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AN AFFINE ANALOGUE OF SINGER’S =="ieqs

THEOREM Pt
BY f{;,_ ’
R. C. BOSE. 1‘\% !
N
INTRODUGTION. N

1. James Singer* by using the Finite Projective
Geometry PG(2, p"), proved the following theorem of the
‘theory of numbers’: Given an integer m=2 of the form p»
(p being a prime) we can find m-1 integers

dO, dla dZ)“’a dm (0-10)

such that among the m(m+1) differences d;—d! (i, 7 =o, 1, 2,
- m, 41"} reduced modulo m*+m--1, the integers 1, 2, 3,...,
m?+m occur exactly once. Conversely a set with the ‘difference

property’ of this theorem, can be used to give a compact combina-
tortal representation of a Plane Finite Projective Geometry.

2. In the present paper, I have by using the Finite
Affine Geometry EG (2, p*) proved the following theorem
which may be regarded as the ‘affine analogue’ of Singer’s
theorem: Given an integer m=2 of the form p* (p being a
prime) we can find m integers

dy diye.oy d, (0.20)
such that among the m(m—1) differences di—d';(i, V' =1, 2,. ..,
m,izet’) reduced modulo m*>—1, all the positive integers less than
m?—1 and not divisible by ¢ = m-1, occur exactly once.

Any set dy, dyyeee, d,, possessing the property envisaged
in the above theorem may be called a ‘difference set.”
Conversely any difference set can be used to give a compact repre-
sentation of a Finite Affine Geometry with m points on every line.
Let the integers o, I, 2,..., m’—2, together with the
adjoined number « be regarded as the m? points of a
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Finite Affine Geometry. Then the sets of collinear points
are given by
(4) o, 1, g+1i, 2¢7F1,..., (m—2)q+1

: (i:o, I, 2,.., q"'1=m) (O-QI)
(B) dl+j; d2+ js--') dm+j
(j=o0, 1, 2,..., m*—2), (0.22)

where the integers in (4) and (B) are to be reduced
modulo m?*—1. The sets (0.21) yield m4-1 lines, and the
sets (0.22) yield m?*—1 lines, thus making up together the
m?+m lines of the Geometry.

3. Itis now well known that the p**—1 degrees of
freedom involved in the contrasts between p™* objects, can
be split up into p"+1 independent sets of p"—1 degrees of
freedom each, each set representing comparisons among
p" groups of p* objects. This splitting is usually done by
using the properties of ‘complete sets of orthogonal Latin
Squares.” Using the properties of ‘difference sets’ and
the geometry associated to any such set, a neat solution
of this problem can be obtained.

The set (0.20) can be reduced to a standard form, in
which when the integers d, da,..., d,, are reduced modulo
m+1=g, we get the integers 1, 2,...,m exactly once. When
the set is written in this form, the parallel pencils of the
corresponding affine geometry can be readily separated.
In fact the ith pencil consists of the line

@0, 1, 41y 2¢+15,..., (M—2)q+1 (0.30)
together with the (m—1) lines,

d,+itkq, dovitkg,..., d,+i+kg

(k=o, 1, 2,..., m—2). (0.31)
Putting i=0, I, 2,...,m We get all the m+1=¢ pencils.

If now the p’"=m’ objects are identified with the
points of our geometry, then the contrasts among p*
groups, each group consisting of the p" objects correspon-
ding to the points on a line of a fixed parallel pencil,
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give p"—1 degrees of freedom. The degrees of freedom
corresponding to the different parallel pencils are inde-
pendent. The desired splitting up has thus been achiev-

- ed, and the contrasts involved can be at once written
down from (0.30), (0.31).

1. Consider the Finite Geometry EG(2,0") whose
points consist of the ordered pairs (x, »), where x, » are
elements of the Galois field GF( p"), and whose lines are re-
presented by the linear equations

ax+by+c=o, (1.10)
the coefficients @, b, ¢ being elements of GF(p"). We
shall set . ' .

pr=m prr1=m+1=gq. (1.11)

Let us extend GF(p*) by a primitive element x of
GF(p*). Then x does not belong to GF(p"). All the
non zero elements of GF( p**) are

A0 =1, A, A%, .., AP\ ma=1 (7 12)

Now A»**"~! = 1 whence

p!""1=1 where p=x¢"*1= )2, (1.13)

The above equation shows that . belongs to GF(p").
Consequently %, ,* . .belong to GF(p"). Hence among
the mg—1 elements (1.12), those elements (m—1 in num-
ber) whose exponents are divisible by ¢ belong to GF(p*'.
Clearly these are all the non-zero elements of GF(p").

Now A must satisfy an irreducible quadratic equation
whose coefficients belong to GF(p*), say

M= a\+a,, (r.14)
where a,, a, are elements of GF(p").

Every element « of GF(p**) can be expressed in the

form a= XA} P, (1.15)
where x and y are elements of GF (p"). For
0 =0A+}0 (1.16)
I=0A+1 (1.17)

=1r+40 (1.18)
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whereas A, 2<u< p?"—2 can be expressed in the desired
form by the help of (1.15). « is uniquely determined by
(1.15). Conversely « being given, x and » are uniquely
determined. Ifnot, let there be two different ways of ex- -
pressing «, say a«a=x\+y=2x"24). We may suppose
x#% (as otherwise y =)  and the two ways are the same).
This makes A an element of GF(p*), which is absurd.

We now let the point (¥, ) of our geometry corres-
pond to the element « of GF(p*") given by (r.15). In
particular the points (o, o), (o, 1), (1, o) and (a,, a,) cor-
respond too, T =1’ i, A? respectively. Since there is a
(1, 1) correspondence between the points of EG(p*) and
elements of GF(p*), the point (x, y) can also be called
the point (a), « being determined by (1.15).

The points collinear with (x;, »,), (%2, ;) are
(6%, + X2, 691+ V2)s (1.190)
where 6+ ¢ =1 and ¢ is an element of GF(p").
Now let
@y = XA+ Pp, % == XA F Vo, (1.191)
hence fay+day = (02, +px)A+ (8, +02).  (1.192)
Thus the m points collinear with (o)) and (a;) are given by
(Bay+ pas), where 64 =1 and ¢ is an element of GF(p") i.e.
has onz of the values 0, A%, A%, A%9,. .., A7,
2. Let the point (i*) be the point (%, »). Then
Af= x4y (1 20)
MPI =A% 4 g
= x(a,x+a,) -+ y\ from (1.14)

= (ax+ y)r+ax. (1.21)

Hence (A**1) is the point (x/, ") where
¥ =ax+y (1.22)
Y =ax. (1.23)

But the equations (1.22), (1.23) give an affine trans-
formation 7, which is independent of ¢. This shows that T
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, transforms the points of our geometry, other than the
origin (0,0) according to the cycle

(A0 (M) > (D). . (W7 =
ANy (3071 = (39). (1.24)

G . 2n__ .
T' transforms (A*) to (A'*). T~ '= T®=11 js clearly

the identical transformation. The origin (o, 0) obviously
remains unchanged by 7.

Lines through the origin will be transformed by T
into lines through the origin. One line through the
origin is the line determined by the points (o) and (1).
The points on this line are (see end of para 1)

(0), () = (1), (A7), (A*9),..., A7), (r.25)
Applying in succession the transformations 7° (the

identity,) 7, 72,..., 77" = T" to (1.25) we get them-t-1
lines through the origin as

O (00 (9, 6 e e (09
(0)5 (’\): (AQ-H): (A2q+1>s (/\.(’“—2)11+1) | (I)
0, (2 (B Gy, L ooy |
(0), ()‘-q-_.])a (.z\'z.“_]), ‘(;n;"_l) ()t(m‘-.lllq—l) |,

points on the same line occupying the same row of
scheme (I). Since the elements (1.12) are all distinct, it
is clear that the lines of (I) are all distinct. The lines of
the scheme (I) therefore give all the (m+1) lines
through the origin (o).

The line joining (1), (A) does not pass through the
origin for otherwise it would be coincident with the first
line of (I) which is impossible, since () is not a point on
that line. Let the points on the line joining (1), () be

(A"1), (A92),e0s, (A%9n), where d, =0, dy=1. (1.26)
We shall first show that d;—d; (1) is not divisible
by ¢. For every pair of points (A%), (\%) for which
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d;—d, is divisible by g occurs in one of the lines of (I).,
But as already shown, the line (1.26) does not pass
through the origin. :

Applying the transformation 7°, 7, 7%,.., T"~94!
= T™'~2 in succession to (1.26), we get m*’—1 lines

( ()f])): (Ad,)a e ‘es (Adm) ]!

AF), (a3a+1), e ()

0 G S Vi TR SR iy } (1n
(l\d‘;';m:—Z),' .(.Adz+m“—2) “' ': (x{l‘,;‘:}’ﬂlﬂ-2> J ,

points on the same line occupying the same row of
scheme (II). We can of course reduce the exponents
mod (m?--1). We shall first show that these lines are all
distinct.

First, the two lines whose points are given by the
-~ first rows must be distinct, for otherwise a multiplication
by » merely permutes the elements '
_ PP LR

among themselves. This means that every line of the
scheme (II) consists- of the same points (except for the
order). Hence there would occur in the scheme (II)
only m distinct elements of GF(p™) whereas in every
column there occur all the m’—1 non-zero elements.
Hence m?—1 <m which is absurd, since m = p"=2.

The first two lines of (IT) cannot have more than
one point in common. They obviously have the common
point (x?2) = (x"**?) i.e. the point A (remembering d, = o,
d,=1). From this it follows that in the first row occurs
only one pair of exponents d,, d, such that d,—d,= 1 mod
(m’—1), viz. d;, d,. For if possible let d,—d,= 1 mod
(m*—1), where u=£0 mod (m*—1) and consequently -1
mod (m?—1). Then

d,=d,+1 mod (m*—1).
Hence the first two lines of the scheme (II) have the
common point (1*) besides (A), which is absurd.
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We can now prove that no two lines of the scheme

(IT) are identical. Suppose the (i41)th and (+1)th
lines are identical. Then

d\+i=d,+17 mod (m*—1)
dy+1=d,+7 mod (m’—1),
where d,=£1 mod (m?--1) since i5<". Hence
d,—d, = d,—d,, d, 1 mod (m?—1)
which has been already proved to be impossible.

Since the transformation 7T changes lines not passing
through the origin, into lines not passing through the
origin and the first line of scheme (II) does not pass
through the origin, none of the m’—1 lines of the scheme
(I1) passes through the origin. Together with the m+1
lines of the scheme (I), all of which pass through the
origin, they make the m’4-m lines of our geometry.

We may observe that the transformation T cyclically
permutes the (m+1) lines of (I), and the m?—1 lines of
(II). The lines of (I) are left invariant by T¢= T+,

3. There are just m lines of the scheme (II) viz.

(adr—dir) (ad2=dir), ., (A7) (=1, 2,...,m) (1.30)

which together with the line

(0)3 ()‘0> = (I), (Aq): ()‘2(1)7---, ()\-(m_z)q) (1.25)

joining (o) and (1) make up the pencil of m+1 lines
through the point (A°) = (1). Each of these m+1 lines
contains beside the point (A°) just m—1 points. These
(m+1)(m—1) points must be all the m’—1 points of the
plane other than (1°). But in (1.25) occurs the point (o)
and all points corresponding to powers of x divisible by
q = m+1. Hence in the m lines (1.30) must occur, [besides
(9] all points corresponding to the powers of i not
divisible by ¢, each point occurring just once. Thus
among the m(m—1) numbers d;—d/ (i, ' =1, 2,...,m, izi)
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reduced modulo m?—1 must occur all the positive in-
tegers less than m’—1 and not divisible by ¢ =m+1, just
once. We thus get the following theorem of the theory of
~ numbers.

THEOREM 1. Given an infeger m > 2, of the form p*(p
being a prime), we can find m integers

dy dy..s d, (1.31)

such that among the m(m—1) differences d;—dy (1,0’ =1, 2,...,m,
i5£1") reduced modulo m®—1, all the positive integers less than
m?—1 and not divisible by q = m+1 occur exactly once.

4. If the integers d|, d.,..., d,, satisfy the conditions
of Theorem I, so will the integers

d’l =d1+x’ d’Z - dz'{“x’---, d,m = dm+x' (1‘4'0)
Let %, kz,...., k,, be the m integers satisfying
k;=d, mod(¢g=m+1),o<k;<m (i =1, 2,..., m). (1.41)

Since d;—dy=+0 mod (q), (¢, i = 1, 2,..., m, i), the m in-
tegers k; given by (1.41) are all different. Hence there is
just one integer ¢, 0<¢<m missing from the set £,, k..., £,,.
Taking x=g¢—! in (1.40), we see that &', d',...,d’,
when reduced mod (¢) give just the m different
integers I,2,...,M.

A set of integers d,, &,..., d,, satistying the difference
property involved in Theorem I may be called a ‘difference
set’. A <difference set’ may be said to be in a ‘standardised
form’ if the integers of the set reduced modulo m+41 give
‘ust the m different integers 1, 2,...,m. We can now state

the following:

A given ‘difference set’ can be reduced to a ‘standardised
form’ by adding a suitable fixed integer x to every integer of the
set. A difference set in the standardised form, consisting of m>
2 integers can always be obtained corresponding to any value of m,

which is a prime power.
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1I

1. We shall now prove the following converse
theorem:

THEOREM 2. If the m integers (m>2),
dn dZ’-'-: dm (2'10)
Jorm a ‘difference set’, then the integers o, 1, 2,..., m*—2
together with the adjoined number o, may be regarded as the m*
poinls of a Finite Affine Geomeiry, the sets of collinear points
being given by
(4) w0, 1, g+1i, 2g=1,..., (m—2)g+1
(i=o,1,2,..., g—1=m)

(B) di+j, do+ g5 dt- (jzo, L, 2,000

(m—1)g—1 = m2—2>,

where the integers in (A) and (B) are to be reduced modulo
m’—1.

To prove the theorem, we have to verify that (a) there
are m points on every line, (b) through every point pass m+1
lines, (c) any two points lie on one and only one line and (d) two
lines have not more than one point in common.

The property (a) obviously holds. To prove (b), we
notice that through « there pass the m4-1 lines (4). Let
! be any other point. Let = fg+iy 0<ip<g- Then [
lies on only one line of (4), namely the line for which
i=1,. Also [ lies on just m lines of (B), namely the lines
given by values of j satisfying

j=Il-d,j=1-d,...,j=1—d, mod(m’—1). (2.11)
Thus through [, there pass just m2-1 lines and () is
proved. The points « and/ occur together only on one line,
namely the line i = ¢, of (4). Let [’ be any other point,
I'=tq+1,, oLi'y<gqg. Ifiy,=1', then!and [’ lie on just
one line of (4) namely the line i =i, = ¢, and on no line
of (B) since d,—d =0 mod(q), (4, v=1, 2,. .., m, uz£0).

If however i=£i’,, then since /2!’ (mod g¢) in this case,
VI—2
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they do not occur together on a line of (4). The
necessary and sufficient condition for their occurring
together on the line j=j, of (B) is that there exist u,
1<ugm and v, 1<e<m such that )
I =d,+ jo, I'=d.+ j, mod (m’—1). (2.12)

This gives d,—d, = [—I' mod (m*—1) so that from the
difference property of the set (2.10), d, and d, are
uniquely determined. Hence j, 1s uniquely determined,
so that the points lie on just one line of (B). This com-
pletes the proof of (¢).

Instead of proving (4), we shall prove 2 more defi-
nite result, which will be later useful to us. We first
notice that the result of adding the same integer x to
every integer of the ‘difference set’ (2.10) is merely to
permute the lines (B) among themselves, while the lines
(A) remain unchanged. We can therefore without loss
of generality consider the difference set (2.10) to be in the
standardised form’. With this supposition we shall prove
the following:

(&"). The m*+m lines (4) and (B) can be divided into
parallel pencils, each pencil consisting of m lines, such that two
lines belonging to different pencils have just one point in common,
whereas two lines belonging to the same pencil have no point in
common.

The lines of the ith pencil consist of the line 4;

0y 1y §+1, 2q+1,. .., (M—2)q+1 (2.13)
and the m—1 lines By, ’
dy+i+kq, dy+i+kg,. o d, +it+kq(k=0,1,2,..,g—1=m—2).

(2.14)
Putting i = 0, I, 2,...,m, we get all the pencils.

If the line 4; has the point / in common with the
line B,, we must have for some ¢, o=t<m—2 and some u,
I<u<m,

| = tg+1=d,+i+kg mod (m’—1).
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This gives d,= o(mod ¢), which is impossible since the |
difference set (2.10) is in the standard form.

If the lines B;, and B,,, k£ &, have the point/ in com-
mon, we must have for some «, 1<u<m and some v, 1=<v
=m

d,+it+kqg=d,+i+kg mod (m’—1)

or d,—d,=o mod (g) which is impossible since none of
the differences d,—d, is divisible by g.

We have now shown that two lines of the same pencil
have no point in common. Let us consider two lines
belonging to different pencils. Clearly the lines 4; and 4,
(i=£i’) have only the point « in common. The necessary
and sufficient condition for the lines 4; and By, (i%’) to
have the point / in common is that we can find some ¢,
o<t=m—2 and some u, 1=<u=<m such that

l=1tq-1i=d,+i" + kg mod (m*>—1)
i. e. d,=1—1 mod (g).

Since our difference set is in the standard form, this
uniquely determines 4, and hence /. Hence 4; and By,
(i==") have just one point in common. Finally consider
the lines B,, and By, (i==¢’). The necessary and sufficient
condition for these lines to have the point / 'n common is

that we can find u, 1<u<m and », 1<v=m such that
{=d,+i+kqg=d, +7+kq mod (m*—1)

i e. d,—d,=i—i'"+q (k—£) mod (m*—1).
Since i1’ from the difference property of the set (2.10),
d, and d, are uniquely determined. Hence [ is uniquely
determined, so that the lines B;, and By, have just one
common point. This completes the proof of (") and of
our theorem.

3. If m=p" and d,, d,..., d,, are the exponents in
1.25), the geometry corresponding to Theorem 2 is
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isomorphic with the geometry EG(2, p*), for the corres-
pondence

w=(0), 0=(1%, 1 =(1),...,,m*—2 = (A"""%) (2.30)
between the points, takes over the m 41 lines (4) into the
m+1 lines of scheme (I), and the m®—1 lines (B) into the
m?*—1 lines of scheme (II).

The geometry EG(2, §") is Desarguesian, but no
proof exists to show that the geometry corresponding to
any arbitary ‘difference set’ is Desarguesian. When the
geometry corresponding to a difference set is Desargue- .
sian, we may call it a ‘Desarguesian difference set’. The
following theorem will be found useful for quickly writing
down Desarguesian difference sets for different values
of m.

Tueorem 3. If A is a primitive root of GF(p*),
g=m+1, and

LA e = \"+2 f—0 1 2, .. ,m—2 (2.31)
u being a fixed integer, not divisible by q, then d, = o, d,,.. . ,d,,
is a Desarguesian difference set.

The exponents appearing in any row of the scheme
(IT) of § 1, clearly constitute a Desarguesian difference
set. Since u is not divisible by g, A* is not an element of
GF(p*). Hence 141" is not an element of GF(p”). Let
14+A" = A, then ¢ is not divisible by ¢. Now the line L
joining (1) and (*) does not pass through the origin (o),
for otherwise (A) would be on the line (1.25) joining (o)
and (1), and hence ¢ would be divisible by ¢ contrary to
what has been proved. Hence the line L is one of the
lines of the scheme (II). The points on this line are
(6+¢ A"), where g4+¢ =1 and ¢=o0, A% 2%..., A"~
(cf. I§1).

The points on L are therefore the point (1)= (1%
together with the m—1 points

(1AM ARy = (T 4AH) = (W*+2) k=0, 1,...,m—2
(2.32).
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Hence the exponents in the row of the scheme (II) of
I, corresponding :to the line L are d,=o, d,,..., d,.
This proves our theorem.

A difference set obtained by using the above theorem
is not in the standard form, but as we have seen, it can be
easily standardised by the addition of a suitable integer
to every member of the set. We tabulate below ‘stan-
dardised Desarguesian difference sets’ calculated by using
the above theorem for the values m=2,3, 4, 5,7, 8,9

and 11. Only one set for each value of m has been
given.

TasLe I.
Standardised difference set.
I, 2
1, 6,7
1, 3, 4,12
1, 3,16, 17,20
1, 2, 5, 11,31, 36,38
1, 6, 8,14, 38, 48, 49, 52
1, 13, 35, 48, 49, 65, 72, 74, 77
1, 27, 55, 58, 65, 66, 71, 8o, 98, 100, 117.

I 3 333
I
N © CO~I Wb L) R

I11

1. Itis well known that the m’—1 degrees of free-
dom involved in the contrasts between m’ objects, can be
split up into m+1 independent sets of m—1 degrees of
freedom each, each set representing comparisons among
m groups of m objects; provided that we can construct a
‘complete set of orthogonal mxm Latin squares’. It is
well known that this latter problem is solvable for any
prime m. Yates and Fisher®® showed its solvability for
the values m =8 and g. Later, Stevens® and the author’
independently demonstrated that a ‘complete set of
orthogonal Latin Squares can be constructed, whenm is
any prime power. Hence using orthogonal Latin squares
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the splitting up of the m?—1 degrees of freedom mention-
ed above can always be done when m is a prime power.
But the result (") of II § 1, regarding the pencils of
the Finite Affine Geometry generated by a standardised
difference set, enables us to do this splitting up in a neat
and direct manner.

9. Let the m? objects (m = p") be denoted by
0, 0, 1, 2,..., M —2.

Take a standardised difference set d,, dy, . .., d, and form q=
m+1 sels, each set containing m groups of m objects in the
Sollowing manner— The first group in the i-th set is

[0, 6 g+ 2+55- -0y (M—2)q+1] (3.10)
the other m—1 groups being
[d,+i+kg, doA-itkgs. . d,+i+kq] (k=o0, 1, 2,see,m—2)
(3.11)
the in‘egers in (3.11) being reduced modulo m*—1. The m+1
sets are obtaining by putting 1==0, 1, 2,..., M.

Clearly all the m’ objects occur in every set. The
contrasts between the groups of the same set represent
m—1 degrees of freedom. Now our objects can be identi-
fied with the m? points of the Finite Affine Geometry of
Theorem II. It follows from (d') that the objects of a
given group in the ith set, correspond to the points on a
certain Iine of the ith pencil. Now two lines belonging
to different pencils have just one point in common. Hence
if i-~1’, the m objects of any given group in the ith set are
distributed one each among the groups of the i'th set.
Hence the m—1 degrees of freedom corresponding to the
contrasts between the m groups of the ¢ thset are ortho-
gonal to the m—1 degrees of freedom corresponding to the
contrasts between the m groups of the i’ th set. The m’—1
degrees of freedom corresponding to the contrasts between
the m? objects have thus been split up into m+1 sets of
m—1 degrees of freedom each.
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For example the 6 sets in the case of 25 objects ob-
tained by using the difference set for m =5 in Table I,
are shown below:— ;

15t set. ond set.
[, 0, 6, 12, 18] [w, 1, 7,13, 19]
[ 1, 3, 16, 17, 20] [ 2, 4, 17, 18, 21}
[ 7, 9, 22, 23, 2] [ 8, 10, 23, o0, 3]
[13’ IS! 4‘3 57 8] [147 16’ 53 67 13]
[19, 21, 10, 11, 14] [20, 22, 11, 12, 15]
3rd set. _ 4th set.
[°°3 2, 8: 14, 20] [°°a 3, 9, 15, 21]
[ 3, 55 18, 19, 22] [ 4, 6, 19, 20, 23]
[ 9, 11, o, 1, 4] [10, 12, 1, 2, 5]
[15, 17, 6, 7, 10] [16, 18, 7, 8, 11]
[21, 23, 12, 13, 16] [22, o, 13, 14, 17]
5th set. 6th set.
[oo, 4, 10, 16> 22] [°°: 5, 11, 17, 23]
[ 5 7, 20, 21, o] [ 6, 8, 21, 22, 1]
[II, 13, 2, 3, 6] [IQJ 14, 3, 4, 7]
[17, 19, 8, 0O, 12] [18, 20, 9, 10, 13]
[239 I, 14, 157 18] [03 2: I5J 16’ Ig]
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ON THE ZEROS AND CLOSURE OF
ORTHOGONAL FUNCTIONS

BY
D. D. KOSAMBI.

[Received 2 September, 1941]

This note deals primarily with infinite sets of con-
tinuous functions ¢,(x) uniformly bounded and orthonor-
mal over (0,1), i.e. the sequence being ¢, ¢z,...5 bu,

V‘f’“b"dx = 8y |oul <M for all n, oI, (1)
20

An elementary knowledge of the subject, such as is con-
tained in a standard textbook like vol. I of Courant-
Hilbert: Methoden d. Math. Physik is assumed for the
sake of brevity. Only main details of proofs are given,
and results obviously extensible to L-integrable functions
are stated only for continuous functions in order to kecp
the treatment relatively simple.

Without further explicit statement, we use the
following well-known relationship between ordinary con-
vergence and convergence in the mean. A boundedly
convergent sequence { f,(x) } also converges in the mean
almost everywhere to the same limit function, and for a
sequence that c.i.m., a subsequence can be found to con-
verge almost everywhere to a summable function.

1. We can state at once, a simple but not quite
trivial theorem about the average behavior of { ¢ }

TueoreM 1. No sequence | } can converge (c.i.m.)
over (0,1); nor to any value except zero over any subinterval of
(0,1). But every such sequence is summable in the mean to zero
by most regular methods of summability over (0,1) or any subinter-
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val thereof.
Proor. Convergence implies Sl (pu—om)’dx—0. But
0

for distinct orthonormal functions, the integral always
has the value 2. For the second part, let (a,b) be any

subinterval of (o,1) and consider a,,=f”‘—+£;-'iﬂ‘.

b 1 1
Now S u,fdxgg oide =" >0,
a 0

This extends to any Toeplitz Matrix where the sum
of squares of elements in the ith row tends to o as i—ye.
If {¢} converged over a subinterval, it would be sum-
mable to the same limit function. '

As a corollary, we see that no { $ } can be uniformly
continuous in 7 over the whole of (0,1), nor have a
difference quotient uniformly bounded for all n.  Or else,
a subsequence could be found to converge over (o,I).
That is, while every infinite set of orthogonal functions
averages out to zero for any permissible method of avera-
ges, the randomness increases in general with the index.

From Bessel’s inequality, 20,,2 converges, c,,=Sl Joadx.
0
b
The same is true if ¢, = S f#.dx for every (a, b) in
(0,1), as is seen by taking f(x) as zero outside (a,d). By
taking f>o0, in (a,b) we see that the necessary condition
¢,—» 0 cannot be satisfied unless ¢,— 0 or the ¢’s change
sign, for every (a, 6) in (o,1).

2. It is easy to show that for closure, infinitely many of
the functions ¢, must have at least one change of sign each in
every subinterval (a, b) however small. From the Parseval
equality, taking the functions as zero outside the proper
interval, it follows that for aclosed {¢} and any integrable

. o
f,Zc,,c,,’ — S f2dx, where ¢, = Sb So.dxe, = g Judx and the

integral of f* above is taken over the region common to the two
Vi—3



18 D. D. KOSAMBI

intervals (a, b), (¢, ¥'). Now suppose that only a finite
number of the ¢, have any change of sign in some sub-
interval, whence a still smaller interval could be found
such that no ¢ changes sign therein. Let this be sub-
divided into two, (a”, &), (¢ 7). For a positive f, the
associated coefficients ¢,, ¢, must both have the same
sign. But by the above lemma, se.c’, =0, which esta-
blishes a contradiction and proves our theorem.

If 4,0 over some (a,b), then this tendency must not
be too strong if {¢} is to be closed. In fact, suppose
|¢u| <8.—»0 over (a,b). Taking f=1 in (a, b), f= o out-
side, we have sc2 =b—ag(b—a)?ss;.  This leads to
1< (b—a)ssi.  Decreasing the interval does not increase
any 3, hence, if =8 converges, the right side can
be made arbitrarily small. For closwre of { ¢}, 35} and

ngqsidx must both diverge. ~ The divergence of the series

a

b
of integrals follows from Schwarz’s inequality ( S I 2dx>

X ( §b¢,,2dx) >¢,? and from the closure property 20”2 =
: ¢
Sbfzdx. Itis a consequence of these that Z)

a
Now, if the series of integrals converge for some (a, b)
the remainder after a sufficiently large but fixed number
of terms may be made arbitrarily small; the initial terms,
no matter how many, being fixed in number, can also be
made to have an arbitrarily small sum by reducing the
interval—which does not increase the remainder. Thus,
the left side could be made as small as desired, but
would still remain greater than unity, which leads to a

b
pldx>1.

b
cont ‘adiction in case Zg $,2dx converges.
a

It would seem intuitively probéble that the number
of changes of sign must not be too great, if { ¢} is to be
closed.. Let , be defined as the number of changes of
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sign of ¢, in (0,1). For the common orthogonal functions
of mathematical physics, we usually have ,, =n—1. This
can be proved directly from the differential equations,
which have boundary conditions making the end points
of the interval conjugate. For the nth function of the set,
the previous n—1 conjugate points move inside the funda-
mental interval and furnish precisely n—1 changes of
sign.

While this is too strong a result for the general type
of ¢, something like it holds for polynomials, at least of a
. particular kind. For those constructed for interpolation,
it is again usually true that p,=n—1. For a more gene-
ral case, we can take, according to a classic theorem of
Muntz, any set of powers {x’ " }, which is closed if (and
only if) s1/p, diverges. The set of orthonormal functions
constructed from these by the usual process will also be
closed. But by Descartes’s rule of signs, the nth of these
functions (polynomial with » terms) cannot have more

than n—1 positive roots, hence ,,<n—1 even here.

3. Before proceeding to the general case, we consi-
der a set of functions that operate by change of sign alone,
without the restriction of orthogonality.

Let { %,} be a set of distinct points everywhere dense
in (o,1), with o<, <1 for all n. Let y,(x) be defined over
(0,1) by y,=1, ogx<¥, and y,=o, ¥,<x<1. The set

1
{y } is closed over (o,I) as S fr.dx=o0 for all n implies
0

that the integral of f vanishes for a set of points every-
where dense in (o0,1), i.e. that the function itself vanishes
almost everywhere in the fundamental interval.
We now consider a set { ¥ } constructed as follows:
oK <X < v e <X <1 being distinct points of the set
1 2
{ X, } above, ¥; assumes alternately the values+1 over the
intervals (inclusive of the right hand end point for each)
marked by o, x;,, Xi,5... %ip» L. That is,
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2(?,- —Yi ): r even.
= 14-2(y; — Vi 2(vi,—7i .- i ;
¥ +2(v;,—vi,) +2(vi,—vi,) + +{2(w,—'1)’r°dd'

. (2)
Finally, let it be required by hypothesis that any finite
number of the ¥’s are linearly independent as also the y’s
and that every point of {x,} is ultimately used for the
construction of the ¢’s.  We can then state

TueoreM 2. A necessary and sufficient condition for the
closure of { ¥} is that the number of distinct points of the set
{x,} needed for the construction of n functions of {v} should
be equal to n—1 infinitely often.

Formula (2) shows that each y is composed of the
function 1 and as many of the y’s asit has changes of
sign. Because of linear independence, no set of n of the
¢’s can be composed of less than » of the component func-
tions 1, {v }. From this, the condition of the theorem is
seen to be sufficient for closure, as it implies that n of the
component functions can be solved for in terms of the y’s

infinitely often, and as every x, is used up, every y can
ultimately be expressed as a linear combination of the ¢’s.

The condition is also necessary, as a contradiction
would follow if {¢} were closed without it. The least
unfavourable case would be that y,, ¢2, ¥3,. ., ¥, would
need, for all large n, at least n+1 of the component func-
tions. To solve for the component functions would then
ultimately need all the y’s and at least one extra function
. That is, the set { ¢ } cannot be closed without the
inclusion of at least one more function, y,.

The function I is not itself included in the set consi-
dered in Theorem 2. If this be included, we have a corol-
lary, that a necessary and sufficient condition for the
closure of the enlarged set is that n of the y’s, with the

exclusion of 1, should require just z points of {x,} infini-
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tely often. This covers the case of the orthonormal
system constructed (Kaczmarz, Walsh, Paley) by multi-
plication of the proper number of Rademacher functions.
There, ¥, = 1, and ¢,, ¥, ¥s,..., ¥, have changes of sign at
points all included in the points dividing (o,1) into n+1
equal sub-intervals, for n = 2f—1.

4. The preceding theorem rests on the lemma that
if » functions of one set can be expressed as linearly in-
dependent linear combinations of n of another set infinitely
often, the two sets must be closed together. For the
general case, we need something similar, with the substi-
tution of approximation for exact equality. This is given
by

TueoreMm 3. If {«1:} is closed, there exists at least one
closed set of powers {xf’n} such that it is possible lo approxi-

mate simultaneously to r functions of { ¢} by means of exactly r

powers of the set for any given degree of approximation, and in-
J[initely many values of r.

One such process of simultaneous approximation can
be built up as follows. Take a set of positive, distinct,
decreasing constants A; such that si? converges and
Snipi($)¢:(f) converges uniformly in the unit square. Then
the series defines the symmetric kernel K'(s,f) of the inte-
gral equation

ﬁK@ﬁMQﬂ:AMQ,

The kernel is positive definite by construction, without
any multiple characteristic values, provided, of course,
{¢} is closed as in our present hypothesis. Our desired
process of approximation is now derived by approxima-
ting to K(s,t) by symmetric polynomials K,(s,t). The
degenerate kernéls K, then have characteristic functions
and characteristic values of x which approximate to func-
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tions of{¢} and the corresponding A, Moreover, for
any kernel, the (approximating) characteristic polyno-
mials are orthonormal.

An important property of this process is that a sub-
sequence at least of the orthonormal polynomials obtained
for K, always tends to the appropriate limit as Ay
and K,—yK. There are as many mutually orthogonal
polynomials as there are distinct powers of the variable
in the degenerate kernel.

If, now, the theorem is assumed false, we can again
show a contradiction. Suppose that for all large 7, ¢;,¢2,
$3. .., b, Need at least n4 1 powers for the purpose of simul-
taneous approximation. Then there exists at least one
extra characteristic function for each of the approxima-
ting kernels, and a subsequence of these can be chosen so
as to tend to a limiting function. But this extra function
cannot tend to any fixed ¢; as there would then
be two distinct function sequences tending to the same
limit, yet mutually orthogonal. The extra function
cannot approximate successively to some ¢,,, because
this extra function (in a sub-sequence) tends to a
limit, which is impossible for any sub-sequence of {¢ |
by Theorem 1. So, there would exist a function in L? or--
thogonal to all the ¢’s but not equivalent to zero, as it
has a unit norm. This contradicts the hypothesis of
closure, and so, the theorem is established.

This result can be applied to suitably restricted { ¢ }
in order to put a limit on ,,. We Introduce a new defi-
nition:

DeriniTION: A set ¢ is said to be strongly random if (a)

' b
for any (a,b) in (0,1) lim infg o2dxsk(b—a), with k>0, and
(b) for all large n, max |$,]>K>0 between any two consecutive
changes of sign of ¢,,.
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It must be kept in mind that {¢} is a uniformly
bounded continuous, closed, orthonormal set. The pre-
sent definition gives restrictions that make the graph of
¢, arch away from the x-axis, preventing convergence to
zero. It makes y,— 0, forbids vacuoles (rectangle with sides
parallel to the axes such that no graph of any ¢ passes
through it; their absence is a fair substitute for almost-
everywhere denseness of the values of {qb} ) in the
rectangle formed in the x, y plane by o<x<1, — K< y<K.
The behaviour of such functions is, then, close to that of
the functions ¢ of Theorem 2, in a general way. The
arching away from the x-axis enables us to represent all
the changes of sign in the approximating polynomials.
If the approximating polynomial failed to follow one of
the “arches”, across the axis of x, then by the second con-
dition for strong randomness, it would fail to be a good
approximation in the ordinary sense. The first condition
would also prevent it from being a good approximation
in the mean. This would lead to a contradiction if the
set admits simultaneous approximation. We now apply
Theorem g and Descartes’s rule of signs as before, to get
our final result:

THEOREM 4. A necessary condition for the closure of a
strongly random set of orthonormal functions is that p,<n—1

infinitely often.

That is, the set cannot be closed if 1, >7 for all large
n. In particular, as n/., does not tend to zero even if
the y, be in non-decreasing order, a necessary condition

for the closure of {4} is that Zi diverge. Also, if no

two ¢’s of a closed set have the same number of changes
of sign, p,=n—1 with a suitable rearrangement of {qb}

if necessary. Clearly, no condition of this type can
possibly be sufficient.
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As the discussion was meant to be elementary, no
attempt has been made to obtain “best possible” results.
For a strongly random set, u, is a fair measure of the
«randomness”. The content of Theorem 4, is that this, .
which we might call the entropy of the functions, cannot
increase too rapidly if the functions are to enable us to
represent all possible states.

[I apologise to the reader if circumstances beyond my con-
trol should make it impossible for me to prevent the simultaneous

publication abroad of this note.]
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The object of this paper* is to investigate methods for
finding the operational images of functions which are self-
reciprocal. The results are given in two theorems. The
first gives the operational image of a function which is
self-reciprocal in the Hankel-transform of order v, and
the second the image of a function which is self-recipro-
cal in the sine-transform.

TueoReM 1. If ¢(p)==f(x), then
ctim

d)(l}) ~ om gc—im 2{;7):",’ (S)F(I—S)F(-L;V+J;=‘f+%) dS

provided that f (x) is R, and belongs to the class A(w, a) and
v (s) = y(1—s).

Proor: We know from Hardy and Titchmarsht that
a necessary and sufficient condition that a function f (x)

of 4 (w, @) should be its own Hankel-transform of order v
is that it should be of the form

c—1

I c+imo | )
F@ = [ aerras il (1)
where o<c<1, and
¥(s) = ¢(1—3). (2)

) * I am indebted to Dr. R. S. Varma for suggestions and help
in the preparation of this paper.
T Quart. Four. Math. (Oxford), 1 (1930), 196-231.
Vi—g
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By definition, o(p)=f(x) if
s(p)=p | ) d (3)

Hence using (1) and (3), we have

© 1 c+in
4’(/1):[’8 e~ dx. 2—;;5 , 2*’1‘(%v+?_.5+§)¢(5)x_5d~‘

0 c—i0
c+im L2
e e

- 27{1: c—1D
assuming that it is permissible to change the order of
integration.

Evaluating the second integral in (4), we have
1
$(P)= o &

Cor. 1. If flx)is R, we get, on pulting v= —}% in the
above theorem,

c+iom

2¥4pry(s)T (1 —5) T {3+ 15+1)ds.

c—i%

c+i0

B = | P ar(e)ds

Cor. 2. If flx) is R, then v=1% and the above
theorem gives

SEH) =i

1 Y‘-H'w
27l Je—im

2¥pty ()T (1 —5) (4 ¥5)ds.

EXAMPLE I.
For the function
Slx) = 2t ~Fxrtie i, R(y)>—1,

which is R,, we know* that ¢(s) = 1. Taking this value
of y(s) in Theorem 1, we get

1 c+i00 .
#(P) = i gc_m"‘l"l‘(l — )T (3 +15+%) ds
_ 1 c+100 ’ SQ_SI‘(%—‘%S)F(I—}ZS) ‘
T aom Sc—im 2¥p N — (v 384-1)ds

* E. C. Titchmarsh, Theory of Fourier Integrals (

p. 260, Oxford, 1937),
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I J_‘-:-{»f:o pz i
= hf_,mf(%—’)l‘(l—t)r(iv+t+§) (2) &
by a change of the variable.

If C be defined to be the semi-circle of radius p OoNn
the right of the line x = ic with centre at (%c, o), it is rea-
dily seen by using the asymptotic formula*

log T(2+a) = (z+a—3) log z—z+3 log (27)+o(1),
that the integrand is of the order :

‘v 1— {
o[m% +1710 exp ! —2n|I(1)] }]
as [ —yo on the line x = !¢ or on C.
Hence the integral converges.

If t<¢<1, the condition that R(v)>—1 ensures that
the poles of P(sv+1+4), i.e. the points ¢t = —1v—1—n, for
n=o0, 1, 2, ... lie on the left of the path of integration and
the poles of r(i——t)r(I—H‘) viz. the points ¢t = 14n; 1+n;
(n=o0,1,2, .. ) lie on the right of the path,

Following Barnes’ method, the integral is equal to
minus 2 times the sum of the residues of the integrand
at the points t= t+n; 1+7; for n=o0, 1, 2. Hence

2
(p) = — \/ times the sum of the remdues

o V:i /zl'l(lt L (l’)

7' (Lv+ 3L 1) <&>+‘
nlr(s+n) N2 .
This gives after some simplification
#(p) =1 29"1)F~(‘-v-' D (255 35 40°)

(—) (4 ]
_W Fi(wv+25 85 107 | (5)

-

M s

0

n

a;,
~

1._

* Whittaker and Watson, Modern Analysis, (1935), p. 279.
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If we use the formula*

D,(x)= ———'*r( ) ¥ v Fy(—1n; 33 14%)

1?2)
T - ik
+ r((-fuz) Py 21F1({7—'1;:"; 8; 1%%)

then (5) can be written in the form
8(p) =2V Fr ()06 Doy (P);
a result due to R. 8. Varma.f

ExamprLe 2. We know] that

24 —}+i0

1 L I a2 I $
ALK = o a2

where 1<k<s.
Putting # = 1v, this gives, ifo<c<1,
2 1 efr=o 1
BL(En () = |
T+ T+ 34+39)0(5—19)
NGOG —ts)
2—(.}%")8‘““’ " D(tv+15+4)T(Es+L)T(g—18)x*ds
271 Jerin a1 +45)0(+ v —15) (6)
where we have used the duplication formula
25—1 41
g =) ;
1t follows from (6) that the function
xily (32%) Ky (1¢7)

* Whittaker and Watson, loc. cit. p. 347.
T R.S. Varma, Proc. Camb. Phil. Soc. 33 (1937), 211.
i B. Mohan, Proc. Edin. Math. Soc. (2), 6 (1938), 93.
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is R,, provided that R(v)> —1, a result proved otherwise
by Erdelyi.*
We see from (6) by comparing it with (1) that
it T(3s4+1)r(3—1s)
b(s) = - () ESdu DAt
(5) =2 (g1 + 1) 0 (3Hiv—3)
satisfies the condition (2).

Using this value of y(s) in Theorem 1, we find that
the image of x¥Iy,(34?) K3, (14%) is
1 c+1iw
P
T(1=9)P(2s+5)P(E—3s)L(v 35 +4)ds
T (g Fivrs)r(3-+iv—19) '
Using (7), we get, by a change of the variable

I Yetim

#(0) = mgf}r—im
R IO N O R NS R
r(3+iv—1) 16)
If C be defined to be the semi-circle of radius p on
the right of the line x=1¢, with centre at (ic, 0), it is
found, as in the previous example, that the integrand is

of the order

0 [\t[‘g“"% exp{ —4x[1(9)] }’]

as {-»w on the line x = ic or on C.

Hence the integral converges.

We suppose that o<c<1. This ensures that the
poles of T(3-+iv+1), viz. i= —3 —lv—n, (n=0,1,2,...)
lie on the left of the path for R(v)> —1. It also follows
that the poles of r(1—)r(z—)r(i—O)T(s—)1r(1—1) viz.
the points { = 141, 5+n, 1+n, 541, 148; forn=o, 1, 2,
... lie on the right of the path of integration.

As in the previous example, we have

* A. Erdelyi, Jour. Lond. Math. Soc. 13 (1938), 153.
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30
(p) = —;— times the sum of the residues at the poles of

the integrand.
Evaluating these residues, we get, after simplifica-

tion,
0, (D) +5(£) + 0 (B)+s(D) |

‘['/3(/)) - 167

If ¢(p) =f(x) then

( ) Pgoy pZ :
is Ry, and R(p)>o.

THEOREM 2.

provided that f(x)

" Proor: Since f(x)is R,
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70 =) [ sinmsin o (®)
Hence, using (3) and (8), we have

= ) e sin 1)

(o] N “m .

=i R D), e s (o)t /o)
Since*
oo} _ bvr<#+v)

—a 1 .
So e T = 2 (@4 6 R FIL (1 1)
I*Tv I—p+tv, . b~
XzF( 5 ’V_J‘_I’C-Z_Z—F—bz/ls

R(u+v)>0, R(a) >0, R(a+ib)>o.

-(5 >ﬁjoy+p

ExavprE 1. The functiont D,,,,(xV2) is + R,
according as 7 is even or odd.

we obtain from (g)

Using this function
¢(p) = ( ) PSU,:’;EDMH (25)dy

(272‘# ) J’ _y’e‘i)r z (_I)':);z"—zr d
2t Yo ppt Lt (n—n) r(n—ry3)?"

Integrating term by term by the help of the result]
E Al e Lm—n
20(x+a) dx = 21 r(am— n)F(n I+n—1m %a2)

—2a T (n=3m)T (4m)

Ty Fiems 1mnam; 16%); Rim) >0
* Watson, Theory of Bessel Functions, p. 38s.

t E. C. Titchmarsh, loc. cit. p. 261,

1 R. S. Varma, loc. cit.
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we get

(en+1) (=1)" ¢
¢'( T o n+1 pz

r'(n nir(n—r+3g)’

where §, = 28" ~0(4-+n—17),Fy (15 54+7—7; 3°)
+ pPm2 D (o r—n)D(3+ =) Fy (RT3 =T 3 1°)

An interesting case is obtained by taking n=0 in this
result. We find that the image of 23xe™# is given by

$(p) = Qrpq){ 23T (2),F(1; 35 +9°)
+pr(=1)r(2) FiG 5 %/ﬂ}

= 2%’ D_, (),

a particular case of the first example in Theorem .

ExampLE 2. We know that the function
_ sinh (xV37)
f(x ~ cosh (xVi7)
is R.
sing this function in Theorem 2, we find that
»  xsinh (x\/—r)
( ) go (x2+p°) cosh (xV i) dx.

To evaluate this integral, we consider

<y

B g z sinh (zV37)

v (22+ p?) cosh(zVn)
where T is a rectangular contour with vertices at +R,
+R1IR.

It is easy to see that

)"(2n+1) sin(znri7) sin (pV3r)
( )[)I_4Z m(2n41)"—6p° cos([)\/gr)]'

n=0




ON SUPERPOSABILITY

BY
RAM BALLABH, Lucknow University

[Received 3 December 1941]

In a previous paper* we have developed the idea of
superposability in Cartesian coordinate§. The_ treatment
in cylindrical and spherical polar coordinates gives rise to
certain new results which we propose to discuss in the
present paper.f Superposability being a Physical pro-
perty, it is needless to establish the theory in these two
coordinate systems, and we state without proof two results
which we shall employ in our analysis.

(a) If the vortex lines of a motion coincide with its
stream lines the motion is self-superposable as well as
superposable on another motion possessing the same pro-
perty. In cylindrical coordinates the velocity components
(u, v, w) of such a motion satisfy the equations

s 22w
(V22 )u_?.z o, oz T
v 2 U X oA
2 2\, — ed S S I
(V2427 rz+rza¢_w8r “oz @
U ox oA
2, .2y, _ LO0A _ OA
(v +A)w—1’5¢ var

and in_ spherical polar coordinates they satisfy the
equations

* Superposable Fluid Motions, Proc. Benares Math. Soc. (1940).

T I'am indebted to Professor J. A. Strang for his keen interest
and helpful suggestions in this investigation.

Vi—j5
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(V4 A u = ]

U OA wor  2u  2cotf 2 3y 2 ow
rsinga, o8 @ 12 P Y759 17 sin gae
(V2o =
QA W@ 2P v 2cotsm .+ (II)

or rsing 3, 7209  r7sin®d  r’sing 9
(V1w =
u oA oA 2 du_ 2cotfev w
r 380 " &r rsingd  12sin g0¢  72sin’e’ J

where A is the proportionality factor between the vorti-
city components ¢, 5, { and the velocity components.*

(6) The values of u, v, w satisfying the equations of
motion, the equation of continuity and the equations
&= \u, =20, {=xw are given by

)\(Il, Y, w) = (‘Pl: P25 593) 4
where A is supposed to be a constant and ¢, g2, ¢3 are
three functions depending only on the space variables
and satisfying the equations

—»\2t
>

I atpg agpz 4
O ®

59’1 a‘f’s iz
o = 2120 (i)

0 °
Arps = 3 (r¢:) —Ei;' (iii)

0 Gpz | Ops

=2 )

or
I D¢z I Cpz
A1 =3 rsin 6 oo

-

+%cot ¢ (1)

I  d¢; Ooz ¢3 ..
= S il
A2 sing g o 7 (i) L (1v)
_ ez ez I 0n (i)
AT oy r o8

10 M I i . ais N
O:Pa_r(",lr)-1 rsin 4 a0 (‘°251n9)+rsin€ 39”( )J

* These equations are obtained by using the relations £=Ax,
p=Av, {=Aw and the equation of continuity.
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according as we work in cylindrical or in spherical polar
coordinates.

We proceed to solve the systems (III) and (IV) in
sections A and B respectively by supposing one of the
functions ¢, ¢1, ¢; to be identically zero.

SECTION A

1. If,, = o, the values of o, and 4, as obtained
from equations (ii) and (iii) are
o2 = —aJo (A1) —BYy (A7) and ¢; = a Jo(ar) +8Y,(ar),
where « and g are functions of y and z only and
¥o() = Four) log ar+2 { Joar) =25 (0) 41 Fs(0r) ... .
Substituting the values of 4, and ¢; in (i) and (iv)
we get

‘]"( ) 'E‘f (A7) ”“]u (A7) rag Yy (ar) =
’ CTZ ‘70 )+ gz To(w) = 8_:-70'(”) ~£ Yy (ar) =

Now %, (ar) and T’ (ar) contain terms involving
log xr and in order that the above may be true we must
have

i.e. « and g must be absolute constants. The solution is
u=o0
a0 = —[aFs () +BYy (A7) ]e=
aw=[aFo(\)+BYo(ar)Je~".
On a fixed boundary v and w must also vanish, i.e. we
must have
o Ton)_ L)
BT jo'(”:) =T o)
These have ho common solution and the above
values of u, v and w are valid only for an unbounded
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fluid extending to infinity. The stream lines and the
vortex-lines are cylindrical helices. The motion decays
exponentially with time and the decay is slow for fluids
of low kinematic viscosity and rapid for fluids of high
kinematic viscosity.

2. If 4, =o0, the values of 4; and ¢; as obtained from

equations (i) and (iii) are
¢p = 8€0s (Ar¢) —y sin (A7¢), 3= ycos (Ar¢)+5 sin (ar¢),

where y and § are functions of r and z only.

These satisfy (iii) if
gg—g;:) cos (nre)— <g+g)sin (xre)

+Agy sIn(are) —sre COS(AT¥) =0,

i.e. if y = 5 = 0; so that there exists no solution in this
case.

3. Ife,=o0, we get the result already obtained in
the previous paper referred to above.

4. Passing on to the case where x is a function of
one space variable and ¢ alone, we need consider the
variables ¢ and r and omit z, which has already been
considered.*®

(i) A cannot be a function of , and ¢ alone; for the
equations ¢=xx, ctc. and the equation of continuity give

W2+ 220 —o, (4.1)
ar 1 J¢ (4
which requires that o must identically vanish if AeFO,
and it is easy to verify that there does not exist a solution
satisfying ¢ = au etc. with v=o.

(ii) Ifx is a function of 7 and ¢ alone, the treatment
becomes difficult. But » cannot be a function of r alone.

Ifr,-<0 and a. and A, are zero, u=o from (4'1).

* Self-Superposable Fluid Motions of the type é=au, etc. Proc,
Benares Math, Soc. (1940).
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The equations ¢ = xu etc. reduce to

vew o _ s
7 o 82 ° (4
ow
W= (4-3)
wraw = (o). (4-4)
ar
The equation of continuity is
ow
*+ — =o0. .
2z (4-5)
Using (I) we can write the equations of motion as
axf 1 ox’ _ o o
=0 Tray g (e,
o _ow
Z at+v(x wWHUA, ),

b

where = = +1 ¢*+q.
P

The conditions of integrability of these require that
2% 2 22y PEN
e SCE =o0and —2

g0z BZop’ BTrde or oz

9

=0.

The first of these is identically satisfied and we get from
the last two by using (4.3) and (4.4)
Be—(a+er A e(c—a)t{

f |
V= FACHVA, [ ———————{TAC—v]A,
gurAn, | Ty v}
and w = Aelc—dt+ Be~ @+t where
3
wAST—ur), 1 s .z 52
a= == b= 55 | (W=, =49,
VA, 5 s .
= (1—gr”a%)* and A, B are functions of r, 4, z alone.

Substituting the values of v and w in (4.3) we get
)‘A g(cfa)t )\B e—(a-{-()l
S TAC—vA, — (rac
ZvPAN, (rac—vi,) = 3uTAN, (ractva,) =
e(c—a)r+ﬁe—(a+.~):+At(a_C ua> gl Bt{_(_c_ca) —(a+o)t
or or or arJ

oA

or
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c .
so that © B—T =o, 2; = 0, i.e. a and ¢ are constants and

0d  ad(rac—va,) oB AB(rrc+vA,)
ar T 3N, M T T e,

Substituting the values of # and w in (4.4) and mak-
ing use of the above results we get

R N ¢ TAC—vA,
(rAc—vx,) 2 +9v AT+ 9V 2ATA] 52 ) ) —=o0. (4.6)

TAC H,A,>

T (4-7)

and (rac+vA,)?+9v22A %7 —9v’ )J)\M)

Adding and substituting the value of ¢?, we get on
integrating x = ¢/r*/?, where ¢ is a constant.

Subtracting (4.7) from (4.6) we get on simplification
A, =37\, which is not satisfied by the value of A just
“obtained. '

But if A is a constant, (4.6) and (4.7) are identically
satisfied and « and ¢ reduce to constants. In that case,
however,  nced not be zero. But if u is zero, thc solution
is as obtained in §1.

SECTION B

Here we arc concerned with the treatiment in spheri-
cal polars only.

1. If ¢, =o, the values of ¢ and ¢; as obtained
from the system (IV) are
I,
€2 = 1 7sing 2 A -.'_r E(JCOSM’
I ¢ 10x .
=———— ="CO0S AT — = >
£37 1 sin g oy A 726 sin a7,

where x is a function of § and ¢ only, satisfying
" . 52
. cx a°x

51n6‘<51n9,—‘>' =0

Gl 08/ " 9p?
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so that
_ _ ;_{_,QX : 10X ) —at
U= 0, )= 7 Sing By SINAT 4 55 CO8 A7 )e

AW = ( X s ar— = Ko M) g
T \7sing a, ~ 7 30 ™ '

The above is motion on concentric spheres. The
boundaries for a non-viscous fluid may be any two con-
centric spheres. In the case of a viscous fluid the veloci-
ties v, w cannot vanish simultaneously on any boundary
r=a.

2. If g, =0, (i) and (iii) give

O O¢1
2 2,2
1—pd) 5 —2p = + A%, =0
( I ) apvz I a# ! 1 ’
where = cos 4.

If we put > =n (n41), the equation becomes the
well-known Legendre equation and the consideration of
the various possible cases determined according to the
value of n shows that no solution is possible, because in
satisfying the two remaining equations of (IV) we have
to differentiate with respect to 7, which involves terms in
log cos 6, which cannot be made to disappear unless
¢py=0 and g;=0.

3. If 4;=o0, there exists no solution as is obvious
from § 2 of section A.

4. We now propose to discuss if A can be a function
of ¢, and only one of the variables r, ¢ and y. For this
purpose we deduce the equation

oX LU OA w. @x

Y Tr 58 T sino gy 0 (4.1)
with the help of the relations ¢ = \u etc. and the equation
of continuity.

(i) Ifxisa function of 7 and ¢ alone and »,s40,
u=o0 from (4.1) and the solution of ¢ = xu etc. satisfying
the equation of continuity is
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Uu=0o
I . I
U:mx¢ smw+; Xy COS o
I .
:mx,ﬁCOSm——; Xy SIN o,

where » = gAdr and x is a function of 4,y and ¢ alone

i
satisfying sin Py (SIn 6xg) 4+ xgp = O-

The values of u,vand w have yet to satisfy the
equations of motion. Proceeding as in a previous paper* -
we conclude that a must be an absolute constant.

(ii) A cannot be a function of y and ¢ alone. 'This
is obvious from § 4(i) of section A.

(iii) Ifa is a function of ¢ and ¢ alone, v = o from
(4.1) and the equations £ = xx, etc. and the equation of
continuity reduce to

Iaw+ u . 31_”__ _Tou

- cot § = é;'_smgar( 0) =0, = - 5 =W
0 , 1 Jw

and ?67 m)+r sinf 3¢

Using (IT), the equations of motion can be written as

ou 2, W ¢ _ }j&'

a*t““f”‘()\ ut - M) == %" >
5 u I °X

+,,(>;w—;_,\0>: “rsing op

~27 2.7

X

QD

We must have , which means that =0 and

dedT 073
hence w = 0, so that there exists no solution in this case.

* Self-Superposable  Fluid Motions of the type §=Au etc. Proc.
Benares Math. Soc. (1940).



STUDIES IN FOURIER ANSATZ AND
PARABOLIC EQUATIONS*

BY
S. MINAKSHISUNDARAM,
[Received 12 March 1942]

CHAPTER-V
The Non-Linear Equation

1. We shall consider in this chapter the non-linear
equation,

o'u_ou
au:axu__~f<x t, u, ax> (5.1)
for the homogeneous boundary condition
u(o, t) =u (2m, ) (5-2)
qx(o )= —x(ew, f (5-3)
or
gt'au (o, t)dt = SSZ (2m, 1) di, (5-4)
u(#, 0) = ty(x) (5:5)

and discuss the existence of a solution of (5'1). The crux

of the method consists in reducing the above problem, to

a problem in continuous transformation of an abstract

space into itself and then applying Fixpunktsatz of
Schauder. We write as in the last Chapter § 4

)] (56)

then # and p(x, ¢) are linear transformations of p(x, 1),

Viz,

u=L(p) (5.7)

b= La(p)- (5-8)

*Clontinued from the Jour. Madras University, 14 (1942), 73-142.

These chapters form Part I of the thesis approved for the D. Sc

degree of the Madras University.
VI—6
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Then (5.1) can be put symbolically in the form
: p=Ff1[xt, L;(p), Ly(r)]. (5.9)

Now if p(x, ) belongs to a certain complete space S,
then = L,(p) and p= L,(r) will belong to two other
spaces §; and S,. By proper choice of hypotheses on the
function f on the right of (5°1), we recognise the trans-
formation

F=Flx b L), Lo(e)] (5.10)

as a continuous transformation in the space §), with its
range and domain in §;.

Using the inequalities of the last chapter we can
prove the existence of a solution. In general (5-10) will
be simply a continuous—or a weakly continuous—
transformation, and then we require p to belong to a
separable space, if we were to apply Lemma 4 of Chap-
ter I. If however the function on the right of (5.1) is
independent of du/ex, we can recognise (5.10) as a com-
pletely continuous transformation and then we can apply
Lemma g of Chapter L.

2. We shall first consider the case where the func-
tion on the right of (5.1) is independent of du/ax, that is,
the equation '

2 ~

L =S — s, ). (5.11)
We know already that the space of bounded measurable
functions is not separable. Now let p(x, 1) defined in °
(5.6) belong to the space B defined in the rectangle
ogxLam 0Kt 7 and let f (x, t,u) be a bounded
measurable function of the three variables in every bound-
ed domain o<x < am o<t T, [ul< K uniformly con-
tinuous with respect to u. Let there exist a positive
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monotonic increasing function ¢(r) with ¢(0) = o such
that ‘
|f (% 8 )| < p(24-[u])- (5-12)
Since f (x, ¢, «) is uniformly continuous with respect
to u it is easily observed that f [x,¢, L, (p)] is a comple-
tely continuous transformation of the space B into itself ;
for it, p, converges weakly to p, u,(x, f) converges strongly
to u(x,t) and then f(x,t, u,) converges strongly to
S (%, t, u) in the space B.
Now let the function u,(x) defined in (5.5) satisfy the
inequality |up(x)l< N and let |e(x, #)|< M. Then, by

Chapter IV, Ju(x, £)|< N+ Mt (5.16)
In the space B, the hypersphere
Wexbll< M

is a closed convex set, which is weakly compact and the
completely continuous transformation

;:f [x, Z Ll (P)]
= F(pr) say (5.17)
transforms the sphere (5.16) into the sphere
e[l < (t+N+Mi)

=¢ (N+1+Mi). (5.18)
Let N be sufficiently small so that
¢ (N) <M, (5.19)

or we can choose M so as to satisfy inequality (5.19) and
then ¢ can be chosen so small, say ¢ =3, that

g N+14M )< M (5.20)
for t<s. For such values of ¢, (5.17) is a completely
continuous transformation transforming the sphere (5.16)
into itself. Therefore by Lemma 3 of Chapter I, there

exists an invariant point of the transformation (5.17) that
is to say, there exists a function p(x, t) = B so that

p="F (p) =f [%t, L, (P)].
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 This means that (5.11) has a solution fulfilling the
boundary conditions (5.2), (5.3) and (5.5)-

THEOREM 1. If the bounded measurable function S (% t,u)
of three variables, is uniformly continuous with respect u, satisfy-
ing the inequality

fntu) <o (Gl ul)

where ¢ (y) is a positive monotonic increasing Jfunction vanishing
at the origin, then the equation (5.1) has a solution fulfilling the
boundary conditions (5.2), (5.3) and (5.5) for sufficiently small
values of t.

The limit for ¢ depends on the initial function
Uy (x).

If on the other hand

| f (2 & )] < (D) (5-21)

so that the bound on the right is independent of u, then
we can show that there exists a solution for all . For
whatever the rectangle R be, viz. o< x<2m, o<t T, if
we choose M3>¢(T) we see that the sphere (5.16) is
transformed into itself and so there exists a solution of
(5.1) for all finite ¢.

THEOREM 2. Iff (x, !, u) satisfies the inequality (5.21)
but otherwise the remaining hypotheses of Theorem 1 are satisfi-
ed, there exists a solution of (5.1) as in Theorem 1, for all
Jmile t.

3.  We shall now proceed to the equation

su=f(x,t, u, sufox).

Let us suppose that p(x, ) belongs to the space H,,
o<ag1. Then in (5.6) u and su/ex are continuous and
22u/ex? is bounded. Therefore u(x, ¢) and p(x, t) = cufex,
belong to the Lipschitz class i.e. H,. Now let us assume
that f (x, £, 7, s) is continuous with respect to all the
variables and periodic with respect to x and belongs to
H, with respect to the variables x, r and s that is,

lf (xls ta 7'1', Sl) —f (xb t; LED) 52)1

<C{ |2, —x, n+{7'1—'7'2\a‘*‘.!51_‘53|ﬂ }’ (5-22)
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where ¢ may depend on f, vanishing for {=o. Let us
further assume that

i< (5-23)
and

[|f (%, & u, p)l|<o (¢4 ] +12])- (5-24)
If _

lle(x, )|l M (5-25)
then

lu(x, 6)[<N+ Mt (5.26)

p(x, 0)|<N+EMES (5.27)

where £ is some positive constant. Then the transforma-
tion (5.10) will transform the hypersphere (5.25) into the
hypersphere
[Pl1< (¢ (b2 N+ MEGEMEE)  (5.28)
<M (5-29)
provided ¢(2N) < M and ¢ is sufficiently small. For
such small values of ¢ depending on the initial function
uy(x), we see by applying Lemma 4 of Chapter I that
there exists a solution of (5.1) for the boundary conditions
(5-2), (5-3) and (5.5)-

TureoreM 3. If the function f(x, i, 7, 5) is periodic with
respect to x; belongs to H, with respect to x, r and s and is con-
tinuous with respect lo t, there exists a solution of (5.1) for
small values of t, when f salisfies the condition (5.24).

3.1 We can similarly extend the theorem to the
space Hf. 1f p(x, t) ¢ H! then we have seen that pu/px?
eL? so that sufsx being the integral of a L? function
belongs to H,. Now let f (x,t,7,5) be a bounded continuous
function of the variables ¢, r and s belonging to H* with
respect to x and to the space H,—i.e. Lipschitzian—with
respect to 7 and s,

| [l &y 71y 51) = S5 & 72 82| <E(In=72|+[51—55]).  (5.30)



46 S. MINAKSHISUNDARAM

Then
([ /T b ey )l 0] s s D 90 z>]l"alx}‘lT

2

<k [Tty 0 —utx, B1'ds ;37

27 1,
+“0 [p(x+h,t)—p(x, )| dx}’]

<k(ho+h+h) (5.31)

<k b
so that f(x, £, u, p) belongs to Ht. Therefore if f{x,t,1,5)
satisfies (5.24), P =f[% 6 L,(p), L,(p)] will be a continuous
transformation in the space Hf into itself and there will
exist a solution for small values of .

We can find a solution for all values of ¢ if the bound
for fis independent of u and p, that is if we have an in-
equality similar to (5'21) instead of (5°24)-

4. We shall now pass to the space ¢’ of continuous
functions not necessarily periodic. Let Fflx, 8,7, 5) be a
continuous function of all the variables, and let

|flw, 815 5)| <o(t+[ri+Is])- (5-32)
Then the transformation
p=f %, 4, Ly (p), La(P)] = F ()

transforms the sphere ||p|| <M into the sphere

1] <oleN+tr MLt KMVT) <M
provided M>¢(2N) and ¢ is small. Though the space
(' is separable, the sphere ||p|| <M is not weakly compact.
We can however proceed thus. In the space of conti-
nuous functions consider the set Hy; defined by

u=Ly(s),

where peC’ and ||p||< M. ~Since L,(p) is a completely
continuous transformation, this set H,, is closed, convex
and also compact. In this space, the transformation

flx, t, u, oufox)
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is continuous, since, if p,—» ¢, u,—u and au,/ox—youfox and
f is continuous with respect to all the variables.

Now consider the functional equation
u= L[ f(x, t, u, oufox)].

This will transform the set H, into itself provided
M >¢ (2N) and ¢ is small. Then by Chapter I, Lemma 3
there exists an invariant point and hence a solutlon of
(5.1). Hence we have

THEOREM 4. If the function f(x,1t,r,s) is continuous
with respect to all the variables, satisfying the inequality (5.32),
then there exists a solution of (5.1) for the boundary condition

(5.2), (5.3) and (5.5) for small values of t.
If instead of (5.32), (5.21) is fulfilled a solution exists
for all values of ¢.

5. We shall conclude this Chapter after making a
few observations on the uniqueness of the solution defined
in the previous section.

5.1 If the function f (x, ¢, u, p) is Lipschitzian with
respect to  and f, the transformation

P =f[xa t) Ll(P); LZ(P)]
considered as a transformation in the space Cor L? will
be such that

Ha_;z!l Sl 8 Ly(y)s La(P) ] — f [, £,Ly (p,), L,(r2)]11{
ik{ (L1 (P1) =Ly (P2) [+ [ L2(Ps) — La(ps) || }‘
<kt [[py—r2ll,

by Chapter IV, (4.31) and (4.34) with y = 0. Therefore
if kt<1, that is if ¢ is sufficiently small, we can apply the
method of successive approximations and prove not only
the existence but also uniqueness of the solution,

5.2 Now consider the equation

au f(x i, u, ax)
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for the boundary conditions (5.2), (5.3) and (5.5). Let
u(x, t)~;ao(t)+"§1(an(t) cos nx--8,(t) sin nx) (5.34)
St )~ Bl e (8); B.(1)]
+ SARIE (03 8D cosur+ Glt; an(8); £,()] sin () |
n

(5-35)
Then we have by Chapter IV

)47 [ a5 =0, [ Fusin()i 8,005 |
¢ ¢
Bu(t)"i’n jofen(‘g)ds: bu—SOGn[S;al'(‘y);ﬂv(s)]ds'j
If o(x, t) is another solution of (5.1) with

o(x, 1) ~1 v () + OS_? (Y,,(t) cos nx4-8,(t) sin nx) (5.37)

then the Fourier coefficients v, (¢); 8,(¢) will satisfy rela-
tions analogous to (5.36).

(5.36)

Now consider the integral

S; ot 5)_""(5)}{ L[530,(5) 38,(8) 1= F[55 v, (s 5)]}(15
[ (e =ls) ) ), (5:30)

where

0u(0) = = T 0101 47 [ L) (916}
Hence the right side of (5.38) is

[ a5 1) Ylnle) =101 [ 5) =T

—lon(®) 1O [ ()50,
so that (5.38) leads to
fe(§) a1 = =227 [e6) . (5) s

_QS;(Q,,—*/n) [F.(s5 @ Bu)—F, (55 v,58,)]ds. (5.39,)
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Similarly .
(e, ()] = —20° [B.(5) —8.(5)T"ds

_25' (ﬁn—sn) [G,,(S; a; B,,)—G"(J; Yvs By)]dj‘. (5392)
0

Adding (5.39;) and (5.39;) and then summing from n=
I t0 w0, We see

27 2 au aU
gﬂ (u—v) dx = —nggo ! ) dxdt

o[ [lumn) [0, b0 ) 3 @]

or

Eﬁ(u—v)zdxﬁ-QSOga <E_uHB~U> dxdt

= o [ =), 1,1, )= S 1,2, )l (5.40)

The left side of (5.40) is always positive and the
right side will be always negative if f(a, {, u, ouféx) is a
monotonic function of # independently of the other
variables. This contradiction will establish the fact that
a solution of (5.1) if it exists must be unique.

THEOREM 5. If the bounded measurable function [ (x, ¢,
¥, §) is a monotonic increasing function of v independently of the
other variables, there cannot exist more than one solution of (5.1).

Combining this condition of monotony with the other
conditions defined in the previous sections we prove that
there exist unique solutions.
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