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AN IDENTITY AND SOME DED®ICTIONS
BY
AMRIT SAGAR PURIL, Lahore

1, Let ¢» stand for the n” term of the Fibonacci's series
1,1, 2, 3,5 8,13, . ....... and wuns for that of any other series
wy, Ug, Uy g o . o . , Un, 3 ... We define two more series by their
general terms vs, wa in the following way:

Un=1trfn_g -+ Usln_y, Wr=1Uniy~ Uny~

1t is easily seen that ws represents the n** term of the recurring
sories whose first two terms are wu; and u, and the law of whose
formation is that any term (from the third onwards) is equal to the
sum of the preceding two terms

2. We prove
TBEEOREM 1. For n > 3,

Uy =V + 3 bW,y
r=1 :

We shall prove the theorom by induction.

It is plain Yhat
Unis = Ungg = (un — vn) + (snsy = Ungy) + we
Now suppose the theorem to be correct for us and ua,;; then

Unie = Thyg = 6 ?,Un_g"rfg Wa.g * = s e gy
+4 wn-1 + to wn-g + lgwWngg + = o -0 - + {n. Wyt Ws
=f; wn + & wn_g + fg Wn_g + » = =+ o ¢ v + In wy.

Thus the theorem is true for un;palso, But the theorem is seen
to be true for wg; and u, and so it holds generallys

.3. Let z be any number, real or complex we consider the series
0,0,1, 2 2%2% -+ -+ - , 27,
[ ]
n being a positive integer. By theorem 1 we have -
n—2
’ 2"“1 = {u + (2’"‘1) tn_l + (zz - - 1) 2 iy Z”_'”g
r=1

n—2
= 2 fp_y + tag + (za -2 - 1) E t, a2
=1
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Thus the expression 2" 1-2z fu.y-tn_y is divisible by 2?~z-1.

Hence the equation 2= ats—tsy=0 (n>>2) is always reducible in
the domain of rational numbers and is satisfied by

2= 7 (1+v/5), 2= 1 (1-v/5)

For instance the equation z!'-89x -55=0 has the roots
1+v5 1-45,
2 2
B. Now taking 2 to be an integer a, we have from section, 3
the congruence formula

a" 1= (mod. a®*-a-1),
where vs stands for the n® term of the recurring series ‘1, a, 1+a,
1+2a, 2+3a, . ..., the law of formation being that any term (after
the second) is equal to the sum of the preceding two. Now, since
a and {«®*—-a-1) are coprimes, it follows that the least positive
residues (mod. a®*-a~1) of the series 1, a, 1+a, 1+2a¢, 2+3a, . .. ..
will fall in periods, which sets in from the very first residue, and
the number of residues, which is also the number of incongruent

" residues, of powers of @, in each period is a factor of ¢ (a®*~a=-1),
where ¢ is Euler's totient fupction.

Thus taking «=5, ¢*-a-1=19, we have

5% 1=uys (mod 19), where u» as before, is the n" term of the
series 1, 5, 6, 11, 17, 28 . . . Residues {mod. 19) of the terms of the
series are 1, §, 6, 11, 17, 9, 7, 16, 4, 1, 5, 6, 11, 17, 9, 7, 16, 4 Thus
the residues fall into periods and the length of each period is 9
which is a factor of b (1\9)=18.

Again if we put a="7, we shall have 7! = vn (mod. 41), where vn
is the general term of the series
1,7 8,15, 23,38, ......

The residues in this case fall into periods of 40 residues in each
period and occur as below:

1, 7, 8, 15, 23, 38, 20, 17, 37, 13, 9, 22, 81, 12, 2, 14, 16, 30, 5, 35,
40, 34, 33, 26, 18, 3, 21, 24, 4, 28, 32, 19, 10, 29, 39, 25, 27 11, 36, 6.

Here 7 is a primitive root of 17.



FEUERBACH’'S THEOREM

BY
T. NARAYANAMURTHY, Mangalore.

1. The object of this note is to give a proof of Feuerbach’s
Theorem, by -using the following.

LEMMA: If two circles of radii ~ and r, cut off on any line chords
AB, CD (1 in the order ABCD as in the figure) respec-
tively subtending angles 2«, 28 at the centres, then the
two circles touch externally if

a+f a-0

ADBC=4r, r; cos® —5- or i & r rq 9in? 5
according as the centres of the two circles lie on the same side or
on opposite sides of the straight line; and eonversely.

Proof: Let X, Y he the centres and M, N the middle points of
AB, CD. Draw YZ vparallel to AB to meet XM at.Z.

%

A ™M B C N D
The necessary and sufficient codition for external contact is
{r+ry)f=XY=XZ2+ZY*=(XMFYN)*+(MB+BC+CN)*
=(r, c0s a Fry cos B)° + (r1 sin a + 7y sin 8P+ BC? + 2BC (MB+CN)
=72+ F2r, 7y cos {a+ 8) + BC (AM+MB+BC+CN+ND)

L J
the upper or lower signs being taken according as X, Y are on the
same side or on opposite sides of the line,

Hence, ADBC=4 r; r, cos® “;B ort 4r rsein? 5—;—’?-

T The statemenis immediately following the mark f are due to the referee,
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Similarly, the condition for internal contact can be shown to be

AD-BC=4r r, sin® a-;B or 4 1y ry cos® %ﬁ ,
provided both D and C lie between A and B.

X

Z Y
Cor: If two ocircles of radii 7y, ry touch and a chord AB of one,
subtending an angle 2z at the centre is tangent to the other at C,

then (i) AC-CB=4n, r, sin? g, ¥ when the contact is internal with

centres on the same side or external with centres on opposite sides

of the tangent chord; and { (ii) AC-CB=4s; 7, cos? %, when the con-

tact is exlernal with centres on the same side or internal with
centres on opposite sides of the tangent chord.

The converse of this is also true, provided (C, D) do not separate
(A; B).

2. We can now prove Feuerbach’s Theorem that the nine-points
circle touches the incircle and the excircles.

Let D, E, F be the mid-points, P, Q, R the feet of the altitudes
to the sides BC, CA, AB; X, X, the points of contact with BC of
the incircle and excircle opposite to A,

Now ND is parallel to SA, and
¢ DNP=SAP=C-B, (C>B).

Taking BC as the targent chord the first condition for tangency
Trequires

DX -XP=2Rr sin? & X B

DX,-X,P=2Rn sin® &=
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Now, X;D=DX=3} (BX-XC)=R (sin C-sin B), if ¢>b
DP= 1 SA sin SAP=R sin (C- B),
A

¢
so that XP=2R sin C;B-{(‘,osg-;—E —cosg;B}
=4R sin 9:2"3 sin gsin 5
X, P=2R sin g—;}'{cos O;B +cosc;B}

. C-B B C
4R sin ) cos 5008 5,

and the conditions for tangency are readily verified for both the
incircle and the excircle opposite to A.

Similarly the second condition for tangency will show that nine-
points circle toushes the two excircles touching BC produced.

Govt. College,‘}

Mangalore. T. NARAYANAMURTAY.
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Remarks by A. A, Krishnaswami Ayyangar

Mr. Narayanamurthy’s lemma may be considered in some res-
pects more important than its application to Feuerbach’s theorem. It
deserves some consideration on its own account. The immediate
predecessor of the lemma is the well-known distance formula

a®=b*+c®+d+2bc cos (be)+2bd cos (bd)+2%d cos (ed) ... (1)

where a, b, ¢, d are the sides of a closed quadrilateral, plane or
otherwise and (be), (bd), (cd) denote respectively the angles between
the sides indicated by the letters within brackets. This result is
obviously capable of extension to any closed polygon,

Applying (1) to the quadrilateral XYDA of Fig. (1), where X, Y
are the centres of circles which may be oconsidered as cutting each
other at angle 8, we get

P4 r -2 r, cos B=XY? )

=7 + 72+ AD® - 27, 7y cos (a + B) ~2AD (r, sin « + 7y sin )
8o that = AD-BC=2r 7, {cos («+ 8)+cos 8}. . (2)

Similarly AC-BD=2r 7, {cos («~8)-cos 6}. . (8}
_ cos (a=B)=cos 6
From (2) and (3), (AB, CD)= oo (a+ B) oo B v (4)
When 8 = 0 or n, the circles touch and
AD-BC = - 4 7, 7, sin? a;—B or 4 r; ro°cos® d;B )
AC-BD = ~ 4 r 1y sin® il or 4 7 7‘\9 cos? “;B } (5)
(AB, CD)=sin® S%B/sinﬁagﬁ or cos? 2 ;B/cos" a-;[{ ,

and conversely, when any one of the criteria (5) is satisfied," the
circles touch, The cross-ratio condition fails when « or B is zero.
It is important to note that «, @8 may be interchanged without
altering the above results, Hence a number of theorems can be
inferred.

The above coriteria apply also for sphetres, since thg guadrilateral
XYDA need not be a plane one.

An infinity of proofs for Feuerbach’s theorem or any other
contact theorem becomes thus available, based on lines which ecut
two circles at known angles

T mT——



RESIDUAL TYPES OF PARTITIONS OF “0” INTO
FOUR CUBES
BY
A. K. SRINIVASAN, Student, Maharaja's College, Mysore

It is fairly well-known that when a, 0, ¢, d, are four integers
positive or negative such that
’ aA+BP+S+dd=0,
then a+b+c+d is always a multiple of 6. This is obvious if we
recollect that 2=z (mod. 8), when =0, 1, 2, 3, 4, 5
and .. @+B+i+dB=a+bt+c+d (mod. 6).

We ‘will now enquire the types of residues of a, & ¢, d whose
sum is zero. We exclude naturally those cases where a, 4, ¢, d have a
common factor. We regard-the residual types of a, b, ¢, d and of
-a,~b,~c,~d as equivalent. Under the above convention, the follow-
ing different cases have to be considered :

(i) All residues different:—The only possible sets are (0, 1, 2, 3)
and (1, 2, 4, 5), since (0, 3, 4, 5) is by our convention
equivalent to (0, 3, 2, 1).

(ii) All residues alike :—This case is impossible.

(iii) Three alike, one different:~—There is only one case of this
king, (1, 1, 1, 3).

(iv) Two pdirs of like residues . —There are only two cases,
(1, 2, 1, 2) and (1, 5, 1, 5).

(v} Two alike and two different:—There are five cases of this
kind, (O, 0, 1, 5); (0, 1! 1, 4); (19 31 35 5)’ (29 2v 3) 5);
(2, 3, 3, 4).

Using index symbolism for repeated parts, we write below the

only vpossible types of partitions, just fen in number, enumerated in
dictionary order:

TYPES ILLUSTRATIONS

I (0*15) 128+ 195+ 537+ ( - 54)3=0
I (0123) , 467 ~37° - 3= 60*
This type happens to 'he of most frequent occurrence.
I (0 1°%) No example ‘available
IV (1% 3) No example available

v (1P ) £4+17+228+(-258=0
VI (1% 59 132 +65°+ 1213+ (- 12708 =0

* These examples are due to Ramanujan, (Vide Collected Papers, p 331)
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TYPES ILLUSTRATIONS
VII (1245) 7913+ 8128=1010% - 1%
VIII (1 3%5) 113+15%3+ 2734 (-29)>=0
IX (2* 3 5) No example available
X (23 4) 3334705+ 923+ (-105)%=0

From the above table we may infer the following result:

THEOREM :—If the siim of four cubes vanishes, then at least one

of them is of the form (6m * 1) or (6m +3), where
m is an integer.

N. B.—The absence of illustrations for the Types III, IV and IX
even after a careful searchi among the existing examples makes one

feel that they are probably non-existent. Will any interested reader
probe more deeply into these cases?

In conclusion I thank Prof. A. A. Krishnaswami Ayyamgar for
his guidance in this investigation.

T I have tested the  Tables of Partition’ of Russel and Gwyther in vain for the
missing Types. (Math. Gaz. Vol. XXI, pp. 34, 35)

REVERSIBLE PRIME—PAIRS
BY
GoPAL LAL MATHUR, Jodhpur,

A reversible prime pair’:is a set of two primes such that one is
obtained by reversing the digits of the other, e. g., (1583,3851).

‘A similar reversible pair’ is of the type (787.187) in which both
members are identical otherwise it is a ‘ dissimilar pair .

There are 16 similar pairs and 49 dissimilar pwirs below 5000
(both members < 5000), making a total of 65. They are:—
(11, )% (13, 81) 5 (v, Y1) ; (3Y,  73) 5 (79, 97);
(101, 101)*; (107, 701) ; (118, 311) ; (131, 131)%; (149, 941);
(151, 151)%; (157, 751) ; (167, 761) ; (179, 971) ; (181, 181)%;
(191, 19L)*; (199, 991) ; (313, 818)*; (337, 733) ; (347, 743).
(353, 353) ; (359, 953) ; (373, 3y3)*: (383, 383)%; (889, 983):
(109, 907) ; (727, 727)*; (739, 937) ; (757, TSV, (769, o6,
(787, TEU*: (97, 7OV (919, 919); (929, 929)*; (1091, 1901).
(1031, 1301); (1033, 3301); (1061, 1601); (1091, 1901); (1103, 3011);
(1151, 1511) 5 (1153, 8511); (1181, 1811); (1193, 3911); (1213 3121);
(1223, 3221); (1231, 1321); (1283, 3821); (1381, 1831), (1453, 3541),
(1471, 1741); (1523, 3251); (1583, 3851); (1723, 3271); (1733, 3371).
(1753, 8571); (1913, 3191); (1933, 3391); (3023, 3203):* (3083, 3303),
(3163, 3613); (3343, 3433); (3373, 3733}, (3463, 3643) ; (3583: 3853)1

We observe that there are two sets of 2 consecutive similar pairs’
and one set of 4 consecutive ones.

The question is—Is these an infinity of such pairs ?

D U



A FURTHER NOTE ON INTUITIONISTIC
SET-THEORY

BY

K. CHANDRASEKHARAN, Madras

. The object of this note is to clarify Brouwer's idea of set pre-
gented in an earlier paper of mine. (Math. Student Vol. 9, p. 143).
This clarification was pointed out to me as necessary by Prof. Alonzo
Church of Princeton, and is essentially a result of studying the books
of* Heyting and Black as well as the correspondence I have had
with Prof. Church.

1. The infinite sequence < of integers 1, 2, 3, 4, . . . is taken
as fundamental. Any sequence constructed by successive arbitrary
choices of an integer from < is called a choice sequence. {(Wahlifolge).

2 A set is a law which correlates (or makes correspond) groups
of signs to some of all the possible choice-sequences cbtained from ¢,
in the following manner. Given a pariicular choice-sequence, the law
may correlate to the first integer of that sequence a group of signs
(called, the first stage); or alternatively, it may specify that there is
no such group. If there is a first stage, the set-law may specify it
as the final stage; if it is not the final stage, we consider the second
integer of the choice-sequence. Here again there are three cases.
The law may correlate to the second integer either (a) nothing, or
(b) a second and final stage, or (¢) a second stage which is not final.
In carrying on this procedure, if case (a) arises at any stage, the
process of correlation is said to be dlocked ; if case (b)arises at any
point, the process ferminates, or is ended ; if case (c) arises always,
the process is unending. The sequence of groups of signs (Zeichenreihen)
thus correlated to a given choice-sequence is called an element of the
set. For any particular choice-sequence, if the process of correlation
gets blocked at some stage, then, there is no ¢lement corresponding to
that choice-sbquence; if the process terminates at a particular stage,
the element is finite; if the process is unending, the element is infinite.

* Max Black, The Nature of Mathematics, London and New York, 1934. A. Hey-
ting, Mathematische Grundlagenforschung —* Intuitionismus-—Beweistheorie " (Erge-
brisse der Mathematik und iirer Grensgebiete vol. 3, no. 4) Berlin, 1934.

7
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The set-law described above is subject to one further restriction ;
for each n > 1, if there is a choice-sequence P for which there is a
non-final (n-1)" stage, then there is a choice-sequence Q@ which has
the first 7~ 1 integers the same as in P, and has some definite n* stage
correlated to its = integer. ’

The fore-going statement has been made, for the sake of easier
intelligibility, from the classical or non-intuitionistic pomt; of view,
It must be understood that it is impossible for an intuitionist to say
“given a particular choice-sequence "', as we have done above. Rather,
at any moment there is given only au initial segment of the choice-
sequence, as determined by arbitrary choices made up to that time,
and it is always possible to continuwe this initial segment in various
ways by further arbitrary choices; the set-law serves to determine a
correlated group of signs as each successive arbitrary choice is made,
so long as the successive arbitrary choices are continued and so long
as the process is not blocked or terminated.

In applying this definition of a set it is also necessary o remem-
ber that according to Brouwer, the integers i, 2, 3, 4, . . ., in parti-
cular, are groups of signs, or “Zeichenreihen ”; e,g, the integer 1944
ts the finite sequence of digits 1, 9, 4, 4.

3. The sets used in my earlier paper are the following:

(i) A, consisting of the integers of <.

(3

A is a set intuitionistically since the set-law is: ' Every
choice-sequence has a first stage which is final, and is, for sach such
sequence, the integer which comes first in that sequence.

i) M, consisting of all infinite binary decimals. The set-law
s: " Every choice-sequence has for its first stage the decimal sign:
and for the n™ stage, where n > 1, it has 0 or 1 according as the u'*
integer of the choice-sequence is odd or even; no stage being final.”

(iii) The species M" of all positive integers n which make
.&7"+y”—z" impossible to solve in positive integers cannot be proved
to be intuitionistically a set in the present state of knowledge. Hence

it should have been referred to in my earlier paper as aspecies rather
than as a set.

(iv) The set M’ of all positive integers n which make z"+y"=2*
soluble in positive integers is given by (or is) the following set-law :
If the integer which comes first in the choice-sequence is not of the
for}m‘ 2" 5° 1" where 1, y, 2, u, are positive integers, or if it is of this
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form and z"+y”#:z" then the process of correlation is blocked. If
the integer which comes first in the choice-sequence is of the form
2% 3" 51" where x, y, 2, 1, are positive integers, and a®+y"=2" then
the first stage is the integer =, and this is the final stage.” In order
to see that this is intuitionistically a set, it is not necessary to solve
the Fermat Problem, or even to suppose that the Fermat Problem is
solvable. But in the present state of knowledge it cannot be deter-
mined whether this set has other elements than the integers 1 and 2.

{v) The set M of all infinite binary decimals in which we
know how many 0's occur before the first 1, or there is no 1 at all,
is given by the following set-law. *‘If the integer which comes first
in the choice squence is 1, then the first stage is the decimal sign,
and the n”* stage, where n > 1, is 0 (regardless of what is the «*
integer of the choice-sequence). If the integer which comes first in
the choice-sequence is 2, then the first stage is the decimal sign, the
second stage is 1, and the n* stage, where n > 2 is 0 or L, according
as the n'" integer of the choice-sequence is odd or even. If the
integer ¢« which comes first in the choice-sequence is greater than 2,
then the first stage is the decimal sign, each stage from the second
to the {a—1)" inclusive is 0, the o stage is 1, and the »* stage, where
n is greater than a, is 0 or 1 according as the n* integer of the
choice sequence is odd or even.

For the remaining examples of sets in my paper, the reader will
now be able to construct the set-law without difficulty.

Each of these examples, it should be noted, is also an example
of a species; a set being, according to Brouwer, a special case of a
species of the first order.

On.page 151, lines 6, 11, 12, 13, for the word ‘set’ or ‘sets’
should be substituted °species’, and for ‘subset’ should be substi-
tuted ‘subspecies’. (Math. Student vol. 9).

Every man is a hero to his son till he tries to help the boy in his
maths, homework.
Tliustrated Weekly of India.



ON THE EQUATION Pl =yl s
BY

P. KESAVA MENON, Madras Christian College.

The general solution of the Diophantine equation

af Falt =ty v (1)
is known to be*

x1= = (0= 3b)a?+ 307 + 1, 2y="{(a+3b)a® + 3b%) - 1,

y1= - (a®+ 3b%P +(a + 3b), 4o = (a2 + 36%) - (a - 3b).
Ramanujan gave the solutiont

ay =34+ 5ab - 50° 19=40% - 4ab + 61

1= 30+ Hab - 5a® yo= 4% - 4ab + 64°

which, though not general, is remarkable for the fact that the values
are homogeneous quadratic expressions in a, b. Another feature of
this solution is that y, and y, are obtained from 2, x, by the inter-
change of ¢ and . The object of this paper is to discuss a general
principle of obtaining solutions of the type given by Ramanujan,

Let us consider the form
A, y)=(a@® +oqay = by P + (a2 + agay — by
where @, ay, by, b; are numbers satisfying the relation
ad+ag +b3+b=0 e (2

If we conld choose a;, 2, 50 as to make f(x, y) symmetric in
x, y, then a solution of equation (1} will be given by

ay=(ay ¥+ 2y 2y~ %) xe=(uy 2¥+ a3 2y -y 3%

n=lg P+a ay-h 2 yy=(0s PP +2y zy-b§ 2%,

sinee 2+ o=z, ¥)=F(y. )=y, +p

* Hardy and Wright: Théory of Numbers p. 199.
+ " » ” p. 20L,
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In ovder that f(x, y) shall be symmetric we must have, besides
(2), the relations
(@*=01%) ay+(ag® = b) 2;=0 } (3)
(&® @y By oy +5y) + (22® = ay bo)ag+ ba) =0

The two equations in (3) will reduce to one if «;, a3 are to take

any of the following sets of values:
{i) a1=eay, as=¢a, (itl) ay=&m, 23 =¢&by
(ii) ay=eby, ag=eby (iv) ay=eby, z;3=eqy,

where ¢=11. We shall consider only the first set of values since
the others could be obtained from it by interchanging one or both

sets of corresponding a’s and 6’s in f(a, ).

Substituting in (3) from (i) we get

adtal=a blz"l' [+ 29 by’ (4)
By means of (2) we can reduce (4) to
Qo % g ... (5)

b by
Thus we get
THEOREM 1. If ai, as by by are numbers satisfying (2) and (5),
then a solution of equation (1) is given by
n=a x*+ea; xy—b ¥ T3=0y 2 +ea; xY—by ¥
. n=um yPrea ry~b x* ya=0ay P+ say Ty — by 27
e=%1,
Taking e= -1, ;=5 5 =3, a;=4, by= -6 we get a solution
equivalent to Ramanujan’s.
It is possible to replace (5) by a weaker condition.
first of equations (3) we have

B = % 8a
=t |~ (=) x v

KFrom the

Substituting in the second of (3) and simplifying with the help
of (2) we get
A= = (ay + &) ay+ by).

Since A must necessarily be ratiomal in order that =, =« be

rational it folldws that
~(ay+ b)ag + bs)

must be a perfect square. When this condition is satisfied

et o/ - (B58). mme ot o/ - (220)

44 'f‘b;
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We could, of course, make u;, zq integral, if they are not already
so, by replacing @, a by, by by ke, kag, kby, kb, (i being a suitable
integral multiplier.)

Thus we get
THEOREM 2. If ay, as by, Dy be numbers safisfying the relations
aP+ald+ b+ b’ =0 v (2
and  ~(ay+ b)) as+ by) is a perfect square,

a solution of the equution xP3+ad=y’+yd is given by

= aiteay xy-by o ry=ay £*+ay ry—bs
n=am P+a ay-b 2* Ya=0y 17 +ay 2y —by a®
where a =g (ay -ba) V[ =(ag+b)f(ay+ )T,
a=¢ (@ = b)) V' {=(a+b)f(as+by);
and e=t1,

For iustance, lot ¢y =1, a;=12, &= ~9, b,=-10. Then «, =11,
=20 for ¢=1, 30 that we get the following solution of (1):

=2+ 1lay + 9y Tg= 1227 + 202y + 104°
n=y"+1lay+92*® v2 =122 + 202y + 102*
Writing,
A=y 2®+a ay b Bi=b 2+ ayta P 6)
Ag=a, 2 +ag xy—by o  By=by 2¥+a, zytay 1/2} (
we get A+ By=(2? - ¥ + ), As+ Bo=(a® ~ e+ o).
1t follows that if ~(ay+b) (a+Ds) is a perfect square so is

~ (A1 +B)) (A;+B,) and by Theorem 2
AP+ AR+ B+ By =0.
Thus A,, A, B;, B, satisfy the conditions of theorem 2 and
we get
THEOREM 3. If ay as by, by arve as mn Theorem 2, then
'1‘1=A1 £2+Bl in‘Bl 1]2 3‘3=Ag £2+Bg &.n‘Bg ))9‘
n=A n+8 in-B, & Ya= Ay n*+ 8, &n-B;
is also a solution of equalion (2), A, As, By, B, betng gigen by (6) and
Bi=¢ (A;-ByV - {as+ 59)767‘1*' b)
By=¢' (A1=B)) V ~(ay + b))/(as + by)
Ll

2

W
fre



GENERALISATION OF A CERTAIN DEFINITE
INTEGRAL
BY
U. 8. NAIR, Unwerssty College, Trivandrum,
AND
G. 8. MAHAJANI, Fergusson College, Paona.

1. The object of this note is to evaluate the definite integral

. j-°° sin ;yx  sin gex  sin aux
R

- cos b - cos by - rcos b xdur.
T a B

The case when |ay|>{a|+-- -+ as|+ bl +-- +{b,] is found as
examplie 6, p. 122 of Modern Analysis, by Whittaker and Watson,

. . m ers
where the value of I is given to be 9 wads * - an under that condition.

2 Let s=q+wt+:- +an
s1=8 with one term negafive,
s:=s with two terms negative,

and so on. The number of terms of the type s is "Cr. Now if is
easily proved by induction that

CO8 (T ©OS ik * - * GOS Unk
_k_]: f s+ S S o+ ¢ - 1
= i1 1 co8 szt 2cos sprt 2008 syl o (1)
where the last term 18 | Jcos sm or Scos s» according as n=32m or
2m+1. By differentiating with respect to a;, @s. = * - n successively,
we get
sin ma - sin axx * - * sin awr
(_ )u ml .
g1 | 008 82~ Scossiz+ Soossr—~---(~-1) 3 Scossnx ... (2)
and X
sin apr - 8in a@px - - - sin ggnypt
( 1)” 3 5N o3
=% 1sm sr= 3sin spr+ Ssin sar=- ¢ (- ) Jsin sax e (3

3, By using (2), (3), and the known resuit that

o
i
j g n'cu lx = - sgn {a)
0
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where sgn (a)=1, 0 or -1 according as a >0=0 or <0, we get, on
integrating by parts (n —1) times

j‘°° sin 2z sinar | sinawz,
o z x

f

= ﬂrt 1 13"" sgn (s) - Js" P sgn (s)+ 28" sgn(se) - - }» .. (4
the last term in the bracket being
(=1)"- £ Ssw)-sgn (sm) or (=1 3 sn" - sgn (sm)
according as n=2m or 2m+1.

4. Now the general value of I could be obtained by using (4)
from the formula

. om j‘ sin gz  sin agr  sin apz sin bz . sin bux da
" Oby Obg - + Obu z x x x x

If y=ay= -+ =a»=1 in (4) we get, as a special case,

It does not appear easy fo prove directly from the formula for I

that its value is equal to % @ ay -+ an when || >]ap)++ - - - +{aul

+ 1|+ + - +|bxl. But a proof by induction can bé given. The result

is easily verified when p=n=1, Suppose, now, that the result has
been proved for a given n and for all values of u from 1 up to m.
Then the result for m+1 and the same n is obtained by writing
2 sin r cos bwpxz=sin (a;+bm) z+sin (@, - bwy1) = which gives the

value of the required integral to be % X2 ; {ag- - an) = 2102 c-an So

the result is true for that n and for all u. Next suppose that the
result has been proved from 1 up to » and for any p. Then integrating

®gingyx sina,x  sinasz
o p- . st P cos byx - co8 bs x-cos tx dx

with respect to ¢t in (0, asy;) We see that the result is true for n+1

and eny m. Now the proof is completed by induction if we note
that if

fal > lagd+ -« +lanl + 16y + -« + |04
then

lasl > laal + +larl+ oyl + - + 5[
for r < n and s << .




ON NUMBERS WHICH ARE THE SUM OR
DIFFERENCE OF TWO CUBES
BY

B. SURYANARAYANA RAO, Yelahanka

1 Let N=2ad+y5 e (1)
where z, y are integers. We write
rty=m, a-zyt+tyt=a v (2)
so that N=mxn. From (2) we have

mE—n

zY = 3 e (3)

z-y=V{@dn-mD3=%k say. . (4)
There is no loss of generality in taking the positive value of the
square root {i.e. & > 0), since x may be supposed algebraically greater
than y.
x=(m+k)2, y=(m~ k)2 ... (5)
From (4) we have 4n > m® and m and n must be both wmultiples of
3 or both prime to 3. Also since n > m?/4, we have n > m provided
n>4, If m >k, then x and y are both positive and N is the sum
of two cubes. In this case m? > n from (3) so that n’ lies between
n and 4n. If m=4 N is a perfect cube while if m < &, y is negative,
and N is the difference of two cubes.

2. Since x and y are integers, & must be an integer, and from
(5) m and & must be both odd or both even.

Taking m=2p-1, A=2¢~1 where p and q are integers, we get
n=(m?+3k»/4d=(1+p*-p+3¢ - 3g).

We have thus the identity

(2p-11+pP-p+3¢°-3q)=(p+g-1P+(p-g) o (8)

geving the wmost geneval solution of (1) when N has an odd factor

(2p- 1) .

Accordingly if we construct the matrix whose (p, g)th element

is 1+p(p-1)+3q(qg-1), then the product of every element in the pth

row by the multiplier 2p~1 is the sum of two cubes (p >q) or the

difference of two cubes according as the element occurs to the right

or left of the leading diagonal { p=g¢).
3
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Mnltipller 1 v 19 37
3 3 9 21 39
B 7 13 25 43
7 13 19 31 49 vee

The dla.gonal element in the pth row is (2p 1)* and the element
r steps to its right exceeds it by 3(+* -+ 2pr).

3. Now taking the case when both m=2p and k=2¢ are both
even, we have the identity

2 (p*+3¢%)=(p+aP +(p-qf
givng the most general solution of (1) with un even factor 2p for N.
We have again a matrix whose (p, q)th element is p*+3¢* with the

property that any element in the pth row, multipled by the corres-
ponding multiplier 2p is the sum or difference of two cubes.

Multiplier Matrix
2 1 4 13 28 ee
4 4 T 16 31

6 9 12 21 36

. Combining the two matrices into one, we have the scheme of
multipliers and matrix

1 1 7 19 37 61 91
2 1 4 13 28 49 76
3 3 9 21 39 63
4 4 7 16 31 52
5 7 7 13 25 43
6 9 12 21 36 5%
7 13 13 19 31 49 73

It will be seen that the leading diagonal consists of square terms,
and the product of any number in a row by the wmultiplier of that
row is the sum or difference of 2 cubes sccording as it occurs to
the right or left of the leading diagomal. All numbers which are
the sum or difference of two cubes find themselves in the list.

Remarks by the Editor

Tt will be seen that the principle underlying the ahove consoli-
dated table is the formula

(4 rP+(=rP=mOmnt+ 3nu +37%),

\ The. multmher in thick type on the left is m, while the diagonal

element of this Tow (mth row) is »* and the element # steps to -its
right is »3 +3myr + 3,2



ON THE SERIES Zs
BY

DALJT SINGH, Delhi,

n

The summation of the series > s’ is made to depend upon a
§=1

class of numbers which can be built up successively by a simple
law. In this respect it is felt that this method is simpler than that
involving the use of Bernoulli’'s Numbers.

1. The sum of the first » natural numbers is known to.be
equal to § n{n+1). This may be put in the form

2
2 S""‘nﬂCg was (1'1)
§=1

It is easy to show that
Sg=1. sC1+2, sOg Fres (1'2)

By a well known theorem

2

2 sCr=(n+1)Gcr+1); s>r>0 cee (1‘3)
s=1
n
Hencs 2 =1, (n+1)cg+2. (1;+1)05 ren (1‘4)
§=1 ,
n .
Similarly 2 =1 0+ 6. G346, e Cs ... (1-5}
S=I

/

n
In general 2 8" =fy, 1 (1;+1)C’:‘,+ fr, 3 (7;+1)Cg+ - +ft, o1 \u+1)CI4.. (1’6)
s=¥

2. The following table gives a few values of fm, »

n=>1 2 3 4 5 6
2
6 6

14 36 24
30 150 240 120
62 540 1560 1800 720

Ty G e 03 R0
e
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It may be proved by induction that the law connecting the
numbers fm, » is given by the equation

Sy n= n{fm—h 'Fvl'i'fm—la "} e (2'1)

3. If we divide each column by its uppermost number we get

another table of {m;n} = fom, nin !

The numbers in this.table are formed in accordance with the'law

b=t en{mth h=r e

It can easily be shown that

{m ;% (7 =,0; (n= 17 4,0y (n =291+ 4 (= 171,00 )., (342).

n

4. A property of the fm,» table is that the difference between
the sums of alternate digits in any row is umity,

1.e. f77—f77-—1 +f11_.:3' <. +(=1)'_]f1, 1 =1 T e ‘(4'1)

The above property may be used in summation of a binomial
series. By using (3-2) and (3-3) in (4-1) it may be shown that

=Gy (=1 4G - (=2 - - +(=1) 5101 =1. e (4-2)
5. Bernoulli's Numbers and £, »

The well-known formula for the summation of the rth powers of

the first n natural numbers in terms of Bernoulli's Numbers is
t ntl

1 . (g = .-
3B g EERE )

Between Bernoulii’s Numbers and /fu, » holds the Pelations

( - 1)m+1 BW 0= f:vu-a: P f_w«) 2 oWt fgm+g, L

@m+2)@m+3) " Bm+1em+2) ¥ am@me1) - O

It is also easy to prove from these that

.7‘21"+h am+y _ ___I_;’,mH. m _f.‘!mn, i U
@m+D2m+2) 2m@m+1)  @Cm-1)2m =~ " 0 e (5-3)



A MULTIPLICATORY FORMULA FOR THE GENERAL
RECURRING SEQUENCE OF ORDER 2
BY

D. JUZUK AND TH. MOTZKIN, Jerusalem

We consider the general recurring sequence of order 2, defined by
(I=0,£1,%2, .. )

with arbitrary complex a#0, b, wy wi, and also the special case %,
with the same ¢, b and

) wo=0, uy=1.

Our purpose is to establish the formula

v wy=aw,_,+bw

-1

(8) wy, =z‘§o Uk, Ly Yo where Uk’ L= (f) {a 19[__:1) k—ml‘, {k=0,1,2,..)
which, for a constant k>0, expresses the values of w,1=wkl in
terms of wy . . . . W

Putting wk"’”=wk - m=0,+1,+2, . .., which sequence belongs

to the same a, b, we have the equivalent formula

E
(8) '"’kz+m=,§ Uk’u W, (m=0,£1,+2 ...)
and, in particular,
k k
(3 “u =i§00k.z,z “, ukl+1=z—onk,l,z Yig1

The formulae (3") were given by H. Siebeck (Jouwr. fiir Maih. 33,
1846, 71-76), who, however, neither considered other sequences w,
than and ul“’, nor general a, b (which he supposes to be relatively

prime integers) — his proof being founded on the theory of continued
fractions.

We give two direct proofs. While the first proof is based on
induction, the®*second one is heuristic and leads to a generalization
of (3) for recurring sequences of any order, to be published separately,

As a common base for both proofs we need the formula

4 Wy =0 Uy WUy Wy
which is easily verified by induction with regard to I,
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As w; can be obtained as a linear combination of any two non-
proportional sequences with the same «, b, it is sufficient to prove (8)
for any two such sequences, e.g. to prove (3”).

Proof of {3°). (%) is evidently true for k=0. Let (3") be true
for a certain % > 0; then we shall prove (3) for A+1. Indeed,

noting that u(,==(k;_1)= (_‘1 =0, we have, by (4) and (1),

e+ 1T Y

TaUp Ly Uyt Uy Uy
&
sau; -1 2 okl i +u, 2 Ustys s

Z"*O

k-H k+i
( ) (auH_I) k=it uff u;+ 2 im1 )(aul )""“

k41

=3
iZo Upin,s,i

Uerny 141 Yy

TOU Uy T Uy Uy

&
_.a N
ul 2 Uk Li% +ul+1 3 Uk,J,iu;_H
kél
=y ifok' -1 (4 ~bu )+(aul_ +bul) Uk L

k+x

2 )(au, )k 1+1 ." lt b 2 ( )(au, k—'r}l u/ 2"

k+l k41
( )(au )k "y, /:‘+z+b 3 ( )(au )k m” 1,
=

k41

=20 .
7‘2___0 k""l, 1,1 ?L1+I.



A MuvrtpLicaToRY FORMULA ETC... 63

Alternative proof of (3). We consider the two recurring sequences
o and B belonging to the same «, &, whence x, 8 satisfy the equation

{5) 22 =a+ b
By (4), with. £=0, we have

(6) ® = au,_ +u o

Raising both sides of (6) to the power & we obtain (3) for w=a.
The same is true for 8, which, if 4 a+b?5%0, 1 i.e- a#8, proves (3).

As an immediate consequence of the first formula of (3")
(ke Rei -1,
U =u, iél ; (aw;_ )57 wft
it follows that, w case g, b ure integers and 1> 0, u,, s divisible by w,

The last result, and the main formula (3), for ! > 0, (obtained by
the first proof), are seen to be true in an arbitrary number—ring or
abstract ring containing 1. provided that ab=ba; if 1 is divisible by
a, they hold also for I>0. )

The Einstein Institute of Mathematics,
Hebrew Universtty, Jerusalem,

VI 4a+82=0, i.e. x=@, we can use the sequences a and la’. 1ndeed, by (4), k=0,
we have

7) la! = auy,

-1y (*
whence by @ and (471}~ ()

Rlat =kx ur (@ip—y + ur Y1

korp_
£ 3 (f_:) (dter—y Yo 0t &

1=1
Eoox
== () (@Y s i a0
i=0\¢
We can also say that (3) considered as an algebraical identity for the variable a,
with constant b, &, I, wo @y {@a, - « + » Wk %oy, 1 having been expressed by b, wp, wi),
holds always, since it holds for a7 —b4.
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NOTES AND DISCUSSIONS -~
Gaskin’s theorem and the orthoptic comstant.

It is not every central conic that has a director circle, and
Mr. Lakshmapamurthi's “ Analytical Proof "’ {Math. Student, 12, p. 105)
actually establishes a more general theorem than Gaskin’s.

Lot p be a fixed diameter of a conic whose centre is C, and let
Q be a variable point on the curve; let the tangent at Q cut p in T,
and let the ordinate to p from Q cut p in V. Then the product
CT, CV is independent of the position of Q, and is a number w to be
associated with p. If w is positive, then p cuts the curve in the two
points whose distance from C is 4/w; if w is negative, then p does
not cut the curve, but  is even more important for that very reason.
I call w the radial measure of the diameter p.

The sum of the radial measures of a variable pair of conjugate
diameters is a constant for the conic: we can call it the orthoptic
constant. If the orthoptic constant is positive, the conic has an or-
thoptic circle, and the constant is the square of the radius of the
circle; if the constant is negative, no circle exists, but theorems
traditionally enunciated in terms of the circle may survive as true

theorems in real metrical geometry if they are properly enunciated
in terms of the constant.

Gaskin’s theorem is a case in point. If the equation of a circle is
22+t + 2924 2y + =0,

then ¢ is the power of the origin for the circle. What Mr. Laksh-
manamurthi really proves is that ’

If a triangle is self-conjugate for a conic, the power of the centre

of the conic for the circumcircle of the triangle 1sithe orthoptic constant
of the conic.

Another theorem of the same kind is a favourite of mine to
illustrate the generalisation of enuncialions. The altftudes AD, BE,
CF of a triangle ABC meet in the orthocentre H, and the products
HA-HD, HB-HE, HC-HF have a common value p. If the
triangle is obtuse-angled, p is positive, and the circle with centre
H and radius 4/p is a circle for which the triangle is selfconjugate,
the polar circle of the triangle. But whether or. not the circle
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pxists, p exists and can be called the polar constant of the triangle.
With this definition, we can prove that

If a triangle is circumscribed to a conie, the square of the distance
between the centre of the conic and the orthocentre of the triangle s the
sum of the orthoptic constant of the conic and the polar constant of the
triangle.

If we say, as is usual, that the polar circle of the triangle is
orthogonal to the orthoptic circle of the conic, we accept an inter-
pretation which is not wvalid if the conic is an obfuse hyperbola or
if the triangle is acute-angled. We can enunciate two distinct
partial theorems:

If a triangle circumscribes a ceniral comic that is not an obtuse
hyperbola, the power of the orthocenire of the triangle for the orthoptic
circle of the conic ts the polar constant of the iriangle;

If an obtuse-angled triangle circumscribes a central conic, the power
of the centre of the comic for the polar circle of the triangle is the
orthoptic constant of the conic.

These two theorems together cover the ground, for a tangent
triangle to an obtuse hyperbola is necessarily obtuse-angled, but the
conditions of the two theorems are not mutually exclusive, and the
one theorem that embraces them both is much the most satisfying.

E. H. NEVILLE

Application of Contour Integrals to a problem in electrostatics.

1. In Hydro-dynamics, while seeking the solution of problems of
cylinders kept in a flow of hqmd the forces and couples on the
cylinder are found in terms of contour integrals calculated round the
boundary of the cylinders. Similar integrals can be found in the
case of two dimensional problems in Electrostatics. Thus take the

following problem :

A cylindrical conductor is kept in an eleclrostatic field. It is
required to clculale the force on the conductor.

We know that the force on each surface element of a conductor
is 2mg® for unit area, normal to the element, o being the surface
density of charge. Let ds be an element of a cross-section of the
cylinder and ¢ be the angle which the tangent makes with the
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a-gxis. Then the components X, Y of the force on the condugtor
along the axes are given by

X= ¢ 2x06® ds sin ¥= | 2n6® dy,
Y—- -~ §c 270® dscos ¥= - s 2no® dz,
whe %E-:cos ?, W —sxn Y and {: denotes the integral taken round

the closed curve c the cross-section of the cylinder.

‘We combine these components as follows :
X-:Y=2r {c0® (dy +idx)
=" §c 0® (da -~ idJ)

- @2+ B M (44 idy) sinoe 0= VEZHES

d +udy An
z = 1By . : dx _ dy
S (B2 +Ey) + 5, (dx +idy) since E B,

Sc (B:~E,))? - (da+ idy)

L

8

]
&) ( ) dz
since if u is the potential function due to the electrical distribution
and w=uw+iv and z2=a+iy, then

dw ;
E-‘—‘ux tos= Uz —suy= — B+ By

. g N
Hence X-7Y= 81" (g%v) dz where ¢ is any closed curve

(simply counnected) outside the boundary of the cylmder, not enclosing

any other singularities of the fieid. This is cbvious by Cauchy'’s
theorem.

2. To calculute the couple G on the cylinder

=§(270® ds sin ¢ - y+2m6® ds cos ¥ - )
=2 6 (ydy + xdax)

=R 2r {c 0® (z +1iy) (da ~idy)
where R denotes real part of what follows.

1
LG =R o (o (B2 4 By (2 + i) (da - idy)
“R S (Ez 1Ey)2 zdz
dw\*
=n -]--~ d-‘lv 2 .
B Ri. (dz) 2dz

Fergusson College, }
Poona.

as above

G. L. CHANDRATREYA
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On the Limit of a Series of variable Terms

N
{A) Let Fln)= 3 u (n)

r=1

where ur (n) is @ function of n; N is either oo or tends to o with
and for every fixed r, Lt ur (n}=wr,
n=dco

We enquire as to under what conditions we may conclude that

o0
(B) Lt F(n)= 2 w, provided this series on the right converges.
N—>o0 r=I

A necessary and sufficient condition for this to hold is given in
the following

THEOREM. If F (n) is defined as in (A4), the necessary and suffi-
cient condition for (B) to hold is, that corresponding to every arbitrary

pre-assigned ¢ (however small) and positive integer M, (however large,)
there exists a positive integer m > M, but independent of n, such that the

inequality

N
S u (n)l < & holds for every n > some My
r=m+1

‘We first prove that the condition is necessary.

Suppose Lt F(n)=2 w (1)
n>oo r=1

Tf ¢ and M are pre-assigned, we can determine a positive integer
mn (g) such that

S0 N oo
F(n)~ Ev,' =1 S (#)~ 3 | <&/3 for every un>m.
T r=t r=1

oo
Again since 2 ws is convergent, we can determine a positive
r=

R ]
integer m > M, of course independent of » 8o large that

oo

2 1r

r=m+1

< &/3.

Now, ny is selected such that N >m for n >mng,
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Since u, (n)v, we can determine 7 such that

g [ur (n) —wr) < &/3 for n > .
1

y=

o for a>maz (ny, ng n3)=ng (say‘),

oo N oc m Ll
1 S w (ﬁ)i <] Swm- 3w+ 3w -vl|+ >
r=m+lI r=1 r=1 r=1 r=m+1

< g3 +e/3+e/3=s.

we can determine m > M (n) such that

N
> w(n)
r=m+1

<& for n>nq

‘We shall now prove that the condition is sufficient.

o
Since > = is convergent, we can determine M such that

-]

S v <ef3 for every k> M.
r=k+1
l N
From hypothesis, ‘ §+ ur (n)| <<&/3 holds for some m > M
r=m-il

and n >m

Since u, (n)>vr, we can determine 7, so large that

wm

zl[u, (n) = )

<&/3 for every n > n,,

for every n > maximum (ny, 772)=370‘ (say)

m

< 2 L (0)-wd
r=1

N
2 ur(n)
r=m+1

N ®
2 Ur (n)" 2 Tr + +
r=1 r=1

(-]
2 Ur
y=m-+1 )
< gf3+efd+e/3=¢
oo
S Lt L (’l’l)= 2 Vr.
n->0 r=1
Tannery's Theorem (Bromwich Infinite Series) is a special case
of the above result,

MEHAR SINGH
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The Perimeter of an Ellipse

The perimeter of an ellipse of axes 2a, 9b and eccentricity e

is given by
2 2, 2.93.

The Indian mathematician Mahavira in his Ganiia Sare Sangraha*
written in 850 A.D. gives the formula + {24b% + 160®) for the perimeter
of the ellipse. This works out as 2aV10(1 ~ 2¢%). Mahavira's method
of getting this result is not known, but V10 is probably taken as
approximately equal to 7, as was often done in early Indian mathe-
matics, Replacing 410 by 7, the value 2ma v f—-*%@ is not a bad
approximation for the perimeter. The binomial theorem gives
oma (L—-35¢” - 33p¢*). as far as e, while the series above gives
ara (L-1e?—g% e*). At any rate, the formula 27q V1~ 3¢ is a much

CEWEY
better result than the formula 27r/\/ 4 ;b, whieh will be found in
gsome of our mathematical tables {e. g. Clark’s), and which is quite
inaccurate when e is not small.

“ BANGALORE "

M. Cay’s Extension of Feuerbach’s Theorem

The extended theorem reads as follows:—

If two isogonal conjugates with respect to a triangle are collinear
with the circumcentre, then their pedal circle touches the 9-points circle
of the triangle. .

Here is a simple proof. Let P, Q be two isogonal conjugate
points and S the circumcentre of the triangle. Let LL‘, MM’ NN’
be the feet of the perpendiculars from P, Q on the sides, and let
the line PQ' cut the circumcircle at X, Y. Since, , by hypothesis,
XY is a diameter, the pedal lines of X and Y meet at right angles

at say O.

* English translation by M. Rangacharya, Chapter VII, Stanza 63, Vide also the
translator’s remarks,
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Tet U and V be the feet of the perpendiculars from X and Y
on BC. Then from the right angled triangle UOV we have
DU=DO=DV where D is the mid-point of BC. Let E, F be the
mid-points of CA and AB,

From the figure we see that

SX _DU sX _DU

SP DL ’SQ T DL

whence by multiplication and putting R for the circumradius

R _ DU* _ DO* _ EO* _ Fe
§P-8Q  DL-DL' ~DLDL' ~“EMEM FN-FN'

Hence the 9 - points circle, the commeon ﬁedal circle of P and @, and

the point circle at O are coaxal. But O is ox the 9 - points cirele,
Hence the two circles touch at O.

K. SIvARAT

Loyola Gollege}
Class & Hons,

Madras
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Some Limit Theorems

The object of this paper is to evaluate certain limits employing
Riemann integration.

Let f(x)=o when a is irrational
=y (g) when x=p/q¢ (p being prime to g)

where ¥ (n) tends to o as n tends to infinity through integral values.
Also let f(0)=0.

It is clear that f(x) is contimuous in the interval (9, 1) except at
the rational points, and so is integrable—R.

Since f=a except at an enumerable set we have
1 I
f 0 Flx) f(x)z=a J. o P(x)dz,
where F is another function integrable—~R in the same interval.
1 o ppr
But |, Fle) fla)dz =Lt 3 FENFE) A, e

following the usual mnotation & being any point in (xi_;, 2.). More
generally we can also write it as

Lt. 2 fE)F(n)Azi v (2)

where &, m are in the same interval (z._;, x).

Let A =% and p:/q. the fraction with the least denominator

. i~1 2
m —, —}°
n

n

From (1) we get, taking &i=pifg:i,
1 1£ 1

Lt— 2 ¢(qn)F(pL/qs)=af F(z)dz.
Ni=1 0

Further, we may take & =pi/q and ni=i/n in (2).
Thus
d . I
Lt 1n 2 diq) F(I/n)=af Flr)dx.
ta=1 o

1n particular, if F=1 we have

Lt. 1/n
H

Hivis

Y@ =a.
I
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Taking ¥ (n)=1/n .,
Lt. n 2 1gqi=0.
i=1

Putting F(z)=2° where s is greater than 1 and ¢ (n)=1/n’

L 1
Lt. In 3 (@/n)-—=—=0
=1 @

n
or 2 Flgi=0@™)

i{=

Taking A zi=1l/n; F=1; &=i/nin (1)
we get, after a little simplification
3¢ (d) b (d)o na

where ¢ () is Euler's function representing the number of integers
not greater than = and prime to =, the summation being for all
divisors d of n,

Madras Christian College, }

Tambaram. C. V. KRISHNA REDDI

Correcting Watch Time by watch Vibrations.

A good watch may be made to run faster or slower,by balancing it,
face horizontal, on a bit of rubber about 1/32 inch thick cut from a live
elastic rubber band.

A button of rubber 1§ inch round or square will cause the watch to
gain ten to twenty seconds over night or in about ten hours. It may
require several attempts to balance the watch horizontally on such a small
button. The guard or chain must be removed. The oscillations or shummey
of the whole watch "due to the reactions of its balance wheel should be
plainly visible.

A similar rubber support about 3/16 inch square will cause the watch
to lose about six seconds in ten hours.

Using the cut-and-try method with rubber supports, a good watch may
be maintained with ten seconds of correct time indefinitely by repeating the
correcting operations occasionally as required, without openigg the case.

Opening the watch case for the usual methods of correcting watch time
is objectionable as dust and moisture may be admitted. It is also difficult
to adjust the registration between the second hand and the minute hand.

E. M. TINGLEY in School Science and Mathematics.
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Analysis of Functions of Real Variables

By B. SEETHARAMA SASTRY, M.A. (Cal), University of Mysore.
(Satyasodhana Publishing House, Fort, Bangalore City, Price Rs. 12-8-0)

This text-book on Analysis gives in a compact form a connected story of
the subject covering more or less the syllabus for the B.Sc. (Hons.) Degree
<ourses in South Indian Universities. The subject matter is well-arranged,
and treatment rigorous and clear. There are numerous examplesd, many of
them being either completely worked out or accompanied by sufficient hints

for solutions.

There are some slight mistakes which, it is hoped, will be removed in the
next edition of the book. On page 25, the statement that an open set is one
which is not closed is incorrect; an open set is the complement of a closed set.
On page 54, in the definition of the limit of Az) at x=c, the inequalities
should be | f(x)~1] <e if 0< } z~c| <n (and not if [z-c| <n}; then
alone the statement in note (i) following immediately will be correct. On
pages 08-99, the statement that (B) is less comprehensive than (A) will be
.correct only if the second condition in (A) is replaced by “ if wunl” > 1 foran

infinity of values of #, then 3 un diverges”.

A chapter on Fourier Series and one containing a detailed treatment of
trigonometric series and products would have given more completeness ‘to the

‘book and increased its usefulness to the students.

The book {s 2 welecome addition to the small number of Indian text-books
on Analysis covering the syllabus for the Honours degree courses of the

Indian Universities.
V. G

Annamalainagar

Students’ Guide to Statistics.

By T.S. SANKEARANARAYANA PILLAL Pachatappa’s College, Madras,
(Universal Book Service, Madras, 1944 DP. 346, Price Rs. 5.)

In any Statistical enquiry there are four stages, viz. design, collection
of data, their classification and tabulation, and inference. In section A the
requisites of the first three stages are discussed, with illustrations taken from
the recent cerfsus. Diagramatic representations are always appealing and easy
to gras;;. These are discussed in section B. Then comes the mathemati-
cal analysis of the data. “The Human mind is incapable of grasping in
its entirety any large mass of quantitative data. They require to be specified

by a relatively few constants.”” Hence the need for averages and measures of
dispersion which are considered in section C. With these the analysis of the
5
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sample is complete. Next arises the question of the reliability of the
inferences drawn from the sample. This ‘will lead us on to problems of
specification, of distribution and significance tests. A detailed study of these
has been omitted as being beyond the scope of an elementary guide to the
subject.

In the short space- available, the author has introduced the calculus of
probability, and followed it up by a discussion of the Binomial distribution.
In as much as the normal probability curve can be regarded as the
limiting form of the symmetric point binomial, it would have been better if
Chapter XIV (Normal curve) came immediately after Chapter XII (Binomial).
That wonld have enabled the students to appreciate the full significance of
‘the Standard Error’ introduced in Chapter XIIL. It would have been in
accordance with the spirit of the times if the term ‘Probable Error' were
left out and ‘the standard error’ and its significance emphasised, A dis-
cussion of fitting the normal curve to given data using the table of areas.
will enhance the Gtility of the book.

_The last section deals with the application of the' statistical method to-
mortality problems and 1ndex numbers. ‘

The book shoulffl prove exceedingly useful to students of the B: A. ang

B.Sc. Classes' whose requirements have been specially kept in view by the
anthor.

Annamalainagar V. SEETHARAMAN.

Solid -Geometry
By K. D. PaNDAY, M.A., Central Proviuces Educational Service
Nawal Kishore Press, Lucknow, pp. 138, Price ﬁe. I.

This booklet explains the properties of figures 1 space and applies them to
the study of the parallelopiped, tetrahedron, prism, cylinder, cone and sphere.
There are a large number of graded examples and, at the end, a collection of
formule r_elating to mensuration and a collection of miscellaneous examples
and of questions taken from the Nagpur University Intermediate papers and
the U.P. andi Rajaputana Boards. A feature of the book which makes for
clarity is the arrangement of.each argument and the conclusion derived there-
from in corresponding opposite columns. This should prove a-very useful
device for adoption both 1m the class room and-in books for junier étudeuts.

?hebook is.\y;ell wri;ten aqd“s‘hould prove ve}y useful in giving the students.
of (herlntermedm‘tg classes their first expefience of theoretical solid' Geometry.

Annamalainagar AN R



ANNOUNCEMENTS AND NEWS

The following persons have been admitted as membiers of the 'Society :-

K. M. Saxena Esq. Lecturer in mathematics, S. D. Intermediate College,
Muzaffarnagar U. P.

H. F. Merchant Esq. 2372 139, Signal’ Training .Centre, (India},
Jubbalpore, C. P.

T. V. Viswanathan Esq,, Asst. Professor, Presidency College, Madras.

G. L. Chandratreya Esq., Fergusson College, Poona.

Ratan Shanker Misra, Research Student, Delhi University, Delhi.

Shanti Narayan, M.A., Prof. of Mathematics, D. A. V. College Lahore.

Miss Lolita Bose, B.A., D.T., Teacher, Jubilee Girls School, c/o. N. N. Bose
Esq., 33 Model House Lucknow.

Oudh Behari Shukla, Esq., M.Sc., Lecturer in mathematics, Durbar

College, Rewa.
The following gentlemen have been admitted as life members of the

Society.
K. Venkatachaliengar, D:Sc., Mysote University, Bangalore.
M. Abdulla Butt Esq,, Lecturer, Muslim Umversxty, Aligarh.

Dr. V. Ganapati Iyer-of the Anpamalal Umversuy has been declared to be
the first winner of the Narasinga Rao Medal for Mathematical Research.
According to the terms of the endowment, the medal is to be awarded for the
best solution of a problem to be proposed from time to time, and for the
solution of whxch a sufficient time (about 18 months) is to be given. The
first problera was proposed in The Mathematics Student Vol. XI p. 62 and the
Journal of the Indian Mathematical Society Dec. 1943.

Dr. N. S. Nagendranath, Professor of Mathematical Physics at the Andhra
University has accepted an appointment as Professor of Mathematics at the

Patna University.

Dr. N. Sundararama Sastry, formerly of the Statistics Department, Madras
University, has been appointed Statistician, Reserve Bank. Bombay.

“The cause of higher studies in this country 1s materially strengthened
by the establishment of the Tata Institute of Fundamental Research at
Bombay where research 1n Pure Physics and Mathematics are to be carried.
on in the firft jnstance. The institute works under the agis of the Tata
Trust and is financed by the Trust as well as by grants from the Govern-
ment of Indla and the Government of ‘Bombay. The Director is Prof.
Bhabha and Prof D. D. Kosambi of Poona is the only other Professor at pre-
sent, but Prof. S. Chandrasekhar is expected to join early in 1047, while there
will be visiting professors in theoretical physics and mathematics from India



76 ANNOUNCEMENTS AND REWS

and other countries. It is hoped that a chair in experimental Physics will be
instituted in due course. Students in limited numbers are taken for research if
considered fit, but no terms or degrees are granted by the Institute which is not
affiliated to any University, though several Universities have agreed to recog-
nize work done in the Tnstitute in connection with their research degrees.
Facilities will also be provided, within limits, for advanced workers to carry on
their work at the Institute. We wish the Institute every success and hope it
will develop into the Princeton Institute of India.

Prof. Harold Davenport F. R. S. has been appointed to the Astor Chair
.of Mathematics in the University of London in succession to Prof. G. B. Jeffery
who is now Director of the Institute of Education, University of London.

Prof. Wolfgang Pauli (Switzerland), Princeton University, has been
awarded the Nobel Prize for Physics for 1945.

The Sir C. R. Reddi National Prize has been awarded to Prof. C. V.
«Chandrasekharan working at the Yerke's observatory in America.

BOOKS RECEIVED FOR REVIEW

J. L. CooLingk: A History of the conic sections and Quadric Surfaces,
‘Oxford, Clarendon Press, 1945, pp 214, Price 21 s. Net.

H. W. TURNBULL. The Mathematical discoveries of Newton: Blackie
and Sons Ltd., London and Glasgow, 1945, pp 68, Price 5s. net.

To find the age of the meoon on any day

Mr. Forbes gives in his delightful book, “ The wender and the glory of
the stars”, the following rule for computing the age of the Moon on any day
in any year. The error rareiv exceeds one day.

“Add together the year-number, the month-number and the day-
number. Reduce the sum (if it exceeds 30) by subtracting multiples of 30.
The remainder is the age of the Moon”.

The year-number is obtained by subtracting 1930 from the year in
question, multiplying the remainder by 11 and subtracting all multiples of
30. The 'month-numbers for Jan., Feb. etc., are respectively o, 2, 0, 2, 2, 4,
4, 6, 7, 8, 9, 10. The day-number is the same as the date of the month.

From First steps in astronomy.
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