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ON THE OPTICAL BEHAVIOUR OF CRYPT
‘ CRYSTALLINE QUARTZ

By SIR C. V. RAMAN AND A. JAYARAMAN
(Memoir No. 64 of the Raman Research Institute, Bangalore)

1. INTRODUCTION

THE present paper may be regarded as a sequel to two earlier communica-
tionsv 2 by the present authors in these Proceedings which dealt with the
structure and optical behaviour of iridescent agate and of the commoner
forms of chalcedony. We have felt it desirable to supplement those two
papers by a somewhat fuller description and discussion of the optical pheno-
mena presented by these materials. Of particular interest is the property
exhibited by the relatively more transparent specimens of chalcedony of
polarising the light transmitted by them perfectly. This phenomenon is illus-
trated in a striking manner by Figs. 1 and 2 reproduced in Plate I; these are
photographs of the entrance to the building of this Institute and of the

i
~

landscape beyond as viewed through a plate of chalcedony about a milli-.

metre thick on which was superposed a polaroid sheet. In Fig. 1, the
building and landscape are seen clearly, while in Fig. 2 they are completely
smudged out. In the former case, the polaroid had its vibration direction
parallel to the fibres of quartz composing the chalcedony, while in the laiter
the vibration direction of the polaroid was transverse to the fibres. ~Similar
effects are exhibited by Figs. 3 and 4 which are photographs of a sodium
vapour lamp recorded in analogous circumstanc?es. I?olarisa?ion effects
of the same nature are also observed in the transmitted light which appears

along with the diffraction spectra exhibited by iridescent agate. We shall
return to these phenomena later in the paper. ]
An interesting and important aspect of the present subject is the close

h exists between the optical phenomena and the structure of

correlation whic ! ; ’ hateuadi
the materials as revealed by X-ray diffraction studies. Large variations in
structure are evident from the series of twelve X-ray diagrams reproduced

in Plate TII and Plate IV, and they correspond to striking differences in

optical behaviour. ,
2. SoME THEORETICAL CONSIDERATIONS

ena exhibited by chalcedony and agate in varied circum-

m . . :
The pheno nsidering & few ideatised cases in the

stances arg best elucidated by first co

JANIQ

/

hd Vyt.
e

'!C,
K
£

4
65 *



2 SR C. V. RAMAN AND A. JAYARAMAN

light of a simplified geometric theory. We may assume the material to be
composed of crystallites of quartz completely filling its volume. Had the
material been optically isotropic, light would freely pass through the poly-
crystalline aggregate.  Actually, the birefringence of the quartz is sufficient
to ensure the total diffusion of the light in its passage through a plate of the
material as a result of the refractions at the inter-crystalline boundaries,
provided that the optic orientation of the crystallites is assumed to be entirely
at random. A distant source of light viewed through such a plate would
be invisible; a diffuse halo of light would be observed in the same general
direction which would exhibit no observable polarisation even if the incident
light be fully polarised. :

) It is evident from the foregoing that a preferred orientation of the
crystallites is a sine qua non in order that any observable fraction of the light
be regularly transmitted through the material. Indeed, the geometric theory
demands a perfectly ordered orientation of the crystallites for an optical
image of a light source to be visible through a plate of the substance. The
maximum transmission would occur if the crystallites were so arranged that
tae principal optical axis of quartz, viz., the c-axis were aligned in perfect
parallelism for all of them. Actually, we have not encountered a case of
this kind in our studies, though an approximation to it has been noticed in
some specimens of fibrous quartz® On the other hand, chalcedony consist-
ing of crystallites of quartz with some direction perpendicular to the c-axis
such as [1100] or [1120] set more or less perfectly parallel for all of them
appears to be fairly common. In such an arrangement, the orientation of
the c-axis would vary from one crystallite to another.

3. Tue X-Ray DIFFRAQTION PATTERNS

The foregoing remarks are illustrated by Figs. 1.to 6 in Plate III and
Figs. 1 to 6 in Plate IV. Fig. 1 in Plate III is the X-ray diffraction pattern
of agate recorded for a region exhibiting brilliant iridescence and using
unfiltered MO radiation. Tt is seen that the pattern is a fibre diagram in
which the crystallites are orientated with fair precision in a direction parallel
-to the a-axis of quartz, while their c-axes are orientated in all possible direc-
tions perpendicular thereto. Fig. 2 in the same Plate was also recorded with
another piece of agate exhibiting iridescence
the orientation of the crystallites but which is of the same kind. Still less
well defined is the orientation of the crystallites of the same nature seen in
Fig. 3. This was obtained with a polished plate of cl;alc;edony exhibiting

# fair measure of transparency, '

; it shows a lesser precision in
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Fig. 4 in Plate III was obtained with a polished plate of chalcedony
which was remarkably transparent, being in fact the one with which the
photographs reproduced in Plate I were obtained. It can be interpreted
as a fibre diagram in which the fibres are parallel to the [1 100) direction,
while the c-axis takes all possible orientations perpendicular thereto. A
clear indication of the same type of fibering is-illustrated in Fig. 5 which was
recorded with a translucent specimen of coloured agate. Fig. 6 in Plate IIT
was recorded with the same iridescent agate as Fig. 1 but in a region exhibit-
ing no conspicuous banding or iridescence. The figure does exhibit preferzred
orientation of the crystallites but not of a sharply defined character, which
appears to be intermediate between the types illustrated in Figs. 1 and Fig. 5
in Plate IIL

Fig. 1 in Plate IV is an X-ray diagram of powdered quartz. The re-
raiping five figures in the Plate are diagrams of chalcedony and agate in which
hardly any preferred orientation is to be noticed. Fig. 6 in Plate 1V which
almost resembles Fig. 1 in the same Plate was recorded with a ehip of chalce-

dony exhibiting little transparency.
4. TPOLARISATION OF THE TRANSMITTED LIGHT

We may now consider the case of a plate of chalcedony assumed to be
cut in such a manner that the a-axes of the crystallites are all parallel to each
other and to the surface of the plate. If light be normally incident on such
a plate with its vibration d‘rection parallel to the common direction of the
a-axes of the crystallites, it is evident that it would be freely transmitted by
the plate. If, on the other hand, the vibration direction of the incident light
be transverse to the same common direction, the variation of the direction
of the c-axis from crystallite to crystallite would result in the light being
refracted at the inter-crystalline boundaries, and hence none of the incident
light would be transmitted. . The directions in which the light diffused
would emerge and the state of its polarisation would both depend upon the
orientation of the inter-crystalline boundaries, in other words on the shape
of the crystallites. If the latter are elongated cylinders or fibres with their
length parallel to their a-axes, the light diffused would appear as a fan of
refracted rays lying in a plane perpendicular to the direction of the fibres:
it would also be completely polarised with the vibration direction transverse
to the fibres.

- 5. DIFFRACTION PHENOMENA
Though geometric considerations of the kind set forth above suffice to
ive a qualitative picture of the phenomena, they would not describe com-
pletely what is actually observed, The light rays deviated by thg individual



4 ‘ SIR C. V. RAMAN ANb A. JAYARAMAN

fibres would evidently be in a position to interfere with each other. Hence,
the fan of rays diffused by the plate should properly be regarded as due to
the passage of light through an irregular phase-change grating. This would
diffract the light in various directions transverse to the fibres. Further,
if the length of the individual fibre were not great enough, light would also
be spread out by diffraction to some extent in other directions.

The importance of the part which diffraction plays in the optical pheno-
mena is most strikingly evident in the case of iridescent agate. As has been
already remarked and illustrated in our earlier paper on the subject, the
light regularly transmitted by iridescent agate is perfectly polarised, the only
difference between the iridescent and non-iridescent regions being that the
intensity of transmission is greatly enfeebled in the former by reason of the
radiation energy being copiously diffracted in other directions. It is highly
significant that these diffracted radiations are neither wholly nor even partly
concentrated in specific directions as would be the case with ordinary
gratings. The diffracted radiations in fact appear as elongated streaks, and
that they are well-defined streaks is made evident by using a monochromatic
light source and selected regions on the agate where the spacings are most
regular. “No image of the source is however seen except at the centre of the
spectrum of zero order. The diffraction streaks exhibit a partial polarisation
which is in the same sense as the polarisation of the regularly transmitted
light near their central regions but in the opposite sense further out in the
streaks on either side. This situation will be evident from the photographs
reproduced as Figs. 3 and 4 in Plate II exhibiting respectively the two compo-
nents of polarisation of the diffraction pattern observed with sodium light.

The explanation of the facts stated above leads us directly to the solution
of the problem of the nature of the laminations in iridescent agate which we
shall now proceed to consider. .

6. THE STRUCTURE OF JRIDESCENT AGATE

We shall assume that the fibres of quartz in the iridescent layers of agate
have all a common direction and also a common optic orientation. That
this assumption is substantially correct is evident from the complete polarisa-
tion of the light regularly transmitted through the iridescent layers and is
further confirmed by the X-ray diffraction studies to which we have already
referred. What then is the nature of the periodicity that gives rise to the
diffraction spectra? We have already remarked that the diffraction streaks
observed with fibrous chalcedony are a consequence of the varying orienta-
tion of the c-axis from fibre to fibre. Hence, the natural interpretation of
the observed optical behaviour of the iridescent regions is that the orienta-
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tion of the c-axis is periodic along the length of each individual fibre. In
fact, one is led to that interpretation by a simple process of exclusion. What
is actually observed is a diffraction of light by a phase-change grating which
is irregular along the plane of thé laminations but is regular and periodic
" in the perpendicular direction, in other words, along the length of the fibres.
A periodicity in the orientation of the c-axis along the length of each fibre
is just what is required to give rise to such a situation. We remark that
since the change of phase affects only the vibration transverse to the fibres,
it would give rise to diffracted beams polarised in that sense. But, as we
have already seen, such beams are not regularly transmitted but are
diffused into a fan of rays. The non-appearance of any optical images of
the source in the spectra is thus explained. We do indeed observe in the
spectra a region of enhanced intensity near their centres which is partially
polarised in the same sense as the regularly transmitted light. But this is
evidently a secondary effect arising by reason of our assumption of a per-
fectly orientated fibre structure being an idealisation which differs noticeably

from the actual situation.
7. THE MOIRE PATTERNS OF IRIDESCENT AGATE

A striking confirmation of the conclusions set forth above is furnished
by a study of the moiré patterns exhibited by the iridescent regions.  These
patterns are readily observed by merely holding up the plate against a source
of light and viewing it through a magnifier. They are only seen in the

Small tilts of the plate produce large changes

regions displaying iridescence.
in the configuration of the patterns, thereby indicating their origin, which is
‘that the laminations in the material at different depths are not in perfect

The introduction of a polaroid between the iridescent agate and

register.
kable change in the moiré pattern.

the observer’s eye produces a remar patt
When the vibration direction of the polaroid is transverse to the laminations,

in other words parallel to the fibre direction, the moiré pattern disappears
practically completely. If, on the other hand, the polaroid is set with its
vibration direction parallel to the laminations and hence transverse to the
fibres, the moiré pattern becomes extremely conspicuous. These effects

_are shown in Figs. 1 and 2 in Plate IIL

- The interpretation of the facts is obvious, viz., that the pzriodic changes
of phase produced by the grating which progressively transform themselves
‘to periodic variations of amplitude are operative only in respect of the

optical vibrations transverse to the fibre length. This is p{ecise]y t!le res_ult
which would ensue as a consequence of a periodic change in the orientation

of the c-axis along the length of each individual fibre.
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Neither the observed diffraction effects nor the behaviour of the moiré
patterns could be reconciled with a periodicity of structure due to a rhythmic
segregation of opal as has been suggested in a recent paper? on iridescent
agate which has been brought to our notice. Further, as has been shown"
elsewhere® by us, the opal that is actually found associated with agate
is identifiable with a-cristobalite. This exhibits a very intense X-ray diffrac-
tion ring-with a spacing of 4-03 A.U. -Not even a trace of a ring with such
a spacing is to be observed in the X-ray diagram recorded by us in the
strongly iridescent regions of our agate specimens.

SUMMARY

The polarisation of the light regularly transmitted by fibrous chalcedony
and the character of the diffraction spectra exhibited by iridescent agate are
described and discussed. It is shown that the phenomena point conclusively
to the laminations in iridescent agate responsible for the diffraction effects
being a consequence of the periodic orientation of the c-axis of quartz along
the length of the fibres. Photographs illustrative of the optical effects and
of the X-ray diffraction patterns of the materials are reproduced.
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1. INTRODUCTION

Tre Raman effect in boric acid and its derivatives and the glasses associated
with them has been studied by several investigators. A brief summary of
the results appears in Hibben’s treatise on *The Raman Effect and its
" Chemical Applications”. The Raman spectrum of borax (Na, B4O7- 10H;0)
has been observed by Nielsen (vide Hibben’s treatise, p. 433) and has been
found to consist of seven frequencies at 578 (1), 853 (1), 891 (1), 942 (1),
3340 (1), 3455 (1) and 3574 (1) cm.”'. Kernite (Na,B,0;.4H,0) was
investigated by Hibben (1937) who reports ten frequencies at 3500 (2},
575 (0), 735 (3), 850 (0), 934 (6), 1100 (?), 3269 (2), 3343 (3), 3425 (2) and
3552 (10) cm.” Gross and Vuks have reported in borax glass diffusc
bands in the regions 430-535 (0), 950-1000 (0), 1077-1127 (0), and
1310-1520 (0) and a strong line at 760 (5) cm.~* It is rather surprising
that Nielsen did not notice any shift corresponding to 760 cm.™* in
borax. The Raman spectrum of colemanite (Ca,B;0,;-5H,0) has not so
far been investigated. In view of the interest attached to these substances
and the fact that the low fréquency spectra of these bave not so far been
reported, it appeared to be desirable to investigate the spectra of these
substances. The paper reports the findings from the study.

2. EXPERIMENTAL DETAILS

The Raman spectra were recorded with a Hilger medium quartz spectro-’
graph having a dispersion of 140 cm.~* per mm. in the A 2536-5 region. A
quartz mercury arc of the sealed type with mercury pools as electrodes was
immersed in a trough of running water ard an electromagnet was used to
deflect the discharge towards the top wall of the arc. With a current of
3 amperes this arrangement constituted to give an intense source of A 2536-5.
The crystals were kept quite close to the arc and the scattered radiatiors
from the crystal were focussed on the slit of the spectrograph with a quariz
condenser. Two mercury dishes were placed inside the spectrograph one
at the collimator side and the other at the plate-holder side.” The mercury
1
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vapour iuside the spectrograph was sufficient to effectively suppress the
exciting A 2536-5 radiation so that in the spectrograms obtained, it appeared
much feebler than its satellite X 2534-8.

The crystals of borax which were rather small were efflorescent and as
such fresh crystals had to be used periodically. A large specimen of kernite
in the form of a thick plate was available and'it was possible to record in
this case a very intense spectrum. The specimen of colemanite which was
somewhat smaller in size had well-developed faces forming a pyramid, but
was intensely luminescent under near ultraviolet radiations. Kernite was
also slightly luminescent. This fact coupled with the feeble scattering in
these crystals made it impossible to record their Raman spectra with A 4358
in the visible. In the ultraviolet region on the other hand, because of the
large scattering power of the A 25365 radiations the luminescence did not
overpower the scattering. With a slit width of 0°045 mm. and an exposure
of the order of 16 hours it was possible to obtain reasonably intense spectro-
grams. The complete spectrum of borax could not be obtained since the
crystals grown by the method of slow evaporation were small.

3. RESULTS

Figures 1(b), 1(c), 1 (d) in the accompanying plate reproduce the
Raman spectra of borax, kernite and colemanite respectively while Figs. 1 (a),
and 1(e¢) reproduce the spectrum of the mercury arc for comparison. In
some cases the lines were rather weak and diffuse or else were partially over-
lapping on a mercury line and the frequency shifts of these were estimated
by comparison with the position of the iron arc lines. ’

Borax exhibits seven lines at 159 (w), 349 (w), 458 (m), 572 (m), 753 (w),
847 (v.w), and 944 (5) cm.™! and four bands due to water at 3325,.
3444, 3500 and 3577 cm.! Of these the frequency at 3577 cm."? is very
intense and comparatively sharp. Nielsen has not reported the faint band
at 3500 cm.~* The line reported at 891 ¢m.—? by Ni€lsen has not been recorded
and only a trace of a line could be noticed at about 847 cm~1

Table I presents the data in the case of ké}nite and colemanite and the
general correspondence between the two spectra can be noticed. In the

case of colemanite, the intense frequency shift at 940 cm.* observed in
kernite and borax has not been recorded.

The spectrum due to water shows strikiné variations in its structure
and in particular the frequency shift of the sharp and intense .band cor-
responding to the hydroxyl group changes from 3552 cm ! m kernite tq
77 em™ in borax and to 3605 om,~ in colemanite, '
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TABLE 1
Frequency Shifts
i
Kernite l Colemanite Kernite Colemanite
cm. em.™ ! cm.? cm,”
55 s. 806 m. 786 w.
82 v.s. S 846 m. ~ 870 w.
104 5. 95 v.s. i 932 v.s. o
127 s. .. i 951 v.w. ~ 982 v.w,
152'w. 148 m. l ~ 1028 m. ..
184 5. 181's. ! 1087 s. - 1078 m.
~ 215 vw. 223 m. : 1135 m. ~ 1150 w.
258 s. 251 m. 1321 s ~ 1252 w.
1375 vow. ~ 1310 w.
315 w. 318 s. 1448 w. -
346 w. .. ~ 1480 v.w.
371 ~ 391 b.m. ! ~ 3000 s. ..
426 v.w. .. . 3248 s. ~ 3310 s.
“459 m. ~ 450 v.w. . ~ 3305 s. ..
498 v.s. ~ 490 y.w. ' ~ 3360 s.
541 ? vow. 538 s. ‘ ~v 3425 s,
. 562 w. 565 s. ‘ 3548 v.s. ~ 3520 s.
o 670 s. 3605 v.s.
739 vs. | 745 v.s. ,

s. strong; w. weak; m. moderate;” v.s. very strong; v.w. very weak; b, broad. ~ value
of frequencies estimated by comparison with position ‘of adjacent iron arc lines.

4. DIsCUSSION

Borax, kernite and colemanite crystallize in the holohedral class of the
monoclinic system and have been assigned to the space groups C2/c, P2/c
and P2,/a respectively [Struciure Reports, Vol. 11, pp. 428-31 and Christ,
. Clark and Evans (1954)]. The existence of a centre of symmetry in all these
cases precludes the possibility of observing any of these lines in infra-red
absorption also. Reference to the literature has revealed that no infra-red
absorption studies have so far been made with borax and kernite. However,
the infra-red spectrum of metallic orthoborates have been studied by Sen
and Sen Gupta (1935) in the near infra-red by transmission, by Parodi (1937)
in the far infra-red both by reflection and transmission, and lately extensively
by Lecomte and Duval (1952) in the near infra-red by transmission. For
calcium borate [Cas (BOj),] they observe maxima at 676, 734, 784, 814, 876,
.922,.1000, 1100, 1168, 1340 and 1412 cm.~! Parodi reports in the far
infra-red for calcium borate frequencies at 365, 325, 250 and 192
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Lecomte and Duval have discussed in detail the origin of such a large number
of frequencies since an ordinary planar BO; group should possess only four
vibration frequencies. They attribute the large number of frequencies to
the coupling of BO; groups and they calculate that two such groups coupled
would give rise to eighteen vibration frequencies, the totally symmetric
valence vibration frequency being in the region 909-934 cm.! The struc-
ture of borax is reported to consist of BOj triangles sharing common vertices
and forming an infinite chain along the c-axis consisting of B,O, rings.
Kernite on the other hand, is supposed to be made up of B,Os rings formed
by three BO; triangles sharing vertices, coupled together by B,O, groups
from two BO, triangles, thus forming an infinite B,O; zig-zag chain along
the b-axis. The vibrations of such a structure consisting of coupled BO,
triangles would give rise to a large number of frequencies and it is possible
here to identify only the frequency at 932 cm.~! in kernite and at 944 cm.-t
in borax as due to the valence oscillation of the borons and oxygens..

The structure of colemanite recently determined by Christ, Clark and
Evans (1954) is reported to consist of infinite boron-oxygen chains running
parallel to the a-axis, the chain element being constituted by a BO, triangle
and two BO, tetrahedra forming a ring, the chain element having the com-
position [B;O, (OH),]-% It has also been found by them that the B—O
bond lengths in the tetrahedra are larger than the bond lengths in the triangles.
Again, since colemanite also possesses a centre of symmetry no correspon-
dence could be normally expected between the data from Raman and infra-
red spectra. But the studies of Coblentz (1906) on the infra-red reflection
spectrum of colemanite reveal the existence of frequencies at 1370, 1316 (2),
1064, 943 and 893 cm.~, which have nearly corresponding frequencies at
1310, 1078, 982 and. 870 cm.~! in Raman effect. It is rather surprising that
there is no Raman frequency in colemanite corresponding to the 940 cm.—*
shift in borax and kernite. If the vibrating structure in colemanite consists
of BO, triangles coupled toBO, tetrahedra having different bond lengths,
as has been suggested by Christ, Clark and Evans, the principal vibration

frequency of this system might be different from what has been observed in
kernite and borax. .

The existence of the O—H group in the chain element of colemanite is
consistent with the observation in Raman effect of an intense and sharp band
at 3605 cm.~* and corresponding to the hydroxyl group frequency. Though
the reported structures of kernite and borax do not contemplate the existence
of the hydroxyl group in them, the observation of sharp and intense bands
gt 3548 and 3577 o, in their respective Raman spectra indicate the existence
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of such groups in their structures. It is hoped that polarisation and ori-
entation studies would help towards a more detailed analysis of the observed
spectra of these chain structures.

The author’s grateful thanks are due to Prof. Sir C. V. Raman, F.R.S.,
N.L., for suggesting this investigation and the encouraging interest that he
took in it.

SUMMARY

The Raman spectra of borax, (Na, B,O,'10H,0), kemnite (Na,B,0s-
4H,0) and colemanite (Ca,BsO;;-5H,0) have been investigated using
A2536-5 as exciting radiation. The spectrum of colemarite is reported
for the first time. Many additional lines hitherto unreported have been
found in the case of kernite and borax. The spectrum of borax exhibits
seven lines, besides four bands due to water of crystallisation while the
spectrum of kernite is found to consist of twenty-eight lines and six water
bands. Colemanite exhibits nineteen Raman lines, and three bands due to
water of crystallization. The observed spectra are discussed in relation
to the known structures of the substances.
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1. INTRODUCTION

MANY -common minerals occur in nature as polycrystalline aggregates. For
example, quartz, calcite and gypsum appear in massive form respectively
as quartzite, marble and alabaster, and on examining thin sections of these
materials under the polarisation microscope, it is found that they consist
of great numbers of crystallites variously orientated and firmly adherent
‘to each other so as to form a coherent solid. The size, shape and manner
of orientation of the crystallites may differ enormously in individual cases.
Some minerals are indeed cryptocrystalline, in other words, the particles
are so small that they cannot be identified by the usual polariscopic methods
and require the aid of X-ray analysis to enable their true nature to be deter-
mined.

The foregoing is by way of stressing the importance alike to the minera-
logist and to the physicist of a study of the physical properties of polycrys-
talline aggregates. It is obvious that the optical properties of the single
crystal and especially its birefringence and pleochroism (if any) would play
a dominant role in determining the optical characters of the polycrystalline
aggregate. Considering the matter from the standpoint of geometrical
optics, it is evident that when light enters a polycrystalline aggregate, it
would suffer reflection at the intercrystalline boundaries. The stronger the
the greater would be the coefficient - of reflection at these
e the more quickly would the incident light be returned
The brilliant ‘whiteness of pure marble is thus
a recognisable consequence of the strong birefringence of calcite. On the
other hand, if the birefringence be feeble as in the case of quartz and gypsum,
the incident light would penetrate far more deeply into the aggregate. Ulti-
mately, all the light would necessarily be turned back provided that a suffi-
cient thickness of the material be available and that no absorption intervenes.

insufficient, a part of the light would

If the thickness of the material be 1 ]
diffuse out—a phenomenon readily observed with various materials. Light
37
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so emerging would be depolarised even if the light incident on the plate were
fully polarised in the first instance.

Various considerations indicate that a purely geometric theory is in-
adequate to cover all the optical phenomena actually exhibited by poly-
crystalline media. It will suffice to mention here the question of the influence
of the size of the crystallites. Geometric considerations would suggest that
the smaller the crystallites, the more numerous would be the reflections and
refractions at the intercrystalline boundaries, and hence the more rapidly
would the incident light be diffused and extinguished in its passage through
the medium. Experience however suggests that the contrary may actually
be the case, and that the more fine-grained the material is, the more deeply
would the light penetrate into it. Various minerals, e.g., alabaster and jade,
which exhibit marked translucency, are usually fine-grained; the finer the
grain, the more deeply does light penetrate into them. This suggests that
the optical problems presented by polycrystalline aggregates require to be

considered from the standpoint of the wave-theory of light. That indeed
is the object of the present paper.

2. A SIMPLIFIED MOoDEL

To obtain some results of physical interest and also with a view to
simplify the mathematics, we shall here restrict ourselves to the case of a
feebly birefringent material and consider the case in which light is incident’
normally on a plate with parallel faces; this is assumed to be sufficiently
thick to include a great many individual crystallites but not so thick that
the incident light is completely extinguished before it can emerge at the
rear face. We may disregard the geometric course of the individual rays
of light and view the matter purely from the wave-theoretical standpoint.
Owing to the varying orientation of the individual crystallites, the waves
of light entering the plate would be retarded fo different extents in passing
through them. To enable the resulting total retardation to be evaluated,
we use 2 simplified model and assume the plate to be an assembly of a great
number of ‘small cubical blocks each having a common edge-length A and
completely filling up the available space. Each block is assumed to be a
single crystallite, and the three edges of each cube to be parallel to the three’
optic directions for which the refractive indices are p,, py and pq respectively.
To introduce the idea of varying orientation and to take account of its
influence on the propagation of light through the material, we assume the
incident light-beam to be plane-polarised with its vibration direction parallel
to one set of edges of the cubical blocks; on the other hand, the operative
refractive index of any one block may be either g, or P OT pg, the respective
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probabilities for these being p;, ps, ps. The case where the three probabili-
ties are equal would correspond to a random orientation of the crystallites
in the present restricted sense of that term. More generally, by giving
appropriate values to p;, ps, p; such that their sum remains equal to unity,
we obtain a representation of a polycrystalline aggregate with any desired
measure of preferred orientation along the particular direction under con-
sideration. If, for example, we put p, =1 while p, and p; are zero, it would
mean that all the particles of the aggregate have a common refractive index
for the particular direction of vibration, though the indices may be different
in the perpendicular direction. :

On the assumptions stated, the incident plane-polarised disturbance
would remain plane-polarised in its passage through the plate, though
subject to phase retardations of varying extents. The situation would no
doubt be different for any actual polycrystalline material, since the incident
plane-vibration would be transformed to an elliptic vibration and the para-
meters describing the ellipticity would alter as the disturbance passes from
crystallite to crystallite. While it would no doubt be possible to deal mathe-
matically with this general case, a very considerable simplification is effected
by our present assumptiors, and as we shall see, the usefulness of the results

obtained is not affected thereby.

A further question needing consideration is the effect of the reflections
which would occur at the boundary between every two successive blocks.
This would obviously diminish the amplitude of the transmitted disturbance.
As a first approximation, we may assume such diminution to be the same
over all the individual elementary areas A? on the rear surface of the plate
and represent it by a numerical factor of appropriate magnitude. In other
words, we ignore the variation of amplitude over the different elementary
areas A2 on the rear face of the plate and consider only the variations of
phase. The latter are i reality of much greater importance for the deter-
mination of the final observable result. :

3. MATHEMATICAL FORMULATION

Let us suppose that the wave-train before entry into the plate is repre-
" sented by

y—e 2—)‘-”" (0t—2 )
and that there are n cells along the direction of the thickness of the piate.
We shall first consider a typical case in which t1¥e wave has passed through

"k, cells of refractive index p, ky cells of refractive index g and Ky cells of
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refractive index pg before emerging from the plate. The numbers k,, ks
and k; can all vary from zero to n subject to the relation

ki +ky+ ky=n @

The optical path retardation of the emergent wave would then be equal to
(ke + kops + kapig) A,

Now the number of ways in which %,, k, and k; cells can be orientated
along a row of # cells so as to have refractive indices g, zs and g, is obviously

nt
k! kgl k!

and the probability of occurrence of each one of these cases is p,*p*:ps*

Hence the proportion of the total area of the rear surface of the plate from
which a wave represented by

e }‘ (ct—z~kx#x+k:lla:+hmb) (3)

emerges is equal to

!
m pppst C))

The emergent wave-train can now be obtained by summation of waves
of the type (3) with their appropriate amplitudes and phases for all possible

integral values of k;, k, and k, satisfying the relation (2). We therefore
have for the emergent wave

y=P Z k! kgl k! pFpep e ‘”,“Z"mm ®)

LytEatlzen

where P is a factor which is introduced to take into account the loss in
intensity of the light due to reflections at the intercrystalline boundaries.

In view of the multinomial theorem, equation (5) may be rewritten as

P M Z)( —2With A —2Tiks A —Mriu.A)n
y=>re x D€

Noodpee X A pge X - (6)
The average refractive index of the medium is clearly
1= (Pyty ~+ Patie’ + Pstto) O

If therefore we set v =(uy — pg); vy==(uz —py); and ve== (1) — pg)y WE
can then express p;, p, and p, as
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m=p + (Pavs — Pava)
pa=p + (Pav1 — pr1va) ®
pe=p + (pyvs — Pe¥)

Further, the thickness of the plate is given by d=mnA. Hence substituting
the relations (8) in (6) and expanding the exponential terms in power series
of their arguments, one obtains

2md oz 2A2 n
y=Pen “TEHD {1—2’;2 Zp (Pz”a—PaVz)z} )

As the biréfringence is assumed to be small, we have ignored terms of third

and higher powers of (4 — o), (s — pa) and (uz — py) in (9). Also by
means of a small simplification, it can be verified that

Z p1 (pavs — pave)?= Zpapsn®
Hence, we can rewrite (9) as

e 2 n
y =Rty L 20 )

—PReR @
where ’ |
R=e 3 Emvd a5 g i large,
The ratio of the intensity of the transmitted light to that of the incident
radiation is therefore given by )

—_ !Ad " -
i_o —=PR2=P2e P Sows wa—pesy (10)

If the three optic axes of any cube bave the same probability of being ori-
entated in the direction of the incident light, then p;=py=ps;=% and (10)

reduces to
I. = P2 e:%\gé} (S Ba?—Zptapha) an

4. SIGNIFICANCE OF THE RESULTS

The physical meaning of the result stated in (10) is that the plane-
polarised waves incident op the front of the plate emerge from the rear face
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of the plate also as a plane-polarised vibration but with an attenuated ampli-
tude determined by an exponential factor involving four variables, namely
the size of the particles, the thickness of the plate, the wave-length of the
light and a quantity which is a measure of the birefringence of the material,
since it vanishes when the three indices p,, py, 15 are all equal. The appearance
of A?in the denominator indicates that white light entering the plate would
emerge enfeebled but with the longest waves predominant, in other words,
much reddened in colour. Since the wave-length A is a small quantity, the
actual intensity of the emerging light would be negligible if both A and d
are large. The individual crystallites have, in fact, to be quite small and
the total thickness traversed should be moderate if any observable fraction
of the light is to emerge as a coherent optical beam. We have already
assumed the birefringence to be small and the need for such assumption is
reinforced by our final result which indicates that unless the three indices
1, Mas pg differ from each other by quantities which are small fractions of
their absolute magnitudes, no light can emerge from the rear of the plate.

We may illustrate the foregoing remarks by the case of a plate of ala-
baster 1 mm. thick taking A and A equal to 5896 A.U. and 1p respec-
tively : the three indices for gypsum are p; =1+520, po=1-523 and py=1-530.
The percentage of transmission then comes out as 13-5% but increases to
37% and 82%, if A=0-5p and 0-1 p respectively. Thus, the formula indi-
cates that a plate of alabaster approaches practically complete transparency
as the crystallites of which it is composed approach colloidal dimensions.

+

The case of pref®rred orientations is also of interest in view of the
known optical behaviour of chalcedony and of certain forms of gypsum.
Taking now the general formula (10), if we put p,=1 while p, and p, are
Jboth zero, the formula indicates that the transmission becomes complete.
In other words, if the crystallites are so orientated that all of them have a
common refractive index for the direction of vibration of the incident light,
then we have a complete transmission of the incident light wave. But the
position would be totally different for a perpendicular direction of vibration
if the refractive indices for the latter direction differ from crystallite to
crystallite. ~ The general formula (10) would then show only a partial
transmission depending upon the actual values of the probabilities and
the refractive indices for that direction. Since 1he latter transmission
would depend upon the thickness d, it would follow that if the light incident
upon the plate be unpolarised, the state of polarisation of the emerging light
would vary with the thickness of the plate. Formula (7) also indicates
that the effective refractive index of the medium would be different for the
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two directions of vibration under consideration. Light which is plane-
polarised in any arbitrary azimuth when incident on the plate, would emerge
as elliptically polarised light, the parameters describing such ellipticity vary-
ing with the thickness of the plate—a phenomena readily capable of experi-
mental verification with materials of the nature under consideration.

5. SoME FﬁRTHEREREMARKS

The question naturally arises as to where the energy goes which dis-
appears from the incident light according to (10). The answer to this is
not far to seek. Since the reduction of amplitude is a consequence of the
random variations of phase over the elementary areas of the rear face of
the plate, the missing light would appear as diffracted radiation spread out
in various directions surrounding the direction of the incident beam. The
angular dimensions of the diffraction halo would obviously be comparable
with the ratio between the wave-length A of the light and the linear dimen-
sion A of the crystallites which we have assumed the material to be com-
posed of. A diffusion halo of this type can indeed readily be observed on
viewing a bright source of light through a thin plate of alabaster surrounding
the sharply defined image of the source itself. According to the theory
developed above, both the light emerging from the rear surface of the plate
and the light appearing in the diffusion halo would be perfectly polarised
if the incident light be itself plane-polarised. These results are consequences
of the special assumption regarding the orientation of the crystallites which
we have made. We may now ask ourselves whether they would continue
to be true if the particles are orientated truly at random. The answer to
this question is most readily ascertained by making a few actual observa-
tions with a plate of alabaster sufficiently thin to give a true transmission.
Tt is then observed that the true transmission is completely polarised while
the diffraction halo seen overlying it is imperfectly polarised. A more com-
plete mathematical theory which takes account of the ellipticity resulting
from the passage of light through an arbitrarily orientated crystal block
would no doubt yield results in agreement with these facts of observation.
It is clear, however, that the present theory suffices to indicate the state of
polarisation of the transmitted light correctly and also its intensity, at least
as regards the order of magnitude. But the theory fails to indicate the state
iffracted light accurately, since it ignores the ellipticity

of polarisation of the di » ST ‘ :
produced by the passage of light through a birefringent crysﬁal in an arbi-
trary orientation; such ellipticity would obviously result in diverting some

of the incident energy into the perpendicular component of vibration as

diﬁ‘racted radiation,
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SUMMARY

A formula based on wave-theoretical considerations is deduced which
gives the coefficient of extinction of plane-polarised light traversing a poly-
crystalline aggregate in terms of the wave-length of the light, the size of the
particles and their birefringence. The general formula covers the case where
the particles have preferred orientation expressible by three different prob-
ability numbers for three mutually perpendicular directions, and the special
case of isotropic orientation is readily derivable therefrom. The significancc
of the results is discussed in relation to the facts of observation.
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1. INTRODUCTION

"IN a paper® published in these Proceedings nearly six years ago, the theory
of the well-known Christiansen experiment was discussed on a wave-optical
basis. The expression derived in that paper for the transmission coefficient
of a Christiansen light filter showed it to be an exponential function involving
five variables, namely the wave-length of the light, the thickness of the cell,
the size of the individual particles of the powder, the difference between the
refractive indices of the powder and the surrounding liquid and finally also
the proportions of the volume of the cell occupied respectively by the liquid
and by the particles of the powder. In the present paper, it is proposed to
deal with the more general case in which the particles of the powder are
birefringent and hence their refractive index varies with the orientation of
the crystallites within the cell. The mathematical treatment adopted is on
much the same lines as that followed by us in discussing the theory of the
propagation of light in polycrystalline media.2 The only difference, in fact,
is that some of the cubical elements of volume each of edgelength A which
we imagine the cell to consist of must now be considered as being filled
cither by the liquid of refractive index p or by the crystallites. These latter
are assumed to be of cubical shape and to have their edges parallel to
the three optic directions for which the refractive indices are pg, pe and py
respectively. We also assume the incident light beam to be plane-polarised
with its vibration direction parallel to one set of edges of the cubical blocks
and that the operative refractive index of any one block may be either s,
pa OT pg with equal probabilities if it is a crystallite or py if it is filled with
the liquid.

2. MATHEMATICAL FORMULATION

We shall denote by p and g the respective probabilities of a cubical block
having anyone of the three principal refractive indicesuy, pg, p3 Of the crystal-
lites and of the refractive index g of the liquid. Then 3p and g would repre-
sent the proportion of solid and liquid elements in the Christiansen filter

and therefore
Ip+g=1 8Y)
55
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As before, we consider a typical case in which the incident wave-train
which we shall represent by

y = e?—%‘ (ct—2) (2)
encounters in its passage through the Christiansen cell (n — m) elementary -
cells of solid blocks and m cells of liquid elements. The probability of the
occurrence of this event is obviously

(,r_ﬂ,,!,*) rm G @3)

If further in any specification of the state of orientation of the crystallites
inside the filter, k;, k, and k, of the (n — m) cubical blocks considered above
have refractive indices p,, u, abd p, respectively, then the optical path re-

tardation of the emergent wave for this configuration is (kyu;+kapetkgpg) &
+ mpiA.  'We have in addition

by + bz + k) =(n —m) (4)

Also, the probability of occurrence of a state in which k;, k, and k; cells in
a row of (n — m) cells can be orientated so as to have refractive indices

H, Ho and pq is
(n —m!) n—m
AT AN (3) ©)

Combining (3) and (5) we find that the proportion of area of the rear surface
of the filter from which an emergent wave described by

e?{-‘ (et~ Z—Trrft Diafla FEsfatmit A)

©
proceeds is equal to

n!
AW ANAR g )]

The disturbance emerging from the Christiansen cell can now be obtained by
a superposition of all the different wave functions of the type (6) multiplied
by suitable weight factors of which (7). is a typical example. Hence,

n!
k'kz'k'm‘p

n—m

y_

kyy b3y hzy

2 . e "
™ exp S (ot ~Z —kypig ot Fhegpg T mpad)

—oh @2 {p (e‘i_ LIRS ST + e R e ) + qe:zl\li "‘A}n ®)
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The average refractive index of the medium is now

B =ppy + pe + pe) + qui )]

If the birefringence of the crystalline particles is small and if further
the three refractive indices of the solid powder do not differ much from the
index of the liquid, then an approximation for (8) for large values of # can
be effected by proceeding exactly as in the preceding paper. Denoting by
d the total thickness of the cell, and neglecting terms of order higher than
two in the differences between the various refractive indices, we can rewrite

(8) as

' 2A% (3 n
P [1 - Z"AzA { 2 pr(pr — 1) + g (u -u)z}] (100)

Now if s, pg. .. .un are n quantities having the respective probabilities of
OCCurTence py, pa. . ..pn in any observation, then

Y prps(pr —ps)® =3 -Zg'frps (r — ps)?

i
=2 ps (Zp'rﬂrz) - (Zprﬂ'r)z
=X prppr? — p?
=X pr (pr— p)?
whiere p is the average of the n quantities .y, po,. . . .pip.

Applying the above result to (10) we find that for largé values of 7

y= Re'® w20 (10 3)

where

=208 {50 5 iy — ) + 2 3 G — )Y n

R=exp

The ratio of the intensity of the transmitted light to that of the incident
radiation is therefore given by

%~Rz_exp—%ﬂd@ S ~—p)t g 3G — e (12
\)
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Formula (12) expresses the extinction coefficient of light in its passage
through the Christiansen cell in terms of several variables, namely, the wave-
length of the light employed, the thickness of the cell, the size of the crystal-
line particles, the birefringence of the same and the three differences between
the refractive index and the three principal indices of the birefringent material,
and finally the proportion of the liquid and solid elements in the cell. By
giving suitable values to p, g, 4y, pe and ps, several interesting cases of special
importance can be deduced from (12). Thus we observe that the case of
the polycrystalline aggregate considered earlier follows readily from (12) if

g =0and p =3 Again, by writing juy = ps =ps; p =35 and g =(1 — o)

which corresponds to the case of a Christiansen cell composed of isotropic
particles mixed in aliquid in the proportion ¢: (1 — o), we obtain the result

—40(1 — 2Ad
I=Tpexp — U, e (13)

derived earlier by one of us® on different theoretical grounds. By writing
Py =ps =pg; p =% and ¢ =% in (12) or ¢ =1 in (13) we get the expression

— m2Ad
I =Ty exp —35— (s — p* (14

for transmission by a cell composed of isotropic particles and a liquid of
nearly the same refractive index mixed in equal proportions.

3. SoME FURTHER REMARKS

Considering once again the general formula (12), we may draw attention
to certain features whic]; we may expect to observe in the Christiansen experi-
ment with birefringent powders differing from those noticeable when iso-
tropic powders are employed. In the latter case, the transmission would be
complete for the particular wave-length for which the solid and liquid have
equal refractive indices and would fall off rapidly on either side of such wave-
length. The light not transmitted by the cell would appear as a diffusion
halo surrounding the direction of the optical image of the source as seen
through the cell. Brilliant chromatic effects are accordingly to be expected
and are indeed observed with isotropic powders in the experiment.

Formula (12) shows clearly that the effect of the birefriengence of the
powder is to diminish the intensity of the transmitted light for all wave-
lengths, and we cannot therefore, expect any observable transmission through
the cell with strongly birefringent powders, unless the size of the particles
be very small and the thickness of the cell be reduced to a minimum. In
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such cases the colour of the transmitted light would be determined predomi-
pantly by the factor 1/A* appearing in the argument of the exponential.
Hence, it would be reddish in colour and the chromatic effects observed with
isotropic powders would be absent. In these circumstances, the liquid in
the cell serves only to secure optical continuity between the discrete particles
contained in the cell. On the other hand, if the birefringence be small, one
may expect to observe chromatic effects similar to those observed with iso-
tropic powders. It would be necessary, however, to work ‘with fairly fine
powders and moderate cell thickness for noticeable transmission to occur.
The formula also shows that the maximum transmission in these circum-
stances would be exhibited for those wave-lengths for which the refractive
index of the liquid is most nearly equal to a species of average of the three
indices of the crystal. But this is not the average index in the ordinary sense

of the word.

Another important consequence of the formula is that even if the bi-
refringence of the powder be not very small, chromatic effects would be
observable when the proportion of the volume in the cell occupied by the
powder is sufficiently small. In the usual form of the Christiansen experi-
ment, the particles are allowed to settle down and form a compact aggregate
at the bottom of the cell. To observe the effécts now contemplated, the con-
tents of the cell should be stirred up; alternatively the particles should be
so small that they remain suspended for a long time within the liquid. In
other words, dilute suspensions of strongly birefringent powders may be
expected to give brilliant chromatic effects in a Christiansen cell. However,
our theory could hardly be expected to give more than a qualitative indica-

tion of the phenomena then noticeable.

n of the state of polarisation of the trans-
d light when observed with birefringent
powders. The present theory indicates that if the light incident on the cell
be plane-polarised, both the transmitted and the diffracted hgh.t should also
be perfectly plane-polarised. So far as the transmitted light is concerpec},
there can be no doubt that the theoretical result is correct. For, any ellipti-
city consequent on the passage of light through an arbitrarily orien.tgted
crystallite would give rise to a component perpendicular to the original
vibration direction in the diffracted light. But such components cannot
appear in the light transmitted by the cell in the true opti;al sense. Indeed,
provided the birefringence is small and the size of the particles and the thick-
ness of the cell are moderate we may expect also to find that the diffraction
halo is itself strongly polarised. In other circumstances, however, especla]ly

Finally, we come to the questio
mitted light as also of the diffracte
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when the particles are strongly birefringent, the diffracted light would
exhibit a marked imperfection of polarisation by reason of the ellipticity
effects which have dropped out of consideration in the present treatment of
the problem.

SUMMARY

A formula is derived for the transmission coefficient of a Christiansen
cell containing particles of a birefringent material whose interstices are
filled up by a liquid of suitably adjusted refractive index. The consequences
of the formula and especially the influence of the birefringence on the spec-
tral character of the transmitted light are discussed.
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1. INTRODUCTION

In the well-known experiment due to Christiansen which has been applied
in the construction of monochromatic light-filters, an isotropic transparent
solid, e.g., optical glass, is powdered and placed inside a flat-sided glass cell
and the latter is then filled up by aliquid whose refractive index is adjusted
to equality with that of the solid for some particular wave-length in the spec-
tram. Christiansen himself tried using powdered quartz in the experiment,
and found that it did not prove a success. The light entered the cell and was
diffused by the powder-liquid mixture, but the source of light could not itself
be seen through the mixture. Considered from the standpoint of geo-
metrical optics, this result is not surprising, since the refractive index of the
particles of a birefringent powder would depend on their orientation within
the cell and hence would vary from particle to particle.

However, geometrical optics does not correctly describe what is actually
observed in the Christiansen experiment even with optically isotropic .
powders,* 2 and hence there is no reason to believe that it would be any
more successful in the case of birefringent powders. In another paper®
appearing in the present issue of these Proceedings, a general theory has
been developed which indicates that chromatic effects analogous to those
observed with isotropic powders should also be capable of appearing with
birefringent powders in appropriate circumstances. The manner in which
the birefringence would modify the observed effects has also been discussed

in that paper.

It is proposed in what follows to place on record some observations
which we have made broadly confirming the indications of the general theory.
It has been found that provided the birefringence is fairly small and the
material is in a finely subdivided state, it is possible to obtain a true trans-
mission exhibiting brilliant colours. It is also found that the light so trans-
mitted is not greatly inferior in the degree of its monochromatism to that
observed with isotropic material in similar circumstafnces. Anotp.er rote-
worthy feature is that if the light incident on the cell is plar.e-polarised, the

1
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light transmitted by it is also completely plane-polarised. This might seem
paradoxical when it is recalled that the light has had to pass through consi-
derable thickuesses of a hirefringent material; nevertheless the observation
Is in strict accord with the theory. On the other hand, the diffusion halo
appearing in directions surrounding the regularly transmitted light exhibits
imperfect polarisation to an extent depending on the fineness of the sub-
division of the material. The colours exhibited by the diffusion halo are
also found to be markedly different for the components of the light vibration
respectively parallel and perpendicular to that in the incident light.

2. SOME GENERAL OBSERVATIONS

Besides the factors which determine the transmission coeflicient with
isotropic powders, an additional factor appears in the present case, namely
the magnitude of the birefringence of the material. The importance of
this relatively tothe differences in the refractive indices of the solid

and liquid varies with the proportion of the volumes occupied respectively
by the powder and the liquid in the cell. By varying this proportion, we
may pass from one extreme case of a polycrystalline aggregate in which the
liquid serves merely to secure optical continuity between the particles of the
powder to the other extreme case in which the liquid occupies the whole

volume except for the particles of solid held in suspension. The most

interesting cases are however those in which the two Components are present

in nearly the same proportions. To observe chromatic effects in such cases,

it is necessary to use material which is not too hi ghly birefringent and which

is in a fine state of subdivision. The latter condition is most conveniently

secured by using a substance which is commercially obtainable in the state
of a fine powder and

hence does not need any further preparation. We
shall content ourselves here by mentioning three such substances which we
have found to work very well in the experiment.

Barium sulphate can be used with success in a cell from five to ten miili-
metres thick with carbon disulphide as the liquid filling it up. The addition

of a few drops of benzene skifts the transmission from the yellow towards

the violet end of the spectrum. Precipitated calcium sulphate in the form
of gypsum also gives good results, the appropriate liquid in this case being
monochlorobenzene: a drop or two of carbon disulphide shifts the trans-
mission towards the red, while the addition of a few drops of benzene shifts
it towards the violet. Magnesium fluoride also serves admirably: the
appropriate liquid to use in this case is acttone, the addition to wh{ch of
benzene causes the transmission to appear first at the violet end of the Speca
trum and shifts it step by step toward the red,
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£
3. POLARISATION PHENOMENA

Tn all the three cases mentioned, beautiful chromatic haloes are observed
surrounding the direction of the transmitted light. The colour of the halo
varies with the direction of observation and also alters when the spectral
region of transmission is shifted. Viewing a bright and well-defined light
source through the cell held before the eye of the observer, with one polaroid
inserted between the source and the cell and a second polaroid between the
cell and the observer’s eye, striking polarisafion phenomena may be
observed. In all cases, the image of the light source is itself completely
extinguished when the two polaroids are crossed. But the diffusion Halo
seen surrounding the light-source shows imperfect polarisation. The magni-
tude of this imperfection differs very much in the case of the three substanccs
‘mentioned above. With magnesium fluoride the halo disappears zlmost
completely when the polaroids are crossed. With barium sulphate its
extinction is less complete, and the diffusion balo remains ebservable in
directions adjacent to the source and gives indications of a bright cross with
its arms bisecting the angle between the vibration directions of polariser and
analyser. The extinction of the diffused light is least perfect in the case of
calcium sulphate and the halo remains observable over the whole area of the

field even with the polaroids crossed.
4. OBSERVATIONS WITH POWDERED QUARTZ

The following method was adopted to prepare quartz in a state of fine
subdivision but uncontaminated by extraneous material. A transparent
piece of crystalline quartz was heated and dropped into cold distilled water.
The fragments into which it broke as the result of this treatment were heated
in a silica dish and then again dropped into cold distilled water. Repetition
of this procedure reduced the substance to a state of powder and the mate-
rial thus obtained was then ground up very fine between two quartz crystals
with flat faces and finally separated into four grades by elutriation in dis-

tilled water. The two finest grades thus obtained were those which remained

in suspension in a tall beaker of distilled water for ten and twenty minutes

respectively.

The optical effects exhibited by the four grades of quartz when placed
in a cell and filled up with a mixture of benzyl alcohol and carbon disulphide
were found to be very different. The first or roughest grade gave only a
diffusion halo without any regular transmission even with a cell only one
millimetre thick. With the second grade of powder and the same thickness
of cell, a very weak transmission can be glimp.sed, the bright diffusion halo
qverlying it making the observation rather difficult. On the other hand,
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the two finer grades when allowed to settle down in a cell two millimetres
thick show brilliantly coloured transmitted images of the source. With a

cell only one millimetre thick, the transmission is even more brilliant, but
its colour is then less saturated.

In all cases, if a transmission is obtained at all, it is completely extin-
guished when the cell is placed between two crossed polaroids. On the
other hand, the appearance of the diffusion halo as well as its state of
polarisation shows remarkable variations with the grade of powder and the
thickness of cell employed. With the coarser grades of material, the halo
is found to be completely depolarised. On the other hand, with the finer
grades the halo shows a very marked degree of polarisation. Not merely
the brightness of the halo but also the distribution of colour in it is strikingly
different when the polaroids are respectively parallel and crossed. This
difference is best described by the statement that when the polaroids are
crossed, the halo exhibits colours similar to those of the transmitted light
(which is extinguished in the same circumstances); per contra, with the
polaroids parallel, the colour of the halo is complementary to that of the
transmitted light. These changes were most striking when observed with
the cells of smaller thickness. For, with such cells, the colour of the halo
over its whole area is markedly different from that of the transmitted light and
exhibits its complementary character most clearly. The changes produced
by the rotation of the analyser are therefore particularly striking.

5. OBSERVATIONS WITH DILUTE SUSPENSIONS

With the two finer grades of quartz powder, it is possible to use much
thicker cells with success for observing the transmitted light, if tkey are filled
with an excess of liquid in which the powder is held as a dilute suspension.
By varying the thickness of the cell and the quantity of material held sus-
pended in it, one can either increase or decrease the saturation of the colours
observed in the transmitted light and in the diffusion halo. It is worthy of
note that in such cases the diffusion halo exhibits a colour complementary
to that of the transmitted light even in directions adjacent to the latter. This
indeed is what optical theory indicates should be the case for a dilute sus-
pension. On the other hand, multiple scattering comes into play in the
case of dense aggregates, and the colour of the halo is in consequence almost
indistinguishable from that of the transmitted 1
directions and only further out chan

complementary tint.

It gppears worthwhile also to record s
strongly birefringent powders,

d hght in closely adjoining
ges by insensible grzdations to the

< ome observations made with
calcium carbonate ip the form of precipitated
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qhalk being a typical example. It is not possible to obtain any transmission
with this material in the usual form of the Christiansen experimernt. But
interesting effects may be observed even with cells of considerable thickness
if they are filled with carbon disulphide into which a little precipitated chalk
is put in and stirred so that the liquid appears as a milky-white suspension.
A bright source of light can be seen through such a suspension and exhibits
a deep red colour, as indeed it should according to the theory. Here again
the transmitted light is completely extinguished if the cell is placed between
crossed polaroids. On the other hand, the light diffused by the cell is de-
polarised, but if the suspension is very dilute, the cell exhibits a bright cross
between crossed polaroids. If benzene is added to the suspension of chalk
in carbon disulphide, thereby bringing the index of the liquid mixture nearer
to the mean index of calcium carbonate, the colour of the transmitted light
is shifted towards shorter wave-lengths in the spectrum.

6. DESCRIPTION OF THE FIGURES IN PrLaTe IX

By way of illustration of the foregoing observations, some photographs
have been reproduced in Plate IX accompanying this paper. The follow-
ing remarks are explanatory notes on the same.

Fig. 1 shows the appearance of a small brilliant light-source as viewed
through a cell five millimetres thick containing barium sulphate in a finely
subdivided state. This had settled down at the bottom of a mixture of
carbon disulphide and benzene so adjusted as to transmit the green part of
the spectrum. The picture clearly shows the transmitted light and the
diffusion halo surrounding it.

Fig. 2 shows the same experiment with the cell placed between crossed
polaroids and photographed with a much longer exposure. The source
jtself is extinguished in these circumstances. The halo also disappears except
at its brightest part near the centre which exhibits the bright cross whose
arms bisect the angle between the vibration directions of the polariser and

analyser.

Fig. 3 reproduces the spectra of the light transmitted by the cell con-
taining barium sulphate in the same circumstances. The colour of the
transmitted light was shifted in steps from orange-yellow to blue by the
successive additions of benzene to carbon disulphide. The lines of the

mercury arc spectrum are reproduced to indicate the positions of the trans-
mission band.

Fig. 4 is a photograph of a small bright source of light seen through
a cell two milimetres thick containing the finest grade of quartApowder
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which had settled down at the bottom of the cell. Benzyl alcohol to which
a few drops of carbon disulphide had been added was the liquid used and
the mixture trapsmitted the yellowish-green part of the spectrum. The
photograph itself was rather overexposed with the result that the transmis-
sion and the halo are not seen clearly distinguished from one another. .The
streaky nature of the halo is clearly shown.

Fig. 5 is a photograph of a bright source of light seen through a thin
film of nitrobenzene containing fine particles of lithium carbonate in sus-
pension and held between crossed polaroids. The dark arms of the cross
seen in the diffusion-halo are parallel to the vibration directiors of the pola-
riser and analyser respectively.

7. SUMMARY

Optical effects analogous to those exhibited by isotropic materials in
a Christiansen cell are also observable with birefringent materials in a fine
state of subdivision. While the transmitted light is fully polarised, the
diffusion halo is depolarised in part and exhibits colours between parallel
and crossed polaroids which are complementary to each other.
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1. INTRODUCTION

THE subject of the elasticity of crystals has from its very early stages of
development been approached from two distinct view-points which have
resulted respectively in the phenomenological and the atomistic theories.
The phenomenological theory was initiated by Green and Kelvin, and is
founded on the continuum hypothesis of matter in solids. It is further built
on the basis that the total energy of the solid is obtainable as the sum of
the energies of the individual volume elements into which it can be sub-
divided. Each such volume element is supposed to possess a uniform density
and the forces acting on it are assumed to be conservative, being derivable
from a potential function. These remarks concerning the hypotheses under-
lying the phenomenological theory have been made here, in order to empha-
size the limitations of the theory and to bring out the range of applicability
of its results to any actual crystal composed of discrete atoms. Tt is obvious
that these conditions can be incorporated for a crystal with a lattice structure
only if the volume elements under consideration are large in comparison
to the interatomic distances in the solid. The range of applicability of the
phenomenological theory is therefore limited for crystals and its results can
be expected to be sustainable only in relation to phenomena involving large

volume elements, such as the propagation of non-dispersive waves of large
wavelengths and low frequencies in the medium,

A fundamental problem of solid state Physics is to interpret the macro-
scopic behaviour of crystals in terms of the constants characterising the
lattice structure and the mutual interactions between pairs of atoms of the
crystal. The importance of such an atomistic theory is mainly three-fold.
Firstly, it enables us to examine the question whether the two theories would
lead to identical results even in the range wherein the phenomenological

theory is expected to be applicable. Secondly, it elucidates the nature of
the vibrations in a crystal in regions that fall definitely outside the scope of
the ordinary theory of elasticity, as in the case of dispersive waves in the
medium. Finally, it holds out the hope of computing theoretically the
98
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numerical values of the macroscopic constants. This is rendered possible
because every crystal possesses a set of stationary normal modes of vibration
whose frequencies are obtainable from spectroscopic data. The frequencies
of these vibrations are also expressible in terms of the force-constants of the
crystal. By a comparison of these two, the numerical values of at least a
few of the force-constants can be ascertained and thus a possibility is opened
up whereby the numerical values of the elastic constants become accessible
to theoretical calculations as well.

The earliest attempt to provide an atomistic theory of elasticity is due to
Cauchy. The investigations of Cauchy were however based on a somewhat
outdated model of a solid, in which each atom is a centre of symmetry for
the structure and the interatomic forces are strictly central. A direct con-
sequence of these assumptions is that only fifteen among the twenty-one
elastic constants emerging from Green’s theory are independent, this reduction
being effected by means of six relations that are generally known after
Cauchy’s name. Recent experiments have however proved that the Cauchy
relations? are violated by a great number of crystals, even by most of the
simplest variety of them, viz., the cubic crystals. The failure of the Cauchy
relations is clearly due to the assumption of central interactions among the
atoms of the crystal, which might be true if each atom is simply an ion
attracting the others in accordance with a law of force of the Coulomb type.
But in any solid, the nucleii are all surrounded by clouds of electronic charges
and any deformation of the substance would tend to change the energy of
the electron cloud as wc]l,_ thus producing forces that are non-central in

character.

In order to be able to arrive at results that are in agreement with experi-
mental data, it is therefore essential to start with a system of forces more
general than a central force-scheme to represent the interatomic force-field
inside crystals. An atomistic theory of elasticity based on such general
system of forces was first provided by Begbie and Born® ? and by Kun Huang.®
By comparing the equations of long acoustic waves of low frequencies
obtained from the atomistic theory with the equations of wave-propagation
of the elasticity theory, these authors deduced expressions for the elastic
constants of the crystal in terms of the force-constants. But the process of
identification of the two sets of equations in their theories necessitated the
assumption of a few relations among the force-constants which would be
strictly true for central force systems only. Thus in spite of the formalism
using a general force-scheme, the theories so far provided are reliable only
for central interactions among the atoms of the crystal and do not
adequately take account of the force-field existing inside crystals.
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In this review, an attempt is made to present coherently the facts relating
to the nature of the atcmic vibrations inside crystals, and the general character
of elastic deformations and wave-propagation inside crystals. A substantial
part of the review is drawn from material contained in two papers already
published by the author but it is made self-contained as far as possible. The
contents of it are arranged in seven sections. Section one describes the nota-
tion adopted in the paper and introduces the basic concepts regarding wave-
propagation in crystal structures. In Section II, we consider the state of
movements of the atoms of the crystal arising from a disturbance confined
initially to a small region of it. It is shown here that any arbitrary disturb- .
ance resolves itself into a superposition of the (24 p—3) harmonic vibrations
predicted by the thoery of Sir C. V. Raman, and an elastic wave-motion
that moves away from the region of the initial disturbance. In any region,
the former modes are the only vibrations that possess significant amplitudes
after a long time, and further these are independent of the conditions of
the boundary of the crystal. Section III is devoted to a discussion of the
long waves of low frequency inside the crystal, which are the analogue of
the non-dispersive waves contemplated in the elasticity theory. Section IV
concerns itself with the evaluation of the strain-energy function in the ato-
mistic theory.  An important fact emerging from this section is that the
strain-energy function derived from the atomistic theory differs from the
energy function of Green in that the former contains terms in the three rota-
tional components of the strain also and thus involves forty-five independent
elastic constants. A comparison of -the two theories is possible only for
the case of static strains which are strictly homogeneous or strictly irrota-
tional. In these circumstances, expressions for the elastic constants as
defined in the phenomenological theory can be obtained in terms of the
atomic force-constants. Section VI deals again with wave-propagation
inside crystals and it is shown here that except in the case of longitudinal
waves, the equations of wave motion and the velocities of propagation of
the elastic waves would be different in the two theories. Finally, the con-

sequences of the forty-five constant theory as regards the stress-strain relations
inside the crystal are discussed in Section VII.

I. PRELIMINARY CONCEPTS

We shall suppose that an unit cell of the crystal contains p atoms, and
denote the three primitive translational vectors of the lattice by d, d, and
d;. If the positions of the p atoms, which we can number as 1,2,3,....p,
are all known inside any unit cell, then the structure of the crystal is com-
pletely specified. We denote by b,, b, and b, the three primitive translational
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vectors which generate the reciprocal lattice of the crystal. These are then
determined from the relations

b - d; = 8; m

where 8;; is the Kronecker delta symbol. Any vector a of the reciprocal
lattice is therefore expressible as

= 91b1 + ozbz + 83bs (2)

Further, we use in the sequel the letters » and p as general symbols to
represent any of the p atoms in the unit cell, and likewise denote by s and ¢

a general cell of the crystal lattice.

Taking any three mutually orthogonal axes x, y and z we represent
the components of the displacements of the atom (r, s) from its equilibrium
position by gurs, gyrs and gzrs. If however the letters x or y occur under a
summation sign in any expression, they should be understood as general
summational indices that cover all the three directions of the co-ordinate
axes of the system.

The expressions for the kinetic and potential energies of the crystal
can now be written down. Denoting by m,, m,,....m, the masses of the
p different atoms in the unit cell, we can write them as

2T = 3 meifPers )]

and .
W=7 5 Iﬂ‘:f Gxrs 9ype ®

zrs yPo
The equations of motion of the atoms of the crystal can be de{ived from
(3) and (4) by means of a Lagrangian formulation. They are given by

— My ers = 2 K57 qype o)
vPo

The force-constants occurring in the above equations are not all entj'xely
independent, but are connected to each other by means of a few relations
which express the invariance conditions of the potential energy undl_er pure
translations. If the entire crystal is translated by an amount specqied by
the vector u = (ix, Uy, Ug), then the left-hand side of the equation (5)

should vanish and one therefore gets
P lly k','f: =0

ypPo

(©
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As the vector u is arbitrary it follows that
Z KT =0 (x,y =x,,2) @
pa
Substituting the relations (7) in (5) we can rewrite the latter as

— nmy qx‘rs =2 kvﬁg’ (q’ypd - qus) (51)

vPo
The above equation expresses the fact that the total force acting in the x-
direction on the atom (r, s) is a linear sum of the forces due to the displace-
ments of its neighbours, the force exerted by (p, o) alone being equal to
— Z k7 (qyps — qyrs). The force-constant k¥’¢ can therefore be inter-

v N
preted as the x-component of the force exerted by (p, o) on the atom (r, s)
per unit relative displacement of these two atoms parallel to the y-direction.

Since the crystal is composed of p different homogeneous lattices, we
shall suppose that a wave of given frequency and wave-length is propagated
with different amplitudes inside the different Bravais lattices and that no
damping of the waves occurs anywhere inside the crystal. The displacement
of any atom caused by the propagation of a wave of frequency v and wave-

length A travelling in the direction of the vector e through it is then expres-
sible in the form

g, = Are (st- &) or

q,, = Are i {eut-a.5y (8)
where

w==21rvanda=—2x1-re

By substituting these wave solutions in the equations of motions of the atoms
of the crystal, we can now obtain a set of 3p linear equations in the 3p ampli-
tudes A%, AY, A® (r=1,2,....p). A process of elimination of these

amplitudes from these homogeneous equations then leads to the determinental
equation

A — Mow?)| =0 ©)

in which the elements of the matrix (A) composed of 3p rows and columns
are the coefficients of the 3p amplitudes in the 3p sets of equations.

Equation (9) can also be rewritten in the form

So wSP - S8P-2 L Sgp = 0 (91)
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The coefficients sy, s,. .. .53 are functions of the wave vector a. The fre-
quencies of the waves in the crystal are therefore dependent on their wave-
lengths, or the waves are dispersive. Further, there are 3p waves with a
given wavelength, whose frequencies are the roots of (9) which correspond
to this wave-vector.

II. EFFECT OF AN ARBITRARY DISTURBANCE

This section deals with the spreading of a disturbance, initially confined
to a small region of the crystal, into its undisturbed portions at later instants
of time. In view of the interaction among the atoms of the crystals, any
local disturbance will gradually spread into the other regions of the lattice
also, the rate of spreading depending on the strength of coupling between
the various atoms of the crystal. To make the problem specific, we shall
suppose that initially all the atoms in the cell (0, 0, 0) with index zero are
displaced by small amounts and that the velocities of all other atoms are
zero. In other words, the initial state of movements of the atoms is described

by

4, 0 = g, [ wret®aV =u b (10)

A

and
Grs (0) =0 ‘ n

Here dV denotes the element of volume in the reciprocal space. If ay, ay, a3
are the components of the wave vector in any three orthogonal directions
and if ¢ denotes the determinant of the transformation a;=2X cij9;(i, j= 1, 2,3)

where 8,, 0,, 6; are the components of the wave vector along the directions
of the {axes of the primitive vectors of the reciprocal lattice, then dV =
da, da, da; = c d0, d6,dd;. Further A denotes the volume of the paral-
lelopiped whose corners are given by 7 (4 by = by 3= by).

The displacements of the atoms of the crystal from their equilibrium
positions at a later instant can be determined by superposing waves of type (3)
for all possible wavelengths and frequencies so that the final result reduces
to the equations (10) and (11) for the case ¢ = 0. If therefore we denote by
@2, wg?, ....wyp? the 3p different roots of (9) and their associated ampli-
tudes by Ars1 Ars 2 -+ Arsap (r=1, 2, ....3p), then by choosing the ampli-
tude functions so as to satisfy the relation

P Ane=1u 12)
k=1
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we can represent the state of movements of the atoms of the crystal at any
later instant by

3p

q,, ®= ._1.6%7_% E f Ar (e toopt 4 e—iw,,t) e ias gy (13)

k=1 FaN

A discussion of the above sum of 3p integrals for different values of
t and s would reveal the nature of the disturbance at different instants and
in the different regions of the crystal. We here consider only a simple and
interesting case, namely the value of the above sum for large values of ¢

This is done with the aid of the method of stationary phases introduced
by Kelvin. The principle of Kelvin asserts that the value of an integral
of the type

I= [f(x) exp i {w (x) t — s-x} AV (14)
Fa

for large values of 7 arises only from the neighbourhood of points at which
the function o (x) is stationary. Such points are known as saddle points.
We shall denote the stationary points of the function w in the region of
2
integration by xg, X;....x;. If the matrix whose elements are a,s= ?}%5)
T YAs

=2y

is denoted by ‘A (x,) and k denotes the difference between the number of
positive eigenvalues of A (x;) and the number of its negative eigenvalues,

then the asymptotic value itself is given by

|~ 2‘?)312 4 T&}%‘%F expi{w (X)) £ — 5 %o+ kn/4}  (15)

the summation being over all the stationary points of the function w inside
the region of integration.

The above expression in fact denotes the first term in the asymptotic
expansion of (14) in inverse powers of 7 and will represent integral (14) very
closely if ¢ is sufficiently large. It can be supposed to provide a fairly good
estimate of (14) for all values of ¢ greater than or equal to K |s |2, where
K is a constant of the dimensions of Time, for in this case w (x) ¢ is a quantity

of second-order in largeness compared to the factor s-x occurring in the
exponential of the integral.

The saddle points for the 3p integrals occurring in equation (i3) are

clearly the solution of the equations doye =0(k=1,2....3p).

da In any
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dispersive medium, the expression ‘f;; represents the group velocity of the

waves traversing it. Thus the saddle points correspond to waves for which
the group velocity is identically equal to zero. It has now been shown
elsewherel® that there are eight pointsin the reciprocal space for which the
group velocities of waves traversing the crystal are equal to zero and for
these, the components 8;, #, and €; of the wave-vcctor a are all equal to
either zero or =. Explicitly, these points are given by a' = (0,0,0);
at = (m,0,0); 2°=(0,7,0); a*=(0,0,m); a°= (0,7, m); a°®=(m0,7);
a’= (=, 7,0); and ab= (=, =, 7).

Considering first the vector a'= (0, 0, 0), it is readily observed from (8}
that this corresponds to waves of infinite wave-length inside the lattice. It
can be shown that for this case three of the roots of (9) vanish and that
dox, == 0 for these three frequency branches. Long waves associated with

da
these three branches correspond to the elastic vibrations of the crystal and

will be discussed later. For the remaining (3p — 3) frequencies associateai
with this vector, as also for the 21p frequencies that are yielded by the seven
other points listed above, the expression %’f vanishes. Thus we see that
for a crystal containing p atoms in each of its unit cells, there are (24p — 3)
frequencies for which the group velocity of the waves vanishes.

Returning to the evaluation of (13) for large values of t, we note that
the functions A, and wy occurring in the 3p integrals are all periodic func-
tions of the wave-vector a with periods equal to 2« for their components
8,, 8, and 6, in the reciprocal lattice, and the region of integration of the
integrals can therefore be slightly shifted about the origin without affecting
their values so that it completely encloses all these eight saddle points. Then,
denoting by A% Yk and A’y the values of the functions A x, wk and Arg
at the eight saddle points, we can write the asymptotic value of the displace-

ment of the atom (r,s) as

3p

q, ()= &-(zrlt)ﬁ Z’ f%}‘;—([l;) cos (Viit + kiz[4)

k=4

1 . = AT’ k(a) . .
+ o Z, Z, Ty cos (ner-hac-s-Hem/d)
k=2 k=1
16)
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The above expression can be considered to give a good approximation of
qrs () for all values of 7 greater than or equal to K |s |2 where K is a con-
stant characteristic of the medium having the dimensions of (Time).

Equation (16) suggests that in any region for which the above approxima-
tion is applicable, the vibrations of the atoms are all obtainable as a super-
position of a set of harmonic vibrations which are characteristic of the crystal
and hence may be appropriately called the characteristic vibrations of the
crystal lattice. In the (3p — 3) modes represented by the first sum, equivalent
atoms in successive cells all vibrate with the same phase and amplitude.
In the remaining 21p modes equivalent atoms in successive cells vibrate with
the same amplitude but with opposite phases along one, two or three of the
Bravais axes of the crystal, as each term in the second sum contains a factor
cos a®.s which is equal to plus or minus unity. Thus these modes are
exactly identical with the stationary normal modes of vibration discussed
in the dynamics of crystal lattices proposed by Sir C. V. Raman.3% Our
theory therefore shows that the asymptotic nature of the vibrations of the atoms
of the crystal arising from an arbitrary disturbance, confined initially to a small

region of the lattice is a summation of the (24p — 3) normal modes of vibrations
recognised in Raman’s theory.

With the aid of the above results, it is possible to visualise at least
qualitatively the nature of the vibration of the atoms at different instants
of time and in different regions. In and very near the region of initial
disturbance, the displacements of the atoms are representable by (16) even
for small values of ¢ and the disturbance therefore resolves itself into a super-
position of the (24p — 3) characteristic vibrations of the crystal almost
immediately. In the farther off regions the disturbance spreads in the form
of waves of which the fastest groups correspond to the elastic vibrations of
the crystal. Since no atom can acquire a sensible amplitude until the fastest
group reaches that lattice point, the maximum amplitude of any atom is
attained only after a certain instant of time which depends on the velocity
of propagation of the elastic waves in the medium. The value of the
maximum amplitude can further be estimated to be of the order of 7, if we
consider the elastic vibrations as surface waves divulging from a point whose
energy is concentrated in a thin spherical shell only. The amplitudes of
the atom thereafter fall away and for sufficiently large values of time com-
parable in magnitude with the square of the distance of any atom in a given
region from the origin, the vibration of the atoms in this region consist of a
superposition of the characteristic vibrations of the crystal with time-
dependegt amplitudes. At these instants, the elastic waves would have
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completely moved away from the region under consideration, and their
effects on the vibration of the atoms is therefore negligible, as can otherwise
also be seen from the fact that the contributions of the elastic waves to the
displacements of the atoms are infinitesimals of order higher than %2 and
are therefore ignorable. Thus asymptotically in any region the characteristic
modes of the crystal are the only vibrations that possess physically significant
amplitudes, and the elastic waves which form a low frequency residue to
them contribute none other than second order perturbation terms to the

actual displacements of the atoms.

If the characteristic vibrations are assumed to settle in any region after
an interval of time of the order r? where r is the distance of the region from
the origin, then the rate of spreading of the disturbance % at any point is
inversely proportional to its distance from the centre. The vibrations there-
fore spread rapidly in the regions near the centre of disturbance but their
rate of spreading diminishes for points in the farther off regions of the crystal.
Another significant result that deserves mention is the dependence of the
amplitudes of these vibrations on time, which indicates that these modes
diffuse slowly into the volume of the crystal and do not travel outwards like
elastic wave propagation in a medium. Further by the time these vibrations
take to reach the external boundary of the crystal, their amplitudes would
have become insignificant infinitesimals. Hence the characteristic vibrations
are entirely uninfluenced by the boundary conditions of the crystal, and in
discussing them all reference to its size and shape can be completely left out

of account,
I11I. Tue ELASTIC WAVES IN THE CRYSTAL LATTICE

We have already mentioned that three roots of equation (9) tend to zero
in the limiting case of waves of infinite wave-length. Vibrations associated
with these three roots of the secular equation (9) represent the elastic wave-
motions inside the lattice and are propagated without any dispersion. For

d. ..
such vibrations, since Lt ‘% = -:Ta’i the group and wave velocities become
a->0

identical with the velocity of propagation of the elastic waves inside the

crystal.

As in the classical elasticity theory, there can progress in any direction
three types of elastic waves whose vibration directions are mutually ortho-
gonal. Denoting by ¥ and e the velocity and direction of propagation of
sound waves, it can be shown that the velocity of the three different waves
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travelling in the direction of the unit vector e are given by the roots of the
cubic equation

720 ayy® + 360 ay 92 +- 30y + a3 =0 7

The coefficients a,, a,, a, and g5 in the above equation are functions of
the force-constants and are equal to the derivatives of sy g, S3p—2, Ssp— and sgp
with respect to the variable ¢ of orders 0, 2, 4 and 6 respectively. The
velocities of the sound waves in crystals are therefore functions of the force-
constants, which are the roots of the equation (17).

1V. THE DEFORMATION ENERGY FOR CRYSTALS

To obtain an expression for the deformation energy of the crystal, we
first try to calculate the mutual energy between pairs of atoms of the crystal.
The energy stored in any unit cell can then be obtained by summing up the
mutual energy of interactions of the atoms in that cell with all the atoms of
the crystal. 'We have already shown in Section I that the force exerted on
the atom (r, s) in the x-direction by the displacement of the atom (p, o)

is equal to — X k%7 (gyps — qyrs). The mutual energy of this pair (V47)

¥
is obtained by multiplying the force by the relative displacement of the atoms,
and dividing the result by two. Hence we have

Vil =—1 3 k) (‘Iypa - ers) (pra — Gxrs) @18)
*y

If A denotes the volume of the unit cell, the deformation energy stored in
the cell s is given by

AU=%3 ZVi
r pc
or

— 4 AU= 2 3 k%% (yps — qyrs) (zpsc — Grs) (19

zr ypo
Now each atom of the crystal should be in equilibrium in the deformed
state also and hence one gets
E KL Gype =0 @0)
‘With the aid of (20) we can rewrite (19) also in the form

— 47U =5 2 K% Grps Qypo @

o yPo

‘ Any deformation of the crystal can be analysed into two parts: a part
which denotes the mutual displacements with respect to each other of the p
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interpenetrating Bravais lattices and which is thus the same for all the atoms
in the same lattice of the crystal; and another part which corresponds to
the usual elastic deformations, denoting the continuous change in the rela-
tive displacements of the points of the body due to the strain. The former
are generally known as the inner displacements.

Denoting now by ky, kyr, kzr the components of the inner displace-
'ments of the rth lattice, by Xps, ¥rs, Zrg the co-ordinates of the atom (r, s)

in the underformed state and by wyy <= %) the components of the
¥

strain, we can represent displacemerit components of the atoms due to the

deformation by .
= kgr + X gz Xrs (22)

x

ql"l's

Substituting (22) in (21) we can rewrite the energy expression as

—2U=3 3 {55} kzp wg + 2 Z [¥%, 3P| uzz uyp 3
xp ¥§ xX yy. P
where
(2P 1 kvPe v
ot =% o Yoo
and .
- 1 . -
[xx, y7]1 = A Z r kif? Xpo Voo (24)

The inner displacements can now be eliminated from the energy expres-
sion which can thus be expressed as a function of the strain variables only.
The equations determining them are obtained by substituting (22) in (20)

and are given by

> ki kﬂp = - ZZ uyy (2 Ll Vo) 25)

Ypo yy 4
These are 2 set of 3p equations in the 3p unknowns.ky,,, etc., 9f which
only (3p — 3) can be linearly independent since the matrix mlll'tlplymg them
in the left-hand side is singular and is of rank (3p - 3). Assuming tha.t these
equations are consistent and solvable and denoting by I' the matrix that
qould multiply the column vector on the right-hand side in the solution of
tv;ese equations, we can find the expressions for the inner displacements as
' 26)

kpr=—Z 5 Z vy T2 K50 ¥pe

wp oY P
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Substituting (26) in (23) one gets

2U = Z;C' 2 dxz, yp Uxz Wyy @n
xX yp
where
dxia yy = = [x)‘c, y}—)] -+ (xxa y.}_’) (28)
with
(509 = 2 2 28 S T e (09)

Equation (27) gives the energy expression in the atomistic theory, and
the constants multiplying the various quadratic terms in it are functions
of the force-constants and the lattice parameters. We note that both the
bracket expressions in (28) are symmetric in the pairs x%, y9. The round
brackets are further invariant under a permutation of the symbols x and %,
or of y and y, while the square brackets do not possess such a symmetry
except in the special case of a central force system.

V. THE ELASTIC CONSTANTS OF CRYSTALS?

If we write exz= (¥zz + uzy) for X5 x and exy= u,.,. then the deforma-
tion energy obtained from the elasticity theory is a general quadratic in the
SiX strain components ey, eyy, €z, €yz, €zp and e,,. Using the notation
of Voigt in which the numbers (1, 2, 3, 4, 5, 6) replace respectively the sym-
bols (xx, yy, zz, yz, zx, xy) the strain energy function of the elasticity
theory can be written in either of these two forms

W=gx Zs: Crs €r € (30)

1,8 =1
=} X Cxx, yi UpE Uyy
xx yy

The second form of the energy expression contains forty-five terms and the
constants c¢,z, 43 are therefore subjected to the symmetry relations

CaZ, y¥ = Czf, Jy = CZx, yU = Ciz, Iy Gh
so that it might become identical with the first one.

The expression (27) for the energy expression obtained from the ato-
mistic theory can also be written in the form (30) provided the constants
dzz, yp also satisfy the same symmetry laws as the elastic constants, i.e., if they
are invariant under a permutation of the letters x and % or y and . But.
this is by no means the case, for these constants are functions of the force-
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constants defined in accordance with the relations (24) and (29), and any
assumption of such symmetry requirements can be shown to be equivalent
to the assumption of a central force scheme for the interactions among the
atoms of the crystal. As a central force interaction is not obeyed by a
number of crystals, there is no justification whatsoever to suppose that these
constants are also governed by relations (31) with the ¢’s replaced by the d’s.

The atomistic theory thus involves 45 independent constants for the
case of a general strain* as had been stressed recently by Laval’ and the
present writer.® In order to derive expressions for the elastic constants
in terms of the force-constants, it is therefore necessary to investigate the
circumstances or conditions of strains under which expression (27) might
reduce to the same mathematical form as that of (30) and which might thus
enable us to identify the two. Obviously both these expressions reduce

to the same form if )

Upy = Uyz (32)
The above relation is clearly satisfied by irrotational strains. There is another
type of strain which is important from the experimental standpoint, and
which conforms to the above condition. These are the infinitesmal homo-
geneous deformations for which all the nine strain components are con-
stants throughout the volume of the crystal. Any small homogeneous strain
can now be analysed into a pure strain followed by a rotation about a suitable
axis. By a proper choice of the co-ordinate axes it is always possible to
make the rotational part of the strain vanish, and thus the relation (32) holds
good for homogeneous strains also. By substituting (32) in (27) and com-
paring it with (30) we can now obtain expressions for the elastic constants
determined by static homogeneous strains in terms of the force-constants,

and they are given by
Cor vy = } Ao yy + dip i + B2 7y Tz ]l - (33)

The constants appearing on the right-hand side of the above equation
reduce to a fewer number than forty-five for crystals possessing symmetry.
We shall consider the explicit relations following from (33) for crystals pos-
sessing the symmetry of the cubic class. If, as before, we introduce the
convention of replacing the letter pairs (xx, yy, 2z, ¥2, 2y, 2X, XZ, X}, ¥x)

* Cases in which the energy function is a quadratic expression in the nine strain components
as can be inferred from a reference to

have been considered in the phenomenological theory also, > e
a paper by Macdonald (London Math. Soc. Proc., 1500, 32, 311) given in Chapter VII of Love’s
book. Since this paper is not available to the author, it has not been possible to discuss the results

contained therein in this article.
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wherever they occur into the numbers (1, 2, 3, 4, 5, 6, 7, 8, 9), it can be
shown that there are only four independent constants dy;, dy,, dyy and dyg
for cubic crystals. The relations (33) reduce in this case to

ey = dy;
C1a == dho;
Cyq = % (dyg + dy)

(34
VI. WAVE-PROPAGATION INSIDE CRYSTALS

In this section we consider the nature of wave-propagation inside the
crystal assuming that the strain produced by the propagation of a wave-
front inside the crystal is very general and that the energy of the wave motion
involves all the nine components of strain being given by the function (27).

We shall assume all the nine strain components Uypy = Sy are linearly

3y
independent functions of variables x, y and z. Then the equations of motions

of the various elements of the crystal can be derived from the variational
principle

8/ (T~U)dt+ [8Wdr =0 ‘ (35)

in which U stands for the potential energy function (27) and T and W denote

respectively the total kinetic energy of the solid and the work done by the
external forces on the solid.

In the absence of body forces, W is given by

W= 5 [ (T, duy) dS (36)

if T, denotes the normal component of the surface traction of the body,
and the kinetic energy T is given by the expression

T= fp (g 4 tiy® + 1D dV (37
where p is the density of the medium.

The variational equations of (35) can now be written down and they
are given by
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for interior points of the solid, and

U
Ty = Z Sy o, v) 39

¥
for points on the surface of the crystal.

We now seek to find out solutions of the above equations which are in
the form of plane waves of the type

2xi
u, =ATexp. 3 (1=en (x=>x 5 2 (40)

Substituting (40) in (38) one gets

Pvax =} Zr:d;z:a_t: y7 €z €y AY (x > X, ¥ Z) (41)
x ¥y

If we write A= (A%, AY, A%) and D, = ¥ d,3, y ex ey then the above
# :

equations can be rewritten as (D — pv?) A= 0. The matrix D= (Dyy) is
symmetric and hence its eigenvalues are real. If they are distinct, the cor-
responding eigenvectors are mutually orthogonal. Thus there are three
types of elastic waves progressing in any direction of the crystal. Their
vibrations directions are mutually perpendicular to each other, but they may
be obliquely inclined to their direction of propagation.

Equations (41) are the equations of wave-propagation inside a crystal
lattice and were first deduced by Begbie and Born. They had subsequently
been used by several authors to obtain expressions for the elastic constants
in terms of the force-constants. The first set of expressions were given by
Begbie and Born, who obtained the relations

2%, y7 = dadr y (42)
This relation is clearly untenable in a general force-scheme, for it amounts
to assuming a central force-scheme, and would lead to the Cauchy relations
for crystals possessing a centre of symmetry. For such crystals, the round
brackets vanish and therefore dyz, yu = — X%, ypl. If further the relation
(42) is satisfied, then the suffixes x and y are interchangeable in the expres-
sion for dyy, yy, 20d similarly x and y or z are interchangeable in d., yz-

Therefore it follows from (33) that
€19== Ces; C23= Caa’ Ca:1= Cs53

“43)

€34= Csei. Cas= Cas3 Ces= Cas
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which are the Cauchy relations. Thus the expressions of Begbie and Born
are true in a central force scheme only and are not valid for the case of a
general force system. A second set of relations for the elastic constants
were later obtained by Kun Huang whose method also consists in identifying
the lattice wave equations with the wave equations of the elasticity theory.
But such an identification could be done only with the aid of a few additional
relations such as [x%, yjl= [¥x, 7y] which were assumed in Kun Huang’s
theory, and these were interpreted as the conditions for the vanishing of the
initial stresses in an infinite lattice. 'We may mention that there is no Jjustifica-
tion for the assumption of these relations in a general force scheme which
would hold good for central interactions between the atoms only. The expres-
sions of Kun Huang are also not reliable in a general force scheme and can
be expected to hold good for the case of central force systems only.

The real difficulty or source of error in identifying the lattice wave
equations with those of the elasticity theory lies in the fact that they owe
their origin to different potential functions in the variational method of
deriving them. The former are derived from a potential function that con-
tains the rotational part of the strain as well thus involving 45 independent
constants, whereas the latter are derived from an energy expression involving
21 constants only. These two are not in general mathematically equivalent
and are therefore not identifiable. For those cases of wave-propagation
in which longitudinal waves moving in a certain direction alone are excited,
the energy of the solid due to the wave motion will not involve the three
rotational components of the strain, and in such cases both the theories would
lead to identical results. But in general the equations of wave-motion and
hence velocities of propagation of the waves are different in the two theories
that involve twenty-one and forty-five constants respectively.

VII. THE STRESS-STRAIN RELATIONS

A natural question that arises in a forty-five constant theory is as regards
the nature of the stress-strain relations in the solid. Since the potential
energy of deformation in this case is a function of the nine strain variables,

one can form nine quantities Ty = DBTU obtained by differentiating the
Ty

energy expression partially with respect to the strain variables Uyy. If these
are called the stresses acting on the body, then a striking property of the
forty-five constant theory is that the stress tensor does not satisfy the sym-
metry property

Tey = Tye (44)
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If the surface tractions are the only forces acting on any volume element
of the body, the result T,,= Ty, holds good at every point inside an elastic
body which is under a state of stress. This is easily shown by considering
the equilibrium of any small cube of volume /® with its centre at the origin
and edges parallel to the axes and equating the total angular momentum
parallel to the three axes to zero. In order to reconcile ourselves to the
circumstance in which the nine stresses do not form a symmetric tensor,
we shall assume that each volume element is being acted upon by a couple
which tends to rotate it relative to its neighbouring elements in the solid,
in addition to the surface tractions acting on it. Denoting by IW ., Wy, IW,
the components of the moment of the couple parallel to the threg co-ordinate
axes, we ¢an obtain the equilibrium conditions of this element by equating
the total angular momentum of the system to zero. This leads to

Ty — Tgy) + Wz =0 45)
‘We shall now write

Cry = '% (uxy + u—yz)
and
Wy = gy = — wy; =% (Ugy — Uyy).
Then obviously

U 1 72U +

ag) and Ty = 1 (AU 2U

Tev=3u_, =2 \3e,, T 4 Yo,  duy
Hence -
?
(Tyr — Tay) + Dy 0 (46)
Comparing (45) and (46) we see that the quantities 2U U U denote

e’ "B?y ? dewy
respectively the components of the couple W, Wy, W, acting on any small
element of unit volume in the body.

‘We have already shown in Section IV that the quantities dyy, 4, and
1 (dyy + dss) denote respectively the three elastic constants of cubic crystals
for static homogeneous strains. A physical interpretation of the four con-
stants occurring in the general theory will therefore be complete if it is possible
to give a meaning to the quantity (d4, — dg) which is independent of the
above three. 1t then follows as a consequence of (45) applied to the case
of cubic crystal that the constant 2 (d,, — dy5) is equal to the ratio of the
magnitude of the couple acting on any volume element of the crystal to the
magnitude of the rotation suffered by it due to the strain.
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Finally, the author expresses his indebtedness to Professor Sir C. V.
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I. INTRODUCTION

JADEITE is a mineral to which much interest attaches by reason of the use
which has been made of it since ancient times—especially in China—for
the fabrication of works of art which have been greatly admired. It is a
much rarer material than nephrite which is another mineral product to which
the name jade is also commonly given; happily, the two substances are
readily distinguishable from each other. In its finest forms, jadeite is known
- as gem-jade or imperial jade and differs from the commoner varieties in its
optical characters; it exhibits a beautiful green colour resembling that of
emerald and is semi-transparent instead of being cloudy or opaque. There
is an extensive literature which deals with jadeite from the mineralogical
point of view; works on gemmology also naturally devote a good deal of
space to it. 'We have not however found in the lterature any explanation
of the optical characters which jadeite exhibits in terms of its structure.
Indeed, it does not appear to have been realised that there is a problem
awaiting answer in that connection. The opportunity for examining the
subject presented itself to us when a collection of specimens of Burmese jade
which was acquired for the Museum of this Institute became available for

our studies.
2. THE STRUCTURE OF JADEITE

The chemical composition of jadeite corresponds to the formula
NaAl(SiOs), and indicates that it belongs to the series of monoclinic pyro-
xenes of which diopside CaMg(SiO;)z 1s a typical example. X-ray studies?- % 3
support the latter conclusion, the X-ray powder diagrams of jadeite and
diopside showing a close resemblance to each other. The published
chemical analyses* show the presence in jadeite of varying proportions of
other oxides, notably the oxides of calcium and magnesium, thereby indicat-
t diopside is present as a minor constituent in the mineral. Physically,
gregate. Examination of thin sections under
als the presence of individual crystals which
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ing tha .
jadeite is a polycrystalline ag,
the polarising microscope 1eve
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are birefringent, their greatest and the least refractive indices being 1-667
and 1-654 respectively.

Wh:n light enters a polycrystalline aggregate in which the individual
grains are birefringent, it would necessarily suffer reflection and refraction
at the intercrystalline boundaries. The smaller the individual crystallites,
the more numerous would be such reflections and refractions. Hence, on
this view, none of the incident light would succeed in penetrating through
the material, if it is fine-grained and also of sufficient thickness. In the
absence of any absorption properly so-called, the incident light would mostly
be sent back towards the source by repeated internal reflections. In other
words, a fine-grained aggregate of birefringent crystals should present a
high albedo by reflected light and appear opaque in transmission.

The foregoing inferences based on geometrical optics do not however
represent what is actually observed in the case of jadeite. Indeed, the con-
verse is much nearer the truth; in other words, the specimens exhibiting
a coarse structure are those which are opaque to light and reflect it strongly,
while the specimens which are most readily penetrated by light are those

having a fine-grained structure. Why this is so is the problem considered
in the present paper.

3. THE X-RAY DIFFRACTION PATTERNS

To establish the relationship between structure and optical characters
briefly indicated above, we have recorded the X-ray diffraction patterns of
specimens exhibiting diverse optical behaviour. Three of these diagrams
which are representative of the rest are reproduced in Plate XII. The film

to specimen distance was in every case 5 cm. and MOKe. radiation was
employed to record the patterns. T

Figure 1 was recorded with a piece of jade about half a millimetre thick
cut out from one of our specimens and polished flat on both sides. The
X-ray pencil passed normally through the specimen. The plate exhibited -
a notable measure of translucency; when placed on a printed sheet of paper,
the finest print could easily be read through it. The Xray record shows
clearly that the crystallites present in the specimen are of varying sizes and
that crystallites of very small sizes are the most numerous; though individual
bright spots appear in the pattern, there are also numerous fainter ones which
run into each other and appear as continuous rings.

Figu.re 2 is an X-ray diagram taken with similar arrangements, the X-
ray pencil now grazing the edge of a flat ellipsoidal piece of green jade. It

will be seen that the pattern is of the same general pature as that reproduced



The Structure and Optical Behaviour of Jadeite 119

in Fig. 1 except that the continuity of the rings is less evident and the
spottiness more conspicuous.

Figure 3 is the pattern recorded with a greenish-white specimen which
was nearly opaque to light. It will be seen that the pattern consists of a
number of individual spots, some of which are very bright. But hardly
_ anything in the nature of continuous rings can be discerned. In other words,

the specimen consists of relatively large crystallites.

4. THEORETICAL CONSIDERATIONS

To understand the optical behaviour of jadeite, we have to put aside
the considerations based on geometrical optics and deal with the matter
from the standpoint of the wave theory of light. It is useful, in the first
instance, to think of an extreme case in which the individuals in the poly-
crystalline aggregate are assumed to be of very small dimensions even in
comparison with the wave-length of light and are also randomly orientated.
Such an aggregate could obviously be regarded as equivalent to an optically
isotropic medium with a refractive index which is the average of the principal
refractive indices of the crystallites. A beam of light incident normally
on a slab of such material would traverse it as a coherent wave-train, and
emerge from the rear surface of the slab, but not the whole of the incident
energy would succeed in so emerging. For, in consequence of the varying
orientations of the crystallites and their birefringence, the medium would
exhibit local variations in optical behaviour, and there would therefore be a
diffusion of light both forwards and backwards. In the limiting case when
the grains are very small, the diffusion would extend approximately with
equal strength both forwards and backwards. More generally, however,
there would be a concentration of the diffused radiation in the forward
directions surrounding the path of the regularly transmitted light-beam,
There would also be a diffusion of light backwards towards the light-source,

but this would be less conspicuous.

The situation set forth above would be modified if the grains of the
‘medium are of dimensions comparable with the wave-length of light. Never-
theless, provided the birefringence of the individual crystallites is small,
we may continue to regard the aggregate as an isotropic medium which
exhibits local variations in refractive index depending on the direction of
vibration in the light beam traversing the material. These variations would
result in the phase of light-waves passing through an individual grain being
either accelerated or retarded as the case may be. The errors in phase thus
when summed up over the total path would tend to cancel each

resulting
phase would be the smaller relatively to

other out; the residual errors in
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the total path,;the more numerous the particles are, in other words the
smaller is their size. Thus, it follows that if the birefringence is not large
and the material is very fine-grained, the waves of light would succeed in
penetrating the medium. Nevertheless, the residual errors in phase would
result in a reduction of the absolute intensity of the transmitted beam and
ultimately also its total extinction. The missing energy would appear for
the most part in a cone of diffuse radiation surrounding the direction of
propagation of the incident light-beam.

Wave-theoretical considerations also indicate that the proportion of
the incident energy sent back towards the source as a diffuse reflection by a
fine-grained aggregate would be far less than that indicated by considerations
based on geometrical optics. For, the phase of a reflected wave relatively
to the incident wave depends on whether the first or the second medium on
the two sides of the reflecting boundary has the higher index. The bounda-
ries encountered by a light-wave traversing a polycrystalline aggregate would
obviously be of both kinds and in approximately equal numbers. The
reflection in the two cases being in opposite phases, their effects would tend
to cancel each other more or less completely in all directions.

Thus we may sum up the situation by the statement that light would
penetrate into a polycrystalline aggregate much more freely and would be
reflected backwards much less freely than that might be anticipated in terms
of geometrical optics, provided that the aggregate is sufficiently fine-grained.

Thus, we have an explanation in general terms of the semi-transparency
exhibited by the finest varieties of jadeite,

5. SuMMARY

The phenomenon of semi-transparency exhibited by the finer varieties
of jadeite is discussed. X-ray diffraction studies and theoretical considera-
tions based on wave-optics alike indicate that this is a consequence of the
very small particle size of the crystallites forming the aggregate.
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1. INTRODUCTION

WHEN polarised light of any form is incident on a birefringent plate, the
phase retardation 8 introduced between the two waves during their passage
through the plate, is far from being the same for all wave-lengths ; in fact,
being given by 8 = (27/d) (1, — pp) 1, this retardation of phase varies almost
inversely as the wave-length 2, that is, if the birefringence (1, —u,) does not
disperse notably with wave-length. So much so, that what acts as a quarter-
wave retardation plate for the deep red end of the spectrum will, for the
wave-lengths in the deep violet, behave practically as a half-wave plate.

The question of the achromatisation of devices in this field has engagéd
the attention of several workers. References to their investigations may be
found cited in the paper entitled, “ Réalisation d’un quart d’onde quasi-achro-
matigue par juxtaposition de deux lames crystallines de méme nature” by
Destriau and Prouteau?; the two plates referred to, do not, of course, have
their principal planes parallel, and the ¢ compound plate’, comprising the
two superposed plates, can transform incident circularly polarised light to
plane polarised light vibrating at a certain azimuth, or vice-versa. But the
device described by these authors would more properly be called an achro-
matic circular polarizer (or analyser); to call it an achromatic quarter-wave
plate would be incorrect since the combination does not have the usnal
at ributes of a quarter-wave plate—it cannot, for example, be used for the

analysis of elliptically polarised light in the usual manner of an ordinary
A/4 retardation plate.

Nevertheless it is as a circular polarizer or analyser that a quarter-wave
plate is often used—as when it is inserted with its principal planes at an angle
of 45° to those of a nicol, in a petrographic microscope. And we shall
reserve for the second part, the problem of superposing birefringent plates

1n such a manner that the combination as a whole behaves as an achromatic
130
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quarter-wave plate. In this paper we shall describe a circular polarizer
which is expected to have a much higher degree of achromatism than the one
discussed in the paper quoted above. The description of the device may be
found at the end of the next section; its applicability is not limited to the
visible. The birefringent plates in our discussion are all of the same material;
the dispersion of the birefringence of this material is not assumed to be
negligible—though such an assumption would indeed be justified for plates
of muscovite mica, at least for the visible and ultra-violet wave-lengths.?

2. THE ACHROMATIC CIRCULAR POLARIZER

The Poincaré sphere* lends itself very conveniently for the theoretical .
discussion of the two problems at hand—especially the one to be treated
later. (As is well known, any point on the surface of this sphere, of latitude
2w and longitude 27, represents an elliptic vibration of elfipticity | tan |
the major axis of which makes an angle / with a fixed reference direction.
Passage through a birefringent plate of retardation 3, the orientation of
whose principal planes are given by O and O’, is equivalent to the operation
of rotating the sphere by an angle 3 about the equatorial diameter QO'.)

]

Fic. 1 s

A quarter-wave plate with its fast vibration diregtion in ‘the.orientatiog
O, (Fig. 1) can transform the incident linear vibra_mon R—inclined at 45
to the principal planes—to circularly po]anse‘d h:ght represgntec% by the
pole S—but only for the wave-length A for which its retardation is exactly

* Expositions in English, of the properties of the Poincaré sphere are apparently not so

common in text-books, but may be found in numerous recent articles: se¢ e.g., Ramachandran
and Ramaseshan, J. Opt. Soc. Am., 1952, 42, 49,
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/2. For the wave-lengths ), and X, on either side of A, for which the respec-
tive retardations are #/2 — € and /2 4+ ¢, the emergent light will be cir-
cularly polarised only if the incident vibrations are given respectively by
R, and R,; these two points lie on the meridian SR and are equidistant
from R (arc RyR = ¢). Thus if the ellipticity of the incident vibrations
were dispersed roughly along R,R, in a proper fashion, the quarter-wave
plate would transform the vibrations for all the wave-lengths to approxi-
mately circular polarised light.

The required dispersion of the ellipticity of the vibrations incident on
the quarter-wave plate, it may be seen, can be effected by allowing plane
polarised light P to first pass successively through two half-wave plates,
the orientation of whose fast axes are given by O, and O, respectively and
are to be determined. In order that the light emerging from the third
retardation plate (i.e., the quarter-wave plate) should be exactly circularly
polarised for all the three wave-lengths A;, A and A, the state of polarization
of the light incident on the second half-wave plate for these three wave-lengths
should be given by Q,, Q and Q, respectively—got by the following
construction. The point Q is marked off on the equator such that 0,Q = O.R
(= a say); the arc 0,Q, is drawn such that R,0,Q, = = — 2¢, and 0,Q,
= OgR; (= b say); Q,is a point symmetrically placed with respect to Q,
on the lower hemisphere. The first half-wave plate has to be oriented in a
position depending on the quantity a which determines the orientation of
the second; for we must have 0,Q, = 0,Q; = 0,Q (= ¢ say); and further
we must choose a such that PO,Q; = = — 2e. If the plane of the incident
vibration P be now set such that O,P = e, then the light emerging from
the combination will be circularly polarized for the three wave-lengths A,
A and A, for which the retardations of a quarter-wave plate would be /2 —e,
w2, and 7/2 + € respectively; eis an arbitrarily chosen parameter on which
will depend the two opposing characteristics of the combination: the Tange
and the degree of its achromaiism. '

By the use of spherical trigonometry we shall get an equation for a

involving the parameter . Thus, from the equilateral triangl: Q,0,Q,
denoting arc Q,Q by ¢

cos2e = — €052 Q,Q0; + sin? Q,QO, cos ¢

1 -+ cos 2e = 2sin? Q,Q0, cos? ¢/2
From the triangle Q,0,Q we have, writing Q,0,Q = C,

or

sin ¢ _ _ sind
sin C sin Q1Q01
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ie.,
sin Q,QO; cos 5 = Msn; C
~ 2sin 5
We thus obtain _
sin? b sin? C = 2sin? 5 (1 + cos 2¢) (1

We shall express the quantities on the left-hand side in terms of . Denoting
R,O.R by C

sin C = sin (2e — C’) = sin 2e cos C' — cos 2esin C’ )

From the right-angled triangle R,O.R

o sin €
sinC’' = sm
sin b
and
cos € — cos acosbh sin @
0s C' = - : = COS € * —
cos C sinasin b sinb
since
cos b = cos ecosa 3)

Substituting the expressions obtained for cos C’ and sin C’ in (2)
sinC = z—i‘lﬁ—;(Z cos? esina — cos 2¢)
Introducing this in (1)
(2 cos? esin a — cos 2¢)> = 2 cot? e (1 — cos ¢) @

It remains to express cos ¢ in terms of a. From triangle Q,Q0,

cos ¢ = cos acos b + sina sin b cos C

cos C = cos (2e — C) = cos 2ecos C' + sin 2esin C’
= Cos e
T sinb

Using this relation, together with (3), the expression for cos c becomes,

(cos 2esin g + 2 sin%e)

cos ¢ = cos ¢ (1 + 2 sin? esin a — 2 sin® e sin® @)

Sutstituting for cos ¢ in (4), and rearranging, we finally get an equation in
sinag of the form:

Asinta+Bsina+C=0 )
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where
A =4cos? (]l —cos ¢
B =4cos? € (cos 2¢ — cos ¢
C=2cot? (1l — cos €) — cos22¢
An expression for e may be obtained from triangle Q,0,Q
cos ¢ = cos2 e + sin%e cos 2e

or

sin?e — 1—cosc
1 —cos2e

Using (4), ,

2cos? esina — cos 2e

2 cos e In

The combination can produce exactly circularly polarized light for three
wave-lengths. If we neglect the dispersion of the birefringence, the two
extreme wave-lengths will obviously be (1 4 f) A and (1 — f) A—where we
have denoted the ratio e:w/2 by f; the achromatism of the combination
may however be considered to extend up to two wave-lengths outside this
interval, for which the deviation from circular polarisation is roughly the
same as the maximum deviation attained within this interval—which latter
may be expected to occur in the neighbourhood of the wave-lengths
(1 & +5f)A. Thus we may with some arbitrariness, consider the combina-
tion to be achromatic within the range (1 +1-25 A

Choosing 2¢ = 47° (which means 1-25f= -325), equation (I) when
solved gives sina = -6642 or a = 41°37".

The corresponding value of e obtained from D) is e = 13° 43",

On the other hand, if we choose 2e = 36° (which means 1-25 f=25)
we obtain ’

a=438; e =13

sine =

Thus to summarize our results, an achromatic arrangement for producing
circularly polarised light is obtained by allowing parallel plane polarised
light to pass normally through a combination of three superposed plates of
the same material; the first two should be half-wave plates, and the last,
a quarter-wave plate for the wave-length X in the centre of the spectral range

to be covered. Let 0 be the angle by which the fast vibration direction of
the first plate is turned with respect to the azimuth of the incident vibration;
0y, the angle by which the fast axis of the second plate is turned with respect
to the first; and B, the corresponding angle between the fast axes of the



Achromatic Combinations of Birefringent Plates—I 135

third and second plates—all the angles being measured in the same sense.
The set of values

B, =14 (m)2 + a) = 65°49"; 6, = }(a -+ &) =27°40’; 8=} e = 6°52

can be used for covering the range from 1-325 X to 675 A and is therefore
suited for covering the entire visible spectrum if we choose A = 6000 A. A
greater degree of achromatism can be attained at the expense of restricting
the range to the major portion of the visible. Thus the set of values

f, = 66°34"; 0,=28°4"; 6=6°30

can be used for covering the range from 1-25 A to -75 A, If the dispersion
of the birefringence of the material used is not negligible, the values given
above for the range over which the combination may be considered achromatic
would have to be altered.

On turning the polarizing nicol to a perpendicular position, circularly
polarized light of the opposite sense is produced. In fact in passage through
any succession of *elliptically birefringent’ plates, two orthogonal states
of the incident polarization will correspond to two orthogonal states of the
emergent polarization. This is a consequence of a more general fact; the
angular separation on the Poincaré sphere of two possible states of the inci-
dent polarization will be equal to the angular separation of the two cor-
responding states of the emergent polarization, since angular relationships
remain invariant under any number of rotations. Thus if the nicol had been
turned by 45°, the emergent wave-lengths would all have been practically
plane polarized, but with the azimuths of the vibrations dispersed—an interest-
ing illustration of the fact that the combination does not have the properties
of a quarter-wave plate.

3. EXPERIMENTAL VERIFICATION

Two half-wave plates and a quarter-wave plate, all prepared of mica,
were cemented together (using copal varnish) with their principal planes at
inclinations slightly different from the first set of values given above—in order
to cover an even wider range. The combination was laid on a mirror. With
the aid of another mirror, white light from a point source was made to pass
normally through a polaroid and the achromatic combinatiioq, and then
back again—after which it reached the eye. As_ the polaroid 1s.rotz.1ted a
position is reached where the image of the source is completely extinguished ;
this is the position where a single passage through the con_npound plate wguld
give circularly polarized light, while the doub}c passage gives plane pplanze_d
light which is crossed out by the polarizer itself. When the experiment is
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repeated with a single quarter-wave plate the image is never completely
extinguished, but is highly coloured.

The two A/2 tetardation plates may first be cemented together at the
proper angle 0,, using the fact that the two together will rotate the plane
of polarization of any incident linear vibration (of wave-length A) by an angle
@ — 26, ; (this can be proved by a construction given in Part II); the quarter-
wave plate may then be cemented and adjusted, while the cement is still wet,
to the position of best achromatism—as determined by the test given above.

SuMMARY

Circularly polarised light is obtained by superposing two half-wave
plates and one quarter-wave plate, all of the same material, such that the
fast vibration-directions of the successive plates make specific angles 6,, 6,, 6,
with the azimuth of the linear vibration incident on the first plate. The
required range of achromatism determines the optimum values of the angles.
Thus, using mica retardation plates prepared for Na 5890, the range from
4000 A to 7800 A is covered with 6, = 6°52’, 8, = 34° 32/, 6, = 100° 20';
while the range 4400 A to 7400 A can be covered with superior achromatism
by taking 6, =6°30', 8,=134°34', 6,=101°8".

REFERENCES
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1. INTRODUCTION

A coMBINATION of birefringent plates which can be used for producing
circularly polarised light over a fairly large range of wave-lengths has been
described in Part I. And it has there been pointed out that the arrangement
cannot be properly described as an achromatic quarter-wave plate. A quarter-
wave plate when rotated between crossed nicols will show two extinction
positions; the achromatic combination described will show none. And to
understand under what conditions a combination of plates will have the
properties of a single birefringent plate—let alone a plate which is in addition
achromatic—it is desirable to have a general method for combining the
action of a pile of birefringent plates when their principal planes are not
parallel. 'We shall follow a method differing slightly from that which may
be found described by Pockels.?

2. GENERAL CONSIDERATIONS

The problem of designing an achromatic elliptic polariser is the problem
of transforming a particular state of polarization represented by P, (on the
Poincaré sphere) to another particular state P,’. But, of an achromatic
retardation plate we require that it transforms every P to a corresponding
P’ obtained by rotating the sphere by an angle 8 about an equatorial diameter.

Passage of monochromatic polarised light through a succession of bire-
onds to a succession of rotations of the Poincaré

atorial diameters. Any succession of rotations
be compounded into one single resultant rota-
tion. Hence the action of a combination of birefringent plates corresponds
to a rotation ¢ of the Poincaré sphere about some diameter EE'—which will
nclined to the equatorial plane; this means, of course, that

in general be i - . NI
the combination js equivalent to a single plate having elliptic birefringence—
137
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E and E' being the orthogonal elliptic vibrations propagated without cﬁangé
of form, and between which a phase retardation ¢ is incurred.

The condition that the combination should act as a purely birefringent
plate (for a particular wave-length 2) is that the axis EE’ of the resultant rota-
tion should be on the equator; so that, if 2w denote the lattitude of E, the
faster ellipse, 2w = 0. And if the retardation of the plate is to have a

required value 8, the magnitude of the resultant rotation ¢ should be equated
to this value.

Both the magnitude ¢ as well as the axis EE’ of the resultant rotation
will in general alter with the wave-length, since the magnitudes (though not
the axes) of the component rotations are a function of wave-length. Hence,
for the combination to be considered achromatic in the immediate neighbour-
hood of the wave-length A, some more conditions have to be imposed ; when
the wave-length is increased by 42X the values of the composite phase retarda-

tion ¢, as well as the latitude 2w and longitude 2/ of E, should remain un-
altered at least to the first order of approximation.

Instead of following matrix methods, we shall use a well-known geo-
metrical construction (illustrated in Fig. 1) for finding the resultant of any

Fic. 1. Composition of Rotations: 2R, + 2R, = 2R,

two rotations. If ABC be a spherical triangle described on a sphere whose
centre is O then: a rotation about AO through twice the internal angle at A,
Jfollowed by a rotation about BO through twice the internal angle at B is equiva-
lent to a rotation about CO through twice the external angle at C.

3. A BIREFRINGENT COMBINATION WITH VARIABLE RETARDATION

We shall now show that a combination of three birefringent plates,
the ﬁrst. and last of which have their corresponding principal planes parallel
and their retardations identical, will behave as a single purely birefringent
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plate of retardation 25, whose fast vibration direction is inclined at an
angle c; to that of the first plate, where 28 and c; are given by:

cos 8 = cos 25, cos 8, — sin 28, sin 8,c0s 2¢ (a)
and :
cot 2¢, = cosec 2¢ (sin 28, cot 3, + cos 25, cos 2¢) . ()
In the above relations 28, is the common retardation of the first and
last plates, 28, that of the central plate, and ¢ the angle between the fast
vibration directions of the central plate and the other two.

Before proceeding to prove these relations, we may mention that by
choosing 2 quarter-wave plates as the first and last plates, and a half-wave
plate as the central plate, we can, by rotating the central plate, vary the
retardation of the combination continuously from 0 to 2=; the principal
planes of the combination will always be inclined at 45° to those of the first

plate.

Referring to Fig. 2, a rotation 28; about AO followed by a rotation
28, about BO, where A and B give the orientation of the fast axes of the
first and middle plates respectively, is equivalent to a rotation 2¢ about CO—
where CAB = §,, CBA = 3, and = — ACB = ¢. Let us draw an arc CD
such that ACD = ¢, D being the point of intersection of this arc with the
equator. Considering now the triangle ACD, the rotation 2¢ about C
(representing the combined action of the first 2 plates) fc_)Howed b‘y a rgta-
tion 28, about A (which now represents the action of the third plate) is equiva-
lent to a rotation about D through twice the angle external to ADC. The
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combination is therefore equivalent to a birefringent plate of retardation 28

whose fast axis is inclined at ¢, to that of the first plate—where § = = — ADC,
and 2¢, = arc AD.

The expressions which we shall derive for 8 and ¢, do not depend on
assuming that D lies within AB.

From the triangle ADC, denoting arc CD by d

€os 8, == cos ¢ cos & - sin ¢ sin 3 cos d ()]

From the triangle DBC

cos §, = cos 2¢ cos 8 4 sin 2¢ sin & cos d )]

Eliminating d by multiplying (1) by 2cos ¢ and subtracting from (2),
we obtain:

cos 8 = 2 cos ¢ cos 8; — cos &,
The value of cos¢ to be substituted is obtained from the triangle ABC.

€os ¢ == cos 8, cos 8, — sin 3, sin 8, cos 2¢
Hence

cos 8 = cos 29, cos 3, — sin 23, sin §, cos 2¢
which is the required expression (q).

To get an expression for c¢;, we use a well-known trigonometrical theorem,
which gives from triangle ABC, on denoting are AC by &

cot 2¢ sin b = cot ACB sin 3; + cos b cos 3,
and from triangle ACD

cot 2¢, sin b = cot ACD sin 8, + cos b cos §,

or
sin b (cot 2¢; — cot 2¢) = 2 sin §, cot ¢
Substituting
N . sin2¢
sin b = sin §, sin &
we obtain,
. _ _ 2sind,
sin 2¢ (cot 2¢; — cot 2¢) = Sns, cos ¢
ie.,

. : 2sin §; . . N
sin 2¢ cot 2¢; — cos 2¢ = sin 5, (cos 8, cos 8, — sin §, sin 8, cos Zc)
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or
sin 2¢ cot 2¢; = sin 28, cot 8, - cos 28, cos 2¢

which is the required expression (5).
4, CONDITIONS FOR ACHROMATISM

To make a combination of the type described above achromatic in the
immediate neighbourhood of the wave-length A we may differentiate the
expressions on the right-hand side of the equations (a) and (b), and equate to
zero. Since however our object is to attain achromatism over a finite range of
wave-lengths we proceed in a different manner,

Let A" and A" be two wave-lengths on either side of A for which the retarda-
tions of each individual plate are multiplied by a factor (1 — f) and (1 4 f)
respectively. Values corresponding to these two wave-lengths will be denoted
by corresponding single- and double-primed symbols.

We impose the conditions that the retardation 28" and 28" of the combi-
nation for these two wave-lengths be equal to one another and to 24, the
required retardation of the achromatic combination; also that the orienta-
tions of the fast axes of the combination for these two wave-lengths should
be the same, ie., ¢ =c,". We then get three equations involving the

‘three unknowns 6, 8; and c:
cos 4 = cos 23, cos 8,' — sin 29'; sin §,' cos 2¢ Q)

cos 4 = cos 258,” cos 8," — sin 28,” sin 8,” cos 2¢ 2)

sin 28, cot 8, 1+ cos 23, cos 2¢ = sin 28," cot 3" + cos 23,”
cos 2¢ 3)

From these three relations we may get two relations involving only the un-
knowns 8, and 3,
Thus eliminating cos2c¢ from (1) and (2)

cos 8, cos 28, — cos 4 _ cos 8" cos 28,"— cos 4 @

sin 23, sin 8, sin 28,” sin 3y”

For the second equation, we eliminate cos 2¢c as well as cos 4 between the
three equations. Thus equating the right-hand expression of (1) and (2),
and then substituting the value of cos 2¢ from (3) we get:
cos 28, cos 8y'— cos 23," cos 8," __ sin 28, cot 8,’— sin 281': cot 8"
sin 25,7sin 05 — sin 23, sin &y’ cos 28,"— cos 25,
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which on simplification yields,
(1 — cos 28, cos 23,") (cos 8, - cos 3,")

sin 8," cos 8,” 4 cos 3,’ sin 8,”
sin 3, sin 3,"

9 = (1 —f)3 and &" = (1 + 1) 5,

= sin 28," sin 23,"

Substituting

we' get

4 (cos fo, — cos 8y)

(1 — cos 23, cos 28,") 2 cos 8,cos f 8, = Sin 28’ sin 3," - sin 23, Q)

We have to find values of 8, and 8, which simuitaneously satisfy (4)
and (5). The task is considerably simplified when we note that equation (5)

is identically satisfied for 8, = /2. The corresponding value of 8, may be
found from (4), which now becomes: :

sinf 5 . sin2 (3, + 8,") = cos 4 (sin 25,” — sin 25,")
Substituting
L ' =0 —f)8 and &"=(1+1)8,
this gives
sinf- 2

2 . sin 25, @

snf. 28 = —oou

An expression for cos2c is got by eliminating 4 from (1) and 2).

. T
Cos 2¢ — sinf3 , cos 281: + cos 28,
cos fg sin 26," — sin 28,"
or
tan f g
cos 2¢ = — m (Il)

For any required retardation 24 and for any choice of the arbitrary
parameter f which determines the range of achromatism, the retardation 26,
of the first and last plates of the achromatic combination may be found
from I; since this is a transcendental equation it has to be solved by an itera-
tion procedure. The orientation ¢ of the central plate, which should be a
half-wave plate, may then be obtained from II. The orientation ¢, of the
principal planes of the combination may, if required, be calculated from

sin 2¢ cot 2¢,’ = sin (1-— f) 28, tanfg + cos (1 ~ f) 28, cos 2¢ dm
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The retardation and the orientation of the principal planes of the achro-
matic retardation plate, taken as a whole, will disperse slightly with wave-
length. The combination will possess exactly the same retardation 24 and
the same orientation ¢, of its fast vibration direction, for two wave-
lengths; these wave-lengths, if we neglect the dispersion of birefringence,
will be (1 + f) A and (1 — f)A; and we may, somewhat arbitrarily, consider
the range of achromatism as extending from (1 + +/2f)A to (1 — /2)A.

'We shall present the numerical solutions only for the case of an achro-
matic quarter-wave plate—for which we must substitute 24 = 90°. If we
choose f= -18 the solution of I can be shown to be 28, = 115°42’; so that
from II, cos 2c = — -7639 or 2c = 139°48’. The corresponding value of
¢’ is got from III, which yields cot 2¢,’ = -5489 or 2¢;" = 61° 14'.

On the other hand if /= -1414 we get
28, = 115° 30", 2¢ = 140° 26', 2¢," = 61° 30

Thus an achromatic quarter-wave plate is obtained by superposing three
plates of the same birefringent material (the dispersion of the birefringence of
which need not be negligible). The central plate should be a half-wave plate
for the wave-length A in the middle of the spectral range to be covered. The
first and last plates should have their principal planes in parallel orientation
and their retardations of the same magnitude—equal to, say, 28, for the
wave-length A. With respect to the common fast vibration direction of the
first and last plates, let the inclinations of the fast vibration direction of the
central plate, and of the combination taken as a whole, be ¢ and ¢," respec-
tively. Then for covering the range of wave-lengths from about 1-25 A to
.75 X the set of values, 28, = 115° 42’, ¢ = 69° 54’ may be used—for which
¢y = 30°37’. The achromatism is not high but can be increased by restrict-
ing the range to be covered. Thus for covering the region from 1-22 to

-8 A the values suitable are:
25, = 115° 30', ¢ = 70° 13/,
for which
e = 30°45°

We may mention that the range over which these combinations may be
considered achromatic would have to be altered if the dispersion of the bire-
fringence is appreciable, but their essentially achromatic.nature w‘ould‘ not be
changed. For retardation plates of mica, the dispersion of birefringence

is negligible.?
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EXPERIMENTAL VERIFICATION

Two plates of mica were cleaved, whose thicknesses were in the ratio of
180:115-75, the former being nearly a half-wave plate for the D lines of
sodium. The second plate was cut into two portions which were then super-
posed and cemented together at a corner—the principal planes of the two
portions being made exactly coincident while the cement was still wet. After
the cement was dry, the half-wave plate—with a drop of copal varnish on
either side—was inserted between the other two plates at roughly the calcu-
lated angle. The combination was placed on a mirror and, with the aid of
another mirror, white light from a point source was made to pass normally
through a polaroid and the combination of plates and then back again—
after which it reached the eye. The orientation of the central plate was
then gradually altered while the varnish was still wet—and a position was
found where the image of the point source could be almost completely
extinguished by rotating the polaroid. It was also verified that the
combination thus prepared showed two practically black extinction posi-
tions when rotated between crossed polaroids.

The author’s thanks are due to Prof. Sir C. V. Raman for his kind
interest in this work.
SUMMARY

An achromatic quarter-wave plate is obtained by superposing three bire-
fringent plates of the same material; the first and last should have the same
retardation 28,, their fast vibration directions being parallel to one another
but inclined at a specific angle ¢ to that of the central plate—of retardation .
The desired range of achromatism determines the optimum values of 28,
and ¢ (which, in turn, will determine the orientation of the effective principal
planes of the combination). As an example, using mica retardation plates
prepared for Hg 5461, the range from 4100 & to 6800 A is covered with
28, = 115°42" and ¢ = 69° 54".

Further, for a particular wave-length, a birefringent compensator of
variable retardation (0 to 2 ) is obtained by interposing a half-wave plate
that can be rotated in its own plane, between two Quarter-wave plates that
have their fast vibration directions parallel.

The results follow from the Poincaré sphere by geometrically compound-
ing successive rotations.
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1. INTRODUCTION

Irisa classic result in the phenomenological theory of elasticity that two

independent constants suffice to describe the stress-strain relationships for
an isotropic solid. If, for example, the bulk modulus and the shear modulus
of the material are known, Young’s modulus and Poisson’s ratio may be
calculated therefrom. In the present paper, the ideas regarding the nature
of the strains and stresses in solids on which the derivation of this result
is based are critically examined and it is shown that they are untenable.
A re-formulation of the phenomenological theory of elasticity not open to
the same objections is then presented and its consequences are developed.
It emerges that tree independent constants are needed to describe the stress-
strain relationships of an isotropic body; in particular, it is shown that the
bulk modulus of the material cannot be evaluated from the experimental
data for the velocities of propagation of longitudinal and transverse waves
respectively in the solid and its density.

2. SoME GENERAL CONSIDERATIONS

As is well known, the elastic constants of solids can be determined
independently by static and dynamic methods. The latter are based on
measurements of the velocity of propagation of waves of different types in
the material. In all studies of this nature we are clearly concerned with
heterogeneous strains, in other words with strains which are not of the same
magnitude throughout the solid at any given instant; clearly, there could
be no wave-propagation if the strains were the same everywhere. On the
other hand, in the static methods of measuring elastic constants the strains
may be homogeneous or heterogeneous according to the nature of the
experiment. The change in volume of a solid under hydrostatic pressure
is a case of the first kind, while the twisting of a rod by couples applied at
its two ends is clearly a case of heterogeneous strain. The examples cited
are sufficient to show that any theory of elastic behaviour has necessarily
to cbnccrn itself with keterogeneous strains; a theory which restricts itself
to the consideration of homogeneous strains would be fundamentally

incomplete. .
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The twi Jng of a rod by couples applied at its two ends also serves to
illustrate certain fundamental aspects of the theory of elasticity. As just
mentioned, it is an example of heterogeneous strain, and indicates that the
movements of the parts of the solid in such strains may be angular move-
ments or rotations, the magnitude of which varies through the volume of
the solid. Thus, we are forced to recognize that the strains in a solid can-~
not, in general, be described solely as elongations but may also include fwists.
Further, in the case referred to, the external stresses applied to the body are
couples. It follows that the internal stresses may also be of the same nature.
In other words, the stresses in an elastic solid cannot be. assumed to be -
exclusively in the nature of ractive forces but may also include torques.

The arguments in the classical theory of elasticity by which the familiar-
result quoted in the opening sentence of the paper are derived may be sum-
med up briefly as follows: that it is sufficient to consider the case of homo-
geneous strains; that any homogeneous strain may be analysed into a
““ pure strain ” and a rotation and that the latter should be ignored in formu-
lating the stress-strain relationships; and finally that the tractive forces
assumed to act on elements of area in the solid are so related that no torques
tending to rotate the volume-clements of the solid are present. Everyone
of these statements is at variance with the considerations set forth above.
It follows that the argument with all its comsequences is unacceptable.

3. FORMULATION OF THE THEORY
If now we denote by wu,, Uy, uy the three components of the displace-
ments of a point (x, y, z) of the material and by uy 4wy, uy + uy', wy -+ wy
the corresponding displacements of a neighbouring point situated at

(x -+ xf, Y+, z+ 2, then it is a well-known result that the strajns in
the neighbourhood of the point (x, ¥, z) can be represented by the scheme

of equations
Uy’ = Uy x' 4 UgyY' + Upn
uy = Uyzx' + uyyy' + Uypz’ ¢y
Uy = Uppx’ + gy + gz’
where uzy stands, for brevity, for the differential coefficient %L@
In view of .what has been said in the previous section, all the nine com-
ponents of strain figuring in the equations (1) are required for a complete

specification .of the deformations in which rotations are not ignored. Then
the changes in the state of a volume element contemplated in (1) can be
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analysed into (i) changes of volume, (ii) changes in shape not involving
rotations or alterations of volume, and (iii) rotations.

Likewise, the stresses in the interior of the solid require nine compo-
nents for their full specification. Denoting by Ty,, Ty, and T,, the com-
ponents of the tractive forces parallel to the three axes of co-ordinates on
any elementary area whose normal has a specified direction », these trac-
tions are related to the stresses acting on the three co-ordinate planes by means
of the relations '

Tx, = Tz €08 (%, v) 4 Toy cos (3, v) + Tpzco0s (2, ¥)
Ty, = Tyz €08 (%, ¥) + Tyy cos (¥, ») + Ty cos (z, ») 2
Tz, = Taz cos (%, v) + Tzy cos (, ») + Tz cos (2, »)

As mentioned earlier, the three components of the angular momenta
of any volume element will not vanish in dynamic experiments or for hetero-
geneous strains involving rotations and which accordingly involve torques.
We therefore retain all the nine stress components in our formulation and
do not make the usual reduction in their number from nine to six.

At this stage, we introduce a slight change in notation which enables
us to pass on from symbols with double subscripts to symbols involving a
single suffix only. We use for the stress components

Trx Tyy Tzz Tyz Tey Tox Txz Ty Tyx the symbols
T, T, T T, Tz T¢ T; Ty T, respectively and simi-
larly write the strain variables

Uypy Uyy Uzz Uyz Uzy Uzy Urz Ury Yyx as

Uy Uy Ug Uy Uy Ug U Uy U respectively.

With this notation the stress-strain relations take a neat form. Since the
stresses in the solid are dependent on the strain produced in the solid,
the stress components can be expanded as a power series in the strain
variables. If we measure the stresses from an initial state corresponding
to the undeformed condition of the solid and consider infinitesimal strains
only, so that squares and higher powers of the strain variables can be neg-
lected in comparison with first order terms, the stresses at any point of the
solid are linear functions of the strain components at that point. The stress-

strain relations can then be expressed as

Tm=2’:"dmn u, (m=12,...9 3)

n=1
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and these involve 81 constants. Here the constant dy,, relates the stress

T to the strain u, and is the ratio of the two for a deformation in which
all strain components other than u, vanish.

The 81 constants figuring in (3) are not all independent, but reduce
in the first instance to forty-five for all solids in view of the relations

Ay =dpm (M, n=1, 2....9) O]
These relations follow from the well-known theorem of reciprocity relating
forces and the corresponding displacements in dynamical systems.* The
reciprocity relations further enable us to write down the expression for the

deformation energy per unit volume in the neighbourhoc_)d of any point
and this is given by

U=1435 Tpim

m=1

or
=3 3 dny ty uy &)

4. THE THREE ELASTIC CONSTANTS OF ISOTROPIC SOLIDS

The isotropic nature of a body results in a great reduction of the number
of independent constants occurring in the stress-strain relationships. Most
of these constants in fact are zero and the others become equal to each other
in sets for isotropic materials. Some of these relations can be deduced
easily from simple symmetry considerations, without going into the full
details of the analytic apparatus needed to derive them. For example, the
cubic symmetry possessed by the material endows it with the same property
for all the three directions of the axes of co-ordinates and therefore the stress-
relationships should remain invariant under any permutation of the symbols

X, y, z in both the strain variables (u,,) as well as in the stress components
T,y We thus get

dn = dyy = dg;
dis = dpy = Ay
dos = dgy = dyg; ©)

d44=d55=dss=d77=dss=dss
Again, the operations of reflection about any plane in space do not
produce observable changes in the properties of isotropic bodies. In the
simple case of a reflection about the xy plane, the z co-ordinate of any point
changes its sign while its x and y co-ordinates are unaffected. Hence all
the strain components like u,, (u,), Uzy (Us), Uz, (ug), 1y, (u7) in which z
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occurs once only as a suffix change their sign whereas the other strain variables

are unaltered. If therefore we substitute these new values of the strain

variables in the energy expression and equate it to the original one, we get
du = d1§ =dm=d17=dz4=d25;‘=dze=d27=d34 =ds;

=dse=dsv=d4s=dao=dss=dss==—das=du=d73=dn='0

N

Similarly by considering reflections about the planes x =0, and y = 0,
we could show that

dlg:—dlg-"‘"dzs:dzs:d38=d39=d48=d47=d56=d67=0 (8)

Simple symmetry considerations thus reduce the number of non-zero
and independent constants to four. Even these constants (i.e.) dy, dys, dygs
and d,; however are not independent but are connected to each other by
means of a linear relation. To obtain this, we use the special symmetry
property possessed by isotropic solids alone, namely invariance in behaviour
under all rotations in space. ‘Considering a rotation about the z-axis through
an angle 0, this operation changes the strain variables into a new set of
quantities u;’, %a'.. .. .Ug’ related to the original ones in accordance with the

following scheme:
u,’ = uy cos®0 + (ug + ug) sin & cos 0 + u; sin® 6;
uy’ = U sin® 8 — (ug -+ ug) sin 0 cos 8 +- u, cos? 8;
Uy’ = Ug; 9)
u,’ = uycos 8 — u, sin 8;
us' = U5 c0s 8 — ug sin ;
ug' = U5 sin 8 + ug cos 8;
u;" = My sin 8 + u, cos 6;
ug’ = (ug — uy) sin O cos 6 + (1 cos® 6 — uy sin® 9);
uy = (Ua — u,) sin 8 cos 8 + (uy cos® 8 — ug sin® 6).
Hence under the operation of a rotation about the z-axis by an amount 6,
the energy expression (5) changes into
2U = dpu® + dyy {u, cos® 0 + (s + u) sin 8 cos € + ug sin® 6}2
+ dyy {u sin? 8 — (ug + ug) sin 8 ¢os 8 + ug cos® 6
+ 2dy, (uy + up ug
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+ 2d,, {1y c0S? 6 + (45 + uy) sin 6 cos 6 + u, sin? 6}
X {u; sin? 8 — (uy + ug) sin 6 cos 6 + u, cos? 6
+ dag {(us — uy) sin 6 cos 0 4 ug cos? § — u, sin? 6}2
+ dyq {(g — uy) sin 0 cos 8 + u, cos? 6 — ug sin? G)2
+ daa (ua® + 5® + ug® + ;%) + 25 (uaits + ug )
+ 2d 5 {(uy — u,) sin 6 cos 6 4 u, cos? § — u, sin? &
X {(uz — u) sin 8 cos 0 + uy cos® 6 — ug sin? 6y (10)
Comparing this with the expression
2U = dy (y® + us® + ug®) + 2ds (Ugthy + Ugthy + 1tts)
+ dag (ug® + us® + ug® + 1 + ug® + uy?) '

+ 2dy5 (uguts + ugit; + uguy) (11)
we get

du =dy + d44 + d45 (12)
Rotations about the x- and y-axes through any angle should also necessarily
lead to the same equation (12). A general rotation about any axis can be
effected by a superposition of rotations through different angles about the
%, y and z axes. We have thus exhausted all the symmetry operations per-
missible for isotropic solids. It follows therefore that the elastic behaviour

of isotropic solids requires three independent constants for its description, which
may be denoted by dy,, dy, and d,,.

5. REBLATIONS BETWEEN THE VARIOUS CONSTANTS

With the aid of the relations (6), (7), (8) and (12), the stress-strain rela-
tionships described by (12) can be rewritten. The expressions for the three
stretches T;, T, and T, become

T, = dyuy + dia (U + ug)
Ty = dyuy +dyy (5 + uy) 13
Ty = dyug + dyy (1 + uy)
whereas the shearing stresses are given by
Ty = dytty + ([ — dyy — dyy) U
T = dyguts + (dy — e — dyu, (14
«nd four similar equations.

We shall now evaluate some of the important glastic' constants, viz., the
¢ompressibility or bulk modulus, Young’s modulus and Poisson’s ratio



The Elastic Behaviour of Isotropic Solids 7

in terms of these new constants. Consider first the case of a uniform hydro-
static pressure acting at all points on the surface of the body. The state
of stress produced by such a compression of the solid is described by

T1=T2=T3=“—p; T4=T5=....=Tg=0. Hence addingaﬂthc
three equations in (13), we get
P =%(dn + 2d)4 as

where 4 denotes the cubical compression — (43 + uz + ). The bulk
modulus therefore is given by ’

k=1(da+2dy) (16)

Similarly by considering the case of an isotropic body in the form of a
cylindrical rod subjected to a tension T which is uniform over its plane ends,
we could show that the Young’s modulus E and Poisson’s ratio o are related
to dy; and d,, in accordance with the equations

(e + 21 (dy — d) |
E= T 49 (1
ia (18)

7= (all + dlzj

These expressions are in the same form as the corresponding ones for
k, E and o of the classical theory expressed in terms of the well-known con-
stants ¢,y and cjp.  The relations among the Young’s modulus, bulk modulus,
and Poisson’s ratio are therefore the same both in the two-constant as
well as in the three-constant theories. We emphasize the fact that all the
three equations (16), (17) and (18) contain the constants &, and 4;, only,
and none of them involves d,, explicitly. This is because all these modulii
are determinable from static homogeneous strains alone, whereas d,4, being
a constant involving rotations of the volume elements requires experiments

involving twists for its evaluation.

It may be pointed out here that the relation (12) may be derived directly
from very simple considerations. A cube which is subject to normal trac-
tions on a pair of opposing faces and normal pressures of equal magnitude
on an adjacent pair of faces would suffer no change of volume, but would
expand and contract respectively in the direction of the two normals to the
faces by an amount of which (dy; — dye) is @ measure. Likewise, if a pair
of opposing faces of a cube are subject to tangential tractions forming a
couple and an adjacent pair also subject to tangential tractions which form
a balancing couple, the cube would suffer no change of volume but would
undergo a change of shape without rotation of which (dy, + dy) is readily
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seen to be a measure. The two systems of stresses and the resulting strains

can readily be shown to be equivalent and it follows that (d,; — dyp)
= (dyq + dys).

6. VELOCITY OF PROPAGATION OF WAVES IN THE SOLID

In the absence of body forces, the general equations of motion of an
elastic body are given by

2y 2T 2T, AT
o xx Ty Tz .
ot x + Ay + 2z
32 lly __ d Tyw 0 Tyy d Tyz
w2 T T x + dy + 3z
32 uz . d TZ.‘.," d sz d Tzz
¥ ax T dy + ¥z (19)

where p is the density of the material. For an isotropic solid, the stress-strain re-
lations are given by equations (13) and (14). Adopting once again the primitive
notation of writing differential coefficients i fax,. .. . duyfdz. .. for the strain

components uy,. .. .u,. .. .etc., we get on substituting (13) and (14) in (19) that

2
2u,

pYi]
P ar = (dy — dy) V? Uy -+ dyy ax

dy — dyy — D (e _duzy 2 (duy oy
t@n—dy—dy {bz x az) WP\  Ix }
(20
and two similar equations for the displacements in the vy and z directions.
In the above, 4 denotes the dilatation

dUy | duy | du,
x oy T %)

or simply divergence u where y is the vector whose components parallel to
the axes are Uy, uy and u, respectively. The three equations in (20) can
be combined togethe

r and written as a single equation in the form

bER ]

P 57 = (du — dyy) YV 4 dy, grad div

+ (dy — dyy — dyy) curl curl
Since curl curf 4 = grad div g —

21
Vi, (21) alternatively becomes
o2

L]
P57 = du VU + (dy — d,y) grad div u (22)
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'We shall now take the divergence of both sides of (22). This gives us

22 4

P5E = dy V2 4 (23)

The above is in fact the equation of wave propagation in the medium. Com-
pressional waves are therefore propagated in the solid with the velocity +/d,Jp.

Performing next the operation of cur! on both sides of (22), and writing
o for curl u, one gets
32
P ygw =dy Ve (24)
equation (24) therefore shows that equivoluminal or distortional waves
are propagated in the medium with the velocity +/d,/p.

It will be noticed that the velocities of propagation of both the longi-
tudinal and transverse waves determine the constants dy; and d,, only, and
do not involve the constant d,, at all. On the other hand, d,, does not make
its appearance in the modulii determinable by static homogeneous strains.

7. SUMMARY

The notions regarding stresses and strains adopted in the classical theory
of elasticity are critically examined. The neglect of rotations in the analysis
of strain and of torques in the analysis of stress characteristic of that theory
is shown to be unjustifiable. A reformulation of the stress-strain rela-
tionships taking account of these factors leads to the result that an isotropic
solid has three independent elastic constants and not two as hitherto supposed.
Two of these three constants determine the velocities of propagation res-
pectively of longitudinal and transverse waves in the solid. The latter of
them does not make its appearance in any observations involving only homo-
geneous strains nor does it appear in the formulae for the bulk modulus,
Young’s modulus and Poisson’s ratio obtained in the present paper.
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1. INTRODUCTION

THE branch of mathematical physics known as the theory of the elasticity
of solids is based on certain notions regarding elastic stresses and strains
which have been accepted doctrine for many years. It is therefore rather
surprising to find that those notions are not sustainable and that the theory
based on them has to be laid aside in favour of a stricter formulation. The
.need for such revision was broadly indicated in a recent publication in these
Proceedings by the present authors (1955); but in view of the importance
of the matter, the present paper is prefaced by a clearer and more precise
exposition of the necessity for a revision of the classical theory.

Our recent paper dealt with the case of isotropic solids in a formal
manner, considering them as homogeneous substances exhibiting the highest
possible symmetry in their elastic properties. Usually, however, the so-
called isotropic solids are merely polycrystalline aggregates, and a discus-
sion of their elastic behaviour should therefore properly be based on a
consideration of the nature and properties of such aggregates. This is a
task which we hope to be able to address ourselves in the not-too-distant
future. In the present paper we shall consider the case of truly homogene-
ous but anisotropic solids, in other words, crystals. The subject will be
dealt with from the phenomenological standpoint since this proves to be
entirely adequate. We may remark, however, that the conclusions reached
are in complete accord with the results of the atomistic approach to the
theory of elasticity as developed both from the static and dynamic stand-
points in a paper by one of us (Viswanathan, 1954) and illustrated by a
detailed discussion of a particular case of great interest, viz., diamond.

2. THE PHYSICAL CHARACTERS OF ELASTIC STRESS AND STRAIN -

A solid body may be defined as a material in which the volume elements
retain their relative positions and orientations alike when the solid is at
rest and when it is in a state of movement, translatory or rotatory, as the
case may be. Elastic stresses and strains arisc when the situation thus de-
scribed is departed from to ever so small an extent. Hence, it is evident

' : 5
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that the theory of elasticity is concerned with changes in the relative positions
and/or the relative orientations of the volume elements of the solid, in other
words, with linear displacements and/or angular movements of the volume
elements with respect to their neighbours. This is illustrated by the familiar
examples of a straight bar which is stretched or bent or twisted by the applica-
tion of appropriate external stresses. From the general considerations
indicated above as well as from the particular examples mentioned, it is
clear that only in very special cases would elastic strains be such that a
straight line drawn through the solid in any direction in the unstrained condi-
tion remains straight in the strained state, suffering only elongations or con-
tractions. In the general case, and inevitably so when the strains involve
differential rotations, a straight line in the unstrained condition would be
curved in the strained state, and such curvature cannot possibly be ignored
in the theory. Hence, it is clear that we have, in general, to consider strains
and stresses which are heterogeneous, in other words, strains and stresses
whose specifications vary from point to point within the solid. These varia-
tions necessarily enter into the equations of equilibrium in the static state
and into the equations of motion in dynamic behaviour.

3. ANALYTICAL SPECIFICATION OF STRESSES AND STRAINS

The mathematical theory of elasticity proceeds on the basis that the
strains and stresses in the interior of the solid can be expressed in terms of
the movements of the smallest possible elements of volume into which it can
be imagined to be subdivided and of the forces acting on them. If the volume
elements be small enough, their movements can be .described completely
in terms of the three positional co-ordinates of each element and their varia-
tions. Likewise, when the elements of volume are small enough, the inter-
actions between each element and its neighbours can be expressed in terms
of tractive forces alome, it being then clearly unnecessary to introduce any-
thing in the nature of couples or torques. On the basis of these ideas, the
state of strain in the solid at any given point can be expressed by resolving
the displacement of the elementary volume originally located at such point
along three mutually perpendicular directions and differentiating these three
components of displacement again along each of the three axes in turn. We
thus obtain the nine components of the strain tensor. Likewise, for speci-
fying the state of stress to which the volume element is subject, we consider
the tractive forces acting on an infinitesima) area drawn respectively normal
to the three co-ordinate planes in turn at the position of the element and
then again resolve these tractive forces along each of the three co-

‘ : ordinate
axes, We thus obtain the pine components of the stress tensor,
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It is evident that this method of representation of the stresses and strains
uniquely defines the state of the solid at any point and also enables us to
determine whether the element of valume would or would not remain in
equilibrium. If the components of stress do not vary along any of the three
axes, the element would necessarily remain at rest. If, on the other hand,
the stress components vary, their differential coefficients along the normals
to the planes on which they act gives us a measure of the forces on the volume
clement in their respective directions. Adding up the three forces along
each axis thus evaluated and putting their sums separately equal to zero,
we obtain the conditions of equilibrium. )

The well-known and familiar treatments given in the standard treatises
proceed on the basis that the components of the strain and stress tensors
are both reducible in number from nine to six. The arguments on which
the reduction in number from nine to six of the components of strain is
based may be summarised by the statement that the elastic strains can be
separated into what are called * pure strains ” and “ rotations,” and that
the latter can be ignored. That this argument is unsustainable will be evi-
dent at once from the remarks made in the foregoing section regarding the
physical nature of elastic strains. We have, in general, to take account of
both differential displacements and differential rotations and it is therefore
not permissible to eliminate the rotational parts of the strain, these being
physically quite as real as the irrotational parts.

The arguments justifying the reduction in the number of the inde-
pendent components of stress from nine to six are based upon the idea that
equilibrium would be possible only if the angular momenta of the tractions
taken about each of the three co-ordinate axes in turn cancel each other out.
That this idea is misconceived will be evident from the remarks already
made earlier regarding the conditions necessary for equilibrium. In the
case of homogeneous strains, the tractive forces acting on each volume ele-
ment necessarily balance each other. In the case of_ heterogeneous strains,
the conditions of equilibrium can be expressed in terms of the differential
coefficients of the stress components along the normals to the planes on which

" they act, as already explained. In either case, if the equilibrium conditions
for each volume element of the solid are satisfied, then the solid as a whole
necessarily remains in equilibrium; vice versa, if the external stresses acting
on the solid are such that it remains as a whole in equilibrium, the elastic
stresses would everywhere necessarily be such as to ensure equilibrium of
the individual volume elements. It follows that po general relations con-
necting the magnitude of the tensor components and enabling their number

2
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to be reduced &'rom nine to six can be derived from considerations based on
the conditions for equilibrium. -

We may summarise our conclusions by stating that neither the reduc-
tion of the strain components nor the reduction of the stress components
in number from nine to six has any theoretical justification; a correct and
complete theory of elasticity has necessarily to take all the nine components
of the stress and strain tensors into conmsideration.

4. THE STRESS-STRAIN RELATIONSHIPS

Writing the nine components of the strain tensor as

Uzz Uyy Uzz Uyz Ugy Uzx Uxy Usy Uyr
Uy Uy Uy Uy Uy Ug Ug Uy Uy
and likewise the nine components of the stress tensor as
Tex Tyy Tz Tyz Toj-Tox Taz Tay Tyz
T, T, T T, T, Ty T, T, T,

the stress-strain relations can be expressed in the general form
T = X dmniin (m=1;72:..9) ')
N=1 .

and involve 8] constants. Here the constant dmp relates the stress T, to

the strain u, and is the ratio of the two for a deformation in which all
components other than wu, vanish.

The 81 constants figuring in (1) are not all independent,, but reduce in
the first instance to forty-five for all solids in view of the relations

dmn = dnm (mn=1,2..9 9)

The above relations follow from the well-known theorem of reciprocity
relating forces and the corresponding displacements of dynamical systems.
The reciprocity relations further enable us to write down the expression for
the deformation energy per unit volume in the neighbourhood of any point
and this is given by

9
U =315 Tp un
m=1

or

2U = § %}’ dopp tim uy, 3)
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Thus in the general case of a completely anisotropic solid, we have
forty-five elastic constants instead of the 2/ contemplated by the classical

theory.
TaBLE I
No. of Elastic
Constants
Crystal System Point Group
I I
Triclinic All 21 45
Monoclinic All 13 25
Orthorhombic All 9 15
C: (4
S, @ 7 13
Culd/m)
Tetragonal
84 (2422))
4
S 10=Dss (42m) } 6 ?
D“ 4/m2jm2[m)
C; (3) }
S 3 7 15
Trigonal
D; (32)
Cy, (3m) 6 10
D, 32/m)
Cs (6)
Car (6) } 5 1
Ce (6/m)
Hexagonal
Dq (?622) )
Cee (6mm
Dy (6m12) } 3 8
D,,. (6/m2[m2[m)
T @3 } 3 5
Ty (2/m3)
Cubic
0 (432)
T, (3m) } 3 4
Oy (4/m32/m)
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The number of independent elastic constants which is forty-five for a
completely anisotropic solid diminishes in the case of solids possessing the
various elements of symmetry characteristic of the different crystal classes,
coming down to four for crystals of the classes Tq, O and Op. The number
of surviving constants in each symmetry class can be computed in an ele-
gant fashion by adopting the group-theoretical method developed by
Bhagavantam (1949). One is concerned in the present case with a linear
relationship between nine stress components and nine strain components,
the constants of proportionality being the elastic constants (matrix dpp).
Further, the elements of the “ elastic constants 9 by 9 matrix » satisfy the
relation dpyn = dpm. With these testrictions, the transformation matrix
for the elastic constants can be written out and the corresponding character
can be deduced. This comes out as

X5 (R) = 16¢* 1 16¢® - 8¢* L 4c + 1 [C))

where ¢ = cos ¢, R is a symmetry operation and ¢, the rotation. The plus
sign is used for proper rotations, and minus for an improper one. The
corresponding character for the 21-constant theory is

Xy (R) =16¢* + 8¢c® —4c® +1 )

Table I gives the number of independent constants according to the.two
formule for each symmetry class, while the constants that survive and those
that vanish are exhibited in detail for the various cases in Tables II to XII.
A comparison of these tables amongst themselves will enable the reader
to realise how the existence of common symmetry elements results in the
appearance of common features in the Tables of elastic constants. For
example, all the twenty constants that vanish for monoclinic crystals also

TABLE IT

Triclinic (C,, C))
dyy dys dis dis dys dis diq dis dig
- Ogg.. . dayg 24 s 28 dp7_ 28 dog
dy d3, dys 36 dsq 38 dag
44 dys dag dyn dys dag
dss “dyg ds; dyg dse
) dys Cdle'l 368 gss
45 constants \ o d: d;;
— dyy
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TasLE HI
Monoclinic (C,, C,, Cy)—diad axis || z, plane of reflection & to z
dy dp dys 0 0 0 0 dig dig
dss dos 0 0 0 0 dg dyy
dy O 0 0 0 dyg i
d44 d45 d46 d47 O 0
d55 dSG dﬁ'l 0 0
dgg dgy 0 0
dg 70 o
25 constants dgs dgy
dsg
TaBLE IV
Orthorkombic (Css Ds, Day)
d, d, d, 0’ 0 0 0 0 0
. L 40 0. 0 0 0 0
dss 0 0 0 0 0 0
dys dyg 0 0 0 0
deg 0 0 0 0
dgg dgq ] 0
dz o 0- ‘
15 constants dyg dso ;
Ay |
]
TABLE V
Tetragonal (Cy, S4 Cawn)—tetrad axis || z
d, d 4, 0 0 0 0 ds | dy
" ﬁ di: 0 0 0 0 "dm _dxe
s 0 0 0 0 dys  —du
das dys . dyg 0 0 0
C dy 0 —dy 0 0
dys dys 0 [\]
44, 0 o
13 constants dy v dy
- dBS
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TABLE VI

Tetragonal (Cy,, Sy, Dy, Dyy)—tetrad axis |} z

du dlZ d13 0 0 0 0 0 0
M dyy 0 0 0 0 0 0
day 0 0 0 o 0 0
dy, dyg 0 0 0 0
;s 0 0 0 0
dys dy 0 0
dyy 0 0
9 constants dgg dg
dgs
TABLE VII
Trigonal (Cg, Sg)—triad axis || z
dy, dy dyy dyy dys 4, d d —d,
dy by —dy  —d  —dy —dy  dy  —d
dyy 0 0 0 0 dys  —dy
dil ZAB gd& g 317 -—dl7
_ 55 —Use e U _d
dyg=dyy—dyy—dy f de die
15 constants ° du :111 .
88 89
s
TABLE VIII
Trigonal (Dg, Dy;, Cy,)~—triad axis Iz
dy dys dyy dys d, 0 0 0
by dy  —dy —dy 0 0 0 0
dyq 0 0 0 0 0 0
dse dys (()) 0 0 0
- _ . 56 0 0 0
dss dll d!2 dso d!! g&ﬁ d15 dlB
10 constants *® s he
88 dB.

T
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TABLE IX

Hexagonal (Cy, C,, Cq)—hexad axis [ z

du du d].ﬂ 0 0 O 0 dm . _dlﬂ
du dlﬂ O 0 0 0 dls “"dls
diys 0 0 0 0 dyy  —dyg

dy dys dys 0 0 0

d55 0 “"dle 0 0

dyg=dy, —dys—dge dys dyg 0 0

s O 0
11 constants dgs sy
dgg

TasLe X

Hexagonal (D, Cg,y Dg, Dgy)—hexad axis [ z

d; d; 4 0 0 0 0 0 0

"L 4 0 0 0 0 0 0

ds 0 0 0 0 ] 0

dy dys 0 0 0 0

s 0 0 0 0

dgg=dy—d1s—dey dus g:: 8 8
8 constants dys dyy
dBB

TasLe XI
Cubic (T, Ty)

d 4, d, 0 0 0 ] 0 0

11 di: ;: 0 0 0 0 0 0

.0 0 0 0 0 0

dy, dys 0 0 0 0

dyg 0 0 0 0

S E— dss 0 0
S constants dy d
. [ dss

e
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Tasre XII
Cubic (T,;, O, O)

d d 4, 0 0 0 0 0 0

4 0 0 0 0 o 0

dy 0 0 0 0 0 0

da ds 0O 0O 0 0

dy O 0 0 0

day dys 0 0

dss 0 0

4 constants dy, dys
d44’
i

disappear in the orthorhombic, tetragonal and cubic systems. Likewise,
all the thirty constants that vanish for orthorhombic crystals Y’anish also
for those tetragonal crystals which possess three mutually perpendicular
diad axes and for all cubic crystals. A noteworthy feature is that the cubic
crystals which exhibit a four-fold axis of symmetry have only four different
elastic constants, whereas those cubic crystals that do not exhibit this feature
have five eonstants different from each other.

5. WAVE-PROPAGATION IN CRYSTALS

The general equations of motion of an elastic solid are given by

Y %

oy

¥z
Py _ AMyy | 3y , 3Ty,
P2 = T Ty T es ©)
Yuy 3Ty Moy |, 3T,
Pbtz_bx-l_by«_l_az
where p is the density of the medium and Tz, . . . are the stress components.

If the solid is in equilibrium, the quantities on the left-hand side of these
equations, representing the acceleration of an unit volume element, will vanish
and we get the conditions of equilibrium of the solid.

To evaluate the velocity of propagation of waves in the solid in any
given direction, we first seek solutions of the above equations which are in
the form of plane waves of the type

u=Aexpf2—g'(vt—e.r) 7)



On the Theory of the Elasticity of Crystals 61

Denoting the components of A in the directions of the co-ordinate axes by
A%, A¥, A* and using once again the four-suffixed symbols for the elastic
constants, we now get on substitution of (7) in (6) that

pV?A¥ = 3 X dyz, yy ez ey AY 8)
x

and two similar equations for the y and z components.

For a wave progressing in the direction (/mn) equations (8) can alter-
natively be written as

(Azz — pV) AT + Mgy AY + Az A =0

Agy AT + (dyy — pvH) AY 4 4y A7 =0 ®
Apz AT + Az AY -+ Az AZ =0
where Agy, Agy.... are given by the scheme

)‘xx dll ds 8 d7 7 2d78 2d17 zdl 8 12

A'yy dss dzz d44 2d24 2d49 2‘129 . m?

Az | | des dss das 2dys 2y 2d;¢ n?

Ayz - deo dos day (das +dy) (dsy + dso) (455 + dae) mn

Aex dig dis dyr (Ao + dig) (der + dis) (dis + ds) nl

Ay Gio dag dyy (dog +da) (dra+ dyg) (dys + dgy) Im

Equations (9) determine the velocities of propagation of the three types
of waves in any direction for crystals of the triclinic system which possess
no symmetry of structure at all. The number of constants figuring in the
wave equations will diminish rapidly as we pass om to crystals of higher
symmetry, and become only three for crystals of the Tg, O and Oy classes. .
We tabulate below the wave equations for the different classes of crystals

taking into account of their symmetry. \
I. Monoclinic system (Cs, Cy, Con)—diad axis parallel to the z-axis‘
(dyl® + dggm® + dygn? + 2dyg Im — pv®) AT + {dy P + dygm® L dyn®
+ (dro + dsg) Im} AY + {(dss + d5;) mn + (dis + dgy) nl} A = 0.
{dyo? + dagm® + dyn® -+ (dis + dig) Im} AT + (dyol® + dygm® - dyn?

+ 2dpgim — pv*} AY + {(dys + dy5) mn + (dsg + dyg) nl} A2= 0.
{(dss + ds2) mn + (dig + dgz) nl} AT+ {(das + dys) mn + (dsg + dyg)ni}

AY + (dgol® + dog® + dyg n* + 2dgelm — pV®) A* =0,
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The wave equation contains twenty independent constants.
II. Orthorhombic system (Cyp, Dy, Dgn).

(duP + dggm? + dyn® — pv?) A - (dig + dsg) Im AY
+ (dis + de7) 0l AZ =0,

(dha + dso) Im AT 4 (dyy P+ dypym® - dyn® — pv?) AY
+ (dag + dﬁ) mn Az —_ 0.

(dig + doz) 1l AT + (das + dys) mn AY + (dgel® + dgm®
& dygn? — pv?) AZ = 0.

The wave-equations involve twelve distinct constants.

M. Tetragonal (C,, Sy, Can)—tetrad axis parallel to the z-axis.

{dulz + d88m2 + d44n2 + 2(113 lm - Pvz} A-'L' + {d19 (lz - mz)
+ (dig + dyg) Im} AY - {(d3s — dyge) M1 + (diz +dg)nl} A* =0

{dyy (B — m?) + (dyy + dgo) Im} AT+ {dgg P + dyym® + dygn® — 2dylm
— pv3 AY + {(dys + dgs) mn + (dys — dae) B} A% =0.

{(dss — dag) mn--{dss + dyg) nl} AT + {(dys + dy5) mn + (das — dgg) 11}
AY 4 {dyg (12 + m?) + dggn® — pv?} A% = 0.

The number of independent constants contained in the wave equation is fer.

IV. Tetragonal (Cgp, Suw, D4, Dypn)—tetrad axis parallel to the z-axis.
(dy P + dggn® 4+ dyyn? — pv®) AT + (dyp + dgg) Im AY + (dy,

+dg)nl A7 =0.

(dhe + dgg) Im AT + (dgg PP -+ dyym® + dygn® — pv?) AY + (dyg
+ d45) mn AZ = 0-

(dis + dg) nl A” + (dys + dys) mn AY 4 {dss (P + m*) + dyy n?
— pVeL AF =0,

The number of independent constants contained in the wave-equation is
seven. \

V. Trigonal system (C,, S¢)—triad axis parallel to the z-axis.
{dnl® + dggm® + dsgn® + 2d,ymn = 2d;.nl + 2d,0m — pve AT
+ {d1s (m* — %) — 2d,; mn + 2d, 0l + (dye + dgg) Im} AY
+ {dhe (I — m°) + (das — dye) mn + (dis+dye) nl + 2dIm}AZ=0,
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{d1g (m® — 18 — 2dy; mn + 2dygnl + (dyy + dgy) Im} AT
+ {dss B + dyym®+ dyn® — 2d,ymn — 2dy, nl — 2d,glm — pv¥} AY
+ {dis (2 — m?) + (dis + dus) mn + (dss — dys) 1l
— 2d,s Im} A* = 0.
{di (B — m?) 4 (dsg — dye) mn -+ (dys + dys) nl + 2dy; Im} A”
+ {dis (B — m®) + (dys + dys) mn + (dis — dss) nl — 2d,elm} AY
+ {dgul? + dggm® + dygn® — pv?} AZ =0
. where
dgg = @y — dis — dss)
The number of independent constants contained in the wave equations is
twelve.

V1. Trigonal (D,, Dsg, Cap)—triad axis parallel to the z-axis.

{d,P -+ dggm? + dgs n® + 2dygmn — pv¥} AT - {2dynl
+ (diz + dgg) IMPPAY + {(dis + dy)nl + 2di5Im} A* = 0.
{2dy ] + (dig + diso) Im} AT + {dgo® + dyym® + dyn®
— 2dygmn — pv*} AY + {di5 (P — m?)
+ (dig + dgs)y mn + dyenl} A* = 0.
{(dss + dus) nl + 2dy5 Im} A® + {dys (B — m®)
+ (dis + dos) mn + dyg nly AY + {dyl* + dygm® + dygn®
— pv} A2 =0.
where
dgg = (dyy — dia — dg)
The number of independent constants contained in the wave equations is
eight.
VH. Hexagonal (Cgh, Cq Cen)—hexad axis parallel to the z-axis.
{dul® + dssm® + dgn® + 2dy Im — pv®} A% + {dys (m® — I¥)
+ (dug + doo) Im} AV + {(dsg — dyg) mn + (dys + dyg) nl} A% = 0.
{dys (m* — P) + (dia + dio) Im} A™ + {des I + dyym? + dyn®
— 2dyg Im — pv*} AY - {(dis + dys) mn + (dys — dgg) nl} A* = 0.
{(dsg — dse) M1 + (dis + dgs) I} AT - {(dyz + dyg5) mn
+ (dis — dsg) nl} AY + {daol? + digm® + dyy n® — pv?} AZ =0,

where

das = (du - dlg — dg)
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The number of independent constants contained in the wave equations is
eight.

VIII. Hexagonal (Dgp, Cevs Ds, Den)—hexad axis parallel to the z-axis.
(dul® + dggn® -+ dss n? — pv?) AT + (dyp + dye) Im AY
+ (di + dys) 1l A7 =0.

(diy + dso) Im AT 4 (dggl® + dyym? + dyn® — pv?) AY
+ (dy; + dy) mn A% = 0.

(dis + dgs) (nl AT + mn AY) + (dgo? + dsm® + dggn® — pv?) AZ = 0.
Here again the relation
dgg = dyy — dis — dsy
characteristic of crystals of the trigonal systems subsists, and number of
independent’ constants appearing in the wave equations is six.
IX. Cubic (T and Ty).
(dyl? + dyym? + dign® — pv?) AT + (dyp + dy) (Im AY + nl A%) = 0,

(die + dos) Im AT - (dyym?® 4 dyn® +- diglz — pv2) AY
T A (dy + dy) mn A7 = 0.

(dlz + dﬁ) (nl A{L‘ “l"‘ mn A'U) 'l— (d11n2 + d4412 + d55m2 - Pv2) AZ:O.

The number of independent elastic constants appearing in the wave equa-
tions is four.

X. Cubic (Tq, O and Dy).

{dul* + dyy (m® + 1 — p¥%) AT 4 (dyy + dig) {m AY + n] A%) — 0.
(s + d) b A% + (dum® + oy (P + ) — pr7) A

+ (dlz + dﬁ) mn AZ - 0.
(dis + dug) {nl A% + mn A% £ {dyP + dyy (B + m?) — pv?} A% = 0.

The number of independent constants appearing in the wave equations is
three.

6. StaTiIC DEPORMATION PROBLEMS

'Equatiox%s (1) express the nine stress components in terms of the nine
strain coefficients. One can work out the inverse transformation of ey

and_ express instead the strain coefficients as linear functions of the stress
vanables.

. The strain-stress relations can therefore alternatively be written
0 as

um =X Dmn Ty  (m=1,2,....9) (10)
ney
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If A, denotes the co-factor of the element dpy, in the determinant of
the transformation (1) and 4 = determinant |dpyyl, then Dpp= (dmy/4).

The strain-energy can ‘be expressed purely as a function of the stress
coefficients and we have another expression

2U =3 5 Dpan TmTn (11)

for the deformation energy which is equivalent to (3).

In the classical theory the nine stress variables are reduced to six by
means of the relations Ty, = Tzy; Tzr= Tzz; Tzy= Tyzx. The deforma-
tion energy of the solid is thus a function of the six stress variables only.
Adopting the usual convention of writing T,, To', Ts', Ty, T5', Te" for Txz,
Tyy, Tzz, Tyz OF Tay, Tag OF Taz, Ty O Tye respectively, the classical expres-
sion (4) for the strain-energy becomes

[
22U, = %’E’l SmnXm’ Ta' (12)
The coefficients sy,y, Occurring in the above expression are the well-known
‘elastic moduli of the classical theory. One can obtain formul® for these
moduli in terms of our constants Dy, by considering cases of homogeneous
stresses for which the relations Tyz = Tay; Tez = Taz; Tzy = Tyx hold
good. Making these substitutions in (11) and comparing the resulting expres-
sion with (2), we get smpn=Dmn When both m and # are 1, 2, or 3 and rela-
tions of the type
$14 = (D1s + Dus)s

S0 = (Dga + 2D45‘+ D;;);
545 = (Dys + D4z + Dss + D;y); 13)

for the other coefficients.

'We can now write down the expressions for the compressibility, Young’s
modulus, and the Poisson’s ratio for any crystal in simple terms. In view
of the fact that all these moduli are determinable from experiments dealing
with purely homogeneous strains, the formule for them are not essentially
different from the corresponding ones of the classical theory. By following
the same methods as those adopted in the latter,® we give below the formule
for these moduli in our present notation.

When the crystal is subjected to a uniform hydrostatic pressure P, we
have from the first three of the equations (10)
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4y =(Dy + Dy + Dy P

= (811 + 812 + 515) P from (13)
Up = (S + Se2 + 523) P
ug = (S3 + Spa + 5ga) P

The linear compressibility modulus in the direction of the x-axis is there-
fore given by

ke = (Plup = 1/(sy + $12 + 513) 14

and the bulk modulus is expressed by the formula
k= Pl(uy + uy + ug) = 1/(s11 + Sag + 33 -+ 250 -+ 2555 + 259 (15)
If the solid is subjected to a uniform tension T in the direction of the

x-axis, obviously T, =T; T,=T;=..T;=0. Hence it follows from
(10) that the Young’s modulus in the direction of the x-axis is given by
E = T/u, = (1/Dy) = (1/sy) (16)

Similarly the Poisson’s ratio in the direction of the y-axis is given by
o == — (S1a/511) an

To write down the expressions for the Young’s modulus and Poisson’s
ratio in any general direction (I, m, n), we require the law of transformation
of the strain as well as the stress components when one passes over from
one co-ordinate system to another. If the direction cosines of the axes:
Ox’, Oy Oz’ of a new co-ordinate system referred to the original one are
(h my ny), (I, my ny) and (f; my ny) respectively, we have

Tow = h® Tog + mg® Tyy + 1,* Ty + myny (Tyz + Tzy)
+ bl (Tox + Trz) + hmy (Toy + Tyy)
Toy = hly Tax + momg Tyy + nyny Top -+ (myny Ty + mgny Tzy)
+ (ndy Tox + 1ok Taz) + (Lm, Txy + Iymy Ty.z) (18)
Tyr = LlsTae + mme Tyy + nyny Tpp + (mgh, Ty, + myn, Tzy)
+ (2 T + myly Toz) + (Im,y Ty + L, Tyx
upy = Wuzy + myPuyy + ny Uz + myny (tyz + Uzy)
+ mly Uz + i) + Lmy Uy 4 uyg) (19
Upry = hly ugy -+ mymy tyy + My Uz + (Mynty tyy + mon, Uzy)
+ (ly iz + nalsuyg) + (lymy ugy + Lim, Uyz)
Uy = hly uzg + mmyuyy + mng uzz + (mgny Uyz + myn, uzy)
+ (el wze + malguz) + (lamyugy, -+ Lmauyz)



On the Theory of the Elasticity of Crystals 67

Now, if the solid is subjected to a uniform tension T over the planes x’
— const. of which the normal has direction cosines (h my ny), We get from
the transformation rules

Txx - llaT; TU’U;: mlsT; Tzz == n]_zT; Tyz = sz - mlan;
Tox = Taz =mhT; Toy =Ty = LmT
Further, ugg is given by (19). Hence denoting by g the row vector

(L2 my® m® myny myly Lmy) with six components, we find the expression
for the Young’s modulus in the direction of the vector (}, m;ny) as

Ey =1/qr S 4z (20)

where S denotes the matrix (smn). Similarly the Poisson’s ratio in the direc-
tion of the y'-axis which has direction cosines (I, my ) With respect to O,
Oy and O; is given by

L[ a2 a3 g Wy 2
oy = 2¢ [lzz 302 + my® Im;? + ng? g + maha 3 (man) + 1yl PXCTA)
%
+ s 5] @

where ¢ = ¢ Sqy and the differential coefficients are formed as if these

arguments are independent.
-one of the forty-five constants

1t is interesting to mote that only twenty
figuring in (10) appear in the above formule. As mentioned carlier, this

is a consequence of the homogeneity of the strains applied to evaluate these

static moduli.
The stresses and strains which appear when elastic materials are subject
and hence in dealing with

to torsion or fiexure are essentially heterogeneous,
them, our elastic moduli Dmn will appear in combinations other than those
which figure in homogeneous deformations. The pres¢nt theory i quite

competent to handle such problems, but to deal with them in detail would
carry us far beyond the scope of this paper.
7. SomEe CONCLUDING REMARKS

The main purpose of the present paper has been to establish the neces-
sity for an amendment of the phenomenological theory of elasticity as
universally accepted hitherto. Any theory to be acceptable should include
in its scope elastic stresses and strains of the most general type and specify
them in an analytical form from which the equations of equilibrium in static
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problems and the equations of motion in wave-propagation can be written
down immediately. These requirements are not met by the present form
of the theory but are completely satisfied if all the nine components of stress
and strain in the usual tensor formulation are retained. 'When thus amended,
the phenomenological theory is capable of handling all the problems of the
subject, including those which arise in its practical applications. The more
important of these are considered in detail in the course of the paper and the

results are set out explicitly for the different crystal classes so that they could
be readily made use of.

As already remarked in the introduction, the phenomenological theory
as amended gives results in complete accord with these derived from the
atomistic approach to the theory of elasticity of crystals based on the most
general scheme of interatomic forces. To discuss the latter further or to
give an account of the somewhat confused history of the subject would lie
outside the scope of the present paper. A few remarks regarding these
matters will however be found in the attached appendix.

SuMMARY

The fundamental aspects of the phenomenological theory of elasticity
are critically examined and it is shown that the tensor representation of the
elastic strains and stresses in the general case should be in the unsymmetrical
form. On this basis, the stress-strain relationships are deduced and tabu-
lated for the different crystal classes. The equations determining the veloci-
ties of wave-propagation in different directions are also obtained and tabu-
lated. Static deformation problems are then discussed and it is shown that
in the particular case of homogeneous strains, the elastic constants group
themselves in linear combinations which are equivalent to the elastic modulii
of the theory in its familiar form. In wave-propagation, however, the strains
and stresses are heterogeneous and hence all the elastic constants are involved
and appear in linear combinations which are different and also larger in
number than those which figure in the formulz for homogeneous deforma-
tions. These results are completely in accord with the consequences of
the atomistic theory based on interatomic forces of the most general type.
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APPENDIX

As is well known, the theory of the elasticity of solids in its present
form was initiated by Cauchy who put forth the fundamental idea of expressing
elastic stresses and strains in the manner adopted in the phenomenological
theory, and also developed the theory on an atomistic basis. Later theorists,
notably Green, Stokes and Kelvin retained Cauchy’s method of specifying
elastic stresses and strains but adopted a purely phenomenological approach.
The view advocated by them that a completely #lotropic body would have
twenty-one elastic constants and not fifteen as derived by Cauchy received
general acceptance.

In a paper published in these Proceedings some years ago by onme of
us (Raman, 1943), a theory of the dynamic behaviour of crystal lattices was
developed based on the assumption of interatomic forces of the most
general type. In subsequent years, the consequences of that theory was
worked out in detail for the case of diamond and confirmed by a series of
spectroscopic investigations on the scattering of light, the luminescence and
infra-red absorption by that crystal. The high values of the interatomic
force-constants disclosed by the spectroscopic behaviour of diamond were
evidently related to its exceptional elastic behaviour. In the endeavour to
place this relationship on a quantitative basis, a fresh approach was made
by one of us (Viswanathan, 1954) to the atomistic theory of the elasticity
of crystals, both from the static and dynamic points of view, and some sur-
prising results emerged. Contrary to the assertion made in the papers of
Max Born and his collaborators which also finds a place in their recent book
(Born and Kun Huang, 1954), no difficulty was encountered in expressing
the energy of static deformations in terms of interatomic forces of the most
general type. It was found that this expression contained forty-five inde-
pendent constants, but for homogeneous or irrotational strains they appeared
one distinct linear combinations. The dynamics of wave-propaga-
tion in crystals was also investigated and it was shown that the expressions
for the wave-velocity contained the same forty-five constants but in different
linear combinations. The work of Born and his school on the dynamic
problem was critically examined and it was shown that the assumptions
made by them in the attempt to reduce the forty-five constants which appeared
in their theory to twenty-ome had no theoretical justification.

in twenty-

The results of Born and his school were also contradicted by Laval in
some Ttecent publications (1951). More recently still, a series of papers
have been published by Le Corre in which Laval’s ideas have been further

developed. On reading those papers, one obtains the impression that their
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author believes the results of the atomistic and phenomenological approaches
to differ essentially. For example, in order to account for the non-sym-
metric character of the stress tensor, internal couples are postulated to
balance the differences in the angular momenta. We may remark that there
is no room for such a postulate, since the analytical specification of the stresses
in terms of the tensor components should itself suffice to describe the state
of the solid completely. In the iast paper of the series, a statement also

appears that an atomistic approach is essential to solve such familiar problems
in elasticity as torsion and flexure.

In conclusion, we have to thank Mr. A. K. Ramdas for his help in
the preparation of the tables appearing in the paper.
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CORRIGENDA

The following corrections should be made in a recent paper published
in these Proceedings, Section A, 1955, Vol. 42, page 51,

In all the four tables appearing in pages 58 and 59 which give the number
of distinct constants for crystals of the trigonal and hexagonal classes, the
constants d,, and ds5 occurring in the sixth and seventh rows respectively
should be interchanged. Similarly in all the wave-equations pertaining to
these four crystal classes, the terms dssn® appearing in the matrix element Apr
and d,,* appearing in the element X, should be changed respectively
into d,yn? and dssl%

In page 61, line 10 read (Azz — pv?) AZ instead of Az AZ,

In page 64, line 20 read (T4, O and Or) instead of Tg, O and D).

In page 65, line 19 read * with (12) ” for “ with (2) .
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1. INTRODUCTION

Nicker sulphate crystallizes from solution at room temperature (30° C.)
as NiSO,.7H,0 in the orthorhombic system. At about 35°C it crystallizes
as NiSO,.6H,0 in the tetragonal system, while at about 60° C. it crystallizes
as NiSO,.6H,0 but in the monoclinic system. The complete Raman
spectrum of crystalline nickel sulphate has not so far been reported since
the 14358 and A4046 radiations of the mercury arc ordinarily employed
are absorbed. Nisi (1930) using the group of lines at A3126 in the mercury
arc spectrum has reported in the case of NiSO,.7H,0 the principal sulphate
frequency of shift 985 cm.”* and two water bands at 3209 and 3432 cm.™!

The absorption in the near ultraviolet for nickel sulphate lies at A 3850
and the crystals are transparent to radiations of shorter wavelengths over
a wide range in the ultraviolet. The present paper reports the results of an
investigation with the orthorhombic and tetragonal crystals using the reso-
nance radiation A 2536-5 of the mercury arc for exciting the Raman effect.

2. EXPERIMENTAL DETAILS

The crystals of NiSO,.7H,O and NiSO,.6H,O were grown by the
method of slow evaporation, the latter at a temperature of 35° C. in a thermo-
stat. The crystals of NiSO;. 6H,0 were of a deeper green in colour than
those of NiSO,.7H,O. The biaxial nature of the interference figures in
the case of NiSO,. 7H,O and the uniaxial nature of the figures of NiSO,.6H,0
observed under the polarising microscope confirmed their respective identi-
fication from depth of colour and external form. The crystals of
NiSO,. 7H,O were in the form of rectangular tablets of size 20 mm. X 10 mm.
x2 mm. The crystals of NiSQ,.6H,O which were pyramidal in form were
rather small. Since both the crystals were efflorescent, a thin film of glycerine
was put over them to reduce the rate of efflorescence. However, the crystals
of NiSO,.7H,O deteriorated rapidly and fresh crystals had to be used fre-
quently.

The Raman spectra were recorded with a Hilger medium quartz spectro-
graph having a dispersion of 140 ¢m.”* per mm. in the A2536-5 region. 71;
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water-cooled magnet controlled quartz mercury arc served as an intense
source of A2536-5. The crystals were placed near the arc and the scattered
radiations were focussed on the slit of the spectrograph with a quartz con-
denser. The scattered resonance radiation was filtered out by the mercury.
vapour inside the spectrograph. With a slit width of 0-04-0-05 mm.,
exposures of the order of ten hours were given to obtain reasonably intense
spectrograms.

3. ResuLts
Figs. (1) and (2) in the accompanying Plate reproduce the spectra
obtained with NiSO,.7H,0 and NiSO,.6H,0 respectively. The lowermost

-part of the spectrum in Fig. 2 which is very intense due to parasitic light
helps to identify the lines of the mercury arc.

An examination of the spectra of the two crystals reveals the following
features: (1) The low frequency spectra of these crystals are faint and

TaBLE I
Frequency Shifts in cm.!

NiSQ,.7H,0 NiSO,.6H,0
!
J ~ 75 v.w.
H ~ 110 v.w.
| Lattice ~ 156 w.
! Oscillations 210 m. 210 m,
1‘ 255 b.m. 236-69 b.m.
| 400 w.
| vy 444 s, 440 s.
| 465 s. 469 s.

vy 620 ? 6207

vy ( 986 v.s. 988 v.s.

1060 b.s.

| 1098 b.m. 1092 bis.
\ Va 1138 b.s. 1133 b.s.
‘1 ~1165 v.w.
‘ Water Bands ~3282vis.  |~3257 vs.
\ ~3438 v.s. ~3439 v.s.

5., Strong; w., weak; vs., very strong; v.W., very weak; m., medium; b., broad.

~ value 9i‘ th‘e frequency shift estimated from the relative position of the line with respect to
the neighbouring iron arc lines,
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diffuse. (2) The frequency shifts due to the oscillations of the sulphate
jons in the two crystals are different in the two cases. It may be noticed
that the splitting of the doubly degenerate oscillation at 450 cm.™* is larger
in the case of NiSO,.6H,O than in the case of NiSO,.7H,0. Measure-
ments indicate that the non-degenerate oscillation has a frequency shift of
986 cm.~! in the case of NiSO,.7H,0, while in the case of NiSO,.6H,0
it has a shift of 988 cm.~! It will also be noticed that the triply degenerate
oscillation at 1100 cm.=* has split into more components in the case of
NiSO,.7H,O which is of lower symmetry than NiSO,.6H,0. The water
bands also show differences in their structure in the two cases.

Table I gives the frequency shifts observed in the two cases. The fre-
quency shifts of some of the lines which were faint and diffuse could only
be approximately estimated. The sulphate ion frequency of shift about
620 cm.—~! could not be unambiguously observed owing to the proximity of
the intense mercury line at A 2576.

4. DiscUSSION

NiSO,.7H,O has been assigned to the space group P 2,2,2; (D,?) of the
enantiomorphous hemihedral class of the orthorhombic system, whereas
NiSO,.6H,0 has been assigned to the space group P4,2,2(D of the
enantiomorphous hemihedral class of the tetragonal system. (Beevers and
Schwartz, 1935; Beevers and Lipson, 1932). Im the case of NiSO,.6H,0
the nickel and sulphur atoms occupy the special positions with the symmetry
of the two-fold axis of rotation. The six water molecules are said to be
approximately octahedrally co-ordinated around the nickel ions. On the
other hand, in NiSO,-7H,O the nickel and sulphur ions do not occupy any
such symmetric special positions. Six of the seven water molecules are

approximately octahedrally co-ordinated around the nickel ions in this case

as well. In the case of NiSO,.7H,0 as well as in NiSO,-6H,0 there are

four molecules per umit cell.

The degradation of the symmetry of the sulphate ion in the crystalline

state and the consequent removal of the degeneracy of the oscillations results
and hence 2ll the nine frequencies

in the splitting of the degenerate oscillations, a
of the SO, ion should appear. The coupling between the four molecules

in the unit cell further increases the number of these internal oscillations.
Thus, in the case of NiSO,. TH,O thirty-six components should appear
whereas in the case of NiSO,. 6H:0 this number is only twer'lty-four owing
to the higher symmeiry of the crystal. Tl}ough the theoretxcal}y expectc?d
multiplicity of lines is not fully manifested in th_e spectra, the differences in
the pature of the spectra due to the difference in the crystal symmetry and
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structure are evident. The breadth of some of the lines (e.g., the group near
1100 cm.™) might be attributed to the overlapping of several of the compo-
nents and their inadequate resolution.

The Raman spectrum of NiSO,.7H,O exhibits a close correspondence
with the spectrum of MgSO,.7H,O (Shantakumari, 1953) the crystal struc-
ture of which is isomorphous with that of NiSO,.7H,O. The following
frequencies have been reported by her. 56, 75, 97, 118, 150, 252, 303, 445,
461, 609, 620, 986, 1059, 1064, 1076, 1098, 1134, 1148, 3185, 3228, 3338,
3406, 3446 and 3485 cm.™!

Schaefer and Schubert (1916) report from their studies on the infra-red
reflection spectrum of NiSO,.6H,0, frequencies at 635, 1111, 1116, 2940,
3030 and 3125cm.* No infrared absorption studies appear to have been
made with crystalline nickel sulphate.

In conclusion, the author wishes to express his sincere thanks to
Prof. Sir C. V. Raman, FR.S., N.L,, for the kind interest that he took during
the course of this investigation.

5. SUMMARY

The Raman spectra of orthorhombic NiSO,.7H,0 and the tetragonal
NiSO,.6H,0 have been investigated using the resonance radiation of mer-
cury for excitation. Readily observable differences are exhibited by the
spectra in the two cases which may be ascribed to the differences in crystal
structure and symmetry.
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1. INTRODUCTION

ABSORBING biaxial crystals in general display a variety of remarkable optical
phenomena in the vicinity of both the optic axes. For example, if an
extended source of unpolarised light is viewed through a plate of highly
pleochroic material cut normal to an optic axis, two dark brushes—the
Brewster’s brushes—are generally seen in the field of view: while if a polariser
be inserted in front of the plate, the so-called idiophanic rings are observed—

similar to the interference rings that can appear in the case of a transparent
crystal if an analyser be also present.

The theoretical investigations of Waldemar Voigt focussed attention on
the fact that certain of the features relating to the propagation of light in
the vicinity of an optic axis differ radically from those obtaining in trans-
parent media. Thus, whereas along any general direction in a transparent
crystal there are two particular linearly polarised  vibrations that can be
propagated without change of form, this is no longer the case in absorbing
crystals. As a matter of fact, close to an optic axis and on either side of it,
there even exist two directions—the singular axes—with the following re-
markable properties only a right-circular vibration can be propagated
without change of form along one of these axes, and only a left-circular
vibration along the other.* In this paper it will be shown that the various
features of the propagation of light in absorbing media may also be con-

veniently regarded as due to the superposed effects of birefringence and
dichroism. Because of the simplicity of the method, it has also been possible
to make a more detailed investigation of the following interesting question :

what will happen when, for example, a right-circular vibration is incident
in the direction of a singular axis where only a left-circular vibration can be
propagated without change of form ? The results obtained in this connection
are at variance with those expected by Voigt (Section 6).

* A non-mathematical summary, in English, of the main results of Voigt’s i igati
: , . oigt’s investigations
may be found in Reference 1. = s

86
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The analysis of the propagation of light in absorbing biaxial media from
the standpoint of the electromagnetic theory has been discussed by several
authors. The comparatively simple case of orthorhombic crystals (where
the principal axes of the dielectric tensor and the complex conductivity tensor
necessarily coincide) is discussed in Drude’s treatise.® But the somewhat
oversimplified presentation there given omits entirely those theoretical and
experimental features with which we shall be particularly concerned. T hese
may be found described in more detailed treatments,®~ particularly those
of Voigt and Pockels. In view of the complexity of the phenomena involved, -
it would appear that a consideration of the problem from a simpler though
less rigorous standpoint would certainly be useful. Such an approach is
provided in the present paper, and, as we shall show, the method adopted
Jeads to results that are practically identical with those of the electromagnetic

theory.
3. (GENERAL FEATURES OF LIGHT PROPAGATION IN ABSORBING MEDIA

(@) The Index and Absorption Ellipsoids

In an absorbing biaxial medium not possessing optical activity, the two
waves propagated along any direction appreciably inclined to both the optic
axes may be regarded as practically plane polarised (though not rigorously
so, as in the transparent crystal). And as in a transparent crystal their
< vibration-directions > may then be considered to lie on the principal planes,
their velocities being determined by their vibration-directions thus: the
reciprocal of any radius of a so-called index ellipsoid gives the velocity for
vibrations parallel to that radius. In addition, the two waves have different
coefficients of extinction «, and «,, these being determined again by their
us: the reciprocal of any radius of a so-called absorp-

vibration-directions th :
tion ellipsoid gives the value of 4/(2«v3/c) for vibrations parallel to that

radius, v being the velocity for that vibration-direction.

By assuming that the above statements hold good even for directions
in the vicinity of an optic axis, it is indeed possible to explain some of the
phenomena observed there—and such a procedure is in fact followed in
Drude’s treatise. For example, the occurrence of Brewster’s brushes can
be explained along the following lines. In the neighbourhood of an optic
axis, a comparatively small change in the direction of propagation will in
general cause an appreciable change in the inclinations of the two principal
planes to the axial plane; this in turn will lead to a large variation in the

total absorption, since the absorption coefficients of the two waves will be

determined by the orientation of their vibration-directions.
3 ‘
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(b) The Elliptical Polarisation of the Waves

The appearance of idiophanic interference rings with a polarizer alone
cannot however be explained on the assumption that the light incident along
any direction is split up into two linearly polarized beams with their vibra-
tions at right angles to one another; their states of polarization being ortho-
gonal, two such beams will be incapable of interference with one another
(unless brought to the same plane of vibration by an analyser).

The fact is that when we turn to directions of propagation in the vicinity
of an optic axis, we are no longer justified in neglecting a remarkable and
important consequence of the phenomenological theory: namely, that the
two waves propagated in any general direction in an absorbing biaxial medium
are in reality, elliptically polarized. Though the two elliptic vibrations have
their axes majores at right angles, and their ellipticities equal, they are
rendered non-orthogonal by the fact that they are of the same handedness;
and this last mentioned feature (together with the fact that the major axes
do not in general coincide with the principal planes) distinguishes the situa-
tion sharply from that obtaining in optically active (transparent) crystals.

In the context of the elliptical polarisation of the waves, the index and
absorption ellipsoids—strictly speaking—retain significance only in terms
of the dielectric and conductivity-like tensors by means of which they are
defined. Nevertheless, as we shall show, the existence of the two non-
orthogonal elliptically polarised waves may be conveniently treated as due
to the superposed effects of birefringence and dichroism—just as the propa-
gation of two orthogonal elliptically polarised waves near to an optic axis
in an optically active transparent medium, may (by Gouy’s hypothesis®®)

be conveniently treated as due to the superposed effects of birefringence
and rotation.

3. THE SUPERPOSITION OF BIREFRINGENCE AND DICHROISM

Consider a plate cut perpendicular to an arbitrary direction z which is
also taken as being normal to the plane of the paper. Let OX, and OY,
(Fig. 1) be the trace of the principal planes of refraction—defined as usual,
cither in terms of the index ellipsoid or the optic binormals. Similarly let
OXy and OYy; be the trace of the principal planes of absorption—which we
shall define analogously, either as containing the major and minor diameters
of the elliptical section of the absorption ellipsoid made by the plane of the
paper, or as the internal and external bisectors of the angle subtended on

the z-direction by the two absorption-binormals (normals to the circular
sections of the absorption ellipsoid).
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e Y

FiG. 1

P, and P—States of polarisation propagated unchanged.
OX; and OY;—Trace of the principal planes of absorption.
0X, and OY,—Trace of the principal planes of refraction.

Consider an arbitrary elliptic vibration P (which, for the sake of con-
creteness, may be temporarily jdentified with the one marked P, in the figure),
In the absence of absorption the arbitrary elliptic vibration P will be resolved
into two vibrations (along the principal planes of refraction, OX; and OY,)
between which an infinitesimal phase difference 8dz will be introduced corres-
ponding to a passage dz. Since, however, anisotropic absorption is also
present, we perform, in addition, the infinitesimal operation of linear
dichroism; the elliptic vibration—as modified by the infinitesimal operation
of birefringence—is resolved into two linear vibrations (this time, along the
principal planes of absorption, OXj and OYy), the amplitudes of which
are then reduced by the multiplying factors (1 — kydz) and (1 — k,dz) res-
pectively. The differential absorption of the two components will cause
the state of the elliptic vibration to ‘ move towards” the state of polarisation
of the less absorbed component OXy (a phrase which acquires a more vivid
meaning in the Poincaré sphere representation). Those states of polarisa-
tion alone can be propagated without change of form, which under the
successive infinitesimal operations of birefringence and dichroism (applied
in either order) remain unaltered in form and orientation—and to these
states of polarisation alone can definite velocities of propagation and
coefficients of absorption be assigned.

Several particular cases may first be noted. Along the optic axial
directions where the birefringence vanishes, the two waves (propagated with
different coefficients of absorption) are linearly polarised along the principal
planes of absorption. Similarly, the waves propagated along directions
appreciably inclined to the optic axes will be practically plane polarised along



90 S. PANCHARATNAM

the principal planes of refraction, since the absolute values of the dichroism
(ky—k,) is usually such that it is very small compared with the birefringence
(8,— 3,) along such directions. Also, where the principal planes of absorp-
tion and refraction coincide (as for example along the axial plane in ortho-

thombic crystals) the waves will be rigorously linearly polarised along the
common principal planes.

The more general case, where the solution is not so apparent, is dis-
cussed analytically in Section 7, but the main results will first be proved
more briefly and elegantly by the use of the Poincaré sphere. For this
purpose, the form of the arbitrary elliptic vibration P—as distinct from its
intensity and absolute phase—must first be specified by means of certain
parameters. The principal planes of absorption and refraction form the
two natural co-ordinate systems to which the vibration P may be referred.
The ratio tan ¢ of the amplitudes of the components of the vibration P along
OY: and OX, does not by itself completely specify the form of the elliptic
vibration (since the phase difference 6, between these components has also
to be given). Similarly the ratio tan ¥ of the amplitudes of the components
of P along OYj and OX;. does not by itself completely specify the form of
P (since the phase difference 8 between these components has also to be
given). But ¢ and ¢ together form two convenient symmetrical parameters
completely specifying the form of the elliptic vibration P (¢, y)—provided
we separately give the sense of description of the ellipse. It may also be
noted that apart from an intensity factor, cos 2¢ and cos 24 are the two
values of the second Stokes parameter M of the vibration P (¢, ) when it is

referred successively to co-ordinate systems along the principal planes of
refraction and absorption respectively.

As indicated in the figure, it turns out that there are two particular
elliptic vibrations described in the same sense, Py (¢g, ) and Py (&3, 1), that
can be propagated without change of form under the superposed effects of
birefringence and dichroism. The form of the vibration Py, can be obtained
from that of P, merely by rotating the latter by 90° in its own plane—which
means that ¢y and i are complementary to $o and i, respectively.

4. USE OF THE POINCARE SPHERE FOR SUPERPOSITION
(a) The General Method
The Poincaré sphere,%” which has proved very useful for the analysis

of the propagation of polarised light in transparent media, turns out also to
be of great use in our present discussion on absorbing crystals.
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As is well known, a one-to-one correspondence can be set up between
all the points on the surface of a sphere (the Poincaré sphere) and all the
possible forms of elliptic vibrations that can be conceived (circular and linear
vibrations being regarded as particular cases of elliptic vibrations). In
particular the arbitrary elliptic vibration P referred to in the previous section
is represented by a corresponding point P on the Poincaré sphere, while a
linear vibration along OXy will be representied by some other point Xp. The
infinitesimal operation of anisotropic absorption described in the last section
will obviously alter the form of the elliptic vibration P in such a manner
that one may say it gets more polarised in the direction of OX, since this is
the less absorbed component. This infinitesimal alteration in the state of
the elliptic vibration P corresponds (on the Poincaré sphere) to an infinite-
simal movement of the point P directly towards Xy, f.e., along the direction
of the shortest arc joining them.

Similarly the infinitesimal alteration in the state of the (initial) elliptic
vibration P due to the operation of birefringence alone, corresponds to an
infinitesimal movement ‘ds, of the representative point P. If the elliptic
vibration is to be propagated without change of form, this movement ds,
should be equal and opposite to the displacement of P due to dichroism
alone; and the problem of finding the states of polarisation that can be
ropagated without change of form is therefore reduced to the simple geo-

p
metrical problem of finding the points P on the Poincaré sphere which

gatisfy the above requirement.
(&) The Operations of Dichroism and Birefringence

Referring to Fig. 2, let Xk and Yy give the orientations of the principal
planes of absorption. (The arbitrary elliptic vibration P has not been indi-
cated on the sphere, but for the sake of concreteness, may be temporarily
identified with the particular state Pq in the figure.) If the elliptic vibration
P is resolved into two orthogonal linear vibrations in the states Xj and Y,
then the amplitudes Fj and Gy of these components will be proportional
to cos ¢ and sin ¢, where 2¢ is the angular distance of the point P from X
on the Poincaré sphere. (For a proof of this statement, see reference 7.)
Hence Gi/Fi = tan . If the amplitudes of these components are reduced
by the multiplying factors e %2 and e ¥+, the angular distance of P from X

will change from 2¢ to 2¢' where:
+ GOke oz —(kea—Fes) 2
tan ¢ F & 2 tan e 6

Since the phases of the Xy and Yy, components of P are to be left unaltered
in this operation, the movement of P will be entirely on the meridional arc
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V2D

Fic. 2
X, Yi) and (X,, ¥,)—Principal planes of absorption and refraction, respectively.

P, and P, —States of polarisation propagated unchanged.

XXy = 2%; X X' = 2%, XX’ = 2%,: P.X' — 2.

YiPX. This follows from the fact that the Xy and Y components of all
elliptic vibrations on this arc have the same phase difference 6y, (where 6y is
the angle indicated in Fig. 2); for, if an additional phase difference — Orc
be introduced between these components, any such elliptic vibration will

be reduced to a linear vibration on the equatorial arc XY Yy (by a well
known property of the Poincaré sphere).

The infinitesimal operation of linear dichroism (corresponding to a
passage dz) will, apart from reducing the intensity, cause the initial state of
polarisation P to move along the arc PXjy towards the state Xy (the less
absorbed component), through an arc ds = — 2d§. From (1) we have

tan § 4 d(tan ) = [1 — (k, — ky) dz] tan ¢
or '

2sect ydp = — 2 (ky — ky) dz.tan ¢
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which leads to the simple relation
dsy, = (k sin 2) dz 2)

where
k denotes (k, — k)

Let X, and Y, represent the orientations of the principal planes of
refraction, the former corresponding to the slower wave in the absence of
absorption; let § denote the phase difference (8, — 8;) introduced per unit
distance (in the absence of dichroism). The infinitesimal operation of bire-
fringznce (corresponding to a passage dz) consists in rotating the sphere
clockwise about the equatorial diameter X, Y, through the iufinitesimal
angle 8dz. This operation will cause the initial state of polarization P to
move along the arc of a small circle with X, as pole through an arc ds,, where

dsy = (5 sin 2¢) dz 3)

(c) The States of Polarisation Propagated Unchanged

In order that the simultaneous superposition of linear dichroism and
birefringence should cause no change in the state of P, the movements disy
and ds, must be equal in magnitude and opposite in direction. Since arc
dsy, is along PXj while arc dsy is perpendicular to PX, we must have firstly,
X, PXy = =/2, or

cos 2X = cos 2¢ cos 2 @
and secondly
8 sin 2¢ = k sin 2¢ 5]
together with the condition that P will be a right- or left-elliptic vibration
according as X (the angle between the Xy and X axes) is positive (0 to #/2)

or negative (0 to —m/2).

In general there are two positions P which simultaneously satisfy these
conditions—the relations (4) and (5) being unchanged when we alter 2¢ and
24 to = — 24 and = — 24 respectively. Thus in the figure the state P, whose
distances from the points Yi and Y, are 24 and 24, is also propagated un-
changed. The states Pq and P have the same latitudes, their longitudes

differing by .
Hence we arrive at the result, also obtained from the electromagnetic
theory, that the states of polarisation propagated unchahged along any
direction are two similarly rotating elliptic vibrations which have

general : ating
their major axes crossed and their ellipticities equal,
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In order to construct these two elliptic vibrations (see Fig. 1) we must
first determine the orientations of one of the principal diameters—for
example the orientation of OX’' which is the major axis of Py and also the
minor axis of P,. Let the inclination of OX’ be X, (anti-clockwise) with res-
pect to OX, and X, (clockwise) with respect to OXy. The direction of OX’
may be determined by the relation

sin 4X,  §°
sin 4X, &k® ©)

Next the ratio tan 6 of the minor to the major axis of the elliptic vibrations
may be obtained from

sin® 26 = tan 2X, tan 2X, Q)

—a relation which gives the ellipticity (tan 6 = cosec?28 + +/cosec?26— 1)
in terms of the orientation of the axes of the elliptic vibrations. It may be
noted that equations (6) and (7) remain unaltered when we change X, and X,
to (mf2 +X;) and (m/2 + X,) respectively.

The relations stated in the previous paragraph will now be proved with
the aid of the Poincaré sphere (Fig. 2). The direction OX’ is given by the
point X' on the equator having the same longitude as P. Then since the
triangles X, PX' and X;PX' are both right-angled, we have

cos 2¢ = cos 2X, cos 26 }
cos 2§ = cos 2X, cos 20 ®)
Multiplying these equations and comparing with (4),
cos (2X; 4+ 2X,) = cos 2X, cos 2X, cos220
which on simplification gives the relation (7).
To prove (6) we consider the right-angled triangles XPX, and X;PX':

s _ tan2f  tan 2X,
08 Xk = fan 32X = tan 2y
Hence

tan? 24 = tan 2X; tan 2X
tan? 2¢ = tan 2X, tan 2X

tan® 2  tan 2X,

tan®24 ~ tan 2X, ®
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From relations (8) we also have

cos® 2  cos® 2X,
cos? 2¢ = cos® 2X, (10)

Multiplying (9) and (10) and comparing with (5) we get the requiréd rela-
tion (6).

(d) Comparison with the Electromagnetic Theory

The relation (7) giving the ellipticity in terms of the orientation of the
axes of the elliptic vibration, is identical with that deduced from the electro-
magnetic theory (Pockels, loc. cit., p. 399, eq. 54); while the relation (6)
giving the orientation of the axes of the elliptic vibrations has to be com-
pared with the following similar relation (Pockels, loc. cit., p. 397, eq. 53):
(6"

sin 4%, _ p?

sindX, o?
where
p=1%(a; — a) and o = (b, — b))

The tensor components d, @y, etc., may be easily shown to have the
following geometrical meanings. The major and minor semi-axes of the
elliptical section of the index ellipsoid made by the plane of the paper have
lengths 1/+/a, and 1/v/a, respectively, while the major and minor semi-axes
of the elliptical section of the absorption ellipsoid have lengths 1/4/8; and
1/+/b, tespectively. Relations (6) and (6") will be identical if

8¥/k? = /o (11

As pointed out in Section 2, the waves propagated along directions
appreciably inclined to the optic axes may be considered as linearly polarised ;
and for such directions of propagation, if 1//b be the length of any radius
of the absorption ellipsoid, then b = 2«v%/c, where « is the extinction co-
efficient and v the velocity for that vibration-direction. In consonance

with this it would be natural to use the following relation for the hypothetical

extinction coefficients «, and «; in the absence of birefringence:

. 2
zc 12)

where vy, is 2 mean velocity. We then have

27 2nc o
k=R am ) =
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Relation (11) will be obviously satisfied if we analogously set

2me 2n¢ a, — a
8= —% . v_:n.a_—:,,% . 22vm31 (13)

Since the velocoties v, and v, in the absence of absorption are equal to v/a,

and 4/a, respectively, relation (13) wilt be exactly satisfied if we define the
mean velocity v, by

Um® = 3 (V1 + V) vy0s (14)
5. Tur ABSORPTION COEFFICIENTS AND REFRACTIVE INDICES OF THE 'WAVES

It is well known that in the case of a transparent crystal, it is simpler
to specify the velocities of the waves as functions of the vibration directions
than as functions of the directions of propagation: the former leads to the
simple index-ellipsoid representation, the latter to the comparatively more
complex wave surface of two sheets. We shall show that for absorbing
crystals too, if we choose to express the velocities and absorption coefficients
as functions of the states of polarisation (¢, y) of the waves, the resulting
expressions (as deduced both by the method of superposition and by the
electromagnetic theory) may be put in a very simple form.

When an elliptic vibration of unit intensity in any state of polarisation
travels a distance dz, the diminution in its intensity may be calculated directly
from the reduction of intensity involved in the infinitesimal operation of
dichroism corresponding to the passage dz—since the operation of birefring-
ence produces no reduction in intensity. If, in addition, the elliptic vibration
be in astate of polarisation P, that can be propagated without change
of form, this reduction in intensity may be equated to 2k, dz where k; is
the coefficient of absorption for that wave. The amplitudes of the X) and
Y;. components of the elliptic vibration P, will be cos ¢, and sin ¢, respec-
tively ; hence the reduction in intensity of these components will obviously
be 2k, cos® $g dz and 2k, sin® §iq dz respectively. Therefore,

ka = k; cosPg + k, sinZfy
Similarly l

kp = ky sin? g + k, cos? g 1s)
So that S
(ka — kp) = (k; — k) cos 2y

Here 24 being the arc PXj on the Poincare sphere may be evaluated by

the relations (4) and (5) of Section 4¢, which determine the states of polarisa-
tion of the waves,
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Expressions for the refractive indices of the waves (in terms of the state
of polarisation of one of them) are equally simplg, being given by:

ng = My cos? ¢g + ny sin &g
ny = ny sin® ¢g + 1z €05 ¢ 16)
(ng — np) = (m — 715) €08 244

The proofs of these relations do not have the same simplicity as those
of (15), and will be given only at the end of Section 7, since recourse must
be taken to the analytically derived equations obtained there.

(6) THE PROPAGATION OF LIGHT ALONG THE Axrs oF CIRCULAR
POLARISATION

(@) The Singular Axes

The electromagnetic theory predicts that close to an optic axis and on
either side of it, there exist two directions along each of which only one state
of polarisation (and not two) can be propagated unchanged: only a right-
circularly polarised wave can be propagated along one of these axes, and
only a left-circularly polarised wave along the other. These directions have
been termed the Windungsachsen; Voigt has also referred to them as
singular axes and we shall follow this simpler nomenclature. At these two
axes of circular polarisation the inclinations of the principal planes of absorp-
tion with respect to the corresponding principal planes of refraction are +45°
and —45° respectively. Further, along these two directions the pure bi-
refringence term 3 is equal to the dichroic term k.

The remarkable property of these axes follows very simply from the
standpoint of the method of superposition by the use of the Poincaré sphere.
Let us suppose for example that the principal plane of absorption OXj makes
an angle of —45° with respect to the corresponding principal plane of refraction
0X,. In Fig. 3, the diameter XYy will then be at right angles to X, Y, as
shown. If we consider a state of polarisation initially coincident with the
pole Ci, it can be seen that its movement ds; (due to an infinitesimal clock-
wise rotation 8dz, about X.Y,) will be oppositely directed to the movement
ds). towards the less absorbed component Xj; and the movements will be
equal in magnitude if 5 = k. Thus a left-circular vibration can be propa-
gated unchanged along such a direction. Further, there can be no other
state which can also be propagated unchanged, since the 2 elliptic vibrations
unchanged along any direction must have the same sense of

propagated clc
nd the same ellipticity. Similarly, where OX) makes an angle

description a
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C,—Right circular vibration incident in the direction of a singular axis (where only the
left-circular vibration C; cam be propagated unchanged).

Q—The state of vibration at a depth z (specified by the arc s).

of + 45° with respect t0 OX;, and where in addition 8 = k, only a right-
circular vibration can be propagated unchanged. The refractive index of
the circularly polarised wave that can be propagated unchanged along a
singular axis is 3 (7, + ny) and its absorption coefficient % (k, + k,) as
may be seen by setting ¢ = s = #/4 in relation (18) and (19).

Before proceeding to discuss in more detail the propagation of light
along the singular aXes, we consider it relevant to point out that the func-
tions with which we are concerned show no discontinuity at the singular
axes. Thus both the elliptic vibrations propagated without change of form
along any general direction, gradually degenerate into two (identical) circular
vibrations as we approach a singular axis from any side whatsoever. [This
can be seen by making X - 45 and 8 - k in relations (4) and (5) of Sec-
tion 4c¢.] The refractive indices and absorption coefficients of these two
waves, being determined by their states of polarisation (by relations 15 and
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16 of Section 5) tend towards the common values % (1, + n,) and % (k; -+ &5)
respectively, as we approach a singular axis. (See also reference 8.)

(b) Effects with Incident Circularly Polarised Light

In this section we shall inquire as to what will happen when, for example
right circularly polarised light C, is incident in the direction of a singular
axis where only a left circular vibration C; can be propagated unchanged
(Fig. 3). Our results in this connection are at variance with those expected
by Voigt. It was supposed by Voigt®* that if a plate cut normal to an optic
axis is viewed in convergent circularly polarised light, then along the singular
axis where the incident vibration can be propagated unchanged, more light
would get through than in the neighbourhood of the other singular axis
where only the oppositely directed circular vibration can be propagated
unchanged; and that the latter direction should in consequence appear
darker than the former.* On performing an actual experiment, he observed a
dark and a bright spot in the field of view, one on either side of the optic
axis and this was considered by him as confirming his view. According to
our analysis, however, it is the singular axis where the incident vibration
can be propagated unchanged that should appear darker than the other
singular axis (where only the oppositely directed circular vibration can be
propagated unchanged).

We shall apply directly the method of superposition, according to which,
given the state of vibration at a particular plane in the medium, the state of
the vibration at a further distance dz is obtained by superposing the effects
of pure birefringence and pure dichroism corresponding to that passage.
The state of vibration should then get progressively aitered as we proceed

into the medium.

Referring to Fig. 3, if the state of polarisation be initially coincident
with the pole C;, its movement ds, (due to a clockwise rotation 8dz about
X,Y,) is in the same direction as its movement ds;. towards the less absorbed
component Xp; and the sum of these movements will give the alteration
in the state of vibration corresponding to a passage dz. Continuing this
procedure, it can be seen that as we proceed into the medium, the state of
polarisation progressively moves along the arc C/XixC;. At a particular
depth the vibration would be linearly polarised along the principal plane

* In a later paper ®, Voigt has suggested that if we could get a plate exactly normal to a singular
is. and have circularly polarised light of the proper sense incident precisely along this normal,

axis. . . Pl -
the fight would be rotaily reflected—ithe reflection being partial in practical cases. This idea receives

no support from the results of the present investigation.
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of absorption OXj. After this stage the movement ds; due to dichroism
opposes the movement ds, due to birefringence; but the latter being greater
in magnitude, the state of polarisation continues to alter as we proceed
further into the medium, tending towards the state C; that can be propagated
without change of form.

Thus if we consider the state of polarisation at successive depths within
the medium, we see that the incident right-circular vibration will first get
modified to an elliptic vibration (with major axis always at 45° to the principal
planes of refraction), which in turn gets reduced to a linear vibration; as
we proceed further the linear vibration opens out into a left-handed elliptic
vibration, which gradually tends towards the state of a left-circular vibration
that can be propagated unchanged. Nevertheless, as may be seen physically,
this last state is never attained at any finite depth; for as the state of polarisa-
tion comes close to that of a left-circular vibration, the modification of the

state corresponding to an additional passage dz becomes correspondingly
reduced.

It is easy to deduce an explicit expression for the state of polarisation P
that should be expected (according to the above line of argument) at any
depth z inside the medium. The state P may be specified by giving the length
s of the arc CrP. Then the state s -+ ds at the depth z + dz will be given by

ds = (3 + k cos 5) dz a7
according to relations (2) and (3) of Section 45. Since § — k, we have on
integration,

tan is = kz (18)

This relation shows that the transformation from a right-circular vibration
(s =0), to a linear vibration at 45° to the principal planes of refraction
(s = =/2), occurs within a smaller depth than if the crystal had been trans-
parent; whereas the corresponding alteration from the linear vibration to
a left circular vibration (which for a transparent crystal would have occurred

at a finite depth) requires here an infinite Passage, due to the ‘retarding’
effect of the dichroism.

We shall next calculate the intensity I, of the vibration P at a distance z

inside the medium. The diminution of intensity — dI, corresponding to
an additional passage dz is given by

— dl[I, = 2k,dz 19

where, it. must be noted k; is not a constant but a function of the state of
polarisation and hence also of the depth z. 'We will have for &, an expression
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analogous to (15), Section 5:
kz s kl COS2 l‘b + kg Siﬂ2 1/1
=} (ky + kz) — 3k cos 2¢ (20)

Thus k is always less than the coefficient of absorption 1 (k; -+ k») of
the left-circularly polarised wave that can be propagated without change of
form along the same direction. (This is more directly seen by the fact that
the state of polarisation is always nearer to the less absorbed component X
than is a left-circular vibration.) Hence when the sense of description of a
circular vibration incident in the direction of a singular axis is opposed fo that
which can be propagated unchanged along that direction, the emergent intensity
should in fact be greater than when the sense of description of the incident
vibration is reversed. An expression for the ratio of the emergent intensities
in the two cases will now be deduced. Since, from our point of view, the
incident disturbance can propagate into the medium in both cases (though
in one case with a progressive change in the state of polarisation) we have
no particular reason to ‘assume that the reflection losses would be different
in the two cases.

Substituting the value of k, given by (20) in (19) we get
— dly 1y = (ky + ko) dz — k sin s dz

Expressing sin s in terms of z by using relation (18), and integrating, we have
—if 1, be the emergent intensity and I, the intensity entering the medium,

tog (I,/Iy) = (ky + ko) z — log (1 + k2% @n
On the other hand if I, be the emergent intensity when the incident circular
vibration is of the sense which can be propagated unchanged,

log (Io/1s) = (k1 + ko) 2 22)
From (21) and (22) we have the following simple relation for the ratio of the
intensities emerging in the two cases:

I/, =1+ k?2®

a ratio which is always greater than unity.

Though our results regarding the properties of the singular axes are at
variance with those expected by Voigt, it must not therefore be concluded
that the method of superposition leads to results differing from the electro-

magnetic theory—since it is possible to regard the former merely as a mathe-
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matical artifice: for (as has been pointed out in Section 8), by reversing the
entire scheme of arguments, the propagation of two elliptically polarised
waves with different absorption coefficients and velocities (as given by the
electromagnetic theory) may for mathematical convenience be rigorously
treated by the method of superposition; the convenience of this artifice
being particularly mauifest when we wish to find the limiting effects as the
two elliptically polarised waves gradually tend towards the state of two

(identical) circularly polarised waves with equal velocities and absorption
coefficients.

7. ANALYTICAL DISCUSSION OF SUPERPOSITION

Referring to Fig. 1, let us suppose that we are given the equation of the
elliptic vibration described at any particular plane z in the medium. If the
initial state of polarisation is to be propagated without change of form, then
the equation of the vibration at the plane z + dz can be obtained not only
by the method of superposition but also from the usual equation for the
propagation of a damped wave. By equating these two expressions we can
determine not only the states of polarisation that can be propagated without
change of form but also their velocities and extinction coefficients.

Let OX and OY be two arbitrary rectangular axes taken in the plane
of the figure, the inclinations of OXy and OX, with respect to the positive
x-axis being a, and a, respectively. Let the components of the arbitrary
elliptic vibration P along the axes OX, OY, have the following equations
(using complex notation and indicating the complex quantities by bars):

X = Fei(wt-—e,)zj-eiwt
y= Geltwi—on — geiwt } @3)
so that
g — (_} i
FTF°

where g/ f is the ratio of the complex amplitudes, G/F the ratio of the real
amplitudes and 6 the difference of phase (6, — 8,) between the x and y
components. (It may be noted that G/F and 6 will have—on the Poincaré

sphere—geometrical interpretations essentially similar to those that have
been described in Section 4 ¢ for Gy /Fj and 6.)

Let the complex amplitudes become 7', &', after the infinitesimal ope-

ration, of dichroism alone, and 77, §”, after both the infinitesimal operations
of dichroism and birefringence corresponding to a passage dz. But if the

initial state of polarisation (7, &) is to be propagated without change of form,
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and wit_h a speeific extinction coefficient « and refractive index », then its
state (f”, g") after propagating a distance dz should also be given by:

Freiot — ft (wt—Fadz)

Fr=7 (l—i%ﬁdz)z

=z (1- i%’-’ﬁdz) 5

[
where 7 is the complex refractive index (» — ix) of the elliptically polarised
wave. We shall now, by the method of superposition, proceed to determine
expressions for the final state (7, ") in terms of the initial state ( f»8),and
then substitute these expressions in (24).

The Operation of Dichroism.—The elliptic vibration P, given by (23),
is first referred to the axes OXjy, OYy along the principal planes of absorp-
tion; the complex amplitudes (fx, &x) of the components along these direc-
tions can be obtained from the amplitudes (7, g) by the usual transforma-
tion scheme for the rotation of co-ordinate axes through an angle a,. These
amplitudes 7% , &k are then multiplied by (1 — 2=/2,. «,dz) and (1 — 27[Ag-
kqdz) rtespectively, to give the amplitudes fr', 8k’ of the xk, Yk
components after the operation of dichroism. Finally the elliptic vibration
Fx'» &1’ thus obtained is referred back to the axes OX, OY; the complex
amplitudes 7 ', & of the components along these directions are obtained from
the amplitudes 7i’, &%’ by the usual transformation scheme for the rotation
of the co-ordinate axes through an angle — a;.

If we go through the straightforward but lengthy algebraic substitutions
involved in the procedure described in the last paragraph, it can be shown
that the amplitudes 7', 2’ of the x, y components after the operation of
dichroism are related to the corresponding initial amplitudes f, & by relations
which may be put in a form analogous to (24):

r=F[1-% (Ku+f;;‘- ) 4z | o5
g =z [1“ -Zx": Kzz“!"g"‘m)dz]

where, if a, be the orientation of the positive OX, axis,

Ky = t; COs? a; + kg sin® oy

or

and 24

(26)

Kgg = K, Sin? @z + &3 COs® oy
Kya = % (kg — 9) sin 2ay
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If an ellipse be drawn with its principal semi-axes of lengths 1/4/k,
and 1/4/x, lying along OXy and OY}, then 1/4/x;; and 1/4/k,, are the lengths
of the radii vectors intercepted by the OX and OY directions, the equation
of the ellipse being

‘ Ky X%+ Ko Y2+ Zegp Xy =1

The Operation of Birefringence.——The mathematical procedure involved
in the infinitesimal operation of birefringence is essentially the same as in
the operation of dichroism. The elliptic vibration f', 3’ obtained after
the operation of dichroism is first referred to the axes OX,,, OY, along the
principal planes of refraction; the complex amplitudes 7.’ g,” of the compo-
nents along these directions are then multiplied by exp (— i2n/Aq.nd2)
and exp (— i2n/Ay.nydz) respectively—where n, and n, are the refractive
indices in the absence of absorption. On referring the final vibration
(F+", &™) back to the axes OX, OY we will have the complex amplitudes
(", 8") of the x,y components, related to the corresponding amplitudes
f', &' (before the birefringence operation) by equations essentially similar
to (25), though put in the form of (24):

Fer 1= (o e |

- lex)}
g=g [l—i% n22+L, nm)dz]

Here ny5, 1y, and 1, are to be regarded as defined by the relations (ana-
logous to (26):

Ny = n, cos?a; + n,8in? a,
-n.‘}2 = 11 8in® ay + 7, €082 0, (28)
Ny = % (1, — ny) sin 20,

where a, gives the angle made by the positive OX,, axis with the x-axis.

Since we shall omit terms involving dz°, the value of (2’/f") to be substi-
tuted in (27) need not include even the terms of the first order in dz, i.e., we
may write (g/7) for (2']7 ) in (27). 'We then obtain as the equation connectmg
the final state of polarisation 7", g” (after both the infinitesimal operation of

birefringence and dichroism correspondmg to a passage dz), with the initial
state f, z:

(29)
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The Ff'nal Equations for Wave Propagation—We now introduce the
values of f”, " given by (29), into equation (7). Conciseness will obvi-
ously be attained if we first introduce the complex quantities:

Ay = Ny — Ixny
Flag = Mg — IKge

Hyg = H3p — K13

where the np and «p; have already been defined in relations (26) and (28).
'We then obtain as our final equations:

=

— Ay =% " Hyy

30

=

LT

li

ORIy, S0

— Hgp

There will be two pairs of values (#a, §a/f o) and (7ip, Zp/f;p) Which simulta-
neously satisfy (30); and—since g/f and # are both in general complex—
this means that there should be two elliptically polarized waves that can
be propagated, each with a specific velocity and coefficient of extinction.
Eliminating 7# between the two equations of (30) by subiracting, we get the
following quadratic in g/f determining the states of polarisation propagated
without change of form:

iy — 7
g N .% - uﬁm # Gn

The two roots of this equation are obviously connected by the relation
(8alfs) = — (Fb/20), from which it follows that the two elliptically polarised
vibrations have their major axes at right angles and their ellipticities equal,
but are described in the same sense (see, e.g., McLaurin®).

Eliminating /7 between the two equations (30) by multiplying Lhe' two,
we get the following quadratic in 7 determining the complex refractive
indices of the waves:

(B — Fiyy) (B — igy) = Fipg® 32
From this we get the expressions for the sum and difference of the complex

refractive indices:
(fig — Bp)* = (g — Fpn)® + 45" (33)

and (g - o) = Py + figg (34)
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Velocities and Absorption Coefficients of the Waves—The expressions for
the velocities and absorption coefficients given in Section 4 may be derived
from the equations (30) which give the complex refractive 7 in terms of the
corresponding state of polarisation g/f. If we choose axes of co-ordinates

along OX,, OY, then 7,3 =0, ay =0 and ¢, = 2X. The first of the two
relations in (30) gives:

(1 — i) = (1, — iryy) +§F1,ei9' o (= i)
Equating real parts

n =n; + (Gy/Fy) k9 sin 6,

=1y + (G4/Fp) * 3 (x, — xp) sin 2X sin 6,

Referring to Fig. 2, since 6, = PX, Xj we have

sin 2X sin 8, = sin 2¢
Hence on using eq. (5), Section 4 ¢, we have

n=n, —(G./F,) - 3 (n, — ny) sin 24

a Since (Gy/Fy) = tan ¢, we get as our final expression for the refractive
index,

n=n, cos? ¢ + n,sin® ¢
Similarly we will have for the extinction coefficient,
K = Ky COS? h + Ky sin?
8. CoMPARISON WITH THE FLECTROMAGNETIC THEORY

Let the s_ections of the index and absorption ellipsoids made by the
xy plane be given by the respective equations:

anX? 4 @py? + 2apxy = 1

byyx? + bypy?® + 2bja xy = 1 } ©3)
Let us introduce the quantities

Chic = ani + ibpy (36)

Th:n the equations (30) giving the states of polarisation and the complex
telractive indices of the two waves propagated along any;direction have to
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be compared with the following similar relations obtained from the electro-
magnetic theory:

@~ = f;" Cia
- &N
@~ 2y ={7; ‘G

where the complex velocity v = v (1 + ix’)

'We may first remark that it would indeed be possible to define the quanti-
ties fiy, Py and #iy, (in terms of cyy, Cag and cyy) in such a manner that the
results obtained by the method of superposition would be identical with
the results of the eleciromagnetic theory. But in order to retain the physical
content of the method of superposition it is necessary to regard the velocities
v, and v, in the absence of absorption as being equal to 1/a, and +/a, respec-
tively (where 1/4/a, and 1/4/a, are the lengths of the principal radii of the
elliptical section of the index ellipsoid). And once this is done, at least some
of the results obtained by the method of superposition have necessarily
to be regarded as approximations. We shall however show that for direc-
tions near an optic axis where the birefringence is necessarily very small and
where alone the ellipticity of the waves play an important role, the error
involved is negligible. To this end we shall start by assuming the relations
(12) and (14) which give a connection between the extinction coeflicients
x, and x, on the one hand, and the lengths 1/4/5, and 1/4/b, of the principal
radii of the elliptical section of the absorption ellipsoid on the other. The
quantities apy.occurring in equation (35) can obviously be expressed in terms
of a; and @, thus:

ay; = a5 CO8® ag + a, sin® a,
gy = @y Si? ag + @3 CO5” ay (38)
ay, = 1 (@, — a;) sin 2a,

Similar relations analogous to (26) hold for the by

.On examining the equations [(30) and 37)] obtained by the method of
superposition and by the electromagnetic theory, we notice that the two are
entirely similar in form, the only difference being the occurrence of the
quantities ¢y instead of 7ips and v? instead of 7. Hence it follows that given
any equation obtained by the method of superposition, a corresponding
exact equation obtainable from the electromagnetic theory can be written
down, merely by changingsthe symbols occurring in the equation according
to the following scheme;
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n n, n, K Ky Ky
203
.02 al 02 - P —‘b1 _‘bz

Thus to obtain the states of polarisation (¢, ) that can be propagated with-
out change of form, we have to replace the ratio §/k in eqn. (5) by the ratio
ple where p=1%4(a; — a)) and o = 3 (b, — ;). This replacement will how-
ever leave the equation unaltered, as we have already shown in Section 4 (d)
that 8/k = pfs. It is also possible to show that the sense of description of
the two vibrations as obtained by the method of superposition is the same
as that obtained by the electromagnetic theory.

Expressions for the velocities and absorption coefficients according to
the electromagnetic theory may be similarly written down from the relations
(15) and (16):

1% = a, cos?* ¢ + a, sin% ¢ 39
3
71"% = b, cos? ¢ + b, sin® ¢ (40)
We hence obtain
(va® — ) = (@, — ay) cos 24
Or, if v, be the mean velocity introduced in Section 4 (4)

vb2_v 2
Wq—-c—:(nr—nz)coquﬁa

On comparing this with the last equation in (16) we see that the approxima-

tion involved in using the method of superposition is to regard the expression’
on the left-hand side of the above equation as being practically equal to the

difference in refractive indices (n, — np). This is justifiable along directions

where the birefringence is low, and in fact this same approximation is also

made when the propagation in transparent optically active crystals is re-

garded from the standpoint of superposition (Pockels, loc. cit., p. 312).

From Eqn. (40) we get

2uq¥a® — 2ep0p® = (by — by) cos 2,
Or, using (12)
KaqVa® — kpvp®

3 = (1cq — Kg) COs 24

Um

On comparing this with the last equation in (15), we see that the approxima-
tion we have to make is to regard the expression on the left as being prac-
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1. INTRODUCTION

THE mathematical theory of elasticity in its generally accepted form derives
from 2 memoir by A. L. Cauchy presented to the Academy of Sciences at
Paris in 1822. The analytical specification of the strains and stresses in
elastic solids adopted in that theory expresses the strains in terms of the
differential displacements of neighbouring points in the solid and the stresses
in terms of the tractive forces on infinitesimal areas in the same location.
The theory, however, does not make use of these representations with com-
plete generality, but following Cauchy, adopts them in modified forms on
the basis of arguments put forward by him and considered as authoritative
ever since. But when one examines those arguments critically, they are
found to be indefensible. This is particularly clear in regard to the repre-
sentation of strains. In the most general case, we have nine components
of strain, but Cauchy reduced their number to six by eliminating movements
which he identified with rigid body rotations. Actually, however, the
components thus eliminated are not rigid body rotations, but differential
rotations which are of the same nature as those appearing in the deforma-
tion of solids by torsion or flexure and hence, their elimination is not justified.
Then again, Cauchy’s reduction in the number of the stress components
from nine to six is based on the idea that the angular momenta of the tractions
taken about each of the co-ordinate axes and summed up should cancel out.
But since the stresses are assumed to be in the nature of tractive forces and
defined in terms of their magnitudes over infinitesimal areas, they have to
be considered as acting on volume elements which are small enough to be
regarded as particles and hence no consideration of angular momenta is
called for. The reduction in number of the components of stress from nine
to six has therefore no justification. Indeed, when once it is admitted that
we have to retain all the nine components of strain, a similar step in regard

to the components of stress follows inevitably.
paper (Raman and Viswapathan, 1955) the consequences
ain in elastic solids in their
It has been shown in that
111

In a recent
of adopting the representations of stress and str

most general form have been discussed in detail.
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paper that Cauchy’s assumptions result in restricting the cases which fall
within its scope to homogeneous strains properly-so-called. The more
general case of heterogeneous strains, including especially all cases of wave-
propagation and static deformations in the nature of torsion and flexure,
lie outside its scope. Nevertheless, the mathematical theory of elasticity
has actually been applied to these cases and formule have been obtained
and the constants appearing in them have been evaluated experimentally.
For example, the results of experimental studies with cubic crystals have
been expressed in terms of three constants usually designated as C,;, Cy3 and
C,, respectively. On the other hand, the more general theory shows that
four constants designated as dyy, dip, dyy and d,; are needed for the classes
Oh and Td of the cubic system. Hence, by an examination of the experi-
mental data for those cubic crystals of the O% and Td classes which have
been investigated with adequate precision by different methods, it should
be possible to decide whether those data are expressible in terms of three
constants only, or whether four constants are actually needed. It is the
object of the present paper to present the results of such an examination.

2. SoME GENERAL REMARKS

The determination of elastic constants of crystals can be made inde-
pendently by static and dynamic methods. In the former case we naturally
deal with the elastic constants under isothermal conditions and in the latter
case under adiabatic conditions. The dynamic methods depend upon the
determination of velocity of propagation of high-frequency waves of different
types in the solid. Many of the recent determinations of the elastic con-
stants of crystals have been made by these methods and it would seem that
a high degree of precision has been attained in the resulting data. 'We shall

accordingly make use of them in the evaluation of the elastic constants of
the respective materials.

The classical expression for the velocity of propagation in a cubic
crystal in the older theory is given by equations of the type
p2AT = AT {Cyl? + Cyy (m? + n?)} + (Cyy + Cyo) (AVIm + AZln)
while in the corrected theory it is given by equations of the type
pv2 A% = AT {dyl? 4 dyy (M2 + 1D} + (dyg + dis) (AVIm + AZln)
Thus in reducing the experimental data we make the following identifications :
du= Cp; dyy= Cqy and (digt+ dys) = (Cip+ Cy).

It will be seen at omce that if dyy = d,;, then the two theories lead to
identical results.
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Whereas in the older theory, if the wave-velocities had been measured
for a sufficient number of directions the data resulting would suffice to
determine the constants Cyy, C;s and Cyy, in the present theory it only enables
us to evaluate the three quantities dy,, dy, and (dio+ dys). Thus, at least
one additional determination is needed by static methods yielding values
for a different linear combination of the four constants. The most appro-
priate determination appears to be the bulk modulus the expression for which
under the older theory is (Cy+ 2C;5)/3, whereas in the new theory it is
(d3+2d;)/3. While determinations of the bulk modulus are not easy,
there is reason to believe that a degree of precision adequate for our present
purpose has been reached in the measurements made and reported from
Bridgman’s laboratory at Harvard. It is obvious that to utilize these data
in conjunction with the determinations by the dynamic methods, it is ne-
cessary to assume that we are dealing in both cases with the same material
and under the same physical conditions. Such an assumption would appear
prima facie justifiable in the cases considered in the present paper, viz., crystal-
lised solids of very simple chemical composition. The correctness of the
assumption is reinforced by an intercomparison of the elastic constants
determined by dynamic methods and reported by different authors from
different laboratories. In general, these values do not differ more than can

reasonably be ascribed to inevitable uncertainties in the experimental deter-

minations.

Some further remarks are also necessary in this connection. Since
the experimental values for the compressibility refer to isothermal condi-
tions it is necessary to correct them to obtain its value under adiabatic condi-
tions in order that a comparison might be possible with the adiabatic con-
stants determined by dynamic methods. This correction is effected making

use of the well-known formula
9a2T
Xico— Xagia=
iso adia Pcp

where X represents the compressibility, a the coefficient of linear expansion
of the substance, T the absolute temperature, p the specific gravity of the
solid and Cp the specific heat of the solid in ergs per gram. The numerical
values of the constants used in the calculation of this correction term

have been taken from the Landolt-Bornstein Tables and the International

Critical Tables.
The compressibility determinations made in Bridgman’s laboratory
stended upto very high pressures. We naturally make use of the

usually e . .
sures computed by the investigators

compressibility value for zero pres
2
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themselves from the experimental data. The values reported by Bridgman
and Slater prior to 1946 are subject to correction by a constant term
—0-033x 10" kg~1-cm.? in the light of Bridgman’s latest determination of
the linear compressibility of iron. Since the compressibility as well as the
other elastic constants are functions of temperature, it is necessary that the
comparison should be made for their values at the same temperature,
either as reported by the authors themselves or as reduced to the same

temperature from a knowledge of the variation of the elastic constants with
temperature, ’

In selecting the substances the data for which are discussed in the pre-
sent paper, the choice has naturally fallen on those substances which have
been frequently the subject of experimental study. It so happens that these
substances also fall into well-defined groups being very similar in chemical
composition and their crystal structure, e.g., NaCl, KCl, KBr, NaBr, LiF,
MgO and AgCl, all of which have the rock-salt structure; diamond, silicon,
germanium, zinc blende and fluorspar all of which again have closely similar
structures and finally the metallic elements aluminium, copper, nickel and
silver which have the face-centred cubic structure. In tabulating our final
results we have arranged the substances in the order stated, in order to facili-
tate intercomposition of their elastic behaviour.

3. CRYSTALS WiTH THE ROCK-SALT STRUCTURE

(@) Rock-salt.—The eclastic constants of NaCl were determined by
Voigt first in 1888 by the methods of torsion and flexure. Bridgman has
also in 1929 determined the constants by the same methods. With the
development of techniques based on ultrasonic wave-propagation, several
determinations have been made recently by numerous investigators namely,
Bergmann, Rose, Durand, Hunter and Siegel, Huntington, Galt, Lazarus

and Bhagavantam. The values reported by these investigators and the
methods used by them are given in Table I.

The values for C,, reported by the investigators who have used the static
methods are distinctly higher than the values for the same constant obtained
using dynamic methods, and this difference appears to be larger than can be
reasonably ascribed to experimental errors. On the other hand, the values
for Cy; and C,; do not exhibit such a difference. The close agreement
between the results reported by the three investigators who have used the
pulse technique indicate that this method yields precise results. Hence,

the mean of the values reported by these three workers have been adopted
here as the best values,
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TABLE [
Author Method Cu Cr Caa
Voigt .. Static 4-77 1-32 1-29
Bridgman .. ’s 4-94 1-37 1-28
Bergmann Diffraction 477 1-25 1-21
patterns
Rose (270° K.) .. Composite 5-06 1-30 1-278
oscillator
Durand (300° K.) .. » 4-96 1-31 1-268
Hunter and Siegel .. . 4-86 1-194 1-281
Huntington 25°C.) .. Pulse 4-85 1-23 1-265
Galt (298°K.) .. v 4-87 1-24 1-260
Lazarus (298° K.) .. 5 4911 1-225 1-284
Bhagavantam (R, T.) .. Ultrasonic 4-97 1-27 1-27

The isothermal compressibility had been determined by static methods
by a series of investigators, viz., Rontgen and Schneider, Madelung and Fuchs,
Richards and Jones, Adams, Williamson and Johnston, Slater and Bridgman.
Table II shows the values reported by the various authors. Of these, the

TABLE II
Author Temp. Xin 107 kg com.?
Rontgen and Schneider | R.T. 50
Madelung and Fuchs .. 0°C. 405
Richards and Jones ..[ 20°C. 44-0
Adams, Williamson R.T. 40-4
.and Jobnston

Slater ..l 30°C. 41-8
Bridgman 30° C. 41-82

75° C. 43-44




116 SR C. V. RaMaN AND D. KRISHNAMURTI

most accurate are evidently those reported by Slater and Bridgman, and they
have accordingly been adopted as correct. The values reported by
Madelung and Fuchs refer to the pressure range 50-200 kg./cm.?, those of
Richards and Jones to the range 100-510kg./cm.2 The values of Slater
and Bridgman quoted are for zero-pressure always.

These values are however subject to correction by a constant term —0-033
x10~7kg.~! cm.? in the light of Bridgman’s latest determination of the linear
compressibility of iron. After making this correction and using the known
value of g at Harvard, the isothermal compressibility of rock-salt comes
out as 42:62x 1072 cm.2/dyne at 30°C. The value of the compressibility
at 25° C. is found by linear interpolation from the values reported by him
at 30°C. and 75°C. This correction when effected leads to a value of X
(isothermal) = 42:44. The difference between the isothermal and adiabatic
compressibilities can be calculated from the formula given earlier. For
rock-salt, the numerical values used in the formula are: o — 44x10-5;
p=2-168; C,=0-2078 cal./jgm. The value of the adiabatic compres-
sibility at 25° C. is found to be 39-68x 10713 cm.?/dyne. Hence the bulk
modulus comes out as 2:52x 10" dynes/cm.?2 On the other hand, the value
for the bulk modulus calculated from the formula (Cy1 + 2C,,)/3 comes out
as 2-45x 10" dynes/cm.? the difference clearly being greater than can be
explained in terms of experimental errors. The average values of the dyna-
mically determined constants used in the calculation are: Cy,, = 4-877;
Cie=1-232; Cy = 1-269x101 dynes/cm.?, while the four constants
evaluated in the manner already explained come out as dy; = 4-88;
dy=1-34; dyy=1-27; and d,,=1-16x101 dynes/cm.?

(b) Potassium Chloride—The elastic constants of KCl have been
determined by static methods by Voigt, Forsterling and Bridgman. The
later workers who have determined the elastic constants by the dynamic

methods of ultrasonics are Durand, Galt and recently Lazarus. Their values
appear in Table HI.

It will be noticed from Table III that the values reported by the different
authors are in much less satisfactory agreement amongst themselves than
in the case of rock-salt. The values for Cie in particular appear rather
erratic and this is probably due to the fact that measurements usually involve
the determination of linear combinations of Ci1 and C;, and since Cy, is
much smaller of the two, errors of measurement would influence its deter-
mined value very noticeably. Voigt gives C;, to three significant figures
but his value is undoubtably an error. As in the case of rock-salt we shall
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TaAsLg III

Auth()r Method Cn_ C]g C44
Voigt R.T. Static 375 0-198 0-655
Forsterling R.T. .. v 3-88 0-640 0-65
Bridgman S 30°C. .. e 3-70 0-81 0-79
Durand RT. .. Composite 4-00 0-6 0-625

oscillator

Galt 25°C. .. Pulse 3-98 0-625 0-62
Lazarus 25°C. .. 2 4-095 0-705 0-630

assume as a definitive value the mean of the measurements by the puise

method at 25° C. )

The static measurements of compressibilities by different authors shown
in Table IV agree remarkably well amongst themselves. We shall here
accept the measurement by Slater as corrected by Bridgman to be the most

TABLE IV
Author Temp. Xin'10~" kg.* cm.2
Rontgen and Schneider 56
Madelung and Fuchs 0°C. 551
Richards and Jones 20° C. 53-0
Slater 30° C. 55.2

reliable. This comes out as 56-27x 1013 dynes cm.2 at 30°C. and after
correction using the temperature coefficient given by Slater, the value at
25° C. is found as 56-14x1071° cm.?/dyne. From this the adiabatic com-
pressibility at 25° C. is calculated using the following values for KClI in the
correction formula.

a=36%x10-%; p=1-992; and Cp=0-1661 cal./gm. The adiabatic
compressibility is found to bave a value 53-62x 103, Hence the bulk
modulus at 25°C. comes out as 1-865 % 10" dynes/cm,?
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The mean values for Cp, Cyy and C,, adopted are 4-038, 0-663 and
0-628 < 10" respectively. The bulk-modulus calculated using the classical
expression (Cy, + 2C,p)/3 comes out as 1-788x 10" dynes/cm.2, which is
definitely smaller than the experimentally determined value. The values
found for the four elastic constants of the new theory are respectively:
dy, =4-038; d,=0-7719; d,, = 0:628; d,; = 0-512 X 10" dynes/cm.2

(¢) Potassivin Bromide.—Static measurements of the elastic constants
have been reported by Bridgman. Using the pulse technique Huntington
and Galt have independently determined the constants at room temperature.
The values are given in Table V.

TaBLE V
Author Method Cu Cis Cus
% 10" dynesfcm.?
Bridgman 30°C. .. Static 3-33 0-58 0-62
Huntington  25°C. .. Pulse 3-45 0-54 0-508
Galt 25°C. .. " 3-46 0-58 0-505

The compressibility measurements have been made by Richards and
Jones, and Slater independently and the values reported are 6+ 5% 10-%kg.~tcm. 2
at 20°C. and 6-57x10%kg.cm.? at 30° C. respectively, being in good
agreement with each other. Using the temperature coefficient given by
Slater, the isothermal compressibility at 25° C. on calculation is found to be
66-78x10*cm.2 dyne . The adiabatic compressibility is found using the
correction formula given earlier., The values adopted for KBr are:
a=41x10"%; p=2-756; Cp =10-1033cal./gm. X g COMeEs out as

62-99x 107 cm.?/dyne and hence the bulk modulus is 1-588x 10 dynes/
cm.? at 25°C.

Adopting the mean of the values given by Galt and Huntington the
bulk modulus in terms of the classical formula (C,, -+ 2C,,)/3 is found to
be 1:525x 10" dynes/cm.?, thus differing from the actually observed value
corrected for the adiabatic nature of deformation.

The values adopted for the elastic constants are C,; = 3-455, C,, = 0-56,
C4a=0-507, while the four constants evaluated in the manner explained
are dy, = 3-455; dy; = 0:655; dy, = 0:507; dy; = 0-412x 10 dynes/cm.?
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(d) Sodium Bromide.—The static measurements of the elastic constants
are due to Bridgman, while they have been determined by Bhagavantam
using ultrasonic methods.

TaBLE VI
Author Temp. Cu ' Ciz f Caus
Bridgman . o30°C. 3-30 1-31 1-33
Bhagavantam ..] R.T. 3-87 0-97 0-97

The values reported by Bhagavantam differ appreciably from those of Bridgman.
However, we shall take for our calculations the values determined by dyna-
mic methods as usual, since the identification of the constants of the new
theory with that of the older theory is by identifying the two wave-equations.

The compressibility determinations in the case of NaBr have been made
by Richards and Saerens at 20° C., the value being 5:4x10%kg.~lcm.? in
the pressure range 100-510kg/cm.?, and by Slater at 30° C. who repotts
a zero pressure value of 4-98x10~%kg."cm.? The isothermal compres-
sibility at 30° C. is found 1o be 50-762x 10713 cm.2/dyne. Correcting this
to the adiabatic value we get Xuupeue @ 47:576. The values used in
the calculation of the correction term are: o =43x10"%; p=3-213;
Cp=0-1178 cal./jgm. The bulk modulus value hence comes out as
2-102 x 10** dynes/cm.? whereas according to the classical theory this value

should be 1-936x10% dynes/cm.?

The values of the elastic constants according to the new theory are:
dy = 3'87; diy=122; dya=0-97; dy5 = 0-72x 10" dynes/cm.?

(¢) Lithium Fluoride—The elastic constants of LiF have been deter-
mined by dynamic methods by Bergmann, Huntington, Sundara Rao and
Seshagiri Rao and their values are shown in Table VII.

Tt will be noticed that there are notable divergences between the values
reported by different investigators though they all use ultrasonic methods.
A clue to the origin of these differences is to be found in the differences in
density reported by the different investigators in their respective papers.
The density of LiF calculated from the lattice spacing and known atomic
weights is 2-627, while Huntington, Seshagiri Rao and Sundara Rao give
the density as 2-295, 2-635 and 2-601 respectively. The value found in
f.andolt Bornstein Table is 2-640. As the value reported by Seshagiri Rao
corresponds to this, we use his data in our calculations,
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TABLE VII

| Author Method C, C,. Cy
I

i

' Bergman RT. .. Diffraction 12-0 4-41 6-4
; patterns

; Huntington  25°C. .. Pulse 9-74 4-04 5-54
| SundaraRao R.T. ..| Ultrasonic 11-9 4-58 | 542
E

% Seshagiri Rao R.T. .. . 11-9 5-38 5-34

The compressibility of LiF has been determined by Slater as 15-3
x10"kg.~ cm.? at 30° C. and in a redetermination Bridgman has corrected
this value and gives it as 14-95x10"kg.1cm.? The isothermal compres-
sibility at 30° C. is accordingly 15-215x10-1%cm.2dyne!. The following
values are used in the correction term for adiabatic compressibility: « = 36
x107%; p=12-64; and Cp=0-373 cal./gm. The adiabatic compressibility
comes out as 14-357x10-% and hence the bulk modulus as 6-965x 10
dynes/cm.?, while the bulk modulus using the data of Seshagiri Rao and
the classical formula (Cy;, 4 2C,,)/3 is found to be having a different value
of 7:55X10™ dynesjcm.? Using the values of Seshagiri Rao in our calcula-
tion we find the following values for the four elastic constants. dy = 11-9;
dip=4'5; dyy=534; and d,; = 6-22x 101 dynes/cm.2?

(f) Magnesium Oxide.—The elastic constants of MgO have been

determined dynamically by Durand and by Bhagavantam and their values
are shown below:— '

TaABLE VIII
Author l Cun Cys Ci
Durand 30°C. .. 28-92 8-77 15-47
Bhagavantam R.T. 28-6 8-7 14-8
|

Their values agree fairly well and the slight difference in the value of
Cq4 might be due to experimental errors. No static determinations of the
elastic constants appear to have been made.

The compressibility of MgO has been determined by Madelung and
Fuchs and by Bridgman. The former investigators report varying values
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with the different specimens they used, while Bridgman using a clear single
crystal has reported the value of 5-904x10~"kg."*cm.? at 30° C. The iso-
thermal compressibility at 30°C. is hence 5-988x107'%cm.?/dyne. The
values of the constants appearing in the correction term are: a=13-3
x10-¢; p=13-576; Cp=0-2297 cal./gm. The adiabatic compressibility
comes out as 5-847 x 10-13 and hence the bulk modulus as 17-10x 10* dynes/
cm.2

‘We shall make use of the mean of the two dynamic determinations for
the purposes of our calculation, i.e., Ci, = 28-76: Cip =8:-74and Cy=15-14,
The compressibility calculated using the formula (Cu + 2Cy2)/3 is found
to be equal to 15-41x 10" dynes/cm.?, being distinctly different from the
observed and corrected value of 17-10x 10" The elastic constants accord-
ing to the new theory are as follows: dyy = 28-76; dig=11-27; dy,
—15-14; d,; = 12-61x 10 dynes/cm.2

(g) Silver Chloride—The elastic constants of AgCl have been recently
determined using the pulse method by Arenberg (1950). The values have
been reported for-two different specimens and show good agreement between
themselves. However, it is stated by him that the values from one of the
specimens are to be preferred and they are given as Cyy = 6:05; Cj, =3-64.
Cyo = 0624 10" dynes/cm.? The compressibility of fused and solidified
AgCl has been determined by Richards and Jomes, while Bridgman has
studi=d the case of AgCl with compressed powder. The isothermal bulk-
modulus value of 4-12x10™ obtained by extrapolating Bridgman’s data
to zero pressure agrees well with the value of 4-17x 10 dynes/cm.? reported
by Richards and Jones. Adopting the value due to Bridgman and using
the values o= 30x107%; p= 5.5; and Cp=0-0875 cal.fgm. for AgCl,
the adiabatic bulk modulus is found to be 4-338x 101 dynes/cm.? Accord-
ing to the classical formula (Cy; + 2C,,){3 this Yalue comes out as 4-444 x 1011
dynesfem.?, being different from the value given above. The four elastic
constants according to the new theory are: dy = 6:05; dip=3-482;
dyy = 0-624; dys = 0-782 x 10** dynes/cm.?

4. CRYSTALS WITH THE DIAMOND-LIKE STRUCTURE

(a) Diamond.—The €lastic constants of diamond have been deter-
¢ method by Bhagavantam and Bhimasenachar

mined by the ultrasonic wedg
(1946). The following are the values reported by them. Cy = 9-5x10%;

Cpo = 3-9x 1012 and C,, = 4-3x10* dynes/cm.? The compressibility has
been determined first by Adams and again by Williamson in the same labo-
ratory, the values being 0-16%10-? and 0-18 1072 cm.?/dyne respectively.
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The latter value i3 reported to be preferred since better material was used
in the determination by Williamson. -This gives a value of 5-56x 10'2 dynes/
cm.? for the isothermal bulk modulus. The correction for the adiabatic
bulk modulus is negligible. Using this value of 5-56 X 102 and the reported
values for the elastic constants the values of the four elastic constants are
calculated. They are: dy; = 9°5; d,, =3-59; dy =4-30; and d;;=4-61
X102 dynes/cm.?

(b) Germanium.—The elastic constants of Ge have been determined by

ultrasonic methods by Bond and others, Fine and McSkimin and their values
are shown in Table IX.

TArrg IX
Author Method Cu Cie Cu
Bond and others 25°C, .. Pulse 12-90 4-84 6:69
Fine 25°C. .. Composite 13:16 5-09 6-69
Oscillator
McSkimin 30°C. .. Pulse 12-88 4-825 6-705

All the determinations have been made in the Bell Telephone Laboratories
and McSkimin and Fine have studied the variations of the constants with
temperature. The values show good agreement between themselves. The
values due to McSkimin are taken from the graphs given by him exhibiting
the variation of the elastic constants with temperature.

The compressibility of polycrystalline germanium has been determined
by Bridgman at 30° C. on two occasions with different specimens and the
values are 13-78x10~7kg.lcm.2 and 14-11x 107 kg 1cm.? and the latter
value is said to be more reliable. The isothermal compressibility at 30° C.
is hence 14:358% 1078 cm.%/dyne. The constants used in the correction
term to find the adiabatic compressibility are: « — 5 *5X10°%; p=15-323;
Cp=122-3 Joules/gm. atom. The corrected value of the adiabatic com-

pressibility is 14-308x10-1® cm.2/dyne and hence the bulk modulus value
is 6-989x 101 dynesjcm.?

The elastic constants for 30° C. could be mor
obtained from McSkimin’s detailed data.
the bulk modulus value accordin
7-51 % 10" dynes/cm 2
dis=4-04; d,, =

¢ accurately and directly
Using his values we find that
g to the classical formula should be
The four elastic constants are found to be d,=12-88;
6:705; and d;; = 7-49x 101 dynes/cm.?
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(¢) Silicon—The elastic constants of crystalline silicon have been
determined by McSkimin and others and subsequently in detail by McSkimin
over a wide range of temperatures. The following values for the constants
at 30°C. are found from the graphs given by him. C;; =16:56; C,,
= 6-386; C, = 7-953x 10" dynes/cm.? The compressibility of poly-
crystalline silicon has been determined over a wide range of pressures by
Bridgman at 30°C. and on extrapolating his values to zero pressure, the
isothermal compressibility is found to be 9-92x 107" kg *cm.? ie., 10-118
% 10-13 dynes cm.? The following values are used in the correction term
for adiabatic compressibility. o= 2-25%10-%; p=2-331; Cp=10-1712
cal./gm. On,correction the adiabatic compressibility is found to be 10-11
% 10-13 dynes ' cm.2 and hence the bulk modulus as 9-89 x 10* dynes/cm.?
The value calculated using the formula (Cy; + 2C,2)/3 is found to be 9-78
% 101 dynes/cm.> The four elastic constants calculated are: dy; = 16-56;
dyp == 6-56; dyy=7-953; and dy;= 7-78 x 10% dynes/cm.2

(d) Zine blende.—The elastic constants of zinc blende have been reported
by Bhagavantam and Suryapnarayana using ultrasonic methods. The con-
stant C,, has however been obtained by them from static torsion experiments.
The crystalline material used by them contained only 94% of zinc sulphide.
The following values are reported by them. Cy; = 10-79x10%; Cpp=7-22
5101 ; Cpq = 4-12x10". These values are in disagreement with the values
reported by Voigt from static methods, which are: C; = 9-43x10%;
Cpo = 5-68x10%; Cyy= 4-37x 10,

The compressibility of a single crystal of zinc blende has been deter- .
mined by Bridgman as 12-81x107 kg.tcm.? at 30°C. This gives a value
of 13-032x1072% dynes cm.? at 30° C. for the isothermal compressibility.
The constants used in the correction term for adiabatic compressibility are:
o= 6-7%10"%; p=4-102; and Cp=0- 1146 cal./gm. The corrected value
of the adiabatic compressibility is found to be 12-97x 10712 dynes™ cm.2,
and hence the butk modulus is 7-71X 10 dynes/cm.? The bulk-modulus
calculated from the formula (Cyy + 2C,,)/3 using Bhagavantam and Surya-
parayana’s values is 8-41 % 10t whereas Voigt’s values give 6-93x10%

dynes/cm.?

In the calculation of the four elastic constants, Wwe make use of
Bhagavantam and Suryanarayana’s values since they are for the major part
obtained from dynamic methods. We obtain the following values for the
copstants. dy = 10+79; dip = 6:17; du=4'12; and ds = 5-17x 101

dynes/cm.?



124 S C. V. RAMAN AND D. KRISHNAMURTI

(e) Fluorspar.—The elastic constants of fluorspar have been determined
using static methods by Voigt, and by Bergmann and Bhagavantam using
dynamic methods. Their values are shown in Table X.

TasrLe X
Author Method Cy Cyus Cas
Voigt ..} Static 16-4 4-47 3-38
Bergmann ..| Diffraction 16-76 4-72 3-69
patierns
Bhagavantam ..| Ultrasonic 16-44 5-02 3-47

For our calculations we take here the mean of the values of Bergmann and
Bhagavantam, ie, C;; = 16-6; Cy; = 4-87; and C,, = 3-58x 10 dynes/
cm.?

The compressibility of CaF, has been determined by Madelung and
Fuchs at 0°C. and in the pressure range 50-200 kg./cm.? and the value
teported by them is 12-2X10-7kg. 1 c¢m.2 Bridgman has also determined
the compressibility at 30°C. and reporis a zero pressure value of 12-06
X107kg1cem.?, ie., 12-267 X 10713 cm.2/dyne. The values used in the correc-
tion term are: o =19-11x107%; p=3-18; Cp= 0-887 Joules/gm. The
adiabatjc compressibility value is found to be 11-914x 102 cm.2/dyne and
hence the bulk modulus is 8:39 % 10 dynes/cm.? The bulk modulus value
using the formula (Cy; + 2Cy,)/3 is found to be 8-78 x 10 dynes/cm.2

The four elastic constants calculated are: dy =16:6; dyy —4-29;
dyy = 3-58; and dy; = 4-16xX 10" dynes/cm.?

5. MBEsrALS CRYSTALLIZING IN THE CUBIC SYSTEM

(@) Aluminium.—The elastic constants of single crystals of aluminium
have been determined using static methods by Goens. Recently Lazarus
and Sutton have independently measured the elastic constants by ultrasonic

methods. The values reported by all these investigators are shown in
Table XI.

The accuracy in the measurements of Lazarus is greater than that of
Sutton as is evidenced by the comments made by them in their respective
papers. Moreover the purity of the specimens used by Lazarus and Sutton
is given as 99-99% and 99-93% respectively. In view of these facts we take
Lazarus’s values for the purposes of our calculation.
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Tasre XI
Author Method Cu Ce Cys
Goens R.T. Static 10-82 6-22 2-84
Lazarus 25°C. ..| Paulse 10-56 6-39 2-853
Sutton 20°C. ..| Composite 11-29 6-65 2-783
oscillator

The isothermal compressibility of aluminium single crystals has been
determined by Bridgman as 13-38x 107" kg™ cm.? at 30°C. and as 13-76
x10~"kgtcm.2 at 75°C. The value at 25°C. on linear extrapolation
comes out as 13-338x107kgtcm.?% ie, 13-57x 1013 dynes* cm.? The
following values for the constants are used in the correction term for adia-
batic compressibility: a = 23-06X 10-8; p=2-702; Cp=0-2129 cal./gm.
The adiabatic compressibility is found to be 12-97X 1018 dynes™ cm.? and
hence the bulk modulus is 7-71x10™ dynesfcm.? The bulk modulus
obtained from the values of Lazarus is 7-78 10" The values of the four
elastic constants calculated are: dy = 10°56; dp=6-29; dyq = 2-853;
dys = 2-953x10" dynes/cm.?

()] Copperf—The elastic constants of copper single crystals have been
determined using the composite oscillator method by Goens and Weerts.
Recently Lazarus, Long, and Overton and Gaffney have determined the
constants using pulse methods. The values are shown in Table XII.

TasLe XII
Author Method Cu Cia Cas
Goens and Weerts R.T. Composite 16-98 12-26 7-53
oscillator
Lazarus 25°C. ..| Pulse 17-1 12-39 7-56
Longa 300° K. .. ’ 16-83 12-21 7-54
Overton and Gaffney 300° K. .. . 16-84 12-14 7-54

There is very good agreement between the three sets of values deter-
mined by the pulse method and hence for the purposes of our calculation
we shall make use of the mean of these values.
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The compressibility of polycrystalline copper of high purity has been
determined by Bridgman as 7-19x10~7kg.-2em.2 at 30°C. and 7-34 %1077
at 75° C. Hence the value at 300° K. is found to be 7-173x 107 kg.”* cm.?,
ie., 7-283x107!3 dynes?cm.? The following values are used in the
correction term for the adiabatic compressibility: o= 17-09x107%;
p=2892; Cp=0-0919cal./gm. The corrected value of adiabatic com-
pressibility is 7-05Xx107'% dynes ' cm.? and hence the' bulk modulus is
14-18x 10! dynesjcm.? The average values of the elastic constants from
pulse method are: C,; =1692; C,,=12-25; and C, = 7'55x10"
dynes/cm.? The bulk modulus using the formula (Cy; + 2Cy)/3 is found
to be 13-81x 101 dynes/cm.2 The four elastic constants calculated are:
dy =1692; diy=12-81; dyy=7-55; and d,s = 6-99 % 10 dynes/cm.?

(¢) Nickel—The eclastic constants of single crystals of nickel have been
determined recently using the ultrasonic pulse method by Bozorth and others
and also by Neighbours and others. Their values are given in Table XIII.

TaAsLe XIII
Author Cu Cp Cs
in 102 dynes/cm.?
Bozorth and others ..} 2-53 1-58 1-22
., 25 1-538 1-23
" 0 2-523 1-566 1:23
Neighbours and others 0 2-528 1:52 1-238

The average value of these at 25° C. are: Cyy == 2-526; C;3 = 1-551;
and C,4 = 1-23X 102 dynesfcm.?

The compressibility of pure nickel has been determined by Bridgman
at 30° C. as 5-29x10"kg,* cm.2 and at 75° C. as 5-35x 10~". The value at
25° C. is hence 5-283x 10" kg.' cm.2 The isothermal compressibility is hence
5-355x10*® dynes'cm.? The values used in the correction term for
adiabatic compressibility are: « = 13-15X10-%; p = 8-9; and Cp= 0107
cal./jgm. The adiabatic compressibility is found to be 5-239x 10-12 dynes*
cm.? and hence the bulk modulus is 19-09x 10 dynes/cm.2 The bulk
modulus using the classical formula is found to be 18-76x 10 dynes/cm.?
The four elastic constants calculated are: dyy = 25-26; d;;=16-01;
dyy=12-3; and dg = 11-8x 10" dynes/cm.?
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(d) Silver—The elastic constants of single crystals of silver have been
determined by Rohl using the classical static and dynamic methods. The
constants have been recently determined by Bacon and Smith using the ultra-
sonic pulse method. The values are shown below:—

TABLE XIV
Author ; Method ‘ Cii i L O ‘ Caa
Rohl R.T. ..l Static, etc. 11-9 8-94 4-37
Bacon and Smith R.T. ..} Pulse 12-4 9-34 4-61

The compressibility of pure silver has been determined by Bridgman
at 30°C. as 9-87x107kglcm.2 ie, 10-034x107'* dynes™ cm.? The
constants used in the correction term are: o= 18-9x10°%; p=10-5;
Cp= 25-2 Joules/gm. atom. The adiabatic compressibility is found to be
9-939 ¢ 1013 dynes™ cm.2 and hence the bulk modulus is 10-06x 101 dynes/
cm.? The value calculated using the formula (Cyy + 2C,0)/3 is found to be
10-36x 101 dynes/cm.2 The four constants calculated are: dy; = 12-4;
dy, = 8°89; d,g=4-61; and d;s = 5-06x 10" dynes/cm.?

6. SoME FINaL REMARKS

In Table XV the results for the individual cases given in the foregoing
pages have been collected together. The columns Cyy, C,, and C,, show
the results of the ultrasonic measurements, while the columns dy;, dyg, dyg
and d,; represents the constants as evaluated from the ultrasonic data in
conjunction with the bulk modulus as determined by Bridgman and his
collaborators after making all necessary corrections. The values of Cp
and 4 art in each case identical; likewise those of C,4 and dyy. But Cyg
and d,, are different and such difference is a measure of the failure of the
three constani-theory to represent the actual elastic behaviour of the crystal.
The difference between dy, and dss also expresses the same situation in

another way.

Certain general features emerge from the table. For all the four alkali
halides which are soluble in water, Ciq is less than d;, and likewise dys is
less than dy,. This regularity of behaviour taken in conjunction with the
reliability of the data in these cases makes it clear that these differences are
real and justify us in concluding that the elastic behaviour of cubic crystals
cannot be expressed in terms of three constants, but needs four. Diamond,



128 SR C. V. RAMAN AND D. KRISHNAMURTI

germanium, zinc blende and fluorspar also exhibit a parallel behaviour which
is the reverse of that shown by the four water-soluble alkali halides. In
their cases, C,, is decidedly greater than d,,, while per contra d,, is less than
dys and these differences are numerically more striking than in the case of
the alkali halides. Magnesium oxide for which the data are reliable exhibits

TABLE XV
Elastic Constants in 101 dynes/cm.?

Substance Cu Cops Cus dy dys dy, dy
NaCl . 4877 1-232% 1-269 | 4-877 ! 1-34 1:269  1-16
KCl1 .. 4-038 | 0-663% 0-628 | 4-038 | 0-779| 0-628| 0-512
KBr .. 3-455 | 0-56 0-507 | 3-455| 0-655! 0-507 ! 0-412
NaBr ..l 3-87 0-97 0-97 3-87 1-22 C-97 0-72
LiF .. 11-9 5.38 5-34 i1-9 4.5 5-34 6-22
MeO .. 28-76 8-74 15-14 28-76 11-27 15-14 1261
AgCl ..| 605 3-64 0:624 } 6-05 3-482 | 0-624 | 0-782
Diamond ..} 95 39 43 95 35-9 43-0 46-1

C Ge ..} 12-88 4-825 | 6-705 | 12-88 4-04 6-705 | 7-49
Si L. 16-56 6-386 | 7-953: 16-56 656 7-953 | 7-78
ZnS ..l 10-79 7-22 4-12 | 10-79 6-17 4-12 5-17
CaF, ..| 16-6 4-87 3-58 [ 16+6 4:29 3-58 4-16
Al ..l 10-56 6-39 2-853 1 10-56 6-20 2-853 | 2-953
Cu ..1 16:92 | 12-25 7-55 116-92 | 12-81 7-55 6-99
Ni .. 25-26 | 15-51 | 12-3 25-26 {1601 | 12-3 11-8
Ag .. 12-4 9.34 4-61 | 12-4 3-89 4-61 5-06

a noteworthy behaviour; the differences between C,; and d,; and likewise
between d,, and dys are in the same sense as in the alkali halides but pro-
portionately much larger. Differences of the same order of magnitude but
in the opposite sense are shown by lithium fluoride. ' In the case of the metals
crystallising in the face-centred cubic system, we also find differences between
Ciz and d;; and between d,, and d,s, but they are not always in the same
sense. This is a feature which need not surpirse us in view of the very great
differences exhibited by these metals in other respects. )

7. SUMMARY

The belief that the elastic behaviour of cubic crystals can be described
in terms of three constants rests on theoretical considerations which are
examined in the paper and shown to be indefensible. The correct theory
demands four constants for cubic crystals belonging to the Oy, and Tg classes.
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The experimental results for sixteen different crystals belonging to these classes
for which the most precise data are available are critically examined and it
is shown that the adiabatic bulk modulus as computed respectively from
the observed velocities of ultrasonic wave propagation and from the static
determinations of compressibility made at Harvard are in systematic dis-
agreement. The data show very clearly that the elastic behaviour of these
crystals cannot be expressed in terms of three constants, but needs four.
The latter have been computed and tabulated.
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1. INTRODUCTION

THE present memoir concerns itself with a problem of fundamental import-
ance in the physics of the solid state, namely the determination of the nature
of the atomic movements which constitute the thermal agitation in a crystal.
It would be no exaggeration to say that on our taking the correct view of
the nature of these movements depends the possibility of our understanding
the physical behaviour of crystals aright, not only in the thermal field but
also in diverse other fields, as for example their spectroscopic behaviour
and the phenomena of X-ray diffraction in crystals. The problem is consi-
dered in this paper from two distinct points of view. The first method of
approach is to examine the basic experimental facts in the light of funda-
mental physical principles and to draw the inferences following logically
therefrom. The second method of approach is the analytical investigation
of the problem on the basis of classical mechanics and the general principles
of thermodynamics and the quantum theory. The result in either case is
to show that the ideas underlying the well-known specific heat theory of
Debye and the lattice dynamics of Born and his collaborators are untenable.
The picture of the thermal agitation in a crystal which emerges from the
present investigation is fundamentally different from that postulated in the

theories of Debye and Born.
2. Somr GENERAL CONSIDERATIONS

The identification on a quantitative basis of the thermal energy of a
th the energy of atomic oscillations rests on two fundamental ideas;
(@) that the oscillators can be enumerated, their total number being three
times the number of atoms comprised in the crystal; (b) that the energy of
the oscillators is quantized and for any particular frequency has an average
value which can be calculated with the aid of Boltzmann’s theorem. We

proceed to examine these ideas critically with a view to determine their pre-
cise significance as well as their implications.

The first of the two ideas referred to above is based on the fundamental
theorem in classical mechanics which states that all the possible modes of

163
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small vibration of a system of connected particles are superpositions of a
set of normal modes, the number of such modes being the same as the number
of degrees of dynamic freedom of the system, and further that in each such
normal mode all the particles of the system have the same frequency of vibra-
tion and oscillate in the same or opposite phases. In the present context,
therefore, the term oscillator must be considered as referring to a set of atoms
vibrating in a normal mode, all of them having the same frequency and the
same or opposite phases of vibration.

The second idea, namely that of averaging the energy of an oscillator,
arises because of the chaotic nature of thermal agitation which involves
energy fluctuations whose magnitude is determined by the frequency of the
vibration. The theorem of Boltzmann which enables the average to be
calculated is a description in statistical form of the behaviour of the individual
units in an assembly consisting of an immense number of such units which
are physically identical but differ in their energy states and being in a pos-
tion to exchange energy with each other form a system in thermodynamic
equilibrium. 1In the present context, the units are the oscillators defined
in the preceding paragraph. Hence, if the applicatign of Boltzmann’s theorem
is to be legitimate, it is necessary to postulate that in the crystal is present an
assembly of this nature, viz., a great number of individual oscillators all of
which vibrate with the same frequency but are in the different energy states
permitted by the quantum theory. For each separate frequency of oscilla-

tion, a fresh assembly of that nature is needed to enable the energy for each
individual frequency to be separately averaged.

The foregoing theoretical picture of the thermal agitation agrees com-
pletely with the actual physical picture in the case under consideration. For,
every crystal is itself an assembly of an immense number of similar and simi-
latly situated groups of atoms, the internal vibrations of which can occur
with one or another of the characteristic frequencies of the group. The
energy of vibration of a group with any one of these frequencies may have
any of the series of values allowed by the quantum theory and hence would
vary from group to group in an entirely unpredictable mannet within the
crystal. Such a picture would be in perfect harmony with the basic notions

of -thermodynamics, but would be wholly irreconcilable with any theory
which seeks to identify the energy of th

ermal agitation with the energy of
regular wave propagation in the crystal. But this latter idea is precisely what
forms the basis of the specific heat the

ories of Debye and Max Born, It
follows that these theories are fundamentally misconceived and must there-
fore fail, together with all their consequences.
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3. Tae NorMAL MODES OF VIBRATION

The normal modes of vibration of the atomic groupings in the crystal
referred to above may be determined and enumerated without any difficulty.
It is obviously not permissible in this connection to regard the unit cell in
the crystal structure as isolated from the rest of the crystal. For, any oscil-
lation which occurs in a particular cell will necessarily communicate itself
immediately to the surrounding cells and set the latter in vibration with the
same frequency. Hence, to ascertain the normal modes of vibration, we
have to consider vibrations extending over domains whose dimensions are
at least as large as the range of the inter-atomic forces. Further, to ensure
that the oscillations persist unchanged in character, it is necessary to assume
that the oscillation in each of the unit cells included within such a domain
is similar and similarly related to the oscillations in the cells surrounding it.

Remembering that .n a normal mode the oscillations of all the particles
" have the same frequency and the same or opposite phase, the foregoing re-
quirements lead us to the following description of the normal modes of vibra-
tion: In any normal mode, the oscillations of equivalent atoms in adjoining
cells have the same amplitude of vibration but their phases are either the
same or the opposite in the cells adjacent to one another along one, two or
all three of the axes of the lattice structure. Thus there are 2 X 2 X 2 or
8 possible sifuations. As a consequence of the identity of the amplitudes
of vibration of equivalent atoms in all the cells which need to be considered,
the 3 p equations of motion of the p atoms in any particular cell contain only
3 p unknowns. Accordingly, it becomes possible to solve the equations
completely and determine the 3 p normal modes and the corresponding fre-
quencies of vibration. As there are eight different situations in respect of
the phases of vibration, the equations of motion would necessarily be differ-
ent in each of them. Accordingly we have 3 p x 8 or 24 p normal modes
and frequencies of vibration.

An alternative and convenient way of describing the normal modes is
to consider a supercell of the lattice whose dimensions are twice as large in
each direction as the unit cell. Such a supercell would contain 8 p atoms
and the total number of degrees of freedom associated therewith would be
24 p, and this is the same as the number of normal modes permissible. We
may therefore describe these modes as the vibrations of the atoms comprised
in the supercell. 'When this description is adopted, it becomes immediately
evident that three of these modes would represent simple translations of the
supercell and would therefore have to be excluded in enumerating the inter-
nal vibrations of the supercell. We have then left only (24p — 3) normal
modes of vibration properly so-called.

1a
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4. WAVE PROPAGATION IN CRYSTAL LATTICES

As is well known, the classical theory of elasticity leads to the conclu-
sion that three types of waves can be propagated in any given direction within
crystal with the velocities determined by the density of the material and certain
linear combinations of its elastic constants. The analysis which leads to this
result regards the volume elements of the crystal as simple mass particles whose
equations of motion can be written down in terms of the tractive forces aris-
ing from the elastic strains. Hence the theory and its consequences would
cease to be applicable when these assumptions are invalid and the position
would. then have to be considered afresh from the atomistic standpoint.
A formal investigation on the latter basis shows that only in the limiting case
of very low frequencies and of correspondingly long waves are the results of
the classical theory of elasticity valid. When we enter the region of the
higher frequencies, the phase velocity and the group velocity diverge from
each other and the very significant result emerges that the group velocity
vanjshes for (24 p — 3) modes of vibration of the lattice. These modes are

found to be identical with the (24 p — 3) normal modes referred to in the fore-
going section.

To avoid breaking the thread of the argument, the detailed dynamical
investigation which has been worked out by Dr. K. 8. Viswanathan is printed
as an appendix to this memoir. It will therefore suffice here to comment
on the significance of the results there derived by him. As is very well under-
stood, it is the group velocity which is physically significant in all consider-
ations regarding wave-propagation, since it is a measure of the rate of energy
transport in the medium. The vanishing of the group velocity for the whole
series of characteristic frequencies of atomic vibration signifies that there is
no wave propagation in the real or physical sense of the term when we are
considering oscillations in which the interatomic displacements play a signi-
ficant role. It follows that considerations of the kind used in the classical
theory of elasticity to ascertain the normal modes of vibration of a solid body
of finite extension are entirely out of place in the atomistic problem. But
it is precisely such considerations that are employed in the theories of Debye
and Born to describe and enumerate the movements which they identify
with the thermal agitation. Thus, even on the basis of the classical mechanics,

the ideas underlying those theories are unsustainable and they have therefore
to be laid aside as being completely unreal.

5. THE FREQUENCY SPECTRUM OF THE THERMAL AGITATION

We may sum up what has been said in the foregoing pages by the state-
ment that the energy of the thermal agitation in a crystal may be identified
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with the energy of an immense number of atomic oscillators which together
fill up the volume of the crystal, the individual oscillators being in the various
states of excitation corresponding to each of the (24 p—3) frequencies common
to them all, supplemented by the energy of the low frequency oscillations
which the three omitted degrees of freedom represent. These (24 p—3)
frequencies correspond to modes of vibration which are related to the struc-
ture of the crystal in precisely definable terms. It will be seen that this de-
scription of the thermal agitation bears no resemblance whatever to that
envisaged in the theories of Debye and Born; these authors identify the
energy of the thermal agitation with the energy of waves in immense numbers
traversing the crystal in all directions and having frequencies which are all
different from one another, the energy of the wave of any particular frequency
as well as the sum total of the energy of all the waves taken together being
distributed uniformly over the volume of the crystal.

It is noteworthy that in his fundamental paper of 537 introducing the
guantum theory of specific beats, Einstein derived his' expression for the
average energy of an oscillator of given frequency assuming, as is indeed
necessary for applying Boltzmann’s theorem, that the crystal is an assembly
of an immense number of oscillators all having the same frequency but in
different energy states and in thermodynamic equilibrium with each other.
The theories of Debye and Born make use of Einstein’s expression for the
average energy of an oscillator, while on the other hand the frequencies of
the waves with which they identify the thermal agitation are all different from
each other. Thus it will be seen that there is no logical consistency in their
approach to the specific heat problem. Further, the uniform distribution
of the thermal energy through the whole volume of the crystal which such
identification demands is irreconcilable with the fundamental ideas regard-

ing the nature of the thermal energy of material bodies inherent in the
Second Law of Thermodynamics, namely, that the distribution of the energy
over the volume of the crystal should exhibit fluctuations which are the more
violent the higher the frequency of vibration.

The foregoing comments do not by any means traverse all the arguments
and assumptions on which the theories of Debye and Born are based. One
of the basic objections to their method of approaching the specific heat
problem is that since wave motions involve progressive changes of phase
along the direction of propagation and may have any frequency assigned
to them, they can neither be ireated as normal modes nor enumerated. The
theories of Debye and Born seek to escape this difficulty by postulating that
the number of wave motions is identical with the number of degrees of free-

dom of the system, while the choice of wavelengths is determined by still
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another postulate, e.g., the so-called postulate of the cyclic lattice which is
claimed to represent the effect of the external boundary of the crystal. Since
it is obviously impossible to formulate any boundary conditions for the atomic
movements at the external surface of a crystal, the procedure is clearly arti-
ficial. But that itis also fallacious becomes evident when we remark that the
characteristic modes and frequencies of the atoms in the interior of the
crystal are determined exclusively by the structure of the crystal and by the
interatomic forces whose range is exceedingly small and hence there exists
no justification whatever for the assumption which is inherent in the

postulate that these modes and frequencies are influenced by the presence of
an external boundary.

6. THE SPECTROSCOPIC BEHAVIOUR OF CRYSTALS

It is not proposed in this memoir to discuss how the ideas set forth in
it impinge on various aspects of crystal physics. 'We shall however make a
brief reference to those cases in which facts already well established illus-
trate the validity of the conclusions reached in it.

As Einstein emphasized in his fundamental paper of 1907, the theory
of the specific heats of crystals stands in the closest relation to their spectro-
scopic behaviour. In seeking to explain the data then available for the case
of diamond, he made the simplifying assumption that all the oscillators in
that crystal have a single common frequency. He recognized however, that
in general a crystal would possess several characteristic frequencies and that
the expression for its specific heat would involve a summation over them all.
In the particular case of diamond, the (24 p—3) frequencies indicated by the
present theory are reduced from 45 to 9 in number by reason of the cubic
symmetry of the crystal. One of these 9 frequencies represents the triply
degenerate oscillation of the two lattices of carbon atoms against each other,
while the other eight represent either the longitudinal or the transverse oscilla-
tions of the layers of carbon atoms in the cubic and octahedral planes of the
crystal. In numerous papers published in these Proceedings in recent years,
it has been shown that all these nine frequencies can be ascertained by
spectroscopic observation and that the specific heat of diamond can be
successfully evaluated with the aid of the data thus obtained.

But the case of diamond does not stand alone in this respect. In recent
years, the spectroscopic behaviour of numerous crystals have been studied
by diverse methods, e.g., the scattering of light, absorption in the visible,
ultra-violet and infra-red regions of the spectrum, and in particular cases,
also their luminescence. The whole of the evidence which has thus come
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to hand indicates that, the vibration spectrum of a crystal consists of a dis-
crete set of monochromatic frequencies and that where there is any departure
from FhlS state of affairs, an adequate explanation is forthcoming.

7. X-RaY DIFFRACTION IN CRYSTALS

That the atomic vibrations in crystals appear with precisely defined
frequencies and with modes bearing a precise geometric relationship to the
architecture of the crystal has a most important bearing on the subject of
the diffraction of X-rays by crystals. Here again, a particularly striking
illustration is furnished by the case of diamond. 'When a plate of this crystal
is traversed by a narrow pencil of X-rays and the resulting Laue pattern is
recorded on a photographic plate, it is found that in addition to the usual
Laue spots, other sets of sharply defined spots appear on the plate, corres-
ponding to each of the monochromatic components in the incident X-radia-
tion. This phenomenon which was discovered in the year 1940 by
Dr. Nilakantan and the present writer using octahedral cleavage plates of
diamond has since been thoroughly re-investigated at this Institute by
Mr. Jayaraman and the writer. The results are found to be in complete
accord with the hypothesis that the incident X-radiation excites the triply’
degenerate oscillation of the two lattices of carbon atoms in the crystal against
each other. These movements occur along the directions of the three
cubic axes and as a consequence, all the lattice planes of the crystal are dis-
turbed, giving rtise to dynamic X-ray reflections by them. Three sharply-
defined spots corresponding to each monochromatic component in the
incident X-ray beam are demanded by the theory for the dynamic reflections
by each of the (111) planes of the crystal, since these planes are equally
inclined to the cubic axes. These reflections are actually observed in the
directions indicated by the theory with suitable settings of the crystal. Other
sets of lattice planes in the crystal also give dynamic reflections in the direc-
tions demanded by the theory, but since such planes are unequally inclined
to the three cubic axes which are the directions of movement of the atoms
in the excited oscillations, they are not all equally conspicuous.

Here again the case of diamond does not stand by itself, since analogous
phenomena are also exhibited by other crystals. But it is not necessary
here to enter into the details of these cases.

8. SuUMMARY

les of thermodynamics and of the quantum theory indicate

The princip!
that the thermal energy in a crystal is identifiable with the energy of an
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immense number of atomic oscillators which have their frequencies of vibra-
tion in common but are in different states of excitation. Dynamical
investigation of the problem shows that if the crystal contains P interpene-
trating Bravais lattices of atoms, there are (24 p—3) frequencies of vibration
common to all the oscillators. An investigation of the propagation of waves
in crystal lattices shows that the results of the classical theory of elasticity
are valid only in the limiting case of very low frequencies and proves further
that the group velocity of the waves vanishes for (24 p—3) frequencies which
may accordingly be identified as the characteristic frequencies of atomic
vibration in the crystal. Since there is no wave-propagation in the real or
physical sense except in the very lowest range of frequencies, the identifica-
tion of the thermal energy with the energy of waves traversing the crystal
in all directions and having frequencies all different from one another which
forms the basis of the specific heat theory of Debye and of Born’s lattice
dynamics ceases to be justifiable. Other aspects of these latter theories
are also examined and it is shown that the assumptions which they involve
are untenable and that in consequence the theories have no claim to validity.
The experimental results which confirm that the atomic oscillators have

specific frequencies in common and modes of vibration specifically related
to the crystal structure are briefly set out.
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APPENDIX

We shall consider the most general case of a crystal whose structure
includes p interpenetrating Bravais lattices, all: of which are geometrically
similar and similarly situated in the crystal arrangement. An unit cell of
the crystal will therefore contain p atoms whose masses we shall denote by
My, Myye .. Mp.

Since a crystal is triply periodic in space, any unit cell can be reached
from any other cell of the crystal by the application of three primitive
translations or integral multiples of them. We denote the three primitive
translations by the three vectors d;, d; and d,. In the same way, we denote
the three primitive vectors of the reciprocal lattice by by, b, and b,. In what
follows, the symbols s and o will be used to denote particular cells in the
crystal structure while r and p will indicate particular atoms in the unit cell;
X,Y,Z are three mutually perpendicular directions chosen as the co-
ordinate axes along which the displacements of the atoms from their equi-
librium positions are resolved. We represent the displacement-components
of any atom, say the rth atom in the sth cell, by means of the symbols
Gzrs» Qyrs: zrs- We can now write the equations of motion of the atoms
in the sth cell and they take the form

- x=XY,2Z
_.mrqxrsr—-yg k'g:fqypd r=1,2, ----P) (1)

The force constant k?2¢ occurring in (1) expresses the proportionality
existing between the x-component of the force acting on the atom (7, s) to
the displacement in the y-direction of the atom (p, o) which gives rise to this

force.

Since the crystal is composed of p different Bravais lattices of atoms,
we can reasonably expect a wave of a given wavelength and frequency to
be propagated with different amplitudes inside the p different lattices. To
solve the set of equations (1), we therefore assume solutions of the form

qrrs = A eitwt—a.S) (x =X, Y, Z )
. 2)
2x (
= Agr E_:\: (1—es) r=12,....p

which are plane waves of wavelength A and circular frequency w propagating

in the direction of the vector e of the crystal. If we resolve the wave-vector

a along the three axes of the reciprocal lattice and write a = 6;b, + 6,by

—++ 6;by then the equations (2) can alternatively be written as

Gors = A;x:'r ei(wt—-slal—sler&es) (21)
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where sy, 5, and s; are the components of s along the three Bravais axes of
the crystal. Substituting the equations (2) in (1), we obtain

ars Lid.o— X = X, Y, V4
Mres® Acer = %',Ayf’ (Z',' kipo €477) (r =1,2,....p @)
Equations (3) are_.a set of 3 p equations in the 3 p amplitudes Az, Ay,
A, Age,. ... Az of the waves. By eliminating the amplitudes from these
homogeneous equations, we can obtain a determinental equation containing
3 p rows and 3 p columns whose elements are the coefficients of the various

Ays’s in the equations (3). By expanding this determinant, we can rewrite
this equation in the form

Sowsp + Slwsp_2+ ...... + S3p = 0 (4)

in which sy, 5y, ....55p are functions of the coefficients of the amplitudes

in the equations (3), and hence are also functions of the wave-vector of the
waves. The roots of the equations (4) are consequently functions of the
wavelengths of the waves, in other words, the waves are dispersive. Since
an algebraic equation of degree 3 p has 3 p roots, for each value of a we
obtain 3 p permissible values for « which are the roots of (4). Thus there
are 3 p waves of a given wavelength moving in any direction of the crystal.

'We shail now consider any one of the 3 p roots of the equation (4). If

this is denoted by w2, then wy? expressed as a function of the wave-vector a
has the following properties:

(i) wi?1is a periodic function of 8,, 8, and 6, with periods 2 = for each
one of these variables;

(i) wg?is a real function of 8,, 8, and 0;;
(iii) wy? is an even function of the wave-vector a (i.e.), wi? (a)=wg? (—a).

Condition (i) follows from the fact that the coefficients of the ampli-
tudes in (3) are of the form

2 k07 exp. ia.(c — s) or
< )

Z k7 exp. i(oy — 5105 + 05 — 520 + 05 — 5505
F

and hence are periodicifunctions of 8,, 8, and 6, with periods 2 for each
of thex.‘n. The frequencies of the waves which are functions only of these
coeflicients are therefore also periodic functions of 0y, 0, and 4@,.

(?o'nditif).n (i) can easily be understood from physical considerations.
Condition (iii) follows from the fact that the frequency of a wave of given
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wavelength and amplitude should be the same both for waves travelling in
one and the opposite directions. Alternatively, these two conditions are
consequences of the hermitian property of the coefficients of the amplitudes
of the waves in the right-hand side of the equations (3).

Since w2 is a periodic function of 6;, 6, and 6, we can express it as a
three-dimensional Fourier-series in the form

+oo .
wkz — 2 2 2 An,n,'n, e'L(')'l191+mar+TlsGa) (5)

ny, B2, B3I= —
where the summation extends over all integral values of n,, n, and ny from
— oo to + co.
If we use a single symbol n to denote the triplet (72,715 n;) we can rewrite
(5) also in the form

o= 2% A, el 6)

Since wi? is real, the coefficients of eitmgnaganess) gng —Hnigrtnagzinegs)
in (5) should be complex conjugates. Hence we have

Apn=2A_q )

Now by writing — a for a in (6), we get
w? (— ) = I Ap eion ®)

Since from condition (iii), wx?® (— 8) = w? (a) we see by a comparison
of (6) and (8) that
A=A, )
Combining (7) and (9) we get

Ap=A = A, (10)
or A, is real.

We can therefore rewrite (5) as

wi? = Agoo + 2 & An,n.n, COS (11,6, + gy + n565)

= Ago + 22 Ancos an an

where the summation now is over all lattice points on and above any one
of the lattice planes @, =0 or dy = Oor d=0.
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‘We shall assume that the series obtained by differentiating term by term
the sum on the right-hand side of (11) converges uniformly for all values of
6, 8; and o, in the interval (0, 2m). Then, we have

2wr %‘% = — 23 Apensin an (12)

Now, when 6,, 0, and 6, each takes one of the values O or =, sin a.n
(i.e.) sin (mB, + n,0, + n,0;) is equal to zero. Hence if

wi 7= 0 (13)
for these values of 6,, 8, and f;, we find from (12) that

%9—7‘ =0 whenever 6, =0orm;
a
0, =0ormx;
9, = 0 or = (14)

When 8, =0; 6,=0; 8;=0, it can be proved that three of the roots
of (4) will become zero and hence the condition (13) is not satisfied. These
are the limiting cases of elastic vibrations of long wavelength in the crystal
and for them, since wy, -0 as a =0

we _ dwg g
L =T (k= 1,2,9),
and therefore the group and wave velocities become identical with the velo-
cities of propagation of the elastic vibrations in the crystal lattice.

The eight set of cases considered above now yield a total number of
24 p frequencies. Leaving out of these the three degrees of freedom per-
taining to pure translations and for which, as we have seen, the group velocity
is non-zero being equal to its wave velocity, we get (24 p —3) frequencies for
which the group velocity of the waves vanishes. The modes associated with
these frequencies now possess a simple geometric description. By substi-
tuting the values of O or = for 6,, 6, and 65 in (2'), it can easily be seen that in
all the (24 p—3) cases referred to above, equivalent atoms in adjacent cells
vibrate with the same amplitude and with the same or opposite phases along
one, two or all three of the Bravais axes of the crystal. Since the group
velocity is zero, any disturbance with these frequencies remains centred in
the region of its origin. Further, the phase relationships for these (24 p—3)

modes are exactly the same as those demanded for the normal vibrations of
a connected system of particles.
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§ 1. INTRODUCTION

THE mineral iolite available in South India shows a very pronounced pleo-
chroism: certain specimens of this material appear practically colourless
and transparent in certain orientations, but show an intense blue colour in
certain others. Accordingly, a plate cut normal to one of the two optic axes
of this orthorhombic mineral was found very suitable for qualitatively veri-
fying some of the rather unexpected results regarding the properties of the
singular axes in absorbing crystals that had been derived in the theoretical
treatment of PartI. As the plate also exhibited in a striking manner the
other well-known phenomena characteristic of absorbing biaxial crystals,
it was thought worthwhile to publish illustrations of these phenomena (to-
gether with a qualitative verification of some of the more detailed aspects-
of the theory that had hitherto not been convincingly demonstrated). Broadly
speaking, sections 2-4 do not cover original ground, and the phenomena
they deal with are also explained, for example, in Pockels’ Lehrbuch.t

1n Part I of this paper? it was shown that the optical bebaviour of absorb-
ing crystals not possessing optical activity could be reparded as due to the
effects of linear birefringence and linear dichroism superposed continuously
along the depth of the medium.* The peculiar features in biaxial crystals
arise because here the principal planes for the usual operation of birefrin-
gence do not coincide with those for the operation of dichroism. In spite
of the simplification which such a method of consideration represents over
the more rigorous electromagnetic theory, the features of propagation in an
absorbing biaxial medium are still somewhat complex. Therefore, in ex-
plaining the experimental phenomena involved we shall start by assuming
the elementary theory of Mallard; and we shall broadly indicate in §§ 2-4,
how the experimental results themselves point out the need for a more refined

* See Notc at the end of the paper for references (o some eariier work.?
235
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theory, as well as to some of the resuits of such a theory. (The theoretical
treatment in many standard texts*7 finally amount in practice to the assump-
tions of Mallard’s theory—except for a slight change in the form of the ab-
sorption ellipsoid which may be neglected for directions near an optic axis.)

The photographs (Figs. 2-15) illustrated in this paper were all taken
with sodium light illumination in convergent light; the simplest method of
observing the phenomena which they reproduce is by holding the plate close
to the eye and looking towards an extended source of light through the plate
—there being arrangements for introducing auxiliary appliances (such as
polaroids and quarter-wave plates) both in front of and behind the crystal.
Each point in the convergent light figure obviously corresponds to a definite
direction of propagation: 1o visualise this we may represent all directions
as passing through the centre of a sphere and defined by their intersection with
the spherical surface. The region surrounding an optic axis may then be
approximated by a plane (the plane of the paper in Fig. 1), the central point
O in the convergent light figure corresponding to the optic axis, and the
horizontal line Xj; Xi' to the axial plane. (Since the axial angle is not small,
the second opiic axis does not appear in the figure.)

§2. PROPERTY OF THE OPTIC AXES IN ABSORBING CRYSTALS -

When a plate of an absorbing biaxial crystal cut normal to an optic axis
is examined in convergent light between crossed polaroids, the optic axial
direction does not in general appear extinguished (as in transparent crystals)
but shows two extinction positions as the crossed polaroids are rotated
round together—its behaviour in this respect being similar to that of a non-
axial direction in a transparent specimen. In the case of an orthorhombic
crystal, these cxtinction positions occur when the vibration-direction of the
polariser lies either along or perpendicular to the axial plane; the appearance
_of the figure which is the same in both cases, is given in Fig. 2, the dark iso-
gyre lying along the axial plane as in transparent crystals. On the other
hand Fig. 3 shows that for an intermediate position where the vibration-direc-
tions of the crossed polaroids make angles of 45° with the axial plane, the
optic axial direction is not extinguished by a vertical isogyre.

Along the optic axis, therefore, two linearly polarised vibrations are
propagated. If we take the elliptic section of the absorption ellipsoid normal
to the optic axis, these two waves are linearly polarised along the principal
radii of this section—which lie parallel to OXj, and OYy in the case of the
orthorhombic crystal iolite. The characteristic feature distinguishing these
two waves is not any difference in their refractive indices, but the fact that
they have different coefficients of extinction k; and k,, where 1/+/k, and
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1/4/k, are th.e principal radii of the absorption ellipsoid lying along OXj, and
OY, respectively; the absorption for the vertical vibration-direction is much
 greater than that for the horizontal vibration-direction in the case of iolite

The existence of dichroism along the optic axial direction is sometires® ®
expressed by the statement that the absorption of a wave travelling along
an optic axis depends on its plane of polarisation. This statement is how-
ever somewhat misleading for if a wave incident in the direction of an optic
axis has its vibration-direction inclined at an arbitrary angle to the axial
plane, the disturbance is not propagated with a single specific coefficient of
absorption; on the other hand, it is split up into two waves with different
coeficients of absorption polarised along and perpendicular to the axial
plane, and the vibration-direction of the wave emerging from the plate will
not be the same as that of the incident wave but would have turned towards
the less absorbed component—towards the axial plane in the case of iolite.
This is the reason why the optic axial direction does not in general appear
extinguished between crossed polaroids. According to this explanation
the optic axial direction can be extinguished by rotating the analyser away
from the crossed position, and this has been done in Fig. 4. The extinction
would not have been complete if there had been any (sensible) difference in
the refractive indices of the waves.

An estimate of the dichroism along the axial direction will be use fu
later, and this can be made if, in Fig. 4, the inclinations ¢ and ¢ that thel
incident and emergent vibrations, make with the axial plane are known-
-These angles were estimated to be roughly (90° — 124°) and 121° respectively.
From equation (I) of Part 1 we then get kz = 3 approximately, where k is
the difference in the coefficients of absorption and z the thickness.

[The azimuths of the polariser and analyser had not been directly noted
during the experiment. Hence i and ¢’ were indirectly determined by noting
that the two diameters along which the ring system is absent in Fig. 4, are
inclined at roughly 25° to the axial plane. We then use the fact that these
diameters represent directions where one of the principal planes of refrac-
tion coincide with the vibration-direction either of the polariser or of the
analyser. (Since the diameters where this occurs are not highly inclined to
the axial plane, the waves here may be regarded as linearly polarised.)]

§3. BREWSIER’S BRUSHES

With neither polariser or analyser introduced, the convergent light
figure reveals the two dark Brewster’s absorption brushes which appear in
the plane perpendicular to the axial plane (Fig. 5).
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The broad features of this phenomena are explicable on Mallard’s theory,
In Fig. 1 in the text, each double-headed arrow at the border gives the vibra-
tion-direction of the faster wave for all points on the corresponding radius

Y,

Yie

Fic. 1
X Xi' = axial plane; O = optic axis; C,, C, = singular axes.

of the field of view (assuming Mallard’s theory). Now the absorption co-
efficients for the two vibrations propagated in any direction are determined
by the intercepts that these vibrations make on an absorption ellipsoid ; and
though the orientations of these vibrations remain constant along any one

diameter, they turn round rapidly with the diameter—giving rise to the
Brewster’s brushes.

The elliptical section of the absorption ellipsoid made by the plane of
the paper in Fig. 1, may also be faken as the section normal to any direction
of propagation in the small angular range covered by the convergent light
figure. The mean of the two absorption coefficients may then be con-
sidered a constant for all directions in the angular range under consideration.
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(On Mallard’s theory this follows from a property of any two perpendicular
radii of an ellipse, and in the more exact theory by the equations 15 of Part I.)
Under this condition it may be easily shown that the sum of the intensities
of the two waves emerging from the plate will be minimum along those direc-
tions where the two waves (into which the incident unpolarised light is split)
are absorbed equally strongly; and that the sum of the intensities of these
waves will be maximum along directions where the two waves differ in their
absorption coefficients to the maximum extent.

Now the dichroism will be greatest where the waves are linearly
polarised along the principal planes of absorption OXj and OY—a situation
which occurs for directions along the axial plane in the case of an ortho-
rhombic crystal like iolite. For directions in the perpendicular plane Y Y’
the principal planes of refraction are inclined at 45° to the principal planes
of absorption; hence the dichroism should be zero for all points on YrY%'
(the optic axial direction O being excepted in the case of Mallard’s theory,
the small strip C,C. being excepted according to the exact theory). This
explains the occurrence of the Brewster’s brushes in the plane perpendicular

to, the axial plane.
§4. PHENOMENA NoT EXPLICABLE ON THE ELEMENTARY THEORY

(@) The elliptical polarisation of the waves—Referring to Fig. 3, we note
that when the plate is viewed between crossed polaroids set in the diagonal
position it is not the optic axial direction alone that remains unextinguished ;
the region of non-extinction extends over a finite vertical strip passing through
the optic axis, and, in fact, the extinction along the vertical ¢ isogyre > becomes
perfect only at the boundary of the figure.

An important inference may be drawn from this phenomenon. Along
the optic axial direction (where the birefringepce- is zero) the two waves
propagated are linearly polarised along the prmp:pal planes of at_asorpn.on
(i.e., along the principal radii of the normal section .of th.e absorptjon ellip-
soid); for directions appreciably inclined to the optic axis '(where the bire-
fringence becomes notable) the waves may be regarded as linearly polarised
along the principal planes of refraction. But the transition between these
two extreme stages (i.e., from waves polarised along the principal planes of
absorption to waves polarised along the principal planes of refraction) occurs
in some continuous fashion—not discontinuously, as soon as the optic axial
direction is departed from, as is required by Mallard’s theory. This is also
to be expected on the simple ground that the phenomena that are physically
observable along the optic axial direction are not really explained by postulat-
ing a discontinuous property for the exact axial direction, since we are
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always concerned with pencils of finite (even if small) convergence. For
directions along the axial plane the principal planes of refraction and absorp-
tion coincide so that the horizontal isogyre in Fig. 2 is dark and continuous.

Further, those points in the immediate vicinity of the optic axis 0,
which lie along the vertical line Y, Yy', cannot be extinguished even on rotat-
ing the crossed polaroids together, away from the diagonal setting—which
means that the waves here must be elliptically polarised. This property
resembles that of transparent optically active birefringent crystals where
two extinction positions cannot be obtained between crossed polaroids.

(b) Phenomena with polariser or analyser alone.—For any direction
along the axial plane the two waves are polarised along and perpendicular
to the axial plane; the two waves have respectively thé least and greatest
absorption coefficients of all the waves travelling along any direction in the
field of view. Hence if a polariser be set with its vibration-direction per-
pendicular to the axial plane, a dark brush appears along the axial plane,
as in Fig. 9; while if it is set along the axial plane, a white brush appears
in the same position as in Fig. 6. These two photographs incidentally
demonstrate the existence of pleochroism along the axial direction.

The most interesting feature about Figs. 6 and 9, is, however, the ‘
occurrence of the idiophanic interference rings, which appear conspicuous
in the plane perpendicular to the axial plane. As the polariser is turned
from its position along the axial plane in Fig. 6 to that perpendicular to
the axial plane in Fig. 9, the figure changes in a manner which appears to
depend on the absorption of the specimen. In the present case, the diameter
along which the rings are most coanspicuous first turns with the polariser
(Fig. 7); mnext a dark brush gets detached from this diameter and turns
round towards the axial plane, while the ring system again turns back towards
a position perpendicular to the axial plane (Fig. 8).

The occurrence of idiophanic interference rings cannot be expected
if the states of polarisation propagated along any general direction are two
orthogonal linear vibrations (as assumed in Mallard’s theory), or alternatively
two orthogonal elliptic vibrations—as occurs in transparent optically active
crystals. For even when two such beams are completely coherent (a condi-
tion automatically ensured by polarising the incident light), they will be
incapable of interference with one another—unless brought to the same
state of vibration by the use of a suitable analyser. The two vibrations
propagated along any general direction may therefore be assumed to be two
non-orthogonal elliptic vibrations, propagated with different velocities and
absorption coefficients. (Two elliptic vibrations having their major axes
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crossed and their cllipticitics equal, and which arc described in opposite
senses are said to be orthogonal; any two vibrations not satisfying this
condition are non-orthogonal.)

Figure 10 shows the photograph obtained by lising an analyser alone,
set in the same position as the polariser in Fig. 8, the exposures in the two
cases being identical. The two photographs appear identical. Tt is possibie
to deduce from this that the non-orthogonal vibrations propagated along
any general direction must be of the form of two similarly rotating elliptic
vibrations having their major axes crossed and their ellipticities equal. If
the non-orthogonal vibrations were of other forms (as for example, two
linear vibrations inclined at an angle different from 90°) the observed identity
of the effects obtained with a polariser alone and an analyser alone could

not, in general, be expected. ¥

Along the axial plane XXk, the principal planes of refraction and
absorption are coincident, so that the vibrations for directions of propagation
in this plane are linear and orthogonal, as indicated in Fig. 1. This explains
the absence of the idiophanic rings along the axial plane in Figs. 6-9.

As we proceed outwards from the optic axis along the radius OYy,
the change in the states of polarisation of the two waves may be easily
followed on the Poincaré sphere by applying the principle of superposition

developed in Part I. For these directions the principal planes of refraction

and absorption have their maximum mutual inclination of 45°, and effects

connected with the ellipticity may be expected to be most pronounced.
Referring to Fig. 3 in Part 1 of this paper, as the linear birefringence increases
from zero, the two states of polarisation (initially coincident with the
principal planes of absorption Xz and Yi respectively) will move downwards
along the arcs X Cr and Y .Cr respectively till both states become coincident
with the pole C, when the linear birefringence 5 becomes equal to the linear
dichroism k; as the birefringence further increases, the two states again
become distinct and move upwards along the meridians of longitude CrXr
and C/Yr respectively.

Physically this means that as we proceed outwards along the radius OYg,
the two vibrations (initially polarised along the principal planes of absqrp-
tion) open out into two right elliptic vibrations which become tw.'o .identxcal
circular vibrations at C,; further on these split up into two elliptic vibra-
tions with major axes along the principal planes of refraction, these elliptic
vibrations tending to the form of two orthogonal linear vibrations at the

- .
aved in a later paper dealing with absorbing crystals which are also optically

4 This will be pr d r
active, where the effects obtained with polariser and analyser ars different.
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border of the field of view. For directions on the other side of the axial
plane the vibrations are left-elliptic. The velocities of the waves are equal
for all directions lying within the small vertical strip C,C, (as may be seen
by setting 2¢ = =/2 in Equation 14, Part I). But for all other directions
in the vertical plane YrY', the absorption coefficients of the waves are equal,

the velocities being, in general, different (as may be seen by setting 2 = «/2
in Equation 15, Part I).

For any given angular distance from the axial direction, the ellipticity
of the waves (and hence their departure from orthogonality) is maximum
for directions lying in the vertical plane Y¢Y:'. Consequently the idiophanic
rings may be expected to be most prominently seen, if the polariser is adjusted
such that the ring system lies perpendicular to the axial plane as in Figs. 6
and 9. (This effectsdoes not appear to be very pronounced.) The considera-
tions of the previous paragraph show that the rings will appear in the vertical
plane when the polariser is set along or perpendicular to the axial plane;
for the two waves propagated along any direction in the vertical plane Y Yy’
(excluding the small strip C,C;) will then have equal amplitudes and will
consequently be capable of showing the maximum interference effects.

(The result of this paragraph has been proved by means of a more exact
mathematical treatment in Pockels.)

(¢) Interference effects in Brewster's brushes.—Figure 5 shows distinct
traces of periodic maxima and minima in the Brewster's brushes, in the
region near the optic axis. The occurrence of such interference effects may
be broadly expected on the following grounds. 'When unpolarised light is
split into two orthogonally polarised vibrations, these vibrations will be
completely incoherent; but when the incident unpolarised light is being
split into two non-orthogonally polarised vibrations, as in the present case,
the two vibrations must necessarily be considered as partially coherent—
for if they were incoherent it can be shown that the resultant beam would be
partially polarised and not unpolarised (see e.g., reference 8). Since the
beams are partially coherent (to an extent which depends on their departure
from orthogonality), they will be capable of restricted interference with one
another (to an extent which depends again on their departure from ortho-
gonality). The interference effects are therefore very feeble, being noticeable
only in the immediate vicinity of the singular axes—unlike the idiophanic
rings which are fairly prominent because complete coherence of the beams
is ensured by polarising the incident light. It can be shownf that the maxima

t This will be shown incidentally in a later paper dealing with absorbing crystals possessmg
optical activity.
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and minima in the Brewster's brushes must occur in the same position as
those in the idiophanic rings obtained by setting the polariser along the
axial plane, and this is verified by comparison with Fig. 6.

The explanation of the Brewster’s brushes given in §2 is however still
applicable. For though the intensity emerging along any direction is not
merely equal to the sum of the intensities of the two waves emerging in that
direction (because of an additional term expressing their interference), it is
this sum that broadly locates the position of the brushes.

From the standpoint of the method of superposition we may also regard
the interference effects as arising because the crystal itself acts both as pola-
riser and analyser—and a similar explanation could also be given for the
idiophanic rings. -
§5. THE SINGULAR AXES

(@) Examination between circular polariser and crossed circular ana-
Iyser.—The point C, represents a direction where only a right-circular vibra-
tion can be propagated unchanged; while the point C, represents a direction
where only a left-circular vibration can be propagated without change of
form. These two directions are termed the Windungsachen or singular
axes. We shall now give a direct confirmation of the existence of these
axes; the only previous experimental work dealing directly with the property
of these axes was, as we shall see, not interpreted in a correct manner.

In front of the crystal plate is kept a °left-circular polariser’ (i.e., an
arrangement which transmits left-circularly polarised light when unpolarised
light is incident on it). Behind the crystal is kept a ‘ right-circular analyser ’
(i.e., an arrangement which completely cuts off left-circularly polarised light).
Under such conditions a transparent crystal will show a system of circular
rings with a black spot at the optic axis, where the incident circularly pola-
rised light can be propagated unchanged. In the present case the dark
spot occurs slightly to one side of the optic axis (Fig. 11), corresponding to
the direction of the lower singular axis C,. (This is seen better in Fig. 16,
which was taken with another plate of iolite having less total absorption.)
When the crystal plate is viewed between a right-circular polariser and a
crossed circular analyser, the other singular axis C; appears extinguished
(Fig. 12). The angle between the singular axes is seen to be very small,
and has been exaggerated in Fig. 1.

(A quarter-wave plate preceded by a polaroid at 45° to the principal
planes, together constitute a convenient circular polariser; a quarter-wave
plate followed by a polaroid at 45° to the principal planes, similarly constitute

a circular analyser.)
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In Part I, Section 4 ¢, it was shown that the vibrations propagated in
any direction are right- or left-elliptic according as the principal plane of
refractfon OX, (corresponding to the slower wave, in the absence of absorp-
tion) makes a negative or positive acute angle with the principal plane of
absorption OXp (corresponding to the less absorbed component in the
absence of birefringence). Accordingly in Fig. 1, the sense of description
of the elliptic vibrations are correct only if we assume that the arrows at
the border give the faster vibration-direction (for all points on the corres-
ponding radius) in the absence of absorption. That this assumption was
indeed correct, was verified by using the fact that at the border of the field
of view the refractive indices and states of polarisation are substantially the
same as in the absence of absorption. The polariser and analyser were
set along and perpendicular to the axial plane respectively, as in Fig. 2,
and a quarter-wave plate was introduced immediately behind the crystal
plate with its slow vibration-direction making an angle of -+ 45° with respect
to OXg. The rings along OY; moved outwards indicating a diminution
of the phase retardation for such directions, while those appearing on the
line OYy' moved towards the centre. This confirmed that the right- and
left-circular singular axes occur respectively on the sides of the axial plane
that are to be expected according to theory.

§6. ErrEcts WitH INCIDENT CIRCULARLY POLARISED LIGHT

When the incident light is circularly polarised it is propagated without
change of form along one of the singular axes. In Part I it was shown that
for the direction corresponding to the other singular axis; the emergent
intensity will not be either zero or negligible (as had been thought by Voigt?),
but should in fact be greater than the intensity emerging in the direction of
the first singular axis. This was confirmed in the following manner. When
examined between a left-circular polariser and a crossed circular analyser,
we have seen that the singular axis C, where the incident vibration is propa-
gated without change of form appears as a dark spot (Fig. 11). If now the
circular analyser is removed, the same singular axis appears darker than the

other singular axis (which appears within a bright spot), as may be seen in
Fig. 13.

Similarly Fig. 14 shows the appearance presented when the incident
light is right-circularly polarised. It will be seen by comparison with Fig. 12,
that the upper singular axis C, where the incident vibration is propagated
without change of form appears the darker of the two. Along the other
singular axis C, the state of vibration alters progressively along the depth
of the medium, according to the theoretical analysis of Part I. The emergent
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v1:bration in this direction will be ellipticaily polarised, the majorfaxis of the
vibration lying along OXy (which is the principal plane corresgonding to
the less absorbed component). Hence if a quarter-wave plate is Miroduced
behind the crystal plate with its principal planes along OXj and OYy, the
elliptic vibration emerging in the direction of the lower singular axis C,
will be reduced to a linear vibration at an angle ¢ to the axial plane—where
tan # is the ratio of the minor to the major axis of the elliptic vibration.
Thus by introducing a polaroid behind the quarter-wave plate it should
be possible to extinguish the singular axis C,. To verify this, the point
C, was marked with an ink spot on the ground glass of the camera,
after having determined its exact location by the position of the black
spot in the arrangement of Fig. 11. By rotating the polaroid it was found
that a point of extinction lying on the vertical line Yy Yj' conld be taken
continuously through the singular axis C, (see next paragraph). Figure 15
shows the photograph taken when C, has been extinguished in this
manner. The angle § was roughly estimated at 25°; this is roughly the
magnitude to be expected since from Equation 18 of Part I we should
have: tan (m/4 + 6) = kz, where kz has already been estimated to have

a value near 3 (refer §2).

More generally (with the incident vibration right circularly polarized,
as before) the elliptic vibration emerging along any direction on the vertical
plane Yi Yy will have its principal axes along OXy and OYy. This is a
consequence of the fact that for any such direction the principal planes of
refraction and absorption are inclined at 45° to one another—the corres-
ponding diameters X,Yr and XxYy on the Poincaré sphere being at right
angles to one another as in Fig. 3 of Part I; in that figure, if C; represents
the incident vibration, the movements ds, and dsy will always lie along the
. same line-element, so that the emergent vibration will necessarily be repre-

sented by some point on the arc C;X3C;Cr. Hence if a quarter-wave plate
is introduced with its principal planes along OXj, and OYy (as described in
the last paragraph) the vibrations emerging along all the directions in the
vertical plane YrYy' will be reduced to linear vibrations (with various azi-
muths of polarisation). The polaroid behind this quarter-wave plate was
" et at 45° to the principal planes in such a position that the upper singular
axis C, where the incident vibration is propagated unchanged appeared
extinguished. By rotating the polaroid away from this position in the
proper direction, the point of extinction could be moved continuously

downwards through the lower singular axis Cs.
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$7. Ex},MINATION BETWEEN ELLIPTIC POLARISER AND CROSSED ELLIPTIC
ANALYSER

It would be desirable to confirm that the principal axes of the two
elliptic vibrations propagated without change of form along any direction,
do not (in general) coincide with the principal planes of refraction—for even
the behaviour of the idiophanic rings can be sufficiently well explained with-
out taking this factor into account (see Pockels). We shall describe an
experiment confirming this for directions represented by the points on C.C,,
where the principal axes of the elliptic vibrations should lie parallel to QX

and OYy whereas the principal planes of refraction are inclined at 45° to
these directions.

The arrangement used was that described by Ramachandran and
- Chandrasekharan® in another connection. The crystal was kept between
crossed polaroids which could be rotated around together. A quarter-
wave plate was set immediately behind the first polaroid, with its principal
planes along OXj and OYy; another quarter-wave plate was set immediately
in front of the second polaroid with its principal planes turned by 90° with
respect to the first quarter-wave plate. If the crystal plate were absent,
then obviously the elliptically polarised light produced by the arrangement
in front would be automatically cut out completely by the arrangement behind,
independent of the setting of the ganged polaroids. In the presence of the
crystal plate, any direction where the incident elliptic vibration is propagated
without change of form will appear extinguished. (The principal axes of
the incident elliptic vibration will always lie along OXj and O0Yx.)

Starting with the polariser set along the axial plane, the optic axial
direction O appears extinguished as in Fig. 2. As the ganged polaroids are
rotated away from this setting in the proper direction, the point of extinction
on the line Y Yy’ moves upwards from O till it reaches the singular axis

~ €1 (polaroid at 45° to principal planes of /4 plate). As the ganged polaroids
are rotated still further the point of extinction retraces its path, moving from
C, back to O (polariser set perpendicular to axial plane). Further rotation
through 90° causes the extinction to move upto C,; and back to O.

The above experiment provides a direct confirmation of the theoretical
result that the two elliptic vibrations propagated along these directions have
their major axes crossed, have the same ellipticity and are described in the
same sense. It also shows that the two elliptic vibrations gradually degene-
rate into two (identical) circular vibrations as the singular axis is approached.

The author is very grateful to Prof. Sir C. V. Raman for his keen interest
in this investigation.
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§8. SUMMARY

The phenomena shown in convergent light by a section pla§ of iolite
cut nmormal to an optic axis are discussed and illustrated. Of Rarticular
interest among the photographs reproduced are those taken (a) between
circular polariser and crossed circular analyser, demonstrating the existence
of the two singular axes (a right-circular vibration alone being propagated
unchanged along one singular axis, and a left-circular vibration alone along
:che other); (b) with a circular polariser alone, confirming the theoretical
prediction in Part I that the singular axis where the incident circular vibration
can be propagated unchanged should appear darker than the other; the
state of the elliptic vibration emerging from the brighter singular axis was
also qualitatively in accord with theory. Examination between elliptic pola-
riser and crossed elliptic analyser demonstrated that along any general direc-
tion in an (optically inactive) absorbing biaxial crystal, two similarly rotating
elliptic vibrations can be propagated unchanged—the major axes being
crossed but not coincident with the principal planes of refraction.
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§10. DescripTivE NOTES ON THE PLATES

All photographs were recorded with a plate of iolite cut normal to an optic axis, the plate
being held normally with the axial plane horizontal. .

Phenomena with polariser and analyser
Fic. 2. Crossed polaroids: vibration directions along and perpendicular to axial plane.

(Optic axis extinguished.)

Fig. 3. Crossed polaroids: vibration directions at 45° to axial plane. (Optic axis not
extinguished.) )

Fic. 4. Non-crossed polaroids: vibration directions equally inclined to axial piane. (Optic

axis oxtinguished.)
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Brewster's br:\ shes and idiophanic rings

Fic. 5. | Brewster's brushes, with neither polariser nor analyser. (Traces of interference
/" rings seen.)
Fias. {", 7, 8 & 9. Idiophani¢ rings with polariser alone at various settings: along the
. axial planc in Fig. 6, perpendicular to the axial planc in Fig. 9, and at two
intermediate orientations in Figs. 7 and 8.

FiG. 10. 1diophanic rings with anaiyser alone, set in the samc position as the polariser
in Fig. 8.

Properties of the singular axes
Fic. 1}, Left-circular polariser and right-ciréular analyser. (Lower singular axis cxiin-
guished.}
FiG. 13. Left-circular polariser alone. (Lower singular axis appears darker than the other.)
Fic. 12, Right-cirgn.;lar polariser and left-circular , analyser. (Upper singular axis extin-
guished.

Fic. 14. Right-circuldr polaiiser alone. (Upper singular axis appears darkcr than the
other.) '

Fic. 15, Right-circular polariser and an elliptic analyser adjusted to cross out the elliptic
. vibiation emerging from lower singular axis.

FiG. 16. Circular polariser and crossed circular analyser. (Photograph taken with a more
lightly coloured platc: lower singular axis extinguished.)

NoTE

In Part I of this paper it was shown that the features of wave-propagation
in absorbing biaxial crystals may be regarded as due to the effects of linear
birefringence and linear dichroism superposed continuously along the depth
of the material; this idea was worked out by a simple geometric method
using the Poincaré sphere (as also by a more lengthy algebraic method).
A series of papers published earlier by Clark Jones® dealing with ¢ A new
calculus for the treatment of optical systems’® has since then come to the
notice of the author; the comprehensive calculus elaborated in the first
half of that series uses the representation of any optical device by 2x2 com-
plex matrix (operating on the electric vector of the incident light). In
Part IV of that series one of the applications that has been made of the
calculus is the derivation of the matrix for a plate of an absorbing crystal by
a ‘method which is physically equivalent to the method of superposition;

the matrix corresponding to an infinitesimal path has been considered in
Past VIL
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THE ELASTICITY OF CRYSTALS*

E materials used in engineering construc-
tion are mostly polycrystalline solids and
their elastic behaviour is of the utmost practical
jmportance. It follows that the subject of the
elasticity of crystals is of more than merely
academic interest. Of recent years the import-
ance of its study has greatly been enhanced by
several circumstances. The experimenter to-
day can in many cases work with synthetically
prepared crystals of large size and good
quality. He has at his disposal several new
techniques enabling him to determine their
elastic behaviour and obtain precise results.
These techniques are mostly based upon the
production of waves or standing oscillations in
the crystal with the aid of piezoelectric oscil-
lators. These latter oscillators are themselves
of importance in technical acoustics and com-
munication engineering. The subject also stands
in the closest relation to the structure of crys-
tals as revealed by X-ray diffraction and
spectroscopic studies. 1t is thus an integral
part of the rapidly developing physics of the
solid state.
2. Tge NoTIONS OF STRESS AND STRAIN
The science of elasticity is based on the
fundamental notions of stress and strain and
—-subject to a restriction on their magnitude—
on the proportionality between them known as
Hooke’s law. The precise definition of stress
and strain is thus a matter of fundamental im-
Such definitions have necessarily to
be comprehensive. They have to cover cases
where their magnitudes vary from point to
point within the crystal and also cases in which
the stresses and strains vary with time as in
the theory of wave-propagation. It ijs essential,
further, that they take account of the elastic
anisotropy which all crystals exhibit, in other
words, the fact that the effect of an impressed
force depends on the direction in which it is
applied.
An important remark which should be made
here is that it is unnecessary to introduce
atomistic considerations in defining stress or
strain. This is obvious since the phenomena
with which we are concerned are open to

portance.
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macroscopic observation. To ‘take account of
the variability of stress and strain with the
location we define these quantities in relation
to a particular point within Yhe solid.  The
legitimacy of this procedure resds upon the fact
that it is possible to imagine the volume of
the substance to be divided into elements of
such small dimensions that each element can
be regarded as a mass particle and yet is large
enough to justify its physical properties being
assumed to be the same as those of the mate-
rial in bulk. We are thereby enabled to specify
the position of any volume element by its three
co-ordinates in space and its state of equilibrium
or of motion in terms of simple forces or
tractions acting on the volume element.
3. Tuee Evastic CONSTANTS

The foregoing remarks are preliminary fo 2
specification of stress and strain which is logi-
cally consistent with the approach made to the
subject. We define stress in terms of the tractive
force assumed to act on an infinitesimal area
drawn through a given point within the solid.
Since this area can be set normal to each of
the three co-ordinate axes in turn and for each ’
such setting the acting force can be resolved
into three components parallel to these axes
respectively, we have nine components of stress.
Likewise, strain is expressed in terms of the
difference in displacements of two neighbour-
ing points within the solid. Since the line
joining these two points can be set parallel to
each of the three co-ordinate axes in turn and
the difference of their displacements in each
case can itself be resolved along each of these
axes in turn, we have nine components to deal
with. The stress-strain relationships of pre-
portionality would in the general case thus
involve 9 X 9 or 81 elastic constants. The well-
known law of reciprocity which enables us to
interchange the directions of force and dis-
placement without change in the constant of
proportionality between them results in the
number 81 being reduced to (94+36) =45
constants in all. Thus, it requires 45 elastic
constants to describe the elastic behaviour of
a triclinic crystal. For crystals of other classes,
the number of independent constants is dimi-
nished by reason of their symmetry proper-
ties, the more so the higher the symmetry of
the crystal. The number of independent elas-
tic constants in each case can be readily work-
ed out using the formule based on group theory
given by Bhagavantam. Table I exhibits the
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situation thus disclosed. The first column
shows the syMmetry class in the usual language
of crystallogr%‘% while column II shows the
subdivisions of tnose classes grouped together
according to their elastic behaviour. The third
column shows the number of independent elas-
tic constants for/ these sub-classes.
[4 TaBLE I

| No. of Elastic
! Constants
Point Group
i Cf?tstal (Schoenfiies o | =
! system notation) = = G
, : 5 i | g
1 il B2
; <] a O
{ ‘Triclinic Al 4 | 36 |2
i i
! Monoclinic .. All i 25 | 20 113
1 I,
|
| Orthorhombic Al 15 | 12 19
| Tetrogonal | Ca S, Cap 13107
| Dy, Cipy Do Dan| 9 7 6
? Trigonal Cq, S5 15 12 § 7
D3, Cip. Dag 10 8 ] 6
{ Hexagonal | Cg, Caz, Csa 11 8 | 5
| De,Coo. Dgp, Dy 8 | 6 5
| Cabic T, Ty [ 51 413
| 0, Tg O3 | 41 313
| b

' §

4. WAVE-PROPAGATION 1N CRYSTALS
Writing down the equations of motion of the
volume of elements of the medium in terms of
the space variations of the stress components
acting upon them, one can investigate the pro-
pagation of waves through the material. It
emerges that in any given direction within the
solid, three types of waves can be propagated,
their velocities being different in each case and
also varying with the direction. The wave
velocity for each of the three types and for any
particular direction of propagation is expressi-
ble as a function of the direction and of certain
linear combinations of the -elastic constants.
The number of these combinations is less than
the number of general elastic constants in each
case. The number can be caleulated from for-
mule based on group theory and is shown in
the fourth column of Table 1.
5. REMARKS ON THE CLASSICAL THEORIES
Cauchy, the celebrated French mathematician
of the 19th century, in his memoir presented
to the Academy of Sciences at Paris in the year
1822 proposed a reduction of the number of
components of stress and strain from 9 to 8
In each case. His arguments will be found re-

produced in numerous text-books and indeed
they form the basis of the mathematical
theory of elasticity as hitherto developed. A
critical examination shows however that those
arguments are not sustainable. In the case of
the strain components, the reduction was sought
to be justified by eliminating movements which
were thought to be rigid body rotations.
Actually the quantities eliminated are differ-

ential rotations of the same nature as those
which appear in the deformation of solids by

torsion or flexure and which are quite as much

a part of the elastic deformations as extensions

and contractions. Hence their elimination is not

justified. The argument on which the reduc-

tion of the number of stress components from

9 to 6 was basad was that the angular momenta

of the tractions acting on a volume element

taken about each of the co-ordinate axes in

turn and summed up should vanish. But since

by definition the stresses are assumed to be in

the nature of tractive forces acting on volume

elements small enough to be regarded as single

mass particles, no consideration of angular

momenta is called for. Indeed, once we accept

the definitions of stress and strain, it becomes

logically imperative to take account of all the

nine components of each.

On the basis of Cauchy’s assumptions the
stress-strain relations of proportionality are
6 X 6 =36 in number and these by application
of the reciprocity relationship reduce to
(64+15) =21 in all for a triclinic crystal
Their number is smaller for the crystals of
higher symmetry classes and is shown in
column 5 of Table I against each of them. The
reduction in number of the stress and strain’
components from 9 to 6 is in effect equi-
valent to assuming that differential rotations
within the solid play no part in the theory of
elasticity and to imposing a corresponding res-
triction on the nature of the acting stresses.
As already remarked, differential rotations play
a fundamental role both in static deformations,
especially in torsion, as also generally in wave
propagation. In other words, the classical theory
is of restricted validity confined to certain types
of static deformation and to particular cases of
wave propagation. Since however it has been
employed to interpret experimental data'in other
cases as well, it is useful to express the 21
constants in terms of the more general 45 con-
stants, thereby enabling the latter to be evaluat-
ed from the existing data of experiment.

6. THE DATA oF EXPERIMENT

‘As will be seen from Table I the simplest

cases of all are crystals belonging to the Td
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and the Oh classes of the cubic system. The
general theory gives four elastic constants
which may be designated as respectively dy;,
ds dyy and dy; while in the classical theory
we have only three constants which have been
designated as C,;, Cyp and C,.  The linear
combinations of the elastic constants which
determine the velocities of wave propagation
are in the former theory dyy, dy, and (dys + dg5)
while in the classical theory they are Cy, Cy
and (C;s+C,y). Likewise, the expressions for
the bulk modulus in the new and the
old theory are respectively (dy; +2d2)/3 and
(Cyy +2Cy)/3. Since the number of elastic
constants of these classes is four, while the
number of linear combinations that can be
determined by dynamic measurements is three,
it follows that at least one additional determi-
nation by static methods is necessary to enable
all the four constants to be evaluated. The
most appropriate of such determinations appears
to be the bulk-modulus of which very precise
measurements have been made by Bridgman
and his collaborators at Harvard. It is neces-
cary of course to correct the isothermal static
value of the constant to obtain the adiabatic
bulk modulus. Many other points have to pe
borne in mind: the bulk modulus reduced to
zerop pressures should be used; both the static
and dynamic determinations have to be reduced
to the same temperature of observation and
finally the nature of the material used in the
two cases has to be comparable.

In Table IT are shown for 16 different
crystals of the Td and Oh classes, the values
of the four elastic constants caleulated in the

manner explained. The three constants of the
older theory are also shown in the table. The
latter are those which appeared,io be the most
reliable values obtained by ¢ ultrasonic tech-
niques, while the former were obtained by
combining them with the value for the adiaba-
tic bulk-modulis. The values of C;; and
d,, are in each case identical;, likewise those
of C,y and dy,. But Cpp and d,, are different
and such difference is a measure of the failure
of the three-constant theory to represent the
actual elastic behaviour of the crystal Tha
difference between d,, and d,; also expresses
the same situation in another way.

Certain general features emerge from the
Table. For all the four alkali halides which are
soluble in water, Cy, is less than d;, and like-
wise dg; is less than dy. This regularity of
behaviour taken in conjunction with the relia-
bility of the data in these cases makes it clear
that these differences are real and justify us
in concluding that the elastic behaviour of
cubic crystals cannot be expressed in terms of
three constants, but needs four. Diamond,
germanium, zine blende and fluorspar also
exhibit a parallel behaviour which is the
reverse of that shown by the four water-
soluble alkali-halides. In their cases, Cp; is®
decidedly greater than d;, while per contra [
is less than d,; and these differences are
npumerically more striking than in the case of
the alkali-halides. Magnesium oxide for
which the data are reliable exhibits a note-
worthy behaviour ; the differences between Cy,
and d,, and likewise between d,, and d,; ars
in the same sense as in the alkali halides

TasLE II
Elastic constents in 101t dymes/cm.?
l
Sabstance ‘ Cyt \ Cyz Cya d11 14 das | des
i
;

L 4877 1-232 1-269 4-877 1.34 | 1-269 1-16
EE(I:I b a.088 0-663 0-628 4-038 0779 | 0-628 0512
KEr 3435 0-56 0-507 3.455 0-655 |  0-507 0-412
Nalr 0387 0-97 0-97 3.87 192 1 097 0.72
LiF 1o 5-38 5-34 1.9 45 | 534 8.95
MO TR 874 15-14 28.76 .27 15-14 12-61
AgCl 605 3.64 0-624 6-05 3.482 | 0024 0-782

“ 3 | o5 %9 | 43 461

i [ ) 39 4 5 . |43 .

g;amond E ?;-88 4-825 6705 12-88 404 | 6705 7.49
"si [ 16-56 6-380 7-953 16-56 .56 | 7853 7-78
7ZnS 10-79 7.92 4.12 ‘ 10.78 617 ' 4-12 5-17
CaF, 166 487 | 38 166 | #29 | 338 416
B 10-56 $-20 2.853 2.953
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Ag ’ 12-4 9-34 4.61 12-4 3-89 ‘ 4-61 5.06
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but f)roportionately much larger. Differences but they are not always in the same sense. This
of the samey order of magnitude but in the is a feature which need not surprise us in view
opposite sense ¢ shown by lithium fluoride. In of the very great differences exhibited by
the case of the rhetals crystallizing in the face- these metals in other respects,

centred cubic system, we also find differences C. V. Raman,
between C,, and d,, and between d, and d,
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THE THERMAL ENERGY OF CRYSTALS*

By
Sir C. V. RaMaN

THE determination of the nature of the
atomic movements which constitute the
thermal agitation in a crystal is a funda-
mental problem in the physics of the solid
state. Its importance will be evident when
it is remarked that even the most familiar
aspects of the thermal behaviour of solids
depend for their explanation on the precise
nature of these movements. The subject also
stands in the closest relationship with the
spectroscopic behaviour of crystals and with
X-ray crystallography, to say nothing of
various other branches of physics.

Since the atomic movements under consi-
deration are of thermal origin and are pre-
sumably in the nature of vibrations about
the atomic positions of equilibrium, the sub-
ject has to be viewed in the light of the
fundamental principles of thermodynamics
and the gquantum theory. However, as in
the parallel problem of the vibration spec-
tra of molecules, we have to seek the aid of
classical mechanics for ascertaining the
modes and frequencies of vibration with
which we are concerned.

9. THERMODYNAMIC CONSIDERATIONS

Every crystal is a three-dimensional
grouping in space of atoms held together by
their mutual interactions ; equivalent atoms
in the crystal are located at the points of
a Bravais lattice, and if the crystal consists
of p interpenetrating Bravais lattices, there
would be p atoms in each unit cell of the
crystal structure. Since the frequencies of
vibration of the atoms are determined by
their masses and by the interatomic forces
which are of limited range, they would

be the same for the group of

necessarily
he struc-

atoms contained in every cell of t
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ture. Hence every crystal may be considered
as an assembly of a great number of oscil-
lators physically similar to each other and
having a set of vibration frequencies in com-
mon, and which since the oscillators can ex-
change energy with each other, constitute a
system in thermodynamic equilibrium. Each
oscillator can for any particular frequency
of vibration assume any of the energy states
permitted by the quantum theory, the prob-
ability of its being present in any one state
being given by Boltzmann’s well-known for-
mula. The energy of the entire assembly of
oscillators can therefore be evaluated by
multiplying the number of oscillators of any
particular frequency by the average energy
of an oscillator of that frequency which is.
calculable from the relative probabilities of
its different energy states, and then sum-
ming up the results for all the frequencies.
The total number of oscillators included in
such a reckoning would be three times the
number of atoms comprising the ecrystal.
This follows from the theorem in classical
mechanics which states that the number of
normal modes of vibration of a connected
system of particles is the same as the number
of degrees of freedom of movement of the
entire system.
3. DyNAMICAL THEORY

The dynamics of atomic vibration in &
crystal may be dealt with from two differ-
ent standpoints which may be designated as
the “molecular” and “molar” points of view
respectively. In the “molecular” approach to
the problem, we fix our attention on a par-
ticular unit cell of the crystal structure and
proceed to write down and solve the 31
equations of motion of the p atoms contain-
ed in it, with a view to discover and enu-
merate their normal modes of vibration. In
doing this we have necessarily to take



account of the forces arising from the move-
ments of the atoms in the surrounding cells
which interact with those in the cell under
consideration. It is obvious that no mode of
vibration of the atoms in the unit cell can
persist unchanged unless the atoms in the
surrounding cells also vibrate in a similar
mode with the same frequency. This would
be the case if equivalent atoms in these outer
cells also vibrate with the same amplitudes,
but as regards their phases of vibration,
there are several distinet possibilities. A
formal investigation shows that there are
2X2X 2 or eight possibilities in all which
can be described as follows: The phases of
equivalent atoms are either the same or else
opposite in consecutive cells along one, or
two, or all the three axes of the Bravais lat-
tice. The identity of the amplitude of vibra-
tion of equivalent atoms reduces the num-
ber of independent co-ordinates to 3p only.
Thus. the equations can be solved and re-
sult in 3 p solutions, but as there are eight
different situations in respect of the phases,
we have 8 X 3p =24 p solutions in all. This
is the same as the number of degrees of
dynamic freedom of the 8 p atoms contained
in a super-cell having twice the linear dimen-
sions of the unit cell of the crystal strue-
ture. Accordingly, we recognize (24p — 3)
normal modes of vibration properly so-
called, the three omitted degrees of freedom

representing the translatory movements of
the super-cell.

In the “molar” approach to the problem,
we consider the entire crystal as a single
physical entity and investigate the propa-
gation of waves through its structure. The
wave equations are found to be formally
satisfied if it be assumed that the equivalent
atoms located at the points of a Bravais lat-
tice have the same amplitude of vibration,
this however being different for the differ-
ent lattices of atoms, while the frequency,
wave-length and the direction of the wave-
veclor are the same for all the interpene-
trating lattices. Proceeding to solve the set

2

of 3p equations obtained on this hasis, an
algebraic equation of degree 3 p for the fre-
quency results, and the solution of this gives
us 3p different frequencies for a wave of
given wave-length travelling in any assign- '
ed direction. By considering the functional
dependence of these 3p frequencies on the
wave-length and direction of propagation, it
is found that the group-velocity of the waves
vanishes for (24 p — 3) frequencies associat-
ed with eight different wave-vectors in the
crystal. The (24p— 3) frequencies thus
obtained and the corresponding modes of
vibration are found to be the same as the
frequencies and normal modes deduced by
the ‘“molecular” approach to the problem,
namely, those in which equivalent atoms in
consecutive cells vibrate with the same
amplitude and with phases that are either
the same or else opposite along one, two or
all three of the Bravais axes of the crystal
They may therefore be identified as the
characteristic or normal modes and frequen-
cles of vibration of the crystal structure.
The three omitted frequencies represent the
limiting case of the three sets of waves of
the lowest frequencies and the longest wave-
lengths for which the group velocity does
not vanish but comes out as equal to the
phase-velocity of the waves. These cases
are identifiable with the three types of waves
whose propagation in any direction in the
crystal is shown to be possible by the clas-
sical theory of elasticity. The vanishing of
the group velocity for all the (24p-—3)
frequencies characteristic of the lattice
structure is significant. It indicates that no
wave-propagation in any real or physical
sense is possible in a ecrystal except in the
lowest range of frequencies where alone
the ideas and results of the classical theory
of elasticity possess any validity. ’
4. THE SPECTRUM OF THE THERMAL
AGITATION
The results of the dynamical theory en-

able us to complete the thermodynamic
picture already indicated above in outline.
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The p interpenetrating Bravais lattices of
atoms constituting the crystal represent an
assembly of atomic oscillators which have a
set of (24p— 3) vibration frequencies in
common. Each of these oscillators can
assume one or another of the various energy
states for these frequencies permitted by
the quantum theory, the relative probabilities
of the same being given by the Boltzmann
formula. It would not be possible to specify
or predict which of the great number of
oscillators in the crystal would be in a par-
ticular excited state for any of its possible
frequencies of vibration at any given instant.
In other words, the thermal energy would
be distributed through the volume of the
crystal in a manner which fluctuates from
place to place and from instant to instant
in an unpredictable fashion. The fluctuat-
ing character of the energy distribution
would be the more striking, the higher the
frequency under consideration, since the
energy jumps indicated by the quantum
theory are proportional to the frequency.
Thus, it emerges that (24p—3) out of
every 24p degrees of freedom of atomic
movement in the crystal manifest themselves
in the thermal agitation as modes of internail
vibration with a precisely defined set of
monochromatic frequencies and in modes
specifically related to the crystal structure,
though they are Jocalised in the crystal in a
chaotic and unpredictable fashion. 'The
residual 3 degrees out of every 24 p degrees
of freedom represent, as we have seen, the
translatory movements of the super-cells of
the crystal lattice. Such movements would
disturb the regularity of the crystal struc-
ture, in other words, would give rise to
stresses and strains of the same general
nature as those contemplated in the classi-
cal theory of elasticity. Hence, the 3 residual
degrees -of freedom would also manifest
themselves in the thermal agitation as oscil-
lations localised in the crystal in a chaotic
and unpredictable fashion, but since the
moving masses are now larger, the frequen-
cies would necessarily be lower, being deter-

mined by the dimensions of the volume ele-
ments which can be regarded as the indivi-
dual oscillators: the larger these volume ele-
ments are, the fewer of them would be
needed to fill the crystal and the lower also
would be the frequency. Thus, the spectrum
of the thermal agitation Yesulting from
movements of the kind under consideration
would stretch over a range of frequencies
down to low values, but the upper parts of
the range would be much more densely
populated than the lower.

5. REMARES ON SOME EARLIER THEORIES

The attentive reader would have noticed
that the picture of the thermal agitation in
a crystal and its spectroscopic characters
which has emerged bears no resemblance
whatever to that figuring in the well-known
theory of the specific heat of crystals put
forward by Debye and in the lattice theory
of Max Born and his collaborators. These
authors identify the energy of the thermal
agitation in a crystal with the energy of an
immense number of waves traversing the
crystal in all possible directions and of
which the frequencies are all different. But
nevertheless in evaluating the total energy,
these authors make use of the expression
for the average energy of an oscillator de-
rived by Einstein for an assembly consisting
of an immense number of oscillators having
an identical frequency of vibration. In the
circumstances, it would not be superfluous
to set out briefly the considerations which
show that the theories of Debye and Born
are fundamentally misconceived and that the
conclusions to which they lead are completely
unreal.

1. The theory of the specific heat of
crystals has necessarily to be based on the
theorem in classical mechanics which states
that the normal modes of vibration of a con-
nected system of particles form an enumer-
able set equal in number to the number of
degrees of dynamical freedom of the system
and that in each such normal mode, all the
particles vibrate with the same or opposite
phases. Waves are not normal modes, since



the phase alt‘ers progressively in the direc-
tion of the wave-vector, and hence it is an
obviously fallacious procedure to seek to
found a theory of specific heat on the basis
of wave-motions.

I A dynan}ical investigation shows that
waves of the kind contemplated by the clas-
sical theory of elasticity in which the phase-~
velocity is equal to the group velocity are
only possible in the limiting case of very
low frequencies and of very great wave-
lengths. It also shows that the atoms in a
crystal form an assembly of oscillators
which have a set of (24p—3) vibration
frequencies common fo all, and hence form
a gystem to which the principle of Boltzmann
can be legitimately applied to determine the
average energy of an oscillator of each fre-
quency and thereby to evaluate the total
energy of the system.

IH. The fundamental principles of thermo-
dynamics and the quantum theory indicate
that the thermal agitation in a medium con-
sisting of 1aterial particles capable of
vibrating about their positions of equilibrium
is of a chaotic and unpredictable character,
exhibiting fluctuations in the energy of the
vibration from place to place and from in-
stant to instant whose magnitude is deter-
mined by the frequency of vibration and
hence would be different for each different
frequency. It would be patently absurd to
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identify such a disturbance in the crystal

with waves of constant amplitude spread
over its volume,

IV. The identification of the thermal
energy of a crystal with the energy of waves
traversing it in all directions and having
frequencies all different from each other
leads to a totally false picture of the spec-
troscopic behaviour of crystals, as is shown
by several independent methods of experi-
mental investigation. For instance, all crys-
tals usually exhibit at room temperature
and always when cooled down to low tem-
peratures the sharply defined shifts of fre-
quency in the spectrum of monochromatic
light scattered by them, corresponding to
each of the (3p—3) frequencies of the
structure active in light-scattering, Signifi-
cantly also, avertones and combinations of
these (3p—3) frequencies and of the re-
maining 21p frequencies manifest them-
selves with observable intensity as sharply
defined frequency shifts with many crystals.

V. That the identification of the thermal
agitation in a crystal with waves traversing
the solid is a misconceived idea is also appa-
rent from the complete dissimilarity bet-
ween heat energy and sound energy in their
observable behaviour. The latter travels
through a crystal with a velocity of some
thousands of metres per second, while heat
energy merely diffuses through it.
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"X-RAYS AND CRYSTALS*

By
Sm C. V. RAMAN

IT is familiar knowledge that every crystal
js a three-dimensionally periodic group-
ing in space of atomic nuclei and electrons
held together by their mutual interactions
so as to form a rigid solid. We recognise
in each crystal a unit of its structure con-
taining, say, a group of p atoms, this group
repeating itself at regular intervals along
three directions which are designated as the
axes of the structure. The atoms in the crys-
tal may accordingly be regarded as consist-
ing of p sets, all the atoms of a particular
set being equivalent to each other and
located at regular intervals in a space lat-
tice whose axes are those of the crystal.
9. DIFFeRAcCTION OF X-RAvs BY CRYSTALS
That the geometric picture of crystal
architecture briefly indicated above is not
just a mathematical hypothesis but a phy-
sical reality was first demonstrated by the
famous experiment of Laue and his colla-
borators. When a narrow pencil of X-rays
traverses a crystal and is received on a
photographic flm held behind it, a pattern
of spots surrounding the impress of the inci-
dent beam appears on the film when deve-
loped. It is well recognised that these Laue
spots—as they are called—represent mono-
chromatised reflections of the incident X-Tay
beam by the stratifications of the electron
density parailel to the various crystallogra-
phic planes in the structure of the crystal.
The intensity of each spot is indicative oI
the magnitude of the corresponding periodic
variations of electron density normal to the
I;Ianes under consideration. The theory of
the Laue experiment can be dealt with in a
purely classical manner by attributing a cer-
tain scattering power to each volume
element in the electron cloud present in the

.
* Presidential Address to the Indian Academy of
Sciences at the Hyderabad Meeting on 27th December,

1956,

crystal proportional to its ‘local density.
This scattering power derives from the fact
that the electrons would be set in motion
and oscillate with the same frequency as
that of the electro-magnetic field which the
incident X-ray beam represents. On thls
bagis, the scattered radiations from all the
volume elements would have the same fre-
quency as the incident X-rays, as also spe-
cifie phase relationships determined by their
relative positions. The scattered radiations
therefore would be capable of reinforcing
each other’s effects in certain specific direc-
tions determined by the wave-length of the
X-rays and the spacing of the stratifications,
in accordance with reccgnised optical princi-
ples. Concentrations of intensity acco-dingly )
appear in the directions representing a highly
restricted selection of wave-lengths from
the incident white X-radiation.

3. ATtomic NUCLEI AND X-RAaY DIFFRACTION

The foregoing picture is obviously how-
ever an over-simplification. It implicitly
assumes ibat the electrons which scatter the
X-rays remain firmly bound to the structure
of the crystal and that the latter also re-
mains otherwise unaffected by the passage
of the X-ray beam. The strength of the
binding of the electrons to the atomic
nucleus or nuclei closest to them necessarily
enters into the picture and would influence
the intensity and phase of the scattered
radiations to an extent determined by the
approach of the frequency of the incident
X-radiation to the characteristic X-ray
absorption frequencies of the electrons.
Indeed, recent X-ray regearches have shown
that these factors have to be taken into
account in the theory of X-ray diffraction
by crystals.

The foregoing remarks indicate that con-
siderations somewhat analogous 1o those



which enter into the theory of scattering of
light in crystals need to be taken into
account also in the theory of X-ray diffrac-
tion. When a beam of common light tra-
verses a crygtal, its wave-length is very
great in comparison with the spacing of the
electronic stratifications in the crystal and
the latter do not therefore reflect the inci-
dent radiation but merely transmit it. On
the other hand, it is known that the passage
of the light excites vibrations of the atomic
nuclel with the result that if the incident
light be monochromatic, scattered radiations
are observed exhibiting sharply defined shifts
of frequency corresponding to the character-
istic vibration frequencies of the atomic
nuclei about their positions of equilibrium.
The appearance of such scattered radiations
indicates the existence of a coupling bet-
ween the forced vibrations of the electrons
under the influence of the incident electro-
magnetic field and the natural or free vibra-
tions of the atomic nuclei about their posi-
tions of equilibrium. In the language of the
quantum theory of dispersion, the appear-
ance of such frequency shifts is described
by the statement that the system composed
of the nuclei and electrons does not—follow-
ing the virtual transitions to higher energy
states induced by the incident radiation—
return to the same level as previously but
shifts to a third level in which the atomic

nuclei are in a different energy state of
vibration,

In the X-ray experiment, the frequency
of the incident radiation is usually much
higher than the characteristic frequencies of
the electrons. Nevertheless, the ideas of the
quantum theory of dispersion continue to be
applicable and the question therefore arises
whether the incident X-radiations can also
excite transitions in the energy state of the
atomic nuclei by virtue of their mechanical
coupling with the electrons and if $0, what
would be the observable result of such

transitions. We shall now proceed to answer
these questions.

4. THE CHARACTERISTIC VIBRATIONS OF
CRYSTAL LATTICES

As remarked earlier, the fundamental
feature of crystal architecture is that it is
a repetitive pattern in three~-dimensional
space of a characteristic unit of the struc-
ture containing a finite number of atoms.
Each unit of the structure is similar to and
similarly situated with respect to the units
surrounding it. Hence it follows that in
respect of all their physical properties the
units of the crystal structure would be simi-
lar to each other ; in particular the dynamic
behaviour of all the units of the crystal
structure would be completely identical. We
may put the same situation in slightly dif-
ferent language by saying that every crystal
is an assembly of atomic oscillators all of
which have identical modes and frequencies
of vibration. What these modes and fre-
quencies are is a matter for rigorous mathe-
matical investigation. Such investigations
have been carried out and published in recent
papers which have appeared in the Proceed-
ings of the Indian Academy of Sciences. It
emerges that all the atoms in the crystal
have (24p —3) modes and frequencies of
vibration in common. (3p—3) of these
frequencies represent modes in which equi-
valent atoms in neighbouring cells oscillate
with the same amplitudes and in identical
phases, while for the remaining 21p fre-
quencies, equivalent atoms in adjacent cells
oscillate with the same amplitudes but with
phases which may be the same or else oppo-
site along one, two or all three axes of the
lattice. This picture of the dynamical beha-
viour of the atoms in a crystal has important
consequences for the subject of X-ray dif-
fraction which we shall now proceed to con-
sider.

5. A CLASSICAL ANALOGUE

It is useful in the first instance to com-
sider the position from a purely classical
standpoint so that the consequences arising
therefrom may be taken over into the quan-
tum-mechanical treatment of the problem.



We shall restriet ourselves here to a con-
sideration of the (3p—3) modes of vibra-
tion of the atomic nuclei in which the vibra-
tions in the different cells of the crystal
lattice are identical in all respects. In such
a vibration it would follow that the stratifi-
cations of electron density in the crystal
would not remain in fixed positions but
would oscillate to and fro with the fre-
quency equal to that of the mode of vibra-
tion concerned. An X-ray beam traversing
such stratifications would continue to be re-
flected in the same direction as in the static
case. But in consequence of the periodic
motion of the stratifications (assumed to be
of small amplitude), the reflected X-ray
beam would now consist of three spectral
components having frequencies respectively
v (*+r*)yand (v—r¥), 7 being the incident
X-ray frequency and v* that of the oscilla-
tion of the Iattice. The additional components
arising by virtue of the oscillations may b2
regarded as Doppler shifts of frequency re-
sulting from the movement of the stratifica-
tions normal to themselves. The amplitudes
of the additional components would be
determined by the ratio of the amplitude of
the oscillations to the wave-length of the
X-rays.

The ahbove classical result translated into
the language of quantum mechanics would
mean that the incident X-radiation travers-
ing the crystal may excite the characteris-
tic vibrations of the lattice, and if such ex-
eitation actually occurs, the beam would be
reflected in the same direction as in the
absence of such excitation but with diminish-
ed frequency. If, on the other hand, the
characteristic vibration is already present
by reason of thermal agitation, the crystal
may be de-excited and the incident X-radia-
tion would then be reflected with increased
frequency.

6. INFrRa-REp AcTIVITY AND X-RaAY
DIFFRACTION

It will be seen from the foregoing that

the mechanism which can give rise to X-ray
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reflections of altered frequency is altoge-
ther different from the mechanism which re-
sults in the scattering of light with fre-
quency shifts in crystals. In the latter case
it js known that a change in the infer-
nuclear distances gives rise to a change in
the optical polarisability of the elements of
the structure and hence also to secondary
radiations with altered {requency; the
selection rules which determine whether a
particular mode of vibration is or is not
active in light-scattering are different from
those which determine whether or not the
same mode is active in infra-red absorption.
In the X-ray problem, the shifts of fre-
quency in the X-ray reflections arise from
the periodic movements of the stratifications
of the electron density associated with the
nuclear oscillation. Hence, it may be ex-
pected that the excitation and the de-exci-
tation of the lattice vibrations resulting from
the passage of X-rays would appear in cir-
cumstances analogous to those in which
infra-red absorption manifests itself. In other
words, X-rays may be expected to excite o¢
de-excite those oscillations of the lattice
which are also infra-red active.
7. THE GEOMETRY OF THE X-RaY
REFLECTIONS

In the foregoing we have assumed that
the vibrations in the crystal structure
appear in all the cells of the crystal lattice
not only with the same frequency but also
with identical phases. This is evidenily a
highly idealised situation, which when it
actually exists indicates that the X-ray re-
flection with altered frequency would appear
jn precisely the same direction as that.of
unmodified frequency. The modes and fre-
quencies of the lattice vibrations are deter-
mined by the interatomic forces which may
be assumed to fall off rapidly in magnitude
with increasing interatomic distances. Hence,
a change of phase of the oscillations occur-
ring progressively as we pass from cell to
cell—provided it be small enough—would
involve a relatively small change in the



actual frequency of vibration. This would
give rise to the possibility of observing

X-ray reflections with a change of frequency

even in settings of the crystal different from
those in which the ordinary or unmodified
reflections are observed. Such reflections may
be regarded as arising from a forced oscilla-
tion of the lattice with slightly altered fre-
quency and with the appropriate phases in-
duced by the incidence of the X-radiation.
In such circumstances the intensity of the
X-ray reflection of altered frequency may
be expected to fall off more or less rapidly
as the setting of the crystal is altered from
the setting needed for an ordinary reflection.
8. THE INFLUENCE OF THERMAL AGITATION

As already indicated, it necessarily fol-
lows that if X-rays can excite an infra-red
active oscillation of the lattice, they can de-
excite such an oscillation if it already exists
and thereby give rise to an X-ray reflection
of increased frequency. The relative inten-
sities of the X-ray reflections with increased
and diminished frequencies respectively
would be determined by the Boltzmann fac-
tor for the particular frequency of the oscil~
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lation of the lattice. The reflections of in-
creased and of diminished frequencies
would, of course, appear in the same direc-
tion, and it is the summation of their inten-
sities that would determine the observed
effects. Accordingly, measurements of the
variations in intensity of this observable
effect with temperature would enable us to
estimate the frequency of the vibrations
responsible for them.
9. SUMMARY

The quantum theory of dispersion indicates
that the infra-red active vibrations of the
atoms in a crystal would be excited by the
passage of a beam of X-rays through it.
Such excitation would result in the incident
beam being reflected by the lattice planes
of the crystal with appropriately diminish-
ed frequency. Such reflections would also
be observable but with diminished intensity
when the setting of the ecrystal is moved
away from the position in which X-rays of
the given wave length are selectively re-
flected by the lattice planes in question with
unaltered frequency. Thé effect of thermal
agitation is also considered.
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