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With the passing of Sir Isaac Newton and the group-of scholars asso- -
ciated with him, science in general and mathematics in particular reached a
low ebb in England. This period of mathematical and scientific stagnation
continued for about 100 years—that is, from about 1750 until approximately
1850 when the efforts of the members of the Analytical Society, formed at
Cambridge University, began to be felt. The causes of this slackening of
interest in mathematics among the English during this period are many and
varied, and their relationships are interlocked to such an extent that it is
not always possible to determine the exact part played by each circumstance.
However, we shall attempt not only to point out the fundamental causes
producing this slackening of interest but also to trace some of the factors
which brought about a revival of interest in mathematics during the first
half of the nineteenth century. :

The first major factor in the deterioration of mathematical scholarship
in eighteenth century England was the controversy over the priority of the
calculus. This contention brought about not only a cleavage in the body
of working mathematicians of England and the continent, but also forti-
fied by a definite insular trend in English thought,! isolated mathematical
thinking to such an extent that, as E. T. Bell states, * the obstinate British
‘practically rotted mathematically for all of a century after the death of
Newton .2

One of the first results of the quarrel between the English and conti-
nenta] mathematicians was a definite difference in the approach to mathe-
matical and scientific research. For instance in setting up the principles
of the subject and in the demonstrating of most of the proofs of the theorems

1 A, N. Whitehead, Adventures of Ideas, New York, p. 22.
2 B, T, Bell, Men of Mathematics, New York, 1937, p. 114,
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of the ‘Princ'zjg}fa, Newton followed the approach of classical geometric
. methods. Newton’s fondness for pmely synthetic methods may be observed

,{by reading the following statement in his treatment of the quadrature of
a curve:

elegant so as to become ﬁt for public view.®

On the continent, on the other hand, Leibniz and his followers developed the
calculus and carried on their problems of research along analytical methods.
The jealousy of the English over their hero, Newton, resulted in their having
little or no intercourse with the continental mathematicians; and as a result,
they continued for years after Newton’s death to work along purely synthetic
methods. The use of synthetic methods did not - hecessarily mean * with-
out algebraic treatment ”’, but it did imply- that the solution of a problem
be first set down and then be demonstrated true. This method iay be
excellent in conveying truths to the average man, but it is not a logical
method to use in investigations of scientific problems nor in the communi-
cation of truths to the scientific world.

While the British were working with synthetic methods, the progressive
Euler, Lagrange and other French mathematicians were frantically applying
the methods of Leibniz to the problems of scientific research. Considering
the foundation that Newton had laid and the heritage that he had left his
countrymen, the larger share of this work should have been done by the
British themselves. However, any attempt to adopt analytical methods or
to reform the study of mathematics at the University—Cambridge—was
tegarded by the professional body of the University Senate as a national
dishonour and a sin against Newton.*

A second result of the controversy over the priority of the calculus was
the adoption in England of the clumsy Newtonian notation of dots and
pricks instead of the flexible dy/dx notation of Leibniz. In England the
Newtonijan notation continued in use during part of the first half of the
nineteenth century; while on the continent the Libnizian notation was adopted
by 1730 under the influence of John Betnoulli (1667-1748) and his distin-
guished pupil Leonhard Euler (1707-1783).

The English adhered not only to the Newtonian notation but to much
of Newton’s terminology. An example typical of this slayish adherence is
found in the term fluxion. While Newton used the term as a velocity, later

* Newton's Fluxlons, Colson’s Translation, London, Sec. 107, p. 116.

‘ ;7W W.R. Ball, 4 History of the Study of Mathematics at Cambridge, Cambndge, 1889.
P 0
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writers confused it with the differential and some, Harris Hayes for example,
spoke of fluxions of fluxions. As a result of this confusion, the way was
opened for the attack of Bishop Berkley on the calculus as developed by
Newton and his immediate followers, and a path was prepared for the contro-
versy between Jurin and Robins.  Furthermore, the concept of fluxions
was so closelyfiassociated with geometry, to the exclusion “ofy Riialysts)
that some later writers held the view that fluxions were really a branch of
geometry.’

At first Newton’s students and commentators kept pace with one
another but as the breach, due in part to the priority quarrel, widened, the
continental mathematicians far surpassed the English, and the distance
between the two groups increased in direct proportion to the number and
importance of the physical and mathematical problems which were found
to depend upon this type of investigation. Sir John Leslie has summed this

up in the following:

The habit of studying our own authors on these subjects, produced at
first by our own admiration of Newton and our dislike for his rivals, and,
increased bya circumstance very insignificant in itself, the diversity of nota-
tion, prevented us from partaking in the pursuits of our neighbouts’ and cut
us off in a great measure from the vast fields in which the genius of France,
of Germary and Italy, was exercised with so much activity and success.

He continues by stating:

Our island after the decease of Maclauren produced none to compete
with the great mathematicians of the continent except Thomas Simpson,
whose native talent had struggled through indigence and a neglect of
education. ... For a long period afterwards the inventive genius of England
seemed to slumber. The learned were content with merely commenting on
the Principia, but rarely borrowing a few scattered lights abroad. The current
of investigation was diverted into other channels or absolved among humbler

objects.®

A third cause for the decline in interest in mathematics and other allied
sciences in England was the conditions in the professional body of mathe«
maticians and scientists and in their operating societies. First we notice that
scientific knowledge barely existed among the upper classes of English
society. The pursuit of science did not constitute a profession in England
as it did in the continental countries. This condition was brought about
by the appointment to important governmental scientific positions of men
who were amateurs or who possessed only a small amount of scientific

8 Florin Cajori, A History of the Conception of Limits and Fluxions in England from
Newton to Woodkouse, Chicago, 1919, pp. 150-250.
¢ Encyclopadia Britanma, Eighth Edition, Vol. I, p. 694,
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knowledge or whose interest was primarily political rather than scientific.
We are able to trace the cause of this state of affairs back to the educational
institutions in England at this time, where the teachers of mathematics and
science were frequently drawn from the clergy or the legal professions. In
most cases the members of the teaching profession were so poorly paid that
the teachers were compelled to exert their best efforts along some other line
in order to make a modest living. On this point Charles Babbage states:
*“We thus by a distructive misapplication of talent which our institutions
create, exchange a profound philosopher for but a tolerable lawyer.”” He
also points out that there was no encouragement nor demand from the
English government for scientists, and that in order to obtain the best posi-
tions one must have a financial standing or play politics. He then con-
trasts this state of affairs with that in France, stating that the eminence of
a great scientist was as great as that of Napoleon himself and that a know-

ledge of science and mathematics was a recommendation for appointment
to public office.

An example of the difference between the attitude of the English kings
and that of the continental rulingmonarchs is shown in the course followed by
Frederick the Great of Prussia, Catherine of Russia, the Kings of Sardinia,
and Napoleon. With these rulers the demands of civil, naval, and military
engineering made the study of mathematics a necessity. They were clear-
sighted enough to see that the best way to obtain the services of the most
distinguished mathematicians was to pay their living expenses, let them
produce the needed mathematics and then leave them free to work along
the lines they preferred. One has only to glance at the enormous amount of
original work produced by Euler, Lagrange, Daniell Bernoulli, and others
to realize the wisdom of this scheme. As evidence of the fact that these
men of science were respected and well paid for their knowledge is found
in an excerpt from the opening address of M, Alexander von Humbolt at 3
meeting of scientists in Berlin in September 1828. It states as follows:

The taste of knowledge possessed by the ruling family, has made
knowledge itself fashionable; and the severe sufferings of the Prussians
previous to the war by which themselves and Burope were freed, have impressed
on them so strongly the lesson that ‘knowledge is power’, that its effects are
visible in every department of the government; and there is no country in

Europe in which talents and genius so surely open, for their possessors, the
road to wealth and distinction.?

In contrast to the Continental attitude toward the scientist, we find
that the English were devoid of any great leaders in science and that they

7 Charles Babbage, Reflections on the Decline of Science in England, London, 1830, p. 37,
8 The Edinburgh Journal of Science, April 1829, Vol, 10,
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were too prejudiced against the Continentals to employ them in any of the
government services. Babbage points out in his Reflections® that the Roya]
Society gave but little more encouragement to mathematicians and scientists
than the government itself. Although the Royal Society was formed pti-
marily for the promotion of scientific interest among its members, it had
now reached the point where a large number of members were visibly
lacking in any scientific interest. In many instances the nobilty held
membership in either the parent society or one of its member societies for
no other purpose than for the prestige it gave them, while, on the other hand
many of the Fellowships were held by persons who lived in the remote parts
of England and were obtained for them by their agents who lived in London.
The majority of these persons had no particular interest in science nor, as
a matter of fact, in the Society itself. With this situation in mind it is inter-
esting to compare the ratio of the membership of the Academies in France,
Ttaly and Germany to the population of these countries with the ratio of
the membership of the Royal Society to the population of England; for
example, the ratios are as follows: France 1 to 427,000; Italy and Germaay
1 to 300,000; the Royal Society, 1 to 32,000. In other words a seat in the
Academy of Berlin was nine times more selective than one in the Royal
Society. As a result of this policy of selecting its members, we would expect
to find a similar policy in the selection of the officers of the Society. In
most instances the President, Vice-President, and Secretary were chosen
without regard for their interest or qualifications in mathematics or science
and as a result the affairs of the Society were conducted by friends of these
officers. These agents were usually more interested in politics and special
favours than in the welfare of the society or its members, and naturally
always opposed any and every suggestion of reform from the members and

officers.

One of the first men to recognize the deplorable state of British mathe-
matics was Robert Woodhouse (1773-1827). He not only recognized the
condition to which mathematics had fallen but also sealized that one of the
great obstacles to reform in English mathematics at this time was the lack
of suitable text-books which would give students a working knowledge of
the differential notation for use in physics and astronomy. Although
Woodhouse’s publications were not suitable for use in the public examina-
tions of the University, they did reach a group of young students at Cambridge
and aroused in them a desire for reform. Woodhouse was a rather eccentric
character and his writings are somewhat typical of the man himself. His
style was crabbed and his works were difficult to understand on account
of his complicated grammatical constructions; in consequence, his reputatiqq

$P. 40, ff,
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‘depends less on his productiveness than on the fact that he was able to
impress a group of young students at Cambridge and to bring about a desire
‘for reform in -mathematics.’® This group—consisting of Peacock, Herschel,
Babbage, and Whewell—decided to form a club, later called the Analytical
Society, in order to study and advocate at Cambridge University the use of
analytical and differential methods which were then being used so success-
fully by the leading continental mathematicians and scientists. Herschel
stated, somewhat later, that the whole movement of reform as suggested by
Woodhouse would have come to naught except for the perseverance of
Peacock. However, De Morgan gives us the following statement in regard
to Woodhouse: “but the few who can appreciate what he did will always

regard him as one of the most philosophical thinkers and useful guides of
his times.”1

The Analytical Society met on Sunday mornings at breakfast with the
avowed purpose of studying the new continental methods of analysis. This
group of students were interested in mathematics, physical research, and
astronomy; and their aim was to develop ways and means of correcting the
situation which then existed in England with respect to the study of these
subjects. Of the group of four, George Peacock (1791-1858) seems to have
exerted the greatest influence. - Although his written contributions are
meagre, he did have an extensive knowledge of his subject, he was an excellent
lecturer, and he commanded the admiration and respect of both his colleagues
and students. His knowledge of mathematics and his practical good sense
made him the natural leader of the new movement. Charles Babbage
(1792-1871) gave the name to the society and stated that the avowed purpose
of the group was to advocate “ the principles of pure d-ism as opposed to
the dot-age of the University ”. His most important contributions were
the publication of the * Calculus of Functions ™ in the Philosophical Tran.
sqctions and his labors in founding the Astronomical Society. The
third member of the group was William Whewell (1794-1866), who prob-
ably exerted a greater influence on his contemporaries than on later mathe-
maticians. Because his knowledge was so wide and discursive that it could
not be too deep, his reputation as a profound thinker and scholar subsided
as time went on. Tt shloud be borne in mind, however, that his History of
the Inductive Sciences played an important role in the development of
scientific thinking in England for a considerable length of time after its publi-
cation. The fourth member of the group was the illustrious astronomer
Sir John Herschel (1792-1871).  Although his contributions to mathematics

1 I, Todhunter, Dy. William W hewell, his Writings and Letters, London, 1876, Vol. 2,
P, 28 ff; see also Ball’'s History, p. 117 ff.

¥ Ball, loc. cir., pp. 119-21,
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are meagre he did publish a number of works on astronomy and he is
usually credited with the founding of modern stellar astronomy.

The avowed purpose of the Analytical Society was to supplant the old
fluxional methods in England by the continental methods of analysis. In
1817 Peacock was made moderator for the year at Trinity College and the
symbols of differentiation of Leibniz were used for the first time in that year’s
senate-house examination. In 1818 Peacock stated:

I assure you that I shall never cease to exert myself to the utmost in
the cause of reform, and that T will never decline any office which will increase
my power to affect it.... It is my silent perseverance only that we can hope
to reduce the many-headed monster of prejudice and make the University
(Cambridge) answer her character as the living mother of good learning and
science.1?

The members of the Society felt that it was the exclusive use of the fluxional
methods that was so hampering to the development of mathematics in
England. They were particularly offended by the sign of isolation in use,
along with the practice of treating all problems by geometrical methods.
These things offended them more than the inherent defects of the fluxional
method itself. In general this program of reform was definitely opposed
by the older men of the University. However, the Society never gave up
hope and, as a matter of fact, was encouraged by the younger professors
as well as students, who lent their support to the efforts of the members of
the Society. The differential methods were used for the second time
in the 1818 examinations and the following year they were employed by
Whewell.

It has been frequently pointed ‘out that one may judge the interest and
type of teaching in a given subject by examining the text-books that are used
and written during the period in question. This fact is certainly borne out
for the period under discussion. It is natural to expect that there had been
practically no texts written in English using the differential notations, but
on the contrary the text-books using the fluxional methods were few in num-
ber and far from satisfactory. One of the obstacles in the way of the reform.
ers was a rule of the University that no question in a new subject, which had
not been previously discussed in some treatise suitable and available for
Cambridge students, should be set for a mathematical tripos. Since there
had been no text-books written in English on thie new analysis, it is needless
to say that it was impossible for the reformers to bring these subjects to the
attention of the students until the texts had been prepared. The major
part of this work had to be done by the members of the Analytical Society;
and it should be pointed out that a major part of the time and energy of

1 Ball, loc. cit., p. 120
P 2%y
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these scholars was consumed in writing elementary texts of a routine nature.
One of the first texts in English to give the new analysis was Woodhouse’s
Analytical Trigonometry published in 1810. The needs of an analytical exposi-
tion of the calculus using the differential notation were met by the publica-
tion of a translation of La Croix’s Differential Calculus in 1816. This
publication was followed somewhat later by Examples of the Hhustrative
Use of the Differential Calculus. After the groundwork had been com-
Pleted by a few translations and tracts, by the efforts of the members of the
Analytical Society, other writers began to add to the list and to expand the
range of their approach to the task. Noteworthy in this list is the Principles
of Analytical Geometry by Henry Parr Hamilton, published in 1826, in
which conic sections are defined by an equation of the second degree. This
publication, along with John Hyme’s publication of an Analytical Geometry
of Three Dimensions, opened the way for the application of algebra and the
rectangular system of co-ordinates to the study of geometry in England.1®
In algebra, Peacock in his Algebra, published in 1830, did much to reform
the teaching of algebra, to establish algebra on a firm foundation, and to
develop the subject as an abstract system of symbols that may be combined
according to operations that conform with pre-assigned postulates. In

the physical and applied sciences noteworthy additions were produced by
Herschel, Whewell and George B. Airy (1801-1892).

By 1830 the introduction of new text-books was well on its way but,
it is needless to say, that the efforts of these men were met with opposition
by the friends and advocates of the fluxional methods of the Newtonian
school. A typical example is found in a quotation from William Hales’s
Analysis Fluxionum published in Mesere’s Scriptores Logarithmici, Vol. 5,
where he makes mention of a review by a member of the Analytical

Society of La Croix’s « Differential Calculus ” in the Edinburgh Monthly
Review. He writes:

How was it possible that the eyes of the Monthly Reviewers could be

so holden....as to assert, that Newton himself was not perfectly satisfied
of the stability of the grounds on which he established the Methods of
Fluxions ?

In the same work he vents his wrath on D’Alembert by considering him a
hostile critic of Newton, as a “ philosophizing infide] *, and as “ one of the
original conspirators against Christianity, and at once the glory and disgrace
of the French Academy of Sciences.”™ The above remarks are typical of
the campaign carried on by the adherents of the old fluxional methods
against the reforms and reformers of mathematics in England.

13 Ball, loc. eit., p. 117 f.
M London Monthly Review, London, Vol. 32? 1801, pp. 176-182,
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With the opening of the third decade of the nineteenth century, the
reforms of the Analytical Society were well under way and the new material
in the form of text-books had been completed for the preparation of students
at the universities for their tripos examinations. Likewise the ground had
been cleared and the foundation laid for the brilliant works of Sir William
R. Hamilton, D. F. Gregory and George Boole. After the appearance of
these men and with the beginning of the second half of the nineteenth
century, English mathematics and theoretical science again took its rightful
place in the scientific world,






A THEOREM ON RESIDUES AND ITS BEARING
ON MULTIPLICATIVE FUNCTIONS WITH
A MODULUS

BY
C. S. VENKATARAMAN*
University of Madras

1. InTroDUCTION.—Hardy and Wright in their “ Introduction to the
Theory of Numbers” have shown the genesis of Ramanujan’s function*

Cy (N) from &N M and also its multiplicative nature in the argument M
by using the following theorem on residues: If (m, m’) = 1, a runs through
a complete set of residues prime to 7z a" runs through a complete set of
residues prime to ', then am’ +- a’m tuns through a complete set of residues
prime to mm’' ” (Theorem 60, p. 53).

Tn this paper, I first generalise the above theorem on residues and then
show how from a certain class of quasi-multiplicative functions of two
arguments we can derive modular multiplicative functions?® of two arguments
by a process which is quite general and similar to the one which has given

rise to Cy (N) from & NM Incidentally, we shall also see the multiplicative

character of Cy (N) in both the arguments, a fact which does not seem fo
have received much attention.

2. T will now briefly explain the class division of integers (mod M)
by Dr. Vaidyanathaswamy® on which the generalisation of the theorem on
residues is based. (

Let t,=1, t5, s, .-+, I, = M, be the distinct divisors of the /integer M.
Then the M numbers 1,2,.. ., M considered as the representatives of
the M distinct tesidue classes (mod M) can be divided into r mutually
exclusive classes ¢, Cs,....» Cr Where ¢, consists of the numbers whose
greatest common divisor with M is #. The class ¢, evidently consists of

é (l;—d) numbers.  For, let (¢, M) = d, where a is any one of the numbers
3

1,2,...., M and d (the greatest common divisor of @ and M) is necessarily

one of the numbers t,, ta,. .. .5 L. Now,if b< %{, then clearly (bd, M)=(d, M)

if and only if b is prime to % Hence the number of numbers not exceeding

i

* 1 am indebted to Dr, R, Vaidyanathaswamy for his help i the preparation of this pager,
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M and possessing the g.c.d dwith M is precisely ¢ (I%Iﬁ . Since X ¢ (%'I)
, M
= X ¢ (d) =M, the classes exhaust the M numbers.
4aM

We shall refer to the ¢ (%4—) numbers of the class ¢, or any set of ¢ (Md)

numbers which are congruent (mod M) to the ¢ (%) numbers of ¢, as a
class (mod M) specified by the divisor d of M.

In particular, a complete set of residues prime to M is a class (mod M)
specified by unity.

3. We will now proceed to the generalisation of the theorem referred
to.

THEOREM A.—If (M, M’) = 1, a runs through a class (mod M) specified
by the divisor d of M, @' runs through a class (mod M") specified by
the divisor d' of M’, then aM’ + a'M runs through the class (mod
MM') specified by the divisor dd’ of MM'.

Proof —Clearly there are ¢ (%) ¢ (I:ii,) = ¢ (N{—W}ﬂ;) ‘numbers

aM’ + a'’M. They are distinct (mod MM'), for if
aM’ + M = a,M'+ g, M (mod MM'),
then aM’' = g;M' (mod M)
and so a, = a, (mod M) since (M, M) =1,
Similarly a4, = a," (mod M’).
But this contradicts the hypothesis that a,, a, are distinct (mod M) and
ay', ay' are distinct (mod M'). Hence the ¢ (1!%4,—’) numbers aM’ + a'M
are distinct mod (MM’).
Also(a, M) =d, (a', M) = d by hypothesis.
@M, M)=d, @M, M)=4d
@M +aM,M)=d, (@M +aM’,M)=d".
Hence (aM'+ o'M, MM") = dd'.

Thus aM'+ a'M runs through a class (mod MM’), specified by the
divisor dd' of MM'.

4. We will next show how from a certain class of quasi-multiplicative
functions, we can generate multiplicative functions with a modulus;—
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TuroREM B.—Let f(M, N) de an Arithmetic function with the modulus
M possessing a quasi-multiplicative property in M, namely, f(M, N)
F(M', Ny = f(MM', NM'+ N'M), whenever M is prime to M.

Then F (M, N) = Zf(M, R) {where R varies over a class {(mod M)
specified by the divisor g of M, g being the g.c.d. of M, N} is 2 multiplica-
tive function of M, N with the modulus M.

Proof—Let M, N, M’, N’ be integers such that (MN, M'N’)= 1.
Suppose (M, N') =g’
Then F(M, N) F(M', N) = [ZfM, R)} [Zf (M, R)]

=2 f(MM’, RM'+ R'M)
= F(MM’, NN') by Theorem A and defi-’
nition of F.
Thus F (M, N) is multlphcatlve in M, N. That it has the modulus M follows
from the fact that (M, N) =g = (M, N + AM) where A is any integer.

5. Let FM,N)=Z2f (M, Nr) where r runs through a complete set
of residues prime to M. Then we have the following interesting theorem
which is slightly different from Theorem B.

THeOREM C—F (M, N) = $ (M) 2 f(M, T) where T varies over a class
+(3)
(mod M) specified by g = (N, M), and is multiplicative in M, N with
the modulus M.
Proof—To prove the first part we have to use the following theorem of
Dr. Vaidyanathaswamy.!
“If ¢ is a divisor of N, the ¢ (N) numbers prime to N fall into ¢ (¢) sets,

each set consisting of Z—- ¢ (N) numbers equal to each other mod ¢,”

rI0)
Applying this result, we sec immediately that

FoM, N) = E0 27, m9),
+(3)
where 8 runs through a complete set of residues prime to M/g. If we write
N5 =T, clearly T varies over a class (mod M) specified by the divisor
= (M, N) so that
rovt, N = 200550, )

+(7)
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. ‘The second part follows from Theorem B.

6. Ramanujan’s function Cy (N) referred to in the introduction is a
. iN .
typical example of Theorem C. The function f(M, N) = & M satisfies

the relation f(M, N)f(M’, N') = f(MM', NM'+ N'M) not only when
M is prime to M, but for all values of M, M’. Thus it is not merely quasi:
multiplicative in M but quasi-linear in M.
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ON SOME VIBRATIONAL PROBLEMS

BY
PRITHYI NATH SHARMA
Hindu College, Delhi

In a recent paper Christopherson' has discussed the solutions of the
vibrational equation,

2 »
v“z=(5i-,+w z=—k'z m
subject to the boundary conditions
z=0, @1
0z .
and 5= 0, -2

dv being an element of the normal drawn to the boundary.

He has obtained the known solution? due to Lame for an equilateral
boundary and has shown how the same ean be used for a regular hexagonal
boundary, But in both the cases, the solution is incomplete as it contains
only one arbitrary parameter, the system possessing two degrees of freedom.
Q{;i:\ilar drawback exists in solutions obtained by B. Sen® for equilateral
botrfidaries.

From the boundary condition (2-1), which amongst other problems
relates to the transverse vibration of membranes. Christopherson finds a
solution of the type

z =2 sin mnx/a cos mmy+/3ja — sin 2mnx/a )]
the sides of the equilateral triangle being x = a, y = < x/4/3, and that of
the regular hexagon being x= + a, y= +x/v/3 + 2a/+/3. If the condi
tion (2-2) is utilized, and this relates to a number of problems in Hydro-
dynamics and conduction of heat, the solution given in (3) is changed into

z == 2 cos mnx/a cos mayr/3fa + cos 2mnx/a 'C))

The complete solution corresponding to (3) has already been given by
Seth® in a recent paper where other triangular boundaries are also discussed.
In fact, the complete solution corresponding to (3) is

z = 2 sin (m ~ n) nxja cos (m - n) wy+/3/a
— 2 sin (2m -+ n) nx/a cos nny+/3/a
+ 2 sin (21 + m) wx/a cos mwy+/3ja 31
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and corresponding to (4) it is
z = 2 cos (m — n)wx/a cos (m -+ n)nvy/3/a
+2cos 2m + n) wxla c'c;s nmyy/3/a
+ 2 cos (21 + m) mxfa cos mmy4/3/a. (5-2)

1t may be mentioned that (5) also holds good for a thombus containing
an angle of 120° with sides given by

x=0, x=a, y=x/v/3, y=x/3+ 2a/+/3.

Exact solutions corresponding to the boundarv condition (2:2) are

not given in Seth’s paper mentioned above, and it will therefore be not out
of place to give them here.

For a right-angled isosceles triangle, the solution is
z =sin (2m + ) ax/2a sin 2n + V) 7y/2a
— sin (2n + 1) 7mx/2a sin (2m + 1)wy/2a, 6
the sides being x =a, y = =+ x.
For an isosceles triangle containing an'angle of 120°, we find

2 =2 cos (m — n)mxja cos (m + 1 + 1) mya/3/a
~2sin (2mt 1+ 211

)nx/a sin (2n + 1) my4/3/2a
2m + 1 ‘

+2sin (2,, +1+ )ﬂx/a sin 2m 4 1) my4/3)22 4j

the sides being x = a, y = x4/3, and y 4 x4/3 = 2a/4/3

The same solution holds good for a right angled triangle containing
an angle of 60°, the sides being x = a, y = a/y/3, y = x+/3.

1t may be mentioned that both for the hexagon and for the isosceles

tnangle containing an angle of 120° the solution given in (5) and (7) onIv
gives * symmetric vibrations ’,
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SOME DIOPHANTINE EQUATIONS

BY
P. Krsava MENON
Madras Christian College

Given a solution of the system of equations
A1x1’+A2X2f+. cee —}—A,,x,,r =0 (l' = 0, 1, 2,. sady m— 1) '.'(1)"
let us try to obtain a solution of the extended systern .
ApeFAXS 4. A, =0 (r=0,1,2,....,m—L,m+ 1) 2).

We shall require two lemmas, which are easily proved:

LemMa 1—If x;=a,(i=1,2,....,n) be a solution of either of the
systems (1) or (2), then x, =ka, (=1,2, ..., n) will also be a solution -
of that system. )

Lemva 2—If x;=@a; i=1,2, ....,m) bea solution of the system n,
then x,=x+a (=12, ....,n) wil also be a solution of the system
for alt x.

Corollary~X x;=a; (=12, ...... ,n) be a solution of (1), then

=a —ay(i=12,....,n—1) will be a solution of the system
A A Xy =0 m=12,....,m—1)
AT At A = — A,

Let us now try to satisfy the system (2) by the values x;=x+ g
(i=1,2....,n) where , = a; s a solution of (1), by choosing x properly.

The equation
EA,(x+a,~)"‘+lsx’”+12A,+(m—1}—I)x”’Z‘A;a,--{r-....-{-zA,a,!”H:o

reduces to
m+D)xZAa"+ZAa" =0

L ]
Hence if we take x = m(n%jamm,thenx,ax-%a, (i=12....,n)

will satisfy the system (2). Using Lemma 1 we obtain
Tugorem L. If xp=a;(i=1,2, ...., n) be a solution of the system (1),

= (m+ 1) (T A — (£ A

will be a solution of the extended system (2).
2

then
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Taking m = 1 in Theorem 1 we get the following:

TurorREM 2. If z A, =0, then
i=1

X,= 2a, (;§1 A,-a,-) -, i Aja

is a solution of Ay X+ Ay X%+ ... + A, x,2 =0 for all values of ay,
SN

In Theorem 2 take n =2k, Aj=....= A;=1, Apyr= A,Hz_....
= A,= — 1, and write
Qp = — bi
b } (=12....0
Xk +1== Vs
Then we get

TreorREM 3. A solution of the equation

it =yttt
is given by

.x,=2aj (a1+ caen +ak+b1+ seen +bé)___(a1ﬁ+ vans +aéz—b12"—' e _,bkﬁ)
yi=2b; (m+.... +apt+bi+.... +b)—(b2+.... byt ?—.. .. —a,?
(i=12...,k).

Let us take m=2, n =2k, Aj=....=Ap=—A; 1 =—. . ..=— A =]

in Theorem 1. Then we get
THEOREM 4.—A solution of the system
Xt Xt = yiF ey

Xt 2P = Yt L
is given by

X, =3a; (a12+ Ve +dk2_“ blz— ress ——b‘éa)—~ (013—}- e +ak3—b13—. . o "—bks)
ye=3b @+ .. tag— b= —b)— (@Y. tap—bi— ... .—b)

(i=1.. oK)
where ay+ ay+. ... 4a= b+ by+. ...+ b,

Let us now consider another problem. We suppose that a solution of
the system

A+ +A, X =0 (r=0,1, 2, ...om=2m+1) 3
is known, say x;=a, _(i=1,2,....,n). Then

2 A,(x+ a;)"‘+1= xm+12A+(M+ l)meA a+ +2A1a‘m+1

="} Yeaar-y o (v 1)<2A.~a.-"') .
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’x‘ v*,«
'This will be zero if War\_
FEA G x+ ZA 0" =0,
Thus we get

THeOREM 5—If x;=a, (i=1,2, ....,n) be a solution of the system
2A,x"=0(r=0’ 1’23 ....,m—2,ﬁ1+1),

then x;=ma, (ZA;a™)—2ZA;a"(i=1,2,

“@
...... )]
will also be a solution.
Takingm=2,n=2k, Aj=....=Ap=—Agy=—....=— A, = |,
and writing xz4; =Y, @, = b (i=1,2, ..., k), we get
THEOREM 6.—If X, = a,, y; = b(i=1,2,....,k) satisfy
X34 xi= o FxP= Y3t YA,
then x;=a,(a;+... . +@—b—... b)) — (@ ... . Fait—blt—. ... —bY
Ye=by (.o Fag—by—. ... —b) — (@ . ... +ai—b ~. ... —b)
will also satisfy the equation.

Let us write ma, ( z A a” *‘1) ~-22 A;a =a, Theorem 5 may
- =2 j=1
theri be tead as follows: If x,=a, (i=1,2,....,n) satisfies equations

(4), then x, =a, (i=1,2,....,n) will also satisfy those equations. It
follows. for the same reason, that

b2 %
Xi = ma,( z A, a,/:m'l -2 2Z A,' aim
j=1 j=1

will also satisfy (4). Writing mZ A, g,
we have e, = pa, + g,

-1 .

=p, - ZEA; a/“ =g,
' ”

z A,' a,-”"’:—- z A,'(pa,- +q 1 = (2 A,‘ a,”“‘)p’”"l = %1«,

ZA, a,'m =2 A{. (pa; + gy = Pt A"+ mp™q 2 A; tl,"m'“1

P, P
== +r="5,
since LAa*=0for(n=0,1,2,....,m~—2), so that’

A
ma, (EA; 0" =25 A" = m(pa+q) o~ 2 =p" 0,
1t follows that, effectively, :
x, = ma, Z Aja™ — X Aja”

(i=12....,n)
is the same as the original solution. Thus we get

TaroreM T.—The two solutions

X¢ = a4, x,-=ma,2A,a,-’-1-_24_.‘.'A,-a,~”‘ (i=1,2,....,n)
of the system Z Aix{ = 0

r=01,2....,m=2m+1)
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have a mutually reciprocal character in the sense that the pracess by whick
the second is derived from the first, gives back the first from the second.
Let us now consider the system of equations
in,xi, e Xy =YYy (=12,....,m—1)

where the summations are over all combinations, j at a time of the » suffixes
1,2,....,n Let

x,=a,y=b (G=1,2....,n)
be a solution of this system and let us write for shortness
20,0y ety = Ay Zhy by by =B, (j=1,2....)
Then I(tta)tt+a)....C+a)—Z@+b)....t+ by)

=(§:f)mq—30¢4+(§:§)MQTBQ¢%k.”+ug~3»
—0ifl<jgm—1
= (n - m) (Am - Bm) 1+ (Am+l—Bm +1) if j =m + lz
— (Am - Bm 1 '
¥t (G sy e

Zl+a)....0+a)....(tt @) —@+b)... E+b, N=0
§¢ that we have

THEOREM 8.—If x,=a;, y,=b;(i=1,2, ....,n) be a selution of the
system of equations

Exy Xy i Xy =T YV yy, (=12, ....,m=1)
then '
X = (n - m) a, (Am - Bm) - (Am +17 Bm +I)
Yi=(n—mb,(Ap — By) — (A4+1— B, )
will be a solution of the extended system
DI N =2y,1 oYy U=1L2, .. m—1m+ 1)
In a similar manner, analogous to Theorem 5, we get
THEOREM S—Mi ¢ =a;, yi=b; (=1,2....,8) be a solytion of
the system .
Txig Xy =Ly, py (=12,....m=2,m+1y
then )
X, = (’n -+ 1) (Am—-l"" Bm—1) a, - 2 (A‘m - Bm)
yi=(—m+ 1) (Apa— Byy)b; — 2(As, — By},

is also a solution of the system.



ON INTEGER CUBE-R0OOTS OF THE UNIT MATRIX

BY
R. P. Badiad
The University of PunjuB, Lahore

Tn a paper in the October, 1927 issue of the Journal of the London
Mathematical Society, Prof. Turnbull provéd thdt the integer matrix of order #

X, = [ = (- 0*~ (§ 1)

has the property X, = the unit matrix E,,

R. Vaidyanathaswamy in the April, 1928 issue of the same Journal
obtained an expression for integer rth-roots of the unit matrix. As a special
case he obtained [ _i _.(1)] as a cube root of the unit matrix [(1] ?]

In this note I pfove that* the nebeSsary and sufficient cofidifions for the
integer matrix X,= [‘cl g] to be a cube root of [é ?J are

Mat+d=—1; ad—be=1
et whett ¢ = d = afnab=c'=o.~‘
Prooy==Consider the transformation

A= [‘c’ SJ (%, y) = {ax + by, cx + dy}.

It can be easily verified that
A= {(@® + 2abc + bed) x + b {(a®+ ad + d* + bc) y,
¢ {a? + ad + d* + bc) x + (d°+ 2bed + abe) y}
-_‘——Thc—;tudy of R. Vaidyanathaswamy's paper, referred to above, has led S. Chowla and

me to conjecture that all the (= T)th order integer matrices [X, ;] satisfying [X, ] = the unit
matrix E,., where p is a prume can be expressed as A~ M, A where A 1s an integer matrix

of determinant 1 and
_l '._1 . . . - __1
1 0 « + - Q
My, = 0 1 « » « .+ 0

o 0. - -1 0
We bave uged the theorem, proved in this note, to prove the conjecture for p = 3,
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Therefore the necessary and sufficient conditions for X, to be a cube
root of E, are

a’+ 2abc + bed—1=0 - (I)
addtad+d+be=0 (In
&+ 2bed+abc—-1=0  (III)

It is easily seen that (II[) = (I) + (4 — a) (I1). Therefore wiiting k
for bc we obtain the necessary and sufficient conditions as

e+ QQa+d)k=
a*tad + &+ k=0,
Eliminating & we have
@+dp=-1
or
a+d)y=~-1
as a necessary condition.
Also

be=k=—(a%+ d*+ ad) =ad — (@ + d)’=ad — 1
Thetefore
cad—bc=1

is another necessary condition,

That the two conditions are sufficient can be easily verified by sibsti»
tpting these in (I) and (II).



ON THE REMAINDER IN TAYLOR’S THEOREM

BY
C. T. RAJAGOPAL
Madras Christian College, Tambaram

* The first of the theorems which appear below gives a formula for the
remainder after n terms of the Taylor series of a function differentiable n
times. The formula explains the genesis of all the known forms of the
remainder. The second.theorem gives inequalities satisfied by the remainder
after  terms when the function is differentiable (n — 1) times and the (n —1)th
derivative is continuous but not differentiable. Young's form of Taylor's
theorem turns out to be a special case of the second theorem.

THEOREM 1.-—Suppose that
ARV A G A
6 1 2, & ®),.....g% M), |} are continuous when a< x £b;
L b, KO 00
i) S (), g9 (x), K (x) exist when a < x < b.

If we write -
RN =1®) ~f@~C~af @—...- =L o0 )
R@=50)-@~6-ag@ .- &E=I grv

Ry(h) = h(B) —h (@) — (b — ) ' (@ —....— %‘:"l—);’l;hw—u @),

then there is a £ such that a < £ < b and

1) g ) h (),
RS, Ry (@), R, (h) o
(gz 1)) - f (5) (bp"'—f{ ) . & (%) (f) ((b 1) ' h(ﬂ (f)

Proof —The special case n = p = g = 1 of the theorem is well known.
The general case follows at once from the special case when we replace f(x),
2 (x), h(x) by F, (%), G,(x), H, (x) respectively, where

(b

Fa() =10+ b= 9@+ + GET e,

G =g +E-0g @+ . E’;,‘ g (3
' (b — 0

Hy(x) = A+ @G —x)h )+ .. =11 -1 (x),
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DEDUCTIONS.—
LT(A): -k (x) =1 gives, for a ¢ such that a < & < b,
R, (), R, (9)
G-

=0T 1™, (zb___f)“' g® (&)
This is Mahajani’s form for R, (1) [1]. )
S I@B): Take k() =1, g(x)=(x—a)", m>p and sct b= a+k,
§=a+0k(0<0<1). Then
_Rlf) =0 ™ (at GRY
B(pm—p+D)~ e R RSV
.. This is a form of the remainder given by Edwards in his Differential
Calculus, concluding Miscellaneous Examples, Ex. 52.

I(C): If m=p in I (B) we have the Schldmilch-Roche form of the

remainder : (1 — 0P a4 i)
—") ‘—; Y a -+
Taeorem IL—In Theorem 1, drop the hypothesis (ii). Denote by D ¢ (x)
either any one of the derivates of ¢ (x) on the right, viz., D*¢ (%),
D,4 (x), or any one of the derivatives on the left, viz., D¢ (x), D_¢ (%).
Then there are &, &, such that a < &, &, < b and the determinant

Rn(f)> Rp (g), Rq (h),
s s “—‘“‘i)(’f), 6~ 22 By

is non-positive for x = &, non-negative for x = &,

Proof —First we establish the special case n = p = ¢ = 1 of our theorem
by appealing to Pollard’s extension of Rolle’s theorem to continuous non-
differentiabe functions [2, §3]. Then we have merely to replace f(x), g (x),
h(x) by F, (x), G5 (x), H, (x) respectively as in the proof of Theorem 1.

DepucTions from Theorem IT corresponding tor I(A), I®), I(C) are
the following:

I (A):
Ru(f), Ry(e) <0
(b—f)ﬂ-x‘bf( 1)155'1)’ (b- fl)l’-ll()gﬂ 1()§1’)
R, (f) Ry ()
o wy D™D (E ")) t0-1) (fz)
R R R ks ,

@<é <b<b)
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I (B):
(1 — 0 Df"ta+ b kS R.(f)
b, (n—"! >Bm—-pT D
> k" (- 92)”4 Df(”—” (e + 92 k)
B AR = | N
(mzp; 0<b, 6,<1)
[1§(®)X
kK (11— 01)”'—? Df(npl) (a+ 6,k > Rﬂ(f)

p -1
=k

0<b, 8<])
IL (D). LI(C), with the additional condition that ft" (a) exists, yields

(L=0)"*Df"V(a+ 6,k)
)2 - (n=1)!

lim R, (f) =1® (a)

k>0 kﬂ/
which is Young's form of Taylor’s theorem.

To prove this we put p = # in II (C) obfaining
Dfen(a+ 6 k) > 50 > pret a4 6,k

kﬂ/ , =
We then choose & > 0 so that for 0 < k£ <
f(ﬂ) (a) 1 >f(”—1) (a i k) f(”'—l) (a) >f(,,) (a)

whence, Tecalling that the derivates and incrementary ratios of a conti-
nuous function have the same bounds in any interval, we establish that, for

all sufficiently small k
f® @)+ e2Df" V(@) + b1k
I;’;/(f) > Df(ﬂ_l) (a + 92 k) >f(u) (a) — e

This involves to the conclusion sought.
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CONCERNING RECIPROCAL SCREWS

BY
C. T. RajaGgorAL
Madras Christian College, Tambaram

1. F. J. Noronha’s note “ On Reciprocal Screws ™, Maths. Student,
1944, 12, 734, has a central idea which can be presented in a more familiar
form, more familiar at any rate to readers acquainted with the usual dis-
cussions of ¢ Forces in Three Dimensions’. In this form the idea can be
-embodied in a theorem which is nothing but a purely statical description of
the relationship beiween reciprocal screws generally defined by our text-
books in statico-kinematical terms.

THEOREM.—For two Screws to be reciprocal, a necessary and sufficient
condition is that a wrench on one of the screws should have a pair of con-
jugate lines which are nul lines for a wrench on the other screw.

The proof of this result depends on two others which (because they are
well known) I state without their proofs.
(@) ¢ In the usual notation, let wrenches F, F' have the components
X, Y,Z; L,M,N), L
&, Y,Z; L'yM,N) 2
respectively, referred 1o an arbitrarily chosen set of rectangular axes. Then
the screws on which the wrenches act are reciprocal (according to the usual
definition) if and only if
S(LX+LX)=0. ‘ 3)*
(b) For the wrench F', defined as in (2), the line I having (homogeneous)
co-ordinates
(Xp, Yo, Zg; Lap My, Np). LiXpt MYt NiZp =0 O

is @ nul line if and only if
Z(LX'+ L'X) = 0. )

Proof of Theorem—Let us start with conjugate lines /;, [, of F. Then
if I is given by co-ordinates
Xy, Yy, Zy; Ly, My, Ny,

* The condition (3) for reciprocal screws, although it may not find a prominent place (oxj
any place at all) in the commonly used text-books, is nearly three-quarters of a century old ;
jts first expression being 1n Klem’s paper in Math. Annalen, 1871, 4, 403-15,



76 C. T. RAJAGOPAL-

{; will be given by
(X =AM, YA, Z~AZy; L— ALy, M — MM, N — ANy)
) being a constant détérmiihed by F and 4.

. To prove the necessity of the givén condition, we have to show that if
(3) is given and if (5) is satisfied with the co-ordinates of /; in place of the
co-ordinates of Iz, then (5) is also satxsﬁed with the coordinates of /, instead
of those of ;. This is obvious.

To prove the sufficiency of the given condition, we have to shiow thdt
if (5) is satisfied with the coordinates of /;, and also with those of /,, then (3)
follows. This is also obvious.

2. An immediate deduction from our theorem is

COROLLARY 1. Given a tetrahedron ABCD, it is necessary and sufficient
for two wrenches F, F' to act on reciprocal screws that AB, CD should be
conjugate lines of F and AC, BD should be conjugate lines of F'.

This is the first of the two results in §2 of Noronha’s note and leads at
once to the second result. It needs no demonstration after our theerem
since elearly 4B, CD which are conjugate lines for F dre ntit lines fot F'.

The proof of our theorem also leads to

COROLLARY 2.— It is given that all but one of a finite number of forces
act along nul lines of a wrench F'. Then a recessary 'and sufficient condition
foF the wrench F equivalent to the given forces to act on a screw rea rocal
to that of F' is that the excluded force should also act along a nul livie f F.



ON THE EQUATION ax’ £ by’ = ¢z’

BY
P. KEsAVA MENON
Madras Christian College

1. If one solution in integers of the equation
ax? —by*=1 1))
is known, we could at once write down explicitly an infinity of solutions of
the same equation by the following simple device.
Let x = m, y = u be a solution of equation (1). Write am®= cosh? 4.
Then bn®=sinh?#6. If we write ax? = cosh?pf, then by* = sinh® pf so
that

__coshpf _sinhpd
X=moohg =" Gk g @

. . . cosh pf sinh pf .
satisfy equation (1). 1If p is odd, both coshp 7 and sinhpﬂ are polynomials

in cosh? 6 and sinh? § so. that (2) will give us integral solutions of (1) for alk
odd values of p. Thus we get
TeeoRMM 1.—If x =m, y = n be a solution i integers of equation (1),
then
‘s (ma+ nyh)-t+ (ny/a — nyB)H
R e

2v/a

_(mvia+ ny/BY — (mv/a — ny/b)%-1
= Vi
are integral solutwn& of (1) for all positive mtegral values of q.
Corollary 1.—Taking g=2 we sce, after a little reduction, that if
x=m, y=n satisfy (1), then x = m (dbn*+ 1), y = n (4am’— 1) will alse
be a solution.
Corollary 2. Take b= a— 1 in equation (). It becomes

a(i—py=1-—y* €)
This is obwously satisfied by x = 1, y = 1 for all a. It follows that
- (Wat Ya=D™ + (a— YT )H
= v ,

(ot VA~ (Ya aT D
a1

agg solutions of (3) for all integral valugs of 4.
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In the solution (2), the restriction to odd values of p is not necessary
if a=1. In this case, equation (1) reduces to

X3 byi= 1, @
x=m y=nbea solutlon of (4), then writing m = cosh «9 we see
that x = cosh 9,y = nlx]h i also satisfy (4). Cosh pé and b bemg
both polynomials in cosh & for all integral values of p we get
THEOREM 2.—If x = m, y = n be a soluition of (4), then
o (o AT = Y

AT (m— AT
24/m? — 1

are also solutions for all integral values of p.

Corollary 1.—Taking p =2 we sec that if x = m, y=n be a solution
of (4) then x = 2m®— 1, y =2mn is also a solution.

Corollary 2.—Taking b = ¢*— 1 in (4) it becomes
x*+ yr=1+(cy)? ®
This is obviously satisfied by x = ¢, y = 1. Therefore
x— (f:ﬂ/ﬁ)ﬁi (c —/cT—1)

(et VETIY = (= vE=
C 24/ =1 -

are solutions of (5) for all integral values of p.
2. Let us nowconsider the equation
ax® + by? = cz? (®)

andlet x=m, y=nz=phbe a solutic;n in integers. Writing am? =
cptcos? 6 we have bn® = cp® sin? . Hence if we write ax? = ¢z2 cos® g0,
then the value of y which satisfies (6) will be given by dy*= cz?sin? ¢0;

m cos g6 —,.1 sin g0
p s YT  psme

ie. X=2"

g
If ¢ is odd both coossqo an s;%%q are polynomials. in cos? 4 and

sin? 8 so that 7 YTand ¥ S are both rational.

qg—1
Hwetake z=c 2 pP, then both x and y will be integral. Thus we get
THEOREM 3.—If x = m, y = n, z = p satisfy equation (6), then the equation

ax® + by? = (cz?¥ @)
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q being an odd mteger will be satisfied by

—1 : 5
x=aL§— m‘i—(g) a' 2 bm“nz—}-(“)aq2 Brmidind— ...,
g-1 9-3 95
= (‘f) a? min— (g) a? bm™3n®+ (‘57) a? b*m*Sni—
z=p.
Corollary.—Let us take ¢ = a + b in equation (6). It becomes
ax? + by? = (@ + b) 2% (8)

This is obviously satisfied by x=1, y=1, z=1. It follows that
the equation

ax? -+ by? = (a+ by M)
g being odd, is satisfied by
g1 9-3 _—§
x=a * —(g)az b—l—(q) 2 pr— ...
-5

y=() -(‘1) T b+(‘1) T
If in equation (6) a = ¢ = 1, so that it becomes
x2 4+ by? = 7%, - (10)
and x=m, y =n, z=p is a solution of (10), we may write m = p cos 6,
bn?® = p?sin® § from which it readily follows that

x=1zcosql, y=1z" Z sg%q?@ (1

1n q9

satisfy (10). For all integral values of g, cos g8 and are polynomials

in cos 8, so that (11) gives rational values of ra and% which satisfy (10).

Moreover taking z = p? both x and y become integral. Thus we get

THEOREM 4.—If x = m, y = n, z = p satisfy equation (10), then a solu-
tion of the equation
x2 4 by? = 2¥ (12)

will be given by
x=m— (g)bm”n2 + (g)bzm“#‘ — e
y= (%) mfl n- (g) bm?-3 n® 4 (g) bEmi-S b -

z=p,
Jor all integral values of g.
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3. In an exactly similar manner, using hyperbolic functions instead of -
circular functions, we get
THEOREM 5. Ifx =m, y = h, z = p be a solution of

ax? —~ by* = cz* (13)
then the equation
— by* = (ez®¥ (14)
will be satisfied ( for odd values of q if a==c and for all values of
gifa=c=1) by
-1 -3
Xx=a ’1 m7+(q> 92 bm?-2 n? + .

g mq‘ln—l— a—;—~3 bmf=3p® 4 |, ..
y=()a T e ()

z=p.
Corollary.—Writing ¢ = g — b we see that the equation
Xt — by = (a— by (13)
g being odd, is satisfied by
g1 g—3

Fma +(2) o ”+(4) Tos.
q—3

y=()a 7 +(2)at b+() a7 B
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A Mean-Value Theorem and its A pplications

1. Differentiation of a determinant.—Let

‘r‘?ln Uy

Uy1  Ugn

T Ups Une

Uin

Uy

uﬂn

be a determinant of order n where u,; are functions of x. Then ¢’ is the
sum of » determinants obtained by differentiating the elements in each column
and leaving the other columns unaltered. Instead of columns we can also
differentiate the rows. Thus

’
Un Uy, Uiy iy Uy
’
Uag Uy Usp uﬂéi . Uy,
s b n
# =3 -, ,
i=1 t=1 Uy Uiy
!
Um Ui " Unn Uy (7

2. The object of this note is to prove the following general mean value
theorems and indicate some of their applications. It turns out that many of
the examples on mean value theorems usually found in text-books are special
cases of Theorem 1 and its generalisation given in Theorem 2.

THEOREM 1. Let f(x)} and its first (n — 1) derivatives be continuous in
Y the closed interval (a,b) and let f™ (x) existin a << x < b. Let

Xo < Xy < Xg.onn < Xy be (n+ 1) distinet points in (a,b). Then
) Flx) ... f(x) ' DA
x5 ™ L x, 7 X1 x,™1 X,

cee L =f(n; (&)
e .. n! .
1 1 1 1 1 1
SJor some §ina < € <b.

2u
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Remark.—Those who know the elements* of the Calculus of Finite

s . ()
Differences will see that the value of 7111—,(——9 in the above equation is the

divided difference of f(x) with respect to the (n 4 1) points (Xg,- - .s Xz)-
The above result is known, but the proof below is simpler than the usual

proofs.
FO) flxo) oonn flxn)
BAS AN Mg
x=1 ox o xR

Proof —Let ¢(x) =

1 1 ... 1
Then ¢ (x) has its first (n — 1) derivatives continuous in (a, b) and ¢* (x)
exists in ¢ < x < b. Now

$x) =) =....=$(x;) =0.
Hence by Rolle’s theorem there exist » points (€51, €ug,....é1)
X <fn <X <2< X oo < Xpa < 1, < %)
such that $E)= ... =¢' () =0
Again applying Rolle’s theorem to ¢’ (x), there exist (» — 1) points
(¢, Eags. - - -E57=p) such that
") =....=¢"({5)=0.
Repeating the argument we see that there exists at least one point fa=t¢
(a < £ < b) such that ¢ (§)=0. Now using the rule for differentiation

given in § 1 and noting that only the element§ of the first column are functions
of x; we get that

O fxo) oooo flx)
n! X" X,
0 Xo x4
4™ (x) =
0 1 1

Putting x = £ and expanding in terms of the first column we get the required
result. '

3. In Theorem 1 we have supposed that the points (x,,....x,) are dis-
tinet, In Theorem 2 we give the general result when some points coinéide.

* See Milne-Thompson : Calculus of Finite Differences.
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THEGREM 2.—Let [f(x) satisfy the hypothesis of Theorem 1. Let
(%1, - - -» X,) be p distinct points in(a, b). Let x; be counted k, times,
xy be counted ky times and so on.  Let ky+ ket .+ ky=(m+1).
Then
fo) &) NG ) S S (%)

X =Dy 5™ =D % 6™ (D™ g e

.o we

1 0 - 0 1 0 e Q0
x* mx! g xlﬂ-ézq»l x¥ nlxzn-l oty xzn_ﬁz-{.]_ ..
1 (=D xR D)t
_1o®
~ n!
1 0 e 10 . 0
where n=n(—1)....0 —t+1) and a < £ < b:
Proof —Let ,
fG) FG) Sl o fEVR) SO FED (x) -
2‘” X" "13‘1“’1 N xlmhﬂ " Mgyt xz”"k’“"
¢(x)=
1 1 0 0 1 0
We see that
)= ... =¢ED(x)=0; $(x)=.... = ¢ (x) = 0;....

so that ¢ (x)= 0 at (z + 1) points, viz,, at x; repeated k, times; at x, repeated
k, times and so on. Hence ¢'(x) vapishes at n points, viz., at x, repeated
(ki— 1) times; at xp repeated (k,~ 1) times and so on and at (p — 1) other
points (&, éuz - - - fp=1). We can repeat the argument and conclude that
¢" (x) is zero at (n — 1) points and finally that ™(x) vanishes at some point
¢in a< £ < b Wiiting out ¢ and putting x = § we get the result
required.

Remark.—]If we examine the proof of Theotem 1, it will be seen that if
f(x) is continuous in (a, b) and f'(x) exists in @ < x < b, then n points
(€aps &1s, . ... f1) EXiSt N @ < x < b such that ' (§p) = .... = ¢ (E1) = 0.
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We can now continue the argument if we merely suppose that f (x) exists in
a< x < b. Hence Theorem 1 holds even if we suppose only that f(x) is
continuous in (g, b)) while f¢(x) exists for a< x<b(i=1,2,..., n).
But this cannot be supposed in Theorem 2, since if x;= a repeated twice,
we require the existence f'(x) at x = a.

4, In applying the above results the following will be useful;

Xt x” oo x| = (g—x1). (=X X (g —Xg) . (33— X,) X
XL xM e x, e X (X X
1 1 - 1
and
”n w1 ., kg1 7 71 ... ks1...
Xy M X Ry a1 Xy Xy~ HiXxg ng o X°
1 0 o 1 ¢ 0
= (— I A (53— %P (i — xa)rbe L (= X% X (xa— xg)'%. ...
(xZ— Xp)kzki X oooo X (x?_l*‘ xp)kﬂ'jl kﬂ,

where A =2}k, (ki —D) and A = IT {1121 ... (k, — D)}}.
$=1

"The first one is well known and the second is obtained from the first by differ-
entiating the second, third,.... k;th columns once with respect to x,, twice
with respect to X, ...., (k;— 1) times with respect to x; respectively and

afterwards replace the x’s in the first k, columns by x,; and similarly dealing
with the next k, columns and so on.

4-1. Special case 1.—Let xy==x;= .... = X, ;== a and x,==b., This
gives (by Theorem 2) that*
, — )
JO=1@+C =7 @+ ... + E= s gy ap /2D
a< £ < b. This is the usual Taylor’s theorem.

Special case 2.—~x0= X1= a; X,= x3=b. This gives the result

- G52 ra,

* The calculauon in this as well as some of the followmg cases arc a bit long. But they
are merely exercises on determinants and often the details of calculations would become
evident by examining special cases and by the use of the two results m § 4.
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a< ¢ < b Written in the form . :?:‘\w
' b~ b—af TRRE o
[iwa="7B0+01- 05T @ N

the result is found in Hardy’s Pure Mathematics (H.P.M.), page 329
(7th Edition, 1938).

Special case 3. —Let Xg=X;= a; Xo= Xg= a_—;;l; =¢; X=X%=b.

We get

f=r@+ 2@+ 450 +1 01 - Gt 1o,
Written in the form

[00i=T @+ 430 +4 01 - G 940

this gives the usual Simpson’s rule for approximate evaluation of an area
(see HLP.M.: lc. p. 329).

Special case 4—Let Xo= Xy= Xp=a; ¥5= %= b,

Then we get

10 =@+ 52 pro+ro+ 52w -5 e,

This is found as an example in one of the older editions of H.P.M.

Speciak case 5.—We conclude with one more illustration. Let Xp= g,
x=a-+h, vevey Xg== 4+ 1A =D,

Here we get
n 8@ =2 (st = (= h
where a < ¢ < b (See HP.M,, p. 333).

5. Special cases can be multiptied. It may be noted that all the special
cases can be proved directly and often more easily. But all these proofs
depend on proper choice of auxiliary functions to which Rolle’s theorem
is to be applied and in many of these cases the choice of the auxiliary func-
tions is not evident. It is remarkable that all these special cases and many
others are particular renderings of the general results in Theorems 1 and 2.

Annamalainagar. V. GANAPATHY IYER.
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Generalization of the Law of the Mean
Goursat quotes the following form due to Stieltjes:—

If £(x), ¢ (x) and § (x) are continuous in the closed interval (a, b) and
are differentiable in the open interval (g, b), then

f@ f® 1@ f@ £® 5w
¢@ (B 4(9) $@ () ¢" ()
d@) ¢O) ¥() $@ ¢ ()

where ¢, 7 lie between the least and the greatest of a, b, c.

This result has been proved by me in my * Lessons in Elementary
Analysis ” (3rd edition, page 115) by a method which is easily extended to
give the most generai form as under.

2. The Result—IXf f; (x), f5(X), f5 (%), ~... f,(x) are continuous in the
closed interval (g, k), and differentiable in the open interval (g, k), then

=30b—-c)(c—a)la—b)

1 1 1 |
fi@ i) A ... k) . b c &
fil@) L) fale) ....[a(k) e bt e k2
fo@ £ ®B) £, ... fu(®) o T

is equal to
L@ A £B) ... N 1 6 0 0
fi@ i@ B ... L0 a 1 Y ....0
f:@ f@) £'B) ... SN a® 2 21 ....0
............................ Tl @ 3 3.283.21....0
L@ L@@ LN ) P
@' it ' (n—1)!
. Thus we get the final resuit:

L@ LG L .. LK)
1 @ L) £ ... fa(R)
L@ fib) fil) ... Sk |=

............................

............................

H@ L0 Ll ... Sk
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L@ L@ LB . A
@) £ LB .. LD
M- | L@ L@ LB ... 70
@ 5@ L'E) .. LR

where 11 (b — ¢) denotes the product of the differences of the n numbers
a,b,c....kand e, B, y....A denote (n — 1) numbers between the least and

the greatest of those numbers.

1
@G GT)

Dr. G. S. MAHAJANI,

A Note on Continued Fractions
1 1 . s .
If a= a4 + L+ota then g is the positive root of a quadratic
equation with rational coefficients, and if 8 be the negative root of the

equation then
1 1 1
B PR T &

[Vide: Charles Smith’s “ Algebra,” p. 462.]
The following is an alternative proof of the above proposition :—

Let 1—’1’—‘—‘, Pr e the tast two convergents of the first period.

Gna In
Then a = QL"‘_’!.":A
g Qn'JF' qn~l
Hence o is a root of the equation
xzqft'f_ x(qﬂ.-l" pﬂ) — Pp1 = 0, (1)

The roots of this are obviously of different signs and the positive root is
the value of the continued fraction. Let the negative root be 8. Then
a and B are conjugate surds. The same arguments apply to the kth period

so that we have equally
x4t ¥ (Gena— Pen) — Pn=0. @
The sequence of equations (2) obtained by putting &k = 1, 2,3.... have
a common root « and have also the conjugate surd 8, since the coeﬁicients
are rational. Therefore they have all the same roots,
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Hence af = _-_—-q&”i‘«‘ where k is any positive integer.
ks
Let k->oo : Py __ TPima y Qima
T G Gont Do
. lim “'Pkn_&:ﬁm — Pin % Qin1
Koo >0 Qb1 Akn
o af= — a X lim Je=2
r>o0 in

That is = lim _—qqéi“—‘, and since 80, we get
n

k> o0
1 . q 1 1
—_— = lm Abn . - 2.
BT oo Gops T @it
Matunga, Bombay. K. A. VISWANATHAN.

Problems connected with Courses of Study in Higher Mathematics
in Indian Universities

I

This note is in response to the kind invitation of the Editor of The Mathematics
Student to state my views on some of the problems relating to Courses of Studies
in Mathematics in Indian Universities. In this note I confine myself to some
aspects of these problems mn so far as they concern advanced courses of studies
in mathematics. Though in some places a reference is made to the post-
intermediate honours degree course of three years’ duration the remarks made
will apply to all advanced courses in mathematics. It is my object to make out
that some of the problems are peculiar to the subject of mathematics; for
instance, an advanced mathematical course intended for the very bright ones
among those that have passed the intermediate examination is as unsuitable for
the mediocre students as a post-graduate course is unsuitable to one who has
merely passed the matriculation examination. Some of the serious defects from
which the present courses suffer arise from the fact that this is not fully realized
by those who are in charge of making admissions to these courses of studies;
no one can blame a non-mathematician if he argues by analogies and thinks that
a student who has secured 609 marks in mathematics in the intermediate
examination is necessarily a keen mathematician who deserves to be encouraged
by being admitted to the honours course. They know not what they do when
they admit students on such considerations. Some heads of departments of
mathematics recommend the admission of mediocre students also but in this
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note I do not propose to go into the reasons for such recommendations. In
Section 1V, I discuss the harmful effects of such admissions; in Section V, I draw
attention to the easily avoidable but considerable waste of energy that occurs
when students attend lectures but have no books or cyclostyled (or printed)
notes of the teacher to consult before, during and after each lecture. I shall
discuss in a later article some other aspects of the problem of propogation’
and creation of higher mathematical knowledge. '

II

~ In the Madras University the honours course of three years’ duration was
started in the year 1911. The chief object was to have fairly advanced courses of
study in various subjects. Syllabuses were framed for such courses of study in
each subject and the courses were intended to be taken exclusively by the very
bright among those that had passed the intermediate examination. A student
could appear for the honours examination once only and was not permitted to
appear for it after four years of his passing the intermediate examination.
I have been told that in one of the colleges where upto about the year 1920 the
admissions were made strictly according to certain rules of their own devising
a student was not ordinarily admitted to the honours course in mathematics
unless he had secured in the intermediate examination the following minimum
marks*: mathematics 90%; English 50%; physics 60%. It was thought that the
course was and should be such that only the best talents could cope with it.

Tt cannot be said that at present the original object is strictly adhered to
and, in my opinion, it is high time that the whole matter is gone 1nto in detail.
I think that there is a strong case for a three-year course in mathematics meant
exclusively for the very brightest among those who have passed the intermediate
examinatign but if the Government and Universities do not favour such an
exclusive course then, so far as mathematics is concerned, that fact should be
stated explicitly and a course of study planned suitably.

II1

The abstract nature of the subject and the frequent use of difficult, complex,
novel or subtle arguments make the study of higher mathematics unswtable to those
who have not the requisite aptitude, desire and facilities. An excellent lecture
in mathematics may almost wholly be unintelligible to a student either because
he is not quick enough to follow the flow of reasoning in the lecturer’s arguments

* A good reason for insisting upon high marks in other subjects too such as English
and Physics was that those marks implied that the g.q. i. (general quotient of intelligence) of
the student was gurte satisfactory. There is a really important reason as to why when makng
admissions to the honours course in mathematics one should, m general, take mto account the
g.q.i. of students. The reason is that the kind of mathematics that 1s taught to an honourg
student 1s so different from the intermediate mathematics that high marks 1n mathematics
alone in the mtermediate examination do mot usually imply the fitness of the studeat to

take the honour§ course,
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of because he is not fully acquainted with the results proved in earlier lectures,
which results are being used in the course of the latest Jecture. When a series
of lectures are delivered on a single connected topic in mathematics all but the
bright and industrious students fail to follow what is being said after the first
two or three lectures. This is because a student has to be bright and smart
to follow the earlier lectures. and unless he has regular habits of study he' does
not succeed in consolidating what he has been taught. Apd a thorough acquaint-
ance with much of what has preceded is essential for an understanding of the
later lectures; indeed this is true of most mathematical lectures. Such considera-
tions may not apply in the same degtee to lectures in other subjects.

If the syllabus covers a lot of mathematics, and the time prescribed for the
course is comparatively short then students of a certain calibre only can be
admitted to the course. If the admissions are to be made so as to include
a wider class of students then either the syllabus should be lightened considerably
" or the period of study for the course be increased suitably, say, by one year, or,
what is undesirable, we should reconcile ourselves to a large number of failures
or lower standards in examinations.

v

Many evil consequencies follow if there is a great disparity between the
actual (low) average calibre of students admitted to a course of study and the
calibre envisaged at the time of divising the course. Some of these evils are
described in the nexf few paragraphs.

When an honours class in mathematics contains a large number of students
who are not fit to take up the honours course the teachers find that to suit the
needs of weaker pupils, they (the teachers) have to water down the contents of
each lecture and omit the more difficult and subtle points of proofs Without the
students being made aware of the incompleteness of such proofs (or a brief
and unintelligible note is dictated to cover the points). A common but sad
experience of the teachers is that often students give proofs with gaping omissions;
this shows that the student not only does not know how to prove the theorem
on hand but has no idea of what a proofis. And nothing can be more deplorable *
than this at the honours stage. The inner meaning and the deeper significances
of theorems and proofs are not discussed because such discussions will be
unintelligible to most students and the teacher does not want to lose his reputa-
tion of being a good expositor.

Since the lectures have to be diluted there arises a need for a larger number
of lectures; moreover the teacher does in the class-room much of the work that
competent students should do for themselves. Much that is important, interesting
and even essential is not referred to at all either because all the available time is
needed for teaching the more elementary parts of the subject or because such
discussions will not be understood by a majority of students. There is no time
to discuss generalizations, converse theorems, the general background and,
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naturally, no references are made to outstanding unsolved problems* which lie
pretty near to the topic under discussion. This lack of time for essential discussions
is there in spite of the fact that in some colleges and universities students have to
attend every week much more than twenty lectures, each of one hour’s duration.
This is a kind of barley-and-glucose-water feeding and does harm to good students
who are thus sacrificed to the imagined interests of weak students. Moreover
the physical and other strains of listening to so many mathematical lectures on
different subjects, though the lectures are not concentrated ones, make it difficult
if not undesirable for the students to attempt to read books for themselves and
to learn to think independently. Having become accustomed to have every petty
little detail explained to them they find that even an article in a text-book is
difficult to understand unless the teacher has previousty lectured on it.§ Few
if any among the honours students ever dream of reading a paper in a mathematical

journal.

This state of affairs has its reactions on the standard of examinations. the
syllabuses, the method of recruitment to the teaching staff and on the quality
of teachers available. In course of time most of the recruitments to teaching
posts have to be made from among students trained in the above marner. The
teacher who is appreciated by some colleges and universities is the man who bas
(worldly) commonsense and has no nonsense in him by way of learning, critical
scholarship, love of research or capacity to enthuse his students. Universities
may for show purposes recruit one man with some reputation to each department
of study but colleges often act on an unwritten but firm pol@gé‘g of excluding from
their staff any one with a scientific reputation. This is not because that colleges
are run by men who hate_knowledge but because the aim of many colleges is to
secure good results in university examinations in spite of having admitted many
students below the normal calibre expected of those that take up such courses
of studies. Under the circomstances it stands to Teason that special devices should
be adopted to secure results; one device is to ensure that examinations are of
a parrow fixed pattern where no searching questions can be set except perhaps as
an alternative to a routine question. In course of time the sylabuses are either
framed to suit the weaker students or interpreted in such a way as to lower
its content. I know of at least one university'where it 1s usual to set 12 questions,
mostly book propositions, all of which the candidates are free to attempt. Each
question carries 16 marks and the total marks for the paper is fixed at 100.

* References to unsolved problems, especially when the statemment of the problem is such
as can be well understood, have a stimulatmg effect in many ways except on those who have
10 sense of curiosity, and think that any discussion is a wasteful digression if no questions
are likely to be set on 1t n the umversity examinations.

+ This 15 probably one of the reasons for the reluctance on the part of students to buy
text-books; they are umintelligible any way, and why bother when 1t is known that the teacher
will give the contents of each article with many additional explanations so that, for the moment
even those that have forgotten much relevant mathematics can follow what 15 bemg said in
the class, Incidentally this encourages students to come to lectures unprepared.
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Many a student secures 150 or more marks, and those that secure 100 or more
marks are shown as having secured 100% marks. But even among the best of
Indian universities the examinations are such that mediocre but industrious
students with good memory can do very well, especially if they are coached and
drilled. This coaching and drilling are, obviously, unavoidable if weak students
with no liking for mathematics are to be enabled to pass examinations. Even
the better type of students get higher marks in such examinations if they are
coached and drilled. Since new intelligent questions are not set in examinations
it does not ‘ pay’ for the good students too to take any trouble to look out
beyond what is dome in the class-room. Initiative and originality are at a
disadvantage so far as concerns the securing of a rank in such an examination.

The advantages of coaching and drilling are of a kind that are easily demon-
strable, nay, visible. They bear fruit within a short time and the fruits (passing
in examinations) are such as are much sought after. The disadvantages are not
so easily discerned though they constitute a national disaster. There are more
universities in India than in any one of such countries as France, Italy, Canada,
Sweden, etc. Yet what is the status of India in the scientific world as compared
with any of the abovementioned countries? Reforms are urgently needed but
to the inherent difficulties in the situation are to be added the opposition of
vested interests.

v

¢
g B

I am strongly of the view that much time and energy is wasted on account of
(i) the students not having suitable text-books,
and (ii) lack of cyclostyled (or printed) notes of lectures.

If a student knows what will precisely be the topics of lectures on any day and
comes to the college prepared for them, having already read up the relevant
articles in books and notes, and again after the lectures goes home and consoli-
dates what he has learnt during the day by further reading and writing out his own
notes and solving exercises and problems then he will find it easy to remember
what he has been taught, and what is no less important, will be in a position
to follow intelligently the succeeding lectures. To obtain an equivalent result
without following such a procedure is not possible. But unfortunately it is
usual to see that just when students need books most, ¥iz., in the beginning of the
course, they are without books. There should be a rule that if a student is
well to do then he should deposit along with his fees at the time of his admission
the cost of text-books which he is expected to possess. If he is poor but it is
considered that be deserves to be admitted to the course then he should be
given a set of text-books. This seems to be the proper thing to do if we aim at
a democratic and efficient system of education. To say that it is the student’s
busipess to have or not to have books 1s manifestly wrong. It is even more
wrong to have unexceptionable rules about this matter and never enforce them,
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We might as well attempt to give modern military training without the recruit
handling a single weapon. ’

1 give below a quotation about the usefulness of distributing copies of
printed (or cyclostyled) notes beforchand. Evenif text-books are prescribed
these notes could contain much extra matter and form a supplement to the
book. Moreover the notes will indicate the order in which the topics will be
taken, and give a list of problems to be done along with lectures, and at home
at each stage. It will minimize the amount of notes that a student has to take
during each lecture and thereby enable him to concentrate on the lecture. It
will help the external examiners to have a precise idea of the standard aimed at.
The quotation referred to above now follows. It is from the preface to a
printed edition of notes of lectures by J- E. Littlewood, M.A.. E.R.8. [The
Elements of the Theory of Real Functions, Cambridge (England), W. Heffer & Sons

Ltd., 1946}

«...The subject calls for great precision of statement, and experience has
taught me, when lecturing upon it, to dictate word for word all enunciations and
proofs. Rather more than half the time has probably been spent in this, the
remainder berng devoted to explanation and comment. It became an obvious
course to print the matter formerly dictated, and I carried out the experiment
of lecturing from the first edition of printed notes in the Michaelmas term of
1925. The present second edition is slightly enlarged and is intended to be intelli-

gible independently of the lectures.

1 hope, however, that my best pupils in the University of Cambnidge will not
too hastily assume that the existence of the notes makes attending the lectures
themselves entirely valueless. ¥ am one of those who believe that lectures can have
great value, and particularly at a certain moderately advanced stage of mathe-
matical education. The modern standard of conciseness and lucidity in original
papers and advanced text-books is on the whole a high one, but the style is one
for expert only. We may demand two things of an original paper, a complete
and accurate exposition on the one hand, and on the other that it should convey
what is the real ¢ point ’ of the subject-matter. For various reasons, . . ., the second
demand is invariably sacrificed to the first. A lecture, however more particularly
when it is supported by a complete exposition in print, is the very place for the

provisional nonsense that the second generally calls for. This would appear
ridiculous if enshrined in print, and its real function is to disappear when it has
served its turn.... The infinitely greater flexibility of speech enables me here

to do without a blush what I shrink from doing in print.

1 wish. finally, to commend for more general use the practice of providing
lecture notes in advance. Among obvious advantages the chief is economy of
time and energy: my course formerly consisted of 22 lectures; now, when it is
fuller and more discursive, it consists of 15. It is possible that the art of lecturing
has not yet recognized the full importance of the younger invention of printing.”
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Finally T would add the following recommendation: If a small library of
mathematical books be kept in a separate reading room mnear the lecture rooms
so that the students could easily refer to books and journals mentioned in the
course of a lecture then that would be truly helpful. The habit of looking into
reference books and journals is not without value. The library may be in charge
of a teacher of the Department, and should be made available throughout the day
and the earlier part of the night (in residential institutions); this does not imply
that the teacher be in the library all the time.

Andhra University,\ T. VIIAYARAGHAVAN,
Waltair.

Some Kinetic Equivalents of a Right Civewlar Cone

The following systems of kinetic equivalents to a uniform right circular cone
may be of interest to the student of Dynamics:—

(i) A hollow cone of mass M is equivalent to a uniform circular ring of
mass M/3 along the circumference of the base and another of mass 2M/3 and
radius half that of the base, through the mid-points of the generators.

(i) A solid cone of mass M is equivalent to a mass M/20 at the vertex, another
MJ20 at the centre of the base, a uniform circular ring of mass M/10 along the
circurnference of the base and another of mass 4M/5 and radius half that of the
base with centre at the centre of inertia of the body and in a plane parallel
to that of the base.

(iii) If a is the radius of the base, a solid cone of mass M is also equivalent
to a mass M/10 at the mid-point of the axis, a uniform cireylar ring of mass
MJ10 and radius @ and another of mass M5, radius a/2 in the base, one of mass
M5, radius a/2 through the mid-points of the generators and another of mass
2MJ5, radius a/2 through the centre of inertia of the body, the centres being along
the axis and the planes perpendicular to it.

These systems may be obtained by considering the hollow cone as composed
of an infinite number of triangles and the solid one as composed of an infinite
number of tetrahedra.

Department of Labour,
Government of India. M. V. SESHAGIRI Rao.
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Perpetual Ephemeris of the Plunetary Cycles
BY L. Naravana Rao, M.A,, Calicut
(Pp. 587+-xxxvii--vi, Price Rs. 8-8-0, 1941)

This book of Tables is the result of unaided and single-handed effort by ap
ardent, enthusiastic and painstaking mathematical astronomer who has laboured
six years at it tn an environment not quite congemal to such enterprises. It is
the duty of every Indian in independent India to recognise the work of a fellow
Indian scholar and give him all encouragement. Several of us, Indians, are
secretly, if not openly, astrologically minded and should therefore welcome and
support the achievement of Mr. Narayana Rao in having provided us with
precise data for astrological calculations, viz., the geocentric longitudes of the
Sun and the Moon and the planets Mars, Mercury, Jupiter, Venus and

Satwin.

The author has followed apparently the Nandi Nadi Vakyams for planetary
positions and adopted the cycles of 79, 46, 83, 8 and 59 years for Mars, Mercury,
Jupiter, Venus and Saturn respectively. The epoch of the text is st January
1854 and tables run from this date right up to the end of the above cycles for
the respective planets. Thus Saturn’s cycle runs from Ist January 1834 to 8th

January 1913, i.e., about 59 years.

At the end of the book there is an Appendix purporting to explain tothe
working astronomers or astrologer how the geocentric positions can be calculated
for other dates not given in the tables. [If the author had only mentioned the
authoritative sources of his astronomical data as is done in the Nautical Almanac,
the readers’ faith in the Ephimerides would have been strepgthened. For the
interested readers, the reviewer would like to mention the following works which
deal with planetary positions:

(1) Planetary Co-ordinates for the years 1800-1940 referred to the equinox
of 1950-0 (prepared by H.M. Nautical Almanac Office), 12s. 6d. net
(1933).;

(2) 4n Indian Ephemeris, Vol. I, Part I, by L. D. Swamikannu Pillai,
15.0. (1922);

(3) Planetary Tables from 3200 B.C. to 3100 4.D., by C. G. Rajan, B.A,,
Rs. 5 (1933);

of which the first gives the heliocentric coordinates and the third the raw data for
calculating geocentric coordinates, while the second alone provides the mean
geocentric longitudes. But the present work goes deeper than the second of the
above in the matter of geocentric longitudes and gives more accurate results.
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It is therefore recommended as an important book to be owned by all educational
and religious institutions in India where astrology is studied and practised.

The Ephemeris deserves a speedy second edition with fewer typographic
erro7S,

Mysore A A K.

The Poetry of Mathematics and Qther Essays
By DAviD EUGENE SMITH
(Scripta Mathematica, Yeshiva University, pp. 6--90, Price £1-25, 1947)

This is the second printing—the first printing was in 1934—of five essays by the
late D. E. Smith who was a well-known collector of books, documents, autograph
letters, instruments, portraits, medals, counters and so on. He was the founder
of the History of Science Society and the founder of the jonrnal Scripta Mathe-
matica, and for one year (1920-1921) the President of the Mathematical Asso-
ciation of America. He has been a Vice-President (1908-1920), President (1928-
1932) and Honorary President (1932} of the International Commission on the
Teaching of Mathematics. He was the departmental editor in mathematics of
.the 14th edition of the Encyclopadia Britanmca He was a writer of elementary
mathematical texts which sold in millions and some of which were translated
into Spanish, Arabic and Chinese. For 25 years (1901-1926) he was Professor
of Mathematics at Teachers’ College, Columbia University.

One may expect that a collection of essays by D. E. Smith will be pleasant
to read and so indeed are the essays reviewed here. The book contains many

fine quotations and what D. E. Smith himself writes will make excellent
quotations.

This book contains five essays on (i) The Poetry of Mathematics, (i) The
Call of Mathematics, (iii) Religio Mathematici, (iv) Thomas Jefferson and
Mathematics, and (v} Gaspard Monge, Politician. The essays will interest a wide
class of readers. The articles are not themselves mathematical but they relate
to lines of interest which mathematics suggests. Some of the essays concern
the spirit in which the teacher may feel it desirable to approach the subject with
his classes. Not all may understand the call of higher mathematics, but every
pupil may be led to hear, even if indistinctly, the call of the lower phases of the
subject, as set forth 1n the second essay. The call of mathematics is not only to
our physical wellbeing as is well understood but also to our spiritual wellbeing.

This is the kind of book which one would like to see in larger numbers
in our school and college libraries.

T. V.
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Portrasts of Eminent Mathemalicians
With Biographical Sketches Portfolio 1
By DAVID EUGENE SMITH
(New Deluxe Edition. Price 5-00. Scripta Mathematica, Yeshiva University, 1946)

The Scripta Mathematica has three lines of publications all of which should
be of the utmost utility to those who are interested in Mathematics in its more
general and cultural aspects—an excellent quarterfy of the same name devoted
to the history and philosophy of Mathematics, about half a dozen booklets, and
a series of portfolios of portraits of which the first two are devoted to eminent
mathematicians, the third to Philosophers who were also Mathematicians, and
the last to famous Physicists. Each consists of about a dozen portraits printed
on art paper 10°Xx13* along with a descriptive folder of double the size with
autographs and other material relating to the mathematician in question. The
portlolio under review is a reprint of the portfolio issued in 1936 and is devoted
to Archimedes, Copermicus, Viete, Galileo, Napier, Descartes, Newton, Leibniz,
Lagrange, Gauss. Lobachevsky and Sylvester.

The teaching of mathematics becomes Iifeless unless taught in the historical
background, and these portraits and descriptive material together with books like
Bell’'s Men of Mathematics and Development of Mathematics should be in every
college and University Library to inspire young men and women. The portraits
are of a size that may be conveniently framed and made permanently available
for display in the mathematics class rooms. They are warmly recommended as
“ an absolute mecessity in the reorganization of mathematical teaching which is

being planned in renascent India.
A. N. Rao.

The Mathematical Oiscovertes of Newiton
By H. W TurnsuiL, MA, F.RS
(Blackie & Son Lid., London, pp. v1-+-88, Price 5 sh., 1945)

The book contains the substance of two lectures deltvered by the author.
Without going into too much detail the author has tried to explain—*“as far as the
work of geniuses can be explained "—what led Newton to these discoveries, No
attempt is made to deal with the controversies associated with the discovery of
the differential calculus, but ““the positive interest afforded by contemplating the
wonderful range covered by his early mathematical work provides an adequate

theme for this short study”.

The book is very readable and sheds some new light too on the oft told
story of Newton’s achievements; none but an expert on the subject could have
written this book. The section headings are 12 in number: (1) Early Influences,
(2) The Binomial Theorem, (3) The Method of Fluxions, (4) The De Analysi,
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(5) The De Quadratura, (6) The Geometria Analytica, (7) The Solid of Least
Resistance and the Curve of Quickest Dzscent, (8) Angular Sections, (9)- Inter-
polation and Finite Differences, (10) The Arithmetica Universalis, (11) Cubic
Curves, and (12) Geometry in the Principia. The book contains a chronological
table, a bibliography and an index.

T. V.

Fermagoric Triangles
BY PEDRO A P1zA

(Imprenta Soltero, Santura, P.R., 1945, Price not given)

. This book of about 150 pages is Publication Number 1 of the Polytéchnic
Institute of Puerto Rico. The President of the Institute, Jarvis 8. Morris has
written an introduction to the book and from it we learn that Mr. Pedro Antonio
Piza is a saccessful and progressive business man of San Juan. that this is his
first book, that he has a love—almost a passion—for numbers and their signi-
ficance, and that mpmbers are like living things to him and he has the time of
his life with them.” The author says (p. 147) that the preparation of the book
was a prolonged labour of sheer joy; he firmly believes that Fermat did have
a proof of his last theorem and that any attempt to solve the problem, in order
to have possibilities of success, “should particylarly avoid and evade the compli-
cated theores of Kummer and his followers”, and that those theories have only
succeeded in unnecessarily entangling the problem more and more every day
(p. 10). The author says that he believes ‘to have unearthed some apparently
new and sparkling facets in the gem that is Fermat’s equation’ (p. 129; his work
is not based on any previous modern investigation known to him; his occasional
consultations of professional specialists had mostly a negative or indifferent
Tesponse.

A fermagoric triangle of nth degree is one whose sides a, b, ¢ satisfy the
equation a®--3”=c”. Thys a triangle whose sides 'are 12, 493-3, 5343 is a
fermagoric triangle of degree 3; similarly the triangle whose sides are 4,

V(=34 y136)41, #(—3++4136)—1 is a fermagoric triangle of degree 4; the
sides of a fermagoric triangle of degree 5 is given by 20, #(—254 y/64500)—5,
¥ {—25+ 4/64500)+5. Plainly these triangles can be constructed by ruler and
compasses. The b%gdk is easy to read and will interest sympathetic sayls,

T.V.
823
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