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MODEL QUESTION PAPER -1
LINEAR ALGEBRA AND NUMBER SYSTEM

Time : 3 Hours Max : 100 marks
SECTION A
Answer any 8 questions. ‘ 5x8 = 40 marks
L. Prove that RxR is not a vector space over R.
2. Define Inner Product Space. Give an example.
3. If S 1s any subset of V, prove that St is a subspace of V.
4, Define Elementary Transformations of matrices. Given an example.
5. If S = Vi, Voo ,V_} is an Orthogonal set of non-zero vectors in an inner
. (v.vk)
product space V, veV and if v = o, v ta,vyt...to v, prove that a, = "Vk “2
2 -1 1
6. Verify Cayley-Hamilton theorem for the matrix {1 0 2
3 -1 3
7. If A and B are similar matrices prove that their determinants are same.
1 2 3 1
8. Find the rank of the matrix |2 4 ¢ 2
1 2 3 2
9. Find the number and the sum of all the divisorsof 1458.
1
10.  Prove that the sum of integers less than N and prime to it —2—N¢(N).
11.  show that 3%m*2+52n*1 5 djvisible by 14.
12> Show that x3-x is divisible by 6.
SECTION B
Answer any 6 qﬁestions. 6x10 = 60 marks
13. If W is a subspace of a finite dimensional vector space V over a field F, prove

that dim(V/W) = dim V — dim W.

(iv)



14.

15.a)

Explain Gram-Schmidt Orthogonalisation process. Using it find the orthonormal
basis of V;(R) with the basis {(1, -1, 0), (2, -1,-2), (1, -1, -2)}.

Prove that every square matrix satisfies its characteristic equation.

b) Find the eigen roots and eigen vectors of the matrix A given below.
2 21
A={1 3 1
1 2 2
16. Prove the below the two inequalities in an inner product spaces.
i) [<x, y>| < lIx|l liyll
i)  [x+yll < [ixil + iyl
17.  Find the value of ¢(N)
18.  State and Prove Wilson's theorem.
19. If m and n are prime numbers show that m™!+n™ -1 = 0 (mod mn)
.20. Prove that 712!+1 = 0 (mod 719)
MODEL QUESTION PAPER - 11
LINEAR ALGEBRA AND NUMBER SYSTEM
. Time : 3 Hours Max : 100 marks
SECTION A
Answer any 8 questions. . 5x8 = 40 marks
1. Prove that the vectors (1, 2, -3), (2, 5, 1) and (-1, 1, 4) form a basis for V,(R).
2. Prove that any subset of linearly independent set is linearly independent.
3. Let V be a vector space over F. Prove that
i) a(0) =0 VaeF
ii) Oov=0 VveV
i) (-a)v=a(-v)=—(av) VoeF, veV
4. If A & B are Orthogonal matrices of same order prove that AT and AB are

Orthogonal matrics.

v)



10.

11.
12.

13.

14.

15.

If V is inner product space, prove that
vl P+Hju-v|P = 2([ulPHIVIR), v, v, €V

Find the rank of the matrix A given below

A=

| ST @ WS °N
_— W N
O b=
<N W

Show that the map T:R2->R? defined by T(x, y) = (x, —y) is a linear
transformation.

2 3
Define similar matrices. If A = (3 1 J find a matrix similar to A.

Find the highest power of 5 contained in 1000!

If a, b, c,..... are the different prime factors of N, then show that the sum of all
. CONZ( 1 1 1
the numbers less than N and prime to N 1s - 1—; 1—-1; 1——5 ......

Show that x5—x is divisible by 30.
Show that 72"+16n—1 = 0 (mod 64)

SECTION B
Answer any 6 questions. 6x10 = 60 marks
If S is a non empty subset of a vector space V over a field F, prove that
1) L(S) is a subspace of V
ii)  SCL(S)
ii1) L(S) is the smallest subspace of V containing S.

Prove that any vector space of dimension n over a field F is isomorphic to
V_(F).
n

Using Cayley-Hemilton theorem, find the inverse of the matrix B given below.

3 3 4
B=(2 -3 4
0 -1 1

(vi)



"16.  If A and B are two m x n matrices prove that
) (AT =A
ii) (A+B)T = AT + BT

(2 -2 0 6)
4 2 0 2
17. Reduce the matrix {1 -1 0 3| to its normal form.
\l1 2 1 2

18.a) State and prove a necessary and sufficient condition for a non-empty subset w of
u vector space V to be a subspace of V over F.

b) If A and B are two subspaces of a vector spaces V over F, prove that A~B is a
subspace of V.

19. Prove that {(1, ~1, 0), (2, -1, =2), (1, =1, =2)} is a basis of R3. Also find the
orthonormal basis from this basis.

20. Show that 28!+233 = 0 (mod 899)
21. State and prove Fermat's theorem.

22. Show that every integer which is a perfect cube is of the form 7P or 7P+1.

(vi1)



LINEAR ALGEBRA ' UNIT -1

1.1. VECTOR SPACES

Introduction :

In this chapter we introduce another algebraic system known as vector spaces.

The idea of a vector arises in the study of various physical applications. Many physical
entities like mass, temperature etc. are characterised in terms of a real number and are
called scalars. Other physical entities such as the velocity of a particle or force acting
at a point are determined only when both magnitude and direction are specified. Such
entities are called vectors. '

Definition and Examples :

Definition :

A non empty set V is said to be a vuctor space over a field F if

(1) V is an abelian group under an operation called addition which we denote by +. .
(ii)) For every aeF and veV, there is defined an element av in V subject to the
following conditions. '
a) a(u+v) = autav for all u, veV and aeF.
b) (o+PB)u = au+Pu for all ueV and o, peF
c) a(fu) = (ap)u for all ueV and a, peF.
d) 1.u = u for all ueV.
Remarks :
1. The elements of F are called scalars and the elements of V are called vectors.
2. The rule which associates with each scalar aeF and a vector veV, a vector av "

is called the scalar multiplication. Thus a scalar multiplication gives rise to a’
function from FxV—V defined by (a, v)—av.

Examples : .

1.

RxR is a vector space over R under addition and scalar multiplication defined by
(Xp x2)+(Y]’ y2) = (x1+y1’ x2+YZ)
and a(x;, X,) = (ox;, 0x,)

1



Proof :

Clearly the binary operation + is commutative and associative and (0, 0) is the
zero element.

The inverse of (x,, x,) is (—X,, —X,).
Hence (RxR, +) isan abelian group.
Now, let u = (x,, Xx,) and v = (y,, y,) and let o, BeR.

Then a(tv) = a[(x,, x,)H(y; ¥yl

ofx 1Y x2+y2]

1

(ox,tay,, ax,+ay,)

= (ox,, ox,)+(ay,, ouy,)

a(x 1° x2)+a(y| ’ Y2)

]

out+ov
Now, (a+Bf)u = (o+P)(x,, X,)
= ((a+P)x,, (a+B)X,)

= (ox,+Bx,, ax,+px,)

(ox, ax)+H(PBx,, Px,;)
= oX;, X)HB(x,, X,)

= autpu

a(B(xy, x,))

a(Bx,, Bx,)

(aBx;, afx,)

= (aB) (x;, x;)

(aB)u

Obviously, lu = u

Also, o(Pu)

& RxR is a vector space over R.



2. R™ = {(X;, Xppeereen xn)/xieR, 1<i<n}. Then R" is a vector space over R under

addition and scalar multiplication defined by

(x],xz,...,xn)+(y1,y2,...,yn) = X1y x2+y2,...,xn+yn)
and oUX X 5o X)) = (0K [,0X g, S0X )
Proof :

Clearly the binary operation + is commutative and associative.
(0, 0......,0) is a zero element.
The inverse of (X,X,,.....,X ) 18 (=X |,~Xp5e00005= X))

Hence (R", +) is an abelian group.

Now, letu = (x,, X,,....... X.)
and vV = (¥ Ypreeenry,) and let o, BeR
Then a(utv) = of(X, Xy X )H(Y V5000005 Y)]

= oUX Y Xy Y, X TY )

= (ax,tay,, ax,+ay,,....,ax +oy, )

= outov
Similarly (a+Blu = autPu
and a(fu) = (af)u
Obviously, lu =1
o» R" is vector space over R.
3. C is a vector space over the field R.

Here addition is the usual addition in C and the scalar multiplication is the usual
multiplication of a real number and a complex number.

1e., (x|+ixz)+(yl+iY2) = (XI+Y1)+i(X2+Y2)

and a(x,tix,) = ox;+iox,



Proof :

Clearly (C, +) is an abelian group. Also the remaining axioms of a vector space
are true since the scalars and vectors involved are complex numbers and further the
operations are usual addition and multiplication. Hence C is a vector space over R.

\
4. LetV = {a+b~/5/a,b EQ}. Then V is a vector space over Q under addition and
multiplication.

Proof :
Obviously V is an abelian group under usual addition.

The remaining axioms of a vector space are true since the scalars and vectors
are real numbers and the operations are usual addition and multiplication. Hence V is a
vector space over Q.

5. The set M,(R) of all 2x2 matrices is a vector space over R under matrix
addition and scalar multiplication defined by

a b oa ob
o = :
c d oc od

6. Let V={0}. V is a vector space over any field F under the obvious operations of
addition and scalar multiplication.

7. R is not a vector space over C.
Clearly (R, +) i an abelian group.

But the scalar multiplications is not defined, for if oo = a+ibeC and ueR, then
au = aut+ibugR. ‘

o% R is not vector space over C.

8. Consider RxR with usual addition. We define scalar multiplication by a(x, y) =
(ox, a?y).

Then RxR is not a vector space over R.

Clearly RxR with usual addition is an abelian group.

4



(a+B) (x, ) = ((a+B)x, (x+B)*y)
= (ax+Bx, a’?y+B2y+2apy)

Also, oa(x, Y+HB(x.y) = (ax, a?y)+(Bx, B2y)
= (ax+Bx, a?y+p2y)
Hence (ot.+|35(x, y) = oux, Y)+B(x, y)

o RxR is not a vector space over R.

1.2. ELEMENTARY PROPERTIES

Theorem 1.1 :

Let V be a vector space over a field F. Then

(1) a0 = 0 for all aeF

(11) Ov =0 for all veV

(1ii) (—a)v = o(—v) = —(av) for all aeF and veV.

(v) av=0=>a=0(r)v=0

Proof :
(1) o0 = a(0+0) = a0+ O
Hence a0 = 0
(i1) Ov = (0+0)v = Ov+O0v
Hence Ov =0
(iii) 0= [d.+(—oc)]v = av+{(—a)v
Hence (—o)v = —(av)
Similarly a(—v) = —(av)
Hence (—a)v = o(—v) = —(av)
(v) Let av = 0. If a = O, there is nothing to prove.

c;oo Let a=0.
Then o 'eF

Now, v =1v = (aa la)v = a i (av) = o 10 = 0

5



Theorem 1.2 :

Let V be a vector space over a field F. Then

(1)

(i1)

(1ii)
Proof :

(i)

(i)  Since

~ Also

(i) since

i.e.,
Also

and

Definition :

Let V be a vector space over a field F. Let v,,v,,

the form o, v, +o,v,+

vectors v,,v,,

o(v,~v,) = av,~av, VoeF, v,,v,eV

ov, =av, and o#0 = V=V,

av = Bv and v#0 = a=f

------

a(vl-—vz)

avl
ov l—avz

ov,~V,)

ViV,

oV

- av—Pv
(a-B)v
o—f

ov

v#0

= a[v1+(——v2)]‘
= av,ro(-v,)
= av,~v,

= av,
0

i

Il
~

Il
<
[ =)

1.3. LINEAR SPAN

(- o)V =—(av))

.« av=0 = a=0 or v=0)

(- av=0 = a=0 (or) v=0)

vneV. Then an element of

...... +o v, where a.€F is called a linear combination of the



Definition :

Let S be a non-empty subset of a vector space V. Then the set of all linear
combinations of finite sets of elements of S is called the linear span of S and is
denoted by L(S).

Note :
Any element of L(S) is of the form.

a,v,+a,v,+......+a v where a,,0,,...... ;o €F.

Theorem 1.3 :
Let V be a vector space over a field F and S be a non-empty subset of V. Then
(1) L(S) is a subspace of V
(i) ScL(S)
(iii) If W is any subspace of V such that SCW, then L(S)cW. (i.e.,) L(S) is
the smallest subspace of V containing S.
Proof :

(1) Let vyweL(S) and o,BeF

Then v = o, vtavytaato vy where v.€S and o,eF.
Also, w = B,w+B,w,+....+B w,_ where w,eS and B;eF.
Now, av+pw = a(o, v Fo,v, et vOFB(B W B W AR W)

S (¢ To 20 120 SOV +(ococn)vn+(BB1)w1+....+([3[3m)wm
& ov+Pw is also a linear combination of a finite number of elements of S.
Hence av+pw € L(S).

& L(S) is a subspace of V.

(i) LetueS
Then u=1uel(S)
Hence ScL(S)



(iii)) Let W be any subspace of V such that SCcW. We claim that L(S)cW.
Let uel(S)
Then u = au,+o,u,+.....+o_u_ where u,€S and o,eF
Since ScW we have u;,u,,...u €W
de o, U, ta,u,+....+ou €W (since W is a subspace of V)
oo ue'W
Hence L(S)cW.
Note :

L(S) is called the subspace spanned (generated) by the set S.

Examples :
1. In V,(R) let e, = (1,0,0), e, = (0, 1, 0) and e, = (0, 0, 1)
() LetS= {e, e,}

Then 1(S) = {ae,+Be,/a,BeR} = {(a,B,0)/c,BeR}
(®)  Let S = f{e;, e, e;}. Then

L(S) = {ae,+Be,*ye;/a,B,yeR}

{(o.B,1)]e,B,yeR}
= V,(R)

Thus V,;(R) is spanned by {e;> €, €3}

Thus V_(R) is spanned by {e,, e,,.....e }
8



Theorem 1.4 :

Let V be a vector space over a field F.
Let S,TcV. Then

(a) ScT = L(S)cIA(T)

(b) L(SUT) = L(S)+L(T)

(c) L(S) = S iff S is a subspace of V.

Proof :

(a) Let SCT. Let sel.(S)
Then s = a,s,+,s,+.....+a _s_ where s;€S and o,eF.
Now, since ScT, s,eT

Hence o;s,+ta,8,+..... +a, s €L(T)

Thus L(S)c<L(T)

(b) Let selL(SUT)
Then s = a8, a,8,+....+o S where sieSuT and ocl.eF

Without loss of gnerality we can assume that

§;5855---,S €S and s 5. ,8s,€T

Hence o s, +a,s,+....... +a s €L(S)

and o S - +a s €L(T)

do s = (O ;S;t...... Lo, 8 (A, (ST +o s )e L(S)+L(T)
Hence L(SUT) < L(S))+L(T)

Also by (a) L(S) —« L(SuVT)

and (T = L(SVT)

Hence LS)+HIL(T) < L(SUT)

Hence L(SuT) = L(S)+L(T)



‘\(c) Let L(S) = S. By theorem 1.3. L(S) = S is a subspace of V.

Conversely, Let S be a subspace V. Then the smallest subspace containing S is S
itself.

Hence L(S) = S.

Corollary :
L(L(S)) = L(S).

Examples :

1. C is spanned by {1, i} wherei= /1. ” :

For, if S = {1, i}, then L(S) = {al+bifa,beR}=C

2. The vectors v, = (1, 2, 3), v, = (0, 1, 2) and v, = (0, O, 1) generate R3.

For, let S = {v,, v,, v5}

To prove L(S) = R3

We know L(S)cR3

Therefore to prove R3cL(S)

Let v =(a, b, ¢) be any element of R3.

To prO\;e vel(S)

(.e.,)v is a linear combination of Vs Vo, Vs
Put (a, b, ¢) = xv +yv,+zv, where X, y, z are suitable scalars to be found.
Then (a,b,c) = x(1, 2,3)+y(0,1, 2) + z(0, 0, 1)

= (x, 2xty, 3x+2y+z)

oo X = a, 2x+y = b, 3x+2y+z = c.

These equations are consistent and so have a solution, namely, x=a, y=b—2a,
z=c—2b+a.

Thus v=(a, b, ¢) = av,+(b-2a)v,+(c-2b+a)v,cL(S)
& R3c1(S) and hence L(S)=R3.

10



Exercises :

1. Find L(S) in the following cases.’
(@  S={(1,0),(0,1)} in V,(R)
(b) S = {(1,0,0), (2,0,0), (3,0,0)} in V,(R)
() S=1(1,2,3),(2,3,1),3,",2)} in V5(R)
@ S={20}inV,®R)
(e) S = {1, x, X%,.......x"} in R[x]
(0 S=1{(1,2,3)} in ZXZ*Z; over Z;
(@) S ={(0,1,2), (1,2,0)}in Z;xZ,xZ, over Z;

(h) S= {[é ﬂ ﬁ 3]} in Ma(R)

2. Let V be a vector space over a field F and S={v,;Vy---Vpt=V
Let S; = {0,V },00)Vp,e0ee ,o v, } where a,eF-{0}
Let S, = {v 1aV,,V),V3,eeeen v }where acF

Show that I(S) = L(S,) = L(S,)

3. Show that in V,(R)
(3, THYeL({(1,2), (0,1)})

Answers :
L @ V,® () {(x.0,0)/xeR}
() V,®R) (d) {(x,0)/xeR}

(e) The set of all polynomials of degree<n and zero polynomial.
(D £(0,0,0), (1,2,3), (2,4,1), (3,1,4), (4,3,2)}
(@) 1(0,0,0), (0,1,2), (1,2,0), (1,0,2), (0,2,1,), (2,1,0), (2,0,1), (1,1,1), (2,2,2)}

[& o)

(h

N’

11



1.4. LINEAR INDEPENDENCE AND DEPENDENCE

In V,(R), let S = {e,, ¢,, ,}.
We have seen that L(S) = V,(R)
Thus Sisa éubset of V,(R) which spans the whole space V,(R).

Definition ;

Let V be a vector space over a field F. V is said to be finite_dimensional if

there exists a finite subset S of V such that L(S) = V.

Examples-:

1.
2.

Note :

V,4(R) is a fintie dimensional vector space.
V_(R) is a finite dimensional vector space.

Since S={e,, €,,.....,e,} is a finite subset of V_(R) such that L(S)=V _(R). In
general if F is any field V_(F) is a finite dimensional vector space over F.

Let V be the set of all polynomials in F[x] of degree <n. Let S = { 1“,x,x2,,...,x”}
Then L(S) = V and hence V is finite dimensional.
C is a finite dimensional vector space over R, Since L({1, i}) = C.

In M,(R) consider the set S consisting of the matrices

1 0] 0 1
A= ; B =

0 0 0 0
[0 0] 0 0
“=l1 o) D=lo 1
a b
Then c d = aA+bB+cC+dD

Hence L(S) = M,(R). So that M,(R) is finite dimensional.

All the vector spaces we have considered above are finite dimensional. However

there are vector spaces which cannot be spanned by a finite number of vectors. For

12



example, consider R[x]. Let S be any finite subset of R[x]. Let f be a polynomial of
maximum degree in S. Let deg f = n. Then any element of L(S) is a polynomial of
degree < n and hence L(S) = R[x]. Thus R[x] is not finite-dimensional.

In this chapter, we consider all the vector spaces are finite dimensional.

Although we have defined what is meant by a finite dimensional space we have
not yet defined what is reant by the dimension of a vector space. We now proceed to
introduce the concepts necessary to define the dimension of a finite dimensional vector

space.
Consider the vectors ¢;=(1,0,0),e,=(0,1,0),e;,=(0,0, 1) in V5(R)
Suppose that ae,to,e,toe, =0
Then (a,, 0, 0)+(0, a,, 0)+(0, 0, a;) = (0, 0, 0)
oo (0, oy, ;) = (0, 0, 0)
oo Ol = 0L, = Oy =

(i.e.,) o8 tayetase; =0iff o, =a, =a, =0

Thus a linear combination of the vectors, €., €, and e; will yield the zero vector

iff all the coefficients are zero.

Definition :

Let V be a vector space over a field F. A finite set of vectors Vi, VaooooV o In Vs

said to be linearly independent if
o vita, vyt ta v, = 0

=0, =0, = ... =a = 0

dependent.

Note :

Ifv,, vy,...... ,v, are linearly dependent, then there exists scalars o, Q,y,....,0 DOt

all zero, such that a1V1+<oc2v2+ ..... to v, =

13



Examples :

1. In V (F), {e,, e,,.....¢} is a linearly independent set of vectors, for,

a6, ta,e, .. ta e = 0

2. In V,(R) the vectors (1,2,1), (2,1,0) and (1,-1,2) are linearly independent. For,
‘ let o,(1,2,1)+0,(2,1,0)+0a5(1,-1,2) = (0,0,0)

o (o020, F0t,, 20, +0,—0, o +20,) = (0, 0, 0)

oo a+2a,t0, =0 e (1)
20,ta-a0, =0 e 2)
a0, =0 e 3)

Solving equations (1), (2) and 3) we get a;, =, =a; =0

o%» The given vectors are linearly independent.

3. In V,(R) the vectors v, = (-1, 2, 1) and v, = (3, 1, -2) are linearly independent.
For a,vito,v, = 0
a,(-1,2, 1) + a,(3, 1,-2) = (0,0, 0)

(—o,+3a,, 2a,ta,, a,-2a,) = (0, 0, 0)

0% —o+3a, = 0 e (1)
20, = 0 e (2)
a-2a, =0 e 3)

Solving (1), (2) and (3), we get a;, =a, =0

o‘;o {v,, v,} is linearly independent.

4. In V,(R) the vectors (1, 4, -2), (-2, 1‘, 3) and (-4, 11, 5) are linearly dependent.
For, let a,(1, 4, -2)+o,(-2,1,3)+a, (-4, 11, 5) = (0, 0, 0)

14



5.

oo o,—20,40, = 0 i (1)
4a +o,+1la; = 0 emeemees (2)
-2a,+30,*50;, = O e (3)

From (1) & (2)

123 o) a3
= = =K
18 27 9 (say)

oo a; = -18K, a, =-27K, a, = 9K.

These values of ., a, and o, for any K satisfy (3) also
Taking K = 1 we get

o, =-18, o, = -27, a, = 9 as a non-trivial solution.

Hence the three vectors are linearly dependent.

The vectors v, = (1, -2, 1), v, = (2, 1, —1) and v, = (7, -4, 1) are linearly

dependent in R3.

For let oLV oLVt v, = 0
Then ocl(l, -2, 1)+a2(2, 1, -—1)+a3(7, —4,1)=(0,0, 0)

(i.e.,) (0 F2a,+70,, —20,+0,—4a,, o,—a,+o,) = (0, 0, 0)

o a,F2a,t70, = 0 e (D)
20, +0t,—4a, = 0 e (2)
a-o,+ta, = 0 e 3)

ap _©G2 _ 93
-15 -10 5§

From (1) and (2), by the rule of cross-multiplication,

o o =—15K, a, = -10K, o = 5K.

These values of o, a,, a; clearly se:‘tisfy (3) for any value of K. Take K=1.
Then a, = -15, a, =10, oy =35

Thus there exist scalars o, o, o, not all zero such that oVt vyt v, =0

oo {v,, v,, v;} is linearly dependent.
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6. Let V be a vector space over a field F. Then any subset S of V containing the
zero vector is linearly dependent.

Proof :
LetS = {0, v,,.....,v_}

Clearly a0+0v,+0v,+....+0v_ = 0 where o is any element of F. Hence for any
a#0, we get a non-trivial linear combination of vectors in S giving the zero vector.
Hence S is linearly dependent.

Exercises :

1. Determine whether the following sets of vectors are linearly independent or
linearly dependent in V,(R)

a) {(1,0,0), (0,1,0), (1,1,0)}
b) {(1,2,3), (2,3,1)}
c) {(1,2,3), (4,1,5), (-4,6,2)}
d) {(0,0,0), (2,5,3), (-1, 0, 6)}
&) {(1,0,0), (1,1,0), (1,1,1), (0,1,0)}
2. Determine whether the following sets of vectors are linearly independent or not.
a) {(1,1,0,0), (0,0,1,1), (1,0,0,4), (0,0,0,2)} in V,(R)
b) {(21,1,0), (2,-i, 1), (0,1,i,-1)} in V,(C)
Q) {(m,0,0), (0,e,0), (0,0,45)} in V,(R)

d) V = the set of all polynomials of degree < n in R[x] and S={1,x,x2,....x"}

I 5 o

3. In V,(z,) determine whether the following sets of vectors are linearly dependent.
a) {(1,3,2), (2,1,3)}
b) {(1,1,2), (2,1,0), (0,4,1)}

4. In V,(R) prove that the vectors (a,b) and (c,d) are linearly dependent iff ad-bc=0.
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5. Let {v,,v,,v,} be a linearly independent set of vectors in V;(R).
Show that
(a\)\ {v,+Vv,, V,¥V;, v,+v } is linearly independent.
(b) {2v,+v,, v;+Vv,, v,—v,} is linearly independent.

6. If the vectors (0,1,2), (1,a,1) and (a,1,0) of V,(R) are linearly dependent then

find the value of a.

Answers :

1. (b) is liﬁearly independent

2. (a), (b), (¢), (d) and (e) are linearly independent.
3. () is linearly independent.

4. a=0, +./2

Theorem 1.5 :

Any subset of a linearly independent set is linearly independent.

Proof :
Let V be a vector space over a field F.
Let S = {v,,V,,.....,V,} be a linearly independent set.

Let S! be a subset of S. Without loss of generality we take S! = {v ,v,,....,v, }

where k<n.

Suppose S! is a linearly dependent set. Then there exist a,,a,,......,0,, in F not all

zero, such that o v, +o,v,+. . to, v, = 0.

Hence o,v,+o,v,+.....4o, v +0v, +....+0v = 0 is a non-trivial linear

combination giving the zero vector.
Here S is a linearly dependent set which is a contradiction.

Hence S! is linearly independent.
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Theroem 1.6 :

Any set containing a linearly dependent set is also linearly dependent.

Proof :
Let V be a vector space. Let S be a linearly dependent set. Let S'>S.

If S' is linearly independent S is also linearly independent (by previous theorem)
which is a contradiction.

Hence S' is linearly depgndent.

Theorem 1.7 :

Let S = {v ,v,,....... ,v.} be a linearly independent set of vectors in a vector space
V over a field F. Then every element of L(S) can be uniquely written in the form
a,v,to,v,t....+o v , where o, €F.

Proof :
By definition every elements of L(S) is of the form o, v,+a,v,+....+a v_.
Now, let o, v, o, v +..... o v, = B v +B,v,+.....+B v
Hence (a0,—B)v,+(a,—B)v,*.... (o —B )v, =0
Since S is a linearly independent set, a.—B. = 0 for all i.
o a, = B, for all i.

Hence the theorem.

Theorem 1.8 :

Vs,..eryV, } 18 @ linearly dependent set of vectors in V iff there exists a

vector v, €S such that v, is a linear combination of the preceding vectors Vi5Vosmeens V1o

Proof :

Suppose V,,v,,......,v_ are linearly dependent. Then there exists a;,05,....,0 EF,
not all zero, such that o, v+, v, +.....+a v =

Let k be the largest integer for which o, 0.
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Then o, v+t v, = 0

oo 0V, = —OVi—QyVy—ueens —0y Vi1
o v = (o la)vit oy
o» v, is a linear combination ofthe preeding vectors.
Convefsely, suppose there exists a vector v, such that v, = a,v,+..... -‘+ock_]vk_l
Hence —0L,V,—.....m04 V) 1V, +0v i+ 40v =0

Since the coefficient of v, = 1, we have S = {VipeeesVy} 18 linearly dependent.

Examples :
In V,(R), let S = {(1,0,0), (0,1,0), (0,0,1), (1,1,1)}
Here (1,1,1) = (1,0,0)+(0,1,0)+(0,0,1)
Thus (1,1,1) is a linear combination of the preceding vectors. Hence S is a

linearly dependent set.

Theorem 1.9 :

Let V be a vector space over F. Let S = {y,,v,,....v } and L(S) = W. Then there
exists a linearly independent subset S! of S such that I(S") = W.
Proof :

Let S = {V|,V5.-e0sV,}

If S is linearly independent there is nothing to prove.

If not, let v be the first vector in S wich is a linear combination of the

preceding vectors.
Let S, = {V,Vpeees Vi1 Vippoerees Vo)
(ie.,) S, is obtained by deleting the vector v, from S.
We claim that L(S,) = L(S) = W. .
Since S,cS, L(S,)<L(S) (refer theorem 1.4)

Now, let veL(S)
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Let v = Bvite B Vi
Hence vV = o
+ak(B1V1+“‘.+Bk—lvk—l)+ak+lvk+l+ ...... +o v

& v can be expressed as a linear combination of the vectors of S, so that
veL(S,). '

Hence L(S) ¢ L(S,)
Thus L(S) = L(S§)) =W
Now, if S, is linearly independent, the proof is complete.

If not, we continue the above process of removing a vector from S,, which 1S a
linear combination of the preceeding vectors until we arrive at a linearly independent
subset S' of S such that L(S) = W.

Solved Problems :
Problem 1 :

If the vectors v,,...... ,v_ and the scalars a,,.....a are such that A = {v,+a,v,,

v, +0,v,,.....v to v, } is linearly dependent, show that B = {v,,...... ,v.} is also linearly
dependent.

Since A is linearly dependeht, there exists scalars B,,...... B, not all zero, such
that

B, (v, o, v )+Bs(vatogv )t..... +HpB v rtav)=0 -~ e (1)

Say B, = 0.

From (1), (B2a2+ﬁ3a3+ ....... +B o v, + BV, BVt +Bv. =0

Since the coefficient of v, is B,#0, it follows that {v,,....v } is linearly
dependent.

Problem 2 :

If the set {u, v, w} is linearly independent in V(C). Show that {utv, u-v, u-2v+w}
is also linearly independent.
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Let a(ut+v)+B(u—v)—y(u—2v+w) =0
Then (o+B+y)u+(oa—P—-2y)v+yw =0

But {u, v, w} is linearly independent.

oo (1+B+'Y = 0
a—p-2y = 0
y = 0

These equations have the only solution a=0, =0, 'y=0.

& u+v, u—v, u—2v+w are linearly independent.
3. Find the linearly independent subset A of S = {v,,v,,v;,v,} in R*(R) such that
L(A)=L(S) where v,=(1,2,-1), v,=(-3, -6, 3), v;=(2,1,3) and v,=(8,7,7).

S = {v,,V,,V;,V,}

Now v, = (-3, -6, 3) = -3(1, 2, ~1) = -3v, = a linear combination of v,.

& remove v, from v,.

Let T = {v,, v;, v,}. Clearly v, is not a linear combination of v,. Is v, a linear

combination of v, v,?

Suppose vy = av1+bv3'
Then 8,7,7) = a(l, 2, -1)+b(2,1,3)
= (at+2b, 2a+b, —a+3b)
oo at2b = 8 |
2atb = 7
—-a+t3b = 7

Solving, we geta =2, b = 3.
Fo v, =2v,+3v,=a linear combination of v, & v,.
o remove v, from T. Thus we get A = {v,, v,}

Since v, is not a linear combination of v, A is linearly independent. Since AcS,
L(A)cL(S).
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4.

Let veL(S). Then

v = av +bv,+cv,+dv,

= av,—3bv,+tcv,+d(2v,+3v,)

= (a—3b+2d)v,H(c+3d)v, € L(A)

o("o L(S) c L(A)
Hence L(A) = L(S).

Thus A is the required subset of S.

Let V be the vector space of functions form R into R. Show that {f, g, h} is a
linearly independent subset in V, where f(x)=e?*, g(x)=x2 and h(x) = x.

Let a, b, ¢ be scalars and let af+bg+ch = 0, where the function 0 is defined by
0(x) =0 VxeR '

Je (af+bg+ch) (x) = 0 = 0(x) VxeR
oo af(x)+bg(x)+ch(x) =0

(i.e.,) ae**+bx2+cx = 0 VxeR

Putx=0 oo a=20
Putx =1 &% aetbtc =0
Putx=2 & aet+4b+2¢c =0

Solving (1), (2) & (3) we get
a=0,b=0,c=0
oo aftbgtch=0=a=0,b=0,c=0

% {f, g, h} is linearly independent.

Show that the vectors (a, b) and (c, d) in c? are linearly dependent < ad = be.

Letx,y,ec
Then x(a; b)+y(c, d) =0
(xatyc, xb+yd) = (0, 0)
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oo ax+cy = 0 and
bx+dy = 0

We know that these equations have a solution other than

a c
x=y=0 <:>A=b d=0
< ad-bc =0

oo The vectors (a, b) and (c, d) are linearly dependent < ad = bc.

6. Let V = F[x]. Show that the infinite set S = {1,x,x?,.....} is linearly independent.

Let A = {x*1, x%2,.....x%n} be any finite subset of S, where «,, a,,......,at_ are

non-negative integers.

Let a,, a,,...... a_, be scalars such that a,x%1+a,x*2+.....+a_x% = 0 (zero
polynomial).

Then by the definition of equality of two polynomials, we get a,=0,
a,=0,....,a =0.

oo A is linearly independent and hence S is also linearly independent.

1.5. BASIS AND DIMENSION

Definition :

A Linearly Independent subset S of a vector space V which spans the whole

space V is called a basis of the vector space.

Theorem 1.10 :

Any finite - dimensional vector space V contains a finite number of Linearly .
Independent vectors which span V. (i.e.,) A finite dimensional vector space has a basis

consisting of a finite number of vectors.

Proof :

Since V is finite dimensional there exists a finite subset S of V such that
L(S)=V. N
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By the theorem 1.9 this set S contains a linearly Independent subset St =
{V{,Vp,.....v,} such that L(S') = L(S) =V

Hence S! is a basis for V.

Theorem 1.11 :

Let V be a vector space over a field F. Then S = {v,,v,,....,v_} in a basis for V
iff every element of V can be uniquely expressed as a linear combination of elements
of S.

Proof :

Let S be a basis for V. Then by definition S is Linearly Independent and L(S)=V.
Hence by theorem 1.7 every element of V can be uniquely expressed as a linear
combination of elements of S.

Conversely :

“Suppose every element of V can be uniquely expressed as a linear combination
of elements of S.

Clearly L(S) =V

Now, Let a,v,+a,v,+...... +ta v =

Also Ov,+0v,+*.....+0v_=

Thus we have expressed O as a linear combination of vectors of S in two ways.
oo By hypothesis a; = a, =....=a_ =0.

Hence S is Linearly Independent

Hence S is a basis.

Example§ :

1) S = {(1,0,0), (0,1,0), (0,0,1)} is a basis for V,(R) for, (a,b,c) =
a(1,0,0)+b(0,1,0)+c(0,0,1).

o Any vector (a, b, ¢) of V,(R) has been expressed uniquely as a linear
combination of the elements of S and hence S is a basis for V,(R).
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)

S = {e,, €,,.....e_} is a basis for V_(F). This is known as the standard basis for
V.(F)
3) S = {(1,0,0), (0,1,0), (1,1,1)} is a basis for V,(R).
Proof :
We shall show that any element (a, b, c) of V,(R) can be uniquely expressed as
a linear combination of th. vectors of S.
Let (a, b, ¢) = a(1, 0, 0)+B(0,1,0)+y(1,1,1)
Then a+y =a, B+y=b,y=c
| Hence o =a—c and p =b-—c
Thus (a, b, ¢) = (a—c)(1,0,0) + (b—c)(0,1,0) + c(1,1,1)
o> S is a basis for V,(R).
fl) S = {1} is a basis for the vector space R over R.
I 0Y(O0 1)Y(O 0}(O O
5) S = {(O O}(O 0):(1 O)’(O J} is a basis for M,(R), since any matrix
a b) o
(c a can be uniquely written as
a b) 1 0 0 1 0 0 0 0
B R R B B e
6) {1, 1} is a basis for the vector space C over R.
7) Let V be the set of all polynomials of degree < n in R[x]. Then {1,x,x?,.....,x"}
is a basis for V.
{(1,0), (1,0), (0,1), (0,1)} is a basis, for the vector space CxC over R, for
(at+ib, c+id) = a(1,0) + b(i, 0)+c(0,1)+d(0,i)
9) S = {(1,0,0), (0,1,0), (1,1,1), (1,1,0)} spans the vector space V,(R) but is not a

basis.
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Proof :
Let S' = {(1,0,0), (0,1,0), (1,1,1)}
Then L(S") = V,(R) (refer exarhples 3)
Now since ScS'. We get L(S) = V;(R)
Thus S spans V,(R)
But S is linearly dependent since
(1,1,0) = (1,0,0) +(0,1,0)

Hence S is not a basis.
10) S = {(1,0,0), (1,1,0)} is Linearly Independent but not a basis of V,(R).

Proof :
Let a(1,0,0)+p(1,1,0) = (0,0,0)
Theno+p =0 and p=0"
o o = B = 0. Hence S is linearly independent.
Also L(S) = {(a,b,0) / a,beR} # V,(R)

oo S is not a basis.
Solved Problems :
1. Show that B = {(0,1,0), (1,0,1), (1,1,0)} is a basis for V,(R) i.e., R®.
Solution :
For a(0,1,0)+B(1,0,1)+y(1,1,0) = 0 -
= (B+y, a+y, B) = (0,0,0)
=>B+y=0,0+y=0,B=0
=>a=B=7y=0
o% B is linearly independent.

To prove L(B) = R3, we have to show that every vector in R3 can be expressed
as a linear combination of elements of B.

Let (a, b, ¢) be any element of R3. We want to write (a, b, ¢) = x(0,1,0) +
y(1,0,1) + 2(1,1,0) where Xx,y,z are scalars to found.
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Hence we require (a, b, ¢) = (y+z, x+z, y)

doytz=a,x+tz=b,y=c¢

Clearly, these equations have the‘solution X =b+c-a,y=c, z=a-c.

Thus, (a,b,c) = (b+c-a)(0,1,0) + c(1,0,1) + (a—) (1,1,0)

oo L(B) = R? and hence B is a basis “or R3.

Note that {(1,0,0), (0,1,0), (0,0,1)} is the standard basis for R3. Thus, we find
that a vector space may have more than one basis.

2. Show that the set B = {(1,2,1), (2,1,0), (1,-1,2)} is a basis for V,(R) = R3,

Solution :
Now a;(1,2,1)+0,(2,1,0)+e5(1,-1,2) = 0

= (o, 20, +a, 20, o0, agt2a,) = (0,0,0)

= o, +20L2+0L3 = 0
20c1 +a2—a3 = 0
a1+2a3 = 0

=a;=a,=0, =0

oo B is linearly independent.

Let (a,b,c) € R3 be arbitrary. ‘ -
Then (a,b,c) = a( 1,0,0)+b(0,1,Q)+c(0,0,1) - ememaa. (1)

We write (1,0,0) as a linear combination of elements of B as follows.

Let . (1,0,0) = x(li,2,1)+y(2,1,0)+é(1,——1,2)

= (x+2y+z, 2x+y-z, Xx+2z2)

o ' x+2y+tz = 1
2xty-z = 0
x+2z = 0
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: . 2 5 1
On solving these equations, we get x = 9 Y=9 2775
2 5 1
oo = ——(L,2,1)+=(2,1,0)+—(1,-1,2
. 4 1, 2
Similarly, (0,1,0) = 3(1,2,1)-3(2,1,0)—5(1,—1,2)
‘ 1 1 1
and (0,0,1) = -3-(1,2,1)—-3—(2,1,0)+3-(1,—1,2)

Using these in (1), we find that (a,b,c) is a linear combination of (1,2,1), (2,1,0)

and (1,-1, 2)

¢ L(B) = R3 and hence B is a basis for R3.

Show that S = {(1,0,0), (0,1,0)} is linearly independeﬁt but is not a basis for R>.
a(1,0,0)+$(0,1,0) = (0,0,0) |
(o,p,0) = (0,0,0)
= a=p = 0
oo S is linearly independent.
LS) = {a(1,0,00+b(0,1,0)/a,beR}
= {(2b,0)fa,beR}
# R3

&% S is not a basis for R3.

Exercise :

1)

2)

Show that the following three vectors from a basis for V,(R).

a) (1,2,-3), (2,5,1), (-1,1,4)

b) (1,1,0), (0,1,1), (1,0,1) -

¢) (2,-3,1), (0,1,2), (1,1,2)

Show that the following sets of vectors do not from a basis for V,(R).
a) {(1,0,0), (1,1,0)}

b) {(1,2,1), (1,3,5), (-1,0,1), (1,-1,2)}
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c) {(0,0,0), (1,0,0), (0,1,0), (0,0,1)}
d) {(3,2,1), (3,1,5), (3,4,-7)}
e) {(1,2,3), (2,3,4), (3,4,5)}
3) Show that (1,i,0), (2i,1,1), (0, 1+i, 1-i) from a basis for V,(c).

4) Find a basis for the vector space consisting of all matrices of the form.
a b a 0
Do a| o b
5) If {v,,v,,v,} is a basisfor V,(R), show that {v +v,, v,+v,, v,+V, } is also a basis.

Is this true in (a) V,(z,) (b) V,(z,)?

Answers :

o SBIC I o696

Theorem 1.12 :

Let V be a vector space over a field F. Let S = {v,,v,,.....,v_} span V. Let
S = {w,,W,,....w_} be a linearly independent set of vectors in V. Then m=n.

Proof :
Since L(S) =V, every vector in V and in particular w,, is a linear combination

of v;,vy,..,v_.

Hence S, = {w,,v,,v,,....,v_} is a linearly dependent set of vectors. Hence there

exists a vector v, #w_ in S,. Which is a linear combination of the preceding vectors.
Let S, = {wW,V ,ecc.., Vi_[sViqpeeee- V)
Clearly L(S,) =V
Hence w, is a linear combination of the vectors in S,,.

Hence S; = {w,,w,,v,,...... Vi 1sVia1seeeeee v} 1s linearly dependent. Hence there

exists a vector in S; which is-a linear combination of the preceding vectors.

Since the w;'s are linearly independent, this vector cannotbe w, or w, and hence
must be some vi. where j#k (say, with j>k). Deletion of v from the set S; gives the set

S, = AW, W,V ,Vaser.nn. Vi 15 Viegpseeee- ,Vj_l,vjﬂ,.x....vn} of n vectors spanning V.
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In this process, at each step we insert one vector from {w,W,,.....w_} and delete
one vector from {v,,v,,.....,v_}.

If m>n after repeating this process n times, we arrive at the set {w_,w
which spans V.

nore Wi

Hence w_,, 1s a linear combination of W Wy W,

Hence {w ,w,,....w_w w_} is linearly dependent.

n+1 gesacs
Which in a contradiction.

Hence m<n.

Theorem 1.13 ;

Any two bases of a finite dimensional vector space V have the same number of
elements.

Proof :
Since V is finite dimenional. It has a basis say S = {v,,v,,...v }
Let S' = {w,,w,,......,w_} be any other basis for V.

Now L(S) = V and S! is a set of m linearly independent vectors. Hence by
theorem 1.12, m<n.

Also since L(S') =V and S is a set of n linearly independent vectors, n<m.

Hence m=n.

‘Definition :

Let V be a finite dimensional vector space over a field F. The number of
elements in any basis of V is called the dimension of V and is denoted by dim V.

Examples :
1. dim V_(R) = n. since {e,,e,,.....e;} is a basis of V_(R).

2. M,(R) is a vector space of dimension 4 over R.

1 0Y(0 1)(0 0)(0 0} .
since o ollo ofl1 oflo 1 1s a basis for M, (R).
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3. C is a vector space of dimension 2 over R. Since {1, i} is a basis for C.
4. Let V be the set of all polynomials of degree < n in R[x].V is a vector space

over R having dimension n+1, since {1,x,x2.....X"} is a basis for V.

Theorem 1.14 :

Let V be a vector space of dimension n Then,
(i) any set of m vectors where m>n is linearly dependent

(ii) any set of m vectors where m<n cannot span V.

Proof :
(1) Let S = {v,V,,....,v,} be a basis for V.
- Henee L(S) = V.

Let S' be any set consisting of m vectors where m > n. Suppose S' is linearly
Independent. Since S spans V by theorem 1.12, m=n.

Which is a contradiction
Hence S! is linearly dependent.
(ii)  Let S! be a set consisting of m vectors where m<n. Suppose L(S) = V.

Now S = {vl,vz,....,vn} is a basis for V and hence linearly Independent. Hence
by theorem 1.12 n<m. Which is a contradiction.

Hence S' cannot span V.

Theorem 1.15:

Let V be a finitie dimensional vector space over a field F. Any linearly
Independent set of vectros in V is part of a basis.

Proof :
Let S = {v},v,,....,V,} be a linearly Independent set of vectors.
If L(S) = V then S itself is a basis
If L(S) # V, choose an element v, e V-L(S).

Now consider, S, = {Vl,vz,....,vr,vm}
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We shall prove that S, is linearly Independent by showing that no vector in S, is
a linear combination of the preceeding vectors. (refer theorem 1.8)

Since {v,,v,,.....,v } is linearly Independent, v, where 1<i<r is not a linear
combination of the preceeding vectors.

Also v, ¢1(S) and Hence v_, is not a linear combination of VisVaeeonVo.
Hence S, is linearly Independent.

If L(S,) =V, then S, is a basis for V. If not we take an element v.,€V-L(S))
and proceed as before. Since the dimension of V is finite, this process must stop at a
certain stage giving the required basis containing S.

Theorem 1.16 :
Let V be a finite dimensional vector space over a field F. Let A be a subspace of

V. Then there exists a subspace B of V such that V—A@B

Proof :

Now let B = L ({w,,w,,......,w_})
We claim that AnB={0} and V = A+B
Now, let ve AnB. Then ve A and veB

_Hence Vo= oy vite,vytata v

oo o,V it vyt o v B wi—Bow,—.....Pw =
Now since §' is linearly Independent o, = 0 = Bj for all i and j.
Hence v = 0. Thus AnB = {0}
Now, let veV
Then v = (oyvito, vyt tav)
+ (BwW,HB,w, . B W )eA+B

Hence A+B =V so that V = A®B.
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Exercise :

1. Let V be a finite dimensional vector space. Let A and B be subspaces of V such
that V=A®B. Then show that dim V = dim A + dim B.

2. Construct 3 subspaces W,, W,, W, of a vector space V such that V = W ew, =
W, OW, but W =W,

3. For each of the following subspaces A of V;(R) find another subspace B such
that A®B=V,(R)

i)  A=L{(1,1,0), (0,1,1)}
Gi) A =L{{1,1,1)}

(i) A=L({e..e,e;})
Definition :

Let V be a vector space and S = {v,,v,,......,v } be a set of independent vectors
in V. The S is called a maximal linearly Independent set if for every ve V-S, the set
{V,v,,V,,.....,v, } is linearly dependent. '

Let S = {v,v,,.....,v_} be a set of vectors in V and Let L(S) = V. Then S is
called a minimal generating set if for any v,eS, I(S—{v})#V.

Theorem 1.17 :

Let V be a vector space over field F Let S = {v, ,v,,...... v }<V. Then the
following are equivalent.

(1) S is a basis for V
(i) S is a Maximal linearly Independent set
(iii) S is a2 minimal generating set
Proof :
(1) = (i1)

Let S = {v,,v,,......v,} be basis for V. Then by theorem 1.14 any n+1 vectors in
V are linearly dependent and hence S is a Maximal linearly Independent set.
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(i) = (1)
Let S = {v,,V,,......v_} be a maximal linearly Independent set. Now to prove that
S is a basis for V we shall show that L(S) = V.

Obviously L(S) c V
Now, Let veV
If veS, then veL(S). (Since ScL(S))

If veS, §' = {v,vy,eeeen. ,v_,V} is a linearly dependent set (since S is a Maximal
linearly Independent set). ‘

& There exists a vector in S'. Which is a linear combination of the preceeding
vectors.

Since v ,V,,.....v are linearly Independent, this vector must be v. Thus Vis a
linear combination of v ,v,,....v . Therefore ve L(S).

Hence VcL(S)

Thus V=L(S).

(i) = (iii)

Let S = {v,,v,,......v,} be a basis. Then L(S) = V.

If S is not minimal, there exists v,€S such that L(S—{v;})=V.

Since S is linearly Independent, S—{v.} is also linearly independent. Thus S—{v }
is a basis consisting of n—1 elements. \

Which is a contradiction.

Hence S is a minimal generating set.

(iii) = ()

Let S = {v,,v,,......v,} be a minimal generating set. To prove that S is a basis.
We have to show that S is linearly Independent.

If S is linearly dependent, there exists a vector v, which is a linear combination
of the preceeding vectors.

Clearly L(S—{v,}) = V contradicting the minimality of S.

Thus S is linearly Independent and since L(S) =V, S is a basis for V.
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Theorem 1.18 :

Any vector sp?ce of dimension n over a field F is isomorphic to V_(F).

Proof :
Let V be a vector space of dimension n. Let {V5V,....v,} be a basis for V.

Then we known that if veV, v can be written uniquely as V=0, V,to, vyt e v
where o.€F.

Now, consider the map f:V—V _(F) given by f(a,v,+..... ¥ v ) = (& [,0p,..c..0s0,)

Clearly fis 1-1 and onto.

Let v,w,eV
Then Vo= oVt +o v, and
w o= Bivito...... +B, v,
f(v+tw) = 1o, B Iv,+.onn +(a B v ]
= (@B )N@y+By) oo (ot +B,)]
= (0},0,,....... a)) + (B,Byseeeen B,)
= f{v)+f(w)
Also flav) = flao,v,+....+ao v )
= (oo,00,,.......... ;0L )
= 0,0, ... Q)
= of(v)

Hence f 1s an isomorphism of V to V_(F).

Corollary :

Any two vector spaces of the same dimension over a field F are isomorphic, for,
if the vector spaces are of dimension n, each is isomorphic to V_(F) and hence they are
1somorphic.

Theorem 1.19 :

Let V and W be vector spaces over a field F. Let T:-V—>W be an isomorphism.
Then T maps a basis of V onto a basis of W.
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Proof :

linearly Independent and that they span W.
Now o, T(v,))+a,T(v,)+......+a T(v) = 0
= T(0,v )+ T(A,V,) ... +T(0,v,) = 0
= T(a,v,+o,v, o v ) =0

= o,V ta,v,tatoa v, =0 (since T is 1-1)

(Since v,,v,....... v, are linearly Ihdependent).
& T(v)), T(v,)........ T(v,) are linearly Independent.

Now, let weW. Then since T is onto, there exists a vector veV such that
T(v)=w.

Let v = o vt +o v

Then w = T(v)

= o, T(v)+....... +o T(v,)
Thus w is a linear combination of the vectors, T(v,),T(v,),....... T(v,)-

& T(v)), T(v,),......,T(v,) span W and hence is a basis for W.

Corollary :

Two finite dimensional vector spaces V and W over a field F are isomorphic iff
‘they have the same dimension.

Theorem 1.20 :

Let V and W be finit dimensional vector spaces over a field F. Let {VpVpseeenV
be a basis for V and let w,,w,,............ w be any n vectors in W (not necessrily
distinct). Then there exists a unique linear transformation T:V-—>W such that T(v)=w,,
1=1,2,....n.
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Proof :
Let v = oyvito,vyteta v eV
We define T(v) = a,w to,w,+..tow,

Now, letx,y e V

Let X = o, Vit +o v,

and y = Bt HBv,

o x+y = (o +Bv o BV,

o Tx+y) = (o, +Bw,+....... +Ho, B Iw,
= (oW t....to w )R w AP W)
= T)+T(Y)

Similarly T(ax) = oT(x)

Hence T is a linear transformation.

Also v, = 1v+0v,+.....0v)

Hence T(v)) = 1w 0w, +....+0w =w,

Similarly T(vp) = w;foralli=12, . ...n

Now to prove the uniqueness, Let T’ : V—>W be any other linear transformation
such that T'(v)) = w,

Let v = o, vito,v,t.. +anvneV

Ti(v) = o, TI(v)+a,Ti(v)+.....+a Tl(v )

- Hence T=T!

Remark :

The above thorem shows that a linear transformation is completely determined
by its values on the elements of a basis.

Theorem 1.21 :

Let V be a finite dimensional vector space over a field F. Let W be a subspace
of V.
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Then (i) dim W < dim V

T .
(11) d1mW =dimV - dim W

Proof :

@)

of a basis for V.

Let S = {w,,w,,

Hence dim W < dim V.
(i) Letdim V=nand dim W=m
Let S =
of vectors in V.

.....

Hence S is a part of a basis in V. Let {w,w,,
V. Then m+r = n.

= (Wro, v )+H(W+Ha,v )+ H(Wrav ) =W

= W+a (Viropvo oy = W

-----
------

= (XIV]‘}‘OCZVZ"F

--------

Now since {w,w,,

W

m? -

W+v_} is a basis for

..... w_} be a basis for W. Since W is a subspace of V, S is a part

w_} be a basis for W. Clearly S is a linearly Independent set

v } be a basis for

w

o, vita,vytea v, = Bow HBow,t L AB W
oo OV HaL, VT oV B W —BowW PoW, = 0
co Oy = O, = ....... =0 =B,=8,... =B, =
o% S’ 1is a linearly Independent set.
Now let W+v e—v—

W
Let v o= oyvittavHpwi bl Hpowo
Then W.+v = Wi(o,v,t....tav+B,wt. 4B w )

= W+H(o,v,*....+av)
(Since B,w +.....+B_w_eW)
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Hence S' spans.-w— so that S’ is a basis for —.

A4

W =r=n-m=dimV -dim W.

oo dim

Theorem : 1.22 : -

Let V be a finite dimensional vector space over a field F. Let A and B subspaces
of V. Then dim(A+B) = dim A + dim B — dim(AnB).

Proof :

A and B are subspaces of V. Hence AnB is subspace of V.

Let dim(AnB) =r

Let S = {v,,v,,.....v } be a basis for AnB.

Since ANB is a subspace of A and B, S is a part of a basis for A and B.
Let {v,,v,,.....V, U,u,,.....u} be a basis for A.

W,,W,......w,} be a basis for B.

Let o v, +....+o v +B,u + . +Buty, W+ Ay w, =

Then Biut...HPu, = (ywit..Hyw)(a,v,+... . +tov)eB
Hence B,u,+.....+pu. € B

Also Bu ... Hpu, € A

Hence Bu+...+pu. € ANB

Q
[-)
-
L
+
W
-
=
“|
__Oﬂ
<
|
<
I
(e ]
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Similarly we can prove y, =y, = ...... =v,=0

do O, = Bj = v, = 0 for 1<i<r

1<j<s; 1<k<t.

Thus S’ is a linearly Independent set.

Clearly S’ spans A+B.

o S'1is a basis for A+B

Hence dim(A+B) = r+s+t

Also dim A = r+s, dim B = r+t, and dim (AnNB) =r

& dim A + dim B —dim (ANB) =  (r+s)+(r+t)-1

r+s+t
= dim (A+B)

Aliter By the theorem, Let V be a vector space over a Field F. Let A and B be

b £V. Then 238 . B
Su SpaceSO . cn A = AﬂB

- dim A+B
ence A

oo d1m(A+B)—d1m A

dim[———B }
ANB

dim B - dim (AnB)

f

So dim(A+B) = dim A + dim B — dim(A~B)

Corollary :
If V=A@®B, dim V = dim A + dim B.

Proof :
V=A®B = A+B=V
and AnB = {0}
oo dim(ANB) = 0
Hence dimV = dim A + dim B,
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Solved Problems :
1. Complete the set {(2,1,4,3), (2,1,2,0)} to form a basis of V,(R).

Solution :

Since dim V,(R) = 4, every basis of V,(R) contains four vectors,

Let v, = (2,1,4,3),
v, = (2,1,2,0)
Then o vito,v, =0 = (2o, +2a,,0,+0,, 4a,+20.,, 3a,)
= (0,0,0,0)
= 204,20, = 0

o,ta, = 0
4o,+20, = 0
30, = 0
>o,=a,=0
A = {v,,v,} is linearly independent.
Now L(A) = {av,+Bv,/ a,p scalars}
= {2a+2B, o+, 40+2B, 3a) / a,B scalars}

We choose a vector outside this span L(A) and get an enlarged linearly

independent set.

For each vector in L(A), the first co-ordinate 2a+2p is twice the second co-
ordinate o+f. Hence e, = (1,0,0,0) is not in this span. Thus, we get the enlarged

linearly independent set S, = {vi>vR,}.
Now L(S,) = {av,+Bv,tye, / a,B,y scalars}
= {(2a+2B+y, a+f, 40+2B, 3a) / a,B,y scalars}
As before we enlarge S, by choosing a vector outside L(S)) |
Clearly, e, = (0,1,0,0) is not in L(S))
Let S, = {vl,vz,el,ez}.

Then S, is linearly independent and hence is a basis for V,(R).
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2.

Let A = {(1,1,1,1), (1,2,1,2)} be a linearlyindependent subset of V,(R). Extend

it to a basis of V,(R).

Solution :

set

Let v, = (1,1,1,1), v,=(1,2,1,2)
Then L(A) = {av,*Bv,/ a,p scalars}
= {(o+B, 2B, a+P, a+2p) / o, P scalars}
For each vector in L(A) the first and third co-ordinates are equal to o+p.

oo V3 = (0,2,1,2) is not in L(A). Thus, we get th enlarged linearly independent

S, = {vl,vz,v3}
Now | L(S,) = {av+Bv,+yv;/ a,B,y scalars}
= {(0+B, a+2B+2y, a+P+y, a+2B+2y) / o,B,y scalars}
Clearly vy ='(2,5,3,6) 1s not in L(S))

o S, = {v,,v,,v3,v,}is a basis for V,(R)

Exercise :

1.

Find the dimension of the subspace spanned by the following vectors in V,(R).
(a) (1,1,1), (-1,-1,-1)

(b) (1,0,2), (2,0,1), (1,0,1)

(c) (1,2,—3); (0,0,1), (-1,2,1)

(d) (1,1,2) (-1,1,0)

Find the dimension of the subspace spanned by the following vectors in V,(R).

(a) e]) 625 e39 e4

b) e e,
() e,€,e
d e
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3. In V;(R), find dim(A+B) and dim(ANB) where
| (2) A is the subspace spanned by (1,1,1) and
B is the subspace spanned by (-1,-1,-1)
(b) A is the subspace spanned by (1, 1, 1) and
B is the subspace spanned by (1, 2, 1)
{c) A is the subspace spanned by (1, 1, 1) and (1,2,1) and
B is the subspace spanned by (0, 0, 1)
(@) A is the subspace spanned by (1, 1, 1) and (1, 2, 1) and
B is the subspace spanned by (1, -1, 1) and (-1, 1, -1)
4. Let V, and V, be subspaces of V such that V NV, is the zero space.
Prove that dim V, + dim V, < dim V.

5. Let V, and V, be subspaces of V such that every vector veV can be represented
as v=v,+v, where v,eV, and v,€V, prove that dim V, + dim V, 2 dim V. '

6. If A and B are finite dimensional subspaces of V such that AcB and
dim A = dim B then show that A = B.

"7, Let S be a subspace of a finite - dimensional vector space V. If dim V = dim S
then prove that S = V.

8. Let W, and W, be two subspaces of a finite dimensional vector space V.
If dim V = dim W, + dim W, and

W,NW, = {0} prove that, V= W, W,

Answers:
. (@ 1 (b) 2 c 3 d 2
2. (a 4 (b) 2 ) 3 @ 1
3. (a 1l (b)  2;0 () 3;0 @  3;0
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LINEAR ALGEBRA UNIT -2

2.1. SUBSPACE

Definition :

Let V be a vector space over a field F. A non-empty subset W of V is called a
subspace of V if W itself is a vector space over F under the operations of V.

Theroem 2.1 :

Let V be a vector space over F. A non-empty subset W of V is a subspace of V
iff W is closed with respect to vector addition and scalar multiplication in V.

Proof :

Let W be a subspace of V.

Then W itself is a vector space and hence W is closed with respect to vector
addition and scalar multiplication. Conversely, let W be a non-empty subset of V such
that

u,veW =Dutve W
and ueWandaeF = oueW
We prove that W is a subspace of V.
Since W is non-empty, these exists an element ue W.
% Ou=0ecW
Also veW = (-1)v=-veW
Thus W contains 0 and the additive inverse of each of its element.
Hence W is an additive subgroup of V.
Also ueW and aeF = aueW.

Since the elements of W are the elements of V the other axioms of a vector
space are true in W.

Hence W is a subspace of V.
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"Theorem 2.2 :

Let V be a vector space over a field F. A non-empty subset W of V is a

subspaceof V iff u,ve W and o,peF = oautpveW.

Preof :

Let W be a subspace of V.

Letu,veW and o,p € F

Then by theorem 2.1, au and fveW and hence aut+pPveW.
Conversely,

Let u,veW and o,,peF = autpveW.

. Taking a=B=1, we get u,ve W = utveW.

Taking =0, we get
ocF and ueW = aueW
Hence by theorem 2.1.

W is a subspace of V.

Examples :

1)

{0} and V are subspaces of any vector space V. They are called the trivial

subspaces of V.

2)

W = {(a,0,0)/acR} is a subspace of R’ for, let u = (a,0,0), v=(b,0,0)e W and

o,peR.

Note :

3)

Il

Then aut+pv o(a,0,0)+p(b,0,0)
= (oat+Pb,0,0)eW
Hence W is a subspace of R>.
Geometrically W consists of all points on the x-axis in the Euclidean 3 space.
In R3, W = {(ka, kb, kc) / keR} is a subspace of R>.
For if u = (ka, kb, kc)
and v = (k,a, k,b, k,c)eW and ao,feR
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Then autpv = oa(k,a, kb, k,c)+B(k,a, k,b, k,c)
= (ok,*tBk,)a, (ak,+Bk,)b, (ak,+fk,)c € W

Hence W is a subspace of R3.

Note :

X z :
Geometrically W consists of all points of the line N % =3 provided a, b, c are

‘not all zero.Thus the set of all points on a lire through the origin is a subspace of R3.
However a line not passing through the origin is not a subspace of R?, sinc the additive
identity (0,0,0) does not lie on the line.

4. W = {(a,b,0)/a,beR} is a subspace of R? W consists of all points of the xy-
plane.

5. Let W be the set of all points in R? satisfying the equation /x+my+nz=0. W is a
subspace of R3. For, let u=(a;,b;,c,) and v = (a,,b,,c,)eW and ao,peR

Then we have

la;+mb,+nc, = 0 = Ja,+mb,+nc,

Hence a(/a,+mb,+nc,)+p(/a,+mb,+nc,) = 0

(i.e.,) [(ca,+Ba,)+m(ab,+Bb,)+n(ac,+fc,) = 0

(i.e.,) au+pve W so that W is a subspace of R3.
Note :

Geometrically W consists of all points on the plane /x+my+nz = 0, which passes
through the origin.

6. Let W = {f/feF[x] and f(a) = 0}

(i.e.,) W is the set of all polynomials in F[x] having a as a root where a€F. Then
W is a vector space over F.

W observe that x—ae€ W and hence W is non-empty.
Let f,geF[x] and o,BeF

To prove that af+fge W. We have to show that a is a root of af+fg.
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Now, (af+pg)(@) = of(a)tPe(a)
= o0+p0=0
Hence a is a root of af+fg.

& af+Bge W and hence W is a subspace of F[x].

a 0
7. W= {[0 bjl/%b ER} is a subspace of M,(R).

Solved Problems :

Problem 1:

Prove that the intersection of two subspaces of a vector space is a subspace.

Solution :

Let A and B be two subspaces of a vector space V over a field F.
We claim that AnB is a subspace of V.

Clearly 0 AnB and hence ANB is non-empty.

Now, let u,ve AnB and o,peF

Then u,ve A and u,veB

% autPveA and aut+pveB (since A and B subspaces)

& autBve AnB

Hence ANB is a subspace of V.

Problem 2 :

Prove that the union of two subspaces of a vector space need not be a subspace.

Solution :

il

Let A {(a,0,0)/acR}
B = {(0,b,0)/beR}

Clearly A and B are subspaces of R? (by example 2).
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However AUB is not a subspace of R3.
For (1,0,0) and (0,1,0)e AUB

But (1,0,0)+(0,1,0) = (1,1,0)¢ AUB

Problem 3 :

Prove that the union of two subspaces of a vector space is a subspace iff one is
contained in the other. '

Proof :

Let H and K be two'subspaces of G such that one is contained in the other.
Hence either HcK or KcH.

¢o HUK =K (or) HUK = H

Hence HUK 1is a subspace of G.

Conversely, suppose HUK is a subspace of G.
We claimthat HcK (or) KcH.

Suppose that H is not contained in K and K is not contained in H." Then there
exist elements a, b such that

-acH and agK Smmm—me- (1)
beKandb¢gH e (2)

Clearly a,be HUK. Since HUK is a subspace of G, a,beHUK. Hence abeH (or)
-abek.

Case (i) :
Let abeH. Since aeH, aleH.
Hence a~!(ab) = beH which is contradiction to (2).
Case (ii) :
" Let abeK. Since bek, b'eK.

" Hence (ab)b™! = aeK which is a contradiction to (1). Hence our assumption that
H is not contained in K and K is not contained in H is false.

o» HcK or KcH. '
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Problem 4 :

If A and B are subspaces of V prove that A+B = {veV/v=a+b, acA, beB} is a
subspace of V. Further show that A+B is the smallest subspace containing A and B.
(i.e.,) If W is any subspace of V containing A and B then W contains A+B.

Solution :
Let VI,V2€A+B and oe€F
Then v,=a,+b,, v,=a,tb, where a,,a,€A and b,,b,eB
Now, vV, = (a;+b)+(a,thy)
= (a,+a,)+(b,+b,)eA+B
Also, o(a,+b,) = aa,+ob, € A+B
Hence A+B is a subspace of V. Clearly AcA+B and BCA+B
Now, let W be any subspace ot v containing A and B.
We shall prove tht A+BcW.
Let ve A+B. Then v=a+b where ac A and beB.
Since AcW, aeW. Similarly be W
atb=veW

% A+BcW so that A+B is the smallest subsi)ace of V containing A and B.

Problem 5 :

Let A and B be subspace of a vector space V. Then AnB = {0} iff every vector
ve A+B can be uniquely expressed in the form v=a+b where ac A and beB.

Solution :
Let ANB = {0}
Let v € A+B

Let v=a,tb, = a,*tb, where a;,a,€A and b;,b,eB
Then a,—a, =b,-b,

But a,—a,€A and b,~b,€B

Hence a,—a,, b,~b, € AnB
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Since ANB = {0}, a,—a, =0 and b,-b, =0 so thata, = a, and b, = b,. Hence the
expression of v in the form a+b where ac A and beB is unique.

Conversely suppose that any element in A+B can be uniquely expressed in the
form a+b where ac A and beB.

We claim that AnB = {0}
If AnB # {0}, let ve AnB and v#0
Then 0 = v—v = 0+0

Thus 0 has been expressed in the form a+b in two different ways which is a
contradiction.

Hence AnB = {0}

Definition :

Let A and B be subspaces of a vector space V. Then V is called the direct sum
of A and B if (i) A+B = V (ii) AnB={0}. If V is the direct sum of A and B we write
V=A®B. “

Note :

V=A®B iff every element of V can be uniquely expressed in the form a+b
where ae A and beB.

Examples :

1. In V,(R). Let A = {(a,b,0)/a,beR} and B = {(0,0,c)/ceR}. Clearly A and B are
subspaces of V and AnB = {0}. Also let v = (a,b,c)e V,(R).

Then v = (a,b,0)+(0,0,c) so that
A+B = V,(R)
Hence V,(R) = A®B.

a b

0 0] and B be the set of

2. In M,(R), let A be the set of all matrices of the form [

0 0
all matrices of the form [c di\. Clearly A and B are subspaces of M,(R) and
0 0
AnB= 0 0 and A+B = M,(R)

50



Hence M,(R) = A®B

3. If a,, a,, a, are fixed elements of a field F, then the set W of all ordered trials
(X1,X;,X3) of element F, such that a,x,+a,x,+a,x, = 0 is a subspace of V,(F).

Solution :

Let o = (x,,X,,X;) & B = (¥15¥2:¥;) be any two elements of w. Then x,, x,, X3,

Y1» Y2 ¥; are element of F and are such that

a1x1+a2x2+a3x3 = 0

)y tazy,tazy; = 0

If a, b be any elements of F,

We have aa+bf = a(x;,x,,%;) + b(y;,¥,.¥3)

= (ax;,ax,,ax,)+(by,,by,,by;)

= (ax,+by,, ax,+by,, ax,+by,)

Now, a,(ax1+by1)+a2(ax2+by2)+a3(ax3+by3)

o .
00

= a(a1x1+a2x2+a3x3)+b(a]yl+a2y2+a3y3)
= - a0+bo0
= 0

aotbp = {ax,+by,, ax,+by,, ax;+by, }eW

Hence W is a subspace of V,(F).

Exercise :

1. Show that the following subsets of R3 are subspaces Interpret them
geometrically.
a) {(a,0,c)/a,ceR}
b) {(a,b,c)/a=b=c}
c) {(a,b,c)/a=b+c}
d) {(a;b,a+b)/a,beR}
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2. Show that the set of all polynomials in R[x] having atleast one rational root is
not a subspace of R{x].

3. Let W be a subspace of V and U be a subspace of W. Then show that U is a
subspace of V.

4. Show that each of the following subsets of V,(R) is not a subspace.
‘ ) S={(xyz)/xHy2+z2<1)
11) S = {(x,y,2) / x+y+z = 1}

ii1) S={xy,z)/x>2y=z}

Theorem (U.Q) 2.3 :

: A"
Let V be a vector space over F and W a subspace of V. Let W {W+v/veV}.

Then W is a vector space over F under the following operations

i) (W+v)HW+v,) = Wy, +v,
il) a(W+v,) = W+'0w1
Proof :

Since W is a subspace of V it is a subgroup of (V, +). Since (V, +) is abelian, W
is a normal subgroup of (V, +) so that (i) is a well defined operation.

Now, we shall prove that (ii) is a well defined operation.
Wtv, = W+v, = v-v,eW
= o(v,—v,)eW (since W is a subspace)
= av,—ov,eW
= av,e W+av,
= W+tav, = W+av,

Hence (ii) is a well defined operation.

\'%
Now, let W+v1, W+v,, Wtv, € W
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Then (W+v1)+[(W+V2)+(W+V3)] = (W+v1)+(W+v2+v3)
= (W+v )+(W+v,+v;)
= W+tv,tv,+v,
= (W+V1+V2)+(W+V3)
= [(WHv))H(W+v )] H(W+vy)

Hence '+' is associative.

v
W+0 =W e Wis the additive identity element.

For (WHv yH(W+0) = Wy,
' = (WH+0)+(W+v ) V v,eV
Also VV——V1 1s the additive inverse of WHv,.

Vv
Hence W 1s a group under +.

Further (W+v ) +(W+v,) = Wy, +v,
‘ = Wiy, v,
= (WHv,)+(W+v )
Hence —\YV_ is an abelian group. Now, let o, eF.
[(WHv ) +H(W+v,)] = a(W+v, +v,)
= Wia(v,+v,)
= Wtav,+tav,
= (WHav ) )+(W+av,)
= o(WH+v ) +ra(W+v,)
(a+BYWHv,) = WHa+B)v,
= Wtav,+Bv, '
= (W+ocv])+(W+BV1)
(a+BY(W+v) = a(W+v)+B(W+v,)
a[B(W+v)] = a(W+Bv))
= W+afv,
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a(W+v)] = (aB)(W+v))
1(W+v)) = W+l.v,

= W+Vl

A"
Hence W 1S a vector space.

\Y
The vector space W is called the quotient space of V by W.

2.2. LINEAR TRANSFORMATION

Definition :

Let V and W be vector spaces over a field F A mapping T:V—>W is called a
homomorphism if

1) T(u+v) = T(u)+T(v) and

i1) T(au) = aT(u) where aeF and u,veV.

A homomorphism T of vector spaces is also called a linear Transformation.
i) If T is 1-1 then T is called monomorphism.
11) If T isonto then T is called an epimorp!ﬁsm.
1i1) If T is 1-1 and onto T is called an isomorphism.

iv) Two vector spaces V and W are said to be isomorphic if there exists an
isomorphism T from V to W and we write V=W.

V) A linear transformation T:V—F is called a linear functional.

Examples :
1. T:V—\%W defined by T(v) = 0 VveV is a trivial linear transformation.

2. T:V—V defined by T(v) = v VveV is the identity lienar transformation.
3. Let V bé a vector space over a field F and W a subspaceof V. Then T:V—a—\-\;-
defined by T(v) = W+v is a linear transformation for
T(v,+v,) = WH(v,+v,)
= (Wtv )H(W+v,)
= T()+T(v,)
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Also T(av,) = W+tav,
= a(W+v) =aT(v))

This is called the natural homomorphism from V to —.

%

Clearly T is onto and hence T is an epimorphism.
4, T:V,(R)>V,(R) defined by

T(a,b,c) = (a,0,0) is a linear transformation.
5. Let V be the set of all polynomial of degree < n in R[x] including the zero

df
polynomial T:V—V defined by T(f) = o is a linear transformation.
’ 8) dx dx dx
= T(H+T(g)
d(af) df
/ = = QL ~— =
Also T(af) i ™ aT(f)

6. Let V be as in Example 5. Then T:V—V__,(R) defined by T(a,+a x+....+ax") =
(ag;5.....a,) is a linear transformation. ‘

For, Let f = ajtax+.... +a _x" and
g = bytbx+.... b x™
Then ftg = (agtby)H+(a,+b )x+.....+....(a +b )x"

T(E+g) = ((a,+by).(a,+b))sm-...(a,+b,))

T(f+g) = T(H+T(g)

Also T(af) = (oay, oag,....ca)
= o(apape.... ,a,)
= aT(f).
Clearly T is 1-1 and onto and hence T is an isomorphism.
7. Let V denote the set of all sequences in R.
T : VoV defined by T(a,,a,,.....,a,,..;..) = (0,a,,a,,...... ,a_,....) is a linear
transformation.
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8. T:R2>R? defined by T(a,b) = (2a-3b, a+4b) is a linear transformation.

Let : u = (a,b)and v=(_c, d)and aeR.
S T(utv) = T((ab) + (c,d)
= T(atc, b+d}

= (2(at+c)-3(b+d), (a+c)+4(b+d))
= (2a+2c-3b-3d, atc+4b+4d)

= (2a-3b+2c-3d, a+4b+c+4d)

= (2a-3b, a+4b)+(2c-3d, c+4d)
= T(a,b)+T(c,d)

oo T(utv) = T)+T(v)
Also T(au) = T(o(a,b))
= T(aa, ab)

= (2aa-3ab, aat+4ab)
= a(2a-3b, at+4b)
= oT(a, b)

T(au) = aoT(u)

oo T 1s a linear transformation.

Theorem 2.4 :
Let T:V—>W be a linear transformation.

Then T(V) = {T(v)/veV} is a subspace of W.

Proof :

Let w, and w,eT(V) and aeF. Then there exists v ,v,eV such that T(v,)=w,
and T(v,) = w,.

Hence w,tw, = T(v)+T(v,)

= T(v;+v,)eT(v)
Similarly aw, = oT(v))

= T(av,)eT(v)

Hence T(v) is a subspace of W.
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Definition :

Let.V and W be \}qctor spaces over a field F and T:V>W be a linear
transformation. Then the Kernal of T is defined to be {v/veV and T(v)=0} and is
denoted by Ker T. '

Thus Ker T = {v/veV and T(v) = 0}

Example :
1. T:V>W defined by T(v) = 0 V veV is trial linear transformation.
o KerT=V.
2. T:V—V defined by T(v)=v VveV is the identity linear transformation. Ker T={0}

Note : Let T:V—>W be a linear transformation. Then T is a monomdrphism iff Ker
T={0}.

3. Let V be the set of all polynomials of degree < n in R{x] including the zero
polynomial T:V—V defined by T({) = = is a linear transformation.
d(f+g) df dg
For, T(f+g-) dx dx dx T(O+T(e)
~ d{af) df
= —tee = (f ——— = T
Also T(at) I = 43

oo T:V—>W be a linear transformation Ker T is the set of all constant
polynomials. '
(U:Q) Theorem 2.5 : (Fundamental Theorem of homomorphism)
Let V and W be vector spaces over a field F and~I:V—>W be an epimorphism.
Then i) Ker T = V, is a subspace of V and

v
Proof :
i) Given V, = KerT
= {v/veV and T(v) = 0}
Clearly  T(@©) = 0
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Hence O Ker T=V,

& V, is non-empty subset of V.

Let u,veKer T and o, eF |

& T(u) = 0and T(v) =0

Now T(au+pv) = T(au)+T(Bv)
= oT()+PT(v)
= al0+po

T(outpv) = 0

cutpveKer T.

By the theorem :

Let V be a vector space over a field F. A non-empty subset W of Visa
subspace of V iff u,veW and a,peF = aqutfveW.

Ker T is a subspace of V.

.y’ ’ . v
ii) We define a map ‘f’-"\}‘l" — W py OV +v) = T(v).

¢ is well defined.

Let Vitv = Vi+w

oo v € V,*w

oo v = v ,+w where v,eV,

oo T(v) = T(v,+w) = T(v)+T(w)

= 0+T(w) = T(w).
& SV, +v) = &(V,+w)

OV, +V) = (VW)
= T(v) = T(w)

= T(V)-T(w) =0
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= TWV)+T(—w) =0
= T(v—w) =0
= vweKerT=V,
= veV,+w
= V,+v=V +w
¢ is onto :
Let weW

Since T is onto the.¢ exists veV. Such that T(v) = w.
oo o (V+v) = w
O (Vi +v) = W
¢ is 2 homomorphism.
IV +V)HV +w)] = ¢[V,+(v+w)]

= T(v+w)

= T(V)+T(w)

= OV, +V)H(V W)

Also ola(V,+v)] = o(V,tav)
= T(av)
= aT(v)
= aT(V,+v)
- . V
oo ¢ is an isomorphism from —V_l onto W.
. v
o0 Vl =y W

Theorem 2.6 (U.Q) :
Let V be a vector space over a field F. Let A and B subspaces of V. Then

A+B B

————————

~

A ANB
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Proof :
We know that A+B is a subspace of V containing A.

A+B .
A is also a vector space over F.

Hence

A+B

An element of is of the form A+(a+b) where ac A and beB.

But A+ta= A

B
Hence an element of is of the form A-+b.

A+B

Now, consider f:B—> defined by f(b) = A+b.

Clearly f is onto.

Also f(b,+b,) = A+(b,+b,)
= (A+b))+(A+b,)
f(b,+b,) = f(b)+i(b,)
and flab,) = A+ab,
= a(Atb,)
= of(b,)

Hence f is a linear transformation.

Let K be the Kernel of f.

Then K = {b/beB, A+tb=A}
Now, A+tb = AiffbeA
Hence K = ANnB
By the Fundamental theorem of homomorphism.
B A+B
ANB A

Theorem 2.7 :

Let V and W be vector spaces over a field F. Let L(V,W) represent the set of all
linear transformations from V to W. Then L(V,W) itself is a vector space over ¥ under
addition and scalar multiplication defined by

(frg)(v) = f(v)tg(v)
and (af)(v) = oaf(v)
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Proof :
Letf, g € L(V,W) and v,,v,eV.
Then (f+g)(v,+v,) = f(v,+v,)+g(v,+v,)
= f(v)+H(v ) +rg(v)+e(vy)
= f(v)rg(v)H(vy)+e(vy)
= (frg)(v)H(f+g)(vy)
Also (f+g)(av) = flav)tg(av)
= af(v)+ag(v)
= a[f(v)*+g(v)]
= a(f+g)(v)
Hence (f+g) € L(V,W)
Now, (af)(v,+vy) = (af)(vt(ah(vy)
= af(v))taf(v,)
= aff(v))+(v,)]
= oaf(v,+v,)
Also (aD(Bv) = off(Bv)] = a(B(V))
= Blaf(v)] = BU(aH(M)]
Hence afe L(V,W)
Addition defined on L(V,W) is obviously commutative and associative.

The function f:V—>W defined by f(v)=0 for all veV is clearly a linear
transformation and is the additive identity of L(V,W).

Further (—f):V—>W defined by

(-DH(v) = —f(v) is the additive inverse of f.

Thus L(V,W) is an abelian group under addition.

The remaining axioms for a vector space can be easily verified.

Hence L(V,W) is a vector space over F.

Exercises :

1: Let V and W be vector spaces over a field F. Show that a mapping T:-V—>W is a
linear transformation iff

T(ov,+Bv,) = aT(v )+BT(v,) for all v,,v,eV and a,BeF.

61



2. Find the Kernel of the following linear transform.ations.

i) T:V,(R)->V,(R) defined by

- T(XpXpX5,X,) = (%,,0,X5;0)
i)  T:V4(R)->V,(R) defined by
T(a, b, c) = (a, b, 0)

3. Pro;e that T:V,;(R)>R defined by T(x,y,z) = x*+y2+z2 is not a linear
transformation.
Answers :
2. . (i) Not 1-1, not onto; Kernel {0, a, 0, b) / a,beR}

(ii) Not 1-1, not onto; Kernel {(0, 0,c)/ ceR}

2.3. MATRIX OF A LINEAR TRANSFORMATION
Definition :
Let V and W be finite dimensional vector spaces over a field F.
LetdimV=nianddimW=n.

Fix an ordered basis {vi»Vp,....v} for V and an ordered basis {w,wy,...,w 3 for
W. '

Let T:V5>W be a linear transformation. We have seen that T is completely
specified by the elements T(v,), T(v,)..... T(v_).

m:
Now, let
T(v)) =a;,wta ,wyto..... +a, W 1
T(v,) = a,, W, +a,, W+, +a, W_
...................................................................... } -omemee(1)
T(vy) =a ,wta W t............. 3nWa
Hence T(v,), T(v,)..... T(v_) are completely specified by the mn elements a; of

th field F. These a;; can be conveniently arranged in the form of m rows and n columns
as follows :
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(a;1 app .. ayg |
3] ayp .. agy,
4ml 4m2 .- @mn |

Such an array of mn elements of F arranged in m rows and n columns is known
as mxn matrix over the field F and is denoted by (aij). Thus to every linear
transformation T there is associated withit an mxn matrix over F.

Conversely, any mxn matrix over F defines a linear transformation T:V—>W
given by the formula (1).

Note :

The mxn matrix which we have associated with a linear transformation T:V—W
depends on the choice of the basis for V and W.

For example, consider the linear transformation T:V,(R)>V,(R) given by T(a,b)
= (a,atb).

Choose {e, €,} as a basis both for the domain and the range.
Then T(e)) = (1, 1) = e, +e,
T(ey) =(0,1) =e,

1 1
Hence the matrix representing T is ,:O J.

Now, we choose {e,, e,} as a basis for the domain and {(1,1), (1, =1)} as a basis
for, the range.

Let w, = (1, 1) and w, = (1, -1).

Then T(e)) = (1, 1) = w,, and T(e,) = (0, 1) = (%)Wl —(%)WZ

1 0
Hence the matrix representing T in L/z _1/2:]

Solved Problems :

1. Obtain the matrix representing the linear transformation T:V,(R)—>V,(R) given
by T(a,b,c) = (3a, a-b, 2a+b+c) w.r.t. the standard basis {e, e, e}
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Solution :
T(e,) = T(1,0,0) = (3,1,2) = 3e,+e,*2e,
T(e,) = T(0,1,0) = (0, -1, 1) = —e,+e,
T(e;) = T(0,0,1) = (0,0,1) = e,
31 2

Thus the matrix representing T is 0 -11
0 0 1

2. Find the linear transformation

1
T : V3(R)—>V,(R) determined by the matrix 01

w.r.t. the standard basis

w = N
i

{e}s €, €3}

Solution :
T(e,) = e +t2e,te;=(1,2,1)
T(e,) = Oe,te,+e;=(0,1,1)

T(e,) = -e,+3e,+de;=(-1,3,4)
Now, (a, b, c) = a(l, 0, 0)+b(0, 1, 0)+c(0, 0, 1)
= ae tbe,tce,
o T(a, b, ¢} = T(ae,+be,+ce,)
= aT(e,)+bT(e,)+cT(e,)

= a(1,2,1)+b(0,1,1)+c(-1,3,4)
T(a, b,c) = (a—c, 2a+b+3c, atb+4c)

o This is the required linear transformation.

Exercises :
1. Obtain the matrices for the following linear transformations.
a) T:V,(R)>V,(R) given by T(a,b) = (-b, a) w.r.t.
i) standard basis

i1) the basis {(1, 2), (1, —1)} for both domain and range.
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b) T:V;(R)—>V,(R) given by T(a, b, c) = (a+b, 2c—a) w.r.t.
i) standard basis
ii) {(1,0,-1), (1, 1, 1), (1,0,0)} as a basis for V,(R) and {(0,1) (1,0)} for
V,(R). B '
2. Obtain the linear transformation determined by the following matrices.
. [cos® —sinB .
a) T:V,(R)—>V,(R) given by sin®  cosd w.r.t. the standard basis.
fa b ¢
b) T:V,(R)>V,(R) given by b c a w.r.t. the standard basis.
c a b
2 1 -1 _
c) T:V,(R)=>V,(R) given vy Ll 1 -1 w.r.t. the standard basis.
Answers :
S [r s
101 N 3 3
L @ @], |2 1
3 3
1 1 -3 1
® @ ° ajf' 2
0 2 -1 1
2. (a) T(a, b) = (acosB+bsin0, -asinB+bcosO)
(b)  T(x,y, z) = (axtby+cz, bx+cy+az, cx+ay+bz)
(c) T(a, b) = (2a+b, atb, —a-b)
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LINEAR ALGEBRA UNIT - 3

MATRICES

In this chapter we shall develop the general theory of matrices. Throughout this

chapter we deal with matrices whose entries are from the field F of real or complex
numbers.

3.1. ALGEBRA OF MATRICES

Definition :

Let F be an arbitrary field. A rectangular array of the form

-

-all aij2 ... 31n

a1 ap .. A
_aml am2 e amn_

.where the a, are scalars in F, is called a matrix over F or simply a matrix.

The above matrix is also denoted by

(aij), i=12,... ,Jm, j = 1,2,.....,n or simply by (aij)

(@115 aypseeeenndy)s (851585550000ne : D) IO (81> 8pse-eeee a_ ) are the rows of the
matrix, and the n vertical m-tuples.

(a11) (a2 ) (ajn )
a1 a2 a2n
: : are its column.

kaml) \3m2 / \2mn )

Note that the element a, called the ij - entry or ij. - component, appears in the i
row and the j* column.

A matrix with m rows and n column is called an m by n matrix, or mxn matrix;
the pair of numbers (m, n) is called its size or shape.

If m =n, A is called a square matrix of order n.
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Definition :

Two matrices A = (a;) and B= (b;;) are said to be equal if A and B have the

same number of rows and columns and the corresponding entires in the two matrices

arc same.

3.2. MATRIX ADDITION AND SCALAR MULTIPLICATION

Definition :

Let A and B be two matrices with the same size. (i.€.,) the same number of rows
and columns, say mxn matrices.

[a;]  app
ay]  a

A —
 Aml  qAm2

.
a1n

a2n

aAmn _

[ b;]  byp
by b2a

and B =
_bml bm2

.

The sum of A and B, written A+B, is the matrix obtained by adding

corresponding entries.

[aj1+by;  ajp+bpo
ap1+bpy;  app+bx

A+B =

lam1+bml @m2 +bm2

Example :

1 3] 2
IfA= 25 and B = 13

g8 7 0 -1

3
Then A+B = | 3
8

ajn +bin ]

ayn +ban

amn +bmn

The product of a scalar k by the matrix A, written k.A or simply kA, is the
matrix obtained by multiplying each entry of A by k :
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i ka1 1 ka12 kaln ]
ka ka ... ka
LA = | B2l ka2 2n
(ka1 kapy ... Kkapy |

We also define —A = -1. A and A-B = A+(-B).
Note 1 :

A-+B and kA are also mXxn matrices.

Note 2 :

The sum of matrices with different sizes is not defined.

3.3. MATRIX MULTIPLICATION

Definition

Let A = (aij) be an mxn matrix and B=(bij) be an nxp matrix. We define the
product AB as the mxp matrix (Cij) where the ij'" entry Ci is given by

n
= B b
Cij - ai1b1j+aizb2j+ .......... -1-aint)nj = kzzlalk Kj

Note 1 :

The product AB of two matrices is defined only when the number of columns of
A is equal to the number of rows of B.

Note 2 :

The entry C;; of the product AB is found by multiplying i row of A and the j®

column of B. To multiply a row and a column. We multiply the corresponding entries
and add. ‘ ‘

Examples :

1 =2 4 01 0
1 LetA=|3 9 2|aaB=|"1 3 3| Find AB.
7 4 3 0.0 1
1 -2 41[0 1 0 2 -5 10

7 4 3110 0 1 -4 19 -9
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2. Let A= and B =

—_ O
S N O
S = N
— e

Pk (YD b ek
O N W e

A is a 3x4 matrix and B is a 4x2 matrix. Hence the product AB is a 3x2 matrix

and
1023_11-
021115
AB = 3 2
1 0 0 1

—10-

10 5§

_ |6 12

2 1

Note that in this example the product BA is not defined. Even if the product BA
is defined, AB need not be equal to BA. ‘

2 31

[y
(9% )
P8

3. Let A =

Then Al=IA = A

Al

i
[am—
W
S
(=
[an—y
R

i




1 0 0]f2 3 1
A = (01 0f|l1 3 4
0 0 1]{0 2 1
"2 3 17
_ |1 3 a4
0 2 1]
o AI=1JA=A
4. Consider the square matrix of order n given by
(1 0 0 .. 0]
0 1 0 ... O
I =
0 0 0 ... 1]

Let A be any mxn matrix. Then I A = A.
Also if A is an m>n matrix, Al = A

If A is any nxn matrix, Al =T A=A

In is called the identity matrix of order n.

We shall denote the identity matrix of any order by the symbol 1.

Solved Problems :

1 2

2
2

1.

IfA=|2 1

2 2

Solution :

show that A2—4A-51=0

1 2 271 2 2
AZ_.AA=21221-2
2 2 2ii2 2 2

10
8 9 10
10 10 12

i
7
\©
o0
. J
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} satisfies the equation A(A-I)(A+2I)=0.

51

=0

A2-4A-51

o
- o0

-3 1
1 3
-5 2 -4

[i

Show that the matrix A

2.

Solution :

S O o~

-3 1
3
—4

1

2
3
-5 2

A-1
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Now,

AAINA+2D) = |3 1 3{|3 o 3{|3 3 3

Hence A(A-TI)(A+2I) = 0.

A 1P |ar mnd
3. Prove that o 2l 1o a0

Solution :

We prove this result by induction on n. When n = 1 result is obviously true.

Let us assume that the result is true for n = k.

) A 17K 2k k-]
oo 0 7\‘ = I_O 7\,k ]
) r 1T 1 [k kxk”lq[?» 1]
°° 0 A/{0 a] = o Ak jlo a
- I 0 }\‘k-i—l |
K (4 1)k
= ! 0 KkH

oo The result is true for n = k+1

Hence the result is true for all positive integers n.
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Exercises :

1. Write down six pairs of matrices A and B such that the product AB is defined
and in each case compute the product AB and also define & compute BA.

2. Show that if A is an mxn matrix, then AB and BA are both defined iff B is an

nxm matrix.

3. If A and B are two matrices such that AB and A+B are both defined, show that

A, B are square matrices of the same order.

1 5 3 01 2
4. LetA=|0 2 -1{ andB={0 2 3| compute A, B2, AB and BA.
1 0 -2 1 31
1 0 2 |
5. IfA=|0 2 1} prove that A>~6A2+7A+2I1=0
2 0 3

_ 3 4 . 1+2k -4k o
6. Prove that if A = 1 -1/ then A* = K 1-2k for any positive integer k.

Theorem 3.1 :

Let A be an mxn matrix, B an nxp matrix and C be an pxq matrix. Then A(BC)
= (AB)C.
Proof :

Let A = (ay), B = (b)) and C = (Cy). Let us find the rs® entry in A(BC).

The r row in A is a_1,2 5,.0eee0s@ .
The st column in BC consists of the elements Ebljcjs,......,anjch. Hence the rs®

entry in A(BC) is arlEbljcjs+ ....... +am2bnjcj ]

n p
= 285 2 biCjs
=1 j=1

n P
= X Z arbjcjs
i=1j=1
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Let us now find the rs™® entry in (AB)C.
The ' row in AB is
Zasb,, Za b,,,........ Ean.bip

The s™ column in C is ¢, Cpye-e.e.. ,C

Hence the rs® entry in (AB)C is

Thus A(BC) = (AB)C.

Theorem 3.2 :

Let U,V,W be vector spaces of dimensions m,n&p respectively over a field F
with respective bases {u,u,,....u_}, {VipVp-ov, b and {wl,wz,....,w }.

Let T, U——>V and T,:V—>W linear transformatlons and M(T,) and M(T,) their
corresponding matrices with respect to these bases.

Then M(T,T,) = M(T )M(T,)

Proof :

M(T,) and is an m*n matrix and M(T,) is an nxp matrix. Hence the product
M(T,)M(T,) is defined and is an mxp matrix.

Let M(T)) = (a)
and M(T,)) = (bij)
n
Then, T,(u) = JElﬁ‘ij"j
and T (V) = Z b wi
2( J) k=1 J

(T, T)w) = 12 J

I M

;v
lJJJ

= L aTy(v))
J=1
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n p
= 235 X bjWk
=1 k=1

n P
= £ % (agbji)wi)
j=1k=1
Thus M(T,*T,) = M(T,)M(T,)
Note 1 :

Thus multiplication of two matrices is equivalent to the composition of their
corresponding linear transformations in the reverse order. Since composition of linear

transformation is associative we get matrix multiplication is associative.
Note 2 :

Let M_(F) denote the set of all square matrices of order n over the field F. Then
matrix multiplication is an associative binary operation on M_(F). If A, B, CeM(F) the
two distributive laws.

A(B+C) = AB+AC and (A+B)C = AC+BC can be verified.
Since M_(F) is already an abelian group under matrix addition we see that M (F)

is a ring.

Solved Problems :

1. Find for what values of x will
2 1 0)|x

{(x 4 1)1 0 2|[4] _
0 2 4i|1

Solution :

[210x‘

(x 4 1)1 0 2(l4] _ 4
0 2 4]|1]
2% +4 |

(x 4 1) x+2 | _
12 |
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2x%2+4x+4x+8+12 = 0

2x2+8x+20 =
X2+4x+10 = 0
< = —4+16-40
2
4424 -4+i26
= = = 2+iJ6
2 2
oo X = _211.‘[6
m 1 2
2. If the determinant | -1 0 3| of this matrix is 7. Then Find the value of m.
5 -1 4
Solution :
m 1 2
-1 0 3 _ 7
5 -1 4
m(3)-1(—4-15)+2(1) = 7
3m+19+2 = 7
3m = 7-21
3m = -14
o _ Cl4
oo m = 3
Exercises :
-1 0 1 0
- 1 -1 1 0 1 -1 0 1
1. Using A = » B = , C= test the associative law
5 0 1
: 1 1 1 1 1
A(BC) = (AB)C for matrix multiplication.
2 1 31
2. Compute (2 1 3)j4 -1 2|2
0 1 11|14
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1
3. Find for what values of x will X 2)\: x|=0
2

‘ 1 0 O 1 0 O 1 3
4. Giventhat [0 2 0 JAl0 0 1|=|4 5 4] find the matrix A.
0 0 -3 010 3 2 1

3.4. THE TRANSPOSE OF A MATRIX

Definition :

Let A = (g ) be an mxn matrix. Then the nxm matrix B = (b, ) where b = a; 1S
called the transpose of the matrix A and it is denoted by AT. Thus AT 1s obtalned from
the matrix A by interchanging its rows and columns and the (i, PP entry of AT = (j,i)t
entry of A.

For example,

2 0

1 3 4 5 3 31
HA=12 3 1 2{thenAT=|4 1 2
0120 s 2 o

Clearly if A is an mxn matrix, then AT is an nxm matrix.

Theorem 3.3 :
Let A and B be two mxn matrices. Then (i) (AN)T=A (ii) (A+B)T= AT+BT.

Proof : .
(1) The (i, j)® entry of (AT = (, i;‘h entry of AT
= (i,j) entry of A
(AT)T = A
(ii)  The (i,j)® entry of (A+B)T= (j, i)™ entry of A+B
= (j, )™ entry of A+(j, i) entry of B
= (i, j)™ entry of AT +(i, j) entry of BT
= (i, )™ entry of (AT+BT)
o (A+B)T = AT+BT,
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Theorem 3.4 :

Let A be an mxn matrix and B be an nxp matrix. Then (AB)T = BTAT.

Proof :

By hypothesis AB is defined and it is an mxp matrix. Hence (AB)T is a pxm
matrix.

Further BT is a pxn matrix and AT is an nxm matrix.
Hence, the product BTAT is defined and it is a pxm matrix.

Now, Let A = (aij), B = (bij) and AB = (cij).

n
The (i, )™ entry of AB = ¢, = k§laikbkj

n
& The (i, j)™ entry of (AB)T = c;; = k§1ajkbm

Now the i row of BT is the it" column of B and it consists of the elements
IR TR ,b_.. Also the j™ column of AT is the j® row of A and it consists of the

elements A1589500eenns 8-

Hence the (i, j)® entry of
BTAT

bliaj l+b2iaj2+ ------ +b 'a‘

I

n
= 2 birajk
k=1

= (i, j)® entry of (AB)™.
Hence (AB)T = BTAT,
Definition :

Let A = (aij) be a matrix with entries from the field of complex numbers. The

conjugate of A, denoted by A, is defined by A = (a—lj)

AT is called the conjugate transpose of the matrix A.

For example,

3 241 1+1 . 3 2-1 1-1
WA=140 2 142 A=140 2 _1-2i)
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Solved Problem :

2i
1+1
3

1. Let A =

3+41
1—-1
2i

0

1| ndB=

4

Find AT BT AT AT BT BT, (A +B)T, AT+BT,(aB)",BTAT.

Solution :

(A+B)T

AT+B T

(AB)T

BT AT

Note : (AB)T = BTAT, (A+B)T = AT+BT.

-

2i
S5+41
6

1+1

5-1
6+1 6

21 |-

[ —3—4i
-1+31
| 8-2i

[ 341
12 +20i
_18+36i

12+ 201
.6—2i
6+ 81

—-1+31
6—2i
12 + 21

0
BT = |2
6
[0
’ 5T _ |2
6
[0
., BT = |2
6
2i i s
_|5+4i 5-1 2i
6 6+1 6
18+36i1F [ -3-4i
12+42i | _|12+20i
26+12i| |18+36i
8—2i |
6+ 81
26+12i_
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Theorem 3.5 :

Let A and B be matrices with entries from C. Then

i (A=A

(i) A+B=A+B

(iii) kA =kA, where k €eC

(iv) A=A & all entries of A are real

(v) AB= AB provided AB is defined
vi) (@) =AT

The proof of the above results are immediate consequences of the corresponding
properties of complex numbers.

Exercises :

1. “LetA=

— = BN
w N W
—_— O W
[ (ST \ B )
(VSIER VS B

1
and B = 1
4

Find AT, BT, (A+B)T (AB)T and BTAT.

3 2+1 1 1 -1 0
2. LetA=|1"1 1+2i 0| ;pgp=|0 3 2
4 21 3 2 5 2

Find A, AT B, AB, AB, AY,B’,A'B and AB'.
3.5. THE INVERSE OF A MATRIX

a b -
A 2x2 matrix A = \:c dj‘ has an inverse iff |A| = ad-bc#0 and the inverse of A

11d -b
is given by m[_c a ] Such matrices are called non-singular. In this section we shall

describe the method of finding the inverse of any non-singular matrix of order n.
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Determinants :

The determinant of a squase matrix A, denoted by det A or |A], is a scalar. If the
matrix is written out as an array of elements, then its determinant is indicated by
replacing the brackets with vertical lines.

For 1x1 matrices,
det A = |a,,| = a;;.

For 2x2 matrices,

211 312
a1 a2

det = ajjag) —ajpay]

Determinants for nxn matrices with n>2 are calculated through a process of
reduction on and expansion utilizing minors and co-factors, as follows.

Definition :

Let A = (aij) be an nxn matrix. If we delete the row and the column containing
the element a; we obtain a square matrix of order n—1 and the determinant of this
square matrix is called the minor of the element a; and is denoted by M;;.

The minor M;; multiplied by (~1)™ is called the cofactor of the element a; and

j
is denoted by A
o = i+
o> Ay = (D" M,

Example :
a1 212 3413
Let A = | 221 222 a3
a3] a32 a33

Corresponding to the 9 elements a.,, we get 9 minors of A.

ij?

: , a2 223 : :
For example, the minor of a;; is M, = a3, a3 and the minor of a,, is M,; =
a1 212
a3y a3z

The cofactor of a;, is A, = (-1)2 M, =M,

The cofactor of a,, is A,; = (1) M,; =-M,,

81



01 2
If A= |3 % 5 then|a|=1
6 7 8

!
=)

Al =

6 7
= 0-1(24-30)4+2(2124) = 66 =0

Definition :
A square matrix A is said to be singular if |A] = 0.

A is called a non-singular matrix if |A] = 0.

'Remark :

The rule for multiplying two matrices is same as the rule for multiplying two
determinants.

Hence it A and B are two nxn matrices [AB| = |A| |B]

Theorem 3.6 :

The product of any two non-singular matrices is non-singular.

Proof :

Let A and B be two non-singular matrices of the same order. Then |A|»#0 and
|BJ0.

% |[AB|=[A| |B| # 0
Hence AB is non-singular.

Note : Sum of two non-singular matrices need not be non-singular. For, if A is any
non-singular matrix then —A is also a non-singular matrix and A+(—A) is the zero
matrix which is obviously a singular matrix.

Definition :

Let A = (aij) be a square matrix. Let Aij denote the co-factor of a;. The
transpose of the matrix (Aij) is called the adjoint or adjugate of the matrix A and is
denoted by adj A.

‘Thus the (i, j)™ entry of adj A is A,;.

Note : If A is a square matrix of order n then adj A is also a square matrix of order n.

AN
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Examplé :

1 0 2
Let A = 3.1 -1
-2 1 3
1 -1
Then A, = 1 3 =4
3 -1
A, = T2 3 = -7

Similarly other co-factors can be calculated and we get

(A1 Az A3 4 2 -2
adj A = |A12 A Az |_|-7 7 7
A1z Az3 Asj 5 -1 1

't 0o 214 2 27 [14 0 0
A (adj A) = 3 1 -1{y|-7 7 7]|_]0 14 0
2 1 3]|5 -1 1 |0 0 14

4 2 2701 0 2 14 0 O

@dimA = |=7 7 7|3 1 -1/_|0 14 0
|5 -1 121 3] [0 0 14
& A (adj A) = (adj A) A

Theorem 3.7 :

Let A be any square matrix of order n.

Then (adj A)A = A(adj A) = |A|I where I is the identity matrix of order n.

Proof :

The (i, j)** element of (A (adj A))

ajkA jk
1

0 if i#

— llA]ifi=j

i
T Mo
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1Al 0 ... 0]
0 |A] .. O
ARy Ay =1
0 0 .. |A[]
= |AJT

Similarly, (adj A)A = |A| 1
Hence (adj A)A = A(adj A) = |A| L

Note :
1
Suppose |A| # 0. Now, consider the matrix B = m adj A.
Then AB = A[——l—(adj A)]
A
ILNONSTIN JIRLE)Y) S

|A] |A]

Similarly BA = 1

Thus AB=BA =1L

Definition :

Let A be a square matrix of order n. A is said to be invertible in there exists a
square matrix B of order n such that AB = BA =1 and B is called the inverse of A and

is denoted by A1,

Note :

The invertible matrices are precisely the units of the ring M_(F).

Theorem 3.8 :

A square matrix A of order n is non-singular iff A is invertible.

Proof :
Suppose A is invertible.

Then there exists a matrix B such that AB=BA =1.
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Hence |AB]| = |I]

oo IA' IBI =1

=1

Hence |A| # O so that A is non-singular.

Conversely, let A be non-singular. Hence |A[#0.

Now, Consider the matrix B = m

Then AB = BA =1

1

adj A

oo A is 1nvertible and B is the inverse of A.

Solved Problems :

1. Compute the inverse of the matrix A =

Solution :

Al =712

2

5

-1
6
—2

1
-5
2

=1

Since |A| # 0, A 1s non-singular.

Hence A~! exists and is given by A~1 =

Now, we find adj A =

A1 Az Az

Azy A3zp |
A1z Apz Asjz

Ao

adjA
|Al

Where Aij, (i, 3 = 1,2,3) are cofactors of a;.

All

A13

6
—2

)

"A
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2 1 2 -1
Ap = |5 o =-L Ap = Tls o =-1
-1 1 2 1
e TR RN b B = 5 _5 =
2 -1
Ay = g5 6|3
2 0 -1
Hence adj A = > -1 =5
0 -1 -3
2 0 -1 -2 0 1
ooo A-l —_ '11— 5 "‘1 —"5 —_ ’—5 1
0 -1 -3 0 1
1 1 1
i - - 1 o o2
2) If w = €273 find the inverse the matrix A =
1 o2 o
Solution :
We note that o® =1
1 1 1
2
A} = 1»°°2 O = (0%af)-1(0-0d)+]1(0—o)
1 o o

2_p—0+02+mn2—on

= 30230 = 3(0*-on)

= @

adj A
|A

Since |A| = 0, A is non-singular. Hence A~! exists and is given by A~! =

ol-0 0l-o 032—03_1 .

21 g2
Now, adj A = |[© 70 o-1 l-o

002-—00 - o-1
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3)

Show that a square matrix

Solution :

4)

Suppose A is orthogonal .

& | IAAT| = 1]
oo |A] |AT]
o |A] |A]
& A

co A_l eXiStS.

Now, A I(AAT
2 (A-1A)AT
oo IAT
ooo- AT
Conversely, let AT
Then AAT = AA-!
Similarly, ATA

Hence A is orthogonal.

—coz—(o 02 —o
= 1 coz—co w-—1
3(0)2—co) mz_m l_mz
o ) o
— 1 ® 1 -1—-w
30 o -l-o 1

A is orthogonal iff A~1 = AT,

Then AAT =1
= 1
= 1
= 1

0 —o
1—032
o-—1

# O and hence A is non-singular.

= Al

Show that a square matrix A is involutory iff A = A1

Solution :

Suppose A is involutory. Then A2 =1

~ Hence |A?]|

<o |AZ] = |A] |A]

= 1
= 1
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oo |A| # 0 and hence A is non-singular.

& A1 exists.

Now, A1(AA) = A
(A-IA)A = A

IA = Al

A = Al

Conversely, let A = Al

Then AZ=AA-AA1l = 1

o A is involutory.

Theorem 3.9 :

Let V and W be vector spaces of dimension n over a field F with bases
ViV, o and w,w,,....w_respectively. Then a linear transformation T:V—>W is non-
singular iff the associated matrix is non-singular.

Proof :

Let T:V—>W be a non-singular linear transformation.

Then T is 1-1 and onto.
Hence T-1:W—V is also a linear transformation.

Let A and B be the matrices representing the linear tranformations T and T-!
with respect to the chosen bases. '

By theorem 3.2 :

Multiplication of the matrices A and B is equivalent to the compositioh of the
corresponding linear transformation T and T-1.

Also T*T~! and T~!+T are identity transformations,

Hence AB = BA = 1. Thus A has an inverse B. Hence A is non-singular.
Conversely, let A be a non-singular matrix. Then A™! exists.

Let S:W—YV be the linear transformation determined by the matrix A,
It is easily verified that TeS = ST =1

Hence T has an inverse linear transformation S.

Hence T is a non-singular linear transformation.
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Exercises :

1.

Compute the inverse of each of the following matrices.

1 0 0 8 -1 -3
(a) 0 0 1 (b) -5 1 2
01 0 (10 -1 -4
2 1 -1 1 2 3
|5 2 3 -2 2 1
2 2 =3 cosaa —sina O
(e) -3 2 2 (D sinaa coso O
2 -3 2 - 0 0 1

Show that the set of all non-singular matrices of order n over a field F is a
group under matrix multiplication.

If A and B are non-singular matrices of order n prove that (AB)™! = B~ 1A,

If A is a non-singular symmetric matrix prove that A~! is also a symmetric

matrix.
If A is a non-singular matrix, prove that (AT)"1 = (A-1)T.

If A is orthogonal, prove that A-! is orthogonal.

3.6. TYPES OF MATRICES

Definition :

An 1xn matrix is called a row matrix. Thus a row matrix consists of 1 row and

n columns. It is of the form (a,;, a,,, 2;3,.....,3;,)-

Definition :

rows and 1 column and it is of the form

An mx1 matrix is called a column matrix. Thus a column matrix consists of m

a1l
12




Definition :

>7nn
diagonal elements of A and the diagonal elements constitute what is known as the

principal diagonal of the matrix A. A square matrix is called a diagonal matrix if all
the entries which do not belong to the principal are zero. Hence in a diagonal matrix
a; =0 if i#j.

Let A= (aij) be a square matrix. Then the elements a,;, a,,,...... a__are called the

For example, is a diagonal matrix.

S O N
o = O
whnh O O

Definition :

A diagonal matrix in which all the entries of the principal diagonal are equal is
called a scalar matrix.

5
For example, |0 5
0 0 5

o

0
0| is a scalar matrix.

Definition :

A square matrix (aij) is called an upper triangular matrix if all the entries
above the principal diagonal are zero.

Hence a; =0 whenever i<j in an upper triangular matrix.

Definition : -

A square matrix (aij) is called a lower triangular matrix if all the entries below
the principal diagonal are zero.

Hence a; = 0 whenever i>j in an lower triangular matrix.

01 21. _ 21 0 0
For example, 1s a lower triangular 1S upper triangular.
0 0 5 1 1 4 0
3 2 1 1}

Clearly a square matrix is a diagonal matrix iff it is both lower triangular and
upper triangular. '
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Definition :
A square matrix A = (a;) is said to be symmetric if a; = a; for all 1, j.

For example,

1 2 3 4
f a b
a b 2 0 6 5 r; tr:
,{ d C i arc symmetric matrices.
b a 5 3 6 3 6 y
b ¢ h
4 5 © 7_]

Theorem 3.10 :
A square matrix A is symmetric iff A = AT.

Proof :

Let A be a symmetric matrix.

Then the (i, ) entry of A.
= (j, )™ entry of A
= (i, )™ entry of AT.

Hence A = AT

Conversely, let A = AT

Then (i, )P entry of A = (i, )" entry of AT
= (j, i)™ entryof A

Hence A is symmetric.

Theorem 3.11 :

Let A be any square matrix. Then A+AT is symmetric.

Proof :
(A+ADT = ATHADT
' = AT+A
= A+AT

Hence A+AT is symmetric.
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Theorem 3.12 :

Let A and B be symmetric matrices of order n. Then

(1) A+B is symmetric.

(11) AB is symmetric iff AB = BA

(111) AB+BAis symmetric

(iv)  If A is symmetric, then kA is symmetric where keF
Proof : |
6 (A+B)T = AT+BT = A+B (since A and B are symmetric)

oo A+B is symmetric.

(11)  AB is symmetric.

PN (AB)T = AB
& BTAT = AB (by theorem 3.4)
= BA = AB
(iii) (AB+BA)T = (AB)THBA)T
= BTAT+ATBT

= BA+AB (since A and B are symmetric)
= AB+BA
o AB+BA is symmetric.

(iv) (kA)T = kAT = kA (since A is symmetric)
oo kA is symmetric.

Definition :
A square matrix A = (aij) is said to be skew symmetric if a; = —a;, for all 1, j.

Note : Let A be a skew symmetric matrix. Then a; = —a...

Hence 2a, = 0
(i.e.,) a; = O foralli.
Thus in a skéw symmetric matrix all the diagonal entries are zero.
0 —a 0 -3 -1
L 0 jl, 3 0 2 | are examples of skew symmetric matrices.
1 -2 0
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Theorem 3.13 :

A square matrix A is skew symmetric matrix iff A = —AT.

Proof :

Let A be a skew symmetrix matrix.

Then the (i, })™ entry of A
= —(j, )™ entry of A
= —(i, j)™ entry of AT

Hence A = —AT

Conversely, let A = —AT

Then (i, j)™ entry of A = —(i, j)® entry of AT
= ~(j, )P entry of A

Hence A is skew symmetric.

Theorem 3.14 :

Let A be any square matrix. Then A—AT is skew symmetric..

Proof :
(A-ATT = AT(ATYT
= AT-A=_(A-AT

Hence A—-AT is skew symmetric.
Theorem 3.15 :

Any square matrix A can be expressed uniquely as the sum of a symmetric
matrix and a skew symmetrix matrix.
Proof :

Let A be any square matrix.

Then A+AT is a symmetric matrix (by theorem 3.11)

1 ,
o -2-(A+AT) is also a symmetric matrix.

1
Also —Z-(A—AT) is a skew symmetric matrix. (by theorem 3.14)
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Now, A = %(A+AT)+%(A—AT)

o% A is the sum of a symmetric matrix and a skew symmetric matrix.

Now, to prove the uniqueness, let A = R+S where S is a symmetric matrix and R
is a skew symmetric matrix.

We claim that S = :—;—(A+AT)
and R = %(A—AT)
A= SR e (1)

AT = (S+R)T = S™+RT
= S-R (since S is symmetric and R is skew symmetric)
& AT = SR e (2)
From (1) & (2) we get,

S = %(A+AT)
and R = —;—(A—-AT)

Theorem 3.16 :
Let A and B be skew symmetric matrices of order n. Then
(1) A+B is skew éymmetric.
(i1) kA is skew symmetric, where keF.
(ili) A?" is a symmetric matrix and A?™*! is a skew symmetric matrix where n is any
positive integer.
Proof :
Let A, B be skew symmetric.
(i) (A+B)T = AT+BT
= —A-B (by theorem 3.13)
= —(A+B)
o A+B is skew symmetric.
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(i)  (kA)T = kAT = kA (since A is skew symmetric)
oo KA is skew symmetric.

(i11) Let m be any positive integer.

Then (AMT = (AA........... m times)T
= (=A)(=A).......(-A) (m times) (since AT = -A)
= (-DmA™
" (AMT = {Am H:f m is. even
—A"1fm 1s odd

o%» A™ is symmetric when m is even and skew symmetric when m is odd.

Definition :

A square matrix A = (aij) is said to be a Hermitian matrix if a; = ajj for

all 1, j. A is said to be a skew Hermitian matrix 1ff a;; = —5;' for all 1, j.
Example :
2 —2+21 3
-2-21 1 1+1

1s 2 Hermitian matrix.
3 1—-1 0

0 —a+1b ib c+1d
| a+ib 0 ¥

) ) are skew Hermitian matrices.
—c+1d 1b

Note :

1. Any Hermitian matrix over R is a symmetric matrix and any skew Hermitian
matrix over R is a skew symmetric matrix.

2. Let A= (al.j) be a Hermitian matrix. Then a; = a;;

i and hence a; 1s real for all 1.

3. Let A = (aij) be a skew Hermitian matrix. Then a;, = —a;; and hence a, = 0 or

purely imaginary for all i.

Theorem 3.17 :

Let A be a square matrix.

(i) A is Hermitian iff A = A+

(ii) A is skew Hermitian iff A = —A |
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Proof : ,
(1) Let A be a Hermitian matrix. Then the (i, j)th entry of

A = (, D™ entry of A

= (i, " entry of AT

Hence A = A
Conversely, let A = AT
Then (i, )M entry of A = (i, j) entry of AL

= (G, D)™ entry of A

Hence A is Hermitian.

(11) Let A be a skew Hermitian matrix.

Then the (i,j)™ entry of A = —(j, )P entry of A

= (i, H)™ entry of AL

Hence A = AT
Conversely, let A = —A
Then (i, PP entry of A = —(, )™ entry of AL

= —(, )™ entry of A~

Hence A i1s skew Hermitian.

Theorem 3.18 :

Let A and B be square matrices of the same order. Then
(i) A, B are Hermitian — A+B is Hermitian.
(i1) A, B are skew Hermitian = A+B is skew Hermitian.
(ii1) A 1s Hermitian = 1A 1s skew Hermitian.
(v) A is skew Hermitian = 1A 1s Hermitian
(V) A is Hermitian and k is real = kA is Hermitian
(vi) A is skew Hermitian and k is real = kA is skew Hermitian
(vii) A, B are Hermitian = AB+BA is Hermitian

(viiil) A, B are Hermitian = AB—-BA is skew Hermitian.
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Proof :

(1) A+B) =

& A+B is Hermitian.

(ii) A+B) =
& A+B is skew Hermitian.
(iii) “GA) =

& 1A is skew Hermitian.

(iv) (&) =

& 1A is Hermitian.

) (K&)' =

(vi) (-k&) =

& kA is skew Hermitian.

(vi) (AB+BA)' =

(A+B)

AT, gl

A+B (since A and B are Hermitian)

~(A+B)!

AT_-8!
A+B (since A and B are skew Hermitian)

(—TA)"

iAT =iA (since A is Hermitian)

iy

iA (since A is skew Hermitian)

kAL

kA (since A is Hermitian) i.e., A = Al

kAT

KA (since A is skew Hermitian) i.e., A = —A L



(viii)

Theorem 3.19 :

co AB+BA is Hermitian.

fi

~(AB=BA)T

(&AB)! +(BA)!
BIAT . ATET
BA+AB
AB+BA

~(AB-BA)'

—(AB-BA)"

(&)’ -(EA)")
{((™aT)-("5"))

—(BA—-AB) (- A, B are Hermitian)

AB-BA

oo AB—-BA 1s skew Hermitian.

Let A be any square matrix. Then

(1) A+AT is Hermitian.

(ii) A-AT js skew Hermitian.

Proof :

(1)

(ii)

Let
Then

O
o0

A+AT =

B=

Bl =

Hence A +A7T is Hermitian.

Let
Then

A-AT
"'B'=

B =



gl = —(KT—A)'
= A-A!' =B

Hence A —A ! is skew Hermitian.

Theorem 3.20 :

Any square matrix A can be uniquely expressed as the sum of a Hermitian
matrix and a skew Hermitian matrix.

Proof :

Let A be any square matrix.

Then A+A" is Hermitian. (by theorem 3.19(i)).

1 —T\ . <L X
o E(A—FAT) is also a Hermitian matrix.

A-AT is skew Hermitian (by uicorem 3,19(ii))

1 —T)\ . .. i
o E(A—AT) 1s skew Hermitian matrix.

Now, A = %(A +KT)+%(A—KT)

oo A 1s the sum of a Hermitian matrix and a skew Hermitian matrix.

i
Now, to prove the uniquesness, let A = R+S where S is a Hermitian matrix and

R 1s a skew Hermitian matrix.

We claim that S = %(A+KT)
and R = %(A-KT)
A = S+R S (1)
Al = R
= §4RT

= S-R (since S is Hermitian and R is skew Hermitian)

0o KT = SR (2)
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From (1) & (2)
A+AT =25 A_xT =21

& S = —ZI—(A +KT)

Definition :

. apr=L
. OO0 5

(r-T)

A real square matrix A is said to be orthogonal if AAT = ATA = 1.

Example :
A —
We have to verify this.
AT -
AAT =
ATA =
ooo AAT =

oo A is an orthogonal matrix.

cos@ sinO
. i1s an orthogonal matrix.
—smB cosb

"cos®  —sin@]
_sine cosO |
" cosO® sin®cos® —sin®
| —sinB cosG_ sin® cosH
cos? 0 +sinZ 0 —c0s0sin0 +sind cosd
| —sinBcos6 +cosBsin® sin2 0+ c:os2 o

1 0 .
0 1 (- cos?0 + sin%0 = 1)

I

[cos® —sinOT cos® sin®

| sin® cosO || —sin® cosO

cos2 0+ sin2 o

sin2 0+ cos2 0

cosOsind —cosHsind
Lsine cosO —sinQcosO

1 0 S .
0 1 (- cos?0 + sin%0 = 1)

I

ATA =1
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Theorem 3.21 :
Let A and B be orthogonal matrices of the same order. Then
(1) AT is orthogonal
(i) AB is orthogonal

Proof :
(1) AT(AT)T = ATA =1 (since A is orthogonal)
Similarly we can prove (AT)TAT =1
o» AT is orthogonal.
(i1) (AB)(AB)' = (AB)(BTAT)
~ A(BBT)AT
= AIAT (Since B is orthogonal)
= AAT=1
Similarly  (AB)(AB) = 1
Hence AB is orthogonal.

Definition :

A square matrix A is said to be an unitary matrix if ART =ATA=1.

0 -i
For example [i O] is unitary.

Note : Any unitary matrix over R is an orthogonal matrix.

Theorem 3.22 :

If A and B are unitary matrices of the same order, then AB is also an unitary
matrix.

Proof :
(AB)AB)' = (AB)&B)" = (AB)(B'A")

= A(BET)_A—T = AIART (since B is unitary)

Similarly (’A—B)T( AB) = 1
oo Hence AB is unitary.

101



Exercises :

1.

® N

10.

11.

12.

13.

Give examples of each of the following types of matrices; upper triangular
matrix, lower triangular matrix, diagonal matrix, scalar matrix, symmetric

matrix, Hermitian matrix, skew Hermitian metrix, orthogonal matrix and unitary
matrix.

Give examples of matrices over the field of complex numbers which are
(a) Symmetric but not Hermitian
(b) Skew symmetric but not skew Hermitian

Show that the product of two upper (lower) triangular matrices of the same
order is again an upper (lower) triangular matrix.

Show that the product of two diagonal matrices of the same order is again a
diagonal matrix.

Show that any two diagonal matrices of the same order commute.
For any square matrix A show that AAT and ATA are symmaetric.
Show that if A is symmetric then AT is symmetric.

Show that if A is skew symmetric then A? is symmetric and A3 is skew
symmetric.

Show that if A and B are symmetric matrices of the same order then AB-BA is
skew symmetric.

Show that if A and B are skew symmetric matrices then AB is symmetric iff
AB=BA.

Show that any Hermitian matrix A can be written as A = B+iC where B is a real
symmetric matrix and C is a real skew symmetric matrix. State and prove a
similar result for a skew Hermitian matrix.

Show that every square matrix A can be uniquely expressed as A = B+iC where
B and C are Hermitian.

A square matrix A is caled an idempotent matrix if A2=A

2 -3 -5 -1 3 5
Show that{-1 4 5 }and| 1 -3 -5 are idempotent matrices.
1 -3 -4 -1 3 5
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14.
15.

16.

17.

18.

19.

20.

Show that if AB = A and BA = B then A and B are idempotent matrices.

Show that if A is an idempotent matrix, then B=I-A is also an idempotent

matrix and AB=BA=0.

A square matrix A is said to be nilpotent if A’=0 for some positive integer n.

1 1 3
0 1
Show that I:O O} 5 2 6 | are nilpotent.
-2 -1 =3

A square matrix A is said to be involutory if A%=1.

) 1 0 1
Show that [_1 0 } and 10 0 1| areinvolutory.
0 -
0 1 0

Show that a square matrix A is involutory iff (I+A)(I-A) = 0.

(1 2 2
1 2 1 2

Show that o ~“ | is an orthogonal matrix.
-2 2 -1

(M1+i —1+i
Show that > _1+i 1—i

J 1s an unitary matrix.
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LINEAR ALGEBRA UNIT - 4

INNER PRODUCT SPACES

Introduction :

In this chapter we place an additional structure on a vector space V to obtain an
inner product space, and in this context these concepts are defined.

We know that in the usual three dimensional vector space V,(R) it is possible to
talk about the length of a vector and angle between two vectors. These concepts of
length and angle can be defined in terms of the usual "dot Product” or "Scalar product”
of two vectors. The dot product of u = (a;,b,,c,) and v = (a,,b,,c,) is defined by

wv =aa,+ b1b2 +¢,c,

We note that the length of u is given by ./ and the angle 0 between u and v

u.v
is determined by cos 0 m Hence u and v are perpendicular or orthogonal 1ff

uv =0,

An inner product on a vector space is a generalisation of the dot product and in
terms of such an inner product we can define the length of a vector and angle between

two vectors. Our study about angle will be restricted to the concept of perpendicularity
of two vectors.

Throughout this section we shall deal only with vector spaces over the field F of
real or complex numbers.

4.1. Definition and Examples :

Definition : Let V be a vector space over F. An inner product on Vis a

function which assings to each ordered pair of vectors u,v in V a scalar in F denoted by
<u,v>-6atisfying the following conditions.

(1) <uHvHw> = <u,w> + <v,w>
(1) <aqu,v> = a<u,v>
(ili) <u,v>= <y,u> where <v, u> is the complex conjugate of <u,v>.

(iv) <u,u> 3> 0and <w,u>=0iffu=0.
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A vector space with an inner product defined on it is called an inner product
space. An inner product space is called an Euclidean space or unitary space
according as F is the field of real numbers or complex numbers.

Note 1 : It F is the field of real numbers then condition (iii) takes the form <u,v> =
<v,u>. Further (iii) asserts that <u,u> is always real and hence (iv) is meaningful
whether F 1s the field of real or complex numbers.

Note 2 : <u,qv> = g <u,v>
For <u,a V> = <ov,u>
= a<v,u>
= a<mu>
= a<uv>
Note 3 : <u,viw> = <u,v> + <ug,w>
For, <u,v+w> = <yrw,u>

= <v,u>+<w,u>

= <v,u>+<w,u>

= <u,v>+ <u,w>.

Note 4 :
<u,0>=<0,v> = 0
For, <u,0> = <u,00>
= 0<uy,0>=0

Similarly,

<0,v>=0
Examples : .
1. V_ (R) is a real inner product space with inner product defined by

<X,y> = X¥;tXY,t.....tx y, where
X = (X;X,.....X_) and

Y = (YpYpe¥y)
This is called the standard inner product on V_(R).
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Proof :
Let x,y,ze V_ (R) and o eR
(1) <x+y,z> = (X;typ)z; Tt (X,1y,)z, oot (X, TY)Zy
= (X,Z; + XyZy T X Z) T Y2 ¥ Y2y T ety Z)
= <x,z>+ <y,z>
(i1) <aX,y> = aX\y; T aXyy, +...F aX )y,

= (x1y1+x2y2+....+ xnyn)

= o <K,y>.
(iii) L oax,y> = XY, T XY, et XYy
= ¥X; T Y%, Fonen +y X,
= <y,X~.
(iv) <x,x> = X2+ X2+t x,2 > 0and
<x,x> = 0iffx, =x,=...= x, =0
oo <x,x> = 0iffx=0
2. V(C)isa complex inner product space with inner product defined by
<X, y> = X1V} +X2¥2+..-+Xn¥n
where X = (X;5 Xg5 eeeee X))
and y = (¥ Vg -Yn)
Proof :
Let x,y,z ¢ V, (C) and a ec.
@ <xtyz> = (Xyy) 7+ (X1Yy) Zotet (XY Zn

= <x,z>+ <y,z>.

i

(ii) <o X,y> (0X1 Yy +OXQ Yo+ e +0Xp V)

= OL(X1§'1 +X2—}_’2+....+Xn_};n)

= a<XYy>.
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(iii) <y, x> = yX1+Yy2¥2+...+¥nXn
= yX1+YpX2+te.. +¥YpXn

= x1y;+ x2§2+...+xn_}7n
= <x,y>.

(iv) <X,X> = ¥ X]+...+XpXn

= |x1l2 +|x;;_|2 +...+|xn|2 >0
and <x,x>=01ff x =0

3. Let V be the set of all continuous real valued functions defined on the closed
interval [0,1]. V is a real inner product space with inner product defined by

<f,g> = [E(De(t)dt

Proof :
Let f,g,h € Vand o € R.

@) <frgh> = JJIF()+g®In(t)dt
= %ﬂgmﬂm+%gﬂmom
= <fh>+ <gh>
(ii) <afg> = [jof(he(t)dt
= aljf(hgt)adt
= q <fag>'
(iii) <fg> = [f(ns(t)dt

T OHOL
= <g,f>
(iv) <£f> = QIf®Fdt>0 and

<f,f> = 0iff f=0.
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Exercises :
1. Show that in an inner product space
(1) <au+pv,w> = a<uy,w>+p<v,w>
(i) <u,av+Pw> = a<u,v>+B<u,w>
(iii) <ou+pv,yw+8z> = ay <u,w > +ad <u,z>+pu <v,w >+f5 < v,z) where

o,p,y,d eFand u,v,w,z € V

2. Show that V,(R) is an inner product space with inner product defined by

<K,Y> = X ¥, X,y X Y, HAX,Y,

Where x = (x,,X,) and y = (y,,¥,)-
3. Show that V,(C) is an inner product space with inner product defined by

<xX,y> =2X1_}7l + X1§2 + YZ-}—’l +X) —);2

Where x = (x,,X,) and y = (¥,,¥,)-

4, Let V be the set of all continuous complex valued functions defined on the

closed interval [0,1]. Show that V is a complex inner product space with inner product
defined by

1 S
<tg> = | (RO

Definition : .

Let V be an inner product space and let xeV. The norm or length of x, denoted
by ||x]||, is defined by |[x|| =,/< X,X > -

X is called a unit vector if |x|| = 1.

Solved problems :

1. Let V be the vector space of a polynomials with inner product given by
1
<f,g> = (J) f(t)g(t)dt 1 et f(t) = t+2 and g(t) = t2-2t-3.

Find (i) <f,g> (i) [£]].
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Solution :

0 “hg - (})f(t)g(odt

_ e+2)? —2t-3at
0

-1
_ (B -Tt-6)dt
0

<f,f>

I

(i1) 11?

_ (})[f(t)]z dt

_ Jaed
0

1.2
— J(t*+4t+4)dt
0

3 1
= ‘:t—+2t2 +4t}
3
0

= l+2+4 = —1—9—.
3

L 1l = i)
[oX o) \/g
Exercises :
1) Find the norm of the following vectors in V;(R) with standard inner product.

(@ (1,1,1)  (b)(1,2,3) (c) 3,-4,0)
(d) (4x+5y) where x = (1,-1,0) and y = (1,2,3)
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2) Find the set of all unit vectors in V;(R) with standard norm.

Ans: L(2)V3,(b)/14,(c)5,(d)3+/38
2. All points on the unit sphere with centre (0,0,0)

Theorem : 4.1
The norm defined in an inner product space V has the following properties.
(1) x| > O and |x]|=01ff x =0
(1)  fax|l = o] fix|l
Gil)  |<x,y>| < x| Iyl (Schwartz's inequality)
@v)  Ilx+yll < [x|+Hiyll (Triangle inequality).

Proof :
@ Ixll = J<x,x> >0 and |x|| = 0 iff x = 0.
(i1) lax|P = <ax,ax>
= a<X,aX>
= oo <X,X>
= o x|
Hence [lox|| = || [[]]

(iii) The inequality is trivially true when x = 0 or y = 0. Hence let x » Oandy = O.

<y, x>
consider,z = Y~ lz X
x|

Then 0 < <z,z>

_ <y—<y’x>x,y—<y’);>x>
%I I
___<y,y>—f—21§é—z<y,x>—<y’);><x,y>+<y’X;<y’2X><x,,x>
B3] ) I ]
5. <T,X><Y,X> <Y, X><X,y> <Y,X><Y,X>
I/ Il [ixI]
5 <X,y ><X,¥>
B L

Hix|2
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o 0 < [ fivll*~ [<x,y>
o |<x,y>2 < |x|1? {iylf?
2 [<x,y>| < |Ix| livil
(iv) [x+yl? = <x+y, x+y>
= <x,Xx> + <x,y> + <y,x> + <y,y>
= x|+ <xy>+ <xy> + P
=[x+ 2Re <x,y> + [yl < IX|I* + 2|<x,y>| + |yl
< Ikl + 2 x| iyl + [Ivil? (by (iid)
< (IxIHIviD?

o Ix+yll < lix[Hyll.
Solved Problems :

1. (a) Show that in a real inner product space, if <x,y>=0 then |x + y"z = ||x||2 +“y"2.

Solution :
x+yl? = <x+y, xty>

= <X, x>+t <x,y> + <y,x> + <y,y>

= ”x”2 + (x, y)+ <;(T§> + llY”z

= xIP+2Re<x.y>+ly|P
= I P (xy) =0

= R M

(b) Show that in a real inner product space, if

quz + "Y"Z = "x + y“z, then <x,y> =0
Given HXHZ + ”y”2 —_ "X N y“z ,
%[ + 2 ~Jx+ 2 = ©

= X)) -[(xx)+ (v + (v x) + (v.y)] = 0
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O

"‘[<X,y> + <YaX>] =

e () -

—2Re <x,y> =

o

2Re <x,y> =

o o o

oo <X,y> =

Exercises:

1. Applying Schwartz's inequality to Vn(C) with standard inner product, show that

1/2 1/2
<

lZ

n -
> X;y;
i=1

2 P
1

1=

n
> |yi
i=1

-
2. Show that in any inner product space V

eyl +fx -y = 21 +1A)
3. Show that in any inncr product space

Joox + B[P = o[ + 0B < x,y > +5B <y, x> +BF I

4. Show that if equality is valid in schwartz's inequality or triangle inequality then
x and y are linearly dependent. Is the converse true?

5. In an inner product space we define the distance between any two vectors x and
'y by d(x,y) = ||x-y||. Show that

()d (x,y)20and d (x,y)=0iff x =y
®dExy)=dm)
(©) d (x,y) <d (x,2) + d (Zy).

4.2. ORTHONORMAL BASIS

Definition :

Let V be an inner product space and let x,ye V. x is said to be orthogonal to y if
<x,y>=0

Note 1 : x is orthogonal to y = <x,y>=0
= (%) = 0

112



= <y,x> = 0
= Yy is orthogonal to x.
Thus x and y are orthogonal iff <x,y> = 0.
Note 2 : x is orthogonal to y = ax is orthogonal to y.
Note 3 : x, and x, are orthogonal to y = x,+x, is orthogonal to y.

Note 4 : O is orthogonal to every vector in V and is the only vector with this property.

Definition :

Let V be an inner product space. A set S of vectors in V is said to be an
orthogonal set if any two distinct vectors in S are orthogonal.

Definition :

S 1s said to be an orthonormal set if S is orthogonal and |[x|| = 1 for all xeS.

Example :

The standard basis {e,e,,.....e_} in R or C" is an orthogonal set with respect to

the standard inner product.

Theorem 4.2 :

LetS = {v{,V,,...v } be an orthogonal set of non-zero vectors in an inner product

space V. Then S is linearly independent. .
Proof :

Let o vita, vyt +a v, =0

Then <o v, +ta,V,*...... ta,V,VS = <0,v1> =0

oo L <VLVZ Tt o,y <V, V> tlta <v,,v;>=0

oo o <V,,v,> =10 (Sincé S 1s orthogonal)

ds o, = 0 (Since v,= 0)

Smilarly o, =a 3=...; a, =0

Hence S is linearly independent.
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Theorem 4.3 :

Let S = {v,,v,,...v_}be an orthogonal set of non-zero vectors in V. Let ve V and

(v vk>
V=,V ta,vtetog, Vo Then oy = " "
Proof :
(v,vg) = <a1v1+a2v2+....+anvn,vk> ‘
= OL1<V1,Vk>+Ot.2<V2,Vk>+...+0Lk<Vk,Vk>+...+OLn<Vn’Vk>
= ak<vk’vk> (Since S is orthogonal)
= oy
v, Vi
oo (lk = "('—2'2
i

4.3. GRAM - SCHMIDT ORTHOGONALIZATION PROCESS

Theorem 4.4 :

Every finite dimensional inner product space has an orthonormal basis.

Proof :

Let V be a finite dimensional inner product space. Let {v,,v,,...v_} be a basis for
V. From this basis we shall construct an orthonormal basis {w,w,,...w_} by means of a
construction known as Gram-Schmidt orthogonalisation process.

First we take w, = v,

Let w, = vy —Mwl

il

We claim that w, 0. For if w, = 0 then v, is a scalar multiple of w, and hence of v,

which 1s a contradiction, since v,,v, are linearly independent.
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2

\0) W1>

Also, <w,,w,> = \V2~ W1,W1
50, <W,,W, . "w1”2
(v271)
= \V27 5 VLVl / (& w,=V))
il

- bam)

= SV <V
= 0

Now, suppose that we have constructed non-zero orthogonal vectors W, W, W,
Then put

e b )
Wkel = ,- "WJH e

We claim that wy, #0. For, if w,,, = 0, then v, is a linear combination of
W,,W,,...w, and hence is a linear combination of V5Vy,...v, Which 1s a contradiction
since v,,v,....v, ., are lineanly independent.

Also,
Vs LW k <Vk+1W>
() = Coti)= 2 = T
= (Vk+1,Wi)—M<WLWi>

[wil
= (vie,Wi) = (Vi1 wi)

Thus, continuing in this way we ultimately obtain a non-zero orthogonal set
{w,w,,..w_} '

By theorem 4.2, this set is linearly independent and hence a basis.

W
To obtain an orthonormal basis we replace each w, by ”wln
. i
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Solved problems
Problem 1 :

Apply Gram-Schmidt process to construct an orthonormal basis for V,(R) with
the standard inner product for the basis {v ,V,,v3} where v, = (1,0,1); v, = (1,3,1) and
= (3,2,1).

Solution :

Take w,=v, = (1,0,1)
Then |[w,|?=<w ,w> = 12+0%+12=2
and <w,,v,> = 1+0+1 =2
(VZ W1>
Put w, = w1
2 wf?

= (1,3,1) - (1,0,1)

= (0,3,0)
oo wll>? = 9
Also, <w,,v,> = 0+6+0 =6 and
<w,vy> = 3+0+1 =4
Now wy = vy ) {ave)
» 3 3 2 1~ w2
[w Jwal?

4 6
= (3,2,1) - —2-(150,1) - 3 (0’3’0)

= (3,2,1)-2(1,0,1) — —§- (0,3,0)

= (1,0,-1)
oo HW3“2 = 2

The orthogonal basis is {(1,0,1), (0,3,0), (1,0,-1)}.

Hence the orthonormal basis is {[ ik \/—] (0.1,0), [T %]}
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Problem 2 :

Let V be the set of all polynomials of degree < 2 together with the
zero polynomial. V is a real inner product space with inner product defined by

1
<f,g>= Ilf(x)g(x)dx. Starting with the basis {1,x,x?}, obtain an orthonormal basis for V.

Solution :
Letv, =1, V,=x and v, = x2

Let W, =V,

1
Then "WI”2 = (WI,W1> = [ldx =7
-1
Hence il = V3
<V2’W1>
- Vz‘——'—‘i—-WI ‘
2 b
1
= X—— [xdx
~1
= X.
<o w2 = (wa,wa) = Jxfdx =3

<V3,W1>‘w {vawa)

Now, = - 5
3 [ w2l
1 1
= xz——szd —[—3—75] jx3dx
1 215
_ 2 1
3
1 1 2 8
% 2 = = 2—'— d = —
% w3l <W3’W3> _fl(x 3) X r

1
Hence the orthogonal basis is {I,X,Xz —5}

J;3- m(sz — 1)}
4 :

1
~%»The required orthonormal basis is { 22 X,
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Problem 3 :

Find a vector of unit length which is orthogonal to (1,3,4) in V,(R) with
standard inner product.

Solution :

Let x = (X,,X,,X,) be any vector orthogonal to (1,3,4). Then x,+3x,+4x; = 0.
Any solution of this equation gives a vector orthogonal to (1,3,4).

For example x = (1,1,-1) is orthogonal to (1,3,4).
Also, [x]| = /3

1 1 -1
Hence a unit vector orthogonal to (1,2,3) is given by (_’——3—’—5j

W

Note :

The set of all vectors orthogonal to (1,3,4) are the points lying on the plane
x+3y+4z = 0, which is a two dimensional subspace of V;(R).

Problem 4 :

Find an orthogonal basis containing the vector (1,3,4) for V,(R) with the
standard inner product.

Solution :
(1,1,-1) is a vector orthogonal to (1,3,4) (Refer the above problem).
Now, let y = (y,,Y,,Y;) be a vector orthogonal to both (1,3,4) and (i,l,—l).
Then y, 3y, 4y, = 0
Yty y; = 0

Any solution of this system of equations gives a vector orthogonal to (1,3,4) and
(1,1,-1).

For example, (7,~5,2) is one such vector. (by cross multiplication method)

Hence {(1,3,4), (1,1,-1), (7,-5,2)} is an orthogonal basis containing (1,3,4).

Problem 5 :

Applying Gram—Schmidt process find the orthonormal basis of V,(R) with the
standard inner product starting with the following basis. {v,,v,,v,;} where v, = (1,-1,0),
v, =(2,-1,-2) v; = (1,-1,-2)
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Solution :

Take W, =V,
Then w1
and <W . ,V,>
Put w2
oo w1
Also, <W,,V3>

<wW,,V3~
Now,

w3

I

(1,-1,0)
<w W, = 124+(-1)>+0 = 1+1 =2

2+1+0 =3

<V2 WI)

w1l
(2,-1,-2) —-3-(1,_1,0)

[—1—,1/2,—2)
2

A\

_1_+}_+4=l§:—-_?.
4 4 4 2
}.__}_ 4:4
2
1+14+0 =2
vae .(33_&1 Wi~ <_‘9_s‘_*f_z_>_ wo
il w2l
4x2(1 1
_Z et B )
(L -1-2)-20,-1.0-22( 1.2 2]
871 1
-1,-2)-(1,-1,0)——| —,—,-2
(1,-1,-2)~( >9(22 )
4 4 16
1,-1,-2)—(1,-1,0)—| =, —,——
(1,-1,-2)-(1,-1.0)- 2.3 9)
(0,0,~2)— (44_1.6.)
9’9 9



2 2 2
o e R

16 16 4
- -'"-"i'"—"f"""""
81 81 81
_ 36_4
g1 9

o%» The orthogonal basis is

53

Hence the orthonormal basis is
(_}___:_1_0) V2 V2 242 (~2 2 *lj
‘\/_2—’\/1" L) 6 3 6 ] 3 ? 3 2 3 > 3

Problem 6 :

Let V be the set of all polynomials of degree < 2 over R with inner product
defined by

1
- <f,g>= (f; f(x)g(x)dx. Starting with the basis
{1,x,x?}. Obtain an orthonormal basis for V.

Solution :

Letv,=1,v,=xand v, = x?

Letw, = v,
Then b = (wl,wl)=(l)f(X)g(X)dx
v 1 .
= e =pe1-0-1,
Hence w,l = 1.
Wz = Vz_ﬁz__’_‘%ﬁw
w1
1
= X—Jxdx
0
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Now,

wall? = (wz,w2)

it

i

}(x~1/2)2dx
0

1
| (xz + —}- - x)dx
4

0
1
X3 X X2
._.._.+.._.....-....._
[3 4 2]
l+_1_____1__4+3——6_ 1
3 4 2 12 12

_{vaw) o (v3,wa)

P a2

V3

1

1 (x"’)l

x2~fx2dx—-—————g~—-jx2 x—-—l— dx
1 0 2

0 —
12
1 5. ~1)1 2
xz-—szdx-12—(—g§——llf x3——5-)-(— dx
0 2 9 2
i 1
3 4 3
x? | 2] —6(2x-1)| XX
3 4 6
0 0

x? —-1—-6(2x—-1)(—1-~—-—1~)
3 4 6



——

TN

e
o

]
M
+

A=

QN
e

S wyl> = (w3, w3) = o\
( 2
= J K -2x3+ +x2—2+—1— d
ol 6 36

Hence the orthogonal basis is {1,(X—1/2),(X2 —X+1/6)}

&% The required orthogonal basis is {1,(2X ~1)4/3 ,(6X2 ~6x + l)w/g }

Exercises :

1. Applying Gram-Schmidt process find the orthonormal basis of v;(R) with the
standard inner product starting with the following bases.

(a) (25—150): (43_1’0)5 (4309_1)
(b) (1,0:1)5 (I,Q,—l), (09394)

2. Obtain an orthogonal basis for V,(R) with standard inner product containing the
vectors..

(a) (1,1,-1) and (1,0,1)
(b) (7’—1’1)

Answers :

1. (a)— {(2\/'5' /5,-~/515,0),(v/5/5,245/5,0), (0,0,-1)}
o) {(1/+2,0,1/42), (1142, 0,-1/42), (0,1,0)}
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4.4. ORTHOGONAL COMPLEMENT

Definition :

Let V be an inner product space. Let S be a subset of V. The orthogonal
complement of S, denoted by S+, is the set of all vectdrs in V which are orthogonal to

every vector of S.

(i.e) St = {x/xeV and <x,u> = 0 for all ueS}

Examples :

1. V+ = {0} and {0}* = V. Since 0 is the only vector which is orthogonal to every
vector.

2. Let S = {(x,0,0)/x eR} < V3(R) with standard inner product. Then
St = {(O,y,z)/y,z eR}
(i.e.,) The orthogonal complement of the x axis is the yz—plane.

Theorem 4.5
If S is any subset of V then S+ is a subspace of V.

Proof :
Clearly 0eS+ and hencé S+ # ¢.
Now, let x,yeS* and a,BeF.

Then <x,u> = <y,u> = 0 for all ueS. _
{(ox +By,u) = afx,u)+B(y,u) = 0 for all ues.
oo Cl.X+ByE S‘L.

Hence S+ is a subspace of V.

Theorem 4.6 :

Let V be a finite dimensional inner product space. Let W be a subspace of V
Then V is the direct sum of W and W+,

(ie) V= WOW-.L,
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Proof :
We shall prove that
(1) Wnwt = {fo} and
(i) W+WL = V.

1) Let ve WNW+
Then veW and ve W+

Now, ve W+ = v is orthogonal to every vector in W. In particular, v is
orthogonal to itself.

& <v,v> =0 and hence v = 0.
Hence WNW+ = {0}.
(ii) Let {v,,v,,.....v.} be an orthonormal basis for W. Let ve V.
_consider,
Vo = V—<V,V,;>V,—<V,V,~V,...... —<V,V >V
oo VYV > = <YY<V V<V, V>
(Since <v,,v;> = 0ifi 2])
= <v,v> - <v,v>
(Since <v,v>= 1)
= 0
o V, is orthogonal to each of v,,v,,....v_ and hence is orthogonal to every vector
in W.
Hence vpeW+ and v= [(V,V1>V1 + (V,V2>V2 +..+(v,vr>vr]+ vg € W+W+
& V=Woew!

Hence the theorem.

Corollary:
dim V = dim W + dim W+t

Proof :
dim V = dim(W@®W+) = dimW+dimW+

124



Theorem 4.7

Let V be a finite dimensional inner product space. Let W be a subspace of V.

1
Then ( WJ“) = W.

\

Proof :
Let weW. Then for any ue W+, <w,u> = 0.

Hence we (W-L)l.

L
Thus Wg(W+) e )
Now by theorem 4.6, V = wg w-t
1 Lyt
Also, V=W @(W )

Hence dim W = dim(W‘L )_L ------- (2)

From (1) and (2),

We get W = (WJ' )—L

Solved Problems :

Problemg. 1 :
Let V be an inner product space and let S,and S, be subsets of V. Then §,c S,

= Ste st

Solution :

Let u e St
Then <u,v> = 0 for all v €8,.

But S, S, Hence <u,v> = 0 for all veS§,

Hence u e gt

Thus Sz‘L - Sl"L
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Problem 2 :

Let W,andW, be subspaces of a finite dimensional linner product space. Then

6] (Wl +W2)'L = Wl'l'ﬁWZ'L.
(11) (W1 Wy )'L = WI‘L + W2‘L.

Solution :

(1) We know that ng W + W

oo (Wy + W, )-L; W1'L (by the previous problem)

Similarly, (w; +W2)-Lc_:_ Wyt

Hence (Wy + W, )‘L <
Now, let w €
Then w €
and w €

WI’L M W2‘L
WI'L M W2‘L .
wyt

Wz'l‘-

oo <W,u> = 0 for all ueW, and Wz'

Now, let vV €
Then vV =
oo <W, V> =
Hence w €
oo WI‘L M Wz'i‘ c

From (1) and (2) we get

(Wi +W)t =

W1+W2

v,tv, Where vl-e‘Wl and v,eW, .

<w,v1+v2>

<w,v1> + <w,v2>

0+0 (Since v,eW,and v,eW,)
0

(W + W)t

(W + W)t

Wit AWyl

126



(11) We know that WynW, < W, :
o Wt < (WNWy" (by the problem 1)
Similarly, - W,n"W, < W,
Wt (W,nWyt
Hence WAHWL = Wnw)y)t e (1)
Now, let, w e (W,NnwWyt
oo <w, u> = O for all ueW,NW,
<w,u> = Oforallu eW,and ueW,
Now, let v € W+W,
Then v = v,+v, where v,eW, and v, eW,.
oo (w,v) = (w,vi+Vv3)
= <W,V1>+<W,V2>
= 0+0 (Since v,ew, and v,ew,)
Hence woe Wl+Wwt
Winw)t < wtswpd e (2)
From (1) & (2) we get,
(Wnw)™ = Wit wyt
Exercises :
1. Let V be an inner product space. Let S be any subspace of V. Then show that
St=[L(s)]+.
2. - Find a basis for the orthogonal complement of the subspace spanned by (2,1,-2)
in V,(R).
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LINEAR ALGEBRA " UNIT -5

CHARACTERISTIC EQUATION AND
CAYLEY HAMILTON THEOREM

Definition :

An expression of the form A0+A1x+A2xz+...J.rAnxn where A, A,,...A are square
matrices of the same order and A _# 0 is called a matrix polynomial of degree n.

For example,

1 2 1 1 2 0) 5 . _
0 3+2 1X+3 1X 1S a matrix

_ . . 14 % +2%2 2+X
Polynomial of degree 2 and it is simply the matrix 2

2x+3x2' 3+X+X

Definition :

Let A be any square matrix of order n and let I be the identity matrix of order n.
Then the matrix polynomial given by A—xI is called the characteristic matrix of A.

The determinent |A—xI| which is an ordinary polynomial in x of degree n is
called the characteristic polynomial of A.

The equation |A-xI| = 0 is called the characteristic equation of A.

Example 1 :

1 2
Let A—34

Then the characteristic matrix of A is A—xI given by

1 2 1 0
A-xl = 13 470 1
1-x 2
B 3 4-x
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% The characteristic polynomial of A is

1-x 2
A=xDl = | 3 4-x

= (1=x) (4-x) -6
= x2-5x-2
o%» The characteristic equation of A is |A—xI| = 0.

o% X2-5x—2 = 0 is the characteristic equation of A.

Example 2 :

1
Let A= |4
1

3
AxI = 4 2
1 2

|A—x]]|

= (1=x) [(2—x) (1-x)-6] -3 [4(1-x)-3]+7 [8—(2—x)]
= (1-x) [x2-3x-4]-3[1-4x]+7 [6+x]
= —x3+4x%+x—4-3+12x+42+7x
= —x3+4x2+20x+35
& The characteristic equation of A is |A—xI| = 0.

& x3-4x2-20x-35 = 0 is the characteristic equation of A.
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Theorem 5.1. Cayley Hamilton theorem
Any square matrix A satisfies its characteristic equation.

(ie) If a0+a1x+a2x2+...+anx“ is the characteristic polynomial of degree n of A
then ajl+a A+a,A%+.. .+a A" = 0.

Proof :

Let A be a square matrix of order n,

Let |A—xI| = aj+ax+ax>+..ax* (1)
be the characteristic polynomial of A.

Now, adj (A—xI) is a matrix poiynomial of degree n—1 since each entry of the
matrix adj (A-xI) is a cofactor of A—xI and hence is a polynomial of degree < n-1.

oo Let adj (A—xI) = By*Bx+Bx*+. . +B__ x*~! (2)

Now, (A-—xI) adj (A—xI) [A—xI{ I
(o (adjA)A = A(adjA) = |A[D)
oo (A—xI) (By+Bx+..+B__ x*1)
= (ayta,x+..+a x") Iusing (1) and (2)
<> Equating the coefficients of the corresponding powers of x we get

AB, = a]

>
=
!
oy,
<
!
o
.—;—4

- .- e - - e o .

ABn—-I Bn—2 = an-II
-B,; = al

Pre-multiplying the above equations by I, A, AZ,.....A" respectively and adding
we get, a J+a A+a,A%+.....+a A" = 0.

Note: The inverse of a non-singular matrix can be calculated by using the cayley
Hamilton theorem as follows.
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Let ao+alx+a2x2+..anx“ be the characteristic polynomial of A.

Then by the definition, we have

a ] +a,A+a,A%+. . +a A" = 0
Since |IA—xI| = ajta,x+a,x*+..+a x"
We get a, = [A|(by putting X = 0)

& a,#0 (since A is a non singular matrix)
1 2
oo I = — ;’0‘ [a;A+a,A +...+a_A"] by 3)
o -1 —l- n—1
oo Al = — 20 [ a,J-a,A+...+a A"]

Solved problems :

Problem 1 :

Find the characteristic equation of the matrix

A._—_

—_ O =
N - O

2
2
0

Solution :

The characteristic matrix of A is A—xI given by
1-x 0 . 2
Axl = | 0 1-x 2

-1 2 0—x

The characteristic polynomial of A is
i-x 0 -2

1 2 X

— (1=x) [(1=%) (—x) —4] + 2 [0-(1-%)]

= (1=x) [-x+x2-4]-2(1-x)
= x3+2x?+3x—4-2+2x

= —x3+2x2+5x—6
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The characteristic equation of A is
—x3+2x245x-6 = 0
(ie) x3-2x2-5x+6 = 0
Problem 2 :

Find the characteristic equation of the matrix

8 -6 2
A= |6 7T -4
2 -4 3

Solution :
The characteristic equation of A is given by [A-AI| = 0.
8-A -6 2
2 -4  3-A
@~A) [(7-2) (3-A) — 16] + 6 [-6(3-A) + 8] + 2 [24-2(7-A)] =0
(8-A) (A>-101 + 5) — 6 ( 6A—10) +2 (2A+10) =0
(8A2-80A + 40-A3+1012-5) + (36A — 60) + (4L + 20) = 0

A3—18\2+45) = 0, which represents the characteristic equation of A.

Problem 3 :

1 2

3 1) satisfies the equation A2-2A—-5I=0.

Show that the non-singular matrix A=(

Hence evaluate A™L.

Solution :

The characteristic polynomial of A 1is

1-x 2
3 1-x

|A—x]]

= x2-2%x-5

&% By cayley — Hamilton theorem A2-2A-51 = 0.
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co I = %(A2—2A)

1
N Al = 3 (A-20)
i1 2 1 0
= — -2
5_(3 1)- (0 l)jl
1(-1 2 )
- 5&3 -1
Problem 4 :
Show that the matrix
2 -3 1
A = |3 1 3 |satisfies the equation
-5 2 4

A(A-D) (A+2D) = 0.

Solution :

The characteristic polynomial of A is

2% -3 1.

-5 2 —4-A

= 2-W)[(1-A)(4-A)—6]+3 {3(-4-A)+15]+1[6+5(1-))]
= (2-A)(A2+3) —10) +3 (=3A+3)+11-52
= —A-AZ+1 6k—26—9x+9+1 1-5A
= A3-A2+2.

By cayley — Hamilton theorem — A3-A%+2A = 0. -

(ie) AMAZ 2A = 0

Hence A(A>+A-2D) = 0

A(A+2D) (A-D) = o.
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Problem 5 :

Find the characteristic equation of the matrix

1 0 3
— 2 +1 -17j- . . .
A = . Verify that the matrix satisfies
1 -1 1

it own characteristic equations. Also calculate AL,

Solution :

The matrix [A—xI] = 2 4+l-x -1

The characteristic polynomial of A is

{

(1—=x) [(1—x) (1—x) —1]+3 [-2—(1—x)]
= (1—x) [x%-2x] +3 [x-3]
= —x3+3x2-2x+3x-9
= —x343x2+x-9

The characteristic equation of A is x3-3x2-x+9 =0

We have to verify that A3-3A2-A+91 =0 |

First we have to find AZ&A3.

—
=)
w
p—
<
w

A2 2 1 -1112 1 -1

fu—y
!
[y
[y
oy
]
[Sey
o

T 1+3 -3 3+3
2+2-1 1+1 6-1-1
_1—2+1 ~-1-1 3+1+1

4 -3 6
_ |3 2 4
0 2 5
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A3 = A A2

A3-3A%2+A+9]

The equation A’-3AZ-A+9], = 0 is verified.

o1,

I,

p—
=

pre multiplying by A~! on both sides, we get

A—-l

1 0 37{4 -3 6
2 1 ~-1{{3 2 4
1 -1 1]{0 -2 5
~ 4 3-6 6+15
8+3 —6+2+4+2 1244-5
| 4-3 —3-2-2 6-4+5
4 -9 21

11 -2 11
1 -7 7
4 —921] 12 9 18] {1 o 37T
11 -2 11}-9 6 12{-|2 1 -1|+
_1—77J 0 -6 15] |1 -1 1] |
(4-12-14+9 -9+49-0-0 21-18-3+0]
11-9-2+0 —2-6-1+9 11—-12+1+0
| 1-0-1+0 -7+6+1+0 7-15-1+9 |
[0 0 0
0 0 0
[0 6 O
—A34+3A2+A
1 3 2
5 [FAP+3A%+A]
1 2
5[——A+3A+I]

~4 3 -6 3 0 9 1 0 0

1i[-3 -2 —4{+{6 3 -3|/+|l0 1 o©
910 2 =5 3 -3 3 0 0 1
Io 3 3
5—3 2 =7

3 -1 -1

o O O

S O O

O o O



Problem 6 :

Using cayley — Hamilton theorem find the inverse of the matrix.

7 2 2
-6 -1 2
6 2 -1

Solution :

7 2 -2
Let A= |01 2
6 2 -l

The characteristic polynomial of A = |[A—xI|

T-x 2 -2
_ | -6 -1-x 2
6 2 —1-x
= (TX)[((1-x))*—41-2[6(1+x)~12]-2 [-12+6(1+X)]
= (7-x) (x24+2x-3) -2 (6x—6) —2 (6x—6)
= Tx2+14x-21-x3-2x%+3x—12x+12-12x+12
= —x3+5x2-7x+3
oo By cayley — Hamilton theorem,
—~A’+5A7-TA+3I, = 0
oo A-5AZ+7A-3 I, =0
o 3L, = A}-5A%+7A

1
I3 = —3‘ (A3——5A2+7A)

premultiplying by A~! on both sides we get

_ 1
AT = S [AMSARTL] e 1)

7 2 21[7 2 =2 25 8 -8

Now ' A2 = |-6 -1 2}|-6 -1 2| _ |-24 -7 38
6 2 -1[l6 2 -l 24 8 7
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"~ From (1).

Problem 7 :

Find the inverse of the matrix

Solution :

25 8 -8} (337,10 10y (7 0 0
_1_—24—78—-:/’,0‘—5 10 |[+{0 7 0
24 8 -7) (30 10 -5) 0 0 7
-3 2 2
1li6 5 -2
3 3 4

2 3 4 using cayley — Hamilton theorem.
0 -1 1

The characteristic polynomial of A

0

(3—x) [—(3+X)(1—X)+4]—3[2(1—x)] +4(-2)
(3—x) (x#+2x+1) -6 (1-x) -8
—x3+x2+5%x+3—-6+6x—8

—x3+x2+11x-11

& By cayley — Hamilton theorem

—A3+A2+11A-1 113
Hence 1 113

I,

0
(A3-A2-11A)

1
—— (A*-A2-114)

pre (post) multiplying by A1 on both sides we get

A—l

1
i 2_A_
T [A*—A-111,]
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(15 —4 28 (3 3 4) (11 0 O
- _Y1lo 11 ol-f2 =3 4aj-l0 11 0O
Wil 2 —3) o -1 1 0 0 11
. 1 -7 24
= -7 -2 3 -4
2 3 —15]
(-1 7 24
11 11 11
- |2 B 4
11 11 11
2/11 = 15/11
L 11 i

Problem 8 :

Verify cayley Hamilton's theorem for the matrix

A (a)

The characteristic equation of A is

Solution :

IA-AI = 0
1-A 2

oo ‘ 4 3—1\ =0

& (1-2) 3-1)-8 = 0

o ' A2—4r-5 = 0

By cayley Hamilton's theorem A satisfies its characteristic equation.

We have A2 — 4A — 51 = 0.

, 1 2\1 2 9 8
Now, A% = 14 3la 3) " l16 17
' 4 8 5 0
16 12)2d3l=14 5
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N . A2-4A-S5I

i

Thus cayley Hamilton's theorem is verified.

Problem 9 :

(9 8
(16 17)
(0 0
\0 0 =0

4

16 12

8

e 3

Using Cayley — Hamilton's theorem for the matrix A =

find (i) A~!, (ii) A%

Solution :

The characteristic equation of A is |JA—xI| =0

1—-x 0 -2
° 2 2—-x 4
0 0 2—-Xx

)
°
[

(1x) [2xP? -2 (0) =
(1—x) (x*+4—-4x) =
—x3+5x2-8x+4 =

x3-5x2+8x—4 =

& ‘By cayley Hamilton's theorem

A3_5A2+8A—41 =
41 =

o O O

0

0

A3-5A2+8A

(i) To find A~! pre multiplying by Al we get

4A1 =
oo A—l =
Now, A? =

A 1A3_SA-1AZ+8ATA

A2-5A+8I

1
- [A2-5A+81]

O N -

o N O

=2
4
2
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From 2 :

(1 0 -6} (5 0 -10) (8 0 O
A‘1=—1- 6 4 121|-|10 10 20 |+|{0 8 O
410 0 4 0 0 10 0 0 8
(4 0 4 1 0 1
_ 1la 2 8|_|1 1/2 =2
410 0o 2 0 0 -1/2
1 O 1
ooo A_l — 1 1/2 —'2
0 0 -1/2
(ii) To find A%
From (1) A3 = 5A2_8A+ 41
oo A4 = 5A3—8A2+4A .
= S5[SA2-8A+41}-8A2+4A (using (1))
= 17A2 -36A+201
1 0 -6 1 0 -2 1 0 0O
=176412—36224+20010
0 0 4 0 0 2 0 0 1
17 0 -102 36 0 72y (20 O O
_ |102 68 204 |—-{72 72 144+ 0 20 O
0 0 68 0 0 72 0 0 20
1 0 -=-30
o A4 = |30 16 60
0 0 16
Exercises :
1. Obtain the characteristic polynomialkfor the following matrices.

(2 3
(l)(o 5)

(2 2
(11) (O 3)
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2. Find the characteristic equation of the following matrices.

2 -1 1
-b -c
. N A
(1) ( ) (i1)

Lo 1 -1 2

-b ~-¢c -d 1 0 3

0 0 1 1 -1 1

3. Verify cayley — Hamilton theorem for the matrix

1 4
A= ( ) and hence find A™L.

2 3
1 0 2
4.  1A=|9 1 2| prove that A>2A2-5A+6I = 0.
1 2 0
5. Using cayley Hamilton theorem, find the inverses of the matrices
7 2 -2 1 0 -2 1 2 3 13 -3 5
6 2 -1 0 0 2 3 1 -1 -15 9 -7
2 4
6. IfFA={, | and find A3 and A3
(21
7. Calculate A% for the matrix A = | ° 2
0 0 5
1 2 3
8. Verify that the matrix A = -1 satisfies its own characteristic equation
3 1 -1
and hence find A-! and A%
- . - - 1 2
9. Find the characteristic roots for the matrix A = 4 3 and hence evaluate A8,
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5.2. EIGEN VALUES AND EIGEN VECTORS

Definition ;

Let A be an nxn matrix. A number A is called an eigen value of A if there exists

(x1 )

X2

a non zero vector x = | | such that AX = AX and X is called an eigen vector

\Xn /

corresponding to the eigen value A,

Remark 1:

/
It X is an eigen vector corresponding to the eigen value A of A, then aX where

o is any non zero number, is also an eigen vector corresponding to A.

Remark 2 :

Let x be an eigen vector corresponding to the eigen value A of A. Then AX =
AX. So that (A—AI) X = 0. Thus X is a non — trivial solution of the system of
"homogeneous linear equations (A-AI) X = 0. Hence |A-AI| = 0, which is the
characteristic polynomial of A.

Let [A-AIl = aA™ + a, A1+ +a
The roots of this polynomial give the eigen values of A. Hence eigen values are

also called characteristic roots.

Properties of Eigen Values

Property 1 : Let X be an eigen vector corresponding to the eigen values XI and
A,. Then A, = A,.

Proof :
By definition X # 0, AX = A, X and AX = A,X
AMX = AX
A Ap)X = 0

Since X # 0, A= A,.
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Property 2 : Let A be a square matrix.

Then (i) the sum of the eigen values of A is equal to the sum of the diagonal
elements (trace) of A.

(11) product of eigen values of A is |A|.

Proof :
all a12 aln
a1 a2 .- @a2p
(1) Let A =
anl 2p2 - apmp

The eigen values of A are the roots of the characteristic equation

ali -A ayjp2 ... ayp
a21 a2-3 - @2n
[A-AT| = : . . : =0 @ - (D
ani 4pn2 -+ 3pn-)
Let |JA-ALl = aAr+aA™l+. 42 0 e (2)
From (1) and (2) we get
ay=(-D";a, =D (a,ta+ta_ )5 . s (3)

Also by putting A = 0 in (2) we get a_ = [A].
Now, let &,, A,,.....A_ be the eigen values of A.

oo Aj5A,,.... A are the roots of (2)

(] — —
& A, h = —

= ajta,,+....+a_ (using 3)
oo Sum of the eigen values = trace of A.
(i1) Product of the eigen values = Product of the roots
= A Ay A,
-y e
2 (-1
= a, =[A|
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Property 3 :

The eigen values of A and its transpose AT are the same.

Proof :

It is enough if we prove that A and AT have the same characteristic polynomial.
Since for any square matrix M,

M| = |MT| we have,
IA-AL = [(A-ADT] = |AT-(ADT|
= AT

Hence the result.

Property 4 :

If A is an eigen value of a non singular matrix A then 1/\ is an eigen value of A7,

Proof :

Let X be an eigen vector corresponding to A. Then AX = AX. Since A is non
singular A1 exists.

& AT (AX) = AT(X)

IX = AAX
o A—IX — (_!.) X
oo - }\'

1
oo (3:) is an eigen value of A71.

Corollary :
_ 1 1 1
If A\, A, are the eigen values of a non singular matrix A then ”;l'xz‘ ----- 'yl
are the eigen values of A7,
Property 5 :
It X is an eigen value of A then kA is an eigen value of kA where k is a scalar.
Proof :

Let X be an eigen vector corresponding to A.
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Then AX = AX jE—)
Now, (kA) X = k (Ax)

= k(x) (by 1)

= (kA) x.

kX is an eigen value of kA.

Property 6 :
It A is an eigen value of A then AX is an eigen value of A* where k is any
positive integer.
Proof :
Let X be an eigen vector corresponding to A.
Then AX = AX  smmeee- (D)
Now, A2X .= (AA X =A(AX)
= AQX) (by 1)
= AMAX)=AAX) (by 1)
= AX.
AZ is an eigen value of A2,

Proceeding like this we can prove that A¥ is an eigen value of Ak for any

positive integer.

Corollary : If A, A,,.....A, are eigen values of A then A X, 1,X,...A ¥ are eigen values
of Ak for any positive integer k.

Property 7:

Eigen vectors corresponding to distinct eigen values of a matrix are linearly
independent.

Proof :

Let A, A,...A, be distinct eigen values of a matrix and Let X, be the eigen vector
corresponding to A..

Hence AX, = AX (1=12,k) e (1)

1
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Now, Suppose X, X,... X, are linearly dependent. Then there exist real numbers

o, 0.0 not all zero, such that o, X +0,X,+..+a, X, = 0. Among all such realations,
we choose one of shortest length say j.

By rearranging the vector X, X,... X, we may assume that

o Xy to, X, o X, = 0 [ 2)
o A(0, X))+ A (o, X))+ .+ A(aX)=0
& o, (AX)) + a, (AX,) +...+aj (AXj) =0
oo oy Ay X, Fa, A, X, +.toy Kj Xj =0  eeeeee- (3)
Multiplying (2) by A, and subtracting from (3) we get
oy (A=Ay) Xy + oy (A~Ay) Xy ot o (A -A) X=0 0 e “4)
and since A A,....A; are distinct and «,...a, are non zero,
we have o, (A,—A)# 0;1=2,3...5.
Thus (4) gives a relation whose length is j—1, giving a contradiction.

Hence X, X,......X, all linearly Independent.

Property : 8

The characteristic roots of a Hermitian matrix are all real.

Proof :
Let A be a Hermitian matrix
Hence A = A1 (by thrm 3.17) . (1)

Let A be a characteristic root of A and Let X be a characteristic vector
corresponding to A:

AX = AX e )
Now,
AX=AX = XL AX = AX'X
= (XTAX)T = XTX (since XT AX in a 1x1 matrix)
= XTATX)T = A XX
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= XTATX = AX'X

= XT ATT(- = 2 XTX

= XTaTx = xIX™X

= XTAX = ZX™X (using 1)

= F XTAX = AXTX (using 2)

= AMXIX) = X™X) e 3)
Now  X'X = XTX = xixg+ x2xp+..+ Xnxp

= xyf +|xaf2 e txaf
z 0
From (3) we get A = 7,

Hence A is real.

Corollary :

*

"The characteristic roots of a real symmetric matrix are real.

Proof :

We know that any real symmetric matrix in Hermitian. Hence the result follows
from the above property

Property 9 :

The characteristic roots of a skew Hermitian matrix are either purely imaginary
or Zero.

Proof :
Let A be a skew Hermitian matrix and A be a characteristic root of A.
o [A-Al|=0
oo |IA-IAL =0
o iA is a characteristic root of i A.
Since A is skew Hermitian iA is Hermitian. (Refer result (iv) theorem 3.18)

& By theorem i\ is real. Hence A is purely imaginary or zero.
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Corollary :

The characteristic root of a real skew symmetric matrix are either purely
imaginary or zero.

Proof :

We know that any real skew symmetric matrix is skew Hermitian.

Hence the result follows from the above property.
Property 10 :

Let A be a characteristic root of an unitary matrix A. Then 1Al = 1 (ie) the
characteristic roots of a unitary matrix are all the unit modulus.

Proof :

Let A be a characteristic root of an unitary matrix A and X be a characteristic
vector corresponding to A.

oo A X = A X === j--(l)
Taking conjugate and transpose in (1) we get

—nT _ (s\0

(AX)" = (AX)
&’ - e @)

Multiplying (1) and (2) we get

(W)(Ax) - (AXT)x)

XI(ATA)X = (X' x)
Now, since A in an unitary matrix g7, =1
Hence X1X = (A) XIx
Since X 1is non-zero vector XT in also non-zero vector and
XTX= |51 + |k .|z % ©-
. we get'ax =1
Hence [A2 = 1 = Hence [A| = 1.
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Corollary :
Let A be a characteristic root of an orthogonal matrix A. Then 1Al =1.

Since any orthogonal matrix is unitary the result follows from property 10.

Property 11 :

Zero in an eigen value of A if and only if Ain a singular matrix.

Proof :

The eigen values of A are the roots of the characteristic equation |A-AI} = 0
Now, 0 is an eigen value of A & |A- 01| =0

< |A|=0

& A is a singular matrix.

Property 12 :

If A and B are two square matrics of the same order then AB and BA have the
same eigen values. E .

Proof :

Let A be an eigen value of AB and X be an eigen vector corresponding to A.

oo (AB) X = ;\.X
B (AB) X = B(AX) = M(BX)
(BA) BX) = ABX)

& (BA) Y = AY where Y = BX.
Hence A is an eigen value of BA.

Also BX is the corresponding eigen vector. :

Property 13 :

If P and A all nxn matrices and P is a non singular matrix then A and P! AP
have the same eigen values

Proof :
Let B=P1 AP.

To prove A and B have same eigen values, it is enough to prove that the

characteristic polynomials of A and B are the same.
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Now B-Al] = [P-lAP-Al]
= |PIAP-P-I(AD P|
= |P{(A-ADP
= [P7{|A-AL|[P|
= [P7Y|[P|[A-AT|
= |P'PlA-A]|
= |IlA-AL
= |A-TA|

% The characteristic equation of A and P'AP are the same.

Property 14 :

If A is a characteristic root of A then f(A) is a characteristic root of the matrix
f(A) where f(x) is any polynomial.

Proof :
= n —1
Let f(x) = agx"+ax"'+...+a _ xta
Where a, # Oand a,a,...a_ are all real numbers.
— n n-1 :
o f(A) = a A"+ a, A" +..+a | Atal

Since A in a charactertic root of A, A™ in a characteristic root of A" for any
positive Integer n (refer property 6)

oo AX = ARX
AVIX = AmlX

AX = AX
a, A"X = a,A"X
oo alA“‘IX = al?\.‘HX
a, | AX = a A X,
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Adding the above equations we have
a,A"X + a, A"IX +.....+a  AX
= aA"X +a A X +..+a AX
& (a,A"a, AM 1+ +a  A)X = (g a A+t VX
&o (a,AMa, A"+ +a_ A+ta DX = (aA" +a ™ +.+a A +a )X
oo f(A)X = f(A)X

Hence f (M) in a characteristic root of f(A).

Problem :1

If X, X, are eigen vectors corresponding to an eigen value A then aX, +bX, (a,b

non—zero scalars) in also an eigen vector corresponding to A.

Solution :
Since X,and X, are given vectors corresponding to A, we have
AX, = AX, and AX, = AX,
Hence A(aX,) = A(aX,) and A(bX,) = MbX,)
& AaX,+bX,) = A(aX,+bX,)

& aX,+bX, in an eigen vector corresponding to A.
Problem 2 :

3 10 5
2 -3 -4
3 5 17

If the eigen values of A = are 2,2,3 find the eigen values of A~!

and A?

Solution :

Since 0 is not an eigen value of A, A is a non singular matrix and hence A~
exists.

. 11 .
Eigen values of A~! are 53 and eigen values of A? are 22, 22, 32

N | —
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Problem 3 :

Find the eigen values of A> when

300
A=|5 40
36 1

Solution :
The characteristic equation of A is obviously (3-A) (4-A) (1-1) =0

Hence the eigen values of A are 3,4,1.

&% The eigen values of A are 3°, 4°, 1°.

Problem 4 :

Find the sum and product of the eigen values of the matrix

3 4 4
1 2 4
1 -1 3

without actually finding the eigen values.

Solution :

3 -4 4
LetA=|1 2 4
1 -1 3

Sum of the eigen values = trace of A = 3+ (-2) + 3 = 4 product of the eigen
values = |A]

3 4 4
Now, |A] = L 24
1 -1 3

= 3(-6+4) + 4(3-4)—4 (-1+2)
- _6-4-4=_14

& Product of the eigen values = -14
Problem 5 :

cosO —sinej

Find the characteristic roots of the matrix ( .
—-sin® cosH
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| Solution :

cos® -—sinB
Let A = —sin® cos9

The characteristic equation of A in given by |A-Al} = 0.

cosO—-A —sinb
= (

—sin® cosO-—-A
& (cosB-A)% —sin?0 = 0
% (cos0—A—sind) (cos6-A+sinb) =0
% [A—(cos0—sinO)] [A—(cosO+sinO)] = 0

& The two characteristic roots of the matrix are (cos0—sin0) and (cos0+sin0)

Problem 6 :
Find the charaéteristic roots of the matrix

cos® —sinf
A= —sin® —cosO

Solution :

The characteristic equation of A in given by |A-AlI| = 0.

cosO—A —sin6
(ie)

—sin® —cosO—A

%  —(cos?0-A2) —sin?0 = 0
%  A2—(cos?0 +sin?0) = 0
co ?\.2 -1 =0

& The characteristic roots are 1 and —1

Problem 7 :

Find the sum and product of the eigen values of the matrix.

(211 212} _
A= ay] a2 without finding the roots of the characteristic equation.
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Solation :
Sum of the eigen values of
A = trace of A=a, +a,,
product of the eigen values of

A = |Al=ay 2y —aj; ay

Problem 8 :

_Verify the statement that the sum of the elements in the diagonal of a matrix is
_the sum of the eigen values of the matrix.

2 2 -3
A= |2 1 -6
-1 =2 0

_ Solution :

The characteristic equation of A is |A-AI| =0

-2-2 2 3

(ie) 2 1-h 6| _ g
-1 =2 A

(ie) (<2-M)[(1-A)(~A)—12]~2[~2A—6]-3[-4+(1-1)] = O
(ie) (2-1) (A2— A=12) + 4(A+3) + 3(A+3) = 0
(ie) —2A24+2A+24-A3+A2+12A+4A+12+3A+9 = 0
(i6) <A3—A2+21A+45 = 0
(ie) A3+A2—21A—45 = 0.

This is a cubic equation in A and hence it has 3 roots and the three roots are the
three eigen values of the matrix. '

coefficient of Kz
coefficient of k3 =-1

The sum of the eigen values = — (

The sum of the elements on the diagonal of the matrix
A = 2+1+0=-1

Hence the result.
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Problem 9 :
6 -2 2

The product of two eigen values of the matrix A = ;2 31 ;1 is 16. Find the

third eigen value. What is the sum of the eigen values of A ?

Solution :

Let A, A, A, be the eigen valuc ;s of A. Given, product of 2 eigen values (say) A,
A, is 16.

&4 A, = 16.

We know that the product of the eigen value is |A|

6 -2 2
) -2 3 -1
ie A, A, =
- (19) b3 2 -1 3
(ie) 16?»3 = 6(9-1) + 2 (-6+2) + 2 (2-6)
= 48-8-8
= 32
oo ;\,3 = 2

oo The third eigen value is 2.

Also we know that the sum of the eigen values of

A = traceof A=6+3+3 =12

Problem 10 :

The product of two eigen values of the matrix

is — 12. Find the eigen values of A.

Solution :

Let A, A,, A; be the eigen values of A. Given product of 2 eigen values, say A
and A, is —12. ' :
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MA, = 12 1
We know that the product of the eigen values in Al

2 2 -7
S MM, = z : _23
(ie) 120, = -12 .
co Ay =1 2
Also we know sum of the eigen values = Trace of A.
oo AFA,th, = 2+41-3=0
& A+, = —1(using2) el 3)
using (3) in (1) we get
AM=1-A) = -12
7\.12+2.1—-12 = 0
A+ (A-3) = 0
o A, = 3or—4

Putting A, = 3 in (1) we get A, = —4 or putting A, =—-41in (1) we get A,=3
Thus the three eigen values are 3,4, 1.

Problem 11 :

Find the sum of the squares of the eigen values of

SO N e
Vi O\ bh©

3
A =10
0
Solution :

Let A, A,, A, be the eigen values of A. We know that A% A% A,2 are the eigen
values of A2,

S N =
W N A
SO O W
S N o=
wi O\ A
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9 5 38
0O 4 42
O O 25

& Sum of the eigen values of A? = Trace of A2 = 9+4+25
(ie) A 2+A,2+A,2 = 38.
oo Sum of the squares of the eigen values of A = 38.

Problem 12 :

Find the eigen values and eigen vectors of the matrix.

A

I
U et e
Y T )
b e (A

Solution :
The characteristic equation of A in |[A—AI] = 0.
1—A 1 3
o 1 5—-A 1 0
3 1 1—-A
oo (1-2) [(5—-A) (I-) —1]}-[(1-A)-3] + 3 [1-3(5—-1)] = O.
(1-A) (A2—6A+4) + (A+2) + 3 (BA—14) =0
A2—6A+4-A3+6A2—4A+A + 249X — 42 =0
> —A3 +7A2-36 = O Hence A3-722+36 = 0O
o (A+2) (A2-9A+18) =0
Hence (A+2) (A—06) (A—3) =0

o A =-—-2,3.6 are the three eige'n values.
Case (i) :
Eigen vector corresponding to A =2,
X1
Let X = | *2 | be an eigen vector corresponding to A = -2,
X3
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Hence AX = 2X.

1 1 3} xg -2X
(le) 1 5 1 X2 — —2X2
31 1 X3 —-2X3
o X, X, +3%x; = -2x,
x1+5x2+x3 = —2x2
xS 3%, tx,¥3x, = 0 s (1)
X +7¥,+x, = 0 e (2)
3x,+x,+3x, = 0 == 3)

Clearly this system of three equation reduces to two equations only. From (1) & (2)
We get x, = -2k ; x, = 0 x5 = 2k.

& It has only one independent solution and can be obtained by giving any value
toksayk=1. '

& (~2,0,2) in an eigen vector corresponding to A = —2.
Case (ii)

Eigen vector corresponding to A =3

Then AX = 3X gives
TS 2x +x,+3x, = 0
X, +2x,+x;, = 0
3x, +x,-2x, = 0

Taking the first 2 equations we get

X1 _X2_X3 _
55 " Ts _k(Gay)
o°oXl=—k;X2=k;X3=-—k.

Taking k = 1 (say) (-1,1,-1) is an eigen vector corresponding to A = 3
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Case (iii)

Eigen vector corresponding to A = 6

we have AX = 6X.
Hence —5x,+x,+3x; = O
X,—X,+%X; = 0
3x,tx,~5x3 = O

Taking the first two equation we get

x,=k;x,= 2k x; = k. I_t satisfies the third equation also.

Taking k = 1 (say) (1,2,1) is an eigen vector corresponding to A = 6.

Problem 13 :

Find the eigen values and eigen vectors of the matrix.

6 -2 2
2 -1 3

Solution ¢

The characterstic equation of A is |[A-All =0

2 -1 3-A

(6-0) [(3—2)? —1] +2 [(2A—6)+2] +2 (2—6+2X) = O
(6-1) (8+A2—61) +4A —8+4A—8 = 0
48-+612—36A~8A—A3+6AZ+8A—16 = 0
A3+1222-36A+32 = 0

Hencé A3—12A2+361—32 = 0

& (A-2) (A-2) (A-8) = 0.

s The eigen values are 2,2,8. We now find the eigen vectors.
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Case (i) :
A=2.
X1

The eigen vector X = | *2 | is got from AX = 2X

X3
co 6x, - 2x, + 2x, = 2x,
—2x, +3x,—x; = 2x,
2X,—x,+3x, = 2x,4
oo 4x,-2x, +2x; = 0
—2x+x,~x3; = 0
2 x,+tx, = 0

The above three equations are equivalent to the single equation 2X,~X,+X, =0

The independent eigen vectors can be obtained by giving arbitrary values to any

two of the unknowns x, x, x,.
Giving x, = 1; X,=2wegetx;=0
Giving x,; = 3; x, = 4 we get x, = -2
. oo The two Independent vectors corresponding to A = 2 are (1,2,0) and (3,4,-2).
Case (ii)
A =8.

X1

The eigen vector X = | *2 | is got from

X3
AX = BX.
oo —2Xx,-2x,+2x, = O (1)
~2X,~5X,~xy,, = O (2)
2x,~X,~5x,, = O 3)
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From (1) and (i) we get

o x,=2k;x,=-k;x;=k
Giving k = 1 we get an eigen vector corresponding to 8 as (2,-1,1).

Problem 14 :

Find the eigen values and eigen vectors of the matrix

2 -2 2
A=l 1 1
1 3 -1

Solution :

The characteristic equation of A in JA-AI| =0

2-% -2 2

1 3 -1-A
\

oo (2-1) [-(1-2) (1+A)-3]+2[-(1+A)-1] +2 [3(1-2) =0
& (2-A0) (A2—4)-2 (2+1) +2 (2+A) =0
& 2A2-8-A3+4A—-4-2A+4+20. =0
& —A3H+2A2+40-8 =0
Hence A3-2A2-4A+8 = 0
& (A-2)(A>-4) =0
Hence (A-2) (A-2) (A+2) =0
A = 2,2,-2 are three eigen values.
Case (i)
A=2.

Let X = (x, X, X;) be an eigen vector corresponding to A = 2, x is got from
AX=2X.
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2 -2 2 X1 2X1

(ie) 1 1 1 11x2]_ |2x%x2
1 3 -1]jx3 2x3

& The eigen vector corresponding to A = 2 is given by the equations.

2x,—2x,+2x, = 2x,

X, tx,+x; = 2x,

X, H3x,-X5 = 2Xx,4
(ie) —x,+x;, = 0 (D)
' X —X,4%, = 0 s )
x,+3x,-3x;, = 0 = 3)

Taking (1) and (2) we get

b x, =0x,=kx,;=k.
Taking k = 1 we get (0,1,1) as an eigen vector corresponding to A = 2.
Case (ii)
= 2.
Corresponding to A = —2 we have AX = —-2X.

o 2X,—2X,+2X, = -2X,
X, tX,txy = —2X,
X, +3X,~X; = ~2X,4
oo 2x,—X, Xy = 0
X, H3X, X, = 0
x,+3x,+x;, = O

& Taking the first two equation we get
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Taking k = 1 we get (—4,-1,7) as an eigen vector corresponding to the eigen
value A = 2.

Hence the problem.

8 -6 2
: , : |6 7 -4
15. Find the eigen values and the eigen vectors of the matrix 4 3

Solution :

8 -6 2
Let - A= |07
2 4 3

The characteristic equation of the matrix A is

8—A - —6 2
-6 7-A 4| _ g
2 -4 3-2

(B8—M)[(7-1) (3-)) —16] +6 [-6(3—A) +8] +2 [24-2 (T-M)] = 0
(8-1) [A2—10A+21-16] +6 [~18+6A+8] +2 [24-14+2A] =0
(8-A)[A2-10x+5]+6[6A—10]+2[2A+10] =0
—A3+18A2-85A+40+36A—60+4A+20 =0

" —A3+18A2-451 =0
7»3——187L2+-.451 =0
A(A2-18A+45) =0
AA-3) (7»—15\) =0
A =0, 3,15.
Hence the eigen values of the given matrix are (0,3,15).

For the given matrix, the equation (A-ADX =0

8-A -6 2 X1
1s|-6 7-A —4||x) =0
2 -4  3-Al X3
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Hence the eigen vectors x is given by the equations

(8-M)x,—6X,+2x, = 0

—ox,+(7-Mx,~4x, = o0 Ve @
2x 4%, +(3-A)x, = 0
Case (1) When A = 0, the equations (D) are becomes,
8x,~6x,+2x, = 0 == (1)
~6%,+7x,~4%, = 0 e (2)
2x,—4x,+3x, = 0 S e (3)

Since the equations are linearly dependent, we can omit one of them.

From (2) & (3), we have

X{ X _ X3

21-16  -8+18 24-14
N o_X_x

=5 10 10

X1 _X2_X3
(o1 =3=75

Hence the corresponding eigen vector is
1
XI%— 2
2

Also every non—zero multiple of this column vector is an eigen vector
corresponding to A = 0. '

Case (ii)
When A = 3, the eigen vector is given by the equations
5x,-6x,+2x, = ) I — )
—6x,+4x,-4x; = o  eeemees (5)
2x,4%,40x; = 0 ()

From equations (5) and (6) we have

X1 X2

X3
0-16  -8+0 24-8
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X X2 _ X3
-16 -8 16
X1 X2 X3
O —_— = —_— e ——
(or) 2 1 -2
2
Hence the corresponding eigen vector is X, = 12

Case (iii)

When A = 15, the eigen vector is given by the equations,

~7x,—6x,+2x, = 0 e (7)
-6x,—8x,-4x, = 0 - (8)
2x,—4x,-12x; = 0 T e (9)
From the equations (8) and (9), we have
X1 _ X0 _ _ X3
9616 —-8-72 24 +16
X _ X2 _ X3
80 -80 40
: 1 _ X2 _X
(1e) > ) 1
2
—2

Hence the corresponding eigen vector is X; =
1

The three vectors [1,7 2, 2], [2,1,-2] and [2,-2,1] are linearly independent.

16. Find the eigen values and the eigen vetors of
3 10 5
2 -3 -4
3 5 7

Solution :

3 10 5
Let A= |23
3 5 7
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The characteristic equation of the given matrix is

(3-A) [—(3+X) (7-A)+20] —10 [-2(7— x)+12] +5 [— 1o+3(3+x)]
(3-A) (A2-4A~1) —10 (2A-2) + 5 (3A-1) =
~A3+TA-16A+12 = 0
A3_TAZ+H16A-12 =0
A2(A=2)—5A(A—2) +6 (A—2) = 0
(A-2) [A2=5A4+6] = 0
. (A2) (A-2) (A-3)=0
A=223.

(ie) the eigen values of the given matrix are (2,2,3)

Case (i)
Taking A = 3, the corresponding eigen vector is given by the equations.
0x,+10x,+5x; = O R ¢y
—2x,~6x,—4x, = 0 e (2)
3x;+5x,+4x, = 0 emeeeee (3)

From equations (2) & (3), we have

X1 _ X2 — X3
24 +20 “12+8 —10+18
e X1 _ X2 _ X3
(1e) 4 4 8
. Xl _ X2 _ X3
(ie) 1 1 2
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Case (ii)

Let A = 2 (the equal root), the components of the eigen vector are given by the
equations

X +10x,+5x;, = 0 ee—eme- 4)
S -2x,~5x,-4x, = 0 e &)
3%, +5x,+5x, = 0 p—)
From equations (5) and (6), we have
’ X1 = X2 . - X3
-25+20 -12+10 -10+15
X X _X
-5 -2 5
L - X2 _X
1e) 5 2 s
5
I
Hence X, =
~5

jThe eigen vectors X, has also to be the same form as X, and hence it is linearly
dependent on X,. '

Exercises :

1. For each of the following matrices find the characteristic vectors corresponding
to each characteristic root. '

8§ —6 2 2 21
@6 7 4 ROl
2 -4 3 "2 2
2. For what value to k is 3 a characteristic root of
31 -1
'3 5 -k
3 k -1
3. Find the characteristic equation of the matrix
2 31
A=|3 1 2} and prove that the matrix
1 2 3
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B = has the same characteristic equation.

N = W
W N
- W N

4. Find the characteristic roots and the corresponding characteristic vectors of

1 -1 -1

Ad+AZ+A+IifA=|! "1 O
1 0 -1

a b 1 1
5. Show that the matrix (—b aJ has the two eigen vectors [ ) and ( )

1

6. Find the eigen values and eigen vectors of the following matrices.
3 4 4 31 4 1 13 6 -2 2 3 -1 3
, - . ..o |1 5 =2 -1 9 -1 9
2 Han|® 2 ° i Han |72 2 MW
4 -1 3 0 0 5 311 2, -1 3 7 -1 7

5.3. RANK OF A MATRIX
We now proceed to introduce the concept of the rank of a matrix.
Definition :

Let A= (aij) be an mxn matrix. The rows Ri = (3;;,8,5,---a, ) of A can be thought
of as elements of F». The subspace of F® generated by the m rows of A is called the
row space of A. '

Similarly, the subspace of F™ generated by the n columns of A is called the.
column space of A.

The dimension of the row space (column space) of A is called the row rank
(column rank) of A.

Theorem 5.2 :

" Any two row equivalent matrices have the same row space and have the same
TOW rank. '

Proof :

Let A be an mxn matrix.
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It is enough if we prove that the row space of A is not altered by any elementary
row operation. Obviously the row space of A is not altered by an elementary row
operation of the type R,©R, Now, consider the elementary row operation.

R.—~cR. where ceF—{0}.

Since L({R,,R,,..R,....R }) =L ({Rl,Rz,....cRi,...Rn}) the row._space of A is not
altered by this type of elementary row operation.

Similarly we can earily pro.e that the row space of A is not altered by an

elementary row operation of the type R—>R+cR,.

Hence row equivalent matrices have the same row space and hence the same
row rank.
Theorem 5.3 :

Any two column equivalent matrices have the same column rank.

Proof :
Let A be an mxn matrix.

It is enough if we prove that the column space of A is not altered by any
elementary column operation.

Obviously the column space of A is not altered by an elementary column
operation of the type C;<>C,

Now, consider the elementary column operation. C.—»rC, wherer € F — {0}.
Since L ({C,,C,,....C.,...C_}) =L ({C,,C,,..1C,,...C_})
The column space of A is not altered by this type of elementary row bperatioﬁ.

Similarly we can easily prove that the column space of A is not altered by an
elementary column operation of the type C,(—>C+1C; '

Hence column equivalent matrices have the same column space and hence the
same column rank.

Theorem 5.4 :

The row rank and the column rank of any matrix are equal.
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Proof :
Let A = (al.j) be an mxn matrix.
LetR,, Rz,...,Rrn denote the rows of A.
Hence R, = (3;pa;5,...-a, -
Suppose the row rank of A isr.
- Then the dimension of the row space is r.
Let vi = (by;,..e05b ), Vy, = (by1,Dg95.000b5 ),
v, = (b,,-...b,, ) be a basis for the rowspace of A.

Then each row is a linear combination of the vectors VsVl V.

r

Let Ry = kyvy+k,vy+. 4k, v,
R2 = k21V1+k22V2+. .. .—!—erVr
Rm = km1V1+km2V2+ kerr

Where kijeF
Equating the ith component of each of the above equations, we get-

ay = kb, +k,by++k b

Ir-ri
a; = kyb,;+ Kyoby +eeel. +k, b
aml = km 1 b 1 1+km2b2i+ """"" +kmrbn
e ] ) ) )
h kyg [ ki [ kiy
= b, +bo;|l T [+ +by
a . -
| & |
_kml_ _ka_ Lkmr_

Thus each column of A is a linear combination of r vectors.

Hence the dimension of the column space <r.
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& Column rank of A < r = row rank of A.
Similarly, row rank of A < column rank of A.

Hence the row rank and the column rank of A are equal.

Definition :

The rank of a matrix A is the common value of its row and column rank. -

In other words, the rank of a matrix is the largest order of any non—vanishing

minor of the matrix.

Note 1 : Since the row rank and column rank of a matrix are unaltered by elementary
row and column operations, equivalent matrices have the same rank.
0

I
] then rank of

In particular if a matrix A is reduced to its canonical form, [ 0 0
A=r

Thus to find the rank of a matrix A, we reduce A to the canonical form and find
the number of non—zero entries in the diagonal.

Note that in the canonical form of the matrix A, there exists an rxr subTmatrix,
namely Ir, whose determinant is not zero.

Further every (r+1) x (r+1) sub-matrix contains a row of zeros and hence its
determinant is zero.

Also under any elementary row or column operation the value of a determinant
is either unaltered or multiplied by a non—zero constant.

Hence the matrix A is also such that

(i) there exists an rxr sub—matrix whose determinant is non zero.

(ii) The determinant of every (r+1)x(r+1) sub—matrix is zero.

Hence one can also define the rank of a mﬁtrix A to be r if A satisfies (i) and (ii)

Note 2 : Any non-singular matrix of order n is equivalent to the identity matrix and
hence its rank is n. ' :

- -

=~

Note 3 : The rank of a matrix is not altered on multiplication by non-singular matrices,
since premultiplication by a non-singular matrix is equivalent to gpplying elementary
row operations and post-multiplication by a non-singular matrix is equivalent to
applying elementary column operations. ’ '
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Solved problems :
Problem 1 :

1. Find the rank of the matrix A =

[ I o R
_ W N
(=3
N W

Solution :

- 143 6 7lc o,

<o
p—
N
~

1 O 0 01C;>Cr-2C
4 -5 —-10 —-5{C3—>C3-4Cy
0 1 2 7 |C4 —>C4q-3C
11 O 0 0

~ =S 10 SR SR,4R,
0 1 2 7

C3—>C3-2C
Cps >Cs-C

1
R;—> Ry*+ R,

~ C,C,

100“&»%%
~ 1
0010 R3—>ER3

& Rank of A = 3.
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1 2 3

2. Find the rank of the matrix A = 22 33 11
Solution :
(1 2 3
A= |2 31
2 3 -1
1 2 3
2 3 1
~ R.— R,+R
000 > 27
1 2 3
al = 2 3 =0
000

oo Rank of A # 3.

1 2

But there is atleast one non-zero minor of order 2, namely 5 3

‘ which i1s = —1.

Hence Rank of A = 2.

1 2 3
3. Find the rank of the matrix A = 2 3 1
31 2
Solution :

(1 2 3

A = 2 31

|3 1 2

1 2 3

A| = 2 3 1

31 2

= 1(6-1)-2(4-3)+3(2-9)
= 5-2-21=_18#0
e Rank of A =3
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1 2 1 2
1 3 2 2
4. Find the rank of matrix |2 4 3 4
13 7 4 6
Solution :
Let A be the given matrix.
1 2 1 27
132 2R-+R. 3R
A~ |2 a4 3 gt 477
0 1 1 0]
1 2 1 2]
1 3 2 2
R; —> Rz —(R1+R
~lo _1 o o/R3?>Ra-(R1+Ry)
0 1 1 0]
1 2 1 2]
0 1 1o Rr» > R R
~ lo -1 0 o 2727 ™
0 1 1 0]

1 1 O
= 71 0 0 g
1 1 0
The minor of order 3 namely
1 2 1
0 1 I - 1n=1=0
0 -1 O

o» Rank of A = 3.
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5. Find the rank of the matrix.

1 -7 3 -3
A~ |7 20 225
5 =2 4 7
Solution :
1 0 0 0]C—>Cr+7C
A ~ 69 -23 46| C3—> C3-3C
|5 33 -11 22{C4 > Cq+3C
1 0 0 O]
Cy>Cy+3
7 23 -23 23
~ Cq4>Cyqg+2
5 11 -11 11]
1 0 00
C3>C3+Cy
17 23 00 Co —> Ca—C
5 11 0 0] 4T AT

In this final form of A, the fourth order and third order determinants are 0.

The leading minor of order 2 is

1 O ,
7 93 = 23#0
& The rank of A = 2.
1 111
6. Find the rank of the matrix A = 4102 by examining tile determinant,
0 3 4 2
minors.
Solution :
1 1 1 1 11
4 1 0O _ 0= 1 0 2
0 3 4 3 4 2
1 11 1 1 1
4 1 2| _ 0 _4 0.:2
0 3 2 0 4 2




& Every 3x3 submatrix of A has determinant zero.

1 1

Also, 4 1

=-3%0

o Rank of A = 2.

Exercises :

1. Find the rank of the following matrices.
l« 2 3 2 3 4 2 3 1
(3)234 (b)312 © 4 6 2
0O 2 2 (2 2 2 -6 -9 -3
1 -1 0 2. 1]
0 1 2 1 3 1 1 -1 2
@2 3 ° -1 (@la 0o 1 0 3
1 1 10 0 -1 2 3 7]
2. Find the column rank of the matrices.
1 2 -1 3 3 1 -5 -1
(a) 2 .4 1 -2 (b) 1 -2 1 =5
3 6 3 -7 1 5 -7 2
(Hint : Row rank = rank of the matrix = column rank).
3. Find the row rank of the matrix
1 3 1 2]
11 4 3 -1
2 3 -4 -7
| 3 8 1 7]
Answers :
1. (a) 3 (b) 2 () 1 d 3 (e) 3
2. (a) 2 (b) 3 )
3. 2
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LINEAR ALGEBRA : UNIT -6

6.1. REDUCTION TO NORMAL FORMS

Definition :

By means of elementary operations any non-zero matrix can be reduced to a

simple form called the normal form of the matrix.

Theorem 6.1 :

Every non-zero mxn matrix A can be reduced to a matrix of the form
( I Or,n-r

0 0 ] by successive applications of a finite sequence of elementary
m-r,r m-r1,n—r1

row and column operations where Op,q is the pxq zero matrix.

Proof :

Proof is’by induction on the pumber of rows of A. Let m =1, (i.e.,) A has only
one row, say A = (a;;, @;p,-++--»8;p)-

Since A # 0, by interchanging coloums, if necessary we can bring a non-zero
entry o in the first place.Multiplying A by a~! we get 1 in the first place Make the
other entries of A zero by adding suitable multiples of 1 of them. Thus, the theorem is
true when m=1.

Assume that the theroem is true for any non-zero matrix with m—1 rows. Let A
be a non-zero mxn matrix. ‘

Let a;; be a non-zero entry of A. Interchange the 1% and i™ rows; then
interchange the 15t and j'* columns. We then have a; in the (1, 1) position. Multlplymg
the first row by a; -1 we get 1 in the (1, 1) position.

All other entries in the first column can be made zero by adding suitable
multiples of first row to each row. Similarly, all other entries in the first row can be
made zero. We thus arrive at a matrix of the form

1 0 0 .. O]
0

B , where B is an (m-1)x(n—1) matrix. By induction hypothesis, B can

0

be reduced to the desired form by elementary operations.
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However, any elementary row or column operation on B can be considered as an
elementary operation on the corresponding rows or columns of A and does not alter the
first row or the first column of A. Hence the theorem.

Corollary 1 :

Let A be a non-zero mxn matrix. Then these exist non-singular square matrices
P and Q of orders m and n respectively such that PAQ is a matrix of the form

( I Or n—r
Om-rr Om-rn-r)
Proof :

We know that every elementary operation on A is equivalent to multiplying A
by an elementary matrix.

o» The previous theorem can be stated as

where P's and Q's are elementary matrices.

But elementary matrices are non-singular and any product of non-singular
matrices is also non-singular.

oo 1f Pl’ ..... Pi =P and le ----- Q] = Q

_ . ) I Or,n—r
where P,Q are non-singular matrices, then from (1) PAQ = |

m-r1,r Om—-r,n—r

Corollary 2 :

Any non-singular square matrix A of order n is equivalent to the unit matrix I .

Proof :

By corollary 1, there exist non-singular square matrices P and Q such that
I Or,n—r )

On-r,r On-r,n-r

PAQ = (
Since P, A and Q are non-singular the matrix PAQ is also non-singular.

oM Or,n-r ) ingular. This i ibl 'ff( T Or.n—s I
| Oprs Op—rnos is non-singular. This is possible iff | o o, |7n
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Examples :

1 2 1
1. Find whether the matrix A = | ¢ © 2 \is equivalent to I,
2 1 -3
1 2 1]
A= |71 0
2 1 3]
12 L R2» > R2+R
~ |2 2 3 R2—>R2 2R1
0 -3 —s|83 3 1
10 O—C —> C 2C
~ |2 2 3 é ——)Cz Cl
1 0 O ] 1
o 1 32| R2 3R
0 3 5 |[R3—=>(-1R3
1 0 0 ]
— 1 3/2|R3—>R3—3R»
0 0 1/2]
1T 0 O |
_ 1 0 |IRp, > Ry — 3R3
0 0 1/2
1T 0 O
- |0 1 0}|rR3—>2R;
0 0 1

o A is equivalent to 1.
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2. Reduce the matrix

Solution :

-0 O O

_ = kN

0 6

0 2

0 3 to its normal form

1 2]

1 -1 0 3]

4 2 0 2| R >iR

2

1 -1 0 3 R4 >Ry —Rj3

0 -1 1 -1

1 0 0 O

4 6 0 -10|Cr—>Cy+Cy

1 0 0 0 [Cqi—>Cyq—-3C

L‘o -1 1 -1 ‘

1T 0 0 O |

0 1 0 -5/3|rR, >R,

0 -1 1 -1 6
Ry <= Ry

0 0 0 0 | :

't 0 0 0 |

01 0 O S P

0 -1 1 -8/3| 4747372

0 0 0 0 |

1 0 0 0 ]

010 0 Cyr—o>CHr+C

0 0 1 -8/3| 27273

LOOO 0_

1 0 0 O]

OlO‘OC—>C+8C

0 01 0| 474733

0 0 0 0]

(13 03,1)

01,3 O1,1
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Exercises :

1.

1 2 3

0 1 2 by applying in this order
-1 2 -3

Find the matrix obtained from A =

(i) the elementary row operations R,<R;, R,—»2R,, Rl'——>R1—R3 and
(11) the elementary column operations C,—-2C,, C,&=C;, C,—»C,-C,.

Reduce to normal form the matrices,

1 2 0 -1 12 31"

3 4 1 2 2 3 1| e (1O -7
() (11) (1i1) 01 2

2 3 2 5 31 2

- 6.2. SIMILAR AND CONGRUEN'T\MATRICES

Definition :

Let;V be an n dimensional vector spéce over a field F. Let Te A(V) have the
matrix M (T) in the basis {v,,v,,....... ,v.} and the matrix M,(T) in the basis
{W,Wy,...w_}. We are interested in knowing whether there exists any relationship
between the matrices M,(T) and M,(T). The follbwing theorem givés an answer to this.

Theorem 6.2 :

Let V be an n dimensional vecto.r space over a field F. Let TeA(V) have the

matrix M (T) in the basis {v,,v,,.....,v;} and the matrix M,(T) in the basis {w,,
Thep there exists a non-singular matrix P of order n such that M,(T) = P-IM(T)P.

Proof :

Let M (T) = (aij) and M,(T) = (bij)
By definition,
T(v) = ajvita,vyto...+ aqjyn
T(w;) = by w +byw,+..+bw, i=1,2,..n.
Define a map S:V—->V by S(vj) =W,

Clearly S is a linear map.
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Also . veV=v = oW, toLwW, . +o. W

n n
= v = o, S(v))+o,S(v,)+.....4+a S(v )
=>v = S(ov,*+....+o v )
= v = S(v!) where v! = o, v,+....+a v €V

¢ S is onto.
By using the theorem,

Let V be finite dimensional over F and let Te A(V). Then the following are
equivalent.

(a) T is regular

(b) T is non-singular

(c) T is onto.

S is regular

&% S71 exists in A(V).

Now T(wj) = bljw1+....,+bujwn
= bAljS(v1)+ ..... +b,S(v,)
= S(bjv,*t....tb(v))

(STTSHY) = (S-ITISW)) |
= (S'TY(w)
= ST(w))

= (S“S)(bljv1+ ...... +bv )
Hence the matrix of S~!TS in ~the basis {v,v,,....,v_} is (b))
(e)) - MyT)=(by) = MSTS)

= M, (S™HM,(T)M,(S)

= [M;®)I"™M (T)M,(S)

= P~'M(T)P, where P=M(S).

/
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Example :

: . 4l

Let T:-R2>R2 be the linear transformation defined by T(x,y) = (2y, 3x-Y). Find

(i) the matrix M,(T) in the basis {(1,0), (0, 1)}; (ii) the matrix My(T) in ‘the basis®
{(1,3),(2,5)}; and (iii) a non-singular matrix P such that M,(T) = P~'M,(T)P.

(1) Lete, =(1,0), e,=(0,1)
Then T(e,) = (0, 3)=0e 3¢,
and T(e,) = (2,-1)=2¢-1¢,

0 2
3 -1
(i) Letv,=(1,3), v,=(2,5)
Then T(v)) = (6,0)= —30v,+18v,
and T(vy) = (10,1)= —48v,+29v,

—30 —48
18 29
(iii) Define S:RZ5>R2 by S(¢)) = V;. Then S is linear and

S(e) = (1,3)=let3e,
S(e,) = (2,9)= 2e,+5e,

& M,(T)

& M,(T)

& Matrix of S in the basis {¢,, €,} is

1 2
-M,(8) = 3 5 = P say

3 -1

» (-5 2Y0 2Y\1 2
Also, P*M,(T)P = L3 -1)3 3 5

f6 ~12Y1 2
- 3 5)
f—3o —48J

\ 18
(T)
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Definition :

Let A and B be nxn matrix over F. Then B is said to be similar to A if there
exists a non-singular nxn matrix P such that B=P~!AP.

Theorem 6.3 :

Similarity of matrices is an equivalence relation on the set S of all nxn matrices.

Proof :
(1) The identity matrix I of order n is non-singular and I"! = I.
Since I'TAI = A, A is similar to A for all AeS.

o% Similarity is a reflexive relation.

(il) Let A, B € S and let A be similar to B. Then there exists a non-singular matrix
P such that A = P~'AP.

- co B= PAP—l = (P_l)—lAP—l
Since P! is non-singular, B is similar to A.

o Similarity is a symmetric relation.

(iii)) Let A, B, C e S and let A be similar to B and B similar to C. Then there exists
non-singular matrices P and Q such that A = P"!BP and B=Q!CQ.

& A =P IBP = P 1(QICQ)P = (QP) IC(QP)
Since Q, P are non-singular, QP is also non-singular. -

o A is similar to C.
o%» Similarity is a transitive relation.

Hence similarity of matrices is an equivalence relation.

Remark :

If A is similar to B, we can say that A and B are similar matrices.

Theorem 6.4 :

Similar matrices have the same characteristic equation.
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Proof :

Let A be an nxn matrix and P, a non-singular matrix of order n. Then A and

P-!AP are similar.

If P and A are nxn matrices and P is non-singular then A & P~!AP have the
same characteristic roots. From this A and P-!AP have the same characteristic

equation.
Note :
Theorem 6.2 says that the matrices associated with the same linear
transformation T:V—V with respect to different bases are similar.
Definition :

A matrix B of order n is said to be congruent to a matrix A of order n if there

exists a non-singular matrix P such that B=PTAP.
It is easy to prove that congruence of matrices is an equivalence relation.

If A and B are congruent matrices, then B = PTAP, where P is non-singular.

Also, PT is non-singular.
o A and B have the same rank.

(1.e.,) congruent matrices have the same rank.

Definition :

The trace of a square matrix A over F, written as tr A is the sum of the
elements on the leading diagonal of A.

IfA= (aij) is of type nxn, then

/ —

Lerﬂma 6.5:
Let A, B be nxn matrices over F. Let A€F. Then
(1) tr (AA)=Atr A
1) tr(A+tB)=trA+trB

185



(iii)  tr (AB) = tr (BA)

(iv) If A is a similar to B, then tr A = tr B.
Proof :

Let A=(a;), B= (by;)
(1) tr (AA) = Aa;tAa,,*t...tia

(ii) tr(A+B) = (a,;+b,)+(aytb,,)+ (2 b, )

= (ajtayte..ta JHb b+ b )

= trA+trB
e n . b .
(iii) AB=(C;) where Cy = kzlalk kj
n n n
" & " tr(AB) = 2Gii = 2 2ajby
i=1 i=1k=1
n
i=1j=1
i % bivaL:
BA = (dij) where dij = Nt ikakj
n n n
ce = Y d;; = 2 X bkak
tr (BA) 8= T

n n
j=li=1

= I 3agbji - (ap)
1=1 =1
(iv) If A is similar to B, then there exists a non-singular matrix P such that A = P~IBP.
0% tr A = tr (P"!BP) = tr (PP~'B) by (iii)
tr (B)

f
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Definition :

If Je A(V), then the trace of T, written as tr T, is the trace of M(T), where M(T)

is the matrix of T in some basis of V.

The above definition is meaningful, it depends only on T and not on any
particular basis of V. For, if M(T) and M(T) are the matrices of T in two different
basis of V, then by theorem 6.2 there exists a non-singular matrix P such that M,(T) =
P~IM, (T)P.

(i.e.,) M (T) and M(T) are similar matrices. But similar matrices have the same

trace. Hence tr T does not depend upon any particular basis of V.

For example, let T:R2>R? be the linear transformation defined by T(x,y) = (2y, 3x-y).

0 2
Then in the basis {(1,0), (0, 1)} matrix of T is (3 __1].

otrT = 0-1 = -1.

-30 -48
18 29 )

Also, in the basis {(1, 3), (2, 5)} matrix of T 1s (
& tr T=-30+ 29 = 1.

Definition :

Let V be an n dimensional vector space over a field F. Then TeA(V) is said to
be similar to Se A(V) if these exists a non-singular linear transformation Pe A(V) such
that T=P~!SP.

It is easy to check that the relation of similarity is an equivalence relation on
A(V). The equivalence class of Te A(V) is called its similarity class. To find whether
two linear transformations are similar we calculate a particular canonical form for each
and see if these are the same.
Exercises :

i If A and B are similar matrices, show that their determinants are equal.

2. . Let V be the vector space of all polynomials in x over F of degree<3. Let D be
the differential operator d/dx.
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Find (i) the matrix M (D) in the basis {1, x, x?, x*} and (ii) the matrix M,(D) in
the basis {1, 1+x, 1+x2, 1+x3}. Also find a non-singular matrix P such that
M, (D) = PIM, (D)P.

, 1 1
_ ~1
Let V=R2. Show that it is impossible to find a matrix P such that P (O JP =

a 0
0 b for any a, b € R.

1 1 2

Let V=R?and let | 1 2 1| pe the matrix of TeA(V) in the basis {(1,0,0),
0 1 3

(0,1,0), (0,0,1)}. Find the matrix of T in the basis {(1,1,0), (1,2,0), (1,2,1)}.
Prove that the relation of congruence in matrices is an equivalence relation.
If A 1s non-singular, show that every matrix congruent to A is also non-singular.

Let T:R3—R3 be the linear map defined by T(x,y,z) = (2y+z, x—4y, 3x). Find tr
T.

6.3. SOLUTION OF SYSTEMS OF LINEAR EQUATIONS
USING MATRICES AND DETERMINANTS

Matrix form of a set of linear equations :

Consider a system of m linear equations in n unknowns X{,X55.000,X  glVEN by

a,, X, Fa, X+ +a, X = b1

-------------------------------------------

...........................................

Using the concept of matrix multiplication and equality of matrices this system

can be written as AX = B where

—all a12 ain ]
a1 422 ... a2p
A = : . . .
_aml amz rene anm_
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ES! by |

X9 by

X = |, B= :
L_Xn_ _bm_

The mxn matrix A is called the co-efficient matrix.

Definition :

A set of values of X,, X,,.....,x, wWhich satisfy the above system of equations is
called a solution of the system. The system of equations is said to be consistent if it

has atleast one solution. Otherwise the system is said to be inconsistent.

The mx(n+1) matrix given by

i a11 a1n bl
as] ... ayy Dbp
1 2ml -+ 2mn bm_

is called the augmented matrix of the system and is denoted by (A,B). Thus the
augmented matrix (A, B) is obtained by annexing to A the column matrix B, which
becomes the (n+1)® column in (A, B).

Note : Since every column in A appears in (A, B) the column space of the matrix A is
a subspace of the column space of the matrix (A, B).

Hence the rank of A < rank of (A, B).

Theorem 6.6 :
The system of linear equations AX=B is consistent iff rank of A =rank of (A, B).

Proof :
Let the system be consistent.
Let u}, u,,.....,u_ be a solution of the system.
Then B = u,C,+u,C,+......+u C where C,, C,,.....,C_ denote the columns of A.

Hence the column space of the augmented matrix (A, B) namely <C1,C2, ,C,, B>
is the same as the column space <C,,C,,......C_> of A.

Hence the rank of A = rank of (A, B).
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Conversely let rank of A = rank of (A, B)

Then the column rank of A = column rank of (A, B)
oo dim<C,C,,..... C,> =dim <C,,C,,...... C
But <C,,C,,..... ,C, > 1s a subspace of <C,,C,,.....,C,B>

Hence the theorem.

Remark :

The solution of a given of simultaneous equations is not altered by
interchanging any two equations or by multiplying any equation by a non-zero constant
or by adding a multiple of one equation to another. Hence we can reduce the given
system of equations to an equivalent system by applying elementary row operations to
the augmented matrix. This reduced form will enable us to test for the consistency and
to find the solution if it exists. This is illustrated in the following problems.

Solved Problems :
Problem 1 :
Show that the equations
xtytz = 6
x+2y+3z = 14
xt4y+7z = 30
are consistent and solve them.
Solution :

The given system of equations can be put in the matrix form

The augmented matrix is given by
1 1 1

(A, B) = 1 2 3 14
1 4 7

190



R» —> Ry —-Ry

~ R:—>R3—-R
24 3 3 1

h
o O
(U8

N N

6
8 R3—)R3—3R2
0

O
=
[T\

K
Hence rank of A = Rank of (A, B) = 2.
Hence the given system is consistent.

Also the given system of equations reduces to

1 1 1}x 6
0 1 2|yl - |8
10 0 0flz 0
xty+z = 6
y+2z = 8

Putting z = C, we obtain the general solution of the system as x = C-2, y=8-2C,
z=C.

Problem 2 :

Verify whether the following system of equations is consistent. If it is
consistent, find the solution.

x—4y-3z = -16

4x-y+6z = 16
2x+7y+12z = 48
5x-5y+3z = 0

Solution :

The matrix form of the system is given by

o — —

| -4 -3 16
X

4 -1 6 16

> 7 1207 = | 48
Z

s 5 3 0
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oo The augmented matrix is given by

1 -4 -3 -16]
4 -1 6 16
(A,B) = [2 7 12 48

—

1 4 -3 -16
0 15 18 80
~ [0 15 18 80
0 15 18 80

L. .

Ry > Ry —-4Ry
Ry —> R3-2Rg
R4 — Ry —5Rq

[1 -4 -3 -16]
0 15 18 80 {R3—>R3-R,
~ 10 0 0 O |[Rgy—>R4—Ry
0 0 O 0

- —

oo Rank of A = Rank of (A, B) = 2 and hence the system is consistent. Also the
system of equations reduces to

1 —4 -=3] —16]
0o 15 181~ 80
o 0o oll”] =10
Z
0 0 0 | 0
oo x—4y-3z = -16 and

15y+18z = 80

Putting z=C we obtain the general solution of the systems as

-9
- {5

z = C
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Problem 3 :
Show that the equations
x+2y—z = 3
3x—yt2z =
2x-2y+3z = 2
X-yt+z = -1

are consistent and solve the same.

Solution :

The matrix form of the system is given by

1 2 -1 3]
X
3 -1 2 [ 1
2 2 3V = |2
LZ
1 -1 1 ~1

Here the coefficient matrix

1 2 -1
3 -1 2
A= |2 2 3
1 -1 1
12 —I—R R, —3R
-.) —
O =7 5 R2 R2 2R1
_) —
~ |0 =6 5 R3 R3 R1
._...) J—
0 -3 2| 4 4—Ry
In this form, the third order minor
1 2 -1
0 =7 =5 = _35.30x%0
0 -6 5

Hence the rank of A 1s 3.

The augmented matrix.
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(A,B) = |2 -2 3 2

(1 2 -1 3]
0 -7 5 _g Ry - Ry —-3Ry
R3 —->R3-2R;
~ 10 -6 5 -4
0 -3 2 —4] R4 = R4=Ry
1 2 -1 37
O -7 5 -8
~lo o 1 4 R3 —>R3-2Ry
0 -3 2 -4
(1 2 -1 3]
0 -7 5 -8
} ~lo o 1 4 R4 —> 7R4-3R»
O 0 -1 -4

0 =7 5 8o o
—> Ry +
~ 10 0 1 4| 37™47H3
00 0 0

In this form, the fourth order determinant is zero.

The third order determinant

1 2 -1
N B
0 0 o

Hence the rank of [A, B] is 3.
The two matrices have the same rank. So the equations are consistent.

From the final form of the augmented matrix, the given system is equivalent to
the equations
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X+2y—z =
—7y+5z =

=

putting (3) in (2),

Problem 4 :

3
8

4

~8-20 = 28
4

3-8+4 = —1

—1
-l,y=4&z=4

Examine for consistency the following equations.

2x+6y+11 =
6x+20y—-6z+3 =
6y—18z+1 =

The equation can be written as

2x+6y+0z =
6x+20y—6z =
Ox+6y—18z =

Here the coefficient matrix

—11

-3
~1

2 6 0

6 20 -6

0 6 -18

[2 6 0

0 2 6 |[Ry—>Ry—3Rg
|0 6 -18

In this form, the third order determinant

2 -6
2
6 -18

= 2(-36+36) = 0
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2 6

The second order minor 0 2

l=4¢0

Hence A is of rank 2.
The augmented matrix
(2 6 0 -11

[A, B] = 6 20 -6 -3
0 6 -18 -1

2 6 0 -11
0 2 -6 30 Ry —>Ry-3Ry

0 6 -18 -1
2 6 0 -11

_ 10 2 -6 30 ({R3-3R,
0 0 Q0 -91

In this form, the third order minor

6 0 -11

2 -6 30! _ __91‘6 Oi

0 0 -91 2 -6
= 91 x36%0

Hence R[A, B} =23

But [A, B} has 3 rows and 4 columns.

oo R[A,B] £ 3

o RfA, B} = 3

(i.e.,) the coefficient matrix and the augmented matrix are not of the same rank.

Hence the given system of equation is inconsistent.

Problem 5 :
For what values of 1 the equations
xtytz = 1
x+2y+d4z = 7

x+4y+10z = n? are consistent?
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Solution :

The matrix form of the system is given by

1 1 1 X 1
1 2 4 1y| _— n
1 4 10]|z n?

oe The augmented matrix is given by

11 1 1
_ |1 2 4 n
A,B) =
4B 1 4 10 n?
L
11 R>» > R R
~ |91 n-1 Rz—->R2 R1
0 3 2 o1|Rs 3—Rq
1 1 1 1
10 1 3 n-—1 R3 —> R3-3R»
“ 0 0 0 n?2-3n+2

o The given system is consistent iff n2-3n+2 =0

oo n= 2 (or) 1.

Prcblem 6:

Show that the system of equations

x+2y+z = 11
4x+6y+5z = 8
2x+2y+3z = 19 is inconsistent.

Solution :

The matrix form of the system is given by

11
8

1
4
2 19

N NN

1
5
3

N < =
l
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oo The augmented matrix is given by

1 2 1 11
(AB) = |4 6 5 8
2 2 3 19
12 11 Ry — Ry —4R
~ |0 2 1 =36 R2—->R2 2Rl
0 2 1 -3 | BRI
12 1 1
- 10 -2 1 -36R3—>R3-R»
0 0 0 33

oo Rank of A =2 and Rank of (A, B) = 3.

oo The given system is inconsistent.

Problem 7 :

Investigate for what values of a, b the simultaneous equations x+y+2z = 2,
2x—y+3z = 2, 5x~y+az = b have (i) no solution (ii) a unique solution and (iii) an
infinite number of solutions.

Solution :

Here the coefficient matrix

1 1 2
A= 12 -1 3
5 -1 a

Al = 1(-a+3)~1(2a—15)+2(-2+5)
= —at+3-2a+15+6
= -32+24 =3 (8-a)

If a # 8, |[A] # 0. Hence A is of rank 3 and the augmented matrix

1 1 2 2
(A, B] = 2 -1 3 2
5 -1 a b
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will also be of rank 3 as the leading third order determinant # 0. Hence if a # 8 and
whatever be the value of b, the matrices A and [A, B] will have the same rank. So the

given equations will be consistent.
Also in the case, the common rank = 3 = the number of unknowns.

So the system will have a unique solution.

Ifa=28,|A|=0.
1 1
Leading minor of order 2 is s = -1-2#0
Hence A is of rank 2.
11 2 2
[A, B] = 2 -1 3 2
LS -1 8 6
1 1 2 Ry > Ry —-2R
0 3 -1 - [ 2772774
~ R3——)R3—5R1

0 -6 -2 b-10

1t 2 2
0 -3 -1 -2 R3 o 4 R3 - 2R2
_O 0O 0 b-6

If b = 6, in the above final form, the last row will contain zeros.

Hence all the four third order determinants will be zero.

1 1

The leading minor of order 2 is |, 4

l=-3¢0

Hence R[A, B] =2

The two matrices A and [A, B] have the same rank and the equations will be
consistent.

In this case, common rank = 2 and this 1s < 3, the number of unknowns. So the
system will have an infinite number of solutions.

If b # 6, the third order determinant in the final form of [A, B].
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1 2 2
-3 -1 -2
0 0 b-6

Hence [A,B] will be of rank 3 while A is of rank 2. As the ranks are different,

the equations will be inconsistent.

(i)

(i1)

(iii)

Summing up,

If a # 8 and b has any value, the equations will be consistent and have a unique

solution.

If a =8 and b = 6, the equation will be consistent and have infinitely many

solutions.

=(b—6)(—-1+6) = 5(b—6) and this is # 0.

If a=8 and b # 6, the equation will be inconsistent.

Exercises :

1.

Solve or prove the inconsistency of the following systems of equation-

(1) X+2y+z
2x+3y+2z
3x-Sy+5z

3x+9y—z

(iii) 3x+y+z
X—y+2z

X+y+z

2x-2y+3z

v) x+y+z
3x+y+z

—X+y-2z
—2x+2y-3z

(vi1) x+2y-5z
3x—y+2z
2x+3y-z
4x-5y+z

AN N W

< N U OO

o))

(i1) Xt2y—z -

2x-3y+7z
—x+y+3z
5z+y+3z

(iv) X+2y+2z
3x—2y—z
2x—5y+3z
x+4y+6z

(vi) x+2y—z
3x-y+2z
2x—2y+3z

X—y+z

(viii) X+y+z
x+2y+3z
x+3y+5z
x+4y+7z
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(ix) x-2y—-z—t = -1 (x) x+yt+tz = 7

3x2z+3t = —4 x+2y+3z = 8
S5x—4y+t = -3 yt+t2z = 6
2. For what values of A and p the system of equations
xty+z = 6

x+2y+3z = 10
X+2y+Az =
is (a) inconsistent (b) consistent (c) consistent and the solution in unique.
3. Investigate for what values of A, p the equations
xtytz = 6
x+2y+3z = 10
x+2y+iz = pn

have (i) no solution (ii) a unique solution (iii) infinite number of solutions.

4. Discuss the solution of the equations
ax—2y+z = 1
x—2aytz = -2
x—2y+az = 1

determining when the system has no solution, one solution and infinity of solutions.

Answers
1. (1) consistent; x =—-1,y=1,z=2
(i1) consistent; x =—-1,y=2,z=1

(ii1) consistent; x =1 ,y=2,z=3

(iv) comsistent; x =2, y=1,z=-1

(v) consistent; x =1, y=2,z=3

(vi) consistent; x=-1,y=4,z=4

(vii) consistent; x =1/2, y=3/2,z=15/2
(viii) comsistent; x = C-2,y=3-2C,z=C
(ix)  inconsistent

(x) inconsistent.
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If L = 3 and p = 10, inconsistent

If A =3 and p = 10, consistant

If A # 3, consistent and the solution is unique

(1) If A =3 and p # 10, equations will be inconsistent and hence no solution.

(i1) If A # 3 and p takes any value, equations will be consistent and have a

unique solution.

(i1i) If A # 3 and p = 10, equations will be consistent and have an infinite
number of solutions.

(1) No solution if a =1
(11)  One solution if a does not take the values 1 and -2.

(i11)  Infinitely of solutions if a = -2.



NUMBER SYSTEM UNIT -7

THEORY OF NUMBERS

7.1. PRIME AND COMPOSITE NUMBERS :

Prime number is an integer greater than one which has no divisors except itself
and unity. Thus, 2, 3, 5, 7, 11, 13, 17, 19,...... are prime numbers.

Composite numbers which can be expressed as the product of two smalier
integers. (i.e.,) A natural number vhich is neither a unit nor a prime is called a
composite number.

Examples of composite numbers are 4, 12, 18, 15,.....

Two numbers which have no common divisor other than one are said tobe prime
to one another. Thus 12 and 17, 32 and 63, 28 and 45 are prime to one another.

7.2. THE SIEVE OF ERATOSTHENES :

Prime numbers were a subject of great interest from early days. Eratosthenes
who lived about 200 B.C. deviced a simple method to find the primes below a given
number.

The method consists inwriting down all the integers up to the given number in
their natural succession and then striking out all the multiples of 2, then the multiplesof
3, then those of 5 and so on.

If we want to determine the primes less than 500, it is not necessary to go
beyond multiples of 23. This scheme wtih a little modification is used even today for
the construction of tables of prime numbers.

The Sieve of Eratosthenes for prime less than 100 is given below.

OREd G170 & 5 0
[ 7 [13] 4« 5 a6 [17] 8 [19] 20
20 2 [B) 4 28 26 27 26 [29] 50
1) 27 & a7 35 a6 [37] 8 5 40
[ 47 [8B] 0 a5 46 G0 A 457 50
A [S3] 50 55 6 7 o8 [59] e
[61] 67 o5 o7 45 46 [67) 48 49 0
[ 27 [ 1 5 6 27 8 [35] 50
A 3 [B] 2 # o8 7 a8 [89] o
I 55 oA p o6 [B7] S 99 b
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~ The prime numbers below 100 are 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71,73, 79, 83, 89 and 97.

7.1. Theorem :

The number of primes is infinite.

Proof : .

Let the number of prime be finite, say n, and let those primes be p;, p,, P3;----Py-
Then al the other numbers are composite and therefore should be exactly divisible by
atleast one of the prime numbers p,,p,,P--...-.P,- Let us consider the number

When this number is divided by p, or by p,, or by p,....... or by p, the reminder
is 1. Hence the number A is not exactly divisible by any of the prime numbers

PysPpseee Py
(i.e.,) A is a prime number which is contrary to our assumption.
Hence our assumption that the number of primes, is finite, is wrong.

Hence the number of primes is.infinite.

'7.2.(a) The previous article gives us a method of constructing an infinite sequence of
primes. We know that 2 and 3 are primes.

Hence 2x3 +1 (i.e.) 7 is a prime
2x3x5 + 1 (i.e.) 31 is a prime
2x3x5x7 + 1 (i.e.) 211 is a prime

By this method it is not possible to find all the primes. So attempts have been
made to find some simple arithmetical formulae that give only primes even though they
may not give all of them.

The following are some formulae which give prime numbers for certain value of n :

1) nZ4+n+41 is a prime number if n < 40.
2) n2+n+17 is a prime number if n < 16.
3)  2n2+29 is a prime number if n < 29.
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4) n?-79n+1601 is a prime number if n < 80.

5) 22"4+1 is a prime number if n < 5.

7.2. Prime Number theorem :

The number of prime numbers less than or equal to a number N is usualy
denoted by n(N). Thus (1) = 1; n(2) = 2; n(3) = 3; n(4) = 3; n(5) = 4; ©(6) = 4......

The distribution of prime numbers is very irregular and no exact formula has

. (N
been discovered for n(N), but it has been shown that lim —-—(——)— =
‘ N—o N/logN

This result is known as ‘Prime Number theorem'.

7.2.(b) Every composite number can be resolved into prime factors and this can be

done only in one way.

Let N be the composite number. Since the numbr is composite, it has a factor
other than N and 1. Let it be a and the quotient when N is divided by a be b.

Then N = ab.

If a and b are not primes, we can find the divisors of a and b and express a and

b in the form a = c¢d and b = ef.
oo N = cdef.
Here a and b are less than N.
c and d are less than a
e and f are less than b.
oo c, d, e and f are less than N.

Proceeding in this way we must come finally to factors which are prime

numbers since the factors diminish at every stage.

Hence N can be expressed in the form N = pqr.... where p,q,r...... are all prime
numbers, not necessarily different.

o N can be expressed as N = p? q° r°..... where p, q, r.... are all primes and a, b,

Cuvees integers.
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Let N be resolved into prime factors in another way and let that be PAQBRC....

where P, Q, R..... are all primes and A, B, C,..... integers.

o°oN=pa qb re ... =PA QB RC ......

Since the prime P is a divisor of the product p? q° r°...... it is a divisor of one of

the factors p, q, r........

If A # a, then let A be equal to a+k.

Since A and a are integers k is also an integer.

S p2qbrc...... = patk B (C

o q® rc...... = pkqBrC.....
p is a factor of the expression in the right side of the equation.

& p is a factor of the expression in the left side but this is impossible since the

expression in the left side is prime to p.

7.3.

o k = 0. Hence A = a.
Similarly B=b, C =c,......
Hence the factorisation of a composite number into product of primes is unique.

DIVISORS OF A GIVEN NUMBER N :

N can be expressed as the product of primes and let N be p? q® r°...., where p, q,

I... are primes.

Let n be the number of divisors.
The divisors of N are the terms in the expansion of
(14+p+p2+.... ApH)(1+q+qi+. .. +qP)(1+rro+... +19)....

Hence the number of terms in the product will be the number of divisors and we

can easily see that the number of divisors is (a+1)(b+1)(c+1).... The divisors include 1
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and the number N itself. The sum of al the divisors is the sum of all the terms in the
continued product. .
pa+1 _1 qb+1 —1 11

ooo S= . T e

p-1 q-1 r—1

Example 1 :

Find the number and sum of all the divisors of 360.

Solution :
360 = 23.32.5!
The number of divisors = (3+1)(2+1)(1+1) =24

241 33-15%-1
2-1 3-1 5-1

Sum of the divisors =

_ 152624
T 17274

= 1170

Example 2 :

Find the smallest number with 18 divisors.

Solution :

Let the number be N which is equal to p® ¢° r° .... where p, q, T are primes and a,
b, c...... are integers.

Since we have to find the smallest numbers p, q, r..... must be as small as
possible and a, b, ¢ should be in the decending order of magnitude.

o N=22305¢ .

Number of divisors = (a+1) (b+1) (c+1).....
o> 18 = (a+1) (b+1) (c+1).....

but 18 =2x3x3

& We can take c+1 =2,b+1 =3, a+1 =3
(ie,)c=1,b=2,a=2

& N =223251=180
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Example 3 :

Find the product of all the divisors of N.

Solution :

Let N be expressed in the form p? q® 1°......

The number of divisors is (a+1)(b+1)(c+1).....

: . N . .
If x is a divisor of N, then —X- is also a divisor of N.

. oo All the divisors of N can be grouped into pairs whose product is N.

1 .
s (at+1)(b+1)(c+1)..... divisors can be grouped into E(a +1)(b+1)(c+1)..... pairs,

the product of each pair being N.

‘oo Product of the divisors = N2

Last)oen)(ce1)...

Exercises :

1.
2.

Find the number of divisors of 480 excluding 1 and 480.

Find the number of divisors of (i) 840 (ii) 1458 (iii) 288, excluding the number
itself.

Verify that (i) 220 and 284, (ii) 17296 and 18416 are ‘amicable numbers' (i.e.,)
that each is the sum of the divisors of the other (including 1 but excluding the
number itself). \

Show that the number of divisors of an integer is odd if and only if this integer
is a square.

If N has nidivisors including itself and 1, prove that their continued product is
VNT-

Find the smallest number (i) with 24 divisors, (ii) with 10 divisors.

Show that if 2°-1 is a prime, then 2™!(2"-1) is a perfect number and find the
three least numbers given by the formula.

(N is a perfect number if the sum of all its divisors excluding N is N).

Prove that the sum of reciprocals of the divisors of the perfect number
27-1(2n-1) is 2.
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NUMBER SYSTEM UNIT - 8

8.1. EULER'S FUNCTION ¢(N)

The number of positive integers lessthan N and prime to it is denoted by ¢(N).
From the definition we get ¢(2) = 1, ¢(3) = 2, ¢(4) = 2, &(5) = 4, ¢(6) = 2. Even though
&(1) has no meaning as per this definition, we define it equal to 1.

Value of ¢(N) :

We have shown that N can be expressed as N = p? ¢q° 1°... where p, g, r.... are all
primes and a, b, c,.... integers. An integer will be prime to N iff it is not divisible by
any of the primes p, q, T..... Therefore ¢(N) is the number of itnegers in the series
1,2,3.....N which are not divisible by any of these primes. If we can find the numbers
which are divisible by these primes in the series 1,2,...... N, we can get ¢(N) by
subtracting the numbers of such numbers from N. Numbers which are divisible by p in
the series 1,2,....N are p, 2p, 3p,..-... N/p and therefore there are N/p numbers which are

divisible by p.

N
So also there are a‘ numbers which are divisible by q.
i N : .
Similarly there are - numbers which are divisible by r.
N b
33 pq 2 Y P9
| N
» qr ” by qr.
N
> par ’s . by pqr
and so on.
N N N :
Consider the series = XX —tX——.. (1)
p pq pqr

Consider any integer not greater than N.

Suppose that it is divisible by exactly k of the primes p, q, r........
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N
This number occurs kC, times in Z—p—

) N
” kC, timesin 2
Pq

) . N
’ kC, timesin X——
par

and so on.

Therefore the number of times it is counted in the expression (1) is
kC,—kC,+kC,.... which is equal to 1-(1-1)¥ (i.e.,) 1.

Every integer (excluding unity) not greater than N and not prime to it is counted
exactly once in (1). In evaluating ¢(N) we count 1 also.

oo N) = N"'Z_‘*‘Z—'—“Z——’F .....
o) p Pq par

- N(1-21+2l—z—1— ..... )
P Pq pqar

(a2 D

If N = ab where a alid b are prime to one another, then ¢$(N) = ¢(a).¢(b).

Corollarly 1 :

Let a = p,*L.p,%......p% and b = q,°1.q,*2....q *r where p,, py,-....Ps Q;pGos----4,
are primes. :

Since a and b are prime to one another p,,p,,....py» 4;,4,,----.q, are different.

a(lnlall)(l*-;;)...,,(l_ ;11(_ J
o(b) = b(“iﬂ(“?ﬁ;) ..... (1_ . ]

N=ab = p,p,*2.....p % * q,°1.q,P2....q br

R G m o GO ()

il

¢(a)



o RGO

¢(2).0(b)

Corollary 2 :
If a, b, c, d,.....k are prime to one another, ¢(abcd........ k) = ¢(a).¢(b)......... (k).

Corollarly 3 :
. . r 1
If p is prime, then ¢(p*) = P (1—_}.).)

Example 1 :

Find the number of integers less than n and prime to it when n = 729 and 720.

We have 729 = 36
1
& #(729) = 729(1—5)-—-486
720 = 24325
1 1 1)
o = 720/ 1-=[f1—-={|1=-=
¢(720) ( 2)( 3J( 5)
= 192

Example 2 :

Prove that the sum of the integers less than N and prime to it including unity is

%N(b(N).

Let x be one of the integers less than N and prime to it. Then N—x is also prime

to it.
oo All the numbers less than N, prime to it can be grouped into pairs whose sum
is N.
. . . o(N) o
oo ¢(N) can be grouped into 5 pairs the sum of each pair being N.
N¢(N
o> Sum of the numbers = ‘bz( ) .
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Example 3 :

Ifd,, d,, d,,...... d, (including 1 and N) are the divisors of N, then show that
$(d, V() +.....+0(d,) = N

— a a . .
Let N =p "1p,*2......p *n where Py:Py>----p, are primes and a,,a,,a;....are integers.

Every divisors is of the form P.% P,Ys P5%,.... Where X, y, z,.... take integral values
from 0 toay, O to a,, 0 to a,,.... respectively. We know that,

d)(plx'pzy_p:;z """ ) = ¢'(p1x)¢(p2y)¢(p3z) ------

X [1+6(p, ) +d(p,D)+......+8(p, )] e (1)
S O(d)H(d)+......+(d)

= Continued product of the expression -------- (1)

1+p1(1-—I—:ﬂa—pf(l-51—1-)+....+p131(1—51:)

= 1-i-pl—~1+p12—p1+pl3—plz+....-i—plal—p]ar1

— a
= pll

1+(§)(pl )+o(p . 2)+ ...... +d(p?1)

Similérly,
1+6(p )0, A+ ...... +o(p,a?) = p,*2 and so on.
So O(d ) +O(d) ... +(d) = p,1p,72np = N

Exercises :
1. How many numbers including unity are less than 210 and prime to it?

2. Find the sum of the positive integers including unity which are less than 600
and prime to it.

3. How many numbers are there less than 500 which are not divisible b'y 2,3 or5?
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4. If a is prime to N, show that the number of terms of the arithmetical progression

X, X+a, x+2a,....., x*+(n—1)a which are prime to N is ¢(N).

5. Show that if N be any number and a, b, c......be its different prime factors, then

the sum of all the numbers less than N and prime to N is

e G O
and the sum of the squares of all such numbers is
N—3(1—-l)(1———1—-)(1———1—)....-1-—1\1(1—3)(1-—b)(l—c) .....
30 all b ¢ 6
6. Show that the arithmetic mean of all numbers less than N and prime to it

(including unity) is N/2.

8.2. INTEGRAL PART OF A REAL NUMBER :
The integral part of a number x is denoted by the symbol [x].
For example, ‘
P R A Sl =
| =4161=6,]3 =0, [v2] =1, [-V2] =2

The "fractional part” is considered to be positive. From the definition, the
following properties are easily deduced. '

(1) [x] = x < [x]+]
(2) [x+a] = [x] + a if a 1s an integer
(3) [x+yl =2 [x] + [y]
8.3. THE HIGHEST POWER OF A PRIME p CONTAINED IN N!:
n!'=123.....n

If n<p, there is no number in n! which is divisible by p.

If n2p, fhen n! contains numbers which are divisible by p.

Hence the highest power of p in n! is the highest power of p in the product.
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|
(i-e.,) in p[p 1.2.3....... [P_]
)
n | i
But in 1.2.3.':;J the prime p is a factor in the numbers p, 2p, 3p...... |:——2-}p
p

-
n
oo Power of p in the product 1.2.3........ h’—] is the power of p in the product

2p.3p..... 2 IP.
p.<p.5p p2

n

(i.e.,) pLZ] 1.2.3....... [3—}

p2

Hence the highest power of p in n! is the highest power of p in the product

ufj} 120 —__lz_J

{2
pp

Ge)inp T LPd123. [._2_}
P
In the same way we find the highest power of p in n! is the highest power of p

in the product P 3
p
2 3 4 n
(1.e.,) in the product P P p P 1123 \:7}
p
n]l ol n .
E 2P 'p—3“ - from a decreasing sequence and hence there exists a positive
p

, 1
integer k where | 7 |=0.
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Hence if we continue this process we will get the highest power of

Bk et

Example 1 :

Find the highest power of 3 dividing 1000!

[1000‘ _ 333

| =

1000 ~333] 11
32 | L 3] 1

1000 (111
i B e

1000 ’_31]

i 34 i - | 3 '—12

1000 ] '12] A

3 1 0 L3 T

1000 _i] .

| 3¢ | 3]

The highest power of 3 in 1000! is 333+111+37+12+4+1 = 498
Thus 3498 is the highest power of 3 dividing 1000!

Example 2 :
With how many zeros does 79! end?

Let us find the highest power of 2 and 5 in 79!

79139, [_7_9_}19’ [12 i

L2 22 22
| 27 2 2"

_ , | 79 79
Thus 274 is the highest power of 2 in 79!, [‘g‘] =15, ["5_2“] =3,
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Thus 5!8 is the highest power of 5 in 79!
oo The highest power of 10 in 79! is 18.
o 79! will end in 18 zeros.
8.4. THE PRODUCT OF r CONSECUTIVE INTEGERS IS DIVISIBLE
BYr!:
Let n+1, n+2,...... ,n+r be the consecutive integers.
Product of these integers = (n+1)(n-i-2) ..... (n+r)

(n+1)!

(n+r1)!

We have to prove that is divisible by r!

. (n+10), _
(i.e.) is an integer.
n!r!

(i.e.) We have to show that the highest power of a prime p occuring in (n+r)! is
greater than the highest power of p in n!r!. The highest power of any prime p occurring
in (n+1)!, n!, r! are respectively.

oo Highest power of p occuring in n'r! is

BN

We know that [x+y] = [x]+[y]

. Xty
(1.e.) [ pk ]

v
| E—— |
o
wl >
——d
+
| S|
'le%
| I |



Byputtingx=n,y=r k= 1,2,.......

n+r | (n T

We get > —]+I:"]
. P ] Ry Y

> | =+ —=

L P2 | _P2 P2

-----------------

-----------------

BIBIENEIE

(i.e.) the prime p enters in the numerator (n+r)! in powers not lower than in the
denominators n! r!.

°
a
|
=
T+
»t
| I |
+
| ——|
..dﬁﬂ
ol +
-t
| S
+
\

o The numerator is divisible by the denominator.

co (n+1)(n+2)....... (n+1) is divisible by r!.

Carollary 1 :

n!

———— is an integer when a+b+c+..... =n.
alblcl..

Corollary 2 :

If n is a prime, n, is divisible by n.
n(n-1)(n-2)... n-r+¥
n =
“r r!

The numerator is a product of r consecutive integers.
& It is divisible by r! |

n is prime to r.

o% It is prime to r!

oo (n—1)(n-2).... (n—r+1) is divisible by r!

n(n-l)....(n;—r+ 1)

L J
¢o n, = n X an integer since n_ =
T r

oo n_ is divisible by n.
T
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Example :

Note :

Show that n(n+1)(2n+1) is divisible by 6.
n(n+1)(2n+1) = n(n+1)(_2n+4—3)
= 2n(n+1)(n+2)-3n(n+1)
n(n+1) is divisible by 2.
n(n+1)(n+2) is divisible by 3! (i.e.) 6.

Hence the expression is divisible by 6.

n(n+1)(2n+1) is a multiple of 6.
This is usually written as n(n+1)(2n+1) = M(6).

Exercises :

AN o .

. L

Find the highest bowers of 2, 5,7, 11, 13 contained in 1000!
With how many zeros does (i) 61!  (ii) 257! and (iii) 82! end? | | -
If n is any odd number, show that n(n?-1) is divisible by 24.
Show that n(n?-1)(29n?+4) = M(120)
Show that n°-n = M(30)
Show that n(n—1)(n+25)(n+50) = M(24)
Show that the greatest power of n in (n™~1)! is n —;lr _:r -1
8. Show that if n is odd (i) (n2+3)(n?+7) = M(32) (ii) n*+4n2+11 = M(16)
9. Show that if n is a positive integer (n+1)(n+2).....(n+n) is divisible by 27,
10. Ifn be an odd prime, show that (a+1)"~(a™1) = M(2n)
1. If n = 2342542+, . m terms where a<b<c<.... show that the greatest power of
> that must divide n! is (n—m).
12.  Show that if n be prime greater than 3. n(n?>-1)(n?-4)(n2-9) = M(27.32.5.7)
Answers : ~
994; 249, 164; 98; 81
2. (i) 14; (ii) 63; (iii) 19.
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NUMBER SYSTEM UNIT -9

9.1. CONGRUENCES

Two integers a and b are called congruent with respect to the modulus m if an

integer k exists such that a—b = km.

k may be positive, zero or negative. The congruence is denoted by a = b (mod m)
(or) by a-b = 0 (mod m).

For example, I8 = 4 (mod7)
13 = 28 (mod 5)
144 = 0 (mod5)

If two numbers are congruent with respect to the modulus m, each 1s called a
residue of the other to the modulus m.

Every residue of a to the modulus is of the form a+km where k may be positive
or negative.

Congruences with the same moduli possess many properties of equialities. Some
of them are given below.

1. If a = b(mod m) and a, = b; (mod m) and if q, r are integers, then
qatra, = qb+rb1(rnc;d m)

a = b(mod m) do a-b=km
a, =b, (mod m) oo a,-b, =km
qatra, = q(b+tkm)+r(b;+k,m)
= gb+rb,+m(qk+rk;)
= gb+rb,+M(m) .

o qatra, gb+rb, (mod m)

Corollary :
Ifa=b (mod m); a, =b, (mod m)
ata, = b+b, (mod m)

a-a, = b-b, (mod m)
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In general if a = b (mod m)
a, =b, (mod m), a,=b, (modm)

then a+a,+a,+.... = b+b, +b,+..... (mod m)

2. Ifa=b (mod m); a, = b, (mod m), then aa, = bb, (mod m)
a = b (modm)

oo . a = bt+km
a, = b, (mod m)
oo al = bl+k1m

aa, = (b+km)(b,+k,m)
= bb1+m(kb1+k1b+kk1m)

oo aal = bbl (mod m)

Corollary 1 :
If a=b (mod m), a, =b, (mod m), a, = b, (mod m) then aa a,... = = bb,b,...(mod ).

Corollary 2
If a = b (mod m), then an = b" (mod m)

Corollary 3 :
If a = b (mod m), then f(a) f(b) (mod m), if f(x) is a polynom1a1 in X.

3. These result show that congruences may be manlpulated as regards addition,
subtraction and multiplication with integral numbers, just like equations. As regards
division a modification is necessary. ’

m
If ax = bx (mod m) and if h is H.C.F. of x, m then a = b mod (_IY)
x = ph, m = qh where p, q are co-prime.
ax = bx (mod m)
& ax—bx = km

(i.e.,) aph-bph = kqh
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(i.e) ab = k

o o

q is prime to p.

oo a—b has q as a factor. .

-~ ab=M(@ = M(—h“l)

o ach 9_1)
o a =b mod h

Corollary :
Ifh=1,a=b (mod m)
Thus the rule of concellation holds for congruences on the condition that the
cancelled factor is relatively prime to the modulus.
4. If a=b (mod m,), a=b (mod my), a =b (mod my)..... a = b(mod m_), then
a = b(mod m), where m is the least multiple of m, m,,......m ..

a=b.(mod m,)

oo a~-b = a multiple of m,
[T a-b = amultiple of m,
a-b = amultiple of m,

a-b = amultiple of m_
To satisfy these equations a-b = a multiple of m where m is the least common
‘multiple of m, m,,....m

n’

oo A = b(mod m).

9.2. CRITERIA OF DIVISIBILITY OF NUMBER :

We can derive the criteria of divisibility of a number by 3, 9, 11 from the
properties of congruences.

Let N be the number and let the digits in the units, tens, hundreds....place be
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Then N = a+19b+100c+1000d+......

1) 10 = 1 (mod 3)
100 = 1 (mod 3)
1000. = 1 (mod 3)

oo N = atb+ctd+...... (mod 3}

& N is divisible by 3 iff the sum of its digits is divisible by 3.

2) \ 10 = 1 (mod9)
100 = 1 (mod9)
1000 = 1 (mod 9)

oo N = atb+ctd.... (mod 9)

Hence the number N is divisible by 9 iff the sum of its digit is divisible by 9.

3) We have 10 = -1 (mod 11)
100 = 1 (mod 11)
1000 = -1 (mod 11)
N = a-btc—d+..... (mod 11)

Hence N is divisible by 11 iff the alternate sum a-b+c—d+.... of the digits is
divisible by 11 or if a-b+c~d+.... = 0 (i.e.,) atc+..... = b+d+.... (i.e.) the sum of the odd
digits is equal to sum of the even digits.

Corollary :

Since congruent numbers leave the same remainder when divided by the

modulus, the preceding congruences can be used in finding remainders in divisions by
3,9, 11.
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:Example 1:
Find a number having the remainders 5, 4, 3, 2 when divided by 6,5,4,3

respectively.

Solution :

Let N be that number.

N =5 (mod 6) (i.e.;) N = -1 (mod 6)

N =4 (mod 5) (i.e.,) N = -1 (mod 5)

N =3 (mod 4) (i.e.) N=-1 (mod 4)

N =2 (mod 3) (i.e.) N= -1 (mod 3)

¢o N = -1 (mod L.C.M. of (6, 5, 4, 3))
= —1 (mod 60)

oo The least value of N is 59.

N can take any value —1+60 k where k is a positive integer.

Example 2 :

Find the remainder when 910 is divided by 11.

Solution :

We have 92

= 4(modl1l) e (1)
Fo 98 = 256 (mod 11)
Also 256 = 3 (mod 11)
o 9 = 3% (mod 11) -—m-zen(2)
From (1) & (2) 91 = 4.3 (mod 11)
910 = [ (mod11)

Hence the remainder is 1.

- Example 3 :
Show that 1320*14+920+1 {5 divisible by 22.
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Solution :

132n+1 —_

92n+1 —

EX 1320+14920+1 =

13.(13)2" = 13.(169)"
13.(22x7+15)"

13.(15)" (mod 22)

9.81" = 9(3x22+15)"
9.15™ (mod 22)
[13.15%+9.157] (mod 22)
22.15" (mod 22)

0 (mod 22).

& 132n71492n+1 g djvisible by 22.

Example 4 :

Find the remainder when 21990 is divisible by 17.

Solution :

24

(24)250 =

16

—1 (mod 17)
(-1)?5° (mod 17)
1 (mod 17)

& The remainder when 21900 js divided by 17 is 1.

Example 5 :

Find the remainder obtained by dividiné 246 by 47.

25 =

210 =

32

—~15 (mod 47)

(-15)? (mod 47)

225 (mod 47)

—10 (mod 47)
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220

240

2x245

& The remainder i1s 1.

Example 6 :

1l

f

]

(-10)? (mod 47)
100 (mod 47)

6 (mod 47)

36 (mod 47)

—11 (mod 47)
940 25

~11.-15 (mod 47)
165 (mod 47)

24 (mod 47)

48 (mod 47)

1 (mod 47)

If p is a prime number and p>0, then (a+b)? = (aP+bP) (mod p).

Solution :

(at+b)P

Now, P,

T

Since r<p and p is prime, r! and (p-T1)! do not divide p.

(p-1)!

Hence ri(p—1) is an integer.

& p divides Pe,
(a+tb)P

o
o0

(atb)P

aP+pk+bP where kez

(aP+bP) (mod p)
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Example 7 :

A natural number n is divisible by 3 iff the sum of its digits is divisble by 3.

Solution :

Leta,b,c,d, ..... be the digits in the units, tens, hundreds, thousands,... places.

Then n = a+10b+100c+1000d+......
Now 1 = 1 (mod3) Aooo a = a (mod 3)
10 = 1 (mod 3) oc> 10b =b (mod 3)
100 = 1 (mod 3) % 100c = ¢ (mod 3)

ot
(]
<
()
W
oy
A
3
o
a.
(#8)
N’

oo 1000d = d (mod 3)

n = (atb+ct+d......) (mod 3)
% n is divisible by 3 iff at+b+c+d is divisible by 3.

Exercises :

l.a.  Find the least two positive integers having the remainders 2,3,2 when divided by
3,5,7 respectively.

b. Find the least positive number which when divided by 7, 8, 9 will leave
~ remainders 1,2,3 respectively. Find the general formula for such numbers.

2. Find a multiple of 7 which has remainder 1 when divided by 2,3,4,5 or 6.
3. . Prove that 34"*24520*1 j5 djvisible by 14.
4, Show that 327*14+27*2 j5 djvisible by 7.
5. Show that 727*1+1 = M(8)

6. Show that 192*-1 = M(360)

7. 'Show that 23271 = M(528)

8.  Show that 1727_1= M(288)

9. Show that. 32nt4_32n = M(5)

10.  Show that 32-1+2m*1 js divisible by 7.
Answers :

1. (a) 128, 233 (b) 498; (504)k-6.

2. 301
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9.3. NUMBERS IN ARITHME:I‘IC PROGRESSION :

If x, x+a, x+2a,..... x+(n-1)a, n terms of an arithmetical progression, are divided
by n, where n is prime to a, the remainders are numbers 0,1,2,....... n—1 taken in certain

- order.
Let us assume that x+pa and x+qa when divided by n leave equal remainder r.
Then xtpa = kntr
xtqa = k,ntr
(r9a = (k—kyn
oo (p—q) is less than n.
(p—q) is less than n.
o% a is divisible by n which is contrary to the hypothesis that n is prime to a.
The remainders are all diffc.cne and as each is less than n, they must be the
numbers 0,1,2,.....n—1, taken in some order or other.
Corollary 1 :

One of the numbers x, x+a, ...... ,X+(n—1)a is divisible by n.

Corollary 2 : N

If the progression is continued beyond the n™ term, the remainders recur inthe
same order.

Corollary 3 :

If p is prime to a, then when a, 2a, 3a,.....(p—1)a are divided by p, the remainders

are 1,2,...... ,(p—l) in some order or other.

Example :

Show that every integer which is a perfect cube is of the form 7p or 7p+1.

An integer, N when it is divided by 7 has one of the remainders 0, 1,2,3,4,5,6.

Every integer has one of the forms.

7m, 7m+1, 7Tm+2, 7m+3, 7m+4, 7m+5, 7Tm+6
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N(i.e.,) 7m, 7Tm+1, 7m+2, 7m+3, 7m-3, 7m-2, 7m-1
(.e.,) Tm, Tm*1, Tm+2, 7m+3
(7Tm#£r)®> = (7m)3+3(7m)?r+3(7m)rtr?
= M(7)xr3

Hence in the four possible cases we have

N3 = (7Tm)’ =M(7)

N3 = (Tmz1)}= M(7)+1-

N3 = (7m#2)3 = M(7)+8 = M(7)*1

N3 = (Tm#3)3 = M(7)£27 = M(7)+28% 1

= M(7)x1
In every case therefore the cube has one or other of the form 7p or 7p=1.
Theorem 9.1 :

If x be congruent with r with respect to the modulus m, f(x) will be congruent
with f(r) with respect to modulus m where f(x) is a polynomial in x.

Let f(x) be py+px+p,x>+.....+p_x"
x 1s congruent with r with respect to modulus m.
oo X 1s of the form gm-+r

By the binomial expansion, we have

(gm+r)* = (qm)“+nc1(qm)“‘1r+.....,.ncn_,l(qm)r —lyn

= M(m)+r®
Similarly,.
| (gm+r)*! = M(m)+r"™! and so on.
Hence . ifx = gm+r

f(x) = f(qm+r)
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= p0+p1r+p2r2+ ..... +p r+M(m) -
= f(r)+M(m)

Hence f(x) is congruent with f(r) with respect to modulus m.

Corollary :

Since all integers are congruent (with respect to modulus m) with one or other
of the series 0,1,2,...... m~—1, it follows that to test the divisibility of f(x) by m for all
integral values of x we need only test the divisibility by m of f(0), f(1), f(2),.... f(m-1).

Example 1 :

Show that x3—x is divisible by 30.

Solution :

fx) = xX*=x=x(x%1)".
£f0) = 0
f1) = 0

f2) = 2x15=130
f3) = 3x80 =240
f(4) = 4x255=1020
f5) = 5x624=73120
£0), K1), £2), (3), f(4) are divisibly by 5.
& f(x) is divisible by 5.
50), £(1), £(2), (3), f(4), £(5) are divisible by 6.
& f(x) is divisible by 6.
& f(x) is divisible by both 5 and 6.
(i.e.) fix) is divisible by 30.

!
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Example 2 :

If x, y, z be three consecutive integers, show that (£x)3-3Zx3 is divisible by 108.
Since X, y, z are consecutive integers y=x+1, z = x+2

o (ExP-32x3 = (3x+3P-3 {x3+(x+1)3+(x+2)3}
= 18x3+54x2+36x
= 18x(x+1)(x+2)

Let f(x) be x(x+1)(x+2)

f0) = 0
f1) = 6
f2) = 24

f(0), f(1) are divisible by 2.

% f(x) is divisible by 2.

f(0), f(1), f(2) are divisible by 3.
oo f(x) is divisible by 3.

oo f(x) is djvisible by 6. -

& (Zx)*-3Zx3 is divisible by 108.

Exercises :

1. Show that évery square is of the form 3m or 3m+1

2. Show that every square is of the form 5m or 5m=1

3. Show that every cube is of the form 9m (or) 9m=+1

4, Show that every forth power is of the form Sm (or) 5m+1

5. Show that 22x*1+1 is divisible by 3.

6. Show that in order that x*+1 may be divisible by 17, x should be of the form

17m=£2 (or) 17m=8.

~

If n is a prime number greater than 3. Show that n>~1 is divisible by 24.

8. Ifnisa prime number greater than 7, show that n®-1 is divisible by 504. [Show
that n%-1 is divisible by 7, 8 and 9]
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9.4. FERMAT'S THEOREM :
If p is a prime and a is any number prime to p then aP1-1 i divisible by p.

We have proved that if n is a prime number, then n is divisible by n.".

(a+1)P = aP+pcl.aP‘1+pcz.aP”2+ ..... +pcr.a1’"+....pcp_].a+1
(i.e.,) (a+1)P—(aP+1) = pcl.aP“+pc2.aP‘2+ ...... +p, AP +pcp_l.a
Since p isprime | pcp_l are divisible by p.
o (a+1)P—(aP+1) = a multiple of p

oo (a+1)? = (aP+1) (mod p)

Since this result is true for all values of a, replacing a by a-1, a-2, a-3,.....3,2,1
in succession we get

# = [(-1P+](modp) - (1)
(a-1)P = [(a-2)P+1](modp) - )
@2P = [@3)P+](@modp) - 3)

3?7 = [2P+1] (mod p) | e (a=2)

2¢ = [1P+1] (mod p) JEEEm—— )

Adding all the equations (1), (2), (3)..-. (a-1) we get

aP+(a—1)P+(a—2)P+....... +3p+2P = [(a—1)P+1+(a—-2)P+1+(a-3)P+1+....
+2P+1+1P+1] (mod p)

Since we are adding a—1 equations, we have
aP+(a—1)P+(a—2)P+.....+3P+2P = [(a-1)P+(a—2)P+....+2P+1P+a~1] (mod p)
(i.e.,) aP=[1+(a-1)] (mod p)

(i.e.,) aP =a (mod p)

(i.e.,) aP — ais divisible by p

(i.e.,) a(aP!-1) is divisible by p.

Since a is prime to p, aP-1-1 is divisible by p.
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II Method :
(x+y)P = xP+pcle‘1y+p CZXP‘2y2+. .. .+pcp_1 xyP~14yP
Pc,s PeypreePg | 2r€ divisible by p.
o (x+y)P = (xP+yP) (mod p)
(x+y+z)P = (x+y)Pip, (x+y)Pizt....+zP
= [(x+y)P+2?] (mod p)
= (xP+yP+zP) (mod p)
So in general
(xtytz+.. . +w)P = (xP+yP+zP+.....+wP) (mod p)
where ).(, Y, Z,.....W are any integers.
Let there be a integers x, vy, z,...... w.
Put each equal to 1.
Then (1+1+.....a terms)P? = (1P+1P+,..+1P) (mod p)
oo a® = a(mod p)
(i.e.,) aP—a is divisible by p.

& aP~!-1 is divisible by p.

III Method :

When a, 2a, 3a,..... (p—1)a are divided by p, the remainders are 1, 2,...p-1 in a
certain order since p is prime to a.

a

r, (mod p)
2a = 1, (mod p)
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Here r,, r,, I3,....I, ; are 1, 2, 3,...... p-1 in a certain order.

oo a. 2a. 3a....(p-l)a = I T, Ty I, (mod p)
(.e.,) (P-D!art = 1.2.3...(p-1) (mod p)
(i.e.,) (e-D!a*' = (p-1)! (mod p)

(e.) (p-1)!a'~(p-1)! = 0 (mod p)

so (p—1)! (aP~1-1) is divisible by p.

But (p—1)! is not divisible by p, since p is prime.
&% aP~1-1 is divisible by p.

| Corollary 1 :

aP-a is divisible by p if p is prime and a is prime to p.

Corollary 2 :

-1
~(p-1
If p is an odd prime and a is prime to p, then a2 P +1 is divisible by p.
1 1
—(p—1 —{(p-1
ap—l_l — 32( )—1 32( )+l ‘
aP-1-1 is divisible by p.
1 1
“(p-1 ~(p-1
32(p )_1 or 32( )+1 is divisible by p.
1
AN -0 ) R
(i.e.,) a2 +1 is divisible by p. -
Example :
1. Show that if x and y are both prime to the prime number n, then xoloyr-l jg

divisible by n. Deduce that x!2—y!2 is divisible by 1365.

Solution :
x"1-1 = 0 (mod n) since x is prime to n and n is prime.
Similarly y*'~1 = 0 (mod n)
subtracting we get x"!-y™!1 =0 (mod n)
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x12y12 = x13-1_yi3-1

= 0 (mod 13)
o x12y12 = (x6.y5) (x640)
but x6—y® = 0 (mod 7)

x%—y® is divisible by 7.
(i.e.,) x'2—y'? is divisible by 7.

| x12y12 = (x4 (x5+xtyttyd)
by x4-y* = 0 (mod 5)
& x12—y12 is divisible by 5.

x12oy12 = (a2 (xHx2yEiyty (5y0)

but x2-y?> =0 (mod 3)
& x12—y12 js divisible by 3.
& x12—y12 is divisible by 13, 7, 5 and 3.
(i.e.,) it is divisible by 13x7>5%3
(i.c.,) by 1365

Example 2 :

Show that the 8th power of any number is of the form 17m or 171

Solution
Let the number te N.
N may be prime to 17 or may not be prime o 17.
If N is not prime to 17, it must be a multiple of 17, since 17 is a prime number.
In that case N is a multiple of 17.
& N2 is of the form 17m.
If N is prime to 17,
N17-11 is divisible by 17.
(i.e.) N1 is divisible by 17.
(i.e.) (N3+1) (N8-1) is divisible by 17,
& N3+1 or N3-1 is divisible by 17.

234



& N8+1 or N8-1 is a multiple of 17.
& N8+1 = 17m (or) N3-1 = 17m
(i.e.,) N& = 17m=1

Hence N8 is one of the forms 17m (or) 17m=+1.

Another Method :
Since 17 is a prime number.

al” = a (mod 17)

17
v al” —a
17
oo a( 8 1)(a8 +'1)
o 1: or) & 8 (or)

Hence a® is of the form 17m (or) 17m=1.

Example 3 :
Prove that the 5th power of any integer N has the same units digit as N.

By Fermat's theorem, N°-N is divsible by 5.

oo N-N = M(5)

(i.e.) N(N4-1) = M(5)

(1.e )N(N2+1)(N+1)(N-1) = M(5)

Since N is any integer, either N or N-1 is divisible by 2.

& N5-N = a multiple of 10.
(i.e.,) N5 = M(10)+N
N can be.put in the form 10p+q where <10
o N3 = M(10)+10p+g

= M(10)+q

& N° has the same units digit q as that of N.
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Example 4 :

Find the remainder when 249° is divided by 47.

Solution :

246
N (246) 10
N 2460

Hence the remainder is 1.

Example S :

1

tl

1 (mod 47) (Fermat's theorem)
119 (mod 47)
1-(mod 47)

Find the remainder when 21990 is divided by 13.

Solution :

912
o (212)83
& (29%9)
Also, 24
& 1000

Hence the remainder is 3.

Example 6 :

If a and b are prime to n, show that (

Solution :

it

1 (mod 13) Fermat's theorem)
i (mod 13)
1 (mod 13)
3 (mod 13)
3 (mod 13)

an—l _pn-! )

Since (a, n) = 1, by Fermat's theorem

a®™! =1 (mod n)

Similarly
Hence at~1_po-1
°°O n

( an—l _ bn—l )

b*! =1 (mod n)

= 0 (mod n)
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Exercise :

is

(N

(2

W

(@)}

Show that n°—n is divisible by 30.

Show that n’-n is divisible by 42.

" Show that n'*-n is divisible by 2730.

Show that if n is any prime number greater than 19, then n'8-1 is divisible by
9576.

Show that fhe 4th power of any number is of the form 5m (or) Sm+1.
Show that the 12 p-ower of any ﬁumber is of the form 13m (or) 13m+1.
Show that the 9™ power of any number is one of the forms i9m or 19m=1.
Show that if n be a prime number 1“‘1+2“*1+3“‘1+....+(n—1)“"+1 = M(n)
Show that if m and n are primes, then m*!+n™!-1= 0 (mod mn)

Show that if m, n and p are prime, then (np)™ !'+(pm)"'+(mn)P~!-1= 0 (mod
mnp) , | R

If n be prime and > x show that x*24+x"3+x"*+... +x+1 = 0 (mod n)
If n be an odd prime, show that 1+2(n+1)+22%(n+1)%+...+2"%(n+1)"2 = 0 (mod n)
If n be odd, show that 1™+2"+....+(n-1)" = 0 (mod n) |

If n is of the form 4m+1, show that a" ends with the same digit as a for all

values of a.

[Hint : f(m) = a(a*™-1), f(0) = 0; f('l) = a(a*-1); f(2 = a(a®-1); f(3) = a(a'>-1);

£(4) = a(al®-1)
/' a(a*-1) is a factor of f(0), (1), £2), f(3), f(4). a*-1 is divisible by 5.

a(a®~1) = a(a+1)(a—1)(a%+1) is so divisible by 2.
& a(a*-1) is divisible by 10.
oo f(m) is divisible by 10].
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NUMBER SYSTEM UNIT ~ 16

10.1. GENERALIZATION OF FERMAT'S THEOREM

If n is any number and a is prime to n then a®® =1 (inod n)

Let a,,a,,..... be the ¢(n) integers less than n and prime to it.

Bo(m)
Consider the products aa,,aa,,....ad

Let k be the remainder when aa_is divided by n.

Then aa = M@m+k - (D)

Since a and a_are prime to n and k is also prime to n. Hence the remainder is
prime to n.

Suppose the. product aa_ gives the same remainder k when it is divided by n.
Then aa, =M(m)*k - (2)
From (1)&(2), we get a(a—a ) = M(n)

(i.e.) a(a—a) is a multiple of n which cannot be the case since a—a<n and a 1S
prime to n. ‘

s aa_and aa_ will not give the same remainder when they are divided by n.
Hence when the products aa ,aa,,..... aa, are divided by n the remainders k .k,,. .k are
all different and prime to n.

oo They are P PRI P, 1s some order.

k,(mod n)

aa,

aa, = Kk,(mod n)

Ay = k¢(n)(mod n),

oo aa;,ady,...a84,) = k, k, ..k¢( ')(mod n)

(ie) a’™aa, .2, =

I
®
<5}
N
[
=
2
g
o
ol
=]
e’

Dividing by ap,8,,... 8y which is prime to n.
we get

a®™ = 1(mod n)
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Cor :

If n a 1s prime number, then ¢(n) = n—1. Then this theorem reduces to Fermat's

theorem.
Exercises :

N a-1
1. If af,y......be primes and N=af,y......then show that Z(&—) =l(modaf,y......)

2. Show that 16 =1(mod 437)

[Hint 16”0 = 2499 = and $(437) = 437 (1—%)(1—5%j and use extension of
Fermat's theorem] .

3. Show that xP49=1mod(pq) it x is prime to P, P is prime and q = p®

4. Find the remainder obtained in dividing 2460 by 47.

5. When p+1 and 2p+1 are both prime numbers, show that x?P—1 is divisible by

8(p+1)(2p+1) where x is prime to 2, p+1 and 2p+1.

10.2. WILSON'S THEOREM :
If P is a prime number, then (P-1)!+1 is divisible by p.

If a 35 any number of the series 1,2,....,(P-1) where p is a prime then when ,
a,2a,3a,...(P-1) a are divided by p the remainders are 1,2,3....P—1 in some order or
other '

Hence there is only one number say, a, among the numbers 1,2,...P-1 such that
when aa, 1s divided by p, the remainder is 1.

oo aa, = 1(mod p)

Such two numbers are called associate residues.
Suppose a = a, then a2 = 1(mod p)

(ie) a>~1 = 0 (med p)

(ie) {a+1)(a—1) = 0 (mod p)

o> Either a+1 is divisible by p(or) é== 1.

Since a is less than p, a+1 =p (or) a = 1.

(1e) a = p-1 (or) 1.
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Hence numbers which are identical with their associate residues are 1 and p-1.

=

Excluding these ‘2 numbers 1 and p-1, the remaining numbers 2,3,4.....p—2 can be

grouped into

congruent with 1.

10.3.

oo 2..3..(p—2) =1(mod p) —1

we also have 1. (p—1) = —1(mod p) —2
Multiplying (1)&(2) we get,
1,2,3....(p—2) (p-1) =-1 (mod p)

(ie) (p-1)!+1 = O(mod p)

(ie) (p—1)!+1 is divisible by p.

LAGRANGE'S THEOREM

If (x+1) (x+2)....... (x+p-1) = xP1+A xP2+ A, *+A

P-2 P-1

oo (X+1)(x+2)(x+3)....(x+p)
| = (x+1) {(x+1)P A (x+1)P 2+ +A, ,(xH1D)FA, )
= (x+D)PHA DM AL L (xHD)HA, (x+])
do (x+p) {x"+A XP2HA XP3++A, x+A, |}
= (xFDPHA (x+D)P L HAL , (kDA (x+HD)
(ie) x"+A xP 1+ A xP2+  +A, xHH+A, x+p.xPl+ A pxP 2+ +A, p.X+PA,
= (x+1)P+AI(x+1)P‘1+....+AP_2(x+1)2+AP_1(x+1)
S {(+1)PxPI+A {(xHDPIxP1} +A, {(x+1)P P2+ +A, | {(x+1)—x)
= px' A pxP2+ L +A, A

Equating the coefficient of xP-2,xP-3 . .. *
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we get

pA, = pC,Hp-1)C A,

pA, = pC,+ (p-1C, + A (p—2)C,.A,

pA; = pCHp-1)C; AHp-2)C; Ay+(p-3)C A,

.........

PA.P_l = 1+A A+ AL ,TAL

Since (p-1)C,, (p-2)C,, (p—3)C,,....are not divisible by p, if p is prime, we get
by successive steps that A ,A,A,,....Ap , are all divisible by P.
Cori:

(x+1) (x+2).(x+p-1) = xP A XP2H L +A, A,

Put x =0, we get A, ; = (p—1)! |

Putx =1, we get 2,3...p = I+A +..... +Ap ,tAL

b Ap +1 = plHA+. . FA)

(ie) (p-D!'+1 = pl—(A+...TA, )

The lefi side is divisible by p.

S {(p—1)! + 1 is divisible by p.

This is wilson's theorem.

x(zr1) (x2)...(xtp-1) = x(xPTHA XP2HA KPP AL XFA, )
= xPrA xPIHA X2 AL XA, (X
= (xPx)tAXPIHAXP 2 AL XPHA, FIX
N xP-x = x(x+1)(x+2)....(x+p-1)—{A xP1+AxP3 +...

A, X2} — (Ap_t1)x

x(x+1) (x+2)......0x+p—1) being the product of p consecutive integers, must be
divisible by P. Also if p be prime A, +1,A,A,,...A; , are divisible by p.
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% xF~x is divisible by p if p be prime.

This is Fermat's theorem:

Cor 3:

If p is a prime greater than 3, then A, , is a multiple of p2.
In the lagrange's theorem substitute the values of p and —2p instead of x
we get
(p+1) (p+2).....2p-1) = A, FAp,pt..... +ptt e (1)

(—2p+1) (2p+2)......(2p+p-1)

= (=2p)P1H+A (-2p)F %+ AR H(-2P) T AR,
(ie) (2p-1) (2p-2).....(p+2) (p+1) (-DF!

= (1P {@p)P —A@P)P A}
Since there are P terms on the right side and P is odd.
& (p+1) (p+2)....... (2p_1) = Ap_—2pAp 5o +2p)t e (2)
Subtracting (2) from (1) we get
0 =3p. Ay, —3P2. A, _, + a multiple of p*.
Since Ap_, Ap_y A; ;,.....are divisible by p.
oo ' 3PA,, = 3P2Ap ; — M(P%).

1
oo AP—-Z = 'pAP—3 — 'é'M(P:;)
A, 5 is a multiple of p and p>3.-
A, , is a multiple of p2.
Cor : 4

1 1 1 . )
(p-1)! 1+5+§+""+P—1 is a multiple of P2.

In cor. 3 we have learnt that' A, , = M(p?)
A, = Coeff. of x in (x+1) (x+2)....(x+p-1)
= (23...p-1)+(134..p-1)+..(1+2...p-2)
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1 1 1
=(p-1)! (1+—4+—+.. +——
(P-D)! (14545 +.4==)
Hence the result.

Example 1 :
Show that (18)! + 1 is divisible by 437

Solution :
19 is a prime number.
oo (19-1)!+1 is divisible by 19 -
(ie) (18)!+1 is divisible by 19.
23 is a prime number.

oo (22)!+1 is divisible by 23.

(ie) 22.21.20.10 (18)1+1 = M(23)
(ie) (23-1) (23-2) (23-3) (23-4) (18)!+1 = M(23)
(ie) {M(23) + 1.2.3.4) (18)!+1 = . M(23)
(ie) - {M(23) +23+1} (18)1+1 = M(23)
(ie) {(M(23)+1} (18)1+1 = M(23)
(ie) {(M(23) (18)! + (18)! } +1 = M(23)

“o% (18)!+1 is divisible by 23
& (18)!+1 is divisible by 19x23
(ie) (18)!+1 is divisible by 437.

Example 2 :

- If P is a Prime number and p = 4m+1 where m is a positive integer, prove that
{(2m)!}?+1 is divisible by p.

Since p is a prime number,

(p-1)!+1 = 0 (modP)
(ie) (4m+1-1)!+1 = O (mod P)
(ie) (4m)!+1 = 0 (mod P)
(ie) (2};¥)!(2m+1)(2m+2)....(4m)+1 = 0 (mod P)
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(ie) (Cm)!{(p—2m) (p—2m-1)....(p-1)}+1 = 0 (mod p)
(ie) 2m)! {M(p)+(2m)!}+1 = O (mod p)
(ie) M(p) +{(2m)!}?+1 =0 (mod p)
& {2m)!1}2+1 = O (mod p)

Example 3 :

P+1
If M = 1.3.5....(p—2) where p is an odd prime, show that M2= (-1)" 5 (mod p).

P is a prime number.

& (p-1!+1 = 0 (mod p)
(ie) 1.2.3....(p—1)+1 = 0 (mod p)
(ie) 1.3.5...(p-2).2.4.6....p-1)*¥1 = O (mod p)
(ie) 1.3.5....(p=-2){p-p-2) (p-p4)...p-D}*+1 = 0 (mod p)
P-1
(ie) 1.3.5....(p-2) M(p)+(-1) 2 (p-2) (p—4)...3.1}+1 = 0 (mod P)
P-1 :
(ie) 1.3.5...(p=2)M(p)+(-1) "7 123252..(p-2)>+1 = 0 (mod P)
P-1
& -1)"5 12.3252..(p—2)>+1 = 0 (modP).
2:1
Multiplying throughout by (-1)
we get,
-1
(-1)P-1 12,3252, (p—2)2+(——l)P_2" = 0 (mod P)

p is an odd prime

o p—1 is even

p-1
o M2+(—1) 2 = 0 (mod p)
p+l
(i) MZ-(-1) ° = 0 (modp)
(p+1)
(ie) M2 = (_) ° (modp)



Example 4 :

Show that if n is a prime number and r<n, (n-1)!(r—1)!+(~1)""' = 0 (mod n)

n-1

1 2
Deduce that {[E(H — 1)]!} +(-1)2 = 0 (mod n)

n is a prime number

By Wilson's theorem, (n—-1)!+1 = O(mod n)
(ie) (o) (n—r+D(n-—1+2)....(n-1)+1 = O(mod n)
(ie) (n-0)!{n-1-1) (n-1=2).....(n-1)+1 = O(mod n)
(ie) n-—1)! M(n)—(-D)"(r—1)!}+1 = O(mod n)
where M(n) is a multiple of n.
(ie) M(n) (n—)!—-(-D*! (n—)!(r—1)!+1 = O(mod n)
% (—1)! (n—1)! (r=1)!'+1 = 0(mod n)
Multiplying throughout by (D1, we get
D (n—0)! (D! + D! = 0(mod n)
(ie) () E-D!H+H=1D"* = O(mod n)
Putr = n;rl ‘in the above result.
(n-1)
we get, (n—- n;— 1]!( n2+1 ~ 1)!+ (-1) 2 = O(mod n)
- _ (n-1)
(ie) (“2 1)!(“2 1)!+(—l) 2 = O(modn)
02 (o)

Example 5 :
Show that 28! + 233 = 0(mod 8§899)

Solution :
899 = 2931
Now 28! + 1

i

0 (mod 29) (Wilson's theorem)
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o 281+1+29(8) = 0 (mod 29)
oo 28!1+233 = 0 (mod 29)
Now 30!+1 = O (mod 31) (Wilson's theorem)
Y 30.29.28!+1 = 0 (mod 31)
&(31-1)(31-2)28!1+1+31 = 0 (mod 31)
& (-1) (=2) 28!+32 = O (mod 31)
& 281+16 = 0 (mod 31) (since (2,31) = 1)
o 28!1+16+7.31 = 0 (mod 31)

28!+233 = O0O(mod 31)
From (1)&(2) we get 28!+233 = 0 (mod 899)
Since (31,29) = 1.

Example 6 :
Show that 72"+16n-1=0(mod 64)

Solution :
727+16n—1 = (1-8)?"+16n-1
= (1-2n_ .8+2n_.8°—...+8M+16n-1
= 1-16n + (a multiple of 64)+16n-1
= a multiple of 64.
Hence 7°°+16n~1 = 0 (mod 64).

Example 7 :
Show that 322*2+4+27*1 = 0 (mod 7)

Selution :
The result 1s true forn =1

Let it be true when n = m. Then

32mtlipam+2 = ( (mod 7)
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Now, 32mDlpp(mtii2 = g 32mtly) pmt
— 2[32m+1+2m+2]+7.3.2m+1
= a multiple of 7.

Hence the result follows by induction.

Example 8:

Prove that for any integer n, n°-n is divisible by 30.

Solution :

n°-n = n(n*~1) = (n—-1)n(n+1)(n2+1)

Now n-1, n, n+1 are three consecutive integers and hence the product
(n—1)(n+1)n is divisible by 6.

Therefore n°-n is divisible by6 o (1)

Also by Fermat's theorem, n*-1 = 0 (mod 5)

Hence n*-1 is divisible by 5.

& n°-n is divisiblebys (2)

Now, since 5 and 6 are relatively prime, n°-n is divisible by 30.

Exercises :

1. If p is a prime number, show that 2(p-3)!+1 is divisible by p.

Prove that 712!+1 = 0 (mod 719)

Show that (1) 28!+233 is divisible by 899, (2) 28! = 666 (mod 899)
Show that 18!-22 = M(46)

Show that any prime of the form 4n+1 is a divisor of a number of the form
1+k2.

6. If P is a prime of the form 4m-1, show that {(2m-1)!}2-1 = 0 (mod P).

nokhwn

P-1
7. If P is an odd prime, show that (1,2,3,...... ——2-—)2 + (=1)P"2 = 0 (mod P)
[Hint : If P is an odd prime.
P+1 P-1 P-1
- - po 17!
. . —— (mod P)



P+3 P-3 )~ 3
, L. Pos (mod P)

5 ° ST \\
p-1 = p1=-1(modP) %
I 3 P-1
L p; p: ~(p 1) = (_1)( , ) 1,2.3....... (mod P)
(p 41 = 0 (mod P).
. ‘ -1 -1 -3 7
(10)1.2.3,.....})_, .p; p: ....... (p Y+l = 0 (mod P)].

-— & e
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