greater than a,
S =

as the gh,l.IC'\[ of the

[*boemg “that vt has been “obtained § Vl
moduli of u(y) in the interval (&, &), it is possible te obtain tbe in-

equabity
&
P Bl(E)
In that case the argnment needs only slight alteration, thus

also.
lim W(2)—U0V
2T >0 )
: 1 L)
= H- & lim { St 14
LERGE) ) @ J
( b
< H. & lim %
sl <.b(r) )
< 2 H. & which tends to zero.

| 89]
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Hence ¢ the analogue of the second theorem of Hardy,” :

1f U and V are convergent and in addition (7'1) are also satisfied
ths integral
® g
J‘ dax f v (x)u(e—y)dy,
o o

S Ty

The simplest case of course is to take P(z) =log .

converges to the value UV.

VIiIl. The Analogue of Hardy’s third Theorem,

The theorem is as follows :—

®

It ‘[ u (x) de andf v () dz are convergent respestively to the
o o

valoes U and V, and in addition | zu(z)| <C; and | 2v(z) | <C,

where C, and C, are constants, t‘nenr’: w {#) dx converges to the

value U V. i

The proof of this depends upon a lemma analogous to Tanber —

Pringsheim’s theorem * (usually calied the converse of Abel’s theorem),

viz. that a series Xa, may be inferred to be convergent if L

A .
" exists and
n

lim 1

n%m?(a,-*- 2a,4. .:71(1,,,) =0.

K
Let us set F.(2) = ’ T (y) dy,
210:

and integrate by parts

& X
% | vi ) dy=F @ % [Fyay
o o
T y
i _1; [ j H(2)de ®.11)
o o

provided the fanction behaves alljrightiat the lower limit.

* [Bromwich : p. 251., Ex, 28, where other references are_given]-:
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This relation enables us to infer that
fo o)

§ :
i | T

exists and is equal to a number R if

lim 1%
el ;fo UF(y)dy—0 a9y
and
! lim 1 (% Y :
Za ;J(:lyfof (2)dz=——>F. ... A 13)

In fact, the last two are necessary and sufficient conditions for the

@
convergence of the integmlf J(@)da to I,
o

We shall now proceed with onr main theorem : we have to show

@D

that the integral J w(a)dz is convergent. Hence we have got to show
o
that

1 o2 o g,
:J y w(y)dy > 0 with .
@ o =

It is convenient to write

L .

- W)= j ywy)dy .. . (82)
o
and analogous notation for V and T,

Also we can easily verify that

ll

@ ~T
[ 44 V@—p)ay+| yr()U—y)dy
A0 "0

= [+ I“ say.

W ()

£
Now | T, | §f [72(y) 1.1 U(z~y) | dy.
(8]
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and since U(2) is convergent, it follows thab we can choose a number 2;
of 2 such that for all values of 2 greater than x, we; can have
U(x —y) =U +¢&, when y lies in the interval considered.

Also, since V is a convergent integral

®
J- y v () is of the (small o) order of », by (8°11).
o

Hence

| L 5[1 ly» (] [(U+&l dy
o

<Uow+al lyem i

o
¢ go that

lim

@
— E 1; l >0, if & ( | yu(y) | dy can be made to tend to zero.

"o -

This latter will certainly happen if
| yu(y) | < a constant C,, whelr ¥ oo ot (8:3)

Similarly wejcan show that

lim |1
25 i |0
if | yu(y) | < a constant Gy, when ¥y 000 --- . (831
Hence under these two conditions
i 1hee
oo = W@=0 .. . (811)

Similarly it may be shown that (8:12) is satisfied.
a

Hence the integral j w (z) do is convergent and has the
o

valne U V.

Finally, we may permit ourselves to make the following observa-
tion. Hardy has replaced (in the paper cited already) our (813) with
the condition
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CR
lim _l_f dyf f (2) dz—>0
o 0

T o 3

for the convergence of (81).

have shown in our proof this is not necessary.

This no doubt is sufficient, but as we
It seems 10 us there-

fore that we can replace his (small 0) inequality with a (capital O)
inequality ; and unless his resalt is a casnal slip, it seems to us that the
latter case is the one of greater interest. We need only take a simple
illustration with f (z) = =%, to bear out the force of this remark ; for,

with this exgmple,

lim 1 % 9
e gl dyJO e ®dz
L Ak ;
w—>1“;; zjo(l'“b’-:) dy

= ki 1
L ebe-l)

which is 1 and not zero.
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CERTAIN DEFINITE INTEGRALS AND SERIES
Connected with Bernoulli’s Numbers.
[By C, KrisaNAMAOHARL, M.A., AsSISTANT P’ROFESSOR,

CoLLEGE or ENGINEERING, BANGALORE.]

[In solving Q. 913 of Prof. Sanjana, I arrived at certain definite
integrals which I'set as Q. 951. A study of Whittaker, page 126, sugges-
ted transformations of these integrals.Mr. Bhimasena Rao pointed out
that the solution of Q. 609 by Mr, Madhava assumes that *

03 AL [a:) 2471
..mfr o 2'na:

and suggested that I may solve Questions 387 and 609 by the theory of
residues. A successful attempt at this problem led to some further
.results. These form the subject of the present paper.]

Part L.
§ 1. (1) Lemma— lim y" (log y)*=
y->o0
where 7 and s are any positive integers. This can be proved by the
substitution
y=e*.

(2) We easily obtain by integration by parts and nsing the above
lemma, or by means of the transformation suggested in the above
lemma, that

nl

1 WL, 70 ST AR (271)
'Jo (log 9} ™ dy= (m—+-1)+

x 2n—1)!
l 011_1 m Y = (..171/ ).,
fo (log 3)* s (m+41)"

2 1 5 2
§ 2. Expending i$g and integrating term by term, we get

| (log 1/)”‘[ 5 1 1
Jo Lyt W=0n) 11""“ “4‘1+527+T"'}

E,, 7w\ 2"
=\
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whence by some obvious transformations, we obfain the following
_ integrals for E,, :

an41

i 2\ " 2
B ) [(em) e G
o
iy
Enets % 22 =, e
7 K'i_'l’ .( cosh z gt [ye
o
> o
- 221 o
:4”*‘) = 2.
S TR
Since we have
secz=2 H, — ()n) :
we obtain by substituting for B,, the above integral.

o @ty et

sec z= 2-[ 'nt+ — e 4t

§ 3. We similarly obtain

3 271-1 Qan_1
(log ») ganeaE ) o
3 F——l'*’f/ (Z‘I/__—_21L —Bu 77155
whence as before
s
2n J.“‘n (log tan »)¥"-! - = :
B,= — AP (@-1—1)’, cos @ (cos z+sin a)° 2 fy=tana.
2n oOEI=L
=+om1_q iz 1(l::. [y=e—T%
Since
l (o o] 25"—1
cosec z="—~2 }i ()”) = B,, "1, (Hobson, page 363);
we obtain
e -xz
cosec a:—-——-]- f —-——dz.
o + 1



$4. We alsg have

]

" (og )™,
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“'1!!(22"_1)
oot s 4n B
T
i 4n 4 (log tan x)*"-! i
Bn=_('2?”-—1) 5 jo o dz [y=tan a.
o D gt 2 Whittak 126 : i
¢ "rr“‘"‘(‘zﬂ”—l)fo sinhz [ Whittaker page 126, y =e~.
R
=) :

e
sinh 712
From the expansion

ik

T Bn i
s )1_(--1)"“ 2n (2"-1) o'~ (Bromwich, page 235),
we obtain
1 =1_J‘ &, sin @z =
e*4+1 2 2 sinh z
Also since
@ 2211 (.22"_1)
tan 2= ¥ — o B,, 2=, (Hobson, page 363)
1 i
we at once obtain
el ot
an z=2 . = dz.
§5. From
,1 (102‘ y) anty 2211_1 ,"211
ey s et - By
o -y %
we derive

2n
B’i =

ks
< J'4 (log tan a)*"-!
AL R (cos z—sin )
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o
sl )
Tl [y=e ~7
oe —

_271 (271—1){?‘:{,1”_2 I /$‘)Jf
—‘T*JO / og G — 27t »

by an easy integration by parts and noting that

it G e 1 it
2t T & 5 5
g el gy (24 1—-6_“7”

From the expansion

Al e oy 2"
7 s e §+z_+;2 (-1 B, @y
we obtain the well-known result
1 i at
e 2|

And since if is known that, (see Bromwich page 233,)

1
¥ — y® +411 w7
we get
‘{3 - sin af =
19 Y2t 4n e f ;

§ 6. A simple consideration shows that the formulae can
transformed into one another. Thas

20 93—
B, G

= ot
an i 331179_1
D 1 1
:%J- Gt (:r—f = )(71‘
o) e I 1

be
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B (o o] £2n-1
:__29.1:_1J_ 212--1 ___dt'
4n 5 321“—*-1
00 01— 1
=9 e dt = (1— e
‘o e 1”_*_1 2"— 4n

1+e—2-1m:

But cotb ma = : =0oman
—e

=142 8—271'&;+2 e_4ﬂx+2e_6ﬂm

o (o o]
And | wﬁ"—l( ! —l)dm: g g (e‘zm-{-e““‘” \
O tanh 712 o

Bl =pn[ s 1 a0t
ne .[0 sinh 71z (cosh 7o+ sinh 71z 'rm) i

[Note.—In passing, the following integrals which can be easily
transformed into integrals havmg 0 and o for limits may be noted:—

11—+21:+5‘1+,+=(2_])J ey
5 (2175)! J:O ;_j 19%
l.filﬁ_gﬂ:’ll—“+§:}ﬁl—--- (,n) f i
n}‘“ 2-”*‘+ Tt ""+1 (37’) j (log ’y)ﬂ" vh/.
%ﬁ‘f' 2{,,; S +J b

n-ll_y
= %(2%1),[ (log = ay.
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Part IT.

§ 8. We can make a very interesting application of the theory of
residues to establish some well-known results. Thus

e B
£ St _1___ 1)"-1 J:’l“‘
e —1 + =) 27)!
u_, B,,

13 the residue of the function

St

f@= = (: 1) at the origin.
The other poles of f (2) are 2= £2mrt (r=1, 2, ...,..).
The residue at =+ 2m7 is
1 Iy oL
@y Zan D" @an

And 7 f (2)>0 as 2> o uniformly. Hence the sum of the residues
of the function at all its poles is zero. Hence we obtain

(=1 ""TZ—”‘ +(=— 1) 2 )ou_o
2 o1
i.e. B, = —(—2(;1-)7 )1: g (a well-known result).

Similarly consider the fanction

(o] an
5

B

sec £=

The poles are z= (2n+1)§, and observing that (_;]_"T'is the
3 - n ).

residue of f(2)= ,,1“ 5o at the origin, we obtain as before

2 (2! “; (—1)"-1

Eu ’l') 1ll+1 1 __1).’1 r-‘

(a familiar result).

Vote.—§ 8 is suggested in MacRobert’s Theory of Functions.
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Similarly, we can find an expression for ¢, (), the Bernoullian
prlynomial function of degree T, UIZ.

¢, (@) =a"— "—‘+B( a"—2=B, (4>a.n—4s+

We have

e —1 o

o
e*—1 = )i' 43“_(:)} =),

n!

z

We sce at once that ¢, (z)/(n)! is the residue of the function

fo - =

1 at the origin.

Suppose @ positive and less than unity. Then z f (2)->0 uniformly
as z->0 and hence the sum of the residues of f () at all its poles on
* the plane is zero.

The residue at (2777) is
Q2T _ g

(2'177))" 2

and the residue at —272r is
I, P
,—2mire_
(_27”.7.)11. ("—Qﬂw'
If n is even, say 2m, the sum of the two residues

m 2 cos 2mra—2
(77‘7\)1” >

=(—1

Hence the sum of the residues at all the poles

= (1) picos 2mra—1
(2117)"”

—(_1yn ¥ OS2 gy ;
( ) 1 (Z.’TI )om. +( ) z(n,nr)2m

1t i s odd, say 2m+1, the sum of the residues at +2mir

s ( l)" ’..J_TID
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Hence e obtain j
dan)=(=1)"2 (20)! %0 1B,
: L sin 2mra
oy 11(@) = (=1)"12 (2n+1)! 1}: o
[A trigonometric method of proving these results is suggested in
Ex. 16, page 256, Bromwich.]
Similarly we know that

x o0

il 3k (w).j—; (See Bromwich, page 240).
Proceeding as before, we obtain two analogous formulw, viz,
e o] .
(D oy e
7'1’.41. ("1’) ( ) ( ?l) i [(27+ 1) ’ITJE"'H

cos (2r41) mz
[@r+ 1) wpr

(o 0}
Yo @=(=1)"" 2 2n4+1)IE

(o}

§ 9. We shall next pass on to the problems of Mr. Ramanujan

(Q. 387) and Mr. Bhimasena Rao (Q. 609) referred to in the Introduction.
24741

Consider the function f (2) =57~ 7 —0.75 -
(el'"“——l) (e_d-m"—l)

Its poles are =7, £77, Consider ff(:) dz taken round the in-
dented quadrant of a circle with the origin as center and semi-circles

round the poles. It is zero since the function has no poles inside the

contour. Along a semicircle round @, write z=a +5e7‘9.
o]

J' f (5 de= 7a+560) 15400,
T

Making §->o0 and noting that f(a+5e16) 51;19-9(1', uniformly as
§->0 (Whittaker, p. 117, § 6.23), we sce that
.(f (5) dz= —m7a’, [ being the residue at a].
For the integral along the semi circle round 77 the upper and

R T o : EESS =5
lower limits are —L_)— and —- and the integral similarly equals —7iia
- -

(« being the residuc at ¢7),
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Along the guadrants, the integrals are zero since z f (2)=0 nni-
formly as z—> and as =>0. Making the radiiof the semi circles tend
to zero, and the radii of the quadrants zero and infinity, we obtain

v

+ 4 f (2) dz—migad + f (2) dz=o.
O'A AB BO” 0”0’

The residues at ¢ »” and ‘72’ are equal and

2 1 7-4"+1

s e
&M 82711 S

Along OA, z is real and=a.

pLS
JOA' _J-O ( 27 l) ( —2mi ])

sl - 0 (iw)"“}l y
Simely [~ 1) ()

RS

f (27w _1) (27 l)d‘”-

Hence the above equation, from the theory of residues gives

RIS 1 AL

J [ 2rix —Qﬂiv ]Z_ 2‘2 Py

8o “—1 callieay,
PRUSS (s o] i1

t.’e. B =( sl (after simplication)
e —1 ‘ae —1

i Bmv-?-l 2
~ 4 (2n+41)

In the case of Mr. Ramanujan’s Q. 387, which is evidently a
particular case of this, there is an additional term —% on the right
This is because, for the function f () the originis a pole and the
residue at this pole is zero if 2 is any positive integer, and —-i-

4%
if n is zero.
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In this particular case, we have at the origin
o e :
[, 1@a=[ @) iz
0”0’ iqp o

=——7a
2 X
where @ is the residue at the origin,

Hence the additional term on the right; and we obtain thus M.
Ramanojan’s problem
St T il

To obta‘n the second of Mr. Bhimasena Rao’s resul:s, examine the
fonetion

LAn1

2 = dz.
(eﬂZ+1) (e ﬂlz+1)

taken round the same contour with semi circles ronnd the poles
2r+1), (2r+1)7,
Residue at (2r+1) = residue at (2r41)7
(2r+41)4"+1
(2;-+1)7r+1'}

Hence we obtain that the snm of the integrals round all the scwi

mide

circles is equal to

(2r 1)

= . : 5(2"+l)"+1} :
e
TR QZQ TN
OA AB BO

Now IAB o since z f (2) 50 as z 5 ®,

AL

= o 1 it
fOA +fB0 fo ¢4 1 [e"""'””+1+e""‘”+l-ldz
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@
AP

:J = de
oe +1

(@r—1)

w4 3O 1) (see § 3 above).

=B,

. Hence the second result.
§ 9a. A very interesting resnlf, which I think is highly probable

;s obtained by examining ‘(f (2)dz round the same coutour, when

17

f (5)2(82ﬂ5_1>(8—2ﬂiz_1>

Residue at ¢ 7’ + residue at ¢ 71’

1 T
27

e —

Esactly as before

@
@

— ——du
(e‘”m __1) (e——i"ma:__l)

~ D 2
11— @

- : ; dx
(82ﬂ1,:c_1) (e‘Z’ITJ:_l)

BO 0

Hence we obtain

(€]
i 2"

S i} PR
2 e : (E'Zmu__l) (e—'211m:_1> da

o 3]
2"

SEnst e
? - (62177.1;_1) (3271-,,;_1)«7&

Patting n=4m--1, we oblain the above result,

Putting n=4m, we get
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e ]
o

(1—-z) i 1™ z .
E 2 5 (e’.?mn__l) (E—Qm;c_l)‘z"
(o}

24

i (32""-"”_1) (ezﬂw_l)da:
o

8

1-f- cot mr— 7 <—¥—-#r-ob 'Tl"l)]

= e ldf (/—1) 5 (1 +cot me).

Whence we obtain

B
\ 7471 11'”
S )ﬂ, Fie )-n—, (1+cot ) da.
do
Puatting n=4m—1, since 1+2"1=147"""2=0 we get
@ o)
41 —1 4 -1
&L o
( - = gois do = i
LT — 21z DTzt )
Gemz= ) (5 =0 (2m2i_p) (2 me_
(€] - o
0
497 -1 s
@ 1B
o o dw !_—~——i—-cot e
feit e::"nm 1 et LD
o
~ o
1m—y ;
x 1
= iy —=—=-cot T
g 1 DD
—1
o

Whence we obtain the resalt

@D
pam -1

e = eoL ().
Aﬂ L



26

Putting n=4m+- 2, we obtain exactly as before

e = PULLES :
e — S (14-cot ma)da.
2 ez-m'__l 2Tn_y £

o

Putting n=4m-—=2, we obtain the same result with
substituted for 4m + 2.

w0 Anr_)

It thus appears that ]. ?ﬁ— cot ma de=0
o e —1 .
and we are led to the general conclusion that
e8] oM (o o} P
by '—*._’:J o L Gy
1 327"—1 AT

where
f (2)=0 if n=4m~+1, and =cot 7w, if n=4m or 4m £2,
except when n=1, which is Mr. Ramanunjan’s problem.

§ 10.
further results.

,~m+1

4m—2

The above method will now be utilized for obtaining some

(a) Examine ( mE_—m )( e ___m-:) dz taken round an
e

infinite circle with the origin as centre.

Residue at each of the points =, 77, —r, —77 is

e PR
G e ee —
e

B oy

Resxdue at the origin is as before zero, if » is any positive integer

and -+ pr , if m is zero.

Hence we obtain

J PRUESY

2Ch
—
i

)_ (— 1)'7‘—__—%*’——L.

8m

(b) Consider j?fi%z dz taken over a circle of radins R =w.
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The poles are +7, 0, and the poles of f (2)

Residue at fr:(_l)ff’s:)
Residue at -—r_—_(__]_)rf (1—1—7)

Residue at O:f—v((—))_
'n‘

fufo) = L O]

=% WTJ sin 'nzd v i

™ : Ry
E OO0 ) 1

f(5)

sin 71z

If in particular f (2) is such that z f (5)>0 as z—00, We get

HCECON F 1O
Rsm we

0
ER+E -y
Ex. In particular let f (z) be an even function. We get
L ()
FO+2E f (=—7R
Pu(',_f (u) ='1_;.
1 L af(z)_ w
__+OE( DY P— E‘—Rsm R R e
1.6, T cosec ﬂx:%+2‘l): (=1 ;'Zj:n’l'
(BEx. 19, page 190, Bromwich)
HGE)
e

(¢) Counsider 5imilm‘1yJ e

We obtain if z f (¢)>0 a
(]

2 o [ (3

T
where the last term on the right means that we shounld take Lhe
sum of the residues of the function with respect to the poles of f ()

f )

cos ’TFZ.
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If f (2) is an odd function, this gives

S 10
T (< 2f(ZH)-_~RIE
DB el )

Cco8 T2

Ex. Let f (2)=

Zgiwg. We get

o0
s Lo

1
27 2
: ° ( 74 1)

—1 sec iz  (Page 190, Bromwich).
2

2

—&

(d) Consider tirf?rzdz' We get

@

% file)
i )+ Rm;o.

Ex, 1. Letf (z):(?__—:)g@:s). We get
e :
o—a L . g
B G 7 (cot ma—cot ma).

Ez2. Letf (5)=

o el

z (z—3z)

We see here that the origin is a pole for f (2) as well as for cot mz.
g : - 6

Hence we should examine the residue at the origin of f-—r

# and substitute this for f(0).
Jiz)s e Fie

CcOoS Tz
tan M3

z {(®—z) sin T2

i} 2 et 1 m2?
== 14z +... 1——— 4. = ! —
Lasi+n) a=T24) S0l
;’_1_ = B eint terms containing other powers.
@z

Residue at the origin:l,
T
Residue at z=a is—cot 7.

_% (——L —-1-1) + 1= 7 cobt ma.

T—1 (2 T
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Ex. 3. — =
X f(2) e We get
R 1 cot Tz
DI el
— o (z—n)° R(ar;——z)2
We have to find the residue of Z:t T)?; at z=z. Now let
¢ (z)=cot ma.
Write cot mz=cot [ra—m (2—2)] =
. =¢ (247y), where y———a,—{—.,
=¢ (@)+y ¢ (@) +7’ ¢ (@) + L ¢ @)+ o

|3
Again ¢ (z)=cot T2
¢’ (w#)=—m cosec® Tz
¢” (w) =2m* cosec® Mz cot Tz
&' (#) = +27° [3 cosec! Mu—2 cosec® mz].

Hence we obtain
cot mz _¢(z—y)

(z—2p
Residue at 2=z is —¢'(2).
0 1
E'(z'vv ‘n)z:’"! cosec® 7.
=D i
cot "
For (%T), residue at z=a is— ¢’ ().
00 2l L
o _5@1—1}5&:‘}"@4’ (ay
=7’ cosec® 7w cot M.
t T 1
For o8 )‘ , residue at z=g is 3?‘#"' (z.

oty %
Em=ﬂ‘ (cosec! ’"w——g(:osecﬂ ).

2 2n

Here put Lol get Q. 1000, first part. The Second part
is similarly obtained. =

Put $=2iﬂ we geb Q. 1001, first part. The other parts are similarly
)

obtained.

.
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More generally, we obtain
el o _oa
_EG;ZTY:l?_'i' (=1)". gomcot .

[See Bromwich, Ex. 17, Page 190].

Ex. 4 Letf ()=~ . f(2)isan even function.

@
We get .
Yo e OS2 c
c — B =T R +——cot =z
i n
= tan 7z

m cot vm—g—{- 3 Py (a well known result).

§ 11. Next consider the residues of functions
f (m)S}n aw‘ etc. We require the following well-known theorem in the
sin 7z

of the type

theory of residues ; viz. If Cis a circle of radins R > w, and f (2)

is a fonotion such that z f (¢) >k as z w0, we have
. R
[ r@a=fieT
=k.f‘—f? =2 k.
{See: Fortyth, Theory of Functions).
sinh a2
§ 12. Consider the function f (7;)smh =23
The poles are * 17, 0. Residue at the origin is O since sinh 0=0
The sum of the residues at ¢ 77’ andow ¢

77’118

f(ri) 2 sin 7a_ f (—7¢) 7 sin 7@

i (=1 (=1
=(—D" ;—i sin ra { f (ri)—f (—r?) }.

‘E( 1)* § [f(ri)—F (=] sin ra-+R § (2 52R 2 Lo

sinh Wz
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Ex.1. Let [ (5)= ml_z

z f(2)>—1 as z .
Hence we obtain

sinh av_ ¢ (—1)""'sin ar 2r
sinh zr ™ 22

[Ex. 23, Page 257 Bromwich].

Ex. 2. Jdf we similarly examine f (z) gonh

, we obtain
inh 71z

R £ () 22R2% 4 flo)+ E(-1y"- et
Put f (z)-—-zgl:;. We get

coshaz _1 2z cos ar
coshedd = L2 oy AERANEY
sinh vz 2 2ol @+

[Ex. 23, page 257 Bromwich].

§ 13. Similarly by taking j(a,) #ln ‘::a: and f (=), S get

:(—1)' {F )—=F (=) } sin ar=—m RE22Z 1)

sin 71z °

j'(O)—|—L( H"{ () +f(—2) } cos ar=—1 RCoia; (2).

sin 71"
If f (m)v‘ ——, we get
sm ar ar sin ax
L & 1) 72~ 2 sin Tz
Lcos ar 1 T cos az
E ot i Bty o sin 7z’
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ASTRONOMICAL NOTES.

1. QOomets. A comet (1919 f) was recorded on two plates taken
on December 10, 1919 at Hamburg by Dr. Baade. It is probably
identical with Holmes’s Comet whose return to perhelion should have

happened about November 30.

Another comet (1919 g) was discovered by Mr. J. F. Skjellerup at
the Cape of Good Hope on December 18. It was also observed at the
Royal Observatory by Mr. Woodgate. The position of the comet
March 11 :will be R.A. 20m. 36m. Decl. 8°. 7 N, It shonld be visible

early in the morning daring this month.

A new object of about the 10th magnitude (provisionally desigrated
1920 @) was discovered by Senor Comas Sola at Barcelona. It was

first reported to be a comet but now appears to be a minor planet.

2. Perturbation of Neptune. In Harward Circular 215 Prof. W.H.
Pickering draws the attention of Astronomers to the fact that Neptune
is now gradually deviating from its computed position in the manner
that it should do, if disturbed by an unknown ounter planet. The
deviation so far observed amounts to a little over 2” and if this is due to
the perturbing action of an onter planet it is expected to increase to
about 15” in the course of a few decades. The unknown planet is
believed to be small, abont terrestrial size and to be travelling in a
highly elliptical orbit, the present distance from the Sun being abont
68 times that of the earth. Prof. Pickering states that it should be
located at present in R. A. 61. 35». and Dec. 23° N., Mag. about 15 and
as it is surrounded by numerous brighter stars in the Milky Way,
identification will be difficult.

3. Fclipses. In the year 1920, there will be four eclipses, the first
two of which will occur during the month of May.

i. A total Ecligse of the Moon, May 3, 1920 ; the beginning of the
eclipse will be generally visible in India.
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The circumstances of the eclipse are as under :—
Moor enters Penumbra May 3  4—19 A.M.Y

Moon enters Umbra 5—-31 , Indian
Total eclipse begins 6—45 ,, L S dard
Total eclipse ends 7—57 Time
Moon leaves Umbra 9-—-11 | 2
Moon leaves Penumbra 10—23 )

Magnitude of the eclipse will be 1:224 {the moon’s diameter being
taken as nnity).

ii. A partial Eclipse of the Sun, May 18, 1920, invisibls in India;
the eclipse will be generally visible in Australia and the sonthern part
of the Indian Ocean.

NizaMiaa OBSERVATORY, T. P. Bhaskara Sastri.

e~

HYDERABAD.
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SOLUTIONS. -
Question 819,

(K. Arpucurrtan Erapy, M.A.) :—If p, p’ be the radii of carvature at
corresponding points of a carve and its a—evolute, where a is a func-
tion of the arc measured from a fixed point on the carve, show that

, 1 ( uos a
o k ) +sin a=— -
z P ds
Solution by Martyn M. Thomas, II. B. Madhava ani K. R! Ruma Iyer.

Choose the tangent and normal at the fixed point O, as fixed axes
of coordinates ; let A be a point on the a —evolate corresponding to P

on the given curve.

X
Let the coordinates of A be (X, Y) referred to the fixed axes, and
(u, v) referred to the tangent and normal ac P.  Let P be (v, y).

From A drop perpendicalars AR, AQ on OX and the tangent PT,
Now, X=0R=Projection of OA on X axis

; =algebraical sum of the projections of OP, PQ, QA
on X —axis. i
= —u cos Jp— sin .

Similarly, Y =y—wu sin i+ cos L.

JT); = cos 4;_—; cos P+ sin P ——(ZF sin i —v cos 3, —IF
s 4,(1 - )+Sul zb( . ) S
du % dv
2 —mu«[.l(l = p) cos 4,(p . . (2)

Eaiey (e U
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dY (— )—00“1‘ z 22)

cotd_,(l-— ) (p ds)

Also tan (90 + a+3) =

w  dv

;. coba= P ds
1— LA

_”
s~ p
Substituting in (3) from (4),

(flss) (,, %) (tan-q+1>

u  dv
ds— Fsec a <ﬁ"ds)

du dv
Since u=v tan a, ;-—=tan a. T sec? a. d.s

Substituting for » and & —&; ‘ in (4), we have,

1=vsec’ a (%-{-%)

cos® a S sin a cos A
TR e
p+ ds p+ ds

Taking the lower sign in (5),
ds v w
Bt e o \ GO

d¥idas asnd el v
o e LT il
d¢ ds lzszp-f- ‘155 p+(1$

where ¢=90+ a4

( 1 ? 2 sin a < 1 Sin a
cdetdw_ oo 8T gal T 42 =T da
s ds ds {F)+: S p+ds @ pp+ds
1 sin a

da d < 17;1‘? o da
| — 4 — )=cos a e b ks —5 0 ¢a - ———sin a

a5 p) ds Cals S ot ds

cos @

da > d S~— ?

il R 3 =—< 1 da;-
ol >+bm a d(IB‘F_S S

(4)

5)
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Question 3821.

(M. K. KewarramaNt.):—If through A, B, C lines AXY, BYZ, CZX
are drawn so as to make the same angle 8 with AB, BC, CA respectively
and form the triangle XYZ, prove that =20 sin (W—0) where ® is
the Brocard angle of the triangle ABC, ¢ the radius of the first
Lemoine Circle of ABC, and p is the radius of the Cosine Circle of XYZ.

Solution by N. Sankara Avyar.

LYXZ=£XAC+£XCA=A. Hence the triangles ABC & XYZ
are similar.

A
72
8 0
CX sin (A—0) . b sin (A—8) _asin®
moir rmae e e @0
XZ=2 R{é&? sin (A—6) sin A sin §
sin A sin C

=2 R{sin B cos ©—sin B cot A sin G—sm—(B-IHO)Ej 9} i
sin C
=2 Rsin B {cos ©—sin 6 (cot A +cot B+cot C) },
=2RsinB {cosO—sinOcot 0},
- =2 R sin B. %0 (0—6)
sin ® :
The ratio of similitude is therefore S22~ Y. (.w—G)
sin W

In any triangle p=2¢ sin W and hence =26 sin (W—0) for As
ABC & XYZ.

Question 827.
(A. C. L. Wikixson.) :—1If a skew surface is defined by
z=z, y=be+f, t=ca+y
where b, ¢, £, y are functions of ¢, and if the axis of z is the
generator corresponding to {=0, the origin the central point of this
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generator, and z=0 the fangent plane at the origin; then the byper=
boloid of closest contact along the generator t=0 is given by
o frz=d ¥ 42" B ay—V B’ 22— (¢ B'—<c" L) yz
where the valnes of the differential co-efficients of b, ¢, /3, y are for t=0.
Solution by K. R. Rama Aiyar.

The hyperboloid of closess contact has three consecutive generators
in common with the surface ; and so the axis of # is a generator and the
origin is the central point. So the equation to the hyperboloid assames
the form

Ny 24w 24 f ya+h 2y =0. o )

Evidently when t=0, b=8=c=y=0" and the gencrator adjacent
to the « axis is given by y=(b" z+ ") &t, 2=5t (¢’ z+vy) where V', £3'.
¢, y’ are values corresponding to t=0. Since the central point is the
origin, the a axis, a generator and the z axis, the normal at the origin
the S. D between @ axis and the adjacent generator is the y axis. Since,
therefore, z=0, z=0 both intersects and is perpendicular to y=dt
W 2+ 4", s=dt (¢’ a+Y') we find

b=y =0.

Since the surface has triple contact with the hyperboloid along

the » axis we have the following equations satisfying A
1) y=0,:=
@) y=4 6§t z=5tc a

e L
(3) y=(B"+1" Do+8' 5t
P m)%ﬁﬂ»u’w 5t
Hence we find omitting higher powers of §¢ than necessary
(R +ve') & §t=0
s % B o oL
and  §t (}L£'+7Ju'_)+ ot* {z’-' (h;: + pc?)+x (o Z+ y.:)'.*.f[; )
S
BV | =0
for all values of z. y
hr
5 h B +ve’ =0, or —c_i:]}::l. (say)

"

e )
n2+}o 5

k%— +v%+f £ ¢=0



x3'2+v"§/=0

% =kf’y h=—«c’ f"'_"zﬂz S

B ¢ /0"
.6" c! { i )
Hence the equation (A) reduces to
2" B”z=c y' y*+2c2 B ay—V" B Z—( B'—c" L) yz
where the values of the differential co-efficients of b, ¢, £, y are for =0

Y
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. Question 850.
(A. C. L. WiLkinsoN) :—Prove that
[w gin 2 sinh @_11_
Jo coshaw+cosa o~ 4’
X cosasinha da
and jo cosh a+cos & &

Solution by K. B. Madhava.
S (149 7.

Consider the integral f ool over the contour consisting
¢ z

of (i) the a—axis from O to R (ii) the quadrant of the circle centre the
origin and radius R, and (iii) the y—axis from R to O: and make
R tend to infinity. - On this contour there are no infinities of the
integrand, for its only poles are given by z=(2rn+1) 7 +12. e the line
y+a=0. Putting now on (i) z==2; on (ii) 2=R eze

and on (iii) z=1y,
we have as R becomes infinite

1

—ar 0
L xash) 2 Re O iz a4i)
J fv A% g_-t‘+J = - s ide_*_J —f;\: —x @':
OETEEC RS ,R(l—i) ¢’ oo G

On the infinite quadranf the second integral is in modulus=1,

aud therefore, collecting the first and the thir8 integrals together,
we have

w
e e
Hence separating the real and imaginary parts we have
(® sinh wcosz da
.‘o cosh z+cos & @

1 lm sinh 2 sina dz =
ALl Jocoshztcose = 4&°
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Question 864.

(M. K. KewauravAND) : —Prove tha’ the primitive of the differential
cquation

a0 P (1,‘:2")
e Yich o ==l
can ba put into the form
.1 -arx
il cosh ara : J‘
Y= [ Jo 4——-——(1;72)1 p‘l +B (——"_1). I)IZI_J
where p is always positive. ik

Solution by C. Krishnamachar: and S. V. Venkatachala Iyer.

Let y:fe"t 2™ R dr,

where ¢ is a function of z alone, and R a function of 7 alone.
Differentiating and substituting in the equation, we easily obtain

@t , * redt
_J. r ‘—l—fa, Wil R) d'r—QmIm Bbio= ‘Zﬁ R rdr

ot mararf o (EY e
+ {m (m=1)+p A—p) } [« 2" R dr=0.
Put m=p and t=ax.
The first and last terms vanish. The equation now redaces to
—2pa [o#= o= R rdr+ J'»,—"'* & R dr (—1) @=0.
Integrating the second term by parts, we have

—%pa f at-l o7 R rdr— [e—“’” o R (r°—1) o]
+J‘e—”'x 2! a,dir {R (*—1) } dr =0,

ie. afe e Rar[ LR (=D} 2 R7]
+[e*"* 21 R (1*—1) ¢]=0 e @
Now R is found from the equation
dir {R(»*-1)} —2p Rk=0
i.e. R=("—1)"
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-
B

The limits of intagration shonld be o closen that the last term i
(1) vanishes. The values of 7 are + 1 and w'."

*. The primitive is

» 1 c_nl’;\: b Im it
A f_] Tyt dr+ Ba L ETyt dr.

The first can bes written

Putting —7 for 7 in the fist part, we get the required result.

QUESTIONS FOR SOLUTION.

1093. (Martyn M. Troyas, M. A)) :—A fixed ray of light falls on
a plane mirror revolving about an axisin its plane. Show that the
locus, in the plane, of the point of incidence is a conic, and that the
reflected rays genecrate a ruled conicoid.

1094. (S. R. Raxcavatnan) :—1f the number of A’s: the number
of B’s: the number of C’s as a: b: ¢ and if @, per cent. and a, per cent.
of the A’s are also B's and C’s respectively, discuss the limits between
which the percentage of the B’s that are also C’s should lie.

1095. (R. S. NaunasiMuax) :—Seven thieves A, B, C, ... secure a
sam of rupees, but are obliged to conceal it without counting it: A
returns alone, divides the sum into 7 parts, finds that there are 6 rupees
over, takes the 6 rupees and one-seventh part and departs. B returns
alone and does the same with the diminished sum. He divides it
into 7 parts, find that there are 5 rupecs over, takes the 5 rupees and
one-s.eventh pa.rb and departs. Each does the same the snccessive
remu.ln.d.el's being 6, 5 4,3,2,1,0. Finally, they ail come togeiher
and divide the remainder which is & multiple of 7, into 7 equal parts
and each {akes one part. Find the least number of rupees stolen and
the amount that each gets.
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