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By P. JHA and V. R. CHARIAR

1. Let s singly infinite family of eurves on a surface § (one member
of the family passing through each point of 8) be in one-to-one
correspondence with the points of a twisted curve I', the curve
of the family corresponding to a point P on T' being denoted
by (P). If P be joined to points on y{P), a cone C(P) is generated
and the generators of the family of cones form a line congruence L.
In this paper it is proposed to study some properties of L, parti-
cularly when it is normal. It may be noted that when the family
of cones C(P) forms the family of enveloping cones of § the con-
gruence is the congruence of lines that intersect the given
curve and touch the given surface. The notations followed are
those of Weatherburn [2].

2. If the vector position of P on I' be denoted by r(s), s being the

arc length, and the vector position of Gon § by B(u, v) the equation
of the family of curves y(P) is given by an equation of the form

flu, v, 8) du + g(u, v, 8) dv = 0. (1}

Let A = |# — R], so that the unit generator through @ of §,
taken as the director surface, is given by d = (F — E)jA and the
congruence by

R=E + pd.
3. Tt is evident that P is one of the foci on d. If D=y + sd)
lg + sd | denotes the unit generator through P’ and €)', conse-
cutive points on T' and S, the condition that PQ intersects £'¢" is

[ 8d]=0. @
Hence we have

TagoreM 1. The focal plames through a gemerator are the two
planes through the generator and the tangents fo the cupves T' and y(P).
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The limiting position of O, the point of intersection of PQ
and P'Q’, is the other focus. If ¢ = lim PO and § and ¢ are the
angles between the ray and the tangent and principal normal to
T at P, 6 being supposed to be & function of ¢ and s,

o = lim 8s (cos 0 2.D — d.D)/ (¢.D — oos 6 d.D)
= lim 8s(sin @ — cot 8. 8d)/ (86 + & cos ¢ 3s)
— lim s (sin 8 — oot 0 7.8d)) (3_538+Z_:3¢ +kcos¢5§).

Now from the equation (2) we get

-~ ad - -ad
[d,t,ﬁ]&b-i— [d,t,a_s] 85 = 0;

hence
sin 0
T Bt d
T o) 0 L3
ds o¢ [d, &, 5]

If 9 is independent of ¢, so that the cones are right circular,
o =sin 0/(,.+ k cos ¢)= p, say.

It will be seen that the congruence is normal in this case.

Now, d =t cos 6 + n sin 6 cos ¢ + b &in 6 sin ¢.

Therefore

[, 2, d) = —sin? §, and [d, £, d,] = — sin 6( sin 6 —k cos fsin §).
Hence the distance of the other focus from I' (along the ray) is
sin® 6/{p~ sin® 6 — 0, (7 sin § — k& cos f sin ¢)}.

Hence we get

TrrorEM 2. For such a congruence the disiance of the second
JSocus from the curve is sin® §/{ p~2sin? § — 0, (v sin 6 —k cos f sin ¢) |,
where 8 is the angle between curve and the ray and $ the longitude
of the ray and p the focal distance when the congruence is normal,
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4. 1t can be seen that the distance z of the feet of the common
perpendicular between dand D is given by
= — (t. 8d) 8s/(5d)
= (p~ ! sin® § 85* 4-sin § 0, 8¢ 8s)/(e Bs% + 2 £33 84 + g 54°),
.where,
€ = d%=sin’ 6/p®+ (v sin § —k cos 0 sin ¢$)? =sin? §/p? + 42,
f=4d,. dy=06,sin §/p + Asin 0,
g=di =03 +sin? 4,
B2 = (p~Lsin® § — 4 6,
The extreme values of x—the distance of the limits from I'—are
the roots of the equation
442 (p~'sin® A6, — 4z sin® 0 (o sin® § — Aby) — 6 sin® 0 =0.

It follows that
x, + 7 = sin? §/(p~" sin?  — 4 ;) = the focal distance;

and
@, 5y = — 03 sin? 04 (p~1 sin®8 — A6,)%.

Evidently when 6, = 0,ie. 0 is a function of s alone and the
cones are right circular cones, one limit coincides with P, one foous,
and therefore the other limit coinoides with the other focus and the
congruence is normal. Hence we have

TurorREM 3. If the cones are right circular comes, the congruence
is normal.

5. The parameter of distribution of the rays d and D is easily

seen to be given by
B =87, 8d,d]/(3d
— (— A sin 0 852 — sin® §3¢ Js)/(e 35 + 2 f 85 8¢ + god?).

The stationary values of 8, f; and B, are the roots of the equation

4h2ﬁZ+4B(Agsin6__fsinze)_sin4 — 0.
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Hence
B, By = — sint 04 B2 = — o¥d.

The result contained in the above equation that “Four times the
product of the principal parameters of distribution for a ray is regative
of the square of the focal distance” is true for all rectilinear congruencesy
(as can be easily seen). The oongruence is clearly hyperbolic. It can
also be verified that for an elliptic ray the foci are imaginary although
the limits are real. When the congruence is normal, i.e. when the

cones are right circular cones the principal parameters of distribution
are equal to half the focal distamce.

6. It has been seen above that when @ is a function of s alone,

the congruence is normal. This can also be proved as follows. If the
congruence is normal, the variations of

R=7+ud
represent displacements perpendicular to d. Therefore
d. (885 + 1, 854 + g 8¢ 4 + p 8d) = 0.
Therefore
i +eosf =0 and p, =0,

ie. p and therefore 8 is a function of s alone and

= —jcosﬁds.

Hence we have

TagorEM 4. The congruence L is normal only when the cones
corresponding to points on the given curve are right circular cones with
the tangents to the curve as axes and the surface normal to the r0Y8

15 obtained by measuring a distance — [ cos6 ds along the rays of the
congruence. )

Clearly the points on the orthogonal surface (of the normal con-
gruence) corresponding to the rays through P onI' lie on a circle.

1 The result appears to be new
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Hence the surface orthogonal to the rays is generated by a family of
circles. Evidently these circles form one set of lines of curvature—normals
intersecting on I'—and being plane curves are geodesics,

The fundamental magnitudes of the first and second order are
given by
E =sin®8 + e B® + 2 Bsin® 6/p, where B = [ cos 8 ds,
F =[fB% G =gB% H* = Bsin*G (1 + Blp)f;
L =eB +sin®0jp, M =fB, N =gB.

As FN — GM = 0, the curves s = const., i.e. the circles form one
family of lines of curvature, as already noted. The equation of the
other family of lines of curvature is

fds +gdé=0.
As LN — M® = p~' B sin% (1 + B/p), and one principal radius
of curvature is clearly B, the other principal radius of curvature is
p+B.

7. If the rays of the congruence touch 8, the cones C(P) envelope
8 and for a normal congruence, 8 has a family of right cireular
enveloping cones with vertices on I' and axes along the tangents
to I. The equation to C(P)is

[(R— 7).1}2 = X cos? b,
6 being a function of s alone and A = |f{ —r|.

The characteristic is
(B-P} {1+ @R ba}=—(R—7).tcos’ 0~
— Xsinfeos 8 b,
or
Acos @ { — 1+ Aki%} = — doos® 8 — NMginfcos 48,

or
A = sin 0/(f, + k cos ¢) = p-
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Ta.kingf; T, b as the axes of z, ¥, # it can be seen that the
characteristic lies in the plane whose equation is

6, x tan 8 + ky = sin? 6,

and therefore it is an ellipse, its centre being on the tangent. § is
thus generated by a family of ellipses whose planes are parallel to

the binormals to T'. 8 is clearly the limit-focal surface. Hence we
have

THEOREM 5. If a normal congruence iniersects a given curve and
touches a given surface, the surface is the limii-focal surface and

generated by a family of ellipses whose planes are parallel to the
binormals to the curve.

If all the ellipses coincide, the surface § degenerates into the ellipse
E. In this case, congruence intersects the curves T’ and E and is
normal. It has been proved [1]that a congruence which intersects
two curves is a normal congruence only when the curves are a
eircle and its axis and therefore E is a circle and T its awis.

8. When I is a straight line, taken as the z-axis, the equation of
the right circular cone is

¥? + 22 = (z — a)? tan® 6,

where f is a function of a and the characteristic curves are
given by

(z_a)‘ff —sinfcos § = 0,
' da
that is

x~a=’<}sin28d_a'

de’

which gives « (and therefore 9) as a function of z alone and
therefore the characteristios are circles and the surface is one of
revolution, unless —a = } sin 2 0 da/d6 when the congruence
consists of lines intersecting a cirole and its axis. Hence we have
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TasorEM 6. If the congruence of tangents to a surface from points
of a straight line forms a normal congruence, the surface is one of re-
volution with the given line as the axis of revolution.

If « — cosec §, the surface is the unit sphere with the line as a
diameter and when a = tan 6, the surface is obtained by revolving
a parabola about the tangent at the vertex.
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ON THE EQUATION 4 =2* — 3Apuz — Xa— pPa™
By P. KESAVA MENON

1. The equation
P =a%—3 Auz — NFa — pla! 1)

has no known solutions in rational values of z and y for arbitra,rﬂy
given rational values of @, A, u. Nevertheless from one known
solution we can in general find others and even an infinity of them
by the tangent and chord process or by the process of parametri-
zation by means of the elliptic function ((u), both methods leading
to the same solutions. Here it is not proposed to solve the general
problem but we are concerned with a curious transformation of (1)
which arises in connection with another line of approach to the same

problem.

2. The equation (1) can, of course, be written in the form )
P=1I,(z—Ap—pp™) (2)

where p runs through the cube roots of a.

Naturally we set in (2)

g —Ap—ppt=(—Xp—Yp I, (3)
which gives
z = +2XY
3 3 -1 (4)
y=»—3vXY —Xa—Ta
and
A=2vX —Yia?
, (5)
p=2vY—-Xa
Eliminating v between the two relations (5) we get
aX(p + X2a) = Y(Aa+ Y. (6)

Solutions of (8) in X, ¥ when substituted in (4) and (5) give rise

to solutions of (1).
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3. But what is more significant is that the equation (6) is
actually equivalent to (1) in the sense that we can go from either
to the other by a linear transformation. In fact the substitution

X =@ +pla )y },
Y = (o + X alfy

transforms (6) into (1) as may easily be verified.
As an immediate consequence we get the following
TarorEM 1. If x, y, is a solution of
P¥=2"—3Aux —Ba—pla’?

then another solution is given by

z=1»+2XY, y=v" —3vay—X?a— Y3a}

where
v = (A4 Y% ah)/2X,
and

X=@@mA+pla Yy, Y=@pt+ oy
We have also the dual
TeeoREM 2. If X,, Y, is a solution of
aX(p+X2a)=Y(Aa + Y?),
then another solution is given by

X = A2 + 22, 9) + pPa?

3 3 31
W—3va g — 2o —3ia

Y = #0P+23,9) + Na
¥ —3vr g —2ia—9iaV
where
2 =1
y =ty
2,

4. Another transformation of (6) is obtained by writing
X=rlg, Y =pls, a=q/s,

O]
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when it takes the homogeneous form
Pq(p° + Ags) =75 (" + pgs). (8
If further we replace A by Aa and p by g a™’, equation (8)
becomes
pg (P + AgD) =73 (* + p &%), (9)
The forms (8) and (9) are striking, especially the latter, and for
A = p = 1 we know that (9) is equivalent to the equation
At + B = 0+ 4 D4 (10)

We can, of course restate Theorem 2 for equations (8) and (9).
5. Let us consider a particular case. Let
A=matf p—a 4

in Theorem 2. Then we see that X = 1, ¥ = 1is a particular solution.
Hence we get from Theorem 2 the following

TrrorEM 3. The equation
X(14+@X+af)=Y @+ Y +ap (an

has a solution given by

(G+}3)(V2+2 )+a e+ B
¥ — 3 — (e +a™l)

(12)
y=p*+m@+m+am+w
¥ — 3 —(a+ad)
where v = (a + o™ + B)/2.
Writing
Z=2a(X*—~7)+B(X—-T) (13)
equation (11) takes the form
Zz—ﬁz(X—Y)2=4(X3—Y)(Y3—X). (14)

Hence we get
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Cororrary 1. Egquation (14) has a parametric solution given by
(12) and (13).
Again, writing

X=v+y Y x+u r—u

T —u v—y v —y

in (11), it takes the form

gty —ut =t =B —w) (v —y) &+ —uF - (15)
Solving forz, y, «, v in terms of X, Y, a, we have

z=k(¥Y +e)y=Fk(aX —~1)
Uu=k(Y —a),v=Fk(aX +1) (16)

Hence we get

Cororrary 2. A parametric solution of (15) s given by (16)
and (12).

Taking § = 0 we get Euler’s well-known solution of (10).

Ministry of Defence
New Delhi



NEWTON SERIES
By NIRMALA PANDEY

The object of this note is to prove a theorem on the analytic
continuation of Newton series.

TaEOREM. Lef

Q@) = Z (— 1) eding(n)(z — 1) (z — 2)...(z — ), 0 < A < 2m, (1)
n=0
be any factorial series which has a finite abscissa A of convergence. Let
the coefficient g(n), when considered as a function g(w) of w(=2 + 1),
satisfy the following conditions :
(@) it is regular in some half-plane x > k, the values of g(k),
k=0,1,.:., [h], being finite numbers ;
(6) wuniformly forx > h
. 1 .
lim sup — log | [g(= + iy)/g(=)] | < d,
wlow Y]
where d 1s the smaller of the two numbers A — =/2 and 3x/2 — 4
Then the function Q(z) defined by the series (1) when Re 2 > A,
represents an integral function of 2 and will be defined, for oll large
non-integral b, > 0, by the expression

LA
D retirgm) (=1 (= 2). (2 —m) +

0

+ TESmTE [ painein g+ i

T

T +1—2z+1y)
{exp 2mi(h, +vy) — 1} 4. (@)

in the half-plane Re z < Ay,
Let the series (1) be written in the form

Q(z) =;1; Z e gtn) T(z) T(n + 1 — 2) sin m2. 3)
n=0

Let T'(k,, §) denote a region in the w- -plang formed by the lines
w=h +iy, o=k +n+iyandw =2 -+ 4j, where » is a positive
integer and j is an arbitrarily large positive number.
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Tet C be any (fixed) elosed bounded region of the z-plane con-
taining an interval of the positive real axis for which z = > [A+ 8],
§ > 0, in its interior.

I now A, is taken sufficiently large, the equationsw +1—2z=1,
L =0, —1, —2,... will not be satisfied by & in I'(h,, j), if zliesin C.
Hence for a fixed z in C,

1t o) T@2) Nw + 1 —2)sin 72
ki

is a regular function of w in I'(R,, 7).

Let us suppose, for a moment, that z lies on a closed bounded
interval of the positive real axis contained in € for which Re z >

fA +8),8 > 0. Then by means of the caleulus of residues we may
write

aw

lX e g(w) (@) I(w + 1 —2) sin 7z,
Thy, 5)

exp (2miw) — 1
4
= Z (—1Petirgm)z — 1) (z—2)...6—n). (4
(AR

Let
Dz, w) = e glw) T'() T(w + 1 —2) sin e
’ w { exp (2miw) — 1}

Now integrate the function D(z, ) about that side of I'th,, 5)

upon which w =2 +ij. Let B, be the contribution arising from
integrating D(z, w) along this side. Then

B, — I'(2) sin w2z J"‘l At Dy i TE+1—2+ 7,])
o hytn {exp 2nmt (z + 4f) — 1}

Iy is.‘a, well-known property of the Gamms function that if «
and B are real, then we may write

l"- + zm — (2,,7)1!2 (a. + 'iﬂlq-llz e—a—ﬂtnn—'l(ﬁla) (1 + a)’ (5)

where § approaches zero as either o or B becomes infinite.
- Also

Jexp {2mi (@ 4-4)} — 1} = 0(1). (6)
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By application of the condition (b), (5) and (6) we find that the
absolute value of the integrand in B, vanishes to as high an order
asthatofe9 |z +1 —7 + 471", & > 0,a8 j — co. Hence we

have lim B, = 0.
i~
Similarly using the inequality
|exp {2mi (@ — i)} — 17! < ke, (7)

and the conditions (b) and (5), we find that the absolute value of
the integrand in B, arising from integrating D(z, w) along that
side upon which w = z— 4, vanishes to as high an order as that of
e~ g +1—7—ij|*t12" as j— 0. Hence we have lim B, = 0.
PR
Let B, be the contribution arising from integrating D(z, w)
along that side of I'(h;, j) upon which w = n + k; + . Then

T(z)sinw z x
m™

B; =

© At W gy by +iy) Tn +h +1—2+1)
X : - ‘ dy. (8)
o {exp2m(n+hl+zy)—1}

It- can be easily seen that the absolute value of the integrand in
B, vanishes to as high an order as that of

e In +h+1—2z% 1y ‘ nthy+12-2
as y — + co. Hence it follows that the improper integral in (8}
exists.
Moreover, B, can be written in the form
- gn) T (n+ 1-2) ‘r ATyt i) gin+h + 7'9) x
(1 —=2) e g(n)
« Tn+h +1—2+1%) dy.
T'(n +1 —2) { exp 2mi(n +h +ay)—1}

B,

The series (3) being assumed convergent for Rez > A, we have
. at onee
lim g(n) T(z) T'(r + 1 —z)sinwz = 0.

>0
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Again, from (5), we may write

Tn+1+h —2+idy)
l Y)

ln+1+k1—z+iy’”+”2+h“z
Nn41-—2)

In +1 _z]n+112—z X

— -1 y ____
xexp{ Y tan (n+1+hl~—z)}

< dnl2+aDly)

Hence taking account of the condition (b) of the hypothesis we
at once have lim B; = 0.

n—>o
Hence for z = r on a closed bounded interval of the positive
real axis contained in C for which z =1 > [A + 8], 8§ > 0, we may
from (4) write
D (—redngmy (z 1) (2 —2) ... (z — m)
i2y)+1
_ T(z)sinme r’ glhy +iy) e "D LR, +1 —
™ —o {exp 2wi (k) + iy) — 1}
We have so far restricted 2 to Lie only on a closed bounded interval
of the positive real axis contained in C for which z =7 > {A+8],
§ > 0. Suppose now that z is allowed to take on any value, real or
complex, in the region C. Denoting by B, the mtegral on the right
hand side of (9) we have
B,= r Vg + WD +1 2ty
—w {exp 2mi (b, + iy) — 1}
which may be written in the form
Bo= [ [l [T W T 1 =2 i)

~o o Yop Y {exp 2mi (h; +4y) — 1}
=1, + I, + I, say, ~

z 4 1y) dy. (9)

where p may be chosen sufficiently large but independent of z.

Consider first the integral I,. The absolute value of the integrand,
for sufficiently large values of ¥, is less than

L
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where z, stands for the maximum absolute value of zin the region
C. But

e wlhl +142+ @yl n+12+h . g—el2 g2 Ihl +1+4z + iy|zl+1/2+"l
< ke,

where I, is a constant. Hence we have
2 5 .2
[Is] <k j e V2 dy =k = 6P,
¥ €

so that I, can be made less in absolute value than any arbitrarily
small positive number 5 by a proper choice of p. The same is also
true of I, if p is chosen sufficiently large. Also it can be seen easily
that I, represents an analytic function of z in C. Hence the
uniform convergence of the improper integral B, for z = re®
in O is established. Also since € contains an interval of the
positive real axis for which (9) holds, it follows that the right-
hand side of (9) provides the analytic continuation of
]

Q2) — D (—Dretngln) 6~ 1) —2) (2= n)

n=0
over the region €. The equation (9) therefore persists for all values
of z in C'. But as the region C may be chosen to contain any
bounded portion of the complex plane in its interior, Q(z) is an
integral function of z, which, by virtue of the equation (9), is
defined by the expression on the right-hand side of (2) in the
half-plane Re z < &,.

REMARK. As a particular case of the above theorem we prove
that
2 (z—1)(z—2)...(2—m)

Q) = zo 1.2...»m
represents an integral function of z. This also follows as a special
case of a theorem proved by V. F. Cowling [1].

REFERENCE
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ON THE ANALYTIC CONTINUATION OF
CERTAIN SERIES

By NIRMALA PANDEY

1. In this note I am concerned with the study of the analytic
continuation of the following series :

[ ) F

Zemﬁ-ma F(z(j}z—)%)’ 4>0,0<a<f<], (1.1
1
o0 ) T -
S gaitusn?—onr F(_z% , B>2, A>0. (1.2)

To begin with I consider the series

S Ainf—sma L)
H(s’z)=ZeAmﬁmF(z+n),A>0, 0<a< <],

1

defined initially for R(s) > 0 and E(z) > 1 and prove that it repre-
sents an integral function of both s and z, it being well known

that
fis) = Z eAf-o® 450, 0<a<fB<]l,
1 B
represents an integral function of s, and that
S _L(m)
Qz) = e
is an analytic function of z at least in the half-plane Re(z) > 1.
2. I prove the folowing theorem.
TaEOREM 1. Let

= L(n)
= inB—gne L < » (2.
H(s,z)—IEeA ~P(z_*_n),A>0,0«uz<ﬂ<1,( 1)

then H(s, z) is an integral function of both s and 2.

The series (2.1) is absolutely and uniformly convergent for
Res >8> 0and Rez > 1. Let us therefore take for a moment s
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real and positive and greater than & (positive and arbitrarily small)
and z also real and 2 > 1+¢ > 1. Take also a contour in the
w-plane bounded by two semi-circular arcs drawn with centre at
the origin and radii » + 4 and } respectively, and also by the parts
of the imaginary axis as shown in the figure.

Y

S w-plane

v

T
\\U .
Y

Then, by Cauchy’s theorem, we may write

S L'(n) ['(w)
edinf—ms V7 j AiesB— 5 _h__w__ﬂ__——
Z T +n) " ) rorsroe Iz + w) (e — 1) do

(2.2)
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where »? and «°® are defined as exp (B log w) and exp (a log w) and
log w has its principal value.

Put w = pe™® and consider the integral over the arc @R. Now
I g.i’iaap—lw" _____F(w_)a__
QR Tz + o) (¥ — 1)
(d sedipP(cos By+i sin 86)— spSeos ad+isinad) T'( pe"‘") Pei\& dif
j w2 Dz 1 p€®) {exp 2mi p(cos  + i sin ) — i}’
and changing ¢ into — ¢ and taking the modulus of the integral,

dw

we have

U <k j edsfingy=stmsedSensat p 2 b,
' JQR! o

where k, is some constant, since

1 [ — ()(g—2melsingl
|, = O
and .
P(pe®) =0 W= — Op=?).
f(z_‘+ P'ew) ( } P e i ) (P )

We therefore have

72
Kj l <k p? g—opucﬂ!:nﬂ.aj edpfsin ¢~ 2macing dis
QR 0

i "2
< 13 17 bAd _“ e_’plz"ipa_l)smd' d'ﬁ
0

7,2

—p(2m—8;)8in

< tH 1 37 .[ ¢ oen b d'/”
0

where 8, is sufficiently small for p sufficiently large. Therefore

i w3 3
:j l < ll P 1-2 g3 cmaﬂl‘[ “‘P(W")(Z"‘ox) d¢
QR

o BTN b)) ]
s [ @p/m) @7 —8y)
<k ptTE e*ip“cosr«"-'; [l — e”"(z'"s‘)],

so that the integral along the ar¢ — 0 as p —> .
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Also taking the modulus of the integral over the arc RS we have
H \ < k‘z gvm e-A#ﬁnB%—cﬁ“m;m Pl—z d¢,
RS 0

since, on the arc RS,
’ 1

ey = 00

‘We therefore have

: b L, Brid
; ‘ < 2 g—BpPcosam, 2 P e— Apfsing d(ﬁ
B 0

{JRs|
Bn'2
< s ow :’X e~ 4P 2bin d¢
. 0 .

<

2 3]

e~ ApB2d/ ] 2
—4pP. Ynldo
Hence the integral along the arc B8 — 0as p — o0.

If therefore we take s to be real and >8 > 0 and z also to be
real and > 1 + ¢ > 1, we have, from (2.2),

L] (n)
— inBogna __ Y7
His,2) _zl eante F(z+n)

) D(w)
= —-— edind—gus — e dw, 2.3
LUP + .LQ L‘s Iz + o) (e —1) (2:3)
as ¢ and § move to infinity along PQ and 7'S respectively.

As the integrand is an integral function of both s and z on the
path of integration TUP which is finite, the integral over this
semi-circular are rep1esents an integral function of both s and 2.

We shall next show that the integrals over the straight paths

PQ and T'S when @ and 8 move towards infinity, represent integral
functions of both s and z.

Consider the integral.over PQ. Putting w = ip andz =z + iy,
. ! { © i
i}j‘ Y {k;; - eAiDB(COBﬂ""l—is'lﬂﬁt’m—(c+1't)(cosml2—-isilma 2p¢ W
Yiegl 1 T i )

X (Pe—-‘im'2)z+iu e—/ﬂup (_ i) dP
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- o
< ks I eApBsingn/2— p%(ocosan(2+ tsinan/2)— 2mp-+ my/2 Pz d D,
1/2 L

which shows that the integral converges absolutely and uniformly
for all finite values of o, ¢, z and y like the integral [ =% dp,
A >0,

Similarly

! ©
I I <k, J ¢~ ApB8inBn(2 — pX(ocosan2~tsinan, w2y | p dp ,
sT Sdz o -

which again shows that the integral over §7' converges absolutely
and:uniformly for all finite values of @, ¢, z and y like the integral
jo e~ do, A > 0.

Hence the three integrals on the right of (2.3) represent integral
functions of s and z. This proves the desired result.

REMarks. (a) The result remains true if =1 and 0 < 4. < 2m.
(6) If s = 0, then

@ r ‘
H(z) = Z edinf I’(z(:,:-)n) 4>0,0<8<1,

is an integral function of z, so that the factorial series

it 1.2...n

Z‘Le'w ). (z+m)

represents an analytic function in the whole z-plane excepting the

points z = 0, — 1, — 2, —. The case p = 1 has been considered by

V. F. Cowling [1].

3. TuEorEM 2. Lt

< . I'(n) .
H(s,2) = ng(logn)ﬂwaogn m, A>0,8>2 (381

2 .
then H (s, z) represents an integral fu@ction of
The :p - analégous-to thas of the.previous

Qotﬁ 8 qnd 2.

- The :px:bof- of ‘this theorem is-
one.
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REMARES. (a) A similar result holds for the series

«®

. sioama L)
2264.00")3 «(logn) ferm’ a>1L8>a+1,

80 that by putting z = 0, we prove thg.t

Z ediflogn) - eflog my?
2
represents an integral function of s if e > 1 and 8> o + 1. Dr.
Srivastava [2] has shown that this result is true even if 8 > a > 1.
{b) Putting s =0, we prove that the fanction represented by
the series

a0

r
Hz) = zz editogn)B F(z(:_)n) A>0,8>2,

is an integral function of 2, so that the factorial series

2 ediflog )P ___1__2_L
= Zz+1)...(2+n)

represents an analytic function of z in the whole finite plane exoept-
ing the points 2 =0, — 1, — 2, ....

Thanks are due to Prof. P. L. Srivastava, D. Phil. (Oxon) for
his guidance in the preparation of this note.
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A simple proof of a formula in the theory of functions
By ALexaxpER DixgHAS, New York

1. Let f(z) be a function analytic inside a semicircular domain
and on its boundary H. More than seventeen years ago I gave a
simple formula [Preuss. Akad. Wiss. Mathem. Physik Klasse, (1935)
Bd. 33, S. 576-596. Buil. Soc. Math. 64 (1936), 78-86], which
expresses the value of f(z) ab any point inside H, in terms of the
values of its real part on H, in a similar way as the classical
Poission’s formula for a circle. The proof given there by means of
Green’s function was rather complicated. In the following, I am
giving & proof which furnishes the desired result in & few lines.

2, Let the function f(z) be regular in the semicircular domain
2zl < R, 220, (z=2+1y), (2.1)
and let { denote & point of the boundary H of (2.1).

According to Cauchy’s Residue-theorem we get for every

point inside {2.1),
{+er Bz C} a9

o 10 = o [ 10 (2T T
and
Rl 1-3d
0= [ 0 {Ere e L

where 7 denotes the conjugate number to z and the integrals being
taken in Cauchy’s sense geb the point {=0.

Now, for any point { on the periphery | ¢} = R, we have {{=R,
Similarly we have for any { on the segment — B <y < R, I=—~1
Therefore we obtain from (2.3)

O =50 I fm{gf: ﬁ:;:g}%
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and combining with (2.2},

ra=sins s ] 2o (122 ]

This is the desired result.

3. The classical Poisson’s formula for a cirele C :|z|< E can
of course also be proved in the same way.

We have to use here the two integrals

2 -0 = | J0 RS e
and
o =5 ot ot (32)

Again, as before, we ha,ve C § = R?-and we obtain

0= g | TBEEL S

An addition to (3.1) gives the desired result.

Partitions of zero into 4 cubes

By B. V, RaMASARMa, ﬁ'alwir‘

. In a note entitled ‘ Residual types of partitions of 0 ” into
four cubes’ [Math. Student, 13.(1945), -47-8], -A. K. Srinivasan
has investigated the possible types of residues {mod 6) of a, b, ¢, d
satisfying

@+ b8+ +d =, 1)
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If 0 <ag, by, 65, d, <8 and a=gq,, b==b;, c=¢, d=d,
(mod 6) he has shown that there are only 10 different types of
quadruples (ay, by, ¢;, d;). For 7 of these types he gives examples
of integers a, b, ¢, d satisfying (1) and having given residues mod 6.
For the three types (1,1,1,3), (2,2, 3,5)and (0,1, 1, 4) he gives
no examples and believes that such types cannot exist. We
prove here that such types do not exist.

For instance take (1, 1,1, 3). Let a, b, ¢, d satisfy (1) and
=1,b=1c=1,d==23(mod 6), (2)

théna=6z+l,b=6y+l,c=6z+l, d=6w+3 2y 2w
being integers. Thus
0=a+0 +c+d°

=216 (@° + 1 +2° + ') +

+18(6x2+z+6y2+y+6z2+z+6w3+3w)+3o. (3)

The first two terms on the right of (3) are divisible by 18 but not

the last showing that (2) cannot hold. The others may be dealt with

similarly.
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A summation problem
By Hansear GUPra, Punjab University College, Hoshiarpur

1. In a letter to Dr. A. Narasinga Rao, Martin G. Beumer of
Holland posed the problem of evaluating the sum

2 omfn— 1) (n—2)...(n—r+1)

=,=° o (2n—1) (20— 2)...(2n —7r + 1) 27,

8

Tn the following solution the only property of the combinatory
functions used is

(=)=

We readily have .
= -t
Z (n — r)' 2n)’
Salnl (2n—n)! .
- Z 2—‘ al(n —1)
so that

20 & (I — _
(n)S,,=Z,( ” )2'—11,", say,

=0

2
Uy, = ()2n+(n+1)2n-1+(n+ )27:-—8.

Fo +(2"n‘ ) 2+ (n) (A)
With this notation

Uppy _ (T 1) on ”+2) n—1 n+3)2"“2+...+
‘;‘—(n+1)2+(n+12 +(n 1

() () GH) @

then
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Subtracting, we have

Ungy _ . _ (" 1) gn-1 (n+2) n—32
= (1) () T

i)+ (G

because

(2n+1)=(2n+1)h1 2n+2(2n+1)=1(2n+2)
n+1 n J 2°n+1 n g\n+1)"

Hence

Unyy =44
" But
u, =4
Therefore
u, = 4"
Hence

4”
= )
n
2. The following is another method for evaluating u,.

We have
() +(7) -GG
A G R G B (S E
ORI

=(:i§) (:ig) (n+1
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Proceeding in this manner, we get
i [T 1 n+l) k_z(n—{—2 L (ntk
2(%)+2 (n +2 n)+T(n)

. n+k+1 n+k41 n+k+1Y) , , (n+k+1
'(n+k+1)+( n+k )+(n+k—1)’r""7( n+1 )

In particular for k& = =,

(A1) (2n+1 2n +1\_ 1 om0\ e
u"_(2n+l>+(~ 29 )Jr""jr(n+l)‘§zo( r )52 :

A note

By R. R. SuarMA

The problem is to evaluate

(1) re-n3 ()"
=Z{(2""’) SNl
-2
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Proceeding thus, after » steps, we get

s () () ()t ()

=2(n"‘;r)2n+r=22n+l —an,

r=9

Hence
2u, = 22+ op 4, = 2%,
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Introduction to the foundations of mathematics. By Raymond L.
Wilder, John Wiley and Sons, Inc., New York, and Chapman
and Hall, Ltd., London, 1952, xiv + 305 pp.

This is an introduction to some of the fundamental concepts of
mathematics and to modern developments in the foundations of
mathematics. The content is that of a eourse which the author has
been giving for more than twenty years to students at the under-
graduate or first-year graduate level, intended less for those who
would hecome research mathematicians than for prospective
teachers, actuaries, statisticians, and others who had specialized in

undergraduate mathematics.

Part T of the book first introduces the student to the informal
axiomatic method, i.e. o the older form of the axiomatic method in
which the logical apparatus employed is a *taken-for-granted ”
« patural ’ logic (the quotation marks are the author’s), and only
the terms specific to a particular mathematical theory (as dis-
tinguished from those of logic) are listed among the undefined
terms, and only specifically mathematical propositions (as dis-
tinguished from logical) are set down as axioms. The treatment then
proceeds partly on such axiomatic basis, and partly on the still
more informal basis of direct development of the underlying “natu-
ral” logic. There is an cxcellent account of the notions of consis-
completeness, and ocategoricalness, with

tency, independence,
uced as examples. Then

several simple systems of axioms introd
follows a chapter on the theory of sets, with discussion of the Russell
antinomy ; the usual elementary operations on sets; the definition
of an infinite set as a set which has no one-to-one correspondence
with a section of the natural numbers ; the Peirce-Dedekind defini-
tion of an infinite set ; proof of the equivalence of the two definitions

of the infinite; and a very clear statement of the role of the axiom

of choice in this proof, and of the axiom of choice itself and its

significance.



110 BOOK REVIEWS

The next chapter treats the notion of enumerability, the diagonal
procedure, and the transfinite cardinal numbers. Here an interesting
feature is a discussion of the notion of an effective definition and of
an effective enumeration, based on a process of iterated application
of the diagonal procedure which (though not the same) resembles in
some essential respects Hardy’s famous fallacious proof* that
N, <ec.

There follows a chapter on well-ordered sets and ordinal numbers,
in which, in particular, transfinite induction is introduced ; the
well-ordering theorem is proved as a consequence of the axiom of
choice ; Burali-Forti’s antinomy is stated; and the continuum
problem (i.e. the problem whether N; = ¢) is discussed. The
next chapter has an axiomatic treatment of the real number system.
And then Part’I closes with a chapter on groups and their signi-
ficance for the foundations.

Part II deals with questions and controversies about the nature
of mathematics, and with developments in the foundations of
mathematics which either require or lead to a formalization of
logic (in addition to, or even instead of, specifically mathematical
axioms). After a chapter about early devélopments, ending with a
statement of Zermelo's axioms for set theory, there are chapters
which treat, in order, the Frege-Russell thesis (basing mathematics
on logic alone), the intuitionism of Brouwer, and the proof theory
of Hilbert. Especially good is the sketch, in this last chapter, of the

proof of Godel’s incompleteness theorem, which is based on lectures
by Henkin.

The final chapter of the book is a reworking of the content of the
author’s address to the International Congress of Mathematicians

*In The Quarterly Journal of Pure and Applied Mathematics, vol. 35 (1903-4)
pp. 87-94. Hardy’s proof is fallacious only if understood as claiming to*have
obtained the result without use of the axiom of choice or to have defined a
particular subset of the continuum of cardinal number §; (see Proceedings of the
London Mathematical Society, series 2, vol. 3, pp. 170-188, and series 2, vol. 4,

PP. 1;)-17). And an analogous remark applies to Wilder’s ¢ fallacious theorem ™,
3.1.8.1,
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of 1950 (published in the Proceedings of the Congress). Here the
author for the first time abandons the jmpartiality which he has
adopted in stating the case for each of the doctrines treated in
Part II, and states his own view of the nature of mathematics.
This is summed up by saying that “mathematics, like other cultural
entities, is what it is as a result of collective human effort...
what it becomes will not be determined by the discovery of ‘mathe-
matical truth’ now hidden from us, but by what mankind, vie
cultural paths, makes it.... In short, mathematics is what we
make it.... Until we make it, it fails to ‘exist.” And, having
been made, it may at some future time even fail to be ‘mathe-

matics’ any longer.”—Even the Platonic realist would no doubt

admit the importance of cultural influences in determining what

part of the whole body of mathematical truth is in faot discovered

and explored at any particular time. But the author, as the quota-

tion shows, makes use of the cultural determination of mathematics
as an argument for a form of conceptualism, which differs from
more usual forms in its emphasis on impermanence in the content

. of mathematics.

Of the two parts of the book, Part I is of uniformly high
excellence, and certainly the best existing exposition for its purpose.
The shorter Part IT shows many of the merits of Part I but suffers
from excessive condensation. For example, the development of the
logic of quantifiers (pp. 223-224) and that of the intuitionistic
propositional calculus (pp. 244-246) are not carried far enough to
make these matters really clear to the student. And in the deserip-
tion of various forms of the theory of types on pages 225-228, so
‘many different things are set forth in brief space without elabora-
tion or illustration that the treatment becomes very difficult to

follow.

There are some scatbering minor errors which deserve correction,
though they are unimportant in relation to the book as a whole.

There is a discrepancy between the statement of the Peano
axioms for the natural numbers on page 66, where it is made a part
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of the second axiom that the suceessor of & number is unique, and the
statement of the same axioms on page 149, where the second axiom
asserts only the existence of a successor. Moreover the uniqueness
of the successor does not follow from the axioms on page 149.

Again on page 149, the difficulty involved in using the mathe-
matical induction principle to justify definition by recursion is
glossed over (compare Landau, Grundlagen der Analysis). This
would be ameliorated if the definition of < on page 150 preceded the
definitions of addition and multiplication.

On page 222, the ascription to Carnap of the opinion that strict
implication should be understood as a relation between sentences
is historically doubtful. On page 227 the definition of predicative
function seems to be incorrect on the basis of the terminology that
has just been introduced in the preceding sentences. On page 250
(last line), modus ponens is incorrectly stated in the form of a formula
scheme-—though elsewhere it appears correctly as a rule. On page 258
the example given in the third paragraph is incorrect. On page 259
the statement of Rosser’s theorem is not quite acourate.

Aroxzo CHURCH

A mathematician’s miscellany. By J. E. Littlewood, Methuen,
London, 1953, vii--136 pp. 15sh.

This is a peculiar book, rather like a diary than a book. It is a
collection of notes and articles of great variety and interest, suffi-
ciently light to appeal to the amateur and sufficiently intriguing
to provoke the professional mathematician, with such titillating
titles as The Zoo, From Fermat’s Last Theorem to the Abolition of
Capital Punishment, Large Numbers, Lion and Man, eto. It has the
true Littlewood touch ; there is nothing cheap or trivial. An auto-
biographical section describes the author’s mathematical education.
Four book reviews are reprinted, one of which is the famous review
of the Collected Papers of 8. Romanujan. There is a rich fare of puzzles



BOOK REVIEWS 113

and paradoxes and jokes and curiosities, which confirm the author’s
dictum that “a good mathematical joke is better, and better
mathematics, than a dozen mediocre papers.... Incidentally the
joke is in the mathematics, not merely about it.” There are also
several high-brow pieces of technical mathematics.

The book opens with a highly interesting article giving an unusual
set of examples of Mathematics with minimum ‘raw material’, drawn
from unexpected sources that range from feminine psychology to
Marcel Riesz’s double convexity theorem. In between the author
asks and answers such questions as : What is the best stroke ever
made in a game of billiards? Can a dissertation of 2 lines deserve
and get a Fellowship in mathematics? Is every cipher breakable?
There is an amusing section on Cross-purposes, UNCONSCIOUS ASSUTP-
tions, howlers and misprints, in which the author says, ‘I remember
reading the description of co-ordinate axes in Lamb’s Higher Mecha-
nics : Oz and Oy as in 2 dimensions and 0z vertical. For me this is
quite wrong; Oz is horizontal (I work always in an armchair with
my feet up).” An anecdote about Hardy turns up: “Iread in the
proof-sheets of Hardy on Ramanujan : ‘as someone said, each of the
positive integers was one of his personal friends.” My reaction was,
T wonder who said that : I wish T had.” In the next proof-sheets
T read (what now stands), “it was Littlewood who said......... ’
[What happened was that Hardy received the remark in silence
and with poker face, and T wrote it off as a dud. I later taxed Hardy
with this habit ; on which he replied : “Well, what is one to do,
is one always to be saying ‘ damned good ’? To which the answer
is yes.]” It is in the same book that Hardy says, in line with the

same practice, I owe more to Ramanujan than to anyone else

in the world with one exception.”

oat virtuoso in constructing * gegen-
beispiel ’ ’s is illustrated by The Zoo in which one finds, among
other things, the conformal mapping of the mouth of a crocodile.
Although Hardy once remarked, <“even Littlewood could not make
pallistics respectable; if he could not, who can?”, there is an engaging

That the author is a gn
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section on Ballistics, followed by a brief but provocative essay on
The Dilemma of Probability Theory. Could there be a chain of ideas
from Fermat’s last theorem to the abolition of capital punishment?
“I think so, with some give and take”, replies the author. Of
particular interest to some Indian students will be the author’s
remark on Forsyth’s Theory of Funclions of a Complex Variable,
that it ‘ was out of date when written (1893)’, and the long quotation
on the notion of a ‘ function’ which has an ‘ obscurity as of midnight’.
A long section on Large Numbers (reprinted from the Mathematical
Guzelte) begins with a consideration of numbers connected directly
or indirectly with daily life, games of chance, coincidences and
improbabilities, {* Improbabilities are apt to be over-estimated.
It is true that I should have been surprised in the past to learn
that Professor Hardy had joined the Oxford group. But one could
not say the adverse chance was 10°: 1. Mathematics is a dangerous
profession ; an appreciable proportion of us go mad, and then this
particular event would be quite likely "], and works up to illumina-
ting comments on the Skewes number.

Although the auto-biographical section ends somewhat abruptly
with the sentence, ““ T soon began my 35-year collaboration with
Hardy”, it gives much interesting information of Littlewood as a
student, of his * first contact with a startled Hardy’, of the * authentic
thrill * which the first volumes of the Borel series gave him, of his
first longish paper on integral functions and the violently un-
favourable ’ reception it got from one of the referses AP by
the time I learned in later life who he was I had disinterestedly come
to think of him a bit of an ass......... I have not since had trouble
with papers, with the single exception that the Cambridge Philosophi-
cal Society once rejected (quite wrongly) one written in collaboration
with Hardy ], of his tutor’s ‘ heroic suggestion ’ that he should
prove the Riemann hypothesis, a suggestion ‘ which was not without
result’, of his ‘ youthful views’ on the Prime Number Theorem
which illustrate °the uncertainty of judgment and taste in a
beginner in a field with no familiar landmarks ’, of his three years as
Richardson lecturer at Manchester University where he had * high
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pressure work on top of the low pressure mountain’, and of his
joining the Trinity staff in 1910 and his proof of the famous converse
of Abel’s theorem, which marked the end of his mathematical
education. Of the Mathematical Tripos at Cambridge he would only
say, “the old Tripos and its vices are dead horses; I will not flog
them. I do not claim to have suffered high-souled frustration...
I will say, however, that for me the thing to avoid, for doing creative
work, is above all Cambridge life, with the constant bright conversa-
tion of the clever, the wrong sort of mental stimulus, all the goods
in the front window”. Out of these pages emerges a personality
very different from that of Hardy’s, which makes their extra-
ordinarily long and fruitful collaboration all the more remarkable.

The suthor’s aim is ‘ éentertainment and there will be no uplift.’
That aim has been admirably achieved. This is an enjoyable book.

K. CHANDRASEKHARAN

The printing of mathematics. By T. W. Chaundy, P. R. Barrett and
Charles Batey, Oxford University Press, 1954, x + 105 pp. 15 sh.

The most difficult part of any job of mathematical printing is the
composing of mathematics. This was done largely by hand until 1930,
when the University Press, Oxford, in collaboration with Professors
G. H. Hardy and R. H. Fowler, and the editors of the Quarterly
Journal of Mathematics, and with the Monotype Corporation, made
the first serious attempt to develop the resources of the Monotype
machine for the composition of mathematics. By much adaptation
and recutting of type faces a new system was evolved in which the
technique of mechanical composition was geared to the demands of

_ mathematical printing. The system has since been improved almost
to the point of perfection, and no printing-house is entitled to
greater praise for this advance than the University Press, Oxford.
The code of rules which was drafted by them for the use of com-
positors at the Press and those authors and editors whose work was
produced there, and which has served to establish the now familiar
and justly famous Oxford style, is elaborated here in sufficient
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detail to be of great practical utility. In order to make these rules
fully intelligible, and to make clear their motivation, an introductory
chapter, of just twenty pages, on the mechanics of mathematical
printing, has been written by Mr. Batey. This excellent exposition,
remarkable alike for its simplicity and clarity, is followed by a long
chapter of fifty three pages, by Mr. Chaundy and Mr. Barrett, in
which detailed methods are recommended by which authors might
ease the printer’s task and their own. This chapter, written in a
lively and engaging style, will be of great help to authors, editors,
readers, and compositors. It may be considered as a modern version
of the ¢ Notes on the Preparation of Mathematical Papers * published
by the London Mathematical Society in 1932 under G. H. Hardy’s
inspiration, such a version having become necessary on account of the
new role of the machine compositor. The recommendations made here
reflect the Oxford practice, which differs in some respects from that of
other authorities, but the principles on which they are based are,
almost always, unexceptionable. The book is superbly produced, and
will certainly serve as an acceptable and ready work of reference.

The only typographical discrepancies that the reviewer has
noticed occur on pages 15, 17 and 31. On page 15, the expression
‘(¢ =0,1,..... , 1 )’ oceurs six times, and on each occasion the
figures 0, 1 are in italic. This is not justified by the Oxford practice ;
if there is a special reason for this particular usage, it has not been
made clear. On p. 17, line 23, the sentence, ‘ The practice of so
disposing the pages of a book so that . . . * has perhaps one ‘so’ too

many. On p. 31, line 18, the suffix of the last ‘ ¢ ’ should not have
been in Greek.

The reviewer is unable to appreciate the practice of using bold-face
figures both for numbering the sections in a paper, and for numbering
the references given at the end of a paper. It is true that the enume-
ration of the references is done in a smaller point, but they are
indicated in the body of the paper by bold-face numerals of regular
size, and on a page which contains a large number of references, a
strident effect is produced. The practice of using ordinary numerals

- enclosed in brackets [ ] is perhaps preferable, especially because the
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brackets become indispensable, in any case, if the aunthor wishes to
cite the rcferences by chapter and page. Again, the practice of
inserting & rule in place of the author’s name, whenever more than
one work by the same author is listed in the references, not only
upsets the acsthetic balance but creates a problem in case an author
figures as a joint author in one instance and as the sole author in
another. But these are minor points on which no reasonable person

can be dogmatic.

K. CHANXDRASERHARAN

Analytical solid geometry. By M. V. Jambunathan, India Book
Company, Bangalore, 1952, 113 pp. Rs. 2-4.

This nice booklet attempts, as the author claims, to serve as an
introduction to the analytical geometry of three dimensions,
having for its scope the study of the ° point ’, ‘line " and ‘ plane ’.
Although the treatment follows the familiar lines of the standard
English books on the corresponding topics, the author has brought
to bear his experience as a teacher both in the methods of presenta-
tion, by aiming at clearer exposition, and in the selection of useful

worked examples.

In spite of the fact that much care must have been bestowed in
preparing a book of this kind, a slightly different treatment of the
topics would have considerably increased the utility and the scope
of the book. For example, an elementary discussion of vectors,
projections, ete.,and a somewhat modified presentation making use
of vector ideas wherever necessary, would help the student to under-
stand better the notion of the distance of a point to a plane 7,
or “to & line”’, “the direction cosines of a direction ”’, ete., and
furthermore to avoid the usual and somewhat tricky methods of
changing signs of perpendicular distances, etc.

Again certain other details in this book also call for comment.
Tor instance, the sign and range of 7, 6, ¢ in the spherical polar
coordinate system should be clearly indicated to the beginner and
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should not be left vague as we find in § 9 on p. 10. The idea con-
veyed in § 16, p. 20 relating to the definition of the cone is
confusing in as much as a cone should be taken to extend on both
sides of the vertex ; further it would be instructive if the cylinder be
introduced as the limiting form of & cone when the vertex recedes
to infinity.

Moreover, the statement on p.20 relating to the vertical angle of
the cone, viz. that ‘ any plane through the vertex...cone’ is not
correct. There are also a few misleading, but presumably, printer’s
mistakes which might have been well avoided. Thus: on p. 33 “the
direction cosines of AP are

T —a Y ‘—B=zl"’)’”
r r r

’

and on page 79, relating to the equation of the plane through
(1, ¥y, 2,) and the line .
z—a_ y—p_z2—vy

1 m n

‘“ This can be expanded as the determinant...”".

On the whole the book would unhesitatingly serve as a constant
companion to the students for whom it is designed.

K. R. A1YER



NEWS AND NOTICES

The following members have been admitted to life-membership in
the Society : V. A. Mahalingam, S. 8. Lal Mathur, K. Padmavally,
V. Rangachar and M. V. Subba Rao.

The following persons have been elected ordinary members of the
Society : Nirmala Pandey and Darshan Singh.

The following members of the American Mathematical Society
have been admitted as members of the Indian Mathematical Society
under the reciprocity agreement : Stephen Hoffman and L. G.
Hutchinson.

Dr. Ram Behari has been nominated to represent the Society on
the Council of the Ramanujan Institute of Mathematies.

The Osmania University has kindly extended an invitation to
hold the twentieth Conference of the Indian Mathematical Society
at Hyderabad in December 1954, The invitation has been accepted.

The Society has received publication grants of Rs. 1,000 from the
National Institute of Sciences of India, and Rs. 2,000 from the
Government of India, for the year 1953-54.

It is understood that Professors H. Rademacher, L. Schwartz
and P. A. M. Dirac will be in residence at the Tata Institute of
Fundamental Research during the winter term of the academic
year 1954-55.

Professor M. H. Stone, President of the International Mathematical
Union, has appointed the following Commission on the World
Directory of Mathematicians :

P. Belgodsre (Paris), E. Bompiani (Rome), W. V. D. Hodge
. (Cambridge), H. Levy (London), M. H. Stone, Chairman (Chicago).

An arrangement has been reached with Butterworths Publications
Limited, London, according to which Butterworths will prepare the
material for the World Directory with the assistance of the named
committee, which will furnish technical advice. The Union has also
agreed to pay a contribution of $2000 towards the expenses of -
preparing the manuseript. Of this sum, $1000 will be paid in 1953
and $1000 in 1954.
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INTERNATIONAL CONGRESS OF MATHEMATICIANS, AMSTERDAM,
SEPTEMBER 2-9, 1954.

The following mathematicians have accepted the invitation of the
Organizing Committee to deliver a one-hour address at the Congress:
K. Borsuk (Warsaw), R. Brauer (Cambridge Mass.), J. Dieudonné
(Ann Arbor, Mich.), S. Goldstein(Haifa), Harish-Chandra (New York),
B. Jessen (Copenhagen), A. Lichnerovicz (Paris), J. V. Neumann
(Princeton, N.J.), J. Neyman (Berkeley), B. Segre (Rome), C. L.
Siegel (Gottingen), E. Stiefel (Zirich), A. Tarski (Berkeley), E. C.
Titchmarsh (Oxford), K. Yosida (Osaka).

The following mathematicians have accepted the invitation of

the Organizing Committee to deliver a half-hour address at the
Congress :

Section I (Algebra and Theory of Numbers). H. Davenport
{London), P. Erdds (Los Angeles), E. Hlawka (Vienna), N. Jacobson
(New Haven), H. Maass (Heidelberg), A. Neron, D. G. Northcott.

 Section II (Analysis). H. Behnke (Miinster, Westf.), F. Bureau
(Liege), M. L. Cartwright (Cambridge, Eng.), L. Cesari (U.S.A.),
K. Chandrasekharan (Bombay), A. Erdélyi (Pasadena) W. K.
Hayman (Exeter), E. Hille (New Haven), P. J. Myrberg (Finland),
C. Pauc (Nantes), Wazewski (Poland), A. Zygmund (Chicago).

Section 111 (Geometry and Topology). G. Ancochea (Madrid),
W. L. Chow (Baltimore), H. 8. M. Coxeter (Toronto), B. Eckmann
(Switzerland), H. Freudenthal (Utrecht), D.
(Princeton), H. 8. Ruse (Leeds), J. P. Serre (Paris).

Section IV (Probability and Statistics).
R. Fortet (France), M. G. Kendall (London).

Section V. (Mathematical Physics and Apj)lz‘ed Mathematics).
L. Collatz (Hamburg), G. Fichera (Triest), M. R. Hestenes (Los
Angeles), J. Kampé de Fériet (Lille), J. J. Stoker (New York).

Section VI (Logic and Foundations). P. Lorenzen (Bonn),
A. Mostowski (Warsaw), J. B. Rosser (Ithaca).

Section VII (Philosophy, History and Education). C. 'T. Daltry
(England), J. E. Hofmann (Bayern), K. Piene (Oslo).

Montgomery

J. L. Doob (U.S.A.),



ERRATUM

By M. K. Singal and Ram Behari
It is regretted that relation (2.3) in our paper in the Mathematics Student, XXII
(1954), p.37 is not correct. The deduction of the results of §§4,5 is therefore not
valid.
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