


MADURAI KAMARAJ UNIVERSITY
(University with Potential for Excellence)
DIRECTORATE OF DISTANCE EDUCATION
Palkalai Nagar, Madurai — 625 021, India
Ph : 0452 — 2458471 (30 Lines)  Fax : 0452 — 2458265

E-mail : mkudde@mkudde.org
General grievances : mkudde grievance@gmail.com
UG Courses : mkuddeug@gmail.com

PG Courses : mkupg@gmail.com

MBA Courses : mkuddembag@gmail.com
MCA Courses : mkuddemcag@gmail.com
Education Courses : mkuddeedu@gmail.com
Website : www.mkudde.org

IVRS : 0452 ~ 2459990

. 0452 - 2459596
Student Support Service : 0452 — 2458419

DDE — Examinations
Fax : 0452 - 2458261

E-mail . mkuace@yahoo.com
Examn. Grievance Redress Cell : 0452 — 2458471 - Extn. 515

Reading Material Disclaimer

This reading material, developed by Mr. M. Abdul Basheer, Associte Professor of Physics,M.S.S. Wakf Board College,

K K Nagar, Madurai - 20 & Mr.R. Athiapparajan, Assistant Professor of Physics, M.S.S. Wakf board College, K.K Nagar,
Madurai - 20 and reviewed by Dr.M. Mohamed Ali Jinnah, Associate Professor & Head Department of physics,

M.S.S. Wakf Board College, Madurai - 20 is an aid for the students of Directorate of Distance Education, Madurai
Kamaraj University, to understand the course content.It is only for the registered students of DDE,MKU and is not for

private circulation.

©All copy rights & privileges are reserved




MADURAI KAMARAJ UNIVERSITY

(University with Potential for Excellence)

Madurai — 625 021.
DIRECTORATE OF DISTANCE EDUCATION

B.Sc. Physics

Paper - 11

HEAT, THERMODYNAMICS &
STATISTICAL MECHANICS

9024
UPHYO2



Printed at Vimala Note book
Copies - 500 Fresh Print
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1.3 Isothermal and adiabatic changes

1.4 Specific Heat Capacity (C, and C,)

1.5 Rclation between C;, and Cy

1.6 Calorimetry

1.7 Jolly’s differential steam calorimeter to determine C,
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1.9 Let us sum up

1.10 Unit — end exercises

1.11 Problems for discussion

1.12 Answers to check your progress and problems

1.13 Suggested readings

1.1 Introduction

Thermodynamics is the branch of Physics which is mainly concerned with the
transformation of heat into mechanical work. It involves the study of the
interaction of one body on another in terms of the quantities heat and work. The
study of the thermal energy is often called the internal energy of the system with
the main concept of temperature. Thermodynamics has nothing to say about atoms
but only concerned with macroscopic variables such as pressure, volume and
temperature.

The properties of many bodies change as we alter their temperature. When a
body is heated its temperature rises. The rise in temperature depends on the
quantity of heat given to the body and the nature of its materials. The quantity of
heat required is specific heat of substance and is not constant. Specific heat of a
gas can be considered by taking any one of the two variables (either pressure or
volume) as constant. The internal energy of the system is single valued function of
the state variables viz., pressure, volume, temperature efc., In the case of gas, any
two of the variables P, V, T are sufficient to define completely its state. In this
unit, we are going to learn about isothermal and adiabatic changes, definition and
relation between C, and C, and the experiments to determine C, and C.,.

1.2 Objectives
After studying this unit you will be able to

e explain isothermal and adiabatic process

e define C, and Cy

e derive Mayer’s relation connecting C;, and Cy
1



e describe the Joly’s differential steam calorimeter for finding Cv and
e explain the working of Callender and Barnes continuous flow method to

determine C,.
1.3 Isothermal and adiabatic changes
1.3.1. Isothermal Process

Definition:
When a change in the pressure and volume of a given mass of gas takes

place at constant temperature, the process is called an isothermal process.

Explanation:
Consider a gas contained in a cylinder and compressed by a piston (Fig.

1.1). The piston moves very slowly. The walls of the vessel and the piston are
good conductors.

Fig. 1.1

Then, the gas will be at the same temperature throughout. The work done on the
gas is converted into heat in the gas. This heat is conducted away by the cylinder
and the piston to the surrounding air outside. The compression in this case is

isothermal, i.e. at constant temperature.
The curves representing the variation in the volume of a substance when
the pressure acting on it changes under isothermal conditions are called

isothermals (Fig. 1.2).

<

Pressue (P) —»
%
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In an isothermal process, the equation connecting P and V of one mole of a gas is
PV = RT = const.
For n moles of gas, we have

PV =nRT

1.3.2Adiabatic Process
Definition:

An adiabatic process is a process in which changes in volume and precsure
of a given gas takes place in complete thermal isolation. During an adiabatic
process, no heat enters or leaves the system, but the temperature changes.
Explanation:

Consider a gas enclosed in a cylinder, fitted with a piston (Fig. 1.3).

B2 = & 4 = 85 > =

Fig. 1.3
Assume that both the cylinder and piston are perfect insulators of heat. If the gas
is suddenly compressed, the temperature of the gas increases. Similarly, if the gas

suddenly expands, its temperature falls. Thus, there is no exchange of heat
between the gas and surroundings.

Examples:

1 The compressions and rarefactions produced in air during the propagation of
sound waves is an example of adiabatic process.

2 The sudden expansion of the enclosed air into the atmosphere, when a motor
tyre bursts, is approximately adiabatic. Hence the tyre is cooled.

3 The compression of the mixture of oil vapor and air during compression stroke

of an internal combustion engine is an adiabatic process and there is rise in
temperature.



Fig 1.4

. curve showing the variation in the volume of a gas when the pressure acting
. it changes under adiabatic conditions is called an adiabatic (Fig. 1.4). For

adiabatic change in a perfect gas, dQ = 0. Hence, from first law of
thermodynamics,

dU+dW=0

dU = -dw

1.3.3 Gas Equation during an Adiabatic Process
Let a quantity of heat dQ be supplied to 1 mole of a perfect gas. The heat
is used for (i) increasing the temperature of the gas by dT and (ii) doing external
work for the expansion of the gas, P dV (Fig. 1.5).
dQ=C,dT +PdV
In an adiabatic change, no heat is supplied from outside. Hence dQ = 0.

Fig. 1.5

Therefore, we have
C.dT+PdV =0 (1)
For one mole of a perfect gas, PV = RT.
Differentiating, PdV + VdP =R dT
PdV +VdpP

dr =
(2)

Substituting this value of dT in Eq. (1),



Cv[PdV +VdPJ+PdV _0
or CiPdV +C, VAP +RPAV =0
or CyPdV +C, VAP + (C,-C,)PdV =0 [since, Cp-Cv=R]
or C,VdAdP+C,PdV =0

C
Dividing by C, PV, dp +—=£ av_ _ 0

P C V

But C, / C, =y = Ratio of the principal specific heat capacities of the gas.
dP dv

Hence, +y—=0
P | %4 3)

Integrating, log.P + ylog.V = constant
or log. PVY = constant
or PV" = constant
This is the equation connecting pressure and volume during an adiabatic process.
Relation between pressure and temperature

We have, PV' = constant (D
For a perfect gas, PV=RTorV=RT/P

o : RTY
Substituting for V in Eq. (1), P 7 = constant

7 -1
or = constant or = constant (2)
P 4

Relation between volume and temperature
We have, PV? = constant (1)
For a perfect gas, PV=RTorP=RT/V

Substituting for P in Eq. (1), (—I;-Z)V?’_—_ constant

or TV 7' = constant (2)

Check your progress

1. A mass of gas at 1 atmospheric pressure is compressed to 1/3 of its
volume, suddenly. Find its pressure. Given vy of gas is 1.4

2. Air at N.T.P is compressed adiabatically to half of its volume. Calculate
the change in its temperature.

3. Define isothermal and adiabatic changes.




1.4 Specific Heat Capacity (Cp and Cv)
If a small quantity of heat dQ is required to raise the temperature of m kg

of a substance from T K to (T+dT) K then,
4o
mdT

The definition of specific heat capacity (C) given above is sufficient for
solids and liquids but not for gases. Gases can be expanded or compressed easily.
For a gas, C may vary between 0 and «o depending upon the condition under
which heat is supplied.

For example if a gas is compressed, there is a rise in temperature without

supplying any heat to the gas.
;d'dQ? =0 ( since, dQ = 0)

On the other hand, if heat is supplied to the gas and the gas is allowed to
expand such that there is no rise in temperature, then

dQ

mx0

Hence in order to fix the value of the specific heat capacity of a gas, either
the pressure or the volume should be kept constant. Hence, we have two specific

heat capacities for a gas.

_(92 _(9Q
C"—(aTl and G, (aTl,

Subscripts v and p indicate the parameter kept constant during the process. C, is
known as the specific heat capacity at constant volume. C, is the specific heat
capacity at constant pressure.
Definitions:
® The specific heat capacity at constant volume (C,) is defined as the amount
of heat required to raise the temperature of 1 kg of the gas through 1 K
when its volume is kept constant.

Specific heat capacity at room temperatare 7 =C =

C =

= o0

® The specific heat capacity at constant pressure (C,) is defined as the
amount of heat required to raise the temperature of 1 kg of the gas through
1 K when its pressure is kept constant.
Molar heat capacity (C,,)
It is defined as the amount of heat required to raise the temperature of 1
mole of a substance through 1 K. Unit: J mol 'K}

1.5 Relation between C, and C,
Consider one mole of a perfect gas kept in a non-conducting cylinder

provided with a frictionless piston of area A (Fig. 1.6). Let T be the temperature,
6



V the volume and P the pressure of the gas. Let a certain amount of heat be given
to the gas so that the temperature increases by dT. Assume that the piston is fixed
so that the volume of the gas is constant.
Quantity of heat given to the gas =1 x C,dT = C,dT

This quantity of heat is used in increasing the internal energy of the gas.
Let us suppose that the same gas is now given a certain amount of heat at constant
pressure P so that the temperature increases by dT. Since the gas is heated at
constant pressure, the volume increases. The gas expands. Hence the piston moves
up through a distance dx. Let dV be the increase in volume of the gas.

fo

Fig. 1.6

Quantity of heat supplied to the gas = 1 x Cp,dT = C,dT
This quantity of heat supplied to the gas at constant pressure is used in two
ways. (i) In raising the internal energy of the gas corresponding to a raise of
temperature of dT. i.e. by C,dT. (ii) In doing the work of expanding the gas
against the external pressure.
External work done by the gas in expansion
= Force x distance

= PA x dx = PdV

Hence, CpdT =CdT + P dV

For a perfect gas, PV=RTorPdV=RdT

Hence C,dT = C.dT + RdT
Cp-Cv=R

This formula is known as Mayer’s formula.

R = 8.31 J mol"'K™'. In SI units, R = 8314 J (kg mol)'K''. R is the universal gas
constant.

Why C, is greater than C,?

When a gas is heated at constant volume, the pressure increases. All the
heat energy that is supplied to the gas is used in increasing the internal energy of
the gas. As the volume is kept constant, no external work is done by the gas.

On the other hand, if the gas is heated at constant pressure, the volume
increases. The gas expands against a constant external pressure and in so doing it

7



does some external work. In addition to this, there is a rise of temperature
Therefore the heat energy supplied to the gas is used in two ways.
(i) in raising the temperature and
(i1) in doing some external work as the gas expands.
Hence, Cp> C..

Check your progress

4. For hydrogen, the molar heat capacities at constant pressure and constant
volume are 28.8 J / mole K and 20.5 J / mole K respectively. Calculate the

gas constant.

5. Define Cp and Cv.

6. The molar heat capacities of a gas at constant pressure Cp = 160 J / mole K
compute the ratio of specific heat at constant pressure to that of constant
volume.

7. Does Mayer’s formula apply universally?
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1.6 Calorimetry
(i) Heat capacity:

Substances differ from one another in the quantity of heat needed to
produce a given rise of temperature in a given mass. The ratio of the heat AQ
supplied to a body to its corresponding temperature rise AT is called the heat

capacity of the body i.e.,
: AQ
Heat capacity = AT
The heat capacity of a body is defined as the amount of heat required to
raise the temperature of the whole of that body through 1 K. The unit of the heat
capacity is JK™.
(ii) Specific heat capacity:
The heat capacity per unit mass of a body is called specific heat capacity.
It is characteristic of the material of which the body is composed.
heat capacity = AQ
mass  mAT
The specific heat capacity of any substance is defined as the quantity of
heat feq;nred to raise the temperature of 1 kg of the substance through 1 K. Unit
Jkg" K.

C=




(iii) From the definitions of heat capacity and specific heat capacity, it follows that
the heat capacity of a body is equal to the product of the mass (m) of the body and
the specific heat capacity (C) of the material of the body.
Heat capacity = mass x specific heat capacity
(iv) If m is the mass of a body of specific heat capacity C, the quantity of heat
energy Q required to raise its temperature through t °C is given by
Q = mct

1.7 Joly’s differential steam calorimeter for finding C,

The apparatus consists of two hollow metal spheres A and B exactly
similar in volume, mass efc., suspended inside the steam chamber C from the two
pans of a sensitive balance. The spheres are provided with catch waters to collect
the water condensed on the spheres. Two umbrella-shaped covers U; and U,
prevent any water condensed on the top of the chamber from falling on the
spheres. Two electrically heated coils P; and P, are placed round the suspension
wires to prevent water from condensing round the narrow mouths of the steam

chamber (Fig.1.7).
._; Py ; P
S

—JJ U' U? o~

C
A

B
*— Gas 0

1 lh
Fig. 1.7

One of the spheres is filled with the experimental gas while the other
sphere is completely evacuated. By counterpoising, the mass of gas M filling one
of the spheres is found. The initial temperature 9, of the gas is noted.

Steam is then briskly admitted into the chamber. Condensation of steam
takes place on both the spheres. But more steam condenses on the sphere
containing the gas than on the other because the enclosed gas also has to be heated

from 0, to the temperature 0, of steam. By counterpoising the balance, the mass m
of steam condensed due to the enclosed gas is found out.

9



Heat gained by the gas = M C, (8,-0y)
Heat lost by the steam = ml
Here, 1 is the specific heat of steam.
By the principle of method of mixtures,
MCv (082-9;) = ml
C. = ml
M (92 - 91)

From this equation, the specific heat capacity of the gas at constant volume
is calculated.

The experiment is repeated with the evacuated sphere filled with the gas
and the other sphere exhausted. The mean of these values gives C,.

For securing an accurate result, the following corrections must be applied.

1. The expansion of the sphere containing the gas due to increase in
temperature and pressure. This may be estimated from knowledge of the
expansion coefficient of copper and the initial and final pressures of the

gas in the sphere.

2. Correction for the upthrust on the condensed water on the surface of the

two spheres.

3. Correction for any slight difference between the thermal capacities of the

two spheres.

1.8 Callender and Barnes’ continuous flow method to
determine C,

The specific heat capacity of a gas at constant pressure can be determined
by continuous flow method. The experimental arrangement is shown in
Fig.1.8.The gas is stored up in a large copper reservoir R. It is kept immersed in a
constant temperature bath W. The pressure of the gas is read by the pressure
gauge G. The regulating valve V’ is used for allowing the gas to flow at a constant
pressure through the calorimeter D. The manometer E measures the pressure of
the gas flowing through D. A heating coil C is arranged axially inside the vessel
D. The current passing through the coil C is measured by ammeter A. The P.D.
across the coil is measured by the voltmeter V. The incoming gas is heated due to
the heat generated in the coil C. The platinum resistance thermometers T, and T,

10



measure the temperatures of the incoming and outgoing gas. The gas travels in the

direction of the arrows through the zig-zag path and finally comes in contact with
the heating coil C.

Calorimater o

NARI =" c | e

(a8 2888 o= AV > A
4
AE—=1]!
Ty ‘l T, Rh
Fig.1.8

Procedure:

The gas is allowed to flow through the apparatus for some time till the
steady state is reached. When the steady state is reached, the thermometers T; and
T, show constant readings. Let 0, and 0, be the temperatures of the incoming and
outgoing gas, as shown by T; and T,. The pressure (P;) of the gas in the reservoir
is noted by the pressure gauge G. The gas is allowed to flow through the vessel D
for about 30 minutes. The final pressure (P;) of the gas in the reservoir is needed.
Calculations:

The mass of the gas flowing out of the reservoir in t seconds is calculated
from its initial and final pressures. Then,

Heat gained by the gas = mC, (6,-0;).

Let E and I be the voltmeter and ammeter readings. Then, heat produced in the
heating coil in t seconds = EIt.

Hence, mC, (0,-0,) = EIt

C, = Elt

m(6, —6,)

To find m:

Let V be the volume of the reservoir. In the experiment V m’ of the gas at
pressure P;-P, and temperature T has flown through the apparatus. Let V,, be the

volume of the gas at N.T.P. Then,
(R—-P)V 0.6V,

T 273
V = (B—-P)Vx273
? 0.76T

Or
11



Let p, be the density of the gas at N.T.P.
(B —-P,)Vx273 L
0.76T

Thus m is known. Hence C,, can be calculated.

m=p,V, =L

Advantages:
1. The radiation loss is minimized by the zig-zag arrangement for the flow of gas.

2. The temperatures of the incoming and outgoing gas are measured accurately

under steady state.
3. All electrical quantities can be measured with precision. Thus the results

obtained are accurate.
1.9 Let us sum up

When a change in the pressure and volume of a given mass of gas takes
place at constant temperature, the process is called an isothermal process.
An adiabatic process is a process in which changes in volume and pressure
of a given gas takes place in complete thermal isolation. During an
adiabatic process, no heat enters or leaves the system, but the temperature
changes.
The equation of state for an adiabatic process,
In terms of pressure and volume, PV? = constant,

T?’

-1
In terms of pressure and temperature, P - constant,

In terms of temperature and volume, TV constant.
The specific heat capacity at constant volume (C,) is defined as the amount
of heat required to raise the temperature of 1 kg of the gas through 1 K

when its volume is kept constant. C, = [.g%)

The specific heat capacity at constant pressure (Cp) is defined as the
amount of heat required to raise the temperature of 1 kg of the gas through

1 K when its pressure is kept constant. Cp = [g—gj
14

For 1 mole of a perfect gas, the difference of heat capacities Cp and C, is
equal to R; the molar gas constant C, — C, =R

Joly’s differential steam calorimeter experiment is studied to determine C,
and

Callender and Barnes continuous flow method is dealt to determine Cop.

12



1.10 Unit —- end exercises

A Wb WN -

State the difference between isotheral and adiabatic changes.

Derive the equation for an adiabatic change.

What are called C, and C,?

Derive Mayer’s Relation.

Cp-Cv=R. Justify.

Describe Joly’s differential steam calorimeter experiment to determine
specific heat capacity at constant volume C,. State the corrections to be
followed.

Explain how the specific heat of a gas at constant pressure C, can be
determined using Callender and Barnes continuous flow method.

1.11 Problems for discussion

1

2

wn &

A quantity of air (y = 1.4) at 27°C is compressed (i) slowly and (ii) suddenly
to 1/3 of its volume. Find the change in temperature in each case.

A motor car tyre has a pressure of 2 atmospheres at room temperature of 27°C.
If the tyre suddenly bursts, find the resulting temperature. (y for air is 1.4)
Calculate the specific heat capacity of air at constant volume; given that the
specific heat capacity at constant pressure is 993 J / Kg K, density of air at
N.T.Pis 1.293 kg / m".

Find the value of universal gas constant R for 1 mole of gas.

If the volume of each sphere of Joly’s differential steam calorimeter is 500 cc
and the excess of water condensed is 0.1 gm, find the specific heat of gas at
constant volume. The initial temperature was 15°C and density is 6 x 107 gm /
cc. Latent heat of condensation of steam is 2.26 x 10°J/ Kg.

1.12 Answers to check your progress & Problems for discussion
To check your progress:

1

A sudden change is adiabatic. Let Py, V; be the initial pressure and volume

and P,, V., be the final pressure and volume of the gas.

We have, PV?Y = constant

(Or) PV, =PV,
Vv
Here, P; = 1 atmosphere, y=1.4, V, =?‘
vY
P, =PFR [-i,-i-] =1x(3)"* = 4.656 atmosphers
2

2. Let T, = initial temperature, T, = final temperature and

V; = 1nitial volume,

13



<

Final volume of the gas =V, = —il-
During adiabatic process,

TV, =TV,""

v,
1, =1, [V) -,
T, =T,(2)** =1.319T,
Change in temperature = T; — T,
- 1.319 T1 - Tl
=0.319 T\K.
3. When a change in the pressure and volume of a given mass of gas takes place
at constant temperature, the process is called an isothermal process.

An adiabatic process is a process in which changes in volume and pressure of a
given gas takes place in complete thermal isolation. During an adiabatic process,
no heat enters or leaves the system, but the temperature changes.

4. Co-Cv=R
R=(28.8-20.5))J/molK
=8.3J /mol K.
5. The specific heat capacity at constant volume (C,) is defined as the amount
of heat required to raise the temperature of 1 kg of the gas through 1 K when its

aT

The specific heat capacity at constant pressure (Cp) is defined as the
amount of heat required to raise the temperature of 1 kg of the gas through 1 K

volume is kept constant. C, = (-—Q—Q—)

when its pressure is kept constant. CP = (_B_Q_)
aT ),
6. Ci=Cp—-R
= (160 - 8.3)
=151.7J /mol K
The ratio of specific heat at constant pressure to that of constant volume,

C
y=—= 160 =1.05
C 151.7

v

7. A real gas is made up of molecules having small but finite size and non — zero
intermolecular forces. This suggests that the ideal gas law is not valid for dense
gas and the equation i1s C, — C, = R is approximate. This is because it makes no
allowance for change in internal energy with volume. Some work has always to be
done against intermolecular forc

14



Answers To Problems for discussion:
1. (i) Since the process is isothermal there is no change in temperature.
(i) When the air is compressed suddenly, the process is adiabatic.
Hence, TV ! = constant
TiV1 7! =TV "'
Here, T1=27°C=300K,y=1.4,V, = i v. Y !
‘ 3 r1,=T, (VL) = 300 x (3)'*!
T, = 300x (3)°* = 465.5K

Change in temperarture =465.5-300 = 165.5K.

2. Pressure before tyre bursts = P, = 2 atmosphere
Temperature before tyre bursts =T, = 300K
Pressure after tyre bursts = P, = 1 atmosphere
Temperature after tyre bursts =T, = ?
B _BT

];?’ 1'27
Y _(B)"
T, R
T 1.4 1 1.4-1
2 =] =
(3) =(3)

T, = (246.1-273) = -26.9°C

3. V = volume per kg of air at N.T.P = 1/1.293 = 0. 7734m’
P = 0.76x13600x9.81 = 1.014 x 10° NmZand T=273k
Gas constant for one kg of air =
_PV _1014 0507734 =287 .3Jkg"'K
T 273
C,=Cp—r= 993 -287.3=7057Jkg"' K
4. One mole of gas at N.T.P occupies 0.0224 m’
P=0.76 m of Hg = 0.76 x 13600 x 9.8 = 1.013 x 10°
V=0.0224m’, T=273K
r=EYV _1013 ,0°x0.0224 =8.312Jmol 'K
T 273
5. M=V x p=(500x10°) x 6 =3 x 107kg;
0,= 15°C; 6, = 100°C
m=0.1g=10%kg;1=2.26x10%Jkg; C, =7

r

15



ml _ 10 x(2.26x10°)

C, = = > =886.3 Jmol' K"
T M(@6,-6) (3x107°)(100-15)

1.13 Suggested Readings
1 Heat, Thermodynamics and Statistical Physics

Brijlal, Dr. N. Subramanyam and P. S. Hemne.
Revised edition, Reprint 2012 S.Chand& Company Ltd., New Delhi

2 Thermodynamics and Statistical Physirs
Singhal, Agarwal, SathyaPrakasi
12®edition, 2008,PragatiPrakashan, Meerut

3 Thermodynamics, Statistical thermodynamics and Kinetics

Thomas Engal, Philip Reid
1% edition, 2007, Dorling Kindersley (India) Pvt Ltd, New Delhi.
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2.7 Expression for mean iclocity, mean square velocity and most probable
velocity

2.8 Degrees of freedom and Law of equipartition energy

2.9 Liquefaction of gases

2.10 Liquefaction of air by Linde’s method

2.11 Properties of Helium I &Helium 11

2.12 Adiabatic demagnetization

2.13 Let us sum up

2.14 Unit — end exercises

2.15 Problems for discussion

2.16 Answers to check your progress

2.17 Suggested readings

2.1 Introduction

The experiments on the conversion of work into heat have shown clearly that
heat is a form of energy. This energy is connected with the motion of molecules of
which the matter is made of. Kinetic theory of matter (Solid, Liquid or Gas) gives
an explanation to the nature of this motion and nature of heat energy. The kinetic
theory of matter is based on three points (i) matter is made up of molecules (ii)
molecules are in rapid motion and (iii) molecules experience forces of attraction
between one another.

In the kinetic theory of gases, it is assumed that the molecules of gas are all
identical and perfectly elastic spheres of negligible but finite size. Due to
haphazard motion, the molecules constantly collide on each other. When the gas is
not in equilibrium the random motion of gas molecules gives rise to viscosity,
conductivity and diffusion, when it tries to attain an equilibrium state by
transporting momentum, hcat and mass respectively.

It was believed since ancient time that nothing could be colder than ice and
hence temperature of ice was considered as zero (or starting point) of the scale.
Moreover it was also thought that air remains in the gaseous state permanently at
all temperatures. Later on Andrew’s experiments on CO; gas in 1862 showed that

17



below the critical temperature, a gas can be liquefied by mere application of
pressure. The lowest conceivable temperature on centigrade scale is -273°C much
below the temperature of ice (0°C) and -273°C is universally taken as the zero of
the absolute temperature scale, known as absolute zero temperature. Different
methods are employed to reach the absolute zero temperature.

2.2 Objectives

After completing this unit you will be able to
state the assumptions of kinetic theory of gases
derive an expression for mean free path
derive the expression for transport phenomena — diffusion, viscosity and
thermal conductivity

e explain Maxwell’s law of distribution of molecular velocities with
experimental verification

e write the expressica for mean velocity, mean square velocity and most
probable velocity

e define degrees of freedom and law of equipartition energy

e describe the liquefaction of gases and explain the properties of Helium I &
Helium IT

e explain the principle of adiabatic demagnetization

2.3Kinetic theory of gases
The kinetic energy of gases relates the macroscopic properties of gases

(for example, pressure and temperature) to the microscopic properties of the gas
molecule (for example, speeds and kinetic energies).

Postulates of the Kinetic Theory of Gases

1. A gas is composed of a large number of tiny, perfectly elastic particles, called
molecules.

2. The molecules of a gas are identical in all respects.

3. The molecules of a gas are in a state of continuous motion. They move in all

directions with all possible velocities. In their motion, they collide with each

other and with the walls of the containing vessel. Collisions between

molecules are elastic.

The molecules move in straight lines between any two consecutive collisions.

The average distance travelled by a molecule between two successive

collisions is called the mean free path.

6. The time of impact is negligible in comparison to the time taken to traverse the
free path.

7. The molecules do not exert any force of attraction or repulsion on one another.
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8. The volume of the molecule is negligible, compared with the volume of the
gas.

9. The molecules are perfectly hard elastic spheres and the whole of their energy
is kinetic,

Check your progress

1. Explain and basics of kinetic theory, why upper atmosphere is cooled,
while its kinetic temperature is of the order of 1000 K.
Ans: ---------- e e e --- -

2.4 Mean free path
Definition

The mean free path is defined as the average distance travelled by a
molecule between two successive collisions.
Explanation

The molecules of a gas move about at random colliding with each other.
Thus a molecule starting from A moves along AB and suffers a collision at B with
another molecule. The magnitude and direction of the velocity of the molecule are
changed and it moves along BC [Fig. 2.1]. After travelling a distance BC, it again
suffers a collision at C and moves along CD and So on. AB, BC, CD, DE ..... are
all known as free paths and their individual lengths vary widely. The average of
the free paths is called the mean free path.

Fig. 2.1.
Let S be the total distance travelled in N collisions.
Then, the mean free path A is given by

A=
N

Expression for Mean Free Path

Let us assume that only the particular molecule that we are considering in
motion and all the other molecules are at rest. Let d be the diameter of one
molecule. A collision between two molecules occurs if the distance between the

centres of the two molecules is d [Fig. 2.2]. Consider one molecule moving with
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the velocity v. In one second the molecule travels a distance v. Then the molecule
will impinge on all static molecules in a cylinder of radius d and length v.

A - £
; d ) ]
o o

%6 & . L 3 4

: \L-‘,—.—- —--,—-'--.---v

Cas’

Volume of the cylinder = nd’v
Number of molecules in this volume = zzd*vn
Here, n = number of molecules per unit volume.
Mean free path = A
_ _Total distance travelled by a molecule in 1 sec
Total number of collisions per second

1= v 1
~ md®vn 7zd?
n mdn (1)
Maxwell showed that
1
As——
V27dn %))
Let m be the mass of each molecule. Then mn = p and n = (p/m).
A=_"
V2xdzp

Thus the mean free Path is inversely proportional to the density of the gas.

Check your progress

2. Define mean free path.

3. The diameter of the nitrogen molecule is 3.2 x 10 m. The number of
molecules at 0°C and 1 atm. pressure is 2.69 x 10*°per m’. Calculate the
mean free path of nitrogen molecule.

4. Calculate the molecular diameter of nitrogen molecules if n = 2.7 x 10%
molecules per m> and mean free path A for nitrogen is 8 x 10° m.
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>
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2.5 Transport Phenomena — Diffusion, Viscosity and Thermal conductivity

Introduction
Viscosity of gases, thermal conductivity of gases and diffusion are called

transport phenomena. They transport momentum, heat energy and mass,
respectively from one layer of the gas to another.

2.5.1 Expression for the Coefficient of Diffusion
The coefficient of diffusion (D) is defined as the “the number of molecules

diffusing per second per unit area per unit concentration gradient™.

z _dn_
: n+A 4z
E : ° ¢ 2 —**F
A M‘ﬁ ﬂd -—g
P 277 n-A—-
0 — > x
Fig. 2.3.

Consider that a mass of the gas is moving between the parallel planes CD
and EF [Fig. 2.3]. The concentrations (number of molecules per unit volume)
increases in vertical direction as we go from CD to EF. AB is an intermediate
plane. In order to bring the equilibrium, the molecules of the gas will cross the
plane AB from CD to EF vice versa, and due to thermal agitation.

Let, n = concentration of gas molecules of plane AB

dn . .
- = concentration gradient
Z

A = distance between planes AB and EF
= mean free path

Then, concentration at plane EF = n+ 2(%'1)
Z

Concentration at plane CD = n —/1[—32)
Z
The molecules are moving in all possible directions. So 1/ 6 of the total
number of molecules are moving upward and equal number of molecules
downward.

C is the r.m.s velocity of the molecules.
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The number of molecules crossing plane AB downwards per unit area per second
=1 C (n + Agf—)
6 dz
The number of molecules crossing plane AB upwards per unit area per second
6 dz
The net number of molecules crossing unit area of plane AB per second in
Downward direction = lC(n + lﬂ) - lC(n — ﬂﬂ) = —I-C/l-d—n-
6 dz) 6 dz 3 dz
The coefficient of diffusion (D) is defined as the “the number of molecules

diffusing per second per unit area per unit concentration gradient”.
Number of molecules crossing unit area per second

D= -
Concentration gradient

1oa9n
_3 " d&
dn

&z
p=1ca
=3

2.5.2 Expression for the Coefficient of Viscosity

The coefficient of viscosity of a gas (n) is defined as the “tangential force
per unit area required to maintain a unit velocity gradient”.

Consider a gas flowing from left to right along a horizontal surface. Let the
velocity of flow of the gas increase in the upward direction of the Z-axis. Let
dv/dz be the velocity gradient along the Z-axis [Fig. 2.4).




Consider a layer AB moving with a velocity v. Now consider two layers EF and
CD one above and other below AB, each at a distance A (immean free path) from it.
Velocity of flow of gas in the layer EF = v+/1(-31)
Z
. ] dv
Velocity of flow of gas in the layer CD = v —1(—‘7—)
Z
Let m be the mass of each molecule.

Momentum of each molecule in the layer EF = m(v + ﬂ.%‘i)
Z

Momentum of each molecule in the layer CD = m(v - }l—?—’-)
Z
Let n be the number of molecules per unit volume. Then n/6 molecules
move parallel to any one axis in one particular direction. C is the r.m.s velocity of
the molecules.

Number of molecules crossing unit area of AB downwards in one second

=Zc
6
The momentum carried downward by the molecules crossing unit area of AB per
second from the plane EF = mr61C [v + /1%‘-’-)
Z

Similarly, the momentum carried upwards
_ mnC (v iy dv )
6 dz
Net momentum transferred per unit area per second downwards
= mnC (v + 1-‘1"—) _ mnC (v - Z-d—v) = -l—mnCilfll
6 dz 6 dz 3 dz

This is equal to the téngential viscous force acting per unit area of the layer AB.

The coefficient of viscosity,
tangential force

velocity gradient

%mnCﬁ—Z—v— 1

— —Z- [

& 3 mnCA
dz

mn = p (density of the gas)

1
=—pCA
n=3 pC
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1.5.3 Expression for the Coefficient thermal Conductivity
The coefficient of thermal conductivity of a gas (K) of a gas is defined as the
‘“quantity of heat flowing per unit area per unit time per unit temperature gradient.
Consider three layers CD, AB and EF of the gas [Fig. 2.5]. Let O be the
temperature of the gas in the plane AB. The temperature increases as we go from
the plane CD to EF. Let d6/dz be the temperature gradient along the z-axis. Let
each of the layers CD and EF be at a distance A from AB. A is the mean free path

Fig. 2.5.

Temperature of the molecules in the layer EF = 6+ﬂ(%6—)
Z

Temperature of the molecules in the layer CD = 8 —ﬂ(é-dg)
Due to the random motion of the molecules, there will be a continual
interchange of molecules between layers CD and EF.
Let m = mass of each molecule,
C =r.m.s velocity of the molecules,
n = number of molecules per unit volume.
Number of molecules crossing the plane AB upwards or downwards per unit area

n
per second = -6-(;
Heat carried by molecules from EF, crossing unit area of AB downwards per

second = lmEC‘, (0 + /116-)
6 dz

Here, C,= Specific heat capacity of the gas at constant volume.
Heat carried by molecules from CD, crossing unit area of AB upwards per second

= mnC. (9_ 1&)
6 dz
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Therefore, net amount of heat transferred per unit area of AB per second = Q
_ mr61C C, (0_'_1618)_ mnC C, (0-—/1512) =%mnccv(,1ﬁj

dz 6 dz dz
-—él—mnCCv}l%g: 1
K= gﬁ = -3-pCC‘,1
dz

The coefficient of thermal conductivity of a gas (K) of a gas is defined as the
“quantity of heat flowing per unit area per unit time per unit temperature gradient.

lmnCC‘,ﬂé—q 1
K=3 — 4Z-=§pccv,1
dz
K= % PpCC.A
Check your progress

5. Define the coefficient of Diffusivity.

6. Viscosity of oxygen at 27°C is 2 x 10°Ns/m?>. Calculate the diameter of the
oxygen molecules.

Ans: --------e—- e ——————e- - -- -

2.6 Maxwell’s law of distribution of molecular velocities with experimental
verification

A gas contains a very large number of molecules. These molecules have
incessantly and haphazardly in all possible directions with all possible velocities
ranging from -oo to oo. Maxwell derived an expression for the number of

molecules lying between a given velocity range ¢ and ¢ +dc. Such a law is known
as velocity distribution law.

Let dN be the number of molecules with velocities between ¢ and ¢ +dc.
Then

dN =A4xNA’e™ " C*dc 1)
Here, N is the number of molecules per unit volume.
A=m/Q27kT)

m =Mass of a molecule.
k = Boltzmann constant and T is the absolute temperature of the gas.
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This is the equation for the Maxwell’s law of distribution of molecular

speeds in a gas.
The graph representing dN/dc and speed c is shown in Fig.2.6.

Fig.2.6.
i The shaded area in the figure represents the number of molecules dN

having velocities between ¢ and c+dc.

1. The total area under the curve represents the total number of
molecules.

1ii. The number of molecules having very low or very high velocity is
small.

iv. The maximum corresponds to the most probable speed(cm).

The most probable speed is the speed possessed by maximum number of
molecules in a gas.
Experimental verification-Lammert’s toothed wheel method

The experimental arrangement is shown in fig.2.7. W, and W, are two
equal toothed wheels, with 50 teeth each and 50 narrow slits in between them.

Fig. 2.7.

They are mounted on the same axle. The slits in W, are not parallel to
those in W but are displaced at an angle of 2° behind them. An oven O contains
mercury vapor which comes out of a slit S;. S; is another similar and parallel slit.

The wheels are set in rapid rotation .Mercury is then heated in the oven.
The mercury beam passing through slit S; falls on the slot in W;.The molecules
passing through the slot of W; now fall on wheel W,.The principle of the
experiment is based on the fact that those molecules are able to pass through a slot
in W, which have the requisite speed to cover the distance W, W, in the small
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interval of time taken by the wheel to turn through an angle of 2°. These
molecules are deposited on the plate P. Thus the molecules having a particular
speed can be separated from the rest.

By rotating the wheels with various speeds, the molecules of different
speeds are collected at different places on the plate P. The relative intensities in
each case are measured by a micro photometer. From this measurement, the
relative numbers of molecules lying in different velocity ranges are calculated. It
is found that the distribution of speeds agrees with Maxwell’s distribution law.

2.7 Expression for mean velocity, mean square velocity and most probable
velocity
Mean velocity is the average velocity of all the molecules.

<c>=—1-chN=‘,8k—T
N4 Tm

Mean square velocity is the average of the squares velocities of all the
molecules.

< >=L I L
N m
Most probable velocity is that velocity ¢ for which the number of

molecules with that velocity is the maximum.

[2kT
C, = —
"=\ "m

Thus sz <e>?i<c>=1:1.27:1.5.

Check your progress

7. Write the equation for Mean square velocity.

8. Calculate the rms velocity of hydrogen at 27°C. k = 1.38 x 102 J/Kand
mass of hydrogen molecule = 3.34 x 10’ Kg. Also find the most probable
speed.

Ans: - - e

2.8 Degrees of freedom and Law of equipartition energy
Definition:

The degrees of the freedom of a dynamical system may be defined as the
total number of independent coordinates required to specify completely its
position and configuration.
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Explanation:
The position of an ideal mass point in space can be defined completely by

the three Cartesian coordinates x, y, z. Hence, it has three degrees of freedom.
Two points will require at least six coordinates to define their positions in space.
Hence they have six degrees of freedom.

¢} Monatomic gas molecule.
A mono-atomic molecule (Helium, Neon, Argon efc.,) consists of one

single atom. It has three degrees of fregdom of translational motion along the three
coordinate axes.(Fig.2.8).

Z
Fig.2.8

(ii) Diatomic gas molecule.
A diatomic gas molecule (Hz, O, N2, CO etc.,) has two atoms at a fixed

distance apart.

Y

Fig.2.9
Z

It has three degrees of freedom of translational motion and two of
rotational motion (Fig.2.9). Hence, a diatomic molecule has five degrees of
freedom.

2.8.2 Equipartition of energy
Statement:
For any dynamical system in thermal equilibrium, the total energy is
divided equally among all the degrees of freedom. The energy associated with one
Lir
molecule per degree of freedom = 2 = constant.
Here, k = Boltzmann’s constant.
T = absolute temperature of the thermo dynamical system.
Now, one mole of a gas contains N molecules.
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The average kinetic energy associated with each degree of freedom
1 1

=—KkT XN = =—RT
2 2
Here, N = Avogadro number,
R = gas constant for one mole of the gas.
This principle is true for all degrees of freedom, translational, rotational or
vibrational.
Explanation:
The mean kinetic energy of translation of a mono-atomic gas molecule at
a temperature T is given by
Lmc?=2kr
2 2
But C?=u? + v’ + w*
Mean square velocities along the three axes are equal. Here, u,v,w are the

components of C along the X, Y, and Z axes respectively.

112=V2=W2

1 ,_1 >_1 5

—mu” =—my° =—mw
or 2 2 2
-l—mC2=3|:—1—mu2:|=3 Lo |=3| Lo =§kT
2 2 2
™ -
1 mu’® | = 1 kT
2 2
1 myv’ | = 1 kT
| 2 1]l 2
1 mw’ i| = 1 kT
B 2
Therefore, the average kinetic energy associated with each degree of freedom
=L kT
2

2.9 Liquefaction of gases

A gas goes into liquid and solid forms as the temperature is reduced. Thus
the process of liquefaction of gases and solidification of liquids are intimately
involved in the production of low temperatures. Andrews’s experiments showed
that if a gas is to be liquefied by merely appl¥ying pressure on it, it has to be cooled
below its critical temperature. Critical temperatures of CO,;, NH3 and SO, are
higher than room temperature. Hence these gases can be liquefied at room
temperature without pre-cooling, simply by increasing the pressure. So, the simple
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process would be to cool the gas below its critical temperature by some coolant
and then to liquefy it by applying pressure on it. This method doesnot work
always. In the case of some gases like oxygen, nitrogen, hydrogen and helium, no
precooling can bring the temperature below their critical temperatures. Thus they
cannot be liquefied by this method.

Joule — Thomson expansion is a very important technique to liquefy gases.
The cooling produced in J-T expansion of a gas depends on the difference of
pressure on the two sides of the porous plug and the initial temperature. For most
of the gases, the J-T cooling is very small. However, the cooling effect can be
intensified by employing the process called regenerative cooling.

2.10Liquefaction of air by Linde’s method
Linde liquefied air using Joule — Thomson effect and the principle of

regenerative cooling.

Caustc soda

Fig.2.10.

The apparatus used is shown in Fig. 2.10. Air is compressed to a pressure
of about 25 atmospheres by the pump P;. It is then cooled by passing it through
the cold water bath. This compressed air is passed through KOH solution to
remove CO, and water vapor. The air then enters the second pump P,. Here it is
compressed to a pressure of about 200 atmospheres. The compressed air next
passes through a cooling spiral immersed in a freezing mixture, where its
temperature falls to about -20°C. This cooled air at high pressure passes down
through the tube A and is allowed to come out of the nozzle N;. The temperature
falls to about -70°C. This cooled air flows upwards through the tube B, cools the
incoming air through A and returns to P,. The pump P, again compresses the air to
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200 atmospheres and puts it into circulation once more. It passes through the
nozzle N; and is further cooled.

After the completion of a few cycles, the air is cooled to a sufficiently low
temperature. At this stage, the second nozzle N, is opened. The already much
cooled air is allowed to expand to a pressure of one atmosphere when it is
liquefied. The liquid air is collected in a Dewar flask D. The unliquefied air is led
back through the tube C to the pump P; and the process is repeated. The entire
arrangement is packed in cotton wool to avoid any conduction or radiation.

2.11 Properties of Helium I & Helium 11
2.11.1 Liquid Helium I and 11
1. Kamerlingh Onnes found a specific discontinuity in the density of helium

at 2.19 K. This is shown in Fig.2.11. The density of liquid helium
increases as the temperature decreases from 4 K to 2.19 K. The density
becomes maximum (146.2 kg/m’) at 2.19 K. Then the density decreases
with decrease of temperature. Thus, liquid helium which is contracting
when cooled suddenly begins to expand below 2.19 K. At 2.19 K, a
sudden discontinuity appears in density versus temperature curve.

2.19 K

2 3 4 S5 6
Temperature, K —»

Fig.2.11

ii. Later Keesom also found another specific discontinuity at 2.19 K. He
measured the specific heat capacity of helium at different temperatures.
The result is shown in Fig.2.12.
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iii.

iv.

As helium is gradually cooled from 4.2 K, the specific heat capacity
remains approximately constant at first and near 2.19 K it increases a little.
Exactly at 2.19 K, specific heat capacity increases suddenly to a very large
value. Then it gradually falls as the temperature is reduced from 2.19 K.
The graph resembles the Greek letter A. Hence this temperature (2.19 K) at
which specific heat capacity changes abruptly is called the A — point. The
properties of liquid helium above and below A — point are quite different.
Liquid helium above 2.19 K is called helinm I and it behaves in a normal
manner. Liquid helium below 2.19 K I, cailzd helium II because of its
abnormal properties.

Kessom later found a similar discontinuity in the dielectric constant also of
this liquid at A — point.

The coefficient of viscosity of liquids, in general, increases with decrease
in temperature. But the viscosity of liquid helium I decreases with increase
in temperature. Further, the viscosity of liquid helium II is almost zero and
it can flow rapidly through narrow capillary tubes. Its rate of flow does not
depend upon the pressure difference between the ends of the capillary
tube. Hence it is called a super fluid. This property is called super fluidity.

2.11.2 Properties of Helium 11

1.

1ii.

iv.

Density: The densities of helium I and II are about the same in the
neighborhood of 0.146 kg/m-> which is far less than the lightest of other
liquids.

Extreme fluidity: He II has practically zero viscosity and is called a super

fluid. Its rate of flow through tubes is quite independent of the pressure

difference across them.

High heat conductivity: He II has an extraordinarily high coefficient of

thermal conductivity. He II is said to be about 800 times more conducting

than copper.

Formation of films over solid surfaces: In order to explain the

extraordinary fluidity and thermal conductivity of He II, Rollin and Simon

suggested that it may be due to the formation of a creeping film of it over
the solid surfaces in contact with it. This film is called the Rollin Simon
film and is about 100 atomic layers or about 5x107° m thick. If a test tube

containing liquid He II is placed in a Dewar flask containing liquid He II,

the following creeping actions are observed:

a) If the level of liquid in the test tube is lower than the level in the flask,
the liquid from outside starts creeping into the tube along its outer
walls (Fig. 2.13). This process continues till the levels inside and
outside the tube is equalized.
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b)

Fig.2.13

Suppose the tube is raised up so that the level of helium inside the tube
is higher than that outside it. Then the liquid from inside the tube starts

creeping out of it along its inner walls till the two levels are equalized
Fig. 2.14).

Fig.2.14

Suppose the tube is raised above the level of liquid in the flask, the
liquid inside the tube now creeps out along the surface of the tube,
collects at its bottom in the form of drops and falls in to the liquid
below. This continues until the entire liquid inside the tube is drained
out (Fig. 2.15).

Fig.2.15




v) The Fountain Effect: Helium II is taken in a tube AB (Fig. 2.16.). The
upper part A of a tube is in the form of capillary. The lower part B of the
tube is packed with fine emery powder (with inter-spaces between the
grains of the order of a micron) and with a small hole O at the bottom. The
tube is placed inside a Dewar flask containing He II.

Light Emery

powder

Fig 2.16
On throwing a flash of light on the powder from an ordinary torch, part of
He II is found to spur out of the capillary tube in the form of fountain. This shows
that the liquid develops a pressure in a direction opposite to that of the
temperature gradient created by shining light on the powder.

2.12 Adiabatic demagnetization
Principle:

When a paramagnetic substance is magnetized, external work is done on it
and its temperature rises. When the substance is demagnetized, work is done by
the substance. Hence, if the substance is demagnetized adiabatically, its
temperature falls. This is called magneto caloric effect.

Maximum cooling can be produced by employing strong magnetic field
and low initial temperature.

Curie’s law:

According to Curie law, the paramagnetic susceptibility y of a substance is

inversely proportional to the absolute temperature T, i.e.,

1
xoe =
C .
Or) x= 7 Here, c is a constant.
Thus, the susceptibility of a paramagnetic substance is higher, the lower

the temperature is. Hence, a paramagnetic substance is powerfully magnetized at
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very low temperature. When this substance is adiabatically demagnetized, a large
cooling is produced.

Giauque’s method:

The experimental arrangement is shown in Fig. 2.17.

The paramagnetic salt (gadolinium sulphate) is suspended inside a glass
bulb B. Bulb B is surrounded by Dewar flask D; and D, containing liquid helium
and liquid hydrogen respectively. The whole arrangement is placed between the
poles of a strong electromagnet.

i.  The magnetic field is switched on, so that the specimen is magnetized.

ii. The heat due to magnetization is removed by first introducing hydrogen
gas into B and then pumping it off with a high vaccum pump. Now the
cold magnetized specimen is thermally isolated from Djand Da.

iii.  The magnetic field is now switched off.

e
I To Ditfusion
0, [ pump
S |53 LY (5% s
T "M. - :.:. B :".--:_ “.r'
8 |5 )
N .t 5 S
) -':.'-' — :.‘:." ’ 1
i T %% NG
'“L RN P LLLhLd

L]
.........

eTe Tl s Paramagnetic
- -.-.-.0.0 - sa't
Liqud
hehum
Fig.2.17

Adiabatic demagnetization of the specimen takes place and its temperature
falls.The final temperature of the specimen (T:) is determined by measuring the
susceptibility of the substance at the beginning and at the end of the experiment
by using a solenoid coil CC.

Let 1; and x, be the susceptibilities of the specimen salt at the initial and
final temperatureT; and T,. Then, according to Curie’s law,

A

Using this method with the salt gadolinium sulphate, Giauque and
MacDougall reached a temperature of 0.25 K.
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2.13 Let us sum up

Kinetic theory is based on two postulates: matter is made up of molecules
which are in a state of constant random motion.

The mean free path is defined as the average distance travelled by a

- L] - 1
molecule between two successive collisions and is given by 4 = :/__2——&_2-_
7zd°n

1
The Coefficient of Diffusion D for gases is = —3—C A

1
The Coefficient of viscosity for gases is 1 =3 pCA

. 1
The Coefficient of Thermal conductivity for gasesis K = 3 pCC A

Maxwell’s law of distribution of molecular velocities
dN = 4z NA%e™ "I C?dc

kT

Expression for Mean velocity is <cC>= —7;—”—

T
Expression Mean square velocity < ¢’ >= kT
m

o = ,2kT
Expression Most probable velocity " m

The degrees of the freedom of a dynamical system may be defined as the
total number of independent coordinates required to specify completely its
position and configuration.

For any dynamical system in thermal equilibrium, the total energy is
divided equally among all the degrees of freedom are the law of
equipartition Energy.

Gases can be liquefied below a critical temperature by application of
Pressure and regenerative cooling.

Peculiar properties of Helium II are super fluidity, high heat conductivity,
and high electrical conductivity, formation of rolling film, the fountain
effect and Mechanocaloric effect.

When a paramagnetic substance is magnetized, external work is done on it
and its temperature rises. When the substance is demagnetized, work is
done by the substance. Hence, if the substance is demagnetized
adiabatically, its temperature falls. This is called magneto caloric effect.
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2.14 Unit - end exercises

1. State the postulates of kinetic theory of gases.

2. Define mean free path. Derive an expression for it.

3. Using transport phenomena, Explain (i) the diffusion (ii) viscosity and (iii)
thermal conductivity of gases

4. Discuss the Maxwell’s law of distribution of molecular speeds and describe
the experimental verification.

5. What you mean by degrees of freedom and state the laws of equipartion
energy. - '

6. Discuss the Linde’s method of liquefaction of oxygen.
7. What are the properties of liquid Helium I and II?
8. What is adiabatic demagnetization? Describe the method of production of low

temperature by adiabatic demagnetization of a paramagnetic salt.

2.15 Problems for discussion

1. Calculate the mean free path of the gas molecule, given that the molecular
diameter is 2 x 10 cm and the number of molecules per cc is 3 x 10%°.

2. In an experiment, the viscosity of the gas was found to be 2.25 x 10*CGS
units. The rins velocity of the molecule is 4.5 x 10* cm/second. The
density of the gas is 1 gram / litre. Calculate the mean free path of the
molecules.

3. Calculate the number of collisions per second of a molecule of a gas
having mean free path 1.876 x 10-7 m. Take average speed of the
molecule as 511 m/s

4. Calculate the (i) mean free path (ii) the number of collisions made per
second and (iii) its molecular diameter of a nitrogen gas having the mean
velocity of a molecule as 450 m/s. Density at N.T.P is 1.25 kg / m’,
coefficient of viscosity is 16.6 x 10° Ns/m? and n = 2.7 x 10% per m’.

5. Calculate the temperature at which the rms velocity of a hydrogen

molecule will be equal to the speed of the earth’s first satellite V = 8 Km/s.

2.16 Answers to check your progress & problems for discussion:

Check your progress:

1. The quantity of heat of an individual molecule in the upper atmosphere is
increased about 3.5 times than that at the earth’s surface. Kinetic temperature on
earth surface is about 300 K, while in the upper atmosphere it is of the order of
1000 K. But the pressure and hence the density is very low in upper atmosphere
i.e., the number of molecules per cc is very small, thus the total heat content in the
upper atmosphere is very small as compared to the heat content on the earth in the
same volume of gas.
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2. The mean free path is defined as the average distance travelled by a molecule

.. 1
between two successive collisions and is given by 4 = :/—E_ET
7d n

3. The mean free path A is given by,
1= 1 _ 1
270n  V2x3.14%(3.2x107°)2 x2.69x10%
=—1 %10 =0.008175x10"m
122.32
4. The mean free path A is given by,
1
A=—prr
V27zo?n

1 1
V2man V2x3.14x (8x107) x2.7x10%

= 1 %1077 =0.03229x10%m
95.918
5. The coefficient of diffusion (D) is defined as the “the number of molecules

diffusing per second per unit area per unit concentration gradient”.
6. We have viscosity,

i
n==p<c>A
3¢
But < ¢ >= _8_k_{
mnx
1
A=
2won

e

1 famkT

i 3zn =&
o= 1 B4x32)/(6.02x1026 )](1~38X10'23)x300 /4
[3m@x10™) 3.14
o =3.968x10"m
7. <€ >=—1%,-Ic2d1v =3’;";T_

8. GivenT=300K

K=138x10*J/Km=3.34x 10% Kg
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3kT JSx(l.38x10’23)x300
Crms = = —
\/ m 3.34%10

= 1928 m /s
Cm=Fszs= ,2><1928

3 3
=1574 m /s

Answers to problems for discussion:
1. The mean free path A is given by,
1= 1 _ 1
2rmo*n ~ V2 x3.14x(2x107%)* x3x10°
=2.12x10%cm = 2.12x107"m
(The mean free path is less than the wavelength of light in the visible
spectrum).
2.1 =2.25 x10™* CGS units,C = 4.5 x 10* cm/s,
p =1 g/litre = 10 = glcc
1231 _ 3% 2.25%107°
pc 107 x4.5%10°

3. Mean free path A =1.876x10"m, v =511 m/s

=15%10"m

Vv 511
Collision f f= —= =272x10° second
requency 1= 1876%107 per o
4. (1) We have,
1
= — A
n 3 PC
-6
pc 1.25x 450
.. ] C 450
11)Number of collisions per second =— = =5.083x10°
(1) P A 8853x10°
1
DA = ————o
¢ J_ non
1

7 T J2x3.14x(8.853%10°) x 2.7 x10%

c =3.O68x10'1°
3 Energy for 1 gm molecule of hydrogen

=L 3Rt
2 2

T = mv?/3R = [2x(8x10%) 2] /[3x8.3x10"!
T =5140K
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2.17 Suggested readings
1. Heat, Thermodynamics and Statistical Physics

Brijlal, Dr. N. Subramanyam and P. S. Hemne.
Revised edition, Reprint 2012 S.Chand& Company Ltd., New Delhi

2. Thermodynamics and Statistical Physics
Singhal, Agarwal, SathyaPrakash
12% edition, 2008, PragatiPrakashan, Meerut
3. Thermodynamics, Statistical thermodynamics and Kinetics
Thomas Engal, Philip Reid
1% edition, 2007, Dorling Kindersley (India) Pvt Ltd, New Delhi.
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UNIT 3

Structure

3.1 Introduction

3.2 Objectives

3.3 Thermal conductivity& thermal diffusivity

3.4 Rectilinear flow of heat-Ingen- Hausz experiment

3.5 Thermal conductivity of a bad conductor-Lee’s method
3.6 Black body radiation ~Wein’s Law, Rayleigh — Jeans LLaw and Plank’s Law
3.7 Stefan’s law & Solar constant-Experimental verification
3.8 Let us sum up

3.9 Unit —End Exercises

3.10 Problems for discussion

3.11 Answers to Check your progress.

3.12 Suggested readings.

3.1 Introduction:

Heat can be transferred from one place to the other by three different ways
viz. conduction, convection, and radiation.

Conduction is the process in which heat is transmitted from one point to the other
through the substance without the actual motion of the particles. When one end of
a metal bar is heated, the molecules at the hot end vibrate with higher amplitude
(kinetic energy) and transmit the heat energy from one particle to the next and so
on. However, the particles remain in their mean positions of equilibrium. This
process of conduction is prominent in the case of solids. The property of
transmission of heat has been used in Davy’s safety lamp. Materials having less
conductivity e.g. granite, brick walls etc. are used in the construction of a cold
storages, furnace of a boiler etc. The space between the two walls of a thermos
flask is evacuated because vacuum is a poor conductor of heat. The air enclosed
in the woollen fabric helps in protecting us from cold, because air is a poor
conductor of heat.
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Convection is the process in which heat is transmitted from one place to the other

by the actual movement of the heated particles. It is prominent in the case of
liquids and gases. Land and sea breezes and trade winds are formed due to
convection. Convection plays an important part in ventilation, gas filled electric

lamps and heating of buildings by hot water circulation.

Radiation is the process in which heat is transmitted from one place to the other
directly without the necessity of the inter-veining medium. We get heat radiations
directly from the sun without affecting the intervening medium. Heat radiations
can pass through vacuum. Their properties are similar to light radiations. Heat
radiations also form a part of the electromagnetic spectrum.

3.2 Objectives:
After going through this unit, you will be able to:
e Define thermal conductivity, and thermal diffusivity
e Obtain an expression for the thermal conductivity of a bad conductor
e Explain the concept of black body radiation
e Define Stefan’s constant, solar constant and its experimental verification

3.3 Coefficient of Thermal Conductivity

Consider a cube of side x cum and area of each face A sq cm. The

opposite faces of the cube are maintained at temperatures.
0, and 0, where 6; > 0,.

Heat is conducted in the direction of the fall of temperature. Quantity of heat
conducted across the two opposite faces.

Qx A
Q x (6, — 6;)

Q«t
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Fig 3.1

Here K s a constant called the coefficient of thermal conductivity of the material
of the cube.

fA=1sqcm, (6, —0,) =1°G,t =1s,x =1cm;Then Q=K

Therefore, the coefficient of thermal conductivity is defined as the
amount of heat flowing in one second across the opposite faces of a cube of side
one cm maintained at a difference of temperature of 1° C.

Temperature gradient:

0:— 0,

The quantity

——= represents the rate of fall of temperature with respect

with respect to distance. The quantity %— represents the rate of change of
temperature with respect to the distance. As temperature decreases with increases
. . .. dQ . . .

in distance from the hot end, the quantity EQ 1s negative and is called the

temperature gradient.
- dé.
Q - ka [dx
Dimension of K

Ke—Q _ _ Qax
A__at AdOt
dx
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Q represents energy and its dimension, are,
[Q] = [ML*T™2],
[dx] = [L], [4] = [12], [d6] = [ 8, [¢] = [T]

_[MI2T™2),[L]

— 2p-3g-1
K1= e - MET 0

Thermal Diffusivity:

It is defined as the ratio of thermal conductivity to thermal
capacity per unit volume. Let the density of the substance be p and its specific

heat S.

K

h=—o= =
e I

h is also called thermometric conductivity.

3.4 Rectilinear Flow of Heat along a Bar

Consider a bar of uniform area of cross — section which is heated at one
end. Heat is flowing along the length of the bar. Consider two

Fig 3.2

Planes P; and P, perpendicular to the length to the bar at distances x and x+8x
from the hot end. The temperature gradient at the planeP; = -Z%, Here @ is the

excess of temperature (above the surroundings) of the bar at P;. The excess of

temperature at P; = 6 + Zx—e Ox

The temperature gradient at P, = % (8 + g—z— 6x)
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Heat flowing through P; in one second
Q- —-KA-Z—S- """"" W
Heat flowing through P, in one second
Q, —KAE";(9+%—$6x) ------ (11)
Heat gained per second by the rod between the planes P; and P,
Q= Q1-Q
ae N d ae
= _KAE + an;(a +Ec‘5x)

dze
dx?2

Q=KA=68x = (iii)

Before the steady state is reached: The quantity of heat Q is used in two ways
before the steady state is reached. Partly the heat is used to raise the temperature
of the rod and the rest is lost due to radiation. Let the rate of rise of temperature

of the bar beﬁ.
dx

The heat used per second to raise the temperature of the rod

. de
= mass x specific heat x =

=(A x)pSET e (iv)

Where A is the area of cross section of the rod, p is the density of the material and
s 1s the specific heat.

The heat lost per second due to radiation.
=p 6x60 0 - v)

Where E is the emissive power of the surface, p is the perimeter and 0 is the
average excess of temperature of the bar between the planes P; and P,.

Q= Adbéxp S%%-l-ép. 6x.6

Substituting the value of Q from equation (iii)

dzZe
dx?2

KA ox =Adxp *S%ép. 6x.6
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This is the general equation that represents the rectilinear flow

of heat along a bar of uniform area of cross —section.

Special Cases :

(1) When heat lost by radiation is negligible. When the rod is completely
covered by insulating materials, the heat lost by radiation Ep. 6x. 8 is zero.
In that case the total heat gained by the rod is used to raise the temperature

of the rod. From equation (vi)

d20 _ pSae _ 14e
dxZ2 K dt hdt

Here, - = h, the thermal diffusivity of the rod.

S

(2) After the steady state is reached: When the steady state is reached, the
rod does not require any further heat to raise its temperature. At this state.

do
dt 0

From equation (vi)

Taking

The general solution of this equation is

0 = Ae*H* 4+ Be™HX —-—--- (iXx)

Where A and B are two unknown constants to be determined from the boundary
conditions of the problem.

If the bar is sufficiently long, we can assume that under steady
state, no heat is lost from the free end of the bar. This is due to the fact that
nearly the whole of the heat energy is lost from the sides as radiation and the free
end will be at the temperature of the surroundings.
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(a) Suppose the bar is of infinite length.

Let the excess of temperature above the surroundings of
the hot end be fgand of the other end be zero.

At x=0, 8 = 0,
From equation (ix)
6, =A+B
At X=0,0 =0
From equation (ix),
0= Aex

But eco cannot be zero, therefore, A =0

Taking A =0, 6o =B
Substituting the value of A and B in equation (ix)
0 = Boe—ux """ (X)

This equation represents the excess of temperature of a point at a distance x from
the hot end after the steady state is reached and this represents an exponential
curve. This equation is useful in Ingen-Hausz experiment.

(b) Suppose the bar is sufficiently long and is of finite length L.. Then the
boundary conditions are.

At x=0,
9=60
de
?0 , at x=L

The values of A and B in this care are.

—__ Y
4 1+et2ul
6o
and B = T o—ZAL
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Ingen — Hausz Experiment

Ingen — Hausz devised an experiment to compare the thermal conductivities of

several materials.

Fig 3.3

Take a box containing hot water or oil. Rods of different materials of the same
length and area of cross-section (same size and shape) are taken. Their outer
surfaces are electroplated with the same material and are equally polished. This is
done such that the emissive power e for all the rods is the same. Rods are fixed at
the base of the vessel (Fig.3.3) and their portions outside the vessel are coated
uniformly with wax. It is found that the wax melts up to different lengths on
different rods.

Let the length up to which the wax has melted be 1; 1,,15..... etc., 8, be the
excess of temperature of the hot bath above the room temperature and 8,,, the
excess of temperature of the melting point of wax above the room temperatures.

As, 0 = Bge™H*
For the first rod,

6,, = Gpe " H1h
For the second rod,

0,, = Bpe Hz2lz
For the Third rod,

6,, = peH3ls
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- 0,, = goe—#1l1 — goe"#zlz
=Boe_ﬂ313

oo uly = pol, = ugly = -

E
But H1 = K:il
= |2E
2 _q K2A
(2] N KA

Here, E, p and A are the same for all the rods.

. l Ep = Ep
. 1 UK. A 2 /KA

Ep
K3A
i I
JK1  JKz
I3
=——— =Constant
VK3
Ki _ Kz _ K3
— = —5 = —5 = Constant
11 2 I3

Thus, the normal conductivity of the material of the rod is directly proportional to
the square of the length up to which the wax melts on the rod.

From equation (i), the thermal conductivities of any two materials can be
compared. If the conductivity of one of the rods is known, the thermal
conductivities of other rods can be determined. This experiment is not used for
finding the thermal conductivity because the results obtained are not accurate. It
is, however, useful for demonstration purposes.
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3.5 Lee and Charlton’s method for Bad Conductors

The apparatus consists of a cylindrical steam chamber A, the specimen
disc D and brass or copper block C. The whole apparatus is suspended from the
stand (Fig.3.4). T; and T, are the thermometers used to determine the temperature

after the steady state is reached.

Steam is passed through the chamber and the readings of the thermometers
T,and T, are noted after the steady state is reached. The heat passing through D
in one second is equal to the heat radiated by the exposed surface of C in one

second.

KA (61—-62) ae A+S] ________ @)
d - de L24+s
Here [;:;i]is the fraction of the total area exposed to the surroundings.

Here A is the area of cross-section of D and C. S is the area of the curved
surface of C, %g— is the rate of cooling at temperature 8,, m is the mass and s is the

specific heat of C.

STEAM

Fig 3.4

e ) A )
To ﬁnd%, the disc D is removed and C makes contact with the

steam chamber. C is removed when its temperature is about 10° C higher than8,.
It is placed over two knife edges and its temperature is observed after equal
intervals of time (say one minute). A graph is drawn between temperature and

time. From the graph, the value of z—? at temperature 6, is found. From equation
(1) K can be calculated
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Check your progress

1. How is the effect of convection is eliminated in Lee’s Method of finding K in

- T U T M G Gy S e W S ED D eh WA W P S il S P R R e S T D S D G R L S Y i A N W S TS G G D S S D S D e e . S - AR S S T S Y S S - -

Radiation: - Radiation is the process in which heat is transferred from one
place to another directly without the aid of intervening medium. Heat from the
sun reaches earth due to radiation without affecting the intervening medium.

3.6 Black Body:

A perfectly black body is one which absorbs all the heat radiations
(corresponding to all wavelengths) incident on it. When such a body is placed
inside an isothermal enclosure, it will emit the full radiation of the enclosure after
it is in equilibrium with the enclosure. These radiations are independent of the
nature of the substance. Such heat radiations in a uniform temperature enclosure
are known as black body radiation. Also the black body completely absorbs heat
radiations of all wavelengths. Thus the black body also emits completely the
radiations of all wavelengths at that temperature. In practice, a perfectly black

body is not available. A body showing close approximation to a perfectly black
body can be constructed.

INCIDENY
had RADIA

Black body absorber Fig 3.5

A hollow copper sphere is taken and is coated with lamp black on its
inner surface [Fig. 3.5]. A fine hole is made and a pointed projection is made just
in front of the hole.

When the radiations enter the hole, they suffer multiple reflections and are
completely absorbed. This body acts as a black body absorber. When this body is
placed in bath at a fixed temperature, the heat radiations come out of the hole [Fig.
3.6]. The hole acts as a black body radiator. It should be remembered that only
the hole and not the walls of the body, acts as the black body radiator.
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Bluck body emitter

Fig 3.6

Wien also constructed a black body in the form of a cylinder. This black
I 41y is commonly used now a days.

It consists of a hollow metallic cylinder and fitted with heating coils
wound around it. The inner surface of the cylinder is coated with lamp black.
The cylinder is placed in concentric porcelain tubes (Fig.3.7); the temperature is
measured with the help of a thermocouple arrangement. Heat radiations emerge
out of the hole.

Vf!ff!fffiffffilf//ffflffﬂfflfffilflff/f!ﬂif!ﬂl[ffI

Heat
radiation

Heating
cails

Fig 3.7

The radiations from the inner chamber can be limited with the help of diaphrams
provided on the inner side. This hole will act as a black body radiator.

Wien’s Displacement Law . From thermodynamical considerations, Wien has
shown that the product of the wavelength corresponding to maximum energy and
absolute temperature is constant

Ay, xT = constant = 0.2892 cm™X -——-(1)

This is called Wien’s displacement law. It also shows that with increase in
‘ -mperature, A,, decreases. Wien has also shown that the energy Emax is directly
proportional to the fifth power of the absolute temperature.

E,, «<T>

E,, = constant x T> ----(ii)
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Wien deduced the radiation law for the energy emitted at a given wavelength A
and at a temperature T.

Ey=2"5f2 = - (ii1)
With certain assumptions Wien was able to deduce the relation
C
EA == 611—567% ----- (lV)
Here C; and C; are constants

Equation (iv) represents the Wien’s law of distribution of energy.

Check your progress

2. What is the most important use of Wien’s Law?
3. What are the demerits of Wien’s displacement Law?

—-——-———-,_——————_-————__.-_-——__—-—————————_—————————————-—__.-.._——_—--———_——————————————-—_-

Rayleigh-Jean’s Law: The energy distribution in the thermal spectrum according
to Rayleigh, is given by the formula.

8nkT
o —-(V)

EA =
Here k is the Boltzmann’s constant

The experimental results of Lummer and Pringsheim in the infra red region,
however, show that the Wien’s law holds good only in the region of shorter
wavelengths. It does not hold good at longer wavelengths. The Rayleigh-Jean’s
law holds good in the region of longer wavelengths but not for shorter
wavelengths. This was shown by Rubens and Kurlbaum. Thus Wien’s law and
Rayleigh-Jean’s law do not precisely agree with the experimental results.

Planck’s Law. Plant (1901) was able to derive a theoretical expression for the
energy distribution on the basis of quantum theory of heat radiations. According
to quantum theory, energy is emitted in the form of packets or quanta called
photons. Each photon has an energy v where h is the Plank’s constant and v is the
frequency of radiation. According to this theory, the body does not emit energy
continuously but not only in certain multiples of the fundamental frequency of the
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resonator (energy emitter). As the energy of a photon is hv, the energy emitted is

equal to Av,2hv,3hv....... etc. He deduced the formula.

8mhc .
Ex= —f— -~ (v1)

AS[ekT—1]

Here c is the velocity of electromagnetic waves (=3* 10® metres per second)

Equation (vi) agrees with the experimental results.

(1) For shorter wavelengths
hv
ekt > 1
From equation (vi),
_hv
A E, =8mhcA Se ¥
L2 ..
E; = Clzl‘se AT - (vi1)
Where
C, = 8mhc and C, = %C-

Equation (vii) represent’s Wien’s radiation law.

@i1) For longer wavelengths, g—:- is small.

hv
From equation (vi), expanding e*T and neglecting higher power,

E 8mhc
A= hv
5 v _
Ac[1 + = 1]
_ 8mthc, AkT
~ AS.hc
k
E, = 87;: ... (viil)

Equation (viii) represents Rayleigh-Jean’s law.

Thus Planck’s formula for the energy distribution in a thermal

applicable for all wavelengths.

54

spectrum 1is



Check your progress
4. What are the special features of the Planck’s theory?
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3.7 Stefan’s Law

The experimental study of the rate of emission of heat energy by a hot
body by Tyndall helped Stefan (in 1879) to enunciate the law called Stefan’s law.
In 1884, Boltzmann gave a theoretical proof of Stefan’s law on the basis of
thermodynamics. Therefore, this law is also called Stefan-Boltzmann law.

According to this law, the rate of emission of radiant energy by unit area

of a perfectly black body is directly proportional to fourth power of its
temperature.

R« T*orR= oT* —- (i)

Where o is called Stefan’s constant. If the body is not perfectly black and its
emissitivity or releative emittance is e, then

R=eocT* ——-- (ii)

Hence e varies between zero and one, depending on the nature of the surface. For
a perfectly black body e = 1. The law is not only true for emission but also for
absorption of radiant energy. The hot body will continue emitting heat up to zero
degree absolute temperature, if the temperature of the surroundings is zero degree
absolute. But, in actual practice, the hot body is surrounded by a wall at some
lower temperature. Due to this the body is continuously emitting and absorbing
the heat radiations. When the body has the same temperature as that of the
surroundings, the rate of emission and absorption are equal.

Hence, if a perfectly black body at temperature T; is surrounded by a wall
(surroundings) at a temperature T, the net rate of loss (or gain) of heat energy per
unit area of the surface is given by,

R o (T * — T2

R = o(T* — T, —-(iii)
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If the body has an emissitivity €,

Then
R=eo(Ty*-T" - (iv)

Experimental Verification of Stefan’s Law

In 1987, Lummer and Pringsheim experimentally verified Stefan’s law
over a wide range of temperature (100° C to 1,300°C).

The apparatus consisted of a black body. For temperatures between 200° C and
600° C, a hollow copper sphere coated inside with platinum black was used. The
fused nitrates of sodium and potassium having a melting point of 219° C were
used as the bath surrounding the black body. For temperature between 900°C and
1300° C, an iron cylinder coated inside with platinum black was used as a black
body and it was enclosed in a double walled gas furnace. A thermocouple T was
used as a thermometer. A bolometer B was used to measure the intensity of the
emitted heat radiations. Si, S> and S3; were the water —cooling shutters (Fig.3.8).

BOLOME YER

Pty

WATER CCOLING

CEvICE BOILING
WATER

Fig 3.8

Another black body A at 100°C was used to standardize the bolometer.
The double walled vessel of the black body Acontained boiling water at 100°C.
The bolometer B was allowed to face the opening of the black body A and the
shutter S; raised. The deflections in the galvanometer of the bolometer at various
distances were noted and it was found that the deflection was inversely
proportional to the square of the distance between the bolometer and the opening
of the black body A. Thus the deflection in the galvanometer was proportional to
the intensity of heat radiations.

Thus shutter S; was closed and the bolometer B was allowed to face the
opening of the black body C. The shutters of S; and S, were raised. The bath
surrounding the black body was maintained at a constant temperature and the
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maximum deflection produced in the galvanometer of the bolometer was noted.
Thus at various constant temperatures of the black body, corresponding to
constant deflections (in the galvanometer of the bolometer) were observed. Then

the data was reduced to a common arbitrary unit in terms of the total radiations
from the black body A at 100°C.

Let O be the deflection in the galvanometer, T; the temperature of the

black body and T», the temperature at the entrance of the bolometer. It was found
that

0 x (T,* — T,*)
But 0 <R

0 x (T,* — T,*)
This verifies Stefan’s law.

Recently Coblentz has verified Stefan’s law more accurately. He took an
electrically heated black body whose temperature was measured by an accurate
thermocouple. An absolute bolometer was used to measure the amount of heat
radiations emitted by the black body. He was able to show the correctness of
Stefan’s law experimentally up to 1,600°C.

Solar Constant

The sun is the source of heat radiation and it emits heat radiations in all
directions. The earth receives only a fraction of the energy emitted by the sun.
the atmosphere also absorbs a part of the heat radiations and air, clouds, dust
particles etc. in the atmosphere scatter the heat and light radiations falling on
them. From the quantity of heat radiations received by the earth, it is possible to
estimate the temperature of the sun. Therefore, to determine to value of a
constant, called solar constant, certain 1i1deal conditions are taken into
consideration.

Solar Constant. [t is the amount of heat energy (radiation) absorbed per minute
by one sq cm of a perfectly black body surface placed at a mean distant of the
earth from the sun, in the absence of the atmosphere, the surface being held
perpendicular to the sun’s rays.

The instruments used to measure the solar constant are called
pyrheliometers. The heat energy absorbed by a known area in a fixed time is
found with the help of the pyrheliometers. To eliminate the effects of absorption
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by the atmosphere, the value of the solar constant is found at various altitudes of
the sun on the same day under similar sky conditions. If S is the observed solar
constants, Sg the true solar constant and Z the altitude (angular elevation)of the

sun, then

S=Sa**? ---- (1)
or logS=1logSp+secZloga ---(ii)
Here a is a constant.

A graph is plotted between log S along the y-axis and sec Z along the
x-axis. The graph is a straight line. Produce the graph to meet the y-axis. The
intercept on the y-axis gives log Spo. From the value of log Sy, the value of Sy, the
solar constant can be calculated. The value obtained varies between 1.90 and 2.60
calories per sq cm per minute.

Water Flow Pyrheliometer

This instrument was designed by Abbot and Fowle. It consists of a
cylindrical double walled vessel A. The lower side is conical in shape and is
coated with platinum black on its inner side. T; and T, are the platinum resistance
thermometers to record the temperatures of incoming and outgoing water

(Fig.8.50)

D is a diaphragm which allows the heat radiations from the sun through a
known area of cross-section. Heat radiations are allowed to enter the vessel A and
the rate of flow of water is adjusted so that the thermometers T; and T, show
constant temperatures (say €, and 8,). The spiral coil helps water in making good
contact with the walls. After the steady has been reached i.e., T; and T, show
constant temperatures, the heat radiations from the sun are cut off
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Fig 8.50

Now a suitable current is passed through the manganin coil ¢ so that the

same conditions are restored i.e., the thermometers T; and T, show the same

constant temperatures 6, and 06,.

If E volts is the potential difference and I

amperes is the current flowing through the manganin coil, then the amount of heat

EI .. .
produced per second = Ecal. Therefore, the amount of heat radiations received

from the sun in one minute by the exposed surface of the vessel A =

EI+60
4.2

From this value, the solar constant can be calculated.

3.8 Let us sum-up

The coefficient of thermal conductivity is defined as the amount of heat
flowing in one second across the opposite faces of a cube of side one cm
maintained at a difference of temperature of 1°C.

It is defined as the ratio of thermal conductivity to thermal capacity per
unit volume.

Ingen-Hausz experiment is used to compare the thermal conductivities of
several materials. ‘K’ is directly proportional to the square of the length
up to which the wax melts on the rod.

A perfectly black body is one which absorbs all the heat radiations
(corresponding to all wavelengths) incident on it.

Wien’s displacement law- the product of the wavelength corresponding
to maximum energy and absolute temperature is constant.

Stefan’s law - the rate of emission of radiant energy by emit area of a
perfectly black body is directly proportional to fourth power of its
temperature.
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Solar Constant. It is the amount of heat energy (radiation) absorbed per
minute by one sq cm of a perfectly black body surface placed at a mean
distant of the earth from the sun, in the absence of the atmosphere, the
surface being held perpendicular to the sun’s rays.

3.9 Unit — End Exercises

0 N O

10.

Define coefficient of thermal conductivity. What are its dimensions?
Discuss the rectilinear flow of heat along a bar of uniform area of cross-
section. Describe expression for thermal conductivity and temperature
distribution for a cylindrical rod heated along its axis.

Discuss Ingen-Hausz experiment to compare the themal conductivity of
different materials.

Discuss Lee’s disc method for finding the co-efficient of thermal
conductivity for bad conductors. Can this method be used for good
conductors?

Deduce Wien’s displacement law for the distribution of energy in black
body spectrum?

State and explain Rayleigh-Jeans law.

Discuss Planck’s hypothesis of quantum theory of radiation

State Stefan’s law and write its equation. Explain how would you calculate
surface temperature of the sun using the law.

What do you understand by a black body? State and explain Stefan’s Law
of heat radiation. Describe an experiment to verify Stefan’s Law.

Define solar constant. Describe water flow pyrheliometer and explain how
solar constant is determined from it.

3.10 Problems for discussion

1.

How much heat is lost through the outside wall of a dormitory room in 8
hours when the average outside tempertature is 15°C and the average
inside temperature is 22°C? The wall is 2.5m, by 3.0m, is 0.15, thick and
has an average thermal conductivity of 0.850w/m/k.

In Lee’s disc experiment two discs are separated by a gap of Smm
thickness. The gap contains a gas of thermal conductivity 3.88 x 107
w/m/k . At steady state the temperatures of the two discs are 368K and
333K. If the area of cross section of the slab is 25 cm? calculate the
quantity of heat crossing the gas per second.

Calculate the radiant emittance of a black body at a temperature of (i)
400K (ii) 4000K. [c is 5.672 x 10 ® M.K.S units]
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4. Calculate the surface temperature of the sun and moon, given that A, =

4753 A° and 14 p respectively, A, being wavelength of maximum intensity
of emission.

5. What is the wavelength at which human body radiates maximum energy?

3.11 Answers to check your progress and problem for discussion

Check your progress

1. Anmns: Convection is eliminated by allowing the heat to flow in the
downward direction.

2. Ans : Evaluation of the surface temperature of the Sun.
3. Amns:

(i) It is based on classical mechanics, which is totally irrelevant in
radiation problems.

(ii) Wien’s value agreed only in shorter wavelength region.

4. Ans: Energy is radiated not continuously but in small indivisible packet
called quanta

Energy of each quanta E = hy where h is the Planck’s constant and vy is the
frequency of radiation.

Answers to problem for discussion:

Solution 1:

Heat conducted Q = X2%2=91 _ 850 x 7.5 x 37x 9 x 3600/ 0.150
=4.53x 10" ]
Solution 2:
Q = X422 3 88 x 10 %25 x 10™ x 35 / 5x107
= 679x 10 ©J/ Sec
Solution 3: E =ecT? (e = 1, for a black body)

=oT*

i) T = 400K
E =5.672 x 10 "® x [4007*
— 1452 watts/ m?
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(ii) T = 4000 K
E = 14520 k watts/ m?

Solution 4:
Am T = constant = 0.2898

D for Sun T, =0.2898 /4753 x 10 =6097 K
(ii) for moon T, = 0.2898 /14 x 108 =207 K

Solution S:
Am T = constant = 0.2898
Temperature of the Human body T =37 °C =273 +37=310K
Considering Human body as a black body,
Am-2.898 x 10°/310=9.35x 10°m
3.12 Suggested Readings:

1. Thermal physics- R.Murugesan , S.Chand S.Chand & Co, New Delhi..

2. Heat and Thermodynamics -J.B.Rajram and C.L.Arora, S.Chand & Co,
New Delhi,2004.

3. Heat, Thermmodynamics and Statistical Physics Brijlal, Dr. N.
Subramanyam and P. S. Hemne.Revised edition, Reprint 2012 S.Chand&
Company Ltd., New Delhi

4. Thermodynamics and Statistical Physics Singhal, Agarwal, SathyaPrakash
12™edition, 2008,PragatiPrakashan, Meerut

5. Thermodynamics, Statistical thermodynamics and Kinetics Thomas Engal,

Philip Reid 1* edition, 2007, Dorling Kindersley (India) Pvt Ltd, New
Delhi.
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UNIT 4
Structure
4.1 Introduction
4.2 Objectives
4.3 Zeroth and First law of thermodynamics
4.4 Reversible and Irreversible process, Second law of thermodynamics
4. 5 Heat engine - Derivation for efficiency
4.6 Carnot theorem
4.7 Entropy — change in entropy in reversible and irreversible process
change in entropy in conversion of ice into steam
4.8 Third law of thermodynamics
4.9 Let us sum up
4.10 Unit —end exercises
4.11Problems for discussion
4.12 Answers to Check your progress
4.13 Suggested readings.
4.1 Introduction

Thermodynamics is branch of Physics which mainly deals with the
transformation of heat into mechanical work. Today, the scope of thermodynamics
has very much increased covering all the branches of physics, chemistry and
engineering and has innumerable applications. Thermodynamics does not take
into account the atomic constitution of matter i.e., structure etc. but it only deals
with the large scale response (macroscopic properties) of the system that we can
observe and measure in experiments.

The Zeroth law of thermodynamics introduces the concept of temperature
and the concept of thermodynamic equilibrium when two objects attain the same
temperature when brought in thermal contact. During the process of reaching
thermal equilibrium, heat is transferred between the objects. The first law of
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thermodynamics represents the relationship between heat and mechanical work
while the second law depicts the manner in which these energy changes take
place. In short, thermodynamics is an empirical and experimental science and
based upon the general laws of nature which govern the conversion of heat in to
mechanical work and vice-versa.

4.2 Objectives
After going through this unit, you will be able to:

e explain the concept of temperature using the Zeroth law of
Thermodynamics

e understand the significance of the first law of thermodynamics
e distinguish between a reversible and irreversible process

® define entropy

e calculate the change in entropy for reversible and irreversible change
e State the consequence of the third law of Thermodynamics

4.3 Zeroth law of thermodynamics:

The sense of touch is the simplest way to distinguish hot bodies
from cold bodies. By touch we can arrange bodies in the order of their hotness.
We speak of this as out temperature sense. This is a very subjective procedure for
determining the temperature of a body and certainly not very useful for purposes
of science. Further, the range of our temperature ser<e is limited. What we need
is an objective, numerical, measure of temperature.

The first step toward attaining an objective measure of the temperature
sense is to set up a criterion of equality of temperature. Let an object A which
feels cold to the hand and an identical object B which feels hot be placed in
contact with each other. After a sufficient length of time, A and B give rise to the
same temperature sensation. Then, A and B are said to be in thermal equilibrium
with each other. Two bodies are in thermal equilibrium means that the two bodies
are in states such that, if the two were connected, the combined system would be
in thermal equilibrium. If two bodies are in thermal equilibrium when placed in
contact, then by definition their temperatures are equal.  Conversely, if the
temperatures of two bodies are equal, they will be in thermal equilibrium when
placed in contact.
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The logical and operational test for thermal equilibrium is to use a third or

test body such as a thermometer. This is summarised in a postulate often called
the zeroth law of thermodynamics.

Statement: If A and B are in thermal equilibrium with a third body C ( the
thermometer), then A and B are in thermal equilibrium with each other.

Explanation: Thus if we want to know when two beakers of water are at
the same temperature it is unnecessary to bring them into contact and see whether
their properties change with time. We insert a thermometer (body C) in one
breaker of water (body A) and wait until some property of the thermometer, such
as the length of the mercury column in a glass capillary, becomes constant. Then
by definition, the thermometer has the same temperature as the water in the beaker
A. We next repeat the procedure with the other beaker of water (body B). If the
lengths of the mercury columns are the same, the temperatures of A and B are

equal. Experiment shows that if the two beakers are brought into contact, no
changes in their properties take place.

Significance: This law forms the basis of concept of temperature. All
these three systems can be said to possess a property that ensures their being in
thermal equilibrium with one another. This property is known as temperature.
We may, therefore, define the temperature of a system as the property that
determines whether or not the system is in thermal equilibrium, with the
neighbouring systems. It is obvious that if two systems are not in thermal
equilibrium, they will be at different temperatures. Speaking loosely, the essence
of the zeroth law is: there exists a useful quantity called temperature.

First Law of thermodynamics

Statement: The amount of heat supplied to a system is equal to the
algebraic sum of the change in internal energy of the system and the amount of
external work done by the system.

Explanation. The differential form of the first law of thermodynamics is
dQ = dU+dW

dQ = amount of heat supplied to the system

dU = increase in internal energy of the system

dW = external work done by the system
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In all transformations, the energy due to heat units supplied must be balanced by
the external work done plus the increase in internal energy.

In the first law, a conversion between heat and mechanical energies (work)
is set up and in the balancing process, internal energy U is defined.

When a cold body is placed in contact with a hot body, first law says that
the heat gained by the colder body is equal to heat lost by the hotter body when
equilibrium is attained. The first law does not specifically say that heat does not
flow spontaneously from the colder to the hotter body. The fact that heat can only
pass from a hot body to a colder body and not otherwise is not covered by first
law.  First law is, therefore, insufficient for the sake of completeness of
thermodynamic studies. To cover the directional properties of heat, it is desired to
define some law. This is the basis of the second law of thermodynamics.

Significance of the first law: The first law of thermodynamics establishes
the relation between heat and work. According to this law, heat can be produced
only by the expenditure of energy in some form or the other. Hence it follows
directly from this law that it is impossible to make a perpetual motion machine or
to derive work without any expenditure of energy.

Application of the first law: From the first law of thermodynamics.
dQ=dU +PdV

the thermal energy of a system U is a function of any two of P, V and T. choosing
T and V.

U =f(T,V)
0] d
We have, dU = () dT + (3)rdV
Therefore, the first law becomes
a0 = Yy ar 4+ [(au) + P] dv
- (ar)" v/,

Dividing by dT, we get

dQ au _ [( 4 p dv

ar - G ) ]'Ez'i"

This equation is true for any process involving any temperature change dT and
any volume change dV.



(a) If V 1s constant, dV =0 and
dQ ou
GPlv = (Gpv = G

Hence C, is the molar specific heat capacity at constant volume.
(b) If P is constant, Eq. (5) becomes

( ) ou + [(BU
p = Gplv av ( )p
But, ag o = Cp = Molar specific heat capacity at constant pressure.

CP_C"""[( ) + ](aT”

For a perfect gas, (—g—% = 0. Further

PV=RTorP (0V/0T)p = R.

Eq.(7) becomes Cp = CV + R

Check your progress

1. If 100 joules of heat is added to a system that does no external work, by
how much is the internal energy is raised?
ANS: ~cccccccccncncnccaccaanna- -

4.4 Reversible process

Thermodynamically, a reversible is one which an infinitesimally small
change in the external conditions will result in all changes taking place in the
direct process being exactly repeated in the reverse order and opposite sense.

It means that in a step where heat is absorbed in the process, it is given out
in the reverse process and vice versa. Similarly, in a step where work is done by
the working substance in the direct process, an equal amount of work is done on
the working substance in the reverse process

The process will not be reversible if there is any loss of heat due to
friction, radiation or conduction. If the changes take place rapidly, the process will
not be reversible.
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The conditions of reversibility for any heat engine or process are:

1. The pressure and temperature of the working substance must not differ
appreciably from those of the surroundings at any stage of the cycle of

operation.
2. All the processes taking place in the cycle of operation must be infinitely

“low.
3. The working parts of the engine must be completely free from friction.
There should not be any loss of energy due to conduction or radiation during

the cycle of operation.

Examples: 1.All isothermal and adiabatic changes are reversible when
performed slowly. Under these conditions if heat is supplied to a given mass of a
gas at constant pressure, it expands and does some external work. If the same
amount of work is done on the gas in compressing it, the same quantity of heat
will be given out.

2. Ice melts when a certain amount of heat is absorbed by it. The
water so formed can be converted into ice if the same amount of heat is removed
from it.

It should be remembered that the conditions mentioned for reversible
processes can never be realised in practice. Hence, a reversible process is only an
ideal concept. In actual process, there is always loss of heat due to friction,
condition, radiation, etc.

Check your progress

2. What are the most important conditions of reversibility?
- N (T I e e e ————

Irreversible process
Any process which is not reversible exactly is an irreversible process.

Irreversible processes can also be defined as those processes which can not
be retraced in the opposite order by reversing the controlling factors.

All natural processes such as conduction, radiation, radioactive decay, etc.,
are mrreversible processes.
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Examples: 1. Production of heat by friction is an irreversible process because
heat will again be produced (and not absorbed) if the direction of motion is
reversed.

2. Heat produced by the passage of a current through a resistance is
irreversible. It is because even when the current is reversed, the same effect is
observed.

3. Practical examples of irreversible processes are conduction of heat
from a hot body to colder one, diffusion of liquids and gases, Joule-Thomson
expansion, etc.

Check your progress

3. State to which category the following processes belong; (Reversible /
Irreversible)
a) isothermal expansion
b) adiabatic expansion
¢) conduction, convection and radiation
d) friction
e) heating by electric current
ADS: ~ecemcamcrmcercarrenr o cen e s c e cse e e e s s n e e e e ettt

Second Law of thermodynamics:
There are two conventional statements of second law of thermodynamics.

i) Clausius statement. It is impossible for self-acting
machine, unaided by any external agency, to
transfer heat from a body at a lower temperature to
a body at a higher temperature, or heat cannot of
itself pass from a cold to a hot body.

Explanation: This statement implies that to convey heat continuously from a cold
to a hot body, it is necessary to supply work by an outside agent. We know from
experience that when two bodies are in contact, heat energy flows from the hot
body in such a case and so determines the direction of transfer of heat. The
direction can be reversed only by an expenditure of work. This takes place in a
refrigerator in which electrical energy is used to pump heat from the cool interior
to the warmer room.

69




It is impossible to construct a refrigerator that works without the
supply of energy.

(ii) Kelvin-Planck statement. It is impossible to
construct a device which, operating in a cycle, has
the sole effect of extracting heat from a reservoir
and performing an equivalent amount of work.

Explanation:. According to this statement, a single reservoir at a single
temperature cannot continuously transfer heat into work. This statement implies
that we cannot produce mechanical work by extracting heat from a single
reservoir without returning any heat to a reservoir at a lower temperature. As an
example, it is impossible to drive.a steamship across the ocean by extracting heat

from the ocean.

Hence, heat can be converted into work only if a body at a higher
temperature and another at a lower temperature are available.

4.5 Heat Engine:

Heat engine is a device which converts heat into work. A heat engine, in
general, consists of three parts.

1. A source or high temperature reservoir at temperature T,
2. A sink or low temperature reservoir at temperature 7T,
3. A working substance.
In a cycle of heat engine, the working substance extracts heat
Qifrom source, does some work W and rejects remaining heat Q, to sink
(Fig.4.1)
Efficiency of heat engine
Work done (W)

M= Heat taken from source (Q,)
Q- Qz=1__ Qz=T1"' Ltz
Ql Ql Tl

This is general expression for the efficiency of heat engine.
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Fig 4.1

Camot’s engine consists of the following parts

(1) Source. A source is a hot body at a constant temperature T1K. The heat
engine can draw heat from the source (Fig 4.2)

(2) Sink. The sink is a cold body at a constant lower temperature ToK. Any
amount of heat can be rejected to the sink

(3) Working substance. The working substance is an ideal gas enclosed in
a cylinder-piston arrangement.

A perfectly non-conducting stand is also provided so that the
working substance can undergo adiabatic operation.
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Carnot’s cycle

(i) Isothermal expansion AB. Place the cylinder on the source at
temperature T).
the piston is moved slowly upward so that the gas expands isothermally. The
isothermal expansion of the gas is represented by the curve AB (Fig.4.3)
Consider one gram molecule of the gas
Let the quantity of heat absorbed from the source be Q;.
This is equal to the amount of work done W; by the gas in the expansion
from initial state (P;, V) to final state (P, , V>).

Q.= Wy = f,2 PdV =RT; f,”< =RTlog, (—)

_ﬂv

Fig 4.3

(ii) Adiabatic expansion BC. Place the cylinder on the insulating stand.
Allow the gas to expand adiabatically till the temperature falls to T,. The
change is represented by the adiabatic BC.
The work done by the gas W3 is given by
Ve Vs
dv  [KVa'™Y — Kv,17Y
w, = Padv = —_— =
, f v= [ gy ==

Vi
(Since szzy = P3V3y = K)

[P3 V3 -Psz]
1-y

[RTz —RT1]

(Psz = RTlandP3V3 = RTz)
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W = R(T, — Ty
2 r—-1

(iii)Isothermal compression CD. Place the cylinder on the sink at
temperature T,.

The gas is compressed isothermally till the gas attains the state D. The
change is represented by the curve CD. Let the quantity of heat rejected to
the sink be Q.. This is equal to the work done W3 on the gas.

Va Vs
dv V,
Qz = W3 = f P dv = RTZ - =RTzloge (—")
7 Va
V3

Q= W; = —RTzloge( )

(iv) Adiabatic compression DA. Place the cylinder on the insulated stand.
The gas is compressed adiabatically until the temperature rises to T;. The
change is represented by the adiabatic DA.

Work done from D to A is

Vi
R(T, — Ty
-1
) r—1

The net work done by the gas
W = W1+W2+W3+W4

Vz R (T1 - Tz)

+ R(T1 - Tz)
V1 r—1)

r—1)

RT;log,. + - RTzloge( )

V. %
W = RT,log, (72) — RT,log, (73-)
1 4

The points A and D are on the same adiabatic.

Tlvy-lz = Tzvy—lz

m=@)

The points B and C are on the same adiabatic

T1VY_12 = TzVY—lg

()“



From (6) and (7),

y—1

@ =G

h_ V"
V4 V3
V: Vs
v, V,

From (5) and (8),
V,
W = RT,log.— — RT,log. -+

V2
= R(T, — Tz)loge-‘-,—
1

V.
W = Q,—Q, = R(T, — Tz)loge'é

The efficiency (1)) of the engine is defined as

Amount of heat converted into work
N = Total heat absorbed from the source

Q.- Q. R(TL—Tlog. &)

V:
Q, RT,log. (7:’)
Efficiency
T, —T. T.
T, T,

Carnot’s cycles as refrigerator

When the Carnot’s engine works as a refrigerator, it absorbs heat
Q: from the sink at temperature T,. W amount of work is done on it by some
external means and rejects heat Q; to the source at a temperature T; (Fig.4.4)

Q2 __ _Q __ T
w Q1"Qz Ty -T>

Coefficient of performance =—
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Fig 4.4

The coefficient of performance K is defined as the ratio of the heat taken in from
the cold body to the work needed to run the refrigerator.

Check your progress

4. Why any heat engine cannot have 100% efficiency?
Ans:

4.6 Carnot’s theorem
The theorem consists of two parts and can be started as follows:

(1) All reversible heat engines working between the same two
temperatures have the same efficiency whatever be the working
substance.

Explanation. The efficiency of a reversible engine does not depend on the nature
of the working substance. The efficiency of a reversible Carnot’s engine depends
only upon the two temperatures between which it works.

(ii) Of all the heat engines working between the same two
temperature of source and sink, the reversible heat engine has
the maximum efficiency possible.

Explanation. In the case of a Cammot’s engines, there is no loss of heat due to
friction, conduction or radiation. In a practical engine there is always loss of
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energy due to friction, conduction, radiation etc. Hence its efficiency is always
lower than that of Carnot’s engine. Thus, the Carnot’s engine has the maximum

efficiency.

Proof. (i) Consider two reversible engines A and B (Fig4.5). They are coupled so
that their combination acts as a self acting machine. They work between a source
at a higher temperature T; and a sink at a lower temperature T> They have
different working substances.

Hat Source
T 1
0, Q’,
Q. Q',
Cold Sink
Te

Fig 4.5

Engine A works through a direct cycle. It absorbs an amount of heat
Q1, at T1, and rejects Q; at T,
_ Q1—Q; w

Efficiency of engine A = n, = o =0
1 1

Engine B works through the reverse cycle. It absorbs an amount of heat Q, at
T, and rejects Q’l at T;.

Q-0 _w
Q' Q'

Efficiency of engine B = n, =
The useful work done by A equal to (Q, — Q) can be used to work engine B

through the reverse cycle requiring energy (Q', — Q',).

Since Q' — Q', = @, — Q. this system will go on working for ever without any
external work being supplied.

Imagine engine A to be more efficient than engine Bsie., n, > n,.
w - w
Ql Q'I
1/Q, > 1/Q,(o7)Q’; > @,
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There is a net supply of heat (Q '1 ~— Q;)to the source per cycle which should come
from the sink. Since no external work has been done, this is impossible by the
second law of thermodynamics. The assumption that i, > myis wrong.

(ii)Consider an irreversible engine A and a reversible engine B(Fig.4.5). They are
coupled such that A works through direct cycle and B works through the reverse
cycle. Thus the coupled system acts as self acting machines.

Imagine thatn, > n,. The fact A is irreversible does not alter any of the
argument used above to show thatn, #» mn,. Therefore, we have proved that

irreversible engine cannot be more efficient than a reversible engine when they are
working between the same source and sink.

In the case of Carnot’s engine, there is no loss of heat due to friction, conduction
or radiation. In a practical engine there is always loss of energy due to fiction,
conduction, radiation etc. Hence its efficiency is always lower than that of
Carnot’s engine. Thus, the Carnot’s engine has the maximum efficiency.

Example 1. An inventor claims to have developed an engine, operating between
800 K and 400 K capable of having an efficiency of 55%. Comment on his claim.

Sol. The efficiency of a Carnot engine operating between 800 K and 400 K is

T, 400
1‘|=1—F=1—§6—6=0.5=50%
1 ;

The efficiency claimed of the newly developed engine = 55%.

Thus the efficiency of the newly developed engine, as claimed by its inventor, is
greater than the efficiency of a Carnot’s reversible engine operating between the
same limits of temperature. But no engine can be more efficient than Carnot’s

engine working between the same temperatures. Hence the claim of the inventor
is not valid.

4.7 Entropy

Definition. The entropy of a substance is that physical quantity which remains
constant when the substance undergoes a reversible adiabatic process.

Explanation. Consider two adiabatic AF and BE (Fig.4.6) crossed by a number
of isothermals at temperatures, T; T, T3,. Consider the Carnot cycle ABCD. Let
Q: be the heat absorbed from A to B at temperature Ti. Let Q: be the heat
rejected from C to D at temperature T,
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Fig 4.6

Then, from the theory of Carnot engine,

% _0
T, T,

Similarly, consider the Carnot cycle DCEF. Q; is the heat absorbed at
temperature T, and Q; heat rejected at temperature Ts. Then,

R _0
T, T
Q_Qz_0Qs

= == = constant
T, T, T;

Thus, if Q is the amount of heat absorbed or rejected in going from one adiabatic
to another along any isothermal at temperature T, then

Q
— = constnat
T

This constant ratio is called the change in entropy in going from the adiabatic AF
to the adiabatic BE.

If a system absorbs a quantity of heat dQ at constant temperature T during
a reversible process, then entropy increases by

dQ
ds = —

Similarly, if a substance gives out a quantity of heat dQ at temperature T,
during a reversible change, then its entropy decreases by
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Unit of entropy is JK~
For an adiabatic change, we have dQ=0. dS=0
Thus, there is no change of entropy during a reversible adiabatic process.

Example: Calculate the change in entropy when 107 kg of ice at 0°C is

converted into water at the same temperature. Given that the specific latent heat
of fusion of ice is 3.36*10° J kg'.

Sol. Quantity of heat given to 10 kg of ice to convert it into water
without any change of temperature is

dQ = mL = 1072 % (3.36 * 10°) = 3.36 * 103J
This process takes place at a constant temperature T=273 K.

. d 3.36+103
Increases in entropy = dS = 1? ==

=12.31JK!

Example: Calculate the change in entropy when 5 kg of water at 100° C is
converted into steam at the same temperature.

Sol. Heat absorbed by 5 kg of water of 100°C when it is converted into
steam at 100°C =dQ =5 * (226*10%J = 1.13*10’ J.

dQ _ 1.13+107
T 373

Increases in entropy = dS = = 30295/K1

Change of entropy in a reversible process (Carnot’s cycle)

Consider a reversible Carnot cycle ABCD (Fig.4.7.)
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Pressure ——%

Fig 4.7

(i) In this isothermal expansion from A to B, the working substance absorbs
an amount of heat Q; at a constant temperature T}.

Increase in entropy of working substance from A to B ——~-‘-_12_l
1

(i1) During the adiabatic expansion from B to C, there is no change in
entropy.

(iii) During the isothermal compression from C to D, the working

substance gives out a quantity of heat Q; at a constant temperature T».
Q2

Decrease in entropy of working substance from C to D =
2

(iv)  During the adiabatic compression from D to A, there is no change in

entropy.
The net change in entropy of the working substance during the cycle ABCE =
@ __ 2
T, T
For a reversible cycle,

% _Q
I, T;

9 _Q_

nn T;

Thus, the total change of entropy is zero during a Carnot’s cycle Entropy change
in a reversible cycle is Zero.
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Change in entropy in an irreversible process.

Consider an irreversible process like conduction or radiation of heat. Suppose a
body at a higher temperature T; conducts away a small quantity of heat dQ to
another body at a lower temperature T,. Then,

Decrease in entropy of the hot body _-—-‘;‘Q
1

Increase in entrcpy of the cold body _——c;‘Q
2

the net increase in the entropy of the system = dS_‘;_Q — ‘:,Q
’ 2 1

dSis always positive since T; > T,. Hence there is an increase of entropy.
Similarly, there is an increase of entropy during the loss of heat by radiation.
Therefore, generally, the entropy of a system increases in all irreversible
processes. This is called the law of increase of entropy.

Temperature - entropy diagram

The state of a substance may be represented by points plotted with
temperature as ordinates and entropies as abscissa. This is the TS diagram. Here
the isothermals are horizontal straight lines (parallel to S-axis). The adiabatics are
vertical straight lines (parallel to T-axis)

(1) From A to B, heat energy Q,; is absorbed at temperature T;. The
increase in entropy S; takes place from A to B [Fig.4.8]
S, =2
1 Tl
]
s-3 .T,
I A > B
':,'5 A T -7, +
8 <
D c
g e
=

Entropy (S) ———»
(a) (&)

Fig 4.8
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(i1) From B to C there is no change in entropy. Fall of temperature is Ty —

T2
(iii) From C to D, there is no decrease in entropy (S2) at constant
temperature T>.
Q2
S, = —
2 =T,

(iv) From D to A, there is no change in entropy but the temperature
increases from T»to T;. The area ABCD in the T-S diagram
= 85,(Ty — T;) = 52(Ty — T)
5 -58_%_0-0
n T, T,—-T;

Area of figure ABCD in T-S diagram="2"22 (T, —T2) = @1 — Q2
-

The area of ABCD represents the energy converted to work

The efficiency of the engine

Heat energy converted into work

n= Total heat absorbed
_S(h-T) _Th—Th
T.S, T,
Check your progress
5. Why does the entropy of the Universe always tend to increase?
AIS; ~eemeeecccncccmoscesscccccccsaancmcmaaaacee - - c———— -

Change of entropy in conversion of ice into steam

Let m kg of ice at a temperature T;K be converted into water at the same
temperature. Then it is heated up to a temperature T:K. At T2K, it is converted
into steam. The net change in entropy from ice to steam can be calculated in 3
steps.

1) Let L, be the specific latent heat of fusion of ice. To convert m kg of
ice at T;K into water at the same temperature, an amount of heat m L,
is added to it. Hence

mL 1
T,

Increase in entropy= AS; =

82




(i1) Mkg of water at T K is heated to T,K
Increase in entropy = AS, = f_:z' 'mC -‘-I;T-' = mC( log, ?
1
Here, C is the specific heat capacity of water.

(iii)Let L, be the specific latent heat of vaporization. When m kgz of water at
T,K is converted into steam at the same temperature, it absorbs heat mL,.

mlLy
T

The Increase in entropy= AS3; =

Total gain in entropy =AS = AS; + AS, + AS;

4.8 Third law of thermodynamics

The first and second laws of thermodynamics do not allow the value of the
entropy So of a system at absolute zero temperature to be determined. Hence it is
impossible to calculate theoretically the absolute values of the entropy. On the
basis of a generalization of the experimental investigations of the properties of
various substances at very low temperatures, a law was established. This law

eliminated the above-mentioned difficulty. It is called the Nernst heat theorem or
third law of thermodynamics.

Statement: In any isothermal process carried out at absolute zero temperature,
the entropy change of the system equals zero, i.e.

ASto =0 and S = Sp = constant.

In other words, at absolute zero temperature, an isothermal process is also
isentropic. It follows from the third law of thermodynamics that at T=0K, the heat
capacities Cp, and Cv and the coefficient of thermal expansion a; for any body
become zero. This law also leads to the conclusion that it is impossible to

accomplish a process as a result of which the temperature of a body is reduced to
T=0K i.e.,

It is impossible, by any procedure, no matter up to what extent it is
idealized, to bring any impossible to absolute zero temperature in a finite number
of operations.

This is the unattainability statement of the third law of thermodynamics.
Thus it is experimentally impossible to reach the zero of entropy measuring scale.
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Nernst heat theorem is useful in explaining the nature of bodies in the
neighbourhood of absolute zero temperature. Its importance lies in the fact that it
permits the calculations of absolute values of entropy and the physical
interpretation of thermodynamic properties such as Helmholtz and Gibbs free
energies etc. It can be conceived that as the temperature of a system tends to
absolu e zero its entropy tends to a constant which is independent of pressure,
and < ate of aggregation etc. We may put it equal to zero so that the entropy of
eve , substance becomes normalized in an absolute way.

There are several ways of stating the third law.

()] Unattainability statement. It is impossible by any procedure, no
matter up to what extent it is idealized, to bring any system to absolute
zero temperature in a finite number of operations.

(ii) Nernst statement. ‘no entropy change takes place when pure .
crystalline solids react at absolute Zero’.
(ii1) Planck statement. The entropy of a solid or a liquid is zero at the

absolute zero of temperature’.

4.9 Let us sum-up

e zeroth law of thermodynamics - If A and B are in thermal equilibrium
with a third body C (the thermometer), then A and B are in thermal
equilibrium with each other.

e First law of thermodynamics - The amount of heat supplied to a system
is equal to the algebraic sum of the change in internal energy of the system
and the amount of external work done by the system

e Second law of Thermodynamics —

(i) Clausius statement: It is impossible for self-acting machine, unaided
by any external agency, to transfer heat from a body at a lower temperature
to a body at a higher temperature, or heat cannot of itself pass from a cold
to a hot body. T
(ii) Kelvin-Planck statement. It is impossible to construct a device which,
operating in a cycle, has the sole effect of extracting heat from a reservoir

and performing an equivalent amount of work.

e Efficiency of Camot engineis= n = IE;T—Q =1- -;-:Z
1 1

e The entropy of a substance is that physical quantity which remains
constant when the substance undergoes a reversible adiabatic process.

e Entropy change in a reversible cycle is Zero.
The entropy of a system increases in all irreversible processes. This is
called the law of increase of entropy.
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e Third law of thermodynamics - in any isothermal process carried out at

4.10

N o

8.
O.

absolute zero temperature, the entropy change of the system equals zero,
i.e. Sto=0and S = Sy = constant.

Unit —end exercises

Write short notes on : (i) Zeroth law of thermodynamics (ii) Reversible
and Irreversible process

Explain how first law of thermodynamics leads to the concept of internal
energy.

Define the efficiency of a heat engine. Obtain an expression for the
efficiency of a reversible Carnot’s engine with perfect gas as the working
substance. Mention the effective ways to increase its efficiency.

What is meant by reversible process? Describe Cﬁmdt’s-cycle and show
that all reversible engine working between the same two temperatures have
the same efficiency. Give two versions of second law of thermodynamics.
State and prove Carnot’s theorem.

Define entropy. Discuss the physical meaning of entropy.

Show that during a reversible adiabatic process the entropy of the system
remains constant.

Derive an expression for the change of entropy of a perfect gas.

Obtain an expression for the change of entropy when ice changes into
steam.

10. State and explain Third law of thermodynamics.

4.11Problems for discussion

1.

2.

Find the efficiency of the Carnot’s engine working between the steam
point and the ice point.

A Carnot’s engine is operated between two reservoirs at temperatures of
450K and 350K. If the engine receives 4200 joules of heat from the
source in each cycle, calculate the amount of heat rejected to the sink in
each cycle. Calculate the efficiency of the engine and the work done by
the engine in each cycle.

A Carnot’s engine whose temperature of the source is 400K takes 840 J of
heat at this temperature and rejects 630 J of heat to the sink. What is the
temperature of the sink? Also calculate the efficiency of the engine.

A Carnot’s engine working as a refrigerator between 260 K and 300 K
receives 2100 J of heat from the reservoir at a lower temperature.
Calculate the amount of heat rejected to the reservoir at a higher
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temperature. Calculate also the amount of work done in each cycle to

operate the refrigerator.
Compute the change in entropy when 5 kg of ice at 0° C is converted into

steam. Given specific latent heat of fusion of ice to be 3.34*10° J/kg and
that of steam to be 226*10"* J/kg. '

4.11 Answers to check your progress & problems for discussion

Check your progress:
1. Ans: 100 joules
2. Ans: (i) No transfer of heat due to conduction, convection or radiation
(i1) No friction
(iii) Extremely slow isothermal process
3. Ans: a) Reversible b) Reversible c¢) Ireversible d) Irreversible e)
Irreversible
4. Ans: Efficiency = 7'1;11‘2
Efficiency = 100% only if T2 = OK. Since OK is unattainable efficiency
cannot be 100%.
§. Ans: In the Universe, irreversible processes continuously take place. Hence

the entropy always tends to increase.

Answers to Problems for discussion:

1. T, = 100°C = 373K, T, = 0°C = 273K,n =?

_L-oT 373273 _ 2681 = 26.81%
N="7F =7 373 =~ OB T <bOH

2. T, = 450K; T, = 350K; Q, = 4200/; Q, =?
Q. @

I, T;

_ {Q1\.. _ 4200 _ |
Q; = T1)T2 = 250 * 350 = 326';].

T2 (350 = 0.2222 = 22.22%
450/ — T ceeeso

Work done by the engine in each cycle
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= Q, — Q, = 4200 — 3267 = 933 J
3. Q, = 840J; Q, = 630J; T, = 400K; T, =?

% _Q
1& TE
T 400 630 = 300 K
2 = 840 = y
=1 T2—1 390 = 0.25
n=1=-7= 200) =V

% efficiency = 25%

4. T, = 300K; T, = 260K; Q, = 2100/; Q, =?

& 0
T, T,
300

T,
Q= (T—2 Q = 55 * 2100 = 2423 J.

Work done = w = Q, — Q, = 2423 — 2100 = 323 .

5. The process has three steps: (i) ice changes to water at 273 K. (ii) water
is heated from 273 K to 373 K and (iii) water at 373 K changes into
steam at 373 K.

As =1 | 53026 mC 10g,g 22 + k2
=T, . 04d10 T, T,
5+(3.34+10%) 373 . 5+(226+10%)

= + 2.3026 * 5 * 41 + 90 * log, o ~a T

273 373

AS = 6117 + 6539 + 30295 = 42951JK~1

4.13 Suggested Readings:

pud
.

Thermal physics- R.Murugesan , S.Chand S.Chand & Co, New Delhi..

2. Heat and Thermodynamics -J.B.Rajram and C.L.Arora, S.Chand & Co,
New Delhi,2004.

3. Heat, Thermodynamics and Statistical Physics

Brijlal, Dr. N. Subramanyam and P. S. Hemne.
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Revised edition, Reprint 2012 S.Chand& Company Ltd., New Delhi

Thermodynamics and Statistical Physics

Singhal, Agarwal, SathyaPrakash

12" edition, 2008, PragatiPrakashan, Meerut

Thermodynamics, Statistical thermodynamics and Kinetics
Thomas Engal, Philip Reid

1* edition, 2007, Dorling Kindersley (India) Pvt Ltd, New Delhi.
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5.4. Phase space & elements of phase space
5.5. Micro state and Macro states
5.6. Fundamental postulates of statistical mechanics
5.7. Entropy and probability
5.8. Maxwell —Boltzmann statistics
5.9. Quantum statistics
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5.11. Fermi — Dirac statistics
5.12. Let us sum up.
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5.14. Problems for discussion
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5.1. Introduction:

A study of thermodynamics gives us various macroscopic
properties that are related through an equation of state having only two
independent parameters. However, the equation of state cannot be deduced
from the laws of thermodynamics. It has to be obtained experimentally. The
ordinary laws of mechanics were the only tool to explain physical phenomena,
up to the end of 17™ century. In certain cases, particularly where the system
contains a large number of particles, ordinary laws of mechanics could not be
used, as it is impossible to follow the motion of each particle. For example, a
point of matter contains a very large number of atoms or molecules.
(Avogadro’s number No = 6 x 10%° per kg mole). Therefore, it is impossible to
apply the ordinary laws of mechanics to a physical system containing large
number of particles, particularly that of electrons. Such problems are
however, successfully solved by statistical mechanics. The larger is the
number of particles in the physical system considered, the more nearly correct
are the statistical predictions. Smaller the number of particles in a mechanical
system, the statistical mechanics goes on becoming meaningless. Before the
advent of quantum theory, Maxwell, Boltzmann, Gibbs etc. applied the
statistical method making the use of classical physics. These methods are
known as classical statistics or Maxwell-Boltzmann statistics. In this unit we
are going to see about both classical & quantum statistics.
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5.2. Objectives:

After going through this unit, you should be able to
e understand the significance of the terms probability, phase space,
microstate and macro states.
define thermodynamic probability
derive the relation between entropy and thermodynamic probability
understand the postulates of statistical mechanics
derive the distribution functions for systems obey Maxell — Boltzmann
statistics, Fermi — Dirac statistics & Bose - Einstein statistics.

5.3 Probability:
The probability of an event may be defined as the ratio of the

number of cases in which the event occurs to the total number of cases.

Thus, the Probability of an event =
Number of cases in which the even occurs ( 5 1)
total numberofcases Tttt *

Suppose an event can happen in a ways and fails to happen in b ways, then the

probability of happening the event = Z%b- . Hence (a+b) represents the total

number of equally likely possible ways. It should be noted that the sum of
these two probabilities is always 1; since the event must either occur or fail.

To evaluate the probability of random event, we consider a unit of
measurement. An event is called a ‘sure’ event if it occurs in an experiment.
Thus, the probability of a ‘sure’ event is assumed to be equal to 1 and that of
an impossible event to be equal to zero. Thus, the probability P of a random
event lies between 0 and 1 i.e.,

This is further explained by the following experiments:

1. Throwing a coin: Suppose we toss a coin. Either the ‘head’ can come
upward or the ‘tail’ i.e., an event can occur in a total number of two
equally likely ways. The number of ways in which the ‘head’ can come up
is only one. Therefore, the probability that the ‘head’ may come up is Y.
Similarly, the probability that the ‘tail’ may come up is also 1/2.

2. Throwing a die: A die is a homogeneous, regular and balanced cube with
six faces marked numbers of dots from 1 to 6 engraved on them. It is
supposed that the die is symmetrical and cannot fall of its edges. When

90



/

the die is thrown it falls one of its faces upward i.e., yields one of the six
results and no other. All outcomes are equally likely in a single throw of
dice. Out of six possible results only one is favourable for the appearance
of six spots. In other words, the probability of any one face (say with a
number 3) to come up is 1/6.The set of all possible outcomes can be
written as S(1, 2, 3, 4, 5, 6). The probability of the die coming up with an
even number is 3/6 as there are only three even numbers on the die 2, 4
and 6.

P (even) =3/6 =1/2
Likewise, the probability of the die coming up with odd number is 3/6 or %2.

The probability of the die coming up with any number less than 6 is given
by

P (a number < 6) = 5/6
As there are five numbers 1, 2, 3, 4, 5 which are less than 6.

Zero Probability: If we want to know the probability of the die coming up with
face marked with a number 7. The die has only six faces marked serially from 1

to 6. There is no face marked as 7. Therefore, probability of appearing a number
7 is zero, i.e.

P (number 7)=0/6 =0
In other words, impossible event is always zero.

Probability one: The probability of appearing any number less than 7 is one.
This is because all the six faces of the die are marked from 1 to 6, i.e., the
numbers less than 7.

P (number< 7)) =6/6 =1

Total probability: If a is the number of cases in which an event occurs and b the
number of cases in which an event fails, then

Probability of occurrence the event = -‘ﬁ—; and

Probability of failing the event = a—f_t;
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The sum i.e., the total probability is always one, since the event ,may either occur
or fail.

Principle of equal A priori probability:

Fig : 5.1

Suppose we toss a coin it is clear in mind that the coin will fall either with its
‘head’ up or ‘tail’ up. Similarly if a six faced cubical dice is thrown, it is sure that
the dice will fall with one of its six faces upward. In the same way, if we have an
open box divided into two equal sized compartments X and Y as shown in fig 5.1
and a small particle is thrown from a large distance in such a way that it must fall
in either of the two compartments, then the probability of the particle to fall in the
compartment marked X is equal to the probability that it may fall into the
compartment marked Y. Again there is an equal probability.

This principle of assuming equal probability for events which are equally
likely to occur is known as the principle of equal a priori probability.

Apriori means something which exists in our mind prior to and
independently of the observations we are going to make.

This principle of equal apriori probability will not hold good, if in the
above example, the two compartments are of unequal size.

Probability and Frequency:

All the possible outcomes, in the examples discussed above, are assumed
to be known. This is not always possible in practice and hence formula given by
equation (5.1) is not a general formula. It can be used only in experiments that
possess symmetry. Suppose, the die is asymmetric by adding a little load (by
wax) to one of its faces. Now all the outcomes are not equally likely and we
cannot say that the probability at appearance of six spots is 1/6. For all such
cases, we adopt a technique as under.
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Suppose we toss a coin, say N times and we find that ‘Head’ appears M
times. Here we introduce a term frequency of an event F as

F= No.of trials in which A occurs __
Total number of trials

Thus, if a coin is tossed 50 times and in 10 of them the coin shows Heads, the
frequency of this event is % = 0.2. From the classical definitions of probability,

the probability of occurrence of ‘Head’ is 0.5 or 50%. Hence, we conclude that
frequency is not the same as probability. There must be a relationship between
frequency and probability. As the number of trials is increased, the frequency of
the event progressively tends to stabilize and gradually approaches a constant

value, known as the probability of the event. We define probability in terms of
frequency as

P= lim, . -“3 ................... (5.4)

Thus, in order to obtain sufficiently accurate result, trials must be conducted until

the ratios % differ from one another by a very small value.

Basic rules of probability:
Additive Law of Probability:

This is applicable to mutually exclusive events. Two or more events are
said to be mutually exclusive if the occurrence of any one of them prevents the
occurrence of others. Such events never occurs simultaneously.

E;
o P
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AV,

N .
“ VS
PN 3
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S
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~
~ N
S
S
N

AVZG)

Fig 5.2

Consider two small non-overlapping region AV; and AV; in a box of
volume as shown in fig. (5.2) A particle in AV rules out the possibility of its
being present, at the same instant in AV, and vice versa. The two events, thus, are
mutually exclusive.
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Suppose in N trials the particle is found m, times ir AV, and m; times in
AV,. The probabilities of finding particles in the two regions are
P1= %—:l and p,= 3—")—\,3 respectively.
The number of times that the particle will be found at least one of the two
regions in N trials is (m; + mz). Hence, the probability will be

mi+my _ m4

P(AV or AVy) =2 =2y D2 = p, 4+,
This law can be generalized to any number of mutually exclusive events, giving
probabilities, say, pi, p2, ps. -----Pn, then the probability that any one of them

occurs is the sum of the probability of these events, i.e.,

P = pi+ P2+ Pateeercnnen +pn =2, P
This is known as additive law of probability.

Multiplication Rule: Probability

In the calculations of probabilities, we sometimes come across random
events; such that the probability of occurrence of one does not affect the
probability of occurrence of the other. For example in fig. 5.2, the probability that

a molecule A gets into AV, at a particular instant is p; = %—1-. The probability that

. . . AV2
another molecule gets into volume AV; at the same instant is p2 = ==, regardless

of whether or not the molecule A gets into AV;. We want to calculate the
probability of joint occurrence of these events, i.e., the probability of A getting
into AV; and B getting into AV, at the same instant. Suppose in N trials, the
molecule A is found m times in AV, If p; is the probability that B gets into AV;,
irrespective of the presence of A in AV}, the number of times the two events will
occur simultaneously in mp.. Thus, the joint probability of occurrence of these
two events, is .

m
P= P2
N

I
2|3

X P2

2|3

P=p,xp, P =



Thus, probability of joint occurrence of two independent events is equal to the
product of the probabilities of each of these independent events.

5.4. Phase Space & Elements of Phase Space:

To specify the position as well as energy of a molecule inside a gas, we
must specify three space coordinates X, y, z and three momentum coordinates Px-
Py. Pz. As a purely mathematical concept, we may imagine six dimensional space
in which coordinates are X, y, z, px, Py, P.. This six dimensional space for a single
molecule is called phase space or p - space. The instantaneous state of a particle
in the phase space is represented by a point known as phase point or representative
point. In phase space we may consider an element of volume dx, dy, dz, dpy, dpy,
dp.. Any such element of volume in six dimensional space is called a cell. Thus

the phase space may be divided into a large number of cells. A cell may contain a
large number of phase points.

In classical or Maxwell — Boltzmann statistics, there is no restriction on

the volume of the phase cell. The volume of the phase cell may be very small
tending to zero also.

In quantum statistics, the volume of the phase cell

V = Ax Ay Az Apx Apy ap: = h’
Here, h is Planck’s constant.

5.5 Microstate and Macro states:
Consider the distribution of 4 particles in two halves of a box

P

1
Draw an imaginary line PP’ to make two equal portions L and R of the

box.

Let the four identical particles be designated by a, b, c and d. The
possible distribution cf these particles in the box is

(1) 4 particles in L and O in R halves

(ii) 3 particles in L and 1 in R halves

(111) 2 particles in L and 2 in R halves

Gv) 1 particles in L and 3 in R halves

W) 0 particles in L and 4 in R halves
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For brevity we call the above distributions of the particles in the
box as (4, 0), (3, 1), (2, 2), (1, 3) and (0, 4) respectively.

1.

oW

Now, the distribution (4, 0) can occur in only one way i.e., a, b,
c, d all in L and no particle in R halves.

The distribution (3,1) can occur in four ways

The distribution (2, 2) occurs in 6 ways

The distribution (1, 3) occurs in 4 ways

The distribution (0, 4) occurs in 1 way.

Left (L) | wmaght(R)
abc d
abd ¢
acd b
bed a

Table 1

Thus, the total number of ways in which four identical particles a, b, ¢, d can
occupy two halves of the box are 1 + 4 + 6 + 4 + 1 = 16, corresponding to S
different distributions.

There are 5 macro — states and 16 micro states.

Corresponding to macro — state (3, 1) there are 4 micro — states and
corresponding to macro — state (2, 2) there are 6 micro — states and so on.

5.6 Fundamental postulates of Statistical Mechanics:

1.

w N

Any gas may be considered to be composed of molecules that are in
motion and behave like very small elastic spheres.

All the cells in the phase space are of equal size.

All accessible microstates corresponding to possible macro states are
equally probable. This is called the postulate of equal a priori probability.
The equilibrium state of a gas corresponds to the macrostate of maximum
probability.

The total number of molecules is constant.
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5.7 Entropy and probability:
5.7.1 Thermodynamic Probability

The thermodynamic probability of a particular macrostate is defined as
the number of microstates corresponding to that macrostate.

It is represented by W

Consider two cells in phase space represented by i and j and four molecules a,b, c
and d. Let N; and N; be the number of molecules in the cells i and j respectively.
Then the possible macrostate< are five in number (fig. 5.2)

N; |4 3

v
ek
o)

Fig 5.2

In general, to each of these five macrostates there correspond a different number
of microstates. Let us consider the microstates corresponding to the macrostate
N; = 3, and N; = 1. The number of microstates corresponding to the macrostate
N; =3, N;=1 is four, as shown in fig 5.3.

Therefore, the thermodynamic probability for the macrostate, N; = 3, N; =
1is 4. Thatis W = 4.

ake akd asd bed
Cell i
Cell 7 g < b a
Fig.5.3
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A macrostate is specified by just giving the number of molecules in each
cell of phase space.

For defining a microstate we should specify to which cell each molecule
of the system belongs at a particular instant.

5.7.2 Boltzmann’s Theorem on Entropy and Probability:

Boltzmann discovered a relation between entropy (a thermodynamical
quantity) and probability ( a statistical quantity). Boltzmann started from a simple
idea that the equilibrium state of the system is the state of maximum probability.
That is, the probability of the system in equilibrium state is maximum. But from
the thermodynamic point of view, the equilibrium state of the system is the state
of maximum entropy. If the system is not in equilibrium, then changes take place
within the system untii the equilibrium state or the state of maximum entropy is
reached. Thus, in equilibrium state both the entropy and thermodynamical
probabiiity has their maximum values. As equilibrium state is the state of
maximum entropy and maximum probability, Boltzmann concluded that entropy
1s a function of probability. That is,

S=f(w) e (1)
Here, S is entropy and W is the thermodynamical probability of the state.

Let us consider two separate systems having entropies S; and S, and
thermodynamic probabilities W; and W, .

~——-

Then S1=fIW1) and Sz =LfIW2) eeeeeeeeeeeeeeeeeeeeeaannn. )

The total entropy of the two systems is

S14+S2=fAW1)+ fIW2) coeeerieieeeenieraannn. (3)

But the thermodynamic probability of the two systems taken together is
W, W, .

f(W1 W2)= f(W1)+ f(Wz):"- Sl+Sz ................. (4)

If this relation is to be satisfied, f{W) must be a logarithmic function of W

fIW)=klog W

S=klog W e eereerenaan (5)
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To Derive the Boltzmann Relation Connecting Entropy and Probability

The entropy of any thermo dynamical system always tends to have a
maximum value. The thermodynamic probability of a system is also a maximum
at equilibrium. So Boltzmann thought that a relation could exist between entropy
(S) and probability (W). According to this, S is a function W.

S=fW) rrrrrrrrrreeeenas (1)

Consider two separate systems with entropies S1 and S2 and
thermodynamic probabilities W1 and W2 respectively.

S1=AW;)and S = fiW,) e (2)

The total entropy of the two systems is
S=S1+S; = AW+ AW2) ... eeeeaeeeee e (3)
But the thermodynamic probability of the two systems taken together is W; W..
S=AWirW2) et eteeaaaes (4)
From Eqns. (3) and (4), we have
SIWiW2) = fW;) + fiW2)  eerieerereenes (5)
Differentiating Eq. (5) partially with respect to W1, to get
Wof (W,W2) = f'(W) ... (6)
Differentiating Eq. (5) partially with respect to W2, we get
Wif (WiW2) = f(W2) * ceeeea(7)
Dividing Eq. (6) by Eq. (7), we get,

f' (W) _ W2
o w2) w,

ie., Wif (W) = W2 f(W2)=k.
Here, k is any constant.
’ k ’ k
fW) = 4= and f'(Wp) = -
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Integrating we get,
f(Wy) =k logW, + C,

fF(W2) = klogW; + C;

In - _neral we may write
f(W) =klogW +C
S=klogW +¢, ... (8)

The constant of integration C in above equation is chosen in accordance
with the third law of thermodynamics also known as Nernst heat theorem.

According to this theorem, the entropy of a thermo dynamical
system tends to zero as its temperature tends to absolute zero. The temperatures
approaching absolute zero are generally attained by the process of adiabatic
demagnetization. The process requires to subject the paramagnetic salts to high
magnetic field so that the spins of the electrons align themselves parallel to the
direction of the applied field. At absolute zero all the electron spins are aligned
parallel to the direction of the field since at absolute zero there is no thermal
energy to disturb their alignment. Thus at absolute zero there is only one
configuration where all the electron spins are ordered in a particular direction, i.e.,
at absolute zero, the thermo dynamical probability (or weight of configuration) is
1.Hence, for a thermo dynamical system at absolute zero, W =1 and S = 0.

From Eq. (8), we getC =0

S=klogW e )

5.8 Maxwell —Boltzmann statistics:
5.8.1 Statistical equilibrium:

Boltzmann canonical principle is applied to determine the
- yuilibrium state of the system. According to this principle, Equilibrium state of a
system is that which is most probable.

Consider an isolated system composed of a large number of N of
particles, in which each particle has available to it several states with energies E;,
E,, Es3, .... At a particular time the particles are distributed among the different
states, so that n, particles have energy E;; n; particles have energy E,; and so on.
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The total number of particles is
N=n1+n2+n3+ ..... =Z,-n,; ......................... (1)
We assume that the total number of particles remains constant for all processes
occurring in the system
The total energy of the system is
E=nE; +n;Ex+..... =Zi niEi .................... (2)

If the system is isolated, the total energy E must be constant. However, as
a result of their mutual interactions and collisions, the distribution of the particles
among the available energy states may be changing.

For example in a gas, a fast molecule may collide with a slow one;
after the collision, the fast molecule may have slowed down and the slow one may
have speed up. Or an excited atom may collide in - elastically with another atom,
with a transfer of its excitation energy into kinetic energy of both atoms. Hence,
in both examples, the particles after the collision are in different states. In other
words, the numbers n;, nz, n3, ....which give the distribution of the N particles
among the available energy states, may be changing. It is reasonable to assume
that for each macroscopic state of a system of particles there is a distribution
which is more favoured than any other. In other words, we may say that given the
physical conditions of the system of particles, there is a most probable
distribution. When this distribution is achieved, the system is said to be in
statistical equilibrium

5.8.2 Derivation of Maxwell — Boltzmann Distribution Law:

Consider a system of N distinguishable molecules of a gas. Suppose n; of
them have energy E;, n; have energy E; ...... n; have energy E; and so on. Thus
the entire assembly can be divided into different energy states with energies E,,
E,, Es,....E; and having n;, n;, ns,....n; molecules.

(1) The total number of molecules N is constant. Hence

N =n; + n+ns+...... N;+..... = constant
5N=8n1+8n2+8n3+ ...... +8ni+....=0
ie., Zi 871,: =0

" (2) The total energy E of the gas molecules is constant. Hence
E = En; + E>n, + E3zns + .....Ein; +.... = constant

2iE;on; =0
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(3) Suppose there are g; cells with the energy E;. The total number of
ways in which n; molecules can have energy E; is (g;)™. Hence the
total number of ways in which N molecules can be distributed among
the various energies is

W; = (g™ (92)™ (g3)™ e oo .. (@™ o
The number of ways in which groups of n;, nz, n3, ....n; particles can

be chosen from N particles is given by

N
Wz =
nyInzIngt......

The number of distinguishable ways in which N molecules can be
distributed among the possible energy levels is
w = W,W, =

o (@)™ (@) @)™ . @D D)

n1!n2 !n3!.....
The quantity W is called the thermodynamic probability for the system.

For the most probable distribution, W is maximum subject to the
restriction that the total number of particles N and the total energy E are constant.

The natural logarithm of Eq. (3) is

InW = InN! — Z Inng! + Zni Ing;
By stirling’s theorem, Inn! =nlnn—n
InW=WNInN-N)—_Cn;lnn; + X n;) +2 n;ing;
InW=NInN-XIXnilnn;+ Yn;lng;, = ............ 4)
From Eq. (4), we have for maximum W

d1n Wmax = —Zniié'n,- - Z(ln n,-)6n,- + Z(lngl)é'n, =0

ny

—Zniniié‘ni +Z(lng,)6n, =0 [Z 611.,: = 0] ...(5)

Eqgs. (1) and (2) can be incorporated into eq. (5) by making use of
Lagrange’s method of undetermined multipliers.

Muitiplying Eq. (1) by —a and Eq. (2) by —p and adding to Eq. (5), we
get
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2(—lnn; + Ing; —a— BE;)én; =0 ...(6)
(—lnn; + Ing; —a—BE)=0
n; = g;e"%e FEi
Eq. (7) is called Maxwell — Boltzmann distribution law.
M - B Distribution in terms of temperature

It can be shown that f = 1/kT where k = Boltmann’s constant and T =
absolute temperature of the gas.

n; = g;e %e Ei/kT .....(8)
5.8.3 Applications of Maxwell — Boltzmann Distribution law to an Ideal gas
Molecular Energies in an Ideal Gas:
The M.B distribution law is
n; = g;e"%e EB/KT ... (1)

Consider an ideal gas that contains N molecules. Consider a continuous
distribution of molecular energies instead of the discrete set, E;, E;, E3, .... Then
Eq. (1) becomes

n(E)dE = g(E)e %e Ei/kTgqg _........... 2

Here, n(E) dE represents the number of molecules having energies between E and
E+ dE.

g(E) dE represents the number of states that have energies between E and E + dE
Let us find g(E) dE.

A molecule of energy E has a momentum p whose magnitude is

p=V2mE = [pZ +pZ +pZ = creernnnnn. 3)

Each set of momentum components px, Py, P- specifies a different state of motion.
Let us imagine a momentum space whose coordinate axes are px, py. pz (fig. 5.4).
The number of momentum states available to a particle with a momentum whose
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magnitude is between p and p + dp is proportional to the volume of a spherical
shell in momentum space of radius p and thickness dp.

Volume of this spherical shell is 4np? dp

Hence, g(p)dp = Bp°dp  ..oeevvmmmmmmnnnnne “4)

Px dp

Py

Pz
fig: 5.4

Since each momentum magnitude p corresponds to a single energy E, the number
of energy states g(E) dE between E and E + dE is the same as the number of

momentum states g(p) dp between p and p + dp.

gE)YAE=Bp’dp = ceeieiieieiineneene. (5)
2 mdE
But p =2mEanddp=m

g(E) dE = VZm®*/2BVE dE
Substituting for g(E) dE in Eq . (2),
n(E)dE = CVEe~E/KT)dE e (7

Here C = V2 m3/2Be~% = constant

To find C we make use of the normalization condition that the total number of
molecules is N. Therefore,

o o ~-(-E£
N= [ "n(E)dE =C [VEe GeE s (8)
From a table of definite integrals we find that
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oo —ax gy = L [T
fo Vxe™dx = Za\/:
— 1 , LI vn 3/2
N = CZ(1lkT) (1/kT) ~ ¢ x 2 % (kT)
2nN
C = GIkTY372 e )
n(E)dE = —=zVEe™®/*dg . (10)

Eq. (10) is plotted in fig. 5.4 in terms of kT.

?

(E) dE

0 kT 2kT E
Fig. 5.5

The total internal energy of the system is

2N
(xkT)3/2

E = f E n(E)dE = f E3/2 e~ (E/KD)gE
0 0

The value of the definite integral is = (kT)2VkT

= ('_—',,i;-t;/z x %(kT)z VrkT = ;:-NkT ,,,,,,,,,,,,,,,,,,,,,,,,, (11)

The average energy of an ideal gas molecule is E/N.
E = kT e (12)

Maxwell — Boltzmann velocity distribution law

Substitute E = (1/2)mv? and dE = mv dv in Eq. (10). Thus we get

VZnrNmYZ 5 nv2/2kT
n(v)dv = ETTVE e dv
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This equation represents the number of molecules with speeds between v and
v + dv in an assembly of ideal gas containing N molecules at absolute

temperature T. This formula is plotted in fig. 5.5

5.9. Quantum Statistics:
Statistical mechanics can be divided into two main classes.

1.Classical Statistics or Maxwell — Boltzmann statistics
2.Quantum Statistics

Classical statistics interpreted successfully many ordinarily observed
phenomena such as temperature, pressure, energy etc. But it failed to account for
several other experimentally observed phenomena such as black body radiation,
photoelectric effect, specific heat capacity at low temperatures etc. This failure of
classical statistics forced the issue in favour of the new quantum idea of discrete
exchange of energy between systems. Thus, a new quantum statistics was
investigated. There are two types of quantum statistics.

1. Bose — Einstein statistics
2. Fermi — Dirac statistics

1. Bose — Einstein Statistics:

This is  applicable to the identical,
indistinguishable particles of zero or integral spin. These particles are
called bosons. The examples of bosons are helium atoms at low

temperature and the photons.

2. Fermi — Dirac Statistics:
This is applicable to the identical, indistinguishable

particles of half — spin. These particles obey Pauli exclusion principle and
are called fermions. The examples of fermions are electrons, protons,
neutrons etc. In such systems of particles, no more than one particle can

be in one quantum staie.

The essential difference between the three statistics may be
illustrated in the following simple manner. Let there be only two particles
of a collection and only two cells to be occupied. Then fig. 5.7 illustrates
the essential differences between the three statistics.
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Classical statistics: Plq alp qp

Bose- Einstein statistics: el Bt e ®e

Fermi — Dirac statistics ol @
Consider an isolated system composed of a large number of particles in which
each particle has available to it several states with energies E;, E;, Es,.... At a

particular time the particles are distributed among the different states, so that n;
particles have energy E; : n; particles have energy E;; and so on.

The total number of particles is
N = n, +n2 +n3 +--= zini ..........(1)

We assume that the total number of particles remains constant for all processes
occurring in the system.

The total energy of the system is
E = n1E1 + anz + e = Zi niEi ............ (2)

If the system is isolated, the total energy E must be constant. According to the
basic postulate of statistical mechanics, the greater the number W of different
ways in which the particles can be arranged among the available states to yield a
particular distribution of energies, the more probable is the distribution. It is
assumed that each state of certain energy is equally likely to be occupied.

Therefore, the procedure, for determining the most probable statistical
distribution involves two steps: (i) obtaining the number of distinguishable
arrangements (W) which give rise to the same distribution, and (ii) maximizing
this number of arrangements (W) with respect to different distributions.

Quantum Statistics of Identical Particles:
Identical particles:

Identical particles in a system are regarded as those particles which
when interchanged in the system will not make any change in it.
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Quantum statistics is based on the following assumptions:

1. The smallest particles of a system are not molecules or atoms but particles
like electrons, neutrons, a- particles, photons (electromagnetic radiation),
phonons, etc. These quantum particles do not follow the common
Newtonian laws of motion but are governed by Einstein’s relativistic
mechanics.

2. The coordinates of the quantum particles can not be measured with
perfection. There are limits to the minimum values of space coordinates
dq and momentum coordinates dp below which no measurement can be
done.

According to Heisenberg’s Uncertainty principle, for any ith quantum
particle, the measured values of space and momentum coordinates should

follow
dqi dp, EEh

Here, h is the Planck’s constant.

3. The quantum particles of one type are all identical and indistinguishable
from each other.

Types of Quantum particles:

The quantum particles are divided into two distinctly different types.

They are
1) The particles whose spin angular momentum are integral multiples of
h are called the Bose Particles or Bosons. They have integral spins
0, h, 2h, 3h, ....

S.N. Bose and Einstein established an appropriate statistics for such
particles which is called Bose — Einstein statistics. In this statistics, it
is specially postulated that all the quantum states appear with equal
probability and each quantum state can have one or more particles in it.
a - particles, photons, phonons etc., are examples of bosons.

(ii) The particles whose spin angular momentum is half odd integral
multiples of h are called Fermi particles or Fermions. They have
spins Y2 h, 3/2 h, 5/2 h, .... Fermi and Dirac established appropriate
statistics for these particles which is called Fermi — Dirac statistics.

These particles obey the Pauli Exclusion Principle which states that there can be
only one fermions and not more in one quantum state. Electrons, protons,
neutrons are examples of fermions.
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5.10 Bose - Einstein statistics:
Derivation of Bose — Einstein Distribution Law:

Consider an assembly of N bosons. They are identical and
indistinguishable. No restriction is imposed as to the number of particles that may
occupy a given cell. Let us now consider a box divided into g; sections by (g; -1)
partitions and n; indistinguishable particles to be distributed among these sections.
The permutations of n; particles and (g; -1) partitions simultaneously is given by
(ni + g; -1)!. But this includes also the permutations of n; particles among
themselves and also (g; -1) partitions among themselves, as both these groups are
internally indistinguishable.

Hence the actwal number of ways in which n; particles are to be
distributed in g; sub levels is

(n; + g — 1)!
n;! (g; — 1)!

Therefore, the total number of the distinguishable and distinct ways of arranging
N particles in all the available energy states is given by

— 17 ®itgi—1)
w=1I ni!(g;—1)!

n; and g; are large numbers. Hence we may neglect 1 in the above expression.

— (ni+gi)!
W = HW ..................... 2)
InW = Y[In(n; + g;)! — lnn;! — g;! eeee(3)

As n; and g; are large numbers, we can use Stirling approximation.
Inw = ¥(n; + g)) In(n; + g;) — nylnn; — gylng; .....(3)
Here, g; is not subject to variation and n; varies continuously.
For most probable distribution, §ln Wy, = 0
Hence, if the W of Eq.(3) represents a maximum,
SInWpax = 2[In(n; + g;) —Innyén; = 0 ..ooiiiiaaa..... @D
The total number of particles and total energy are constants.

z 611,: =0  heeeeeeieeeennaa (5)
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YEén; =0 L e (6)
Multiply Eq. (5) by —a , and Eq (6) by — B and adding to Eq. 4, we get
Yn(n; + g;) — Inn; — a — PE;]16n;=0
The variations 8n; are independent of each other, Hence we get

ln(w—i)— a—BE; =0
n;

g9 __ . (7

n; = (e“‘”‘g?i)-l

Gi______ e e t))

ni = (e@efBi/kT)—1

This is known as Bose — Einstein distribution law.

Let us define a quantity fge(E;) = -3—':-
[ 3

f(E,)) is called the ‘occupation index’ of a state of energy E;.

1
fBE (El) = (eaeEi/kT)_.1
f(E) is called the occupation probability or the distribution function.

Properties of Photon gas:

1) Photons are particles of zero rest mass

(ii) Photons are bosons (i.e., the particles with spin 1) and have two modes
of propagation (due to a clockwise and a counter clockwise

polarization)
(iii) Photons are mutually indistinguishable

(iv) The number of photons is not conserved because at the instant of
emission a new quantum is formed. If photon of frequency v is
absorbed by the walls of the enclosure, several photons may be emitted

provided the total energy of the system is conserved.
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5.11 Fermi - Dirac statistics:
5.11.1 Derivation of Fermi — Dirac Distribution Law

F.D. statistics is obeyed by indistinguishable particles of half — integral
spin that have antisymmetric wave functions and obey Pauli exclusion principle.
Consider fermions with the total energy E. Suppose that n; particles occupy the
first energy level with energy E,, n; particles occupy the second energy level with
energy E> and so on. Let us now find out the total number of ways in which n;
particles can be distributed in g; cells having the same energy E;.

The number of distinguishable arrangements of n; particles in g; cells is

gi!
n;! (gi — n;)!

The total number of Eigen states for the whole system is given by

w=[1—2— 1)

nii(gi—n!

Taking the natural logarithm on both sides,
InW = 3[lng;! — Inn;! — In (g;_n;)!]

Applying Stirling’s approximation

InWw = Z[g,—lng,; —gi — nilnn; + n; — (g; —n;) In(g; — n;) + (g; — n;)]

InW = }[gilng; — nilnn; — (g; —n)In(g; — ny))] = ..ol 2)
Here g; is not subject to variation and n; varies continuously.

For the most probable distribution, §in W5, = 0

SlnWipax = X[—Inn; +1In(g; — n))dn; =0 e 3)
TN, =0 s @)
SESN =0 e, (5)

Multiply Eq. (4) by —a , and Eq (5) by — f# and adding to Eq. 3, we get
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Z[_lnni +In(g; — n;) — a— PBE;]én; =0
As the variations 8n; are independent of each other, we get
9i — ni)
———)—a—pPE;=0
ln( - a — PE;

Bi eeeena(6®)

n; = (e‘leﬁﬁﬁ+ 1

This is known as Fermi — Dirac Distributic, law.

B = 1/kT and @ = — Ej/kT where E;is called Fermi energy
Ef= —akT (7

Definition of Fermi energy

At the absolute zero of temperature the maximum kinetic energy that a free
electron can have is called the Fermi energy Eg.

_ gi
n; = E;—E f)
[e\ T /7 + 1]
The F.D distribution function is
1

fep (E)) = (e®eE/FT) + 1

5.11.2 Applications of Fermi - Dirac Statistics:
Electron gas (Theory of Fermi Gas and Fermi Energy)

Various properties of the metals such as electrical and thermal
conductivities can be explained on the assumption that the electrons in the metal
are free to move exactly like the particles of a gas. Metals have free electrons
which are free to move inside metal surface but are not free to come out and leave
the surface due to surface barrier (Coulomb potential well). Electrons are
fermions. Thus such a system with a large number of electrons moving freely
inside is an example of Fermi gas. We can study the behaviour of the electrons
moving freely inside, is an example of F —D statistics by considering them to form
an electron gas in the metal.
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Expression for Fermi energy

The “free electron gas™ in a solid obeys Fermi — Dirac statistics. Suppose
in an assemblage of fermions, there are M (E) allowed quantum states in an
energy range between L and E + dE and N (E) is the number of particles in the
same range. Then N(E) quantum states are filled and M(E) — N(E) are vacant.

1he F —D distribution function f(E) is defined as:

fE) =28 - e, (1)

M(E) 1+ & Ep/KT

ivfi; represents the fraction of the possible quantum states which is

occupied. The distribution of electrons among the levels is usually described by
the distribution function f(E). It is defined as the probability that the level E is
occupied by an electron. Thus, if the level f(E) = 1. In general f(E) has a valued

between zero and unity.

The distrinution function for electrons at T = OK has the form f(E) =1
when E < E¢

And f(E) =0when E>Ef = s 2)

That is, all levels below E¢ are completely empty. As the temperature
rises, f (E) changes from 1 to 0 more and more gradually.

F (&)}
1 \ T=0K
\ T>0K
. >
0 Efr E
Fig 5.7

1
1+ €9

ForE=Eg f(E) = = % , at all temperatures.

Thus, the probability of finding an electron with energy equal to the Fermi —
energy in a metal is ¥2 at any temperature.

Since the electrons are confined inside the crystal, their wave properties will limit
the energy values which they may have. Let g (E) dE be the number of quantum
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states available to electron with energies between E and E + dE. It can be shown
that ‘

g (E)dE = 3‘/_’"’"‘ 2 VEAE o, 3)

Here, m is the mass of the electrons and V is the volume of the electron gas.

We can calculate the Fermi - Energy E; by filling up the energy states in the metal
sample with the N free electrons it contains in order of increasing energy, starting
from E = 0. The highest state to be filled will then have the energy E = E; by
definition. The number of electrons that can have the same energy E is equal to
the number of states that have this energy, since each state is limited to one

electron. Hence,

Ef 8- /2 anl/z Ef
N = [ g (E)dE = 3 f VE dE
Vi 0

1_6\/5an3/2 E 3/2
3hn

E¢ _( )(auv . @

The quantity N/V is the density of free electrons. N/V represents the number of
free electrons per unit volume of the metal.

As effective temperature of the electron gas, known as the Fermi — temperature ,
is defined by

Te=Ed k

Definition of Fermi Energy: At the absolute zero of temperature the maximum
kinetic energy that a free electron can have is called the Fermi Energy, Ejs.

5.12 Summary:

Number of cases in which the event occurs
total number of cases

® Probability of an event =

® This principle of assuming equal probability for events which are equally
likely to occur is known as the principle of equal a priori probability.

® The thermodynamic probability of a particular macrostate is defined as
the number of microstates corresponding to that macrostate.

® Nernst heat theorem.
S =k logW + C,

114



M -

Additive law of probability.
P=pi+patpatecennn..... +pn = X1, D
. Multiplication Rule: Probability
P =p,xp;
The total energy of the system is
E=mE; +n2Ex+ ..... =Y, n; E;
Maxwell — Boltzmann distribution law.

n; = gie %e FE
B Distribution in terms of temperature

M - B Distribution in terms of temperature
n; = g;e"%e Ei/kT

Maxwell — Boltzmann velocity distribution law

\/-z_ﬂ.'le/Z ze_mv2/2k-r dv
(tkT)Y/2

n(v)dv =

Identical particles in a system are regarded as those particles which when
interchanged in the system will not make any change in it.

The particles whose spin angular momentum are intergral multiples of h
are called the Bose Particles or Bosons.

The particles whose spin angular momentum are half odd integral
multiples of h are called Fermi particles or Fermions

Bose — Einstein distribution law.
i

Fermi — Dirac Distribution law.

n; =

_ gi

~ (e%ePE) + 1

Definition of Fermi energy :At the absolute zero of temperature the
maximum kinetic energy that a free electron can have is called the Fermi

energy Ey.

n;

* E = (;;) (= e
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Check your progress:

1. Calculate the volume of six dimensional phase space of a state. What is its
unit?

" Check your progress:

2. An electron gas obeys the Maxwell — Boltzmann statistics. Calculate the
average thermal energy (in e V) of an electron in the system at 300 K.
Y 1

- D D D D D D DD S A D D D D W I S O D S 4 e YD W S SR S S G G A G S A S A T N S AR A P T S G W W D S U D L G I WP WD IR T G D D G S R S D D S D S S W D e -
- P T P W . = R AR T S P D S e G Al e e D A S ——— D T A S i VI P S S S I G S S S A S G T U W R D D G W U S D S W s A A G S S G S T S e e -

Check your progress:

3. Explain the law of equipartition of energy
AN S mm e e e e e e e e e e e e e

Check your progress:

4. What is electron gas?
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Check your progress:

5. Explain Zero Probability.

Check your progress:

6. Calculate the volume of six dimensional phase space of a state. What is its
unit?

Check your progress:

7. We throw a die twice and obtain two numbers. What is the probability that
these numbers are 6 and 4 precisely in that order?

F N 1 T
Check your progress:
8. Compare the three statistics ( M.B , B.E, F.D)

AnNS:-————-e e e e e e

5.13. Unit - end Exercises:

1. What are ensembles?

2. What is phase space?

3. Explain microstates and macro states.

4. What is Thermodynamic probability?

5. Explain Boltzmann theorem on entropy and probability.
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6. State the fundamental postulates of statistical mechanics.
7. Derive the Boltzmann relation between entropy and probability.
8. Derive the Maxwell —Boltzmann distribution law.
9. Obtain an expression for Bose Einstein distribution law. Explain photon gas.
10. (a) Derive the Fermi Dirac Statistical distribution law.
(b) Compare the three statistics.

§5.14 Problems for discussion:

1. A card is drawn from a well shuffled pack of 52 cards. Calculate
the probability for this card to be either a king or a queen.

2. Calculate the kinetic energy of one gram mole of oxygen at 300 K.
[R=8.31 J/mole - K]

3. Calculate the Fermi energy at absolute zero for copper assuming
that it has one free electron per atom. Density of copper = 9000
kgm/m’. Atomic weight = 63.5

4. A gas has only two particles a and b. Show with the help of
diagrams how these two particles can be arranged in three quantum
series 1,2,3 using (i) Maxwell — Boltzmann (ii) Bose — Einstein and
(iii) Fermi — Dirac statistics.

5. Find the Fermi energy of copper on the assumption that each
copper atom contributes one free electro to the electron gas. The
density of copper is 8.94 x 10’ kg/m’

6. Suppose there are just three cells in phase space labelled 1,2,3, and
two particles. A and B. Enumerate the different macrostates and
the microstates corresponding to each of them.

5.15. Answer for Check your progress & Problems for discussion:

Answers for Check your progress:

1) According to Heisenberg’s uncertainty principle, the position and
momentum o a particle cannot be determined simultaneously to any
desired degree of accuracy.

If Ax denotes the error in determining its position and Ap the error in
determining its momentum, then according to this principle,

h
Ax.Ap > o

The product of the two errors is thus approximately of the order of
Planck’s constant h,
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i.e., Ax.Ap = h.
LetAx= Uncertainty in measuring the x coordinate of the particle.
Ap,. = Uncertainty in measuring the x component of the momentum of theparticle.
Then, Ax X Ap, = h
Ay Ap, =h
AzAp, =h
Volume of phase space cell
H=(Ax )(Apx) (Ay) (Apy)(Az )(Ap;) = A
The unit of phase — space volume = (J — §)?

2) Answer:

3 3
E = 3 kT = EX(1.38 X 107%23)X 300

_ 3x(1.38X 10~23)X 300
- 2 X(1.6X 10-19)

eV = 0.039 eV

3) Answer:
Law of Equipartition of Energy Statement:
The total kinetic energy of a dynamical system consisting of a
large number f particles is thermal equilibrium is equally divided among

its all degrees of freedom and the average energy associated with each
degree of freedom is (1/2) kT.

Here , k is Boltzmann’s constant and T is the absolute temperature of the
system.

This principle is true for all degrees of freedom — translational, rotational or

vibrational.

4) Answer: The valence electrons in a metal are free to roam in the ionic
array of positive fixed nuclei. These mobile electrons in a metal behave,
more or less as particles of a perfect gas and form what is known as
electron gas (or Fermi-gas). These electrons, howover, cannot come out of
the metal surface because of surface potential barrier (work function).

5) Answer: If we want to know the probability of the die coming up with a
face marked with a number 7. The die has only six faces marked serially
from 1 to 6. There is no face marked as 7. Therefore, probability of
appearing a number 7 is zero i.e.,

P (number 7) = % =0
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6) Answer: The probability that the first throw gives a 6 is —61-. Similarly, the

. . 1
probability that the second throw gives a 4 is also < these two events are

independent.
Required probability == X = =
7) Answer:
Bose — Einstein Fermi - Dirac
1. Particles are 1. Particles are indistinguishable
indistinguishable and and quantum states are taken
quantum states are into consideration.
taken into 2. Only one particle may be in a
consideration. given quantum state.
2. No restriction on the 3. Applicable to electrons and
number of particles in a elementary particles
given quantum state. 4. Volume in phase space is
3. Applicable to photons known, (h>).
and symmetrical 5. Even at absolute zero, the
particles energy is not zero.
4. Volume in phase space 6. At high temperatures, Fermi
is known, (h®). distribution approaches
5. The energy at absolute Maxwell- Boltzmann
zero is taken to be zero distribution.
6. At high temperatures, 7. The most probable distribution
Bose-Einstein is given by
distribution approaches n; 1
Maxwell’s distribution. gi [ea*Bsi — 1]
7. The most probable
distribution is given by
n; _ 1
gi[e**Fei + 1]

Answers for Problems for discussions:

1) Solution:

We are taking out one card out of 52 cards of pack. So the total

number of ways in which the event can occur is N= 52.

a pack of cards.

event, m;=4

120

But we want to draw a specific card i.e. king. There are 4 kings in
Therefore, the number of ways favourable to the first




2)

3)

4)

Probability of drawing a king , P; = ,:1 = :2 = 113

The number of ways in which second event i .e. drawing a queen may

happen, m; = 4, as there are four queens too.
mo 4 1

Probability of drawing a king , P, = F ===

Both the events are mutually exclusive. Therefore the probability that the

card drawn is either a king or a queen is

1 1 2
P=h+Ph=03+3=13

Solution: Oxygen is a diatomic molecule. It has three degrees of freedom
of translational motion and two degrees of freedom of rotational motion.
i.e, in all five degrees of freedom.

Here, T=300 K,R =8.31 Jmol' K !
Total K.E. per mole = -;-RT = §X8.31 X 300 = 6232 ]

= (3m) (oxv)

3 {6.02 X 10%¢

871‘ 635
9000

= 1.128 X 10718
_ 1128 X 10718

1.6 X 10—1°
=7.05 eV.

Solution:

2/3
(6.63 X 10734)2

T 2X(9.11 X 10-32)

eV

Solution: (i) Maxwell — Boltzmann Statistics

The two particles are distinguishable
There is no limit to the number of particles in any one state.
The total number of way is 32 =9.

States | Possible Distribution in various Status
1 a b - a b ab - -
2 b a a - - - ab -
3 - - b b a - - ab
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(ii) Bose — Einstein Statistics: .
If a and b are quantum particles, they are indistinguishable. Thus they

have to be given the same name, say, a
There is no limit to the number of particles in any one state

The total number of ways =6

States Possible Distribution in various Status
1 a a - aa - -
2 a - a - aa -
3 - a a - - aa

(iii) Fermi — Dirac Statistics:

The particles are indistinguishable are not more than one particle can be in any
one state.
The total number of ways =3

States Possible Distribution in various Status
1 a a -
2 a - a
3 - a a

5) Solution: The Fermi energy Er is given by

h? 3 N\2%/3
Er= (Zm) (Bn—V-

Here, m = mass of the electron =9.11 X 103! kg.

'I"\,": number of free electrons per unit volume of the metal. Let the atomic

weight of the metal be M and let its density be p

Volume of one kilo mole of the metal =V = :—g—m‘"

No. of atoms per kilo mole = N=Avogadro’s number.
Each atom contributes one free electron.
No. of free electrons per unit volume is
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N N 6.02 X 10%¢ — 8.48 X 1028 o] s
vV MJ/p (6354)/(894X 103 = electrons/m
(6.63 X 1073)2 s )2/3 B 1e
3 X (911X 10-30) 81tX8'48X 10 =113 X107*°J
=7.04 eV.
6) Solution: The possible macrostates are
@) (ii) (iii) (iv) ) (vi)
ng 2 0 0 1 1
n2 0 1 0 1
n3 0 2 1 1 0
For macrostate
(1), there is only one possible microstate , vi z., AB l
Similar remarks apply to (ii) and (iii). Correspomamg O V), ave the
microstates.
A B and
8 A
1 2 3 1 2 3

Similarly, two microstates correspond to each of(v) and (vi).

5.16. Suggested Readings:

6. Thermal physics- R.Murugesan , S.Chand S.Chand & Co, New Delhi..

7. Heat and Thermodynamics -J.B.Rajram and C.L.Arora, S.Chand & Co,
New Delhi,2004.

8. Fundamental of Statiscal Mechanics - A.K.Dasgupta ,NCBA (p) Ltd ,
Calcutta.
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