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ON PERIODIC INTEGRAL FUNCTIONS

BY
V. GANAPATHY IYER, Annamalai University
[Received 30 July, 1940]

I

Introduction and general theorems

1. Itis well known* that a periodic integral func-
tion f(z) with period A can be expressed in the form

f(':)= Z a, cxp<2~nTm)s (I)

where
[7a]

X(u) = Z au" (2)
—_—0

is a function having, in general, two &sential singularities
at u=o0 and u=w. In this paper I propose to give a re-
presentation of periodic integral functions in terms of
composite integral functionst. I shall prove that a perio-
dic integral function is the product of at most four com-
positc integral functions. In Part II, T discuss the case
when the periodic function has only a finite number of
zeros in a periodic strip. I prove that the only functions
of finite order having this property are functions of order
one and finite type. I also find a necessary and sufficient
condition that a function of the form

>

o(2)= I 1_;I:> (3)

* E. Goursat, Cowse of Analysis, (Trans. by Hedrick and
Dunkel), Vol. II. part 1, 145-7.
¥ A composite integral function is an integral function

integral function.
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should be periodic in terms of the properties of the =
sequence {a,}. In PartIII, I consider the general case

of functions of finite order and show that the auxiliary

functions which appear in the general representation can
be chosen to be functians of order zero.

2. We can suppose without loss of generality that

the period in question is a positive numnber,

The general
theorem runs as follows:—

THEOREM 1. Let f (2) be a periodic integral function with

eriod A(>0). Let { z+ L1 200,80 2=\ be the zeros of f(2) in the
1 J )]

strip 0 Lx <A, (2= x+1p) whose imaginary parts are positive,
zero, and negative respectively.  Let

. ~0
u+ — e\p [___Q_‘_ﬂ ]’ — exp [aﬂlwu‘l u“ — CXP LQWZZ:!L ].

Let g*(u), g°(u), g=(u) be integral functions whose zeros
are {utt, {ud}, {u;") respectively.  Then

FlE) =t o+cxp< —Qﬂ ><r“ (\p( T‘_“--Z»- )g t:\p(""z'Z

where (z) s an uztegml Sunction such that I (2) has the period

A It isto be noled that the set 13,?,} is finite so that g°(w)

can always be taken as a polynomial whose zeros are at {

{un}
Proor. If {zf! contains an inﬁnity of terms, the

imaginary palt of zfy»+w asnyow so that {uf|—rew.
Hence an integral function g
zeros at {u} }.

T(x) always exists having its
A similar statement can be made regar-
ding the cxistence of ¢7(u). Recgarding ¢%(u), there can
at most be a finite number of zeros of f(z) on the real

axis in the strip o € x<a. Hence lu,‘f} is a finite set so

that g°(«) can be chosen to be a polynomial. Now the zeros

——Qn'l"
of gtexpl —— )are the set{ z7 +kal, k=o, = , =2,
S ¥ A 1 f ]
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n=1,2,..and thesc are exactly the zeros* of f(z) in the
half-plane y>o. Similar statements hold for ¢°(x) and
g*(u). Hence a relation of the form (4) holds where
h(z) is an integral function such that exp[4(z)] is periodic
with period x. Therefore, for each z there is an integer
k such that
Mz eA)=h(2) = 2k=i. (5)
If (5) holds fora :—z; and a certain £=£,, (5) holds
with the same L==4, in the mlrmbouxhond of 7=z, and
since A(z) is an integral function, it follows that (5) holds
for the same %=k, and for all z. Hence A" (2 1) = I'(z).
This proves the theorem.

2.1. When the function f(z) i an evén or odd
function, the representation given in (4) can be consider- -
ably simplified. We shall prove

THEOREM 1 A. Let f(3) be an even integral function with
period n. Let D be the portion of the z-plane dsfined by

~ ¥
0<x<\ y>e f

o<x<7 ) =o.
. P
Let { i } be the zeros of [(Z) in D and let it have a zero of
order 2 at z=o0. Lel

u,=—sin? =* Fen

. ] . { e e
and let g(u) be an integral function having - ud}fm ils zeros.
Then

CON ) Qi 2 T ( T2 7"&')
Slz) ="' sn Fg\sint =), (6)

where h(z) is an even integral Sunction with period .

* Multiple zeros are counted according to their multiplicity.

If zp is a zero of order X - for f{z), zp+m\ is also a zero of order % for

any integer m.
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Proor. If { Zu} is an infinite set, [, l—)w and so an

integral function g(u) exists having{ ,,} for its zeros.
Now the roots of the equation

=, ()
where z, lies in the domain ogx<, y>0 consist of the
set { + ;;,,-|-k,\}, k=o0, =1, +2,.... If 7, Hesino<x<r/2,
y=0, —Z,-+lies in A2 <x<), ¥y =o0. If z, = \/2 the roots
of (7) are exactly the set { xr/2 42 } Hence the coeffici-
ent ¢*® in (6) has exactly the same zeros as f(z), multiple
zeros being counted according to their multiplicity.
Hence an equation of the form (6) holds, /z(4) being an
integral function. It is casily seen that A(z) is even and

so it has the period A since /’(z) has the period A, as may
be proved in the same manner as in § 2.

sin? ™% — sin?
A

2.2. When f(z) is odd and has period A, we see that
z=o0 and z = A/2 ane zeros. Also f(z), 'stL\‘z is an even

periodic function whose zeros are the same as those of
J(2) except the set { &k fand{rj2+hr} k=0, 21, £ 2,....
Hence we can state

THEOREM 1 B.  Let f(2) be an odd function with period
X having a zero of order 2p+1 at z=o0 and of order ¢>1 at
z=\[2. Let D denote the portion of the z-plane as in Theorem 14.
Let {g“} be the zevos of f(z) in D, the zero at z=-\/2 being
counled q—10 times. Let

.

u, = sin? ™%
A

and g(u) an integral function with zeros at {u, L. Then

f(z)=¢") sin 2_? sin? ’%g ( sin? EXZ ) > (8)

where h(z) is an even integral function with period ».
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II
3. In this part we confine ourselves to per;odlc
functions havlng only a finite number of zeros in the
periodic strip o<x< A. In this case the sets {z} }, { 20}

and { z; } are all finite so that the functions g+ (x), g°(x),
g (%) in Theorem I can all be taken as polynomials having
luT }, {u“, } s { "} ! for their zeros. So we can state

THEOREM 2. Let f(z) be an integral function with period
M and having m, n and p zeros whose imaginary paris are positive,
zero and negative respectively in the sirip o < x < x.  Then

S&)=eg,, esp (- 272 ) g, exp (22 ) g, exp (2T5) (o)

where g, (1), g,(u), g,(u) are [Jo{y)zomzals of degrees m, n, p
respectively.

3.1. When f(z) is of finite order*, ¢"®)in (g) is of
finite order so that 4(z) is a polynomial. Since #(z)
periodic we must have 4’ (z) = @, a constant. So /(z)=

2nik
is evident that g, (), g.(u), g,(¢) can be so chosen as to
have the value one at u=o0. So we can state

THEOREM 2A. Let f(2) be a function of ﬁnz'te order
and period x. Let it have m, n and p zeros in the strip

oL X< whose zmagma.y parts are positive, zero and negative
respectively.  Then

Sz) =
4 e‘cp( okniz ) 2,.CXD ( 2miz )g“e‘xp ( ~’;Z< ) gexp ( 27rzz)

(10)
where k is an integer and g,,(v), g,(u), b[,(u) are polynomials of
degrees m, n, p respectively and are such that

am(o) _gn(o) '—gp(o)*rs (II)
A being a constant.

az+B and a= since ¢*® has perind A. Moreover it

* For the definition of order, see II1,
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4. Next we shall find a necessary and sufficient .
condition that a periodic function of finite order has
only a finite number of zeros in a periodic strip.

THEOREM 2 B.  Let f(2) be a function of finite order and
period n. Let M(r, f)=max |f(z)!. A necessary and suffi-
. 1zl £

cient condition that f{z) has only a ﬁnite number of zeros in
the strip oL<x <\ is that

lim log M(r, f)
r

r—20

<. (12)

Proor. If f{z) be of finite order with period x and
having only a finite number of zeros in o < x < A, the
representation (10) holds so that we have

e log A{(’3f)< -
and, a fortiori, (12) holds. If (12) holds, we find by
using Jensen’s formula that
im0 < )
where n(r) is the number of zeros of f(z) in |z]| <.

Hence there is a constant B and a sequence r, <7,.. <
r,— « such that

n(r,) < Br,,. (14)

We can inscribe the square %= =7,/V2, y = xr,/Vg
inside the circle |z|=7r,. If p, be the number of zeros
of f(z) in the rectangle x =0, x =1, », = =7 [V2 we see
that the product of p, and the integral part of 2r,/x can-
not exceed n(r,), and hence by (14), Br,. So p, cannot

exceed a finite number and since 7,—» o the required
result follows.

4.1. Wecan now get a more precise result for the
increase of periodic functions satisfying (12). For such
functions the representation (10) holds, We shall prove
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TueoreM 2 C. Let f(z) be a function satisfying (12)
and having a period . Let m, n, p be defined as in Theorem
2 A.  Then there exists an integer k such that the following
relations hold :

(i) lim 281/ ‘f (re?)|
r=>u0

foro< o < =;

=(—k+m .2; sing

i@ o
(i) 11m log [f(ﬂ’ )l = (k_;.'nvi‘p)'"—; sin ¢
Jor = <8 < 2m;
ooy i log | f{==1)]
(i11) hm ;- =0
f _ 27
o8 M(.[) _2r

r—>o
where q is the greater of the two numbels (m—Fk, p+n+k).
Proor. Itis known* that (12) along with the fact
that f(z) is bounded along the real axis is cnough to
ensure that
;*]o M(r, f s
g ( ) .

Dy
r—vcr)

so that f(z) is of order one and finite type. Hence by
Theorem 2 B, the conditions of Theorem 1 A arc satis-
fied so that the representation (10) holds. Moreover if
i
u=e ",
2_; r8in 9.  Hence log [u|~»— for
o<d<wand 4w for =< g <27. These facts along
with (11) and the property that
lim 2
lnisw U
e:-cists and is not zero for a polynomial P(x) of degree n
give (i) and (ii). The relation (iv) follows from (i) and
(ii) while (iii) is a consequence of the periodicity of f{z).

we have log |u[= —

* See, R. Nevanlinna, Eindeutige Analytische Funktionen, (1936),
434-
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.

4.2. In Theorem 2 C, the numbers m, n, $ are non- -
negative integers. If m=n=p=o, it follows that k<o
unlessf( )is a constant. If m »n p areall not zero, m+4n4p
is a positive integer. So m—k, n1pik cannot be both
negative or both zero or one negative and the other zero,
since their sum is m+nyp. Hence in this case one of
them at least is a positive integer. Hence in all cases one
at least of m—k,n+pk is a positive integer unless f(z) is a
constant. This leads to the following known result.*

THEOREM 2 D.  If f(z) be a function with period A satis-
Jying the condition

lim 08 M(r, f) < 2/\7:
I —

=0

then f(z) must be a constant.

Proor. Obviously (12) holds and if f(2) is not a
constant we get from Theorem 2 G, that

1m@”“f}hJ%M“ﬂ>?

o 4 J U0 = ?
which contradicts the hypothesis.
5. Let
O A <Az A (15)

be a scquence tending to «» such that xa;2 converges.
Then it is known that

~n(1__ (16)

1s an integral function of order two at most. We now
proposc to find the condition that (16) should be a
periodic function. We shall say that two infinite arith-

. . ) ]
metic progressions (A.P’s) [ a+nd; and {b+nd }, n=o0,
+1I, =2, ..., with the same common difference d are

complementary when one consists of the negatives of the

* J. M. Whittaker, Inicrpolatory Function Theory, Camb. Tracts,
33 (1935)5 86, Loo2«
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. terms in the other. If two complementary A.P’s are
identical, each is called" a self-complementary A.P. We

can now prove the following

TueoreM 2 E. A4 necessary and sufficient condition that
(16) should be a periodic function with period A is that the sequ-

ence { +A, } must be capable of being split up into an even
number of distinct A. P’s which can be grouped into complemen-
tary pairs, the common difference for each A. P. being A.

PrOOF. () is an even function having no zero at
the origin and it is of order two at most. Ifit has the
period », the number of zeros in the strip o <x < A are all
real and so finite in number. Let A, Ag,. .» A, be the
zeros in 0 < x < A/2. Then a representation of the form
(6) holds where A(z), being an even and periodic polyno-
mial, must be a constant. Hence we have, by Theorem 1 A

{
=

)

i
C’(Z) . f: (I 7)
from which we easily see that { +2, } can be split up into
an even number of distinct A.P’s which can be grouped
into complementary pairs. In fact, the zeros of each
factor of (17) give a complementary pair. So the condi-
tion is necessary. To prove that it is sufficient we choose
from one of the sequences of each complementary pair
one number, Thus we obtain a finite set of numbers

A, Az, Ay Let

[ )
’ i sin” =
H(z) =1 {1~ x|
w=1] 2 7|
L sin A )

Then it is easily seen that H(z) has the same zeros as o(z)
and has the period ». So
o(2) = ¢"“H(z),

V—2
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where %(z) is a polynomial of degree one at most, since
the exponent of convergence of e } is one so that a(z)’
is of order one. Since 4(z) is also even and ¢(0)= H{o)=1,
we get ¢"® =1. Hence ¢(z) = H(z) and so has period a.

5.1. Similarly we can prove by using Theorem 1 B
THEOREM 2 F.  Let {1\, } beasin§ 5. Let

z2

o(z )——zn I—-E). (18)

A necessary and sufficient condition tha! o(z) should be periodic
with period A is that { =, } must be capable of being split up
into an even number of distinct A. P’s with common dz;ﬂe?ence A

two of which are self-complemeniary while the remaining can be
grouped into complementary pairs.

II1

6. In this section we consider the general case of
functions of finite order. Let f(z) be an integral function.
The order p is defingd by

-log log M(r, /) j)
e
It 0 € p < », the function is said to be of finite order. if
p > o, the type of f(z) is defined by
lﬁlog JI {r, f)
If p = o, the function is said to be of order zero. In this
case we require a finer distinction. We shall define the
logarithmic order (l-order) of a function of order zero
and the /-type by the limits
--—log log M(r, f)
M Tog log 7
— _log M{r, f)
}1};‘ (log 7)*
It is easily seen that the [-order p>»1 unless f(z) is a
constant. For a polynomial the [l-order is one, though

=d.

©

(19)

d

R T —
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- the converse is not true. But it is necessary and sufficient
for f(z) to be a polynomial that f(z) should be of [-order
one and finite type. We shall define m(r, f) by the
relation

mir, f) = mn [fi)

6.1. We shall show that when f(z) i of finite order
and is periodic, the functions g¥(x) and g~ (x) in (4) can
be taken as functions of order zero and of finite log-
arithmic order. For this purpose we require some preli-
minary lemmas. A function ¢(uz) of order zero with
#(0) = 1 can be written in the form

o u ,
pa) =1 (17 ) (20)
Let |u,/=r,. We consider along with ¢(«) the func-
tion
, o
¢r(u) = I (I—;L;)- (21)
We shall refer to the exponent of convergence of any
sequence { z, | with [z,]— « as its order. The order of
{ } in (20) is zero. We first quote the following known
lemma*.
Lemma 1. For the funclion ¢{u) of order zero given
by (20), we have the inequalities
"n(t) ] (" n(l) (P n(t) _
Eo"t d<log Mir, ) <| " a1 \ W, (a2)
where n(r) is the number of u,’s in [uf < r.
6.2. Lemma 2. Let ¢(u) defined by (20) be such that
there is a A > o for which
Tim log M(r, ¢)

hm e 1) >d>o.

Then
~—log m(r, ¢)
li,n; (log r)* >d

* (3. Valiron, Lectures on Integral Functions, (1923), 132.
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Proor. Let o <38 <d. Consider the function
H(u) = ¢,(u)e~“~? (log u)*.
The function H(x) is of order zero in the region
. - —=gamp (¥) <, |u[>7> 0, (22)
and so by a well-known theorem* if H(z) is bounded on
the boundary of (22), it is bounded in the whole region
(22). Then we must have

log ¢1()<(d—8)(log r)*+0(x), . (23)
as 7 —»w. But
$:1(r) > ()]

on |u| =7 so that .

log ¢, (r)=log M(r, ¢,)> log M(7, $),
from which we conclude that (23) contradicts the hypo-
thesis. Hence H(z) cannot be bounded on the boundary
of (22) so that we conclude that ’

s log m(r, ¢) __ +— log |&((—7)|

M Tlog ) 7D (leg r 29T

and as § can be chosen arbitrarily small, the lemma

follows.

6.3. LemMa 3. A necessary and sufficient condition thatt
S(2) = o(e™), az=0
rhould be of order p is that »(u) is of l-order p.
Proor. Let o be the [-order of ¢(u). Then it is
easily seen that p < o. Let 0 <« <e. Then, by definition

Hence by Lemma 2,
—— log m(r, ¢)
lim —ﬂﬁu >1. (24)
Let z=x+1p so that |u| = r=|e**| =¢*, if @ >0 as may be
supposed without loss of generality. Hence
* G. Valiron, l.c. p. 125.

1 It is to be noted that p>>1, otherwise such a representation
is not possible.
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log ¥

>0 = lo(r)| > m(r, ¢)

which, in con_]unction with (24), gives
1 <
log M ( A )

T e B
so that p > a, and since « can be chosen as near to o as we
please, we get p >0, Hence p= o,
6.4. By a similar argument we can prove
LeMMA 4. A necessary and sufficient condition that
) J(2) = (e)
should be of order p and type d is that ¢(u) is of l-order p and
I-type d|a|=* where d is supposed to be positive.
7. The next lemma connects the order of increase of
the function 7’!(7) of the zeros of ¢(u) with its l-order.
LemMa 5. Lel n(v) be the number of zeros of ¢(u) defined
by (20) in |u| gr. Let
s log a0,
e o loglog ¥
Then the l-order p of ¢(u) is equal to 1+0.
Proor. By Lemma 1

Sru ’i(f) di < log M(r", $).

Let o> 1. Then the above inequality gives, by the
definition of /-order,

n(r) (e —1) log r = O[(log r%)7*+]
for every ¢>o0. Hence ¢ p~1. Next, by the last in-
equality in Lemma 1, we get

log M(r, $) < S wE S ”(")df (24)

By definition

n(r) = O[log r)7*]
for every ¢ > 0. Using this in (24) we easily see that
p< o+1 by noting that
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rf-’fgf)'dm L nr2) g, — OU (log r+log o)™ ] .

v
— O[{log 1)***].
Hence p = ¢+1.
7.1. LEmMA 6. Let {z,}, 2, =%,+D,, n=0,1,2,..
be a sequence in the strip 0 < x < X such that |2,|—» o a5 1% 0.
Then the exponent of convergence o of 'l z”} and the exponent of
convergence p of the set {5,3+m,\ }-, m=0, =1, +2,.. are relat-
ed by the equation p=1-+o
"Proor. It is evident that { ‘3;,+m,\} and { gj),,-{_m)\}

have the same exponent of convergence since o < x, <A.
Tt is evident that p » 1. If p > 1, we have

f4m
m=0 m=>0
I e d!
=0 ( i yﬂl[a ) + So (},z_._tz)g)r/z
1 I . dv
=0 () a9
Hence if ZI T converges, so does the double series

2 2,

(n) (m)
Hence we conclude that po+1. Similarly if (26)
converges, so does the series on the left side of (25), and

“)’n “.’m/\ (26)

the relation (25) holds. So ——1:1 converges. Hence
. X
oL p—10r p>ot1. Therefore p=o-+1.

7.2. LemMma 7. Let z,=x,+1,,7, > 0 be a sequence of
order p in the strip o < x, < . Let

u,= exp( 27%")

and n(r) be the number of u,’s in uj<r. Then

-
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i K log n(r)
P e 1og log 7*

Proor. We have

so that

A
yu= - 1og |u,|

from which we conclude that

.N[%_ log r—f-.\]; [— log r—.\:l (27)

where N (¢) is the number of {\,, } in [z} <t The relation
(27) gives the required result, since it is known that*
——log N(r)
5 Tog (7
8. We can now prove that if f(z) is of finite order ¢
and has period A, then g*(x) and g~(x) in (4) can be
chosen so as to be of order zero and.that, then, A (2) =
exp(2k=iz/r) where kis an integer. First we note that
p> 1 and if the number of zeros of f(z) in a periodic strip
be more than finite then, by Theorems 2B and 2D
2 EGL)_ (28)
Since we have considered the case of a finite number of
zeros in section II, we shall suppose that the number of
zeros in a periodic strip is infinite so that p > 1 and (28)
holds. We shall prove

TueoreMm 3. Let f(z) be of order p and period ».  Then
the functions g+ (u) and g=(u) in (4) can be chosen so as to be of
order zero and l-order p at the most. One at least of g% (u), g~ (u)

will have the precise l-order p.  The function h(z)= Qk;iz +B,

fandr 8l

* R. Nevanlinna, 1. c., 207-8.
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where B is a constant and k an integer. The explict expressions=
Jor g* (u) and g (u) are

gt (u)= i:])(l—uu?) andg‘(u):f? (I-;u;:) (29)

The function g°(u) can always be chosen as a polynomial as al-
ready stated in Theorem 1.

Proor. The order of the zeros of f(z) cannot exceed
p. Let it beo. Then the order of the zeros of f(z) in
the strip 0 < x <1 is o—1 in virtue of Lemma 6. Then by
using Lemmas 7 and 5 we find that the l-order of g*(u)
and g~ (u) defined by 29 cannot exceed ¢ and one at least
is of l-order o. Hence by Lemma 4 the function

) = gresp (255 pop (25 ) gmenp (25
is of order «. Hence

J(R)=e"RH(z),
where /(z), being of finite order, must be a polynomial.

Since #(z) is periodic we have A(z)= Qk:iz +B. Now if

o < p, f(2) must be of order one and moreover
e M D)

so that if (28) holds we must have o=

This proves the
theorem.

8.1. It is well-known* that if ¢(«) is a function of
order zero then

i log m(r, ¢)

Selog M(r,9) ="
Using this in conjunction with Theorem g and noting that
if y— w0, u=-exp(2niz/r) >0 and if y—yp — w0, |t|-» e,
we easily see the truth of the following

* G. Valiron, l.c., 136.
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* THEOREM 4. Let f(2) be a periodic function of finite order
satisfying (28). Let ,
m(¢) =min [ f(2)}, M(¢§)=max [f(z)|
as z varies on the line y = ¢ where z = x+1y. Then
- log m(y)
i Tog M{y) ="

8.2. We conclude with a theorem to show that the
assumption of periodicity in a function of finite order
imposes very heavy restrictions. It is well-known that
a function of order one that is bounded along two
interselting lines must be a constant. For periodic
functions, any line parallel to the direction of the period
is a line of boundedness. It can now be shown that a
periodic function of any finite order cannot be bounded
along any other line intersecting the direction of periodi-
city. This follows from Theorem 4 and the periodic pro-
perty since log M(»)—»» as |y|—> . We can state this
result in the following form.

Tueorem 4A. Let f(z) be a function of finite order
and period A >o0. Then [f(z) cannot be bounded along any
whole line intersecting the real axis without reducing to a constant.

V—s



ON A FEW RECURRENTS

BY )
SATISH CHANDRA CHAKRABARTI,
Fadabpur College of Engineering and Technology, Bengal
[Received 18 September, 1940.]

1. In this paper are given three recurrents of which
the first one, viz. (5) has been derived from two earlier
Theorems (1) and (2); the second, viz. (16), which is the
main result in this paper is the general case of (5), obtain-
ed by generalization. In proving (16), Theorems (6), (g)
and (11) have been obtained. The third recurrent (18)
has been deduced from Theorem (11), the recurrence-
formula (19) being the same as (11), expressed in a
suitable form.

Some notations used in earlier papers* are also used
here, viz.

(1) []—— (a*—g) (@~ '—1) (a" %~1)...(a°~1),
(i) []—(an ) (@=2—1) (@), (e )

((iil) "S,=sum of the products of n factors 1, a, a?
.., a""! taken x at a time.

For the sake of references, four theorems published in
earlier communications* are given below:—

?

kz‘(_.>x[2k — II~ 2x:|2 2, = (=) . (1)
iz ) [Qk = 1= 2ng R (_")k (2)

HEE
H

* Chakrabarti, S. C.,, On a few Algebraic Idenutxcs, Bull.
Calcutta Math. Soc., 27 (1935), 37-44.
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P
and > (=) u,"S, (4)
r=0
is the first element of the nth order of differences obtained from the
series 5
® 7 Ugy Uy, Uy, Uszy. - oy
by using 1, a, a?, a°,. .., as the successive multipliers.
1.1. THEOREM. Denote
A 8. .08y | @S ()"
[ I 6S,...58,  as$,
|

Then the general recurrent of the same type as Ay is

A= (T[S o (- )"ZIH (5)

according as n is even or odd.

The recurrence formula in this case is
n—1
S (=) (At DM, = ()71 S0,
=0
[Let us consider the particular case of this formula when
n=6, then the left side becomes

ZJ (=) ds_. 7S, —78s+7S;, for Z (—)x7S,=O
+=0

==t Z( 0 il Z( ¥ [077], S

(t-—l

a?

i

- +1, by (1) and (2)
== __GS,a.

The general case may be similarly proved.]
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2. THEOREM.
- n—1
xax " — S ”_:3 ‘n“"‘Q z n-—-I
2= e L @
according as n is odd or even.

-
Proor. First we establish the following two rela-
tions:— :

If M, denotes the left side of (6), then

(i) M,—M,_,=o, if nis odd (7)
and (ii) M,+(a"*—1)M,_,=o, if n is even. (8)
Write out M, and M, _, in full, then in the first case by
(3), we have

o

n—2 n—2
. _ a1 a1
MM, = —a ‘{1—- a_y T ~4~a_1——1},
where in the expression on the right side -the terms
equidistant from the beginning and the end are equal in
magnitude but opposite in sign. As there are an even

number of terms in the expression, it vanishes.

In the second case

S G e SN it |
M, —M,_ = —a tI_ B R
= —a""'g (say)
and
5 _ o an-3:z an—s_l ]
Mn-—l—’¢"‘~—(a '_I){I_ a—1 + e a—1 —1I j.

In the last equation, the expression on the right side
vanishes for the same reason as in the first case. So ‘the
relation (8) is established. '

It is evident that the relations (7) and (8) are also
true if M, deno'es the right side of (6). So with the
help of (7) and (8) Theorcm (6) may be proved by
induction, e b Gh g T
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3. Let
":P)»:‘I‘*‘ “ +<tza )I()(d ——I;)azp
(a —1)(a*?—1) (@ —1) a*. ...n terms;

(@®—1)(a*—1)(a°—1)

tr,p).=1,ifnis1;
(r, p)» = 0, if n is zero or negative.

A Then we have

THEOREM.
r+ ISV+ i — ”Sn

n—1
x n—!S — w—1___ rT’
2 ( ) [n:_r_ ] x ( ) (au-}—r_l) I_ (9)
where
R,=(— )ﬁ = 1] (41, 1), 415 ¢f nand r are bot/:]
i odd,;
n—1
R,=(-) 2,:74—1] (n+1, r,-l),,zflz is odd and r
even; |
ez " (10
[?i’;] n, 2-_2),+1, if n ts even and r (10)
odd:
Ro—(— ;-[n:i;]]’(n’ r4+1) a2, If n oand r
" are both even. |
Proor. First we establish the following ‘
LEMMA.
z (an-r’ :_I)a H v "—‘S;
7 [n—2] [n—x
91_:71 1 R n—)—? 1 J’ )
=(-) "~ TS Lor (=) T -8 .(”)
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according as n is odd or even, k, being the lgft or right side of _
' (9): n>1.

(i) To establish (11), when £, denotes the left side
of (g), writeout R, and R,_, in full when n and r both
are odd. Then in the first case of (10), we have

2ol Tpyr—1 741 *
R,—R,_,=(~) 2 [ ro2 ] {th.t2+t3+ Y termsJ&,
where
an+1___1
a’—1
(a'“ I)( ar+i_ ) . a”'”——} a
= @_1)(@—1) ¢ T &=1 a_,

and so on.

ty=a", {,= a—a,

Hence adding all the #’s we have

d‘r(’ +1)

ipsil!
. "..; n4-r—1 n+1 Ip
Rn“"Rn—-l - ( l: rt2 ] l:;__I-I

= (_;'_’I ”'_Q_I a1 (12)

In like mannerin each of the other three cases of
(10), a result either the same as or similar to that of (12)
may be obtained. Then from these four results equiva-
lent to R,—R,_,, we have

Ry=R,_y=(=)T ["T7| s,
or ()T ["7 e s, (ig)

according as z is odd or even.

Again write out £, and k,_, in full, multiply £,_,
by *~1§,/'S; and add the product to £,. In the result so

obtained the term containing R,_; will disappear. Then
n—1

S
to this result if the product—zs—,zkn-z be added, the term
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“containing R,_, will also be removed. Proceeding in this
manner we shall arrive at the relation

n—1

Y. fagrnmig = [R] (14)

xr=0 n

Now write out R, and R,_, as obtained from (14) in full,
and then we have

n—1
Rn_Rn—1= [n + :’Z“ I] z Q_’%}a_; kn—: "—ISx' (15)
x=0 v

So from (13) and (15), the relation (11) is obtained when
k, denotes the left side of (g).

(ii) Now suppose 4, denotes the right side of (9).
Then substituting in the left side of (r1), the value of
k,_. as obtained from the right side of (9), we have

n—1

Z (au +r ir:é‘l )av"k”_{ “_‘ISI

x
*=0

— P ve @7
={-) 7] 2. (=) +S., S
e
w—1
4+ (—)" “_‘57717 5 (_)A‘a(_’--n)x a-ig

HE

In the last equation the second summation vanishes,
because it is the first element of the n—1th order of
differences obtained from the series

1, a*>~", a®C—", @3C=n_

by using 1, @, 4% a® ...as the successive multipliers.

The first summation is the left side of (6). So the rela-
tion (11) is also true if £, denotes the right side of (g).
So the relation (11) between £, &,_,,... &, is fully

. established in both cases when £, denotes the right and
the left side of (g).
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Now it is evident that the relation (g) holds good in*
the case of %, i.e. when n=1. Then from the relation
between k, and £, obtained from (11), we can show that
(9) holds good in the case of k,. Similarly it can be
shown that (9) holds good in the case of &;, &, etc. Thus

with the help of (1), Theorem (g9) may be easily proved
by induction.

4. Denote
C _ '+2Sl r+1S,ar+(__)2
: 1 rS,a” -
| 1'+3Sl r-'r-SSZ 1'+2Sra"_l_ (_)3
03 — ) I r+2S1 r+lS’ar
!

1 rS,a l5.

Recurrents C,, C; etc., may be similarly expressed. Then
we have

THEOREM. C,=R,. (16)

. < .
In this case the recurrence formula is
n—1

z (_).z'(Rn 1) +ns__.< )n Lrdn=1g gr, (17)

[The left side of (17)

n—1
— Z (—)A'Rn_‘,r'Hleﬂ\—(-——-)"_l"+"—1S”_ld"’1

k—1

for Z (=) S, = (—)*—1"=18,_a*t?

=0

[7+71] -
[” 1]2( )* [n+; Ix] TS (=)t IS e
x

. (___)u 1 r+n-IS'a s by (9).
Thus the formula (17) is proved.]
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. As an illustrative example of the last recurrent when.
r=24 and n=4, we have
llSl ]lS_, 1153 10S7(17+(—)4 {
1 10‘5'1 105‘2 9S7a7 11
L 0SS j b [ A l (4> 9)s-
1 ’S.a’ 5

Corollary (1).

Corollary (2).
recurrent C,, vanishes.

If r=1, the recurrent C, reduces to A,.

If r=o0 and n is an odd number the
C, now becomes a recurrent in which

the firs: element of the last column 'is zero

and every
other element of that column is 1.
Corollary (3). If r=o0 and n is an cven nwmber, the

recurrent G, is equal to

=T

5. THEOREM. Denote

4 4 3 o
am1 @)@ @ex
a—1 (@>—1)(a—1) a—°*1 1|,
a*—1 at—1
1 a 3 g [3
a—1 a—1 1|,
D=
1 a h[l]
I
: 1 x—%
then Dnz”S"/\_I, (18)
In D, the clement in the rth row and Ath column is
N Y S

k‘—'y"—?lsk_'+]
H . ek —
and the rth element in the last column is (—) 2 [’ZI ’] )

be even and the other odd, and

if one of n and ~
(—) "—EH [’l“‘r_l:, , if » and £

b . P
odd.

R. Fin this case is
V—s
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n—1

Z (=) (*=*S,_, a—1) "-g:ax _ (—)gztl l-n.;.z]z

or (— )"+T ]2 according as 2 is odd or even. (19)

[The left side of (19) is

n—1 n—1

r=0 -

- The second summatlon is the left side of (6) and the
first part

n—1

. z ( )a}n(u 1)—a(n—2) "—IS
. X

= ”Sn Z (__).ra(Z—-n)l" u—le
=0 -
=o0.
So the formula is proved.] ‘
Corollary (1).. If x==1/"S,, D, vanishes.

Corollary (2). If A=o0, D,—=-—1. This corollary may
be obtained direct, taking (6) as R. F.



SOME PROPERTIES OF GENERALISED
COMBINATORY FUNCTIONS

BY
HANSRA]J GUPTA, Government College, Hoshiarpur

[Received in'revised form 15 December 1940]

1. Throughout this paper, p denotes an odd prime;
all other small letters except x, denote integers > o, unless
" stated otherwise. ¢ is Euler’s function. The symbol «“<”
is read “‘less than and prime to.” ’

If po|m but p*+' ; m we say that m is «-potent in p,
and write pot, m = e. _

If a(pf)lm but ¢(pf*') ym, we say that m is
B-piquant in p, and write piq,m = j.

2. Let

(e +1) (x 1a) (-t ) - tant) = Z["] X7 a>o0. (1)

Then [(’;:I == 1,[7;] _‘Z_,,; and [] arn—1/2,

We shall take [:t] = o whenr»>n>o.

a

Putting — 1 for x in (1), we readily obtain

(—v[F] =o (2)

The function l:;z] has properties very similar to those

r=

possessed by the combinatory function (f) to which it

reduces when a = 1. The object of this note is to prove
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a few of these and to apply them in proving a congruence =
property of primitive roots. The idea was suggested by
one of Professor S. C. Chakrabarti’s papers.*

3. We have

(x-+1) (x+a) (x+a2) . .. (x+a* 1) (xtat) ... (xpatt'=1)
=(x+1)(x+a)(x+a)...(x+a* ") (x+a*.1) (x-+-a*.a) (x -+ a*.a?)

.. (x4ak.a' 1)
k i
— z [é]n Xk, 2 [i]aak:xl—l.
s=0

t= 0

e [ = 3 [] [ &

s+t=r

In particular, replacing £ and /in turn by n, and
taking / or £ equal to unity, we obtain

15 ]= 1]+l ., (4)

and also . = a" [:]a+a"‘1 [rfl]a' (5)

From the first of these results, we have
n+1] )
[ r ]a o Z ¢ [T_I]n. (6)
m=r—1

Putting r =2, 3, 4,..., in succession in this result, we
can show that

n] _ (a*—1)(a"—a)(a"—a’)...(a"—a" ")

[r]ﬂ_ (@a—1)(a’=1)(@®—1)...(a"—1) ° (7)
"1) (@t —1) (@ -T) (e )

=L (Ia—I)(az-—I)(a3—1)...(a”__1) aCIe, - (8)

=gl ©

* S, C. Chakrabarti, On a few algebraic identities, Bull.
Calcutta Math. Soc. 27 (1935), 37-44.
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- where 7], = (@—1)(a""'—1)(@*—1)...(a—1), i > 1;
and o],=1.

We can now define [:] for all values of x by the re-

lation

[ ] (@*—1)(a""! _x)(a;i2:1,2;'(“_“Li’~1’.) [;], r>1

We take [g:l =1 for all values of x including zero.

Thus it is easy to shew that

L] = o
and [_k] _ (_I),[k+7"— I] L a-rCetr—ngz,
7 Ja r a

I believe that these symbols are more suggestive than
those employed by Prof. Chakrabarti.

4. In (7) replace a by &% b being a primitive root
of p»*v and u > 1, v = pot, £, k any integer > 1. Also let
n=g¢ (p"), and (k, p—1) = g; so that

k= pgk,and (p—1) = gh,

where (hy ky) =1 = (ky, p).
bkn_I — b’:n_bkt
kn
and b

= 3 when » = 1.
We proceed to prove
THEOREM 1. If ¢(4°) <g(r—1)< ¢(4°*'), #>a>o0;
and pigq,gr =g, # >8> o0;
bkn
n pes
then [r]bkE (=1) 1 (mod PPy,
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When 7 = 1, the result stated in the theorem is trivial, -
we can suppose, therefore, that n>7 > 2. We have

b b =1 b (mod pr*¥), t=1,2,...,7—1I.

Since ¢(p?)<g(r—1)<o(p*t?), for some value ¢ of
tL (r—1), piq,gt =«; and for no value of ¢t (r—1) is

piq,gt > o. Hence piq,kt, = v 4+ « Or 0, according as « >0
or a=o.

kn kt
Therefore* o =1 (mod p*~=or p*+7), t=1,2,...,

r—1; according as « >0 OT o= 0.

Again since piq,gr = g, we must have

piq,kr = v4-g or o, according as g >0 or g = 0.
kn

Therefore mzo (mod pu—ﬁ or P.,_H.)’
according as g >0 or g = 0.

bkn____I
I S

where §= 2u—a—f8, when «>0 and g>o0;
= outv—pB, when «=0 and g>o0;
— ou—a+v, when >0 and g=o;
=2(u+v), when a=o0 and g=o.

It may be noted that a =0 only if (r—1) <4, and g=o0

only if h{r. Moreover &> 1, except when o= g=u,
ie. whenr=hp" 2, g>1r>2.

THEOREM 2. If r=hry, vy > 15 then*

bkn_ ) u—1
et ()= o

where » = u or § whichever is smaller.

* Evidently, all fractions occurring in Theorems 1 and 2 must
first be reduced to their lowest terms.
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We have identically

T (x—mF) ~—’T_l(x—-b"") (mod p*).
m<p" ;=0

Therefore*

(onpp o= 3 (—ay[f] e (mod ).

- Hence -

(=0 (# ¢ )z (~1y[}],, (mod

= (—I)”‘lb (mod )

and the theorem follows.

* M. Bauer, Zur Theorie der identischen Kongruenzen, Bull.
de la Sos. Phys-Math. de Kazan, (3) 3 (1928).



SELF-RECIPROCAL FUNCTIONS INVOLVING
APPELL’S FUNCTION

BY
B. MOHAN, Benares Hindu Universily
[Received 5 August 1940]

1. Recently, I have given*® a few theorems on seif-
reciprocal functions. The object of this note is to add a
few more theorems of the same type and to derive some
new self-reciprocal functions therefrom.

I shall say that a function is == R, according as it is
self (skew)-reciprocal for 7, transforms.

THEOREM I. If

b+
P(x) = R 2Pk F 1) e+ 18 e (s) T ds,  (1.1)
27l .

b—ion

where o(s) satisfies the equaiion

a(s) = o(1—19) (1.2)
in the strip o<b<i, (1.3)
k+ioo 3 d

and f(x) = rﬂgk#mfz“r(z+!_fu~s-%fs) U (3+iv+45)

KT +Hn-38) x(9)x7%ds, (1.4)
where y( ) satisfies (1.2) in the strip

o<k <1, (1-5)
then the functi n
o) =" POV
i R,
The proof is similar to that of Theorem 1 given in

the paper referred to.

* B. Mohan (formerly B. M. Mehrotra), On self-reciprocal
functions, Quart. J. Math. (Oxford) 10 (1939), 252-60.
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. 2. Exampre (1). Istart with the Weber-Schafheitlin
integral*
[ 3T (@) Fupms (@)
"~ a~"r(1—im) v(n+im—1)

~ 2r(34 p—ym) r(s+n—im) T(t—p—im)’
where m== 1 and p is an integer or 0.

By Mellin’s Inversion formulaf we get
Fuso(@¥) Fupr(ax)
_ 1 fari a="7(1—1m) 1_‘_(gg—?__,_|-];m) x—"dm.
478 Jy—im T3+ p—1m) T(L-rn—ym) T(3—p—im)
Hence we have
xuju+p(ax)]n—p—l(ax)
* L. fd—etio a*r(1 —1la—1is) T{n—1+1 a-L15) x~ds
T 4m L_mmr(%-.tp—;a—%s)r(.—_.+n—.l_.a~4_,s)r(:—/f—f_,a 1)’
’ Putting a=2L3—4v, n=1+1%v, p=iv—IA—i, a=2"
we get
x 3, (2780 Fyap (273%)
2% d=%+lv4in QZ-SP(‘Z Ll]’_ls) F( }v—l—;}&')
2wt S«I—§+a}p—i:@ T(c+1v—2in—15) T($+1v—3S)
s . S HE
L(3+—18)
where y> —1, 2 < d < 2 and {H—:x—1 is an integer or o.

This integral is of the same form as (1.4) with
scd<2, —T<v <8 p=5v—"2 and
x(s5)=
2831 (14 2v+15) T(3+1v—19)

rGit1 AT (v AT (i + 1 39) TG 2 19)

==
x[r(%-;w—ws) r(z+;x—%s)]

* G. N. Watson, Theory of Bessel Functions, (1922), § 13-41 (3).

+ G. H. Hardy, Mess. Math. 47 (1918), 178-84,
V—s;
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It follows that the function
xi‘é’jé,,_%,\ (2 “%x)]%wﬁ (273x) . (2.1)
may be taken as the function f(x).in Theorem 1 where
p=2v—2, —I <v< $and iv—ir—1 is an integer or zero.
(2.2)

In 1932 I gave* the following three functions as
examples of our functions P(x) defined by (1.1):—

(@) xR, (x)
() HCTEIVF, n(x)
(C) wEevt 1)-7*(#+1’) (x)

If we take (2.1) as f(x) and function (a) as P(x) in
Theorem 1, we obtain

g(x)=§ PHETRE L, 0 () _
(x])t_%yjlv—l?\(2_%x.y)]lv+1)\(2_gvx.y)¥y
3
= So 7 +1y_1>\]1:—17\(2 209) e (27319)

’ X By ()’)fi%
subject to the conditions (2.2).

Evaluating this integral by a formula given by
Bailey{ we get
xEI o o ix) P\ (o~ ix) TR
&) = r(1+%;v§—4,.3~))r(14?§1:v+%.—71)
X T(T43v—1N) T(1432)
X Fy(T43v—1n, 1T-H203 T+iv—122, I-Hivt a5 —3x%5 —3%),
(w2 >2)

where F, denotes Appell’s function.
It follows that the function

XV (I —1n, T35 T+ v—id THdv+ s —3%5 —3%),
* Proc. Lond. Math. Soc. (2) 34 (1932), 231-40.

T Some infinite integrals involving Bessel functions, Proc. Lond.
Math, Soc. (2) 40 (1935), 37-48, (2.1).
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where —1 <v< g, v+2> 2 and v—1r—1 is an integer or
0, i1s R,.

3. ExawmprE (2). If we take the function (4) as our
P(x) in Theorem 1 we get

8(x) zgo PR () (9) 3 Fyyop (27 0)
X ]5—»+§x(2_%991) dy

o .
— vy, ) P @)
X Fo—n(2)dy.
Evaluating this integral by another formula given by
Bailey* we obtain
)— -t (2—dx) P (2~ x) PP p(1 4-3)
glx) = T(r1+iv—ian) T(IF3v+3In) T(Zv—1r)
X Fy (14 3a—3v, T+2v; I4+Lv—3n, I4+3v4+20; 3%%, 3%%),
where —2 <A—3Jv < I.
It follows that the function
XPFRE (1420 —v, 14305 T-HIv—n, T vk g 357 3%9),

where —1<v<s, —2<A—lv<I, and v—1r—% is an
integer, is R,. :

If we take the function (¢) instead of (b) we arrive
at the same R, function.

4. THEOREM 2. If )
b+ico
P = [T r et 1) D1 o (400)
where w(s) samﬁes (1.2) in the strip (1.3), and

I@ =5l

—+ico

27 (i 1p+18) T(3+Lv—1s)
XT(3+4r—15) x(s)x—*ds,
where X(s) satisfies (1.2) in the strip (1.5), then the jfunction

k—ioo

* loc. cit. (7.1).
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o) = [ Pef)es
is R,.
ParTICULAR CasE.  When =,
P(x) = —;Tlgi:,: g(s)x~cs.
where 4(s) satisfies (1.2). Hence

b+im

I

P(1/x) = ~S 8(s)x°ds

i—00

so that

If we put P(x) =x7iF(x), this equation becomes
Flx) = F(1/x). (4.2)

Hence, when ;. =+, Theorem 2 assumes the simpler
form: If

S = S ) x@r s (43)

where 0 < p < 1 and x(s) salisfies (1.2), and the function F(x)
satisfies (4.2), then the function

g(x) =x3% \ 27 (xy) f()dy

s R,.

It would be interesting to compare this theorem with
the following theorem* proved by me in 1932 :—

If f(x) is Ry, and F(x) salisfies (4.2), the function
gt =7 F0) )y
is R,.

* Bull. Calcutta Math. Soc. 25 (1933), 167-72, (3.5)-
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Jn the latter case, f(x) satisfies the equation
1 g+iw "
F6 = = v 1) x(o)ads
27wt Jg—iw = =

in place of (4.3).

THEOREMS 3 AND 4. Theorems 1 and 2 remain lrue
if o(s) and X(s) satisfy the equation

a(s) = —w(1-9) (4-4)

in place of (1 2).

THEOREMS 5 AND 6. If one of the functions «(s), x(s)
satisfies (1.2) and the other satisfies (1.4), the functions g(x) in
Theorems 1 and 2 are —R,



ON A NEW CHAIN OF THEOREMS IN
CIRCLE-GEOMETRY*

BY
B. R. VENKATARAMAN, Rescarch Student, Annamalai University
|Reccived 30 September 1940]

1. Introduction.. Circle-geometry possesses several
beautiful chain-theorems of successive incidence between
points and circles, of which the Miquel-Clifford chain is
probably the most well known. In this paper, I discuss
what appear to be the beginnings of a new chain of
incidence theorems, but it is not clear whether it could
be extended indefinitely. The main theorem of this
paper is equivalent under inversion to the following:

Given n circles (2 < n < 7) whose centres are concyclic,
we associale with each,odd value of n a point, and with each
even value of n a circle in such a way that the circles or points
associated with each value are incident with the points or circles
associaled with the next higher value. (1.1)

To start the chain, we need only associate with two
circles their radical axis.

2. Tt is we!l known that the «® circles of a plane =
may be represented by the points of a projective space
S,, called the Circle-space, the «w? point circles corres=-
ponding to points on a quadric o called the Absolute.
Let P be any point in a plane = called the origin. Then
given any two proper circles Ci, C, on =, the unique
circle through P of the coaxal system of which C), C, are
members is said to be associated with the circles C,C; and
is denoted by C,, as well as by C,,.

* My thanks are due to Prof. A. Narasinga Rao for guidance
and criticism in the preparation of this paper.

\
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- 3. Taking three circles G, (t=1, 2, 3) the above
definition gives us three circles Cy;, C;;, Ci,. That these
circles have a common point C),; other than P is
inversively equivalent to the theorem that the radical axes
of three circles laken two by fwo are concurrent at a point.
It is further seen that the points P and C,,; are inverses
each of the other with respect to the common orthogonal
circle of the three circles C;(i =1, 2, 3). The point Cz;
is defined to be the point associated with the set of three
circles C;(i = 1, 2, 3).

4. Taking four circles C; (i=1, 2, 3, 4) with respect
to which the inverses of P lie on a circle, we get four
such points, viz. Cy;, Cayy Cogsy Cray. I have shown else-
where* that

If the inverses of a point P w.r.t. four circles C; (i=1,..,4)
lie on a circle, then the inerses of P w.r.t. the four circles
respectively orthogonal to sets of three chosen from C; also lie on
a circle. (4.1)

From the property of the points' C;;, mentioned in
(3) and the Theorem (4.1), the result immediately follows
that these four points lie on a circle C,,;, which we define

to be the circle associated with the tetrad of circles C;.

5. Next, let C; be five circles w.r.t. which the
inverses of P lie on a circle. We now propose to show
that the five circles associated with the five sets of four circles
chosen from C; are concurrent at a point Ciay,s which s
defined to be the point associated with the five circles
C(i=1,..,5).

In the circle-space S;, let p be the tangent plane to
the Absolute Quadric o at the point P and g,, g; the
generators of o at P. Let us represent, for convenience,
by the same symbol both the circle and its representative

* On the inverses of a circle w.r.t. a tetrad of fixed circles and
their crthogonal tetrad, Proc. Indian Acad. Sci. g (1937), 128-32.



40 B. R. VENKATARAMAN

point in S;. Owing to the restriction on P in (1.1), the
points C; lie on a quadric cone Q with vertex at P, of
which g,, g, are a pair of generators. Let « be the
unique conic on p inpolar to all the conics cut out on
p by the system of quadrics through the five points
Ci(i=1,...,5). It is well known that the joining lines and
planes of any five points C;(i = 1,...,5) meet p in points
and lines forming a Desargues configuration self-polar in
regard to a.* Let 4; be the tetrahedron whose vertices
are the four points other than C; of the set C;(i=1,...,5).
Now, the pairs of of opposite edges of A, meet p in pairs
of points conjugate in regard to a«. Hence if the faces
of A, meet pin the four lines /;(¢=1,...,4) every conic
of the tangential pencil of conics on p defined by the
four lines /; is inpolar to a and in particular the complex
conic on p of any tetrahedral complex which has A, for
its fundamental tetrahedron is inpolar to «. Thus the
complex conic §; on p of the tetrahedral complex T,
which has A, for its fundamental tetrahedron and g,, g,
* for lines of the cémplex touches g,, g, and is inpolar
to a. But by the definition of a, the line pair g, g, is
outpolar to a, i.e. g;, g, are conjugate lines with regard
to a. Hence §, touches the polar of P w.r.t. a.

Arguing similarly, it is readily seen that the five
complex comics S;(i=1,...,5), of the five tetrahedral
complexes T;(i =1,..., 5) defined by the five tetrahedra
A(i=1,...,5) and for each of which g,, g, are lines of
the complex, have a common tangent line # which is the
polar of Pw.r.t. a. The triangle formed by g,, g, and g
is self-polar in regard to «. If 4% be the polar tetra-
hedron of 4; in regard to the Absolute o, Q’; the quadric

" cone circumscribing 4, with wvertex at P and having
g1, g2 for a pair of generators, reciprocation w.r.t. @ of
the result established above gives that the five cones

* Baker, Principles of Geometry, Vol. IV, 10-11.



A CHAIN OF THEOREMs IN CIRCLE-GEOMETRY 41

(i =1,...,5) have besides g;, g, a generator A in
common. From this, Theorem (5.1) follows immedi-
ately on considering the intersections with © of the cones

Q(i=1,...,5).

6. Taking next six circles C;(i=1,...,6) in the
circle space, let a;({=1,...,6) be the six conics and
B8:(i = 1,...,6) the six lines on p defined by the six sets
of five points chosen from Cj(i=1,..., 6). Let A be
the triangle in the vertices of which the twisted
cubic through the six points meets the plane p. Then
it is known that A is self-polar w.r.t. all the conics a;*.
Further, since the line-pair g,, g, is outpolar to each of
the conics a;, it is readily seen that they belong to a
tangential pencil R(range) of conics. Since A and the
triangle formed by g, g, and B; are both self-polar in
regard to g, their six sides touch a conic. But the conic
v touching g,, g; and the sides of A is definite. Hence
the six lines 8;(i = I,...,6) and the lines g,, g, all touch
the conic v. v is in fact the envelope of polars of
P w.r.t. the conics of the tangential pencil R. Let
A= ({=1,...,6) be the six lines defined as in (5) by the
six sets of five points chosen from €, Then, by recipro-
cation in regard to © of the result established above, we
see that the. six lines A; and g,, g, are all generators
of the same quadric cone Q with vertex at P. Con-
sidering the intersection of Q with £, the theorem
follows immediately that

If the inverses of a point P w.r.t. six circles Cy(i =1, 2,
...s6) lie on a circle, then the six points associated with the six
sels of five circles chosen from C; lie on a circle which is definea
lo be the circle associated with the six circles Ci(i = 1,...,6).

(6.1)

* Baker, Principles of Geometry, Vol. IV, 10-11.
vV—6
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7. We proceed next to consider the case of
seven circles C;(i =1, 2,...,7). In the circle- -space let
Ri(i=1, 2,...,7) be the seven ranges of conics on p
defined by the seven sets of six points chosen from
Ci(i=1, 2,...,7) and let v; be the envelope of polars of
P w.r.t. the conics of the range R, Now all the
quadrics through the seven points C; pass through an
eighth point and form a net. These cut out on p a net
N of conics such that any conic of IV is outpolar to
any conic of any of the ranges R;,. The conics of the
net N through any point and in particular through
P form a pencil of conics. Since the seven points
C;(i= 1, 2,+..,7) lie on a quadric cone of vertex P having
&1, g, for generators, the line-pair g, g, is a conic of the
above pencil. Hence the conics of such a pencil as is
easy to see, all touch at P and cut g, g; in two other
points P;, P,. Let PP, be the line 5. Let S; be the
unique conic of the range R; for which g, and & are
conjugate lines. Since g,, g, are conjugate lines for §,
and since every cohic of the pencil is outpolar to S; it
follows immediately that the triangle A formed by g, 2.
and s is self-polar in regard to S;. Thus there exists in
each of the seven ranges of conics R; a unique conic
w.r.t. which the triangle formed by g,, g, and s is self-
polar. Hence all the seven conics y,(i = 1, 2,...,7) touch
the line 5. IfQ; is the quadric cone which is the reci-
procal of the conic v; w.r.t. 2, we see that the seven
quadric cones Q;(i=1, 2,...,7) have, besides g;, g, a
common generator. Considering as before the inter-
sections with the Absolute © of the cones Q,, the theorem
follows that

If the tnverses of a point w.r.l. seven circles C;(i=1, 2,
.57} lie on a circle, then the seven circles associated with the
scven scts of six circles chosen from C; are concurrent at a point
which is defined to be the point associated with the seven circles
Ci=1, 2,..,7)-
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- 8. It is well known that all quadrics through seven
points pass through an eighth common point and that all
quadrics through any seven of th=z set pass through the
eighth point of the set. From this property and the
results established already we easily deduce the following
theorem

Given any seven circles C;(i = 1, 2,...,7) w.r.t. which the
inverses of a point P lic on a circle s, a unique circle Cy could be
added to them in such a way that the invers: of P w.r.t. Cy lies
on 3, and that the point associated with any seven of the set of
eight circles Ci(i = 1, 2,.. ., 8) is the same.

9. Itis clear that these results belong to Moebius
Geometry, that is to the invariant theory of the group of
transformations of non-oriented circles which carry point
circles into point circles. If P be identified with the
“ point at infinity > of the inversive plane, the chain deals
with sets of circles whose centres (inverses of P) are
concyclic as stated in § 1. .

2



A NOTE ON CERTAIN SELF-RECIPROCAL
FUNCTIONS
) BY
HARI SHANKER, Delki University
[Received 30 September 1940]

In a recent issue of this Fournal*, Dr. Dhar has
investigated some types of *functions, which are self-
reciprocal in the Hankel-Transform. He has shown
‘ by the help of the infinite integral of the W-function’
that

xv—2k+l2-e—4xﬂwk'k_%(x2/2)
and
xV—2k+ip—iat

b —rt2(7?/2) are R,. (1)
The object of this note is to point out that these relations
are already contained in Varma’s integral{

SO .},21—-11—13_]}5'2}” (x)’) ng, m(.y2/2)d)]

2! =iy p(lym4-3) v({—m+3) prldmyy, -miy;
= r(n+1) T(l—-k+1) o it (kg 15—

(2)

and can be deduced from it as special cases.

The generalised hypergeometric function on the right
side of (2) reduces to Kummer’s function when m=£—}
or —k+3 and in that case we have the relation

Swyz"""E‘*y’}n(xJ) Wy - (0f/2)dy
1]

l—n—1.m T l : k ,
~ 2 E D ik v —2a), (@)

* S, C. Dhar, Jour. Ind. Math. Soc. (2) 4 (1940), 91-6.
t R. S. Varma, Jour. Ind. Math. Soc. (2) 3 (1938), 25-33 and
54-5:
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« which for [ =n—k+4-1, takes the form

[F e 20 Wy 01200

—21x?
3%

x"e
oF

— e—‘}t’xn~2ke—1‘~x2(x2/2)k_ (4)
Since*
® t
Wi m(2)= *V(Ic—)e—‘/zz"S et L F (i —k+m, 1 —k—m; c;—<)dt,
0
R(c) >0, |arg 2| <, 20, we have for m = +(k—1)
and z = x%/2
Wi, za—p(#’/2) = €73 (x%/2)* (5)
and consequently by (4)
[7 7ume s W, oy (/2)dy
' = T IW, Ly (3/2), (6)
which is the same as (1) quoted above.
With the help of (5), the result (6) can be put in the

form .
iee]
[T et Tty =emie, (7)
V]
i.e. e~ x"tiis R,. (8)
* C. S. Meijer: Nieuw Archief voor Wiskunde, (2) 18 (1934).

or
A. Erdelyi: Proc. Ben. Math. Soc. (2) 1 (1939), 43-



ON BICIRCULAR QUARTICS

BY
HARIDAS BAGCHI, Calcutta University
[Received 19 August 1940]

1. The bicircular quartic is the two-dimensional
analogue of the general cyclide, some of whose properties
were considered by the present writer in a previous
paper.* It is needless to repeat the corresponding work
for the bicircular quartic, but it is worth while to consider
some special results regarding this curve. -

The locus of a point, whose polar conic with respect
to a bicircular quartic is a rectangular hyperbola, is a
circle concentric with the focal conics of the curve. The
intersections of this &ircle with the Hessian of the curve
give the points for each of which the polar conic consists
of a pair of perpendicular straight lines. The number of
such points is twelve, since the Hessian is a sextic.
Similarly we can obtain the points for each of which the
polar conic is a pair of parallel lines, by considering the
intersections of the Hessian with the central bicircular
quartic which is the locus of a point whose polar conic is
a parabola.

There are just four points whose polar conics with
respect to the curve are circles. These are the foci of the
focal conics and are the double foci of the bicircular
quartic.

* H. Bagchi, A Note on Cyclides, jour. Ind. Math. Soc.
(2) 4 (1940), 120-4. .
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2. Consider a bicircular quartic which possesses a
centre as well as a finite node. The equation of a
central bicircular quartic can be written*

(¢ 1 3+ F) = art s b2,
If this possesses a finite node then £ =o0, so that the node

coincides with the centre. When a+& = o, this reduces
to the lemniscate of Bernoulli. Hence we get

If a bicircular quartic po sesses a centre and a finite
node, and has a rectangular hyperbola for its focal conic, the
curve is a lemniscate.

The lemniscate is the envelope of a circle whick inter-
secls orthogonally a given reclangular hyperbola and  passes
through its centre.

3. Cass'ni’s oval given by the bipola: equation
rr’ =¢? can be expressed by the equation

{ @+ H{ (=) y2} =
This can also be written in the form®
(4 7+ = 4 miy),
where t=a'—ct, 2P =K1, am? =k _a.
The curve is therefore a central bicircular quartic whose

focal conic and circle of inversion are respectively

2 - 4
X >
73-1—;7? =1, and x4y’ =k’

Since A’ = Fym? the circle i; the director circle of the
conic. Hence,

Cassin’s oval is a central bicircular quartic whose focal
conic and circle of inversion are given by a central conic and
its director circle.

The three-dimensional Cassini’s oval cvidently e@st»sf—:'\\
and pos:esse; an analogous property. @;: AN
€N

PR

.’?.

* H. Bagchi, loc. cil. ¥
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