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Dear Student,

We welcome you as a Student of the Third year B.sc degree Course in
mathematics.

This Ancillary paper — I deals with Graph Theory. The learning material for
this paper will be supplemented by Contact seminars. -

Learning through the Distance Education mode, as you are all aware,
involves self — learning and self — assessment and in this regard you are expected
to put in disciplined and dedicated effort.

On our part, we assume of our guidance and support.

With best wishes.
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UNIT -1
INTRODUCTION

1.0 INTRODUCTION

In the last three decades graph theory has established itself
as a worthwhile mathematical discipline and three are many
applications of graph theory to a wide variety of subjects which
include Operations Research, Physics, Chemistry, Economics,
Genetics, Sociology, Linguistics, Engineering, Computer Science
etc.

The development of many branches in Mathematics has
been necessitated while considering certain real life problems
arising in practical life or problems arising in other sciences. Such

a development may be roughly described as follows.

DEDUCTIONS
MATHEMATICAL MODEL + MATHEMATICAL SOLUTION
TRANSLATION INTERPRETATION
TEST
REAL LIFE PRCBLEM > REAL LIFE SOLUTION

Graph theory also has been independently discovered many
times through some puzzles that arose from the physical world,
consideration of chemical isomers, electrical networks etc.

In this chapter some fundamental concepts are notations of
graph theory are introduced and types of graphs and subgraphs are
examined in detail with number of example\s.

1.1 THE KONIGSBERG BRIDGE PROBLEM

The first paper 1s Graph Theory was written by Euler in

1736 when he settled the famous unsolved problem of his day,

known as the Konigsberg Bridge problem. Konigsberg (55.2°

Space for Hints



Space for Hints North lattitude and 22° East longitude) is now called Kaliningrad and is

in Lithuania which recently separated from U.S.S.R. The two islands

and seven bridges are shown in figure 1.1

Bridge Bridge
Bridge

Bridge ) Bridge

Bridge Bridge
River

Figure 1.1

The people of Konigsberg posed the following question to
famous Swiss Mathematician Leon hard Euler-

“Beginning anywhere and ending anywhere, can a person walk
through the town of Konigsberg crossing all the seven bridges exactly
once?”

Euler showed that such a walk is impossible. He replaced the
islands A, B and the two side (banks) C and D of the river by vertices
and the bridges as edges of a graph. We note then that

deg (A) =3, deg (B) = 5,
deg (C) =3, deg (D) = 3.

Thus the graph of the problem is as shown in figure 1.2




A (Isiand)

AN

(Side of the river) D C {Side of the river)

B (Island)

(Euler’s graphical representation of seven bridges problem)
Figure 1.2
The Problem then reduces to

“Is there any Euler’s path in the above diagram?”

To find the answer, we note that there are more than two vertices
having odd degree. Hence there exists no Euler path for this graph.

The Konigsberg bridge problem is the same as the problem
of drawing the above figure without lifting the pen from the paper
and without retracing any line and coming back to the starting
point. This problem was generalized and a necessary and sufficient
condition for a graph to be so traversable has been obtained.

1.2 FOUR COLOUR PROBLEM

One of the most famous problems in Graph Theory is the
four colour problem. The problem states that any map on a plane
or on the surface of a sphere can be coloured with four colours in
such a way that no two adjacent countries have the same colour.
This problem can be translated as a problem in Graph theory.

We represent each country by a point and joint two points
by a line if the countries are adjacent. The problem is to colour the
points in such way that adjacent points have different colours. This
problem was first posed in 1852 by Francis Guthrie, a post —
graduate student at the University College, London. This problem
was finally proved by Appel and Haken in 1976 and they have
used 400 pages of arguments and about 1200 hours of comp#iter

3
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time on some of the best computers in the world to arrive at the

solution.

1.3 GRAPHS

1.3.1 DEFINTION AND EXAMPLES
Definition.1.3.1

A graph G consists of a pair (V(G), X(G)) where V(G) is a
non-empty finite set whose elements are called points or vertices and
X(GQ) 1s a set of unordered pairs of distinct elements of V(G).

The elements of X(G) are called lines or edges of the graph G.

If x=1{u, vie X(G), the line x issaid to joint u and v. We write
x = uvand we say that the points u and v are adjacent.
We also say that the point uand the line x are incident with

each other.

If two distinct lines x and yare incident with a common point

then they are called adjacent lines.

A graph with p points and q lines is called a (p,q) graph.

When there is no possibility of confusion we write V(G) =V
and X(G) = X.
Remark

It 1s customary to represent a graph by a diagram and refer to
the diagram itself as the paragraph. Each point is represented by a
small dot and each line is represented by a line segment joining the
two points with which the line is incident. Thus a diagram of the graph
depicts the incidents relation holding between its points and lines. In
drawing a graph it is immaterial whether the lines are drawn straight or
curved, long or short and what is important is the incidence relation
between its points and lines.
Examples

#l. Let V ={a,b,c, d}and X = {{a,b}, {a,c}, {a,d}}.
4



G=(V,X)i1sa (43)graph. This graph can be
represented by the diagram given in Fig.1.3

a

b éc by

Figure 1.3

In this graph the points a and b are adjacent whereas
b and ¢ are non-adjacent.

2. Let V ={1,2,3,4} and
X ={{1,2}, {1,3}, {1,4} {2,3},{2,4}.,{3,4}. G=(V,X)is
a (4, 6) graph.

This graph is represented by the diagram given in Figl.4

~ Although the lines {1,2} and {2,4} intersect in the diagram, their

mntersection is not a point of the graph.

4 o- o 3

Figure 1.4

Fig.1.5 is another diagram for the graph given in Fig.1.4

Space for Hints
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'~

Figure 1.5

3. The (10,15) graph given in Fig.1.6 is called the Petersen

graph.

Figure 1.6

Remark

The definition of a graph does not allow more than one line
joining two points. It also does not allow any line joining a point to

itself. Such a line joining a point to itself is called a loop.
Definition.1.3.2

If more than one line joining two vertices are allowed, the
resulting object is called a multigraph. Lines joining the same points
are called multiple lines. If further loops are also allowed, the

resuiting object is called a Pseudo graph.

Example

Fig. 1.7 is a multigraph and Fig 1.8 is a pseudo graph. Figure
6



1.2 of the Konigsberg bridge problem is a multigraph.

~

Figure 1.7 Figure 1.8

Definition: 1.3.2. (a)

-
-

The set of all vertices adjacent to a vertex v is called the

neighbourhood of v and 1s denoted by N(v).
Example:

& b

— %

ﬁg e
. ,33 ‘5“

Figure 1.8(a)

A

Here, the neighbourhood of b is {a,d,u}and {e,e¢,,e,}are

incident with b.
Remark:
Let G be a (p, q) graph. Then g < (12)) and q = (g) iff any
two distinct points are adjacent.
Definition: 1.3.3

A graph in which any two distinct points are adjacent is

called a complete graph.

Space for Hints
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The cownplete graph with p points is denoted by K .

Example:

Ks
Figure 1.9

Note:

The complete graph of 5 vertices, K,is called kuratowski’s

first graph.

Dyefinition: 1.3.4

A graph whose edge set 1s empty is called a null graph or a

totally disconnected graph.

Example:
> ¥
o5
vy OUs

Figure 1.9 (a)




Definition: 1.3.5

A graph G is called labelled if its p points are distinguished

from one another by names such as v,,v,,.....,v_.

The graphs given in Fig. 1.3 and 1.5 are labelled graphs and
the graph in Fig 1.9 is an unlabelled graph.

Definition: 1.3.6

A graph G is called a bigraph or bipartite graph if V can

be partitioned into two disjoint subsets V,and V,such that every
line of G joins a point of V to a point of V,. (V,,V,)is called a

bipartition of G. If further G contains ever line joining the points

of V,to the points of V,then G is called a complete bigraph. If
V, contains m points and V,contains n points then the complete

bigraph G is denoted by K

m,n °

The graph given in Fig. 1.3 is K, ,. The graph given in Fig.

1.101s K, ;. K, is called a star for m>1.

Figure 1.10

Definition: 1.3.7
Finite and Infinite Graphs

A graph with a finite number of vertices as well as a finite
9
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Space for Hints | |\ 1 ver of edges is called finite graphs, otherwise it is an infinite
graph.

Examples of Finite graphs

Problem: 1

Draw all graphs with 1, 2, 3 and 4 points.
Solution:

Take point  : 1 o

Points 2 \Z V,: 0 0
Points ;3

10




LQ, 5
/_I
/
6, { 1: LC —r_')) \il”’ - - ?
Points : 4
Here
o o
P=4;
& c
qg=0
C 1
I

Problem: 2

e -
F\A

W,
o
(’/ N
Y e
U"? N ’
q=2;p=4
]-—»—»—o
Here
A Here
<~ Here
{_m
Here

Find the number of points and lines in K__ .

Solution:
v,

e

—"
O

p=4
q=3
p=4
q=4
p=4
q=>5
P=4
q==6

Space for Hints
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Let K be the complete bipartite graph.

. The number of points is m+n.
.. The number of edges is mn.

For example: consider a graph k,,

. The number of points =3+3=6
.. The number of edges = 3x3=9
1.4 DEGREES
Definition: 1.4.1

The degree of a point v in a graph G is the number of lines
mcident with v,. The degree of v denoted by d,(v,)or deg v or

simply d(v,).

A point v of degree 0 is called an isolated point. A point v of

degree 1 is called an end point (or) pendant vertex.

Example:

Here d(v,)=d(v,)=2
d(v,)=d(v,)=3

d(v,) =1 ["Here v,end point]

12



d(v,)=3 [.-Here v, - self loop]
d(v,)=0 [ Here v, - 1solated point]
Note: 1

An edge of a graph that joins a node to itself is calied loop

or self loop.
i.e., A loop is an edge (v ,v jwhere v =v .
Note: 2
The degree of the vertex for self — loop is two.
Fundamental Theorem of Graph Theory:

Theorem: 1.1

The sum of the degrees of the points of a graph G is twice

the number of lines. i.e., Z deg v, = 2q.

Proof:

Every line of G is incident with two points. Hence every

line contributes 2 to the sum of the degrees of the points.

Hence > deg v, =2q

Corollary:
In any graph G the number of points of odd degree is even.

Proof:

 Let Vi, Vy,......,V, denote the points of odd degree and

- W,,W,,.....,w_denote the points of even degree in G.

13
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Space for Hints By theorem 1.1, z deg v + Z deg w, = 2qwhich is even.
=l =]

m

Further ) deg w,is even.
=l

k
Hence ) deg v, is also even. But deg v,is odd for each i.
=]

Hence k must be even.

Example: 1

Let G be a graph
Number of edges in G=6
. Sum of all degrees of all degree vertices = 12.

Example: 2

Consider the above example (1) figure, v,and v, have odd

degree whose sum is 6.
Definition: 1.4.2
For any graph G, we define

0(G) =min{deg v/v e V(G)} and

14




A(G)=max{degv/ve V(G)}.

If all the points of G have the same degree r then

3(G)=A(G)=r and in this case G is called a regular graph of

degree r.

Note 1:

A regular graph of degree 3 is called a cubic graph.

Note 2:

The complete graph K, is regular of degree p — 1.

AL

G,,G,,G,, G, are regular graphs.

Example: 1

G,

Example: 2

2A A

G,,G,,G,are cubic graphs.

G;

Definition: 1.4.3

If every vertex of a graph G is of degree 2, then G is said to

Space for Hints

b a cyclic graph or a cycle or a circuit. Thus a cyclic graph 1s
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2 —regular.

—9

A
a/ \\. - /

G, G;

The above cyclic graphsG,,G,,G,, are usually known as a

triangle, a quadrilateral and a pentagon respectively.
Theorem: 1.2

Every cubic graph has an even number of points.
Proyof:

Let G be a cubic graph with p points. Then Y, deg v=3p

which is even by theorem 1.1. Hence p is even.

Problem: 1

Let G be a (p, q) graph all of whose points have degree k or k

+1.
If G has t > Opoints of degree k, show that t =p(k+1)—2q.

Solution:

Since G has t points of degree k, the remaining p — t points have

degreek +1. Hence Z d(v)=tk+(p-t)(k+1).

veV

~tk+(p—t)(k+1)=2q.

16



~t=pk+1)-2q.
Problem: 2

Show that in any group of two or more people, there are

always two with exactly the same number of friends inside the

group.
Solution:

We construct a graph G by taking the group of people as the
set of points and joining two of them if they are friends. Then

deg v = number of friends of v and hence we need only to prove

that at least two points of G have the same degree.

Let V(G) = {Vv|,V,,eee, V. }
Clearly 0 <degv, <p-1foreachi.

Suppose no two points of G have the same degree. Then the

degrees of v ,v,,...., v are the integers 0, 1, 2.....,p — 1 in some

order. However a point of degree p — 1 is joined to every other
point of G and hence no point can have degree zero which is a

contradiction. Hence there exist two points of G with equal degree.

Problem: 3

Prove that 6 < 3(-1-5 A.
P

Solution:

Let V(G)={v,,V,, e Vb

We have 6<deg v, < Aforall i

17
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p
Hence pd< Y, deg v, <pA.

1=1

~pO<2g<pA (by theorem 1.1).

<<

p

Problem: 4

Let G be a k — regular bigraph with bipartition (V,,V,)and

k>0. Prove that |V, |= V,|.

Solution:

Since every line of G has one end in V, and other end in V,, it

follows that 3 d(v)=Y d(v)=q.

ve 'V, veV,

Also d(v)=kfor all ve V=V, UV,. Hence ¥} d(v)=k V,|

veV

and ) d(v)=k|V,|sothat k|V,|=k|V,]|.

veV,

Since k>0, we have |V, |5V, |.

Exercises:

Give an example of a regular graph of degree 0.

Give three examples for a regular graph of degree 1.

Lol S

Give three examples for a regular graph of degree 2.

4. What is the maximum degree of any point in a graph with p
points?

5. Show that a graph with p points is regular of degree p — 1iff it is
complete.

6. Let G be a graph with at least 2 points. Show that G contains

two vertices of the same degree.
18



7. A (p, q) graph has t points of degree m and all other points

are of degree n. Show that (m—n)t+pn=2q.

1.5 SUBGRAPHS
Definition: 1.5.1

A graph H=(V,,X))is called a subgraph of G=(V,X)if
V,cVand X, cX. If H is a subgraph of G we say that G is a

supergraph of H. H is called a spanning subgraph of G if
V,=V. H is called an induced subgraph of G if H is the

maximal subgraph of G with point set V,.

Thus, if H is an induced subgraph of G, two points are
adjacent 1n H iff they are adjacent in G. If V,c 'V, then the

induced subgraph of G with point set V, is called the subgraph of
G induced by V, and is denoted by G[V,].

If X, cX, then the subgraph of G with line set X, and

having no isolated points is called the subgraph line inducea (edge

induced) by X, and is denoted by G[X,].

Examples:

Consider the Petersen graph G given in Fig. 1.6.

19
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l ?/ 4 {1
F il
- g f\r\\ £ j
o g{ = /‘) 0 J G- ’
\\\ l ~
A \(’.‘ ° “d
0 }‘ ¢ & e -

Figure 1.11 Figure 1.12 Figure 1.13

The graph given in Fig. 1.11 is a subgraph of G. The graph
gwven in Fig. 1.12 is an induced subgraph of G. The graph given in

Fig. 1.13 is a spanning subgraph of G.
Definition: 1.5.2

Let G=(V,X)be a graph. Let v € V. The subgraph of G
obtained by removing the point v and all the lines incident with Vv 1S
called the subgraph obtained by the removal of the point v and is

denoted by G—v .

Thus if G-v,=(V,X,)then V. =V —{v }and X ={x/xeX

and X is not incident with v }.
Clearly G —v,is an induced subgraph of G.

Let x € X. Then G-x,= (V,X={x })is called the subgraph
of G obtained by the removal of the line X,. Clearly G-x is a

spanning subgraph of G which contains all the lines of G except X,.

The removal of a set of points or lines from G is defined to be

the removal of single elements in succession.

Definition: 1.5.3

Let G=(V,X)be a graph. Let V.,V be two points which are
20



not adjacent in G. Then G+vv, =(V,XU{v,,v })is called the

graph obtained by the addition of the line v,v to G.

Clearly G+ vv is the smallest super graph of G

containing the line v v .We illustrate the concepts in figure 1.14.

v

o i S 9 2
m_ " /\ »-‘w«'w;\»\wg 1 .
T £ B \,m.....,:/.’/
NN [ A \I e
CI‘ — 1 ] - :_‘}.)

21 U'OI 0 G — i1 .

G+ v

(o)

Figure 1.14

The proof given in the following theorem is typical of

several proofs in graph theory.
Theorem 1.3

The maximum number of lines among all p point graphs
with no triangles 1s I[P— :
| 4
(Ix] denotes the greatest integer not exceeding the real
number Xx).
Proof

The result can be easily verified for p < 4.

For p > 4, we will prove by induction separately for odd p and

for even p.
Part: 1

For odd p.

Space for Hints
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Suppose the result is true for all odd p < 2n+ 1.

Now let G be a (p,q) graph with p = 2n + 3 and no triangles.

9

If g=0,then q < l:%:l Hence let q> 0. Let uand v be a pair of

adjacent points in G. The subgraph G' = G — {u, v} has 2n + 1 points

and no triangles. Hence by introduction hypothesis,

Cn+1°] [4n® +4n+1
4 B 4

q(G") S[

=[n2+n+%]=n2+n (D

Since G has no triangles, no point of G' can be adjacent to both
uand v in G - ... (2)
Now, lines in G are of three types.

I. Linesof G' (< n” + n in number by (1))
II.  Lines between G' and {u, v} (£ 2n + lin number by (2))
L. Line uv.

Hence q<(n’ +n)+ 2n+1)+1 =n>+3n+2

=:11—(4n2 + 12n + 8)

(4n® +12n+9 1
4 4

\
_[(@n + 3’ [
| 4 el

Also for p=2n+ 3, the graph K, ,,, has no triangles and has

22



(M+1)Mn+2)=n’+3n+2= [%l] lines.

Hence this maximum q 1is attained.
Part: 2
For even p.

Suppose the result is true for all even p < 2n.

Now let G be a (p,q) graph with p=2n + 2 and no
triangles. As before, let u and v be a pair of adjacent points in G

and let G' = G — {u, v}

Now G' has 2n points and no triangles. Hence by

hypothesis,

(2n)2] _ 3

q(G')S[ 2

Lines in G are of three types.

1. Lines of G'(<n’ in number by (3))
ii. Lines between G'and{u,v} (£2n in number by an

argument similar to (2))

m. Line uw.

2 2
Henceanz+2n+1=(n+1)2=(2n:2) 2[134]

Hence the result holds for even p also.

We see that for p=2n+2. K .. is a [p, [%:D graph

23
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without triangles.
1.6 ISOMORPHISM
Definition: 1.6.1

Two graphs G, = (V,,X,) and G, =(V,,X,) are said to be
isomorphic. If there exists a bijection f : V, = V, such that u,v are
adjacent in G, if and only if f(u),f(v) are adjacent in G,. If G,is
isomorphic to G,. we write G, = G,. The map fis called an

isomorphism from G, to G,.

Examples
Example: 1

Consider the graphs G, and G,

/gi y b

(:’f/ C
s -
V(G) =1, 2, 3, 4}, V(G,)=1{a, b, ¢, d}

EG) ={1,2}, {23}, {34} }and
E(G,)=1{1ab}, {bd}, {dc}}.

Define a function f : V(G,) — V(G,) as
f()=a, f(2)=b, f(3)=4d, and f(4) =c.

f 1s clearly one — one and onto, hence an isomorphism.

24



Furthermore, {1,2}e E(G,) and {f(1), f(2)} = {a,b} e E(G,) Space for Hints
{2,3}¢ E(G,) and {f.(2), £f(3)} = {b,(%}e E(G,)
B.4}e E(G,) and {£(3),£(4)} = {d,c} e E(G,)

And {,2}¢ E(G,) and {f(1), f(3)} = {a,d}e E(G,)
{L,4}e E(G,) and {fQD), f(4)} = {a, ;}e E(G,)
{2,4} ¢ E(G,) and {f(2), f(4)} = {b,c} & E(G,)

Hence f is preserves adjacency as well as non — adjacency of the

vertices
~. G, and G, are isomorphic graphs.

Example: 2

r s
{ m n
e
G] : 021 w t
a b ¢
v u

The graphs G, and G, are isomorphic because the function

f: V(G,) - V(G,) defined by

f(@=r, fm)=t, f(n)=v, f(a)=s, f(b)=u, f(c)=w

preserves adjacency and non — adjacency among the vertices.
3. The graphs given in Fig.1.4 and Fig.1.5 are isomorphic.

4. The two graphs given in Fig 1.15 are isomorphic.

f(u,) = v, is an isomorphism between these two graphs.

25
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i

~q)
\3

tq A 1y
Figure 1.15

5. The three graphs given in Figl.16 are isomorphic with each other.

Figure 1.16

Theorem 1.4

Let f be an isomorphism of the graph G, = (V,,X,) to the
graph G, = (V,,X,). Let ve V,. Then deg v = deg f(v).

i.e., isomorphism preserves the degree of vertices.

Proof

A point u€ V, is adjacent to v in G, iff f(u) is adjacent to
f(v)in G,. Also f is a bijection. Hence the number of points i 'V,
which are adjacent to v is equal to the number of points in V, which

are adjacent to f(v). Hence degv= deg f(v).

Remark

Two isomorphic graphs have the same number of points and
same number of lines. Also it follows from Theorem 1.4 that t

isomorphic graphs have an equal number of points with a giy
26



degree. However these condition are not sufficient to ensure that
two graphs are isomorphic. For example consider the two graphs

given in Fig 1.17

U
We I 6
,--""//o
(= -0 O
W) Wq Wy D~ o1 Uz Us Ua s
Ws
Figure 1.17

By theorem 1.4 under any isomorphism w, must correspond to
4 ’ .

VW, W, Wwomust correspond to v,,v,,v, in some order. The

remaining two points w,,w, are adjacent whereas v,,v, are not

adjacent. Hence there does not exist an isomorphism between these
two graphs. However both graphs have exactly one vertex of

degree 3, three vertices of degree 1 and two vertices of degree 2.
Definition 1.6.2

An isomorphism of a graph G onto itself is called an

automorphism
of G.
Remark

Let I'(G) denote the set of all automorphisms of G. Clearly
the 1identity map i:V-—> Vdefined by i(v)=v 1is an
automorphism of G so that i€ I'(G).Further if o and B are

automorphisms of G then o and o~ are also automorphism of

G.

Hence I'(G) is a group and is called the automorphism

group of G.

NG
J
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Definition 1.6.3

Let G=(V,X) be a graph. The complement Gof G is

defined to be the graph which has V as its set of points and two points
are adjacent in G iff they are not adjacent in G. G 1s said to be a self
complementary graph if G is isomorphic to G.

Example: (1)

Complementary graph

&
.
\’)o.
VI

Figure 1.18 (a)
Example: (2)

Self complementary graph

te J o 4

Figure 1.18 (b)

Remark:

It has been conjectured by Ulam that the collection of vert.
deleted subgraphs G — v determines G upto isomorphism.
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Ulam’s Conjecture

Let G and H be two graphs with p points (p> 2) say
VsV, vV, and W, w,,..., W rtespectively. If for each 1 the
subgraphs G, = G — v, and H = H — w, are isomorphic, then

the graphs G and H are isomorphic.

Ulam’s conjecture is also known as reconstruction

conjecture.
Intersection graphs and line graphs
Definition 1.6.4

Let F = {S,,Sz,...,Sp} be a non — empty family of distinct

non — empty subsets of a given set S. The intersection graph of

F, denoted by Q(F) is defined as follows:

The set of points V of Q(F) is F itself and two points
S,,S; are adjacent if i #jand S (1S, # ®. A graph G is called an
intersection graph on S if there exists a family F of subsets of S

such that G is isomorphic to Q(F).
Result: (1)
Every graph is an intersection graph.

Proof

Let G=(V,X) be a graph. Let Vz{vl,vz,...,vp}Let

S=VUX

Foreach v,e V,letS ={v,} U {xe X/v e x}.

Clearly F = {Sl,Sz,..,Sp} is a family of distinct non —

29
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empty subsets of S,

Further if v,v, are adjacent in V then v,v, & S (1S and

hence S (1S, # ¢.

Conversely if S 1S, #¢ then element common to S (18is
the line joining v, and v, so that v ,v, are adjacent in G. Thus
f:V > F defined by f(v)=S isan isomorphism of G to £ (F).

Hence G is an intersection graph.

Definition 1.6.5

Let G =(V,X)be a graph withX # ¢. Then X can be thought
of as a family of 2 element subsets of V. The intersection graph (X)

1s called the line graph of G and is denoted by L(G). Thus the points
of L(QG) are the lines of G and two paints in L(G) are adjacent iff the

corresponding lines are adjacent in G.

A example of a graph and its line graph are given in Fig. 1.19.

Figure 1.19
Resuit: 2
Let G be a (p,q)graph. Then L(G) is a (q,q, ) graph where
&,
qL :-2—: Xdl —q'
=]
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Proof:
By definition, number of points in L(G) is q.

To find the number of lines in L(G). Any two of the d lines

(d -1
incident with v are adjacent in L(G) and hence we get Silg——'——>
lines in L(QG).

Hence q, = p -(-i'—(i—--l—)
1=1 2
1 (& Y 1/
=— d? |—-= d
(2 5{3e)
1{& ., 1
=;(Zd J—5(2q) (by Theorem 1.1)
L 1=1
1(& ,,
= d: |-
2(2], . ) q
Note:

LN,

Figure 1.20

Result: 3

(Whitney). Let G and G' be connected graphs with

isomorphic line graphs. Then G and G' are isomorphic unless one

is K, and the otheris K ;.

Space for Hints
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Definition: 1.6.6

A graph G is called a line graph if G = L(H) for some graph H.

Example:

K, —x is a line graph as seen in figure 1.19.

The following theorem is called Beineke’s forbidden subgraph

characterisation of line graphs.

Forbidden subgraph characterisation is an important and

respected form of characterisation in Graph Theory.

Result: 4

(Beineke). G is a line graph iff none of the nine graphs of Fig

o>
<

1.20 is an induced subgraph of G.

L@
S
<] & <

Problem: 1

Prove that any self complementary graphs has 4n or 4n+1

oints.
P 32



Solution:

Let G =(V(G),X(G))be a self complementary graph with
p points.

Since G is self complementary, G is isomorphic to G.

X(G) = X(G) .

Also X(G) + X(G) =(g)=-p—(pT"_1—).

| X(G) |= —EL%T—Q is an integer.

Further one of porp—1 is odd
Hence p or p — 1 is a multiple of 4.
s.pisofthe form4nor 4n+1.

Problem: 2
Prove that I'(G) ='(G).
Solution:
Let fe I'(G) and let u,ve V(Q).
Then u, v are adjacent in G © u, v are not adjacent in G.
& f(u),f(v)are not adjacent in G.

(since f is an automorphism of G)

33
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& f(u), f(v)are adjacent in G.

Hence f is an automorphism of G.
~.f e I'(G) and hence I'(G) I'(G).
Similarly I'(G) < I'(G) so that I['(G) = T(G).

Problem: 3

Show that isomorphism is an equivalence relation among

graphs.
Proof:

The identity map I on the vertex set V of the graph G is clearly
an isomorphism of V onto itself and so G = G. That is the relation

isomorphism is reflexive.

Let G,=G,. So there exists an isomorphism
f:V(G,) > V(G,). Since f is bijective f™':V(G,)— V(G,)exists
and is bijective. Further as f preserves adjacency, f 'also preserves

adjacency. So f'is an isomorphism of V(G,)onto V(G,).
-G, =GQ,
(1e) G, =G, =G, =G,
So the relation is symmetric.
Let G, =G,and G, =G,

There exist isomorphisms f:V(G,)— V(G,)and
g:V(G,) > V(G,). As f and g are bijective the composite map
gof : V(G,) — V(G,) is also bijective. Again gof preserves adjacency
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as both maps f and g preserve adjacency. Thus
gof : V(G ) — V(G,)is a bijective map preserving adjacency. So
gof is an 1somorphism of V(G,)onto V(G,). Thatis G, =G,.

Thus G, =G,and G, =G, = G, =G,. So the relation is

transitive.

Hence the relation of being isomorphic in the set of graphs

is an equivalence relation.
Problem: 4

Show that the two graphs given in fig 1.21 are not

isomorphic.

Vy- Vx uy )
eV o ‘ ]
2> . !

G! : l

[ u&“ B i
v P V4 ] ‘ N 7
&—
1 iy
¢

V4 v3

Figure 1.21
Solution:

Graphs in fig. 1.21 are not isomorphic because it is not

possible to define a function between V(G,)and V(G,)preserving

both adjacency and non — adjacency.
Problem: 5

Show that every simple graph on p vertices is 1somorphic to

a subgraph of K .

35
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Solution:

Let G be any simple graph on p vertices. We xnow K is a

complete graph on p vertices which is the maximum simple graph on p
vertices. If G is the maximum simple graph then G 1s 1somorphic to

K,. Since K is a subgraph of K itself, we have G which is
isomorphic to a subgraph of K . If G is any other simple graph, then
number of vertices of G is less than p—1, and hence G is isomorphic

to a proper subgraph of K .

Problem: 6

Prove that every induced subgraph of a complete graph is

compete.
Solution:

Let G=(V,E)be a complete graph and H=(V,E )be an

induced subgraph of G. To prove H is ‘complete.

Since G 1s complete, every pair of vertices in V are adjacent.

Let V, c V. Now, E, consists of those edges in E having both their

endsin V,.

Thus, every pair of vertices in V,must be adjacent, which

implies H is complete.
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UNIT -2
WALKS AND CONNECTED GRAPHS
2.0 INTRODUCTION:

In this unit we develop the basic properties of walks and

connected graphs.
2.1 WALKS TRAILS AND PATHS:
Definition: 2.1.1

A walk of a graph G is an alternating sequence of points

and lines v ,X,,v,,X,,V,,......,V,_,X ,V_beginning and ending

n?

with points such that each v ,x,v,,X,,V,,.....,V

031> V1 XnsV

n-12“*n? " n

beginning and ending with points such that each line x,is incident

with v, and v,.

We say that the walk joins v and v_and it is called a
v, —v,walk. v is called the initial peint and v is called the

terminal point of the walk. The above walk is also denoted by

VosV,s....., v, the lines of the walk being self evident. n, the number

of lines in the walk, is called the length of this walk.
A single point is considered as a walk of length 0.

A walk 1s called a trail if all its lines are distinct and is

called a path if all it points are distinct.
Example:

For the graph given in Fig. 2.1 Vi5V,,V4,V,,V,,V,V,,V 15 a
walk.

37
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denote

Proof:

/A> U1

s / V)

,U4 © ,U.:}
Figure 2.1

V,,V,,V,,V,,V,, v 1s a trail but not a path. v,,v,,v,,v.1s a path.
Obviously every path is a trail and a trail need not be a path.

The graph consisting of a path with n points is denoted by P .

Definition: 2.1.2

A v, —v_walk is called closed if v, =v .

A closed walk v, ,v,v,,..,v. =v,in which n=2>3and

Vs Vipeennee , v, _ are distinct 1s called a cycle of length n.

The graph consisting of a cycle of length n 1s denoted by C,_ .

C,1s called a triangie.

The length of a path 1s the number of edges in the path. It is
d by £(p).

Theorem: 2.1

In a graph G, any u — v walk contains a u — v path.

We prove the result by induction on the length of the walk.
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Any walk of length 0 or 1 is obviously a path.
Now, assume the result for all walks of length less than n.

Let u=u,,u,,.....,u, = vbea u—vwalk of length n.

n

If ail the points of the walk are distinct it is already a path.

If not, there exist1and j suchthat 0 <1< j<nand u, =u,.

Now u=u U LU u, =visa u—vwalk of length

R

less than n which by induction hypothesis conditions a u — v path.
Theorem: 2.2

If 0 2 k, then G has a path of length k.
Proof:

Let v, be an arbitrary point.
Choose v,adjacent to v, .

Since 0 = k, there exists atieast k — l vertices other than \
which are adjacent to v,. Choose v, # v, such that v,is adjacent

to v,.

In gencral, having chosen v,,v,,.....,v, where 1<i < dthere

exists a point v, #v ,v_,..,v such that v, is adjacent to v . This

141

process yields a path of length k in G.
Aliter:

Let P=(v,,v,,v,,......,v_)be a longest path in G. Then

every vertex adjacent to v, lies on P.

Smce d(v,) = dit follows that lengthof P28 > k.

R
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Hence P, =(v,,v,,v,,.......,v, ) is a path of length in G.

Theorem: 2.3

A closed walk of odd length contains a cycle.

Proof:
Let v=v,,V,,......,v, =vbe a closed walk of odd length.
Hence n =3. If n=3this walk is itself the cycle C,and hence
the result is trivial.

Now assume the result for all walks of length less than n.

If the given walk of length n is itself a cycle there is nothing to

prove. If not there exist two positive integers i and j such that

1<J,{1,J} #{0,n}and v, = v..

Now v ,v
closed walks contained in the given walk and the sum of their lengths

1n n.

Since n 1s odd at least one of these walks is of odd length which

by induction hypothesis contains a cycle.

Problem: 1

If A is the adjacency matrix of a graph with
V={v,,Vys... ,v,}, prove that for any n >1the (i,j)"entry of A"is

the number of v, — v walks of length n in G.

Solution:

We prove the result by induction on n.
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The number of v, — v walks of length 1

1 if v and v are adjacent
0 otherwise

Hence the result is true for n =1.

We now assume that the result is true forn — 1.

Let A" = (aﬂ“'”) so that a|"""is number of v, —v walks of

length n —11in G.

Now A" A = (af"‘”)(a‘ )

Y

Hence (i,j)"entry of A" =" al™"a,_...(1)

k=1

Also every v, —v walk of length n in G consists of a
v, —v,walk of length n — 1 followed by a vertex v which is

adjacent to v,. Hence if v is adjacent to v, then a, =1land

afn——l)

i agrepresents the number of v, — v, walks of length n whose

last edge 1s v, v,. Hence the right side of (1) gives the number of

v, — v walks of length n in G. This completes the induction and

the proof.
Exercises:

1. Give an example of a closed walk of even length which
does not contain a cycle.

2. Give an example to show that the union of two distinct u —
v walks need not contain a cycle.

3. Prove that the union of two distinct u — v paths contains a

le.
cycle 41
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4. Show that if a line is in a closed trail of G then it is in a cycle of

G.
2.2 CONNECTED AND COMPONENTS

Definition: 2.2.1

Two points u and v of a graph G are said to be connected if

there exists a u — vpath in G.

Definition: 2.2.2

A graph G 1s said to be connected if every pair of its points are

connected.

A graph which is not connected is said to be disconnected.

For example, for n > 1the graph E,consisting of n points and

no lines 1is disconnected. The union of two graphs is disconnected.

It is an easy exercise to verify that connectedness of points is an
equivalence relation on the set of points V. Hence V is partitioned into

non — empty subsets V,,V,,......,V_such that two vertices u and v are

connected 1ff both u and v belong to the same set V. .

Let G;denote the induced subgraph of G with vertex set V..
Clearly the subgraphs G,,G,,........ ,G  are connected and are called the

components of G.

VAN

O

Figure 2.2

Clearly a graph G is connected iff it has exactly ¢ -
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component. Fig 2.2 gives a disconnected graph with 5

components.

Theorem: 2.4

1S connected.

: -1
A graph G with p points and 6 > P 5
Proof:

Suppose G is not connected. Then G has more than one

component. Consider any component G, = (V,,X,) of G.

-~ : —-1
Let v, € V,. Since 62> Ez—lthere exist at least &

points

pt+l
2

+1=

: : : -1
in G, adjacent to v, and hence V, contains at least p2
points.

. +1
Thus each component of G contains at least P

points

and G has at least two components. Hence number of points in

G 2 p +1which is a contradiction. Hence G is connected.

Theorem: 2.5

A graph G is connected iff for any partition of V into

subsets V,and V,there is a line of G joining a point of V,to a

point of V,.
Proof:
Suppose G is connected.
Let V =V, UV, be a partition of V into two subsets.

Let ue V|, and ve V,. Since G is connected, there exist a
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u—vpathin G, say, u=v,,V,V,..,V = V.

Let i be the least positive integer such that v, e V,. (Such an i

exists since v. =ve V,). Then v _, € V,and v,_,v, are adjacent. Thus
there is a line joining v_, € V, and v, € V,.

To prove the converse, suppose G is not connected.

Then G contains at least two components.

Let V, denote the set of all vertices of one component and V,
the remaining vertices of G. Clearly V =V, U V,is a partition of V

and there 1s no line joining any point of V,to any point of V.

icnce the theorem.
Theorem: 2.6
If G is not connected then Gis connected.
Proof:
Since G 1s not connected, G has more than one component.

Let u,vbe any two points of G. We will prove that there is a
u — vpath in G.

If u,vbelong to different components in G, they are not

adjacent in G and hence they aré adjacent in G.

If u,vlie in the same component of G, choose w in a different

component.

Then u,w,visau—v pathin G. Hence Gis connected.
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Definition: 2.2.3

For any two points u,vof a graph we define the distance

between u and v by

the length of a shortest u—v path if such a path exists
d(u,v) =

oo Otherwise

If G is a connected graph, d(u,V)is always a non — negative

integer. In this case d is actually a metric on the set of points V.

Example:

The paths connecting v, and v, are

P=v, e v,e,vye, v, e Vi€ Vo€V,

I(P) =6

P,=v e, v,e,v,e,V,

I(P,) =3

P,=v e v,e,Vv,e, vV, e V,€ V,

I(P,) =5

P,=v,e,v,e,Vv,e vge, Vv,

I(P4) =4
45
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Length of shortest path = 3

sod(v,v,)=3

Remarks:

(1) The distance of a vertex from itself is zero d(u,u)=0
(2) If there is no path connecting two vertices u and v, then the

distance between them is defined to be infinity.

(e.g)

(1) The distance of an isolated vertex from any other vertex of a
graph 1s infinity.

(2) The distance between any two vertices of a null graph is infinity.
u — v path

In a graph G any path connecting the vertices u and v is called a
u — v path. The length of the shortest u — v path is clearly the distance

between u and v.

Thus d(u,v)is the length of the shortest u — v path.

Result:

The distance between the vertices of a graph is a metric in the

vertex set of the graph.

Proof:

The distance between two vertices u and v is the length of the

shortest path between u and v and so is a non negative integer.
sod(u,v) 20 (1)
Distance of a vertex from itself is zero
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sod(u,u)=0.

Also if d(u,v) =0, then the vertices u and v coincide (i€)

sd(u,v)=0iffu=v (2)
d(u,v) =length of shortest (u-v) path
= length of shortest (v —u) path
= d(v,u)
d(u,v) =d(v,u) (3)
Let w be any other vertex
d(u,v) =length of shortest (u-v) path
<length of shortest (u, w) path
+ length of shortest (w — v) path
= d(u,w)+ d(w,Vv)

~od(u,v) <d(u,w) + d(w,v) (4)

From (1), (2), (3), (4) we find that d is a metric in the set of

vertices of the graph G.

Note:

If V 1s the vertex set of a graph G then (V,d)is a metric

space.

Diameter of a graph

The diameter of a graph G is the maximum distance

47
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between any two vertices in the graph and 1t is denoted by d(G).

V3 Vs
o

o— G
Vi Vs

d(v,v,)=1 d(v,v;)=2 d(v,v,)=2 d(v,,v,)=3
d(v,,v,) = d(v,,vy)=1  d(v,,v,)=1 d(v,,v,)=2
d(vy,v) =2  d(v,,vy) =1 d(v,,v,)=1 d(v,,v,)=2
d(v,,v))=2 d(v,,v,)=1 d(v,,v,)=1 d(v,,v,)=1
d(ve,v)=3 d(vs,v,)=2 d(v,,vy)=2 d(v,,v,)=1

Maximum distance between two vertices is 3. Diameter of the

graph, d(G)=3.
Girth of a graph

The minimum of the length of the cycles in a graph G is called

its girth and it is denoted by g(G).
If the graph is free from cycles then its girth is zero.
Circumference of a graph

The maximum of the lengths of cycles in a graph G is called its

circumference and it is denoted by c(G).

If the graph is free from cycles then its circumference is zero.
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Example:

The cycles are

C,=v, Vv, V, Vv,V C,)=4
C,=v, Vv, v, Vv, I(C,)=3
C,=Vv, VvV, VsV, V, I(C,)=4
C,=V,V, V, V, Vg V, I(C,)=5
Ci=vVv, Vv, vV, V, V, V, V, V, I(C) =7
Co=vVyV, VvV, VsV, Vg 1(Vi) =5

Minimum length of a cycle =3
-~ grith g(G) =3.
Maximum length of a cycle =7

.. Circumference c¢(G) =7.

Odd and even cycles

A cycle in a graph is said to be odd or even according as

its length is odd or even.
(e,g) C,,C,,C,,Care odd cycles.
C,,C,are even cycles.

49

Space for Hints



Space for Hints

Theorem: 2.7

A graph G with at least two points is bipartite iff all its cycles

are of even length.

Proof:

Suppose G is a bipartite. Then V can be partitioned into two

subsets V and V,such that every line joins a point of V,to a point of

V,.
Now, consider any cycle v,,v,,V,,......... ,v, = v,of length n.
Suppose V,E V. Then V,, V., V€V, and
V,,V;,Vs,.....€ V,. Further v. = v, € V and hence n is even.

Conversely, suppose all cycles in G are of even length. We may
assume without loss of generality that G is connected. (If not we

consider the components of G separately).

Let v, e V.Define V, ={ve V/d(v,v,)is even}
V, ={ve V/d(v,v,)is odd}.

Clearly, VNV, =® and VUV, =V.

We claim that every line of G joins a point of V; to a point of

Suppose two points u,v e V, are adjacent.

Let P be a shortest v, —upath of length m and let Q be a

shortest v, — v path of length n. Since u,ve V,both m and n are even.

Now, let u, be the last point common to P and Q.

Then the v, — u,path along P and the v, —u, path along Q are
50



both shortest paths and hence have the same length, say i.

Now the u, —u path along P, the line uv followed by the
v—u, path along Q form a cycle of lengt.h
(m—-1)+1+(n—i)=m+n—-2i+1 which is odd and this is a

contradiction.

Thus no two points of V,are adjacent. Similarly no two
points of V,are adjacent and hence G is bipartite. Hence the

theorem.
Note:

To study the measure of connectedness of a graph G we
consider the minimum number of points or lines to be removed

from the graph in order to disconnect it.
Definition: 2.2.4

A cut point of a graph G is a point whose removal

increases the number of components.

A bridge of a graph G is a line whose removal increases the

number of components.

Clearly if v is a cut point of a connected graph, G — v is

disconnected.

For the graph given in Fig. 2.3, 1, 2 and 3 are cut points.
The line {1, 2} and {3, 4} are bridges. 5 is non — cut point.

Figure 2.3
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Theorem: 2.8

Let v be a point of a connected graph G. The following

statemernits are equivalent.

1. visacut- point of G.

2. There exists a partition of V — {v} into subsets U and W such that
for each ue Uand we W, the point v is on every u — w path.

3. There exist two points u and w distinct from v such that v is on

every u — w path.
Proof:

(1) = (2). Since v is a cut point of G,G — v is disconnected.

Hence G — v has at least two components.

Let U consist of the points of one of the components of G — v

and W consist of the points of the remaining components.
Clearly V —{v} = UuU Wis a partition of V — {v}.

Let ueUand we W. Then u and w lie in different

components of G —v. Hence there is no u — wpathin G—v.
Therefore every u — w path in G contains v.
(2) = (3). This is trivial.

(3) = (1). Since v is on every u — w path in G there isnou-w
path in G - v. Hence G - v is not connected so that v is a cut point of

G.
Theorem: 2.9

Let x be a line of a connected graph G. The following

statements are equivalent.
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N

There exists a partition of V into two subsets U and W such
tat for every point ue Uand we W, the line x is on every
u — w path.

3. There exist two points u, w such that the line x is on every u

— w path.

The proof is analogous to that of theorem 2.8 and is left as an

exercise.
Theorem: 2.10

A line x of a connected graph G is a bridge iff x is not on

any cycle of G.

Proof:
Let x be a bridge of G. (1)
Suppose x lies on a cycle C of G.

Let w and w,be any two points in G.
Since G is connected, there exists a w, — w,path P in G.

If x 1s not on P, then P is a path in G — x.

If x is on P, replacing x by C — x, we obtain a w, — w,walk
in G — x. This walk contains a w, — w, path in G — x. Hence G — x

is connected which is a contradiction to (1).
Hence x is not on any cycle on G.
Conversely, let x = uv be not on any cycle of G 2)

Suppose x is not a bridge.
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Hence G — x is connected.
. There is a u — v path in G - x.

This path together with the line x = uv forms a cycle containing

x and this contradicts (2). Hence x is a bridge.

Theorem: 2.11

Every non — trivial connected graphs has at least two points

which are not cut points.

Proof:

Choose two points u and v such that d(u, v) is maximum.

We claim that u and v are not cut points.

Suppose v is a cut point.

Hence G — v has more than one component.

Choose a point w in a component that does not contain u.

Then v lies on every u — w path and hence d(u,w)> d(u,v)

which is impossible.
Hence v is not a cut point.

Similarly u is not a cut point. Hence the theorem.

Blocks
Definition: 2.2.5

A connected non — trivial graph having no cut point is a block.
A block of a graph is a subgraph that is a block and is maximal with
respect to this property.
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A graph and its blocks are given in Figure 2 .4.

Do [ %W

Blocks of ¢

Space for Hints

Figure 2.4

In the following theorem we give several equivalent

conditions for a graph to be a block.
Theorem: 2.12

Let G be a connected graph with at least three points. The

following statements are equivalent.

1. Gisablock.
Any two points of G lie on a common cycle.

Any point and any line of G lie on a common cycle.

S

Any two lines of G lie on a common cycle.
Proof:
(1) = (2) Suppose G is a block.

We shall prove by induction on the distance d(u,v)between

u and v, that any two vertices u and v lie on a common cycle.

Suppose d(u,v)=1. Hence u and v are adjacent. By
hypothesis, G#K,and G has no cut points. Hence the line

X = uv is not a bridge and hence by Theorem 2.10. x 1s on a cycle

of G.
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Hence the points u and v lie on a common cycle of G.

Now assume that the result is true for any two vertices at

distance less than k and let d(u,v) =k 2 2. Consider a u — v path of

length k.
Let w be the vertex that precedes v on this path.
Then d(u,w)=k -1

Hence by induction hypothesis there exists a cycle C that
contains u and w. Now since G is a block, w is not a cut point of G and

so G — w 1s connected.
Hence there exists u — v path P not containing w.

Let v'be the last point common to P and C. (See figure 2.5).

Since u is common to P and C, such a v'exists.

Now, let Q denote the u — v' path along the cycle C not
containing the point w. Then, Q followed by the v' — v path along P,
the line vw and the w — u path along the cycle C line disjoint from Q

form a cycle that contains both u and v. This completes the induction.

Figure 2.5

Thus any two points of G lie on a common cycle of G.

(2)= (1). Suppose any two points of G lie on a common cycle of G.

Suppose v is a cut point of G. Then there exist two points u and w
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distinct from v such that every u — w path contains v (Refer

Theorem 2.8).

Now, by hypothesis u and w lie on a common cycle and this
cycle determines two u — w paths and at least one of these paths

does not contain v which is a contradiction.
Hence G has no cut points so that G is a block.

(2) = (3). Let u be a point and vw a line of G.

By hypothesis u and v lie on a common cycle C.

If w lies on C, then the line vw together with the v — w path
of C containing u is the required cycle containing u and the line

VW .
If wis not on C, let C' be a cycle containing u and w.

This cycle determines two w — u paths and at least one of

these paths does not contain v. Denote this path by P.

Let u'be the first point common to P and C. ( u'may be u
itself). Then the line vw followcd by the w —u' subpath of P and
the u'—vpath in C containing u from a cycle containing u and the

line vw.
(3) = (2)is trivial.

(3) = (4). The proof is analogous to the proof of (2) = (3)and is

left as an exercise.
(4) = (3)1s trivial.
Connectivity

We define two parameters of a graph its connectivity and
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edge connectivity which measure the extent to which it is connected.

Definition: 2.2.6

The connectivity x=x(G)of a graph G is the minimum
number of points whose removal results in a disconnected or trivial

graph. The line connectivity A = A(G)of G is the minimum number of

lines whose removal results in a disconnected or trivial graph.

Examples:

1. The connectivity and line connectivity of a disconnected graph is

0.

2. The connectivity of a connected graph with a cut point is 1.
3. The line connectivity of a connected graph with a bridge is 1.
4. The complete graph K cannot be disconnected by removing any

number of points, but the removal of p — 1 points results in a

travail graph. Hence k(K )=p-1.
Theorem: 2.13
For any graph G,k <A <34.

Proof:

We first prove A <§. If G has no lines, A = § = 0. Otherwise
removal of all the lines-incident with a point of minimum degree

results in a disconn7cted graph. Hence L < 9.
Now to prove k < A, we consider the following cases.
Case: (i)

G 1s disconnected or trivial. Then x = AL =0 .
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Case: (ii)

G is a connected graph with a bridge x. Then A =1. Further

in this case G =K, or one of the points incident with x is a cut

point. Hence K =1sothat x=A =1.
Case: (iii)

A =>2. Then there exist Alines the removal of which
disconnects the graph. Hence the removal of A —1of these lines
results in a graph G with a bridge x = uv . For each of these A —1
lines select an incident point different from u or v. The removal of
these A —1points removes all the A —1lines. If the resulting graph
is disconnected, then kK< A-—1. If not x is a bridge of this
subgraph and hence the removal of u or v results in a disconnected

or trivial graph. Hence k < A and this completes the proof.

Remark:

The inequalities in Theorem 2.13 are often strict. For the

graph given in Fig. 2.6, k=2,A=3and d =4.

Figure 2.6

Definition: 2.2.7

A graph G 1s said to be n — connected if K(G)2>nand n -

line connected if A(G)=n.

Thus a nontrivial graph is 1 — connected iff it is connected.

A nontrivial graph is 2 — connected iff it is a,block having
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more than one line. Hence K,is the only block which is not 2 —

connected.

Problems: 1

Prove that there 1s no 3 — connected graph with 7 edges.

Solution:

Suppose G is a 3 — connected graph with 7 edges.

G has 7edges =>p=>5.

Now q = %E (by problem 1)

o
\V)
t\)l{',]"

.. q 2 8which is a contradiction.
Hence there is no 3 — connected graph with 7 edges.

Problem: 2

Give examples to show that there are walks that are not trails

and trails that are not paths.

Solution:

In the graph G (Figure 2.7)
a—g walk: ae be,ge,ce fe,de,ce,be,ga
a—b walk: ae ge fe be,ce.ge jaeb

These are walks but not trails since in a — g walk the edge e, s

repeated and in a — b walk the edge e,, is repeated.
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a — g trail: ae be,fe ce. de,fe,g.

This 1s a trail but not path since the vertex f is repeated.

€g

Figure 2.7

Problem: 3

Prove that the relation “is connected to” is an equivalence

relation on the vertex set of a given graph.

Solution:

(1) Every vertex u of a graph G is connected to itself. So the
relation is Reflexive.

(1)  When u is connected to v, there is a path from u to v. Then
we consider the same path from v to u also. So v is
connected to u. Hence the relation is symmetric.

(ii)  Wher u is connected to v and v is connected to w then there

are u~—vand v-—wpaths in G. The union of u— vand
v —w path is a u — w path in G and hence u is connected to

w so that the relation is transitive.

Thus the relation “is Connected to” is an equivalence relation.
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Problem: 4

Show that if G is a connected graph of order p. Then size of G

is atleastp—1 (i.e.,) q=2p—1.

Solution:

Let G be a connected graph. Consider a path in G which
connects any two vertices of G. The length of this path 1s atleast p — 1

(because 1t includes all the vertices) so that the number of edges 1s

atleast p — 1.

Since all the edges are mvolved in this path, the size of the
graph is atleast p— 1. (1.e.) g2 p—1.
Problem: 5

If G contains no odd degree vertices then G contain no bridges:

Solution:

Let G be a graph such that the degree of each vertex 1s even.
We claim that there is no bridge in the graph. If possible, let € = xybe
a bridge of the graph G. Then the graph G — e is disconnected.

However we claim that there isa x — y path in G —e.

Since the degree of each and every vertex other than x and y is
of even degree in G — e, whenever we enter into a vertex through an
edge for a path starting form vertex x, we come out from the vertex

through some other edge and there by we reach the vertex y.

This 1s a contradiction to the fact that the graph G — e is

disconnected. Hence there cannot be any bridge in the graph G.
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Pk
Prove that if G is a k — connected graph then q = Y

Solution: |

Since G is k — connected, k(G) = k But
3(G) = M(G) 2 k(G)

- 8(G) =k
1
q=2Xdv)

> %pS(G) [since d(v) > 6(G)]

. q 2 8which is a contradiction.

Hence there is no 3 — connected graph with 7 edges.
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Unit-3
EULERIAN GRAPHS

3.0 INTRODUCTION

The concepts Eulerian trials and Hamiltonian cycles mainly
deal with the nature of connectivity in graphs. These concepts have
applications to the area of puzzle and games. In this chapter we discuss
the relation between a local property, namely, degree of a vertex and
global properties like the existence of Eulerian or Hamiltonian cycles.
Euler (1736) formulated the concept of Eulerian trail when he solved
the problem of the Konigsberg bridge. We see that there are elegant
characterizations for Fulerian graphs whereas there are no such

characterizations for Hamiltonian graphs.
3.1 EULERIAN GRAPHS

Definition: 3.1.1

A closed trail containing all points and lines is called an

Eulerian trail. A graph having an Eulerian trail is called an Fulerian

graph.
Remark:

Obviously in an Eulerian graph, for every pair of points u and v
there exists at least two edge — disjoint u — v trails and consequently

there are at least two edge — disjoint u — v paths.

™~

Figure 3.1
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The graph given in Fig. 3.1 is an Eulerian graph.

First we prove a simple lemima that is needed in the proof of

the main theorem.
Lemma: 3.1

If G is a graph in which the degree of every vertex is at least

two then G contains a cycle.

Proof:

Construct a sequence Vv,V ,V,,...... ,of vertices as follows.
Choose any vertex v. Let v, be any vertex adjacent to v. Let v, be
any vertex adjacent to v,other than v. At any stage, 1f vertex
v,,1 2 21s already chosen, then choose v, to be any vertex

adjacent to v, other than v_, 1s always guaranteed.

Since G has only a finite number of vertices, at some stage

we have to choose a vertex which has been chosen before.

Let v, be the first such vertex and let v, = v, where i <k.

Then v ,v , v, 1s a cycle.

FAETRITE

The following theorem answers the problem. In what type
of graph G is it possible to find a closed trail running through
every edge of G?

Theorem: 3.2

The following statements are equivalent for a connected

graph G.

(1) G is Eulerian.
(2) Every point of G has even degree.
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(3) The set of edges of G can be partitioned into cycles.

Proof:

(1)= (2): Let T be an Eulerian trial in G, with origin (and
terminus) u. Each time a vertex v occurs in T in a place other than the

origin and terminus, two of the edges incident with v are accounted

for.

Since an Eulerian trail contains every edges of G, d(v)is even

for every v #u. For u, one of the edges incident with u is accounted

for by the origin of T, another by the terminus of T and others are

accounted for in pairs.
Hence d(u)is also even.

(2) = (3): Since G is connected and nontrivial every vertex of

G has degree at least 2. Hence G contains a cycle Z. The removal of

the lines of Z results in a spanning subgraph G,in which again every
vertex has even degree. In G, has no edges, then all the lines of G form

one cycle and hence (3) holds.

Otherwise, G has a cycle Z,. Removal of ihe lines of Z, from
G, results in spanning subgraph G,in which every vertex has even
degree. Continuing the above process, when a graph G_with no edge

is obtained, we obtain a partition of the edges of G into n cycles.

(3)= (1): If the partition has only one cycle, then G is

obviously Eulerian, since it is connected. Otherwise let Z,Z2,,....7Z

“be the cycles forming a partition of the lines of G. Since G is

connected there exists a cycle Z; # Z having a common point v, with
Z,. Without loss of generality, let it be Z,. The walk beginning at v,

and consisting of the cycles Z and Z,in succession is a closed trail
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containing the edges of these two cycles. Continuing this process,
we can construct a closed trail containing all the edges of G.

Hence G 1s Eulerian.
Note:

The above theorem and its proof hold for pseudo graphs
(graphs having loops and multiple edges) also. Even otherwise, a
pseudo graph G *becomes a graph G when we introduce two
points of degree 2 on each loop and a point of degree 2 on every
other edge. Every vertex of G is of even degree iff every vertex of
G* is of even degree. Also G has a closed trail running through

every edge iff every vertex of G* 1s of even degree.

The proof of the above theorem gives a method for finding

an Eulerian trial when such a trail exists.
Konigsberg Bridge Problem:

The “graph” of the Konigsberg bridges (Fig. 1.2) has
vertices of odd degree. Hence it cannot have a closed trail running
through every edge. Hence one cannot walk through each of the
Konigsberg bridges exactly once and come back of the starting

place.
Corollary: 1

Let G be a connected graph with exactly 2n(n =1), odd

vertices. Then the edge set of G can be partitioned into n open

trails.
Proof:

Let the odd vertices of G be labelled v,,v,,...,v_;
W,,W,,......, W _in any arbitrary order. Add n edges to G between
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the vertex pairs (v ,w ),(v,,W,),....... v, ,w )to form a new graph Q'
(G" may be a multigraph). No two of these n edges are incident with
same vertex. Further every vertex of G' 1s of even degree and hence G'
has an Eulerian trail T. If the n edges that we added to G are now
removed from T, 1t will split into n open trails (since no two of these
edges are adjacent). These are open trails in G and form a partition of

the edges of G.

Corollary: 2

Let G be a connected graph with exactly two odd vertices. Then

G has an open trail containing all the vertices and edges of G.
Proof:
This is only a particular case of Corollary 1.

Obviously the open trail mentioned in corollary 2 begins at one

of the odd vertices and ends at the other.
Arbitrarily Traceable Graphs

Consider the graph G given below

Figure 3.2

Clearly it is an Eulerian graph. So it is possible to trace all the
edges exactly once and reach the starting vertex. [s it possible to do
this exercise starting from any vertex. Suppose we start from the

vertex a and come to ¢ after tracing the edges 1 and 2. How to proceed
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further? There are three choices the edges 3, 4 and 6.

Suppose we take 3, tracing this edge we reach the vertex a
and we cannot proceed further without retracing the edges. Thus
starting from a we cannot arbitrarily choose the edges to trace all
the edges exactly one. We say the graph is not arbitrarily traceable

from a.

Suppose we start from ¢ we can choose arbitrarily any edge
incident at ¢ and trace the graph. So wc say the graph is arbitrarily

traceable from the vertex c.

Thus an Eulerian graph 15 said to be arbitrarily traceable
from a vertex v, if an Euler tour can be obta'ned starting from v

and choosing edges arbitrarily while tracing the graph.
We give the following results without proof

(1) An Eulerian graph is arbitrarily traceable fiom the
vertex v if and only if every cycle contains v.

(2) If G 1s arbitrarily traceable from v then v has maximum
degree.

(3) If G is arbitrarily traceable from v then either v 1s the

only cut vertex or G has no cut vertices.
Note:

If a graph is arbitrarily traversable from a vertex then 1t 1s

obviously Eulerian.

The graph in Fig. 3.1 is arbitrarily traversable from v. From

no other point it is arbitrarily traversable.
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3.2 FLEURY’S GRAPHS

Theorem: 3.3

An Eulerian graph G is arbitrary traversable from a vertex v in

G iff every cycle in G contains v.

There is a good algorithm, due to Fleury, to construct an

Eulenan trail in an Eulerian graph.
Fleury’s Algorithm
To construct an Euler tour in an Eulerian graph G.
The algorithm is given in the following steps.
Step: 1
Choose an arbitrary vertex v,. Take W, = v,
Step: 2
Suppose that the trail

W =v.eve,v,,....,ev, has been chosen. Then choose ¢, from

E(G)—{e,,€, e ,€, }1n such a way that

(1) e, 1sincidenton v..
(ii) e, is not a cut edge.of G, =G —{e,e,,......,¢ } unless no other

edge incident on v, is available.
Step: 3
Stop when step (2) cannot be further employed.

The trail obtained by these steps in the Eulerian graph G is an

Euler trail.
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Theorem: 3.4

Any trail constructed by Fleury’s algorithm in an Eulerian

-graph is Eulerian.
Proof:

Let G be an Eulerian graph and W, =v e, v.e,v,,........ , €,V

n n

be a trail constructed by Fleury’s algorithm. The algorithm

terminates  at v,and so the degree of v in

G, =G—{e,,e,,0 ... ,€,}1s zero (otherwise the algorithm will not

terminate at v,. We claim that v, coincides with some

v(0<i<n-1).

If v does .not coincide with any v,(0<i<n-1) theﬁ W,
contains only one edge e, incident on v, in G. Since the degree of
v,in G is even there must be at least one edge incident on v, in
G, . So the degree of v in G, is not zero. This is a contradiction to

the fact that the degree of v_in G is zero.

So v, must coincide with some v.(0<i<n-1). If
v, =V, 1# Othen the degree of v, in the trail W_is odd because
when the trail visits viﬁrst there 'is one edge incident on it and
every future visit adds two edges to v,so that the number of edges
incident on v,is odd. As the degree of v,in G is even, there is (at

least) an edge in G not covered by W._ .

This is a contradiction as the algorithm terminates. So

v, =v,with 1=0and so v =v,. Therefore the trail W_is a

closed in G.

In order to prove that W is an Eulerian trail we have

71

Space for Hints



Space for Hints

further to prove that it contains all the edges of G. For this it is enough

we prove that the edge set of G is empty.
Suppose the edge set of G is not empty (i.e.) E(G )= ®.

Let S be the set of all vertices of degree greater than zero in G,

Clearly S is not empty b our assumption that G_has edges.

Since v is of degree zero in G, we find v ¢ S. Therefore

v_ € S'which is the vertex set of G- S.

Let m be the largest integer such that v & Sso that v, &S.

Sv ... ef§S.

m+l

Further the vertices v (m+1 < i<n)belong to §'. Thus [S,S']

1s a partition of the vertex set of G.

Now the edge e, is an edge of G in the bipartition [S,S']. If

€, =V,V,is any other edge of [S,S']lin G_then k>m+1land

Figure 3.3

This implies that m is not the largest integer such that V,ES.
This is a contradiction. So e _,, =v_ v, is the only cdge of G_is

[S,S']and so e, is a cut edge of G _.

Let ¢ be any other edge incident on V.. (such an edge exists
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because d(v,,)is even), then e must also be a cut edge of G _, for
otherwise e would have been chosen instead of e_, (in step 2).
Further every cut edge of G is also a cut edge of G_[S]. Clearly
the edge set of G, [S]is a subset of the edge set of G _[S].

(i-¢) E(G,[S]) € E(G,[S])

If some edge of G, _[S]is not the edge of G [S]it must be
some €,,m+1<k. But no such edge has both end vertices in S.

So the edge set of G, [S]must be equal to edge set of G_[S].
(ie) E(G,[S]=E(G,[S])
This implies G [S]=G_[S].

As W, being a closed trail covers an even number of edges
incident at each vertex v,, 0<i < n—1, each vertex v is of even
degrees in G [S]=G_[S]. Hence G_[S]is the union of edge —
disjoint cycles (.".by problem (1)). Therefore no edge of G_[S]is a
cut edge. This is a contradiction to the conclusion that e__, is a cut

edge of G_.

m++]1 m Gn °

Therefore there is no edge ¢
SEG )=,

Hence the trail W, in G is a closed Eulerian trail and so is

an Euler tour.
Problem: 1

Show that a simple connected Eulerian graph is the union of

edge disjoint cycles.
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Let G be a simple connected Eulerian graph. We know each
vertex is of even degree. Therefore the minimum degree of the graph 1s

§>2. So G contains cycles. Let C ,be one such cycle. Remove the
edges of C,from G. The degree of each vertex of the remaining graph
G, is also even. If there are no edges in G, there is nothing to prove.
If not, = 2in G, and so G, contains a cycle C,. Remove the edges of
C, from G,and proceed as before. As G is a finite graph the process
will result in a finite number of cycles C,,C,,......,C, which are all

edge disjoint.

Hence E(G) = E(C,) UE(C,) U oerrrvvvver. UE(C,).

Problem: 2

If a connected graph G has 2k vertices of odd degrees then there
are k edge disjoint trails Q,,Q,,.......,Q, in G such that

E(G) = E(Q) UE(Q) U wroene. WE(Q,)

Let the odd vertices of the given graph G be v, v, v ,........ Vo -
Let v be a new vertex. Join vv ,vv,,Vv,,......, VV,, by edges so that we
get a newgraph G' with vertex set V(G') = V(G)U {v}and edge set
E(GY=E(G)uU{vv,vv,,. ... , VY, }

Clearly all the vertices of G, are of even degrees and so G'is an

Eulerian graph. Therefore it is the union of edge disjoint cycles having

a common vertex at v.

Each cycle has two new edges incident at v. Therefore the
removal of all the 2k edges decomposes G into k trails which are all

edge disjoint. Let them be Q,,Q,.............. ,Q,1n G so that
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E(G)=E(Q )UEQ,)U.coeen... UE(Q,)

Problem: 3

Using Fleury’s algorithm find an Euler tour of the

following graph.
Take W, =v,
W, =v.e v,

At v, none of the other edges e,,e,,€,is a cut edge of

G, = G —e¢,. Take any edge. Let us take e, .
W, =v.eve,v,

At v,, the only other edge is e,and it is not a cut edge of

G,=G—{e,,e,}. Take ¢,
W, =veve,v,e.v,.

At v,, the other edges are e,,e,,e,. None of them is a cut

edge of G, =G —{e,,e,,¢e,} . Take any edge. Let us take ¢, .
W, =veve,v,e,v,e,v,.

At v, the only other edge 1s e and it 1s not a cut edge of

Space for Hints
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G,. G, -{e,.e,,e,,¢e,}. Take e,

W, =v.eve,Vv,e,v,e,V,e.v;.

At v, the other edges are e,e,,e,. Of these ¢ is a cut edge of

G, =G-{e,,e,,€,,€,,65).
Choose e, which is not a cut edge.
W, =v€,v,e,V,e,V,e,V,e Ve v,.

At v,the only other edge is eyand it is not a cut edge of

G,=G—-{e,,e,,e,,€,,€5,€,}.
Take e,
W, =v,e,V,e,V,e,V,e,V,E, Ve, V,8V,.

At v.the only other vertex is e,which is not a cut edge of

G,=G-{e,,e,,€;,€,,65,€;,,€} -
Take €, .
W, = V,e,V,e,V,€,V,€,V,e, Ve, V,8V,EVy
The only edge remair}ing is e at v;.
Take ¢,
W, =v,€,V,e,V,€,V,€,V,e,V,e,V,8, V.8 V€V,
Hence W, is the required Euler tour.

Problem: 4

For what values of n, 1s k, Eulerian?
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In the complete graph K _, the degree of every vertex is n —
|. Therefore K  is Eulerian if and only if n — 1 is even; that is if

and only if n is odd.

Problem: 5

For what values of m and n is K, , Eulerian?

Solution:

. K .18 Eulerian <> m and n are even.

For example: K, ,

Figure 3.4
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Unit -4
HAMILTONIAN GRAPHS

4.0 INTRODUCTION

In 1859, Sir William Hamilton devised a mathematical game on
the graph of the dodecahedron (Fig 4.1). In this the first player sticks
five pins 1, 2, 3, 4 and 5 in any five consecutive vertices and the
second player is required to complete the path so formed to a spanning
cycle. In the case of the dodecahedron, the completion is always

possible. This game led to the concept of Hamiltonian graphs.

Figure 4.1

4.1 HAMILTONIAN GRAPHS
Definition: 4.1.1
A spanning cycle in a graph is calied a Hamiltonian cycle.

A graph having a Hamiltonian cycle is called a Hamiltonian

graph.

Several necessary or sufficient conditions for Hamiltonian
graphs exist, but no elegant characterization of Hamiltonian graphs is

known.
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Definition: 4.1.2

A block with two non adjacent vertices of degree 3 and all

other vertices of degree 2 is called a theta graph.

Thus a theta graph consists of two vertices of degree 3 and
three disjoint paths joining them, each of length at least 2. The
graph given in Fig. 4.2 is a theta graph.

L

Figure 4.2

A theta graph 1s obviously non Hamiltonian and every non

Hamiltonian 2 — connected graph has a theta subgraph.
Theorem: 4.1
Every Hamiltonian graph is 2 — connected.

Proof:

Let G be a Hamiltonian graph and let Z be a Hamiltonian
cycle in G. For any vertex v of G, Z — v is connected and hence G
— v 1s also connected. Hence G has no cut points and thus G is 2 —

connected.

The following theorem gives a simple and useful necessary

condition for Hamiltonian graphs.
Theorem: 4.2

If G is Hamiltonian, then for every nonempty proper subset

S of V(G),o(G-S)<|S|. where o(H) denotes the number of
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components in any graph H.

Proof:

Let Z be a hamiltonian cycle of G. Let S be any nonempty

proper subset of V(G).

Now, &(Z-S) < |S| Also Z — S 1s a spanning subgraph of G — S

and hence (G —-S)< (Z—-S). Hence ®(G-S)< S .

Note: 1

The above theorem is useful is showing that some graphs are
non Hamiltonian. For example, consider the complete bipartite graph

K, . withm<n.

Let (V,,V,)be a bipartition of the graph with V, |=mand
| V, |=n. The graph K -V, is the totally disconnected graph with n

points.

Hence (K, , —V,)=n>m=V,|.

.. K, .1s non Hamiltonian.

Note: 2

The converse of the above theorem is not true. For example the
Petersen graph (Figure 1.6) satisfies the condition of the theorem but is

non Hamiltonian.

We now discuss some sufficient conditions for a graph G to be

Hamailtonian.

Theorem: 4.3 Dirac Theorem
Statement:

If G is a graph with p>3vertices and §>p/2, then G is

Hamiltonian.
80



Proof:

Suppose the theorem is false. Let G be a maximal (with
respect to number of edges) non Hamiltonian graph with p vertices

and 0=2p/2.
Since p 2 3, G cannot be complete.

Let u and v be non adjacent vertices in G. By the choice of

G, G 4+ uvis Hamiltonian. Moreover, since G 1s non Hamiltonian,

each Hamiltonian cycle of G + uv must contain the lien uv.

Thus G has a spanning path v,v,,...,v with origin

u = v, and terminus v=v_.

Let S={v, uv,,€eE} and T={v, i<pand v,veE}

1+1

where E is the edge set of G.

Clearly v ¢ SUTand hence SUT <p (D

Agamif v e SNT, then v,v,,....... sV V.V e, \'Z

1 p 7 p-l 1+1V1lsa

Hamiltonian cycle in G, contrary to the assumption (Refer Fig.

4.3).

Figure 4.3

Hence SNT=®sothat |[SNT|=0 2)

Also by the definition of S and T, d(u) =|S|and d(v) =T .

81

Space for Hints



Space for Hints

Hence by (1) and (2), d(u)+d(v)=S + T

=SuT<p.

Thus d(u)+d(v)<p.

But since 3>p/2, we have, d(u)+d(v)=pwhich gives a

contradiction. Hence the theorem.

Lemma: 4.4

Let G be a graph with p points and let u and v be nonadjacent

points in G such that d(u)+d(v)2p. Then G is Hamiltonian iff

G + uv 1s Hamiltonian.

Proof:
If G is Hamiltonian, then obviously G + uv is also Hamiltonian.
Conversely, suppose that G + uv is Hamiltonian, but G is not.

Then, as in the proof of Theorem 4.3, we obtain

dw)+d(v)<p.
This contradicts the hypothesis that d(u)+d(v)2p.

Thus G + uv 1s Hamiltonian implies G is Hamiltonian.

Note:

The above lemma motivates the following definition of closure.

4.1.3 Definition

The closure of a graph G with p points is the graph obtained
from G by repeatedly joining pairs of nonadjacent vertices whose
degree sum s at least p until no such pair remains. The closure of G is

denoted by c(G).
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Theorem: 4.5
c(G)is well defined.
Proof:

Let G have p vertices. Let G,and G,be two graphs

_obtained from G by repeatedly joining pairs of nonadjacent
vertices whose degree sum is at least p until:no such pair remains.

Let x,,X,,.cc...,X,,and y,,¥,,......, ¥y, be the sequences of edges

added to G 1n obtaining G, ,and G, respectively.
We claim that {X,,X,,..... X} = {V|, Ypre-s ¥

If possible let x , =uvbe the first edge in the sequence

{X,,X;,.0e, X,  that is not an edge of G, .

Let H=G+{X,,X,5e... ,X }. Since uvis the next edge to

be added to H in the process of constructing G,, we have

dy(w)+d,(v)2p. (1
Also by the choice of x ,,, H is a subgraph of G, .

Hence d'(u)=d,(ujand d'(v)=d,(v), where d'(u)and
d'(v)denote degrees of u and v in G,. Hence (1) implies

d(uw)+d'(v)=p.

Hence by the definition of G,,uand v must be adjacent in

G, . This is contradiction, since u and v are not adjacent in G, .
Hence each X, is an edge of G, .

Similarly we can be prove that each vy, is an edge of G,.
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Hence G =G, . Thus ¢(G)is unique and hence 1s well defined.

Example:

Figure 4.4 illustrate the construction of the closure of a graph G

on six vertices. In this case ¢(G)is complete.

D>

D

The following theorem is a consequence of Lemma 4.4

Figure 4.4

Theorem: 4.6

A graph is Hamiltonian iff its closure is Hamiltonian.

Proof:

Let X,,X, e , X, be the sequence of edges added to G in

obtaining ¢(G).

Let G,G,,.......,G, =c(G)be the successive graphs obtained.
Applying Lemma 4.4 repeatedly,

G is Hamiltonian ¢ G, is Hamiltonian

<  G,1s Hamiltonian

---------------------------------

---------------------------------

< G, =¢(G)is Hamiltonian.



The following corollary is only a particular case of the

above theorem.
Corollary:

Let G be a graph with at least 3 points. If ¢(G)is complete,

then G 1s Hamiltonian.

The above theorem and corollary are often useful in

showing that a given graph is Hamiltonian.

For example the graph G given in Figure 4.4 is

Hamailtonian.

Note:

If 6>

SNl ot

, then ¢(G)is complete. Hence if p=23, G is

Hamiltonian.
Thus 0 = —g—and p = 3 = G is Hamiltonian.

This is Dirac’s Theorem proved before (Theorem 4.3).
Theorem: 4.7
Chavatal Theorem

Statement: Let G be a graph with degree sequence
d,,d,,.....d ), where d, £d, <.....<d, and p23. Suppose that

e

for ever value of m less than 5 either d , >mord, _ A 2p~-m.

(i.e., there is no value of m less than wI%for which d_<m

and d < p-—m). Then G is Hamiltonign.

p—m
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Proof:
Let G satisfy the hypothesis of the theorem.

We claim that ¢(G) is complete. Let u denote the degree of a

vertex v in ¢(G)by d'(v).
If possible, let ¢(G)be not complete.
Now let u and v be two nonadjacent vertices in ¢(G) with
d'(v) <d'(v). (1)

and d'(u)+d'(v)as large as possible. Let d'(u)=m. Since no two
nonadjacent points in ¢(G)can have degree sum p or more, we have

d'(w)+d'(v)<p
sd'(v)y<p—d'(u)
~d'(v)<p—m (2)

Now, let S denote the set of vertices in V — {v}which are not
adjacent to v in ¢(G). Let T denote the set of vertices in V — {u}

which are not adjacent to u in c(G).
Clearly S=p-1-d'(v)and T =p-1-d'(u) (3)

Also by the choice of u and v, each vertex in S has degree

atmost d'(u)and each vertex in T U {u}has degree at most d'(v).

Putting (2) in the first equation of (3) we get
S>p—-1-(p—m)=m-1. Hence S =>m. Hence ¢(G) has at least

m points with degree <m. 4)

From (3), T =p—-1-m. Since each vertex in Twuw {u} has

degree <d'(v), this implies that c¢(G)has at least p — m vertices of
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degree <d'(v). Therefore by (2), ¢(G)has at least p — m vertices

of degree <p—m. (5)

Because G is a spanning subgraph of ¢(G), degree of each
point in G cannot exceed that in ¢(G). Hence statements (4) and

(5) hold in the case of G also.

Hence d_<mand d__ <p-m. Also by (1) and (2),

—m

m < p/ 2. This contradicts the hypothesis on G.
- ¢(G)1s complete. Hence G 1s Hamiltonian.

Remark:

There does not appear to be any relationship between
Eulerian and Hamiltonian graphs. This is illustrated by the

following examples.
Example: 1

Give an example of a graph which is both Eulerian and

Hamiltonian.
Solution:

The complete graph K, is both Eulerian and Hamiltonian

K3 \.

Example: 2

Give an example of a graph which is Eulerian but not

Hamiltonian.
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Solution:

Figure 4.5
The graph 1n figure (4.5) is Eulerian but not Hamiltonian.
Example: 3

Give an example of a graph which is not Eulerian but

Hamiltonian.

Solution:

Figure 4.6

The graph G in figure (4.6) is Hamiltonian because the closure

of G 1s complete.
But G is not Eulerian, Since there are vertices of odd degree.
Example: 4

Give an example of a graph that is neither Eulerian nor

Hamuiltonian.
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Solution:

Figure 4.7

The Petersen graph given in figure (4.7) is neither Eulerian

nor Hamiltonian.

Problem: 1

Show that K is non Hamiltonian.

Proof:
Consider the complete bipartite graph K,..with m<n. Let

Viand V,be the two partitions of the graph with V, =mand

V, |=n. The graph K -V, is disconnected with n vertices.
. The number of components in K -V, =n

Thus the necessary condition of a graph to be Hamiltonian

is not satisfied. Thus K _is non — Hamiltonian.

Preoblem: 2

Find the closure of the graph given in following figure 4.8

N

A d

Figure 4.8
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C(G):

Figure 4.8 (a)

Problem: 3

If G 1s bipartite graph with odd number of vertices then prove

that G 1s non — Hamiltonian.

Solution:

Suppose G is Hamiltonian, then G has a Hamiltonian cycle C.
Since G 1s bipartite, C is of even length. So, the number of vertices on
C is even. Since C is a spanning cycle, the number of vertices of G is

even. This is a contradiction to our assumption. Hence the solution.

Problem: 4

Show that the Petersen graph is non Hamiltonian.

Solution:

Let us label the vertices as in Fig 4.9. If the Petersen graph G

has a Hamiltonian cycle C, then G —E(C)must be a regular spanning
subgraph of degree 1. (A regular spanning subgraph of degree 1 is

called a 1 — factor).

Let us search for all 1 — factor in G and show that none of them

arise out of a Hamiltonian cycle of G.
Case: 1

Consider the subset A = {la,2b,3c,4d,5¢} of the edge set of G.
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Clearly A is a 1 — factor of G, but G — A 1s the union of two

disjoint cycles and hence is not a Hamiltonian cycle of G.

Figure 4.9

Case: 2

If the 1 — factor contains 4 edges from A, then the only line
passing through the remaining two points must also be included in

the 1 — factor, so that we again get A.
Case: 3

If a 1 — factor contains just 3 edges from A, then two such

choices can be made.
Subcase: 3A

Let the 1 — factor contain la, 2b and 3c. Now the subgraph

induced by the remaining four points is a P, (a path with 4 points)

whose unique 1 — factor is {4d,5¢}. Thus the 1 — factor of G

considered becomes A.
Subcase: 3B

Let the 1 — factor contain la, 2b and 4d. Here again the

remaining four points induce P,, whose unique 1 — factor is
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{3¢,5¢} . Thus the | — factor of G considered becomes A.

Case: 4

If a 1 — factor contains just 2 edges from A, then again two such

choices are possible.

Subcase: 4A

Let the 1 — factor contain 1a and 2b. In the subgraph induced by
the remaining 6 points, point d has degree one and hence any 1 — factor

of that subgraph must contain edge 4d. Thus case 3 is repeated.

Subcase: 4B

Let the 1 — factor contain la and 3b. In the subgraph induced by
the remaining 6 points, point 2 has degree one and hence any 1 — factor

of that subgraph must contain edge 2b. Thus case 3 is repeated.
Case: 5

Let a 1 — factor contain just one edge of A, séy la. If it a
contains one more edge from A, then one of the earlier cases will be
repeated. Hence we have to choose the other four edges of this 1 —
factor from two paths, each of length 3. (The paths are cebd and 2345).
Hence the 1 — factor is B={la,ce,bd,23,45}. Now G - Bis again

union of two disjoint cycles, and not a Hamiltonian cycle.

Case: 6

Suppose there exists a 1 — factor that does not contain any edge
from A. It can contain at most two edges from the cycle 123451 and at
most two edges from the cycle acebda. Hence it can contain at niost

four edges.

Hence there does not exist such a 1 — factor.
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Since the above 6 cases cover all possible types of 1 —
factors, we see that G has no 1 — factor arising out of a

Hamiltonian cycle.
Hence G has no Hamiltonian cycle.
Thus G is not Hamiltonian.

Problem: 5

Give an example of a non Hamiltonian graph with n

(n—1(n—-2)
2

ot

+ 1 edges.

vertices and

Solution:

Consider the complete graph of (n — 1) vertices K _ . The

_ (n—D(n-2)

2

L

number of edges 1s (n —I)c,

Take another vertex v and join it with any one vertex of

n-l -

Now the resulting graph G has n vertices and

(n—1)(n-2)
2

-- Tedges.

For the graph G, S=1< %

So by Dirac’s theorem G is no* Hamiltonian.
4.2 WEIGHTED GRAPH

There are two practical problems associated with Eulerian
trails and Hamiltonian cycles. To describe these we need the

following concepts.
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Definition: 4.2.1

If a real number w is attached to an edge e of a graph G then w
is called the weight of the edge ¢ we may write w(e). If real numbers
(weights) are attached to all the edges of the graph G then it is said to
be a weighted graph. The sum of the weights of all the edges is called
the weight of the granh and it is denoted by W(G).

~J
BN
19

)
t

Figure 70

W(G)=T+10+6+4+12+11+5=55

Note: 1

Any spanning tree of a weighted graph is called a weighted

spanning tree.

Note: 2

The weights of different spanning trees of the same weighted

graph need not be the same.

Note: 3

Note (1) and Note (2) are discussed in unit.
Problem: 1
Chinese postman problem:

A postman starting from the post office walks along the streets

of his area to deliver the postal articles to the addresses and returns to

e

the post office. The problem of choosing a route, which covers all the
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locations, assigned to him such that the walking distance is

minimum is known as the Chinese postman problem.

Let G be the graph whose vertices are the different
locations (addresses) and the edges are the paths connecting the
locations. Let the weights of the edges be the distances between
the locations. Now the Chinese postman problem is equivalent to
the problem of finding an optimal tour of the weighted graph G. If
G is an Eulerian graph then any tour of G is an optimal tour,
because no edge is retraced. Therefore the Chinese postman
problem reduces to the problem of finding an Eulerian tour in an

Eulerian graph.

Fleury’s algorithm gives an effective and elegant method to

solve this problem.
Problem: 2
Travelling salesman problem:

The travelling salesman problem (TSP) is one of the many

unsolved problem in Graph Theory.

A travelling salesman wishes to visit a number of towns to
promote his business and to return to his starting place. If the time
of travel (or the travelling expenses) between the towns are
known, how should he plan his travel so that he visits each town
exactly once and returns to his starting place in the shortest time
(or with minimum expenses) possible. This is known as the

Travelling Salesman Problem (TSP).
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UNIT -5
BIPARTITE GRAPHGS

5.0 INTRODUCTION

In this unit we deal with a Bipartite graphs. Matching and
Marriage problem. Also introduce the concept of trees and connector

problem.

5.1 BIPARTITE GRAPHS

Definition: 5.1.1

Let G be a simple graph whose vertex set is V. If V can be
partitioned into two non empty sets X and Y such that no two vertices
of X are adjacent and no two vertices of Y are adjacent so that each
edge of G has one end vertex in X and the other in Y, then G 1s called

a bipartite graph or a bigraph.

pL

Vs
R 4
.2 )
3
Ve
'Vs ‘V‘ v2
Vs Gy
v
’ G
Figure 5.1
X={v,,v,} X={v,,v;,vs}.
Y ={v,,v,,V.} Y={v,,v,,v}

G,and G, are bipartite graphs.

A bipartite graph G in which the vertex set is partitioned into
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two sets X and Y is denoted by (X,Y)(i.e) G=(X,Y). We also
say that (X, Y) is a bipartition of the graph G.

Definition: 5.1.2

Complete bipartite graph

Let (X, Y) be a bipartite graph. If each vertex of X is
adjacent to each vertex of Y then the graph is said to be a
complete bipartite graph. If the vertex subsets X and Y have m
and n vertices, then the complete bipartite graph is denoted by
K, .or K

n,m °
Remarks:

In a complete bipartite graph Kon-

(1) The number of vertices is m+n. o (K. )=m+n.

m,n

(1)  The number of edges is mn. &(K ) =mn

m,n

K34

r

Figure 5.2
(1)  There is no isolated vertex.

(iv) K, , isnot a complete graph in the usual sense.

(v)  The degree of a vertex m or n.

(vi) The complex bipartite graph K,; 1s called

Kuratowski’s second graph.
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Note:

(1)  The number of vertices is denoted by v,

(2)  The number of edges is denoted by «.
Theorem: 5.1
A graph is bipartite if and only if it contains no odd cycle.

Proof:

Let G be a bipartite graph. We have to prove that it contains no
odd cycle.

Since G is bipartite the vertex set is partitioned into two non
empty set X and Y such that every edge of G has one vertex in X and

the other vertex is Y.

Consider the cycle.

Let vie Xsothat v,e Y, v, e X, v,eyY
In general v, € Xifkis odd and v, € Yifk is even.

For the cycle C the last vertex v, € Xand so the preceding
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vertex v, € Y. Therefore n is even and so the cycle C has an even

number of vertices and consequently it has an even number of
edges. Therefore the cycle C is an even cycle. Since the cycle C 1s
arbitrary it follows that every cycle is even. Hence the graph G has

no odd cycle.

Conversely,

Let the graph G be without odd cycles. We have to prove

that G 1s bipartite.

Let v be any vertex of G.
Let X={xeG d(x,v)=even}.
Y = {xe G} |d(x,v)=odd}

Clearly X and Y are non empty disjoint subset of the vertex
set of G.

We now prove that no two vertices of X are adjacent.

Suppose the vertices u, ve Xbe adjacent so that uv is an

edge.

Now the x — u path, x — v path and the edge uv together

form a cycle.
Length of the cycle =d(x,u)+d(x,v)+1

=even + even + 1

= odd.
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\/t

Figure 5.4
. This cycle is an odd cycle.

This is a contradiction to the assumption that the graph is
without odd cycles. .".No two vertices of X are adjacent. Again we
prove that no two vertices of Y are adjacent. Suppose two vertices

u,ve Y be adjacent so that uvis an edge.
Consider any vertex ye Y.

Now the (y-u) path the (y-v) path and the edge uv together form

a cycle.
Length of this cycle = d(y,u) +d(y,v) +1
=odd + odd + 1
= odd

v/'\

y.

u 1 4

Figure 5.5

(i.e.) This cycle is an odd cycle. It is a contradiction to the assumption
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that the graph 1s without odd cycles.
Therefore no two vertices of Y are adjacent.

Thus the vertex set of the graph G is divided into the non
empty disjoint subsets X, Y such that no two vertices of X are

adjacent and no two vertices of Y are adjacent.

= (X,Y)is bipartition of G and so that graph G is a bipartite

graph.
6.1 MATCHING
Definition: 5.1.3

A subset M of E is called a matching in G if no two of the
edges in M are adjacent. The two ends of an edge in M are said to

be matched under M.
Example:

In the graph G of figure 5.6 the sets M, ={e,e,}.

Vi =2 Vo
G : F-é
-
V3“ ~ - Vy
€7
€3
Vs $,__ . TV(‘
eq I
l e
&y
e
Vye &l bViop
Figure 5.6

M, ={e;,€,,¢€;,¢,5and M, = {e ,e,,e,, e , e} are all matching’s.
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Definition: 5.1.4

A matching M saturates a vertex v if une edge of M is incident
with v. Also, we say v is M — saturated. Otherwise, v is M —

unsaturated.

Example:

In the graph G of figure 5.6, v,is both M, - saturated and M, -
saturated: v, is M, - saturated but M, - unsaturated: but M, saturates

every vertex of G.
Definition: 5.1.5

If M 1s a matching in G such that every vertex of G is M —

saturated then M 1s called a perfect matching.

Example:

The matching M, of G of figure 5.6 is a perfect matching where

as M, and M, are not perfect.

Note:
If G has a perfect matching then p is even.

Definition: 5.1.6

A matching M 1s called a maximal matching of G if there is no

matching M' of G such that M'> M.

Remark:

Note that two maximal matching need not have same

cardinality.
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Example:

In the graph G of figure 5.7, M ={e,e.,e,} and

M, = {e,,e,} are maximal matchings.

Definition: 5.1.7

A matching M of G is called a Maximum matching if G

has no matching M'with M'> M . The number of edges in a

maximum matching of G is called as the matching number of G.

5 -

Figure 5.7

We note that M, = {e ,e,,e,}is a maximum matching of G
of figure 5.7, but M, = {e,, e, }is not a maximum matching, though

it is a maximal matching of G of figure 5.7. Clearly every perfect
matching is maximum; but maximum matching’s need not be

perfect.
Example:

Consider the star K,  and in general K,,. Here any

maximum matching contains only one edge and hence it is not

perfect.
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Figure 5.8 K,

Definition: 5.1.8

Let M be the matching in G. An M — alternating path in G1s a

path whose edges are alternately in E\M and M.

Example:

In the graph G of figure 5.9, if we consider the matching

M = {e,,e, } then the path v,v,v,v,v,is an M — alternating path.

Definition: 5.1.9

Let M be a matching in G. An M — augmenting path is an M —

alternating paih whose origin and terminus and M — unsaturated.
Example:

In the graph G of figure 5.9, if we consider the matching

M = {e,,¢,} then the path v,v,v,v,v,v,is an M — augmenting path.

Note:

1. In M - augmenting path initial and final edges are in E\M.
2. An M - alternating path whose initial and final edges are in

E\M, need not be an M — augmenting path.

104



G: //‘ \‘

Ve

Vi3 €2

Vs
Va
Figure 5.9

Theorem: 5.2

Let M,and M,be two matching’s in a graph G. Let
MAM, =M —M,)uU (M, —M )be the symmetric difference of
M and M,. Let H=G[M —M,]be the graph of G induced by
M AM, . Then each component of H is either an even cycle with
edges alternately in M and M, or a path P with edges alternately
in M and M,such that the origin and the terminus of P are

unsaturated in M, or M, .

Proof:

Let v be any point in H. Since M, and M, are matchings in
G, at most one line of M and at most one line of M, are incident

with v. Hence the degree of v in H is either 1 or 2. Hence it

follows that the components of H must be as described in theorem.
Example: 1

Consider the graph G,given in Figure 5.10.

M, ={vv

Vs, a perfect matching

V Vi, VsV, } IS m G,. Also
M, ={vv,,v,v,}is a matching in G,. However M,is not a

perfect matching. The points v,and v, are not M, - saturated.
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U9 U2
/
pd
Vigk U3 vy U3
Gy
2 .
CI’, V4 (Vo V4
& & Vg Us
g - Uy
Figure 5.10

For the graph G,,M = {v,v,,v,v,}1s a maximum matching but

1s not a perfect matching.
Example: 2

For the graph G, given in Fig 5.10
MAM, ={V,V,,V(V,, ViV, V,V,, VeV s}

the graph H, = G ,[M,AM, ]1s given 1n Fig. 5.11.

vy / .

Vg

Figure 5.11

Clearly H,1s a path whose edges are alternately im M, or M, .

The origin v,and terminus v, are both M, - unsaturated.

The following theorem due to Berge gives a characterization of

maximum matching.
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Theorem: 5.3

Berge Theorem
Statement: A matching M in a graph G is a maximum

matching if and only if G contains no M — augmenting path.
Proof:

Let M be a maximum matching in G. Suppose G contains

an M — augmenting path P=(v,, v ,v,,...., v, ).

By definition of M — augmenting path the lines
VoV, VaVisey Vy Vo qare not in M and  the  lines
ViV, ViVgsen, VoV, ATE Jin M. Hence
M': M - {Vlv.'l? V3V4’ """ ? VZk—lVZk} N {VOVI 3 V2V3 LR V2kv2k+l}

1s a matching in G and M'= M +1, which is a contradiction,

since M 1s a maximum matching. Hence G has no M — augmenting

path.

Conversely, suppose G has no M — augmenting path. If M
1s not a maximum matching in G then there exists a matching M’

of Gsuchthat M'> M .

Let H=G[MAM']. By theorem 5.2, each component of H
is either an even cycle with edges alternately in M and M’ or a path
P with edges alternately in M and M' such that the origin and the
terminus of P are unsaturated in M or M'. Clearly any component
of H which 1s a cycle contains equal number of edges from M and
M.

Since M'> M there exists at least one component of H

which is a path whose first and last edges are from M'. Thus the
origin and terminus of P and M' — saturated in H and hence they
are M — unsaturated in G. Thus P is an M — augmenting path in G,

which is a contradiction. Hence M is a maximum matching in G.
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Problems:

Problem: 1

For what values of n does the complete graph K have perfect

matching.

Solution:

Clearly -any graph with p odd has no perfect matching. Also the
complete graph K has a perfect matching if n 1s even. For example if
V(K ) ={.2,.... ,n}then {12,34,.....,(n —1)n} is a perfect matching of

K, . Thus K has a perfect matching if and only if n is even.

Problem: 2

Show that a tree has at most one perfect matching.

Solution:

Let T be a tree. Suppose T has two perfect matching’s say M,
and M, . Then degree of every vertex in H=T[M AM,]is 2. Hence
every component of H is an even cycle with edges alternately in M
and M, . This is a contradiction, since T has no cycles. Therefore T

has at most one perfect matching.

Pro})lem: 3

L Z
*

Find the number of perfect matching’s in the complete bipartite
graph K.
Solution:

Let  A={X,,X 50 X, 0and  B={y,,y,,... ,y,;be a

bipartition of K _ .



We observe that any matching of K  that saturates every

vertex of A is a perfect matching. Now the vertex x,can be

saturated in n ways by choosing any one of the edges
/

X,Y¥,»X,¥4s--, X,¥, . Having saturated x,, the vertex x,can be
saturated in n — 1 ways. In general having saturated x,,X,,....... , X
the next vertex xcan be saturated in n—iways. Hence the

number of perfect matching’s in K is n(n—1)...2.1=n!

Problem: 4

Find the number of perfect matching’s in the complete

graph K’Zn *
Solution:

> " 2n

Let VK, )={v,,v,,....,V,, }. The vertex v can be
saturated in 2n —1ways by choosing any line e, incident at v,. In
general having chosen the edges e,,¢,,......,e, a vertex v which is
not saturated by any of the edges e, ,¢,,¢,,......,¢, can be saturated

in 2n—(2k+1) ways. We obtain a perfect matching after the

choice of n lines in the above process.

Hence the number of perfect matching’s in K, .

=1.3.5.....(2n-1)

~1.2345......2n-1)(2n)
2.4.6....2n

_ (2n)!
2°n!
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5.2 THE MARRIAGE PROBLEM

Let A={X,Xy,....X,tbe a set of n boys and
B={y,,¥,,...... ¥, } be a setof m girls in a village. Each boy has one

or more girl friends. Under what conditions can we arrange marriage

in such a way that each boy marries one of his girl friends? This

problem is known as the marriage problem.

We now obtain a graph theoretical formulation of the above

problem. Let G be the bipartite graph with partition (A, B) such that x
is joined to y if and only if y is a girl friend of x,. The marriage
problem is equivalent to finding the conditions under which G has a

matching that saturates every vertex of A.

For example, suppose there are five boys b,,b,,b,,b,and b,

and six girls g,,g,,g+,8,,g;and g, with their relationship as follows.

b1 — {gl’g23g3}:S|

b — {gwgz}zsz

3]

3 — {g4:g5} :S3
b4 — {g3}:S4

b, — {g4,g5,g6}=55

The bipartite graph representing this situation 1s shown in figure 5.12
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/ o £a \és Eo

£ B2 &?
Figure 5.12

One of the solutions to this example 1s, b,to marry g,, b, to

marry g ,b,to marry g,, b, to marry g,and b.to marry g..

Now, we present a necessary and sufficient condition for
the existence of a solution to the above marriage problem. First

given by P. Hall.
Definition: 5.2.1
Neighbour set

Let S be a subset of the vertex set of a graph G. Those
vertices of G which are adjacent to the vertices in S are called the
neighbours of the vertices in S. The set of these vertices is called

the neighbour set of S in G and is denoted by N (S) or N(S).

Example:

Let S={v,,v,,v,}. We get N(S) ={v,,Vv,,Vv,,v,V.}.
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Vv,

Figure 5.13

Thecrem: 5.4

Hall’s marriage theorem

Statement: Let G be a bipartite graph with bipartition (A, B).
Then G has a matching that saturates all the vertices of A if and only if

N(S) = S, for every subset S of A.

Proof:

Suppose G has a matching M that saturates all the vertices in A.

Let Sc A. Then every vertex is S is matched under M to a vertex n

N(S)and two distinct vertices of S are matched to two distinct vertices

of N{S). Hence it follows that N(S) 2 5

Lonversely, suppose N(S) =S for ali SC A. We wish to
show that G contains a matching which saturates every vertex i A.

Suppose G has no such matching.

&Q 4 [ 4 L L 4 ] .
. \] 7N P Y
AR ’1 \ ’l 'I Rl \
\ \
N e\ ’ s A
AN ] 4 i I e 24 \
’ \ 4 / s - \ \
Y e P Ay
N ; \ ! /] . \
Y 7 v/ i s s N \
\ ] / 1.0 Pid 5, A
. ’ s P \ \
L y 4 \
b,/ ' /77 \
Y ) s, . N \
\ ! A PP \ N
7. o Ve \ \
\ s\l \ \
[ t N \
! ! ” ! \ \
! I 7T hd \
/ AN Ve / \ \
N “ A \
4 s W \ Y
g ¢ H r ® Y 'Y »
- —
T=N(S)
Fi
igure 5.14
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Let M* be a maximum matching in G. By assumption there

exists a vertex Y,€ Awhich is M?* - unsaturated. Let
Z ={v e V(G)/ there exists a M* - alternating path connecting x,

and v}

Since M* is a maximum matching, by Berge's theorem, G

has no M* - augmenting path and hence x,is tne cnly M* -

unsaturated vertex in Z..

Let S=ZMA and T=ZnNB. Clearly x_ € S and every

vertex of §—{x,} 1s matched under M* with a vertex of T.
Thus T=S -1 (2)

We now claim that N(S) =T . Clearly from the definition of T, we

have
T < N(S) (3)

Now, let ve N(S). Hence there exists u e Ssuch that v is

adjacent to u. Since S=Z A it follows that ue Z.
Hence there exists an M* - alternating path P
(Xo7y[9X17Y2> """ DXk_lﬂyk7u)

If v lies on P, then clearly ve ZnB =T . Suppose v does

not lie on P. Now the edge y,ue M *. Hence the edge uvis not in
M*. Hence the path P, consisting of P followed by the edge uvis

an M* - alternating path. Hence ve ZNB=T.
Thus N(S)c T 4)
From (3) and (4) we have N(S)=T (5)
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From (2) and (5) we have N(S)=T =S —1< S which is a
contradiction. Hence the theorem.
Remark:

Hall’s theorem answers the marriage problem. The marriage
problemn with n boys has 2 solution if and only if for cvery k with

I <k <n, every set of k bovs has collectively at seast k girl friends.

The following is an important conscquence of Hall’s marriage

theorem.

Theorem: 5.5

Let G be a k — regular bipartite graph with k > 0. Then G has a

perfect matching.

Proof:

Let (V,V,)be a bipartition of G. Since each edge of G has one

. end in V,and there are k edges incident with each vertex of V , we

have g=k V, .

By similar argument q=k V, , sothat k V =k V, . Since

k>0weget V, =V, .

Now let Sc V,. Let E denote the set of all edges incident with

vertices N(S). Since Gisk—regular, E, =k S and E, =k N(S) .

Also by definition of N(S), we have E, ¢ E,, and hence it
follow that k S <k N(S) . Thus N(S)=>S .

Hence by Hall’s theorem, G has a matching M that saturates

every vertex in V,. Since V, =V, | M also saturates all the vertices

of V,. Thus M is a perfect matching. 114



5.3 TREES
Definition: 5.3.1

A graph that contains no cycles is called an acyclic graph.

A connected acyclic graph is called a tree.

Any graph without cycles is also called a forest so that the

components of a forest are trees.
Example:
Draw all the trees with 6 vertices.

Solution:

1

»

/™ .
"\I,/ ’ \/
1

Theorem: 5.6

Let G be a (p, q) graph. The following statements are

equivalent.

1. Gisatree.
2. Every two points of G are joined by a unique path.

3. Giscomectedand p=q+1.
115

Space for Hints



Space for Hints 4. Gisacyclicand p=q+1.

Proof:
1 = 2: Let u, v be any two points of G.
Since G is connected there exists a u — v path in G.

Now suppose there exist two distinct u — v paths.

Let 1 be the least positive integer such that 1 <i<mand w, & P,

(such an 1 exists since P and P, are distinct).

S o
Heénce w,_e P NP,.

Let j be the least positive integer such that i< j<mand w e P,
Then the w,_, —w path along P,followed by the w w,_ path along P,

form a cycle which 1s a contradiction.
Hence there exists a unique u — vpath in G.
2 = 3: Clearly G 1s connected.
We prove p =q+ 1by induction on p.
This 1s trivial for a connected graph with 1 or 2 points.
Assume the result for graphs with fewer than p points.
Let G be a graph with p points. Let x = uv be any line G.

Since there exists a unique u—vpath in G, G — x is a

disconnected graph with exactly two components G,and G, .
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Let G be a (p,,q ) graph and G, a (p,,q,)graph.

Then p, +p, =pand q +q, =q—1.

Further by induction hypothesis p, =q, +1and p, =q, +1.

Hence p=p, +p,
=q,+q, +2
=q—-1+2
=q+1.-
3 = 4: We must prove that G is acyclic.

Suppose G contains a cycle of length n.

There are n points and n lines on this cycle. Fix a point u on
the cycle. Consider any one of the remaining p —n points not on

the cycle, say v.

Since G is connected we can find a shortest u — v path in G.
Consider the line on this shortest path incident with v. The p — n

lines thus obtained are all distinct.

Hence q=2(p—n)+n=pwhich is a contradiction since

q+1=p. Thus G is a cyclic.

4 = 1: Since G is acyclic to prove that G is a tree we need only to

prove that G is connected.

Suppose G is not connected. Let G|,G,,....,G, (k> 2)be

the components of G.

Since G is acyclic each of these components is a tree.
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Hence q, —1=p,where G isa (p,,q,) graph.

ZIkZI (q, T 1) - Zkzl p-

1.e.,, q+k=pand k > 2, which is a contradiction.

Hence G is connected.
This completes the proof.
Corollary: i

Every non — trivial tree G has atleast two vertices of degree 1.

Proof:

Since G is non — trivial, d(v)>1for all points v. Also

Ed(v)z 2q=2(p-D)=2p-2.
Hence d(v) =1for at least two vertices.
Definition: 5.3.2

Spanning Tree:

A spanning subgraph of a graph that is a tree is called a

spanning tree.
Example:

Draw all the spanning trees of the graph given in fig 5.16
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Figure 5.16
Solution:

The spanning trees of the given graph are

Figure 5.17
Theorem: 5.7

Every connected graph has a spanning tree.
Proof:

Let G be a connected graph. Let T be a minimal connected
spanning subgraph of G. Then for any line x of T,T—xis

disconnected and hence x is a bridge of T.
Hence T i1s acyclic.

Further T 1s connected and hence is a tree.
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Space for Hints



Spuce for Hints

Corollary:

Let G be a (p, q) connected graph. Then q=2p—1.

Proof:
Let T be a spanning tree of G. Then the number of lines in T is

p—1.Hence q=2p-1.

Theorem: 5.8
Let T be a spanning tree of a connected graph G.

Let x =uvbe an edge of G not in T. Then T + x contains a

unique cycle.

Proof:

Since T is acyclic every cycle in T + x must contain x. Hence
there exists a one to one correspondence between cycles in T + x and
u—vpaths in T. As there is a unique u—vpath in tree T, there is a

unique cyclein T+ x .

Definition: 5.3.3
Eccentricity, Radius, Centre

Let G be any graph. Consider any vertex u e G and its distances
from all other vertices. The maximum of these distances is called the

eccentricity of the vertex u and it is denoted by e(u).

Consider the eccentricities of all the vertices of a graph G. The
minimum of these eccentricities is called the radius of the graph and it

is denoted b r(G).

If a vertex u of a graph G is such that its eccentricity is equal to

the radius of the graph (i.e) e(u)=r(G)then the vertex u is called a
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central point. The set of all central points of the graph is called

the centre of the graph and it is denoted by ¢(G).

Example:

Distance of v,

d(v,,v,)=1
d(v,,v,)=2
d(v,,v,)=2
d(v,,v,)=3

Eccentricity e(v,) =3

Distance of v,

d(v,,v,)=2
d(v,,v,) =1
d(v,,v,)=1
d(v,,v;)=2
e(v,)=2

Figure 5.17

Distance of v,

d(v,,v,) =2
d(v,,v,)=1
d(v,,v;)=1
d(v,,v,) =1
e(v,)=2
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Distance of v,

d(v,,v,) =1
d(v,,v,) =1
d(v,,v,) =1
d(v,,v,)=2.
e(v,)=2

Distance of v,

d(v,,v,)=3
d(vg,v,)=2
d(v,,v,)=2
d(v,,v,) =1
e(vy)=3
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The minimum of all eccentricities is 2.
. Radius of the graph i1s r(G)=2.
We find e(v,) =e(v,) =e(v,) =1(G)
.. V,,V,, v, are central points of G.
So the set {v,,v,,V,}1s the centre of the graph s
(ie) c(G) ={v,,v;,v,}
Note:

The above definition (5.3.3) is also stated as

Let v be a point in a connected graph G. The eccentricity e(v)

of v is defined by e(v) = max{d(u,v) ue V(G)}.
The radius r(G)is defined by r(G) =min{e(v) ve V(G)}.

v 1s called a central point if e(v)=r(G)and the set of all

central points is called the centre of G.

Theorem: 5.8

Every tree has a centre consisting of either one point or two

adjacent points.
Proof:

The result is obvious for the tréé K and K,.
Now, let T be any tree with p = 2 points.

T has at least two end points and maximum distance from a
given point u to any other point v occurs only when v is an end point.

Now delete all the end points from T. The resulting graph T' is also a
122



tree and tl:e eccentricity of each point in T' is exactly one less than
the eccentricity of the same point in T. Hence T and T' have the

same centre.

in the process of removing end points is repeated, we obtain
successive trees having the same centres as T and we eventually

obtain a tree which is either K, or K, .

Hence the centre of T consists of either one point or two

adjacent points.
5.4 CONNECTOR PROBLEM

Consider the construction of railway lines connecting
different cities. It is desirable that the cost of construction is
minimum. The problem of designing a railway net — work to
minimize the total cost of construction is one of the many

problems known as connector problems.

Each city can be considered as the vertex of a weighted
graph G and the railway lines connecting the cities as edges. The

cost of construction of the railway line between the cities v,and v,
is c,taken as the weight of the edge v v, . Then the connector

problem is equivalent to finding the connected spanning subgraph
with minimum weight. Further the minimum weight spanning
subgraph 1s clearly a spanning tree. This minimum weight
spanning tree of a weighted graph is called an optimal tree. Hence
connector problem is the same as finding an optimal tree of a

weighted graph.
Note:

(1) The optimal tree of a weighted graph is not unique.

(2) If the weights of all the edges of a weighted graph are equal
123
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then any spanning tree is an optimal tree.

They are a number of methods to find an optimal tree of a weighted

graph. We discuss only Krushkal’s algorithm and Prim’s algorithm.

5.4.1 KRUSHKAL’S ALGORITHM

Krushkal’s algorithm to find an optimal tree of a weighted

graph.

Let G be a weighted graph whose edge set is E. Let w_be the
weight of the edge ¢ for k=123,....... The algorithm of finding an

optimal tree that is a spanning tree of minimum weight is given in the
following steps.

Step: 1

Choose a link ¢, of minimum weight w, .

Step: 2

Having chosen {e,,e,,........ ,€,} choose the edge e, such that

(1) e, € E—{e,e,,...,e}
(1)  {e,,e,,......,€,,€,, } is acyclic.

(i11)  The weight of e, is least among the remaining edges.

Step: 3
Stop when step (2) cannot be further employed.

When the algorithm terminates we get a spanning tree with

minimum weight and hence an optimal tree of the graph.

Problem:

Using Krushkal’s algorithm find an optimal tree of the

weighted graph G given below.
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Let us label the vertices and edges of the graph as follows.

Choose the edge e with minimum weight w, =10. From
E —{e,} choose e, with minimum weight w, =10. Clearly {e ,e,}

is acyclic. From E —{e ,e,}choose e, with minimum weight

w, = 20clearly {e,,e,,¢e,}1s acyclic.

v, 10 —®y,
€
vz 20 Vs
._‘
6 €40
3&3 20
€y Vi
€ 10

Ve 30 <

From E-{e,e,,e;}choose e ,with minimum weight
w,, =20. Clearly {€,,€4,€4,€,0} is  acyclic.  From
E—{e,,e,,e;, e, choose e, with minimum weight w,=30.
Clearly (e,,e,,€;5,€,4,65) 1s acyclic. From E —{e ,e,,¢e;,¢€,,,¢€}

choose e, with minimum weight w,=30. Clearly

{e,,€,,6;,€,,85,6.} 1s acyclic.

Now the algorithm terminates as 6 edges have been chosen

in a graph of 7 vertices.

. The optimal spanning tree which has been constructed

Space for Hints
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has the edge set {e,,e,.€;,€,,,€,,€,}-
Weight of the optimal tree T=w, +w,+ W, +wW,, +w, +Ww,.

=10+10+20+20+30+30
=120.

Theorem: 5.9

Any spanning tree constructed by Krushkal's algorithm in a

weighted graph is an optimal tree.

Proof:

Let G be a weighted graph of n vertices. Let T be a spanning
tree constructed by Krushkal’s algorithm. We have to prove that T is

an optimal tree, that 1s T is a spanning tree of minimum weight.

If possible let T be not an optimal tree. Therefore there are
spanning trees of smaller weights than T. Any two spanning trees of a
graph have some edges in common (why?). Let k be the largest
number of edges common with T and any other optimal tree. Let T' be
an optimal tree with k edges common with T and T'zT. Let the

common edges be ¢ ,¢,,........ ,€, taken in ascending order of weights.

So we can take

T={e.e,u.. 1€ 5€ 115 Chagsmreeenes €01}

Since T' is a spanning tree and e, ¢ T'we find T'+e,, contains
a unique cycle C(say). Clearly C is not contained in T. So the cycle C
contains an edge e € T'such that e, & T . Deleting ¢ from the cycle C

w¢ get a spanning tree. 126



T, =Te,., —¢,.
L W(T) =W(T) +w(e,,,)—w(e) (1
As T, 1s a spanning tree and T' is an optimal tree
W(T") < W(T) (2)
From (1) and (2)

w(e,, )z w(e)

By our choice of e, and e step 2 of the algorithm e e, is

k+1

of smaller weight than e,
sow(e,,,)Swe).
So we get w(e,,,)=w(e ).
Using this in (1) W(T,) = W(T")

Since T' is an optimal tree it follows that T is also an

optimal trec.

< —_— '
Now T, =T'+e,,, —¢€,

Thus we get an optimal tree T, with k +1edges common

with T. This i1s a contradiction to our hypothesis. So our
assumption that T is not optimal is wrong. Hence T is an optimal

tree.
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5.4.2 Prim’s Algorithm

Let G be a graph of n vertices. Select arbitrarily any vertex. Call

it v,. Choose the edge of minimum weight among the edges incident
at v,*.Call the other end of this edge as v,. Consider the tree {v ,v,}

as a subgrpah of G. Choose the edge of minimum weight among the

edges incident on v,and v,and such that the order end vertex v, of
this edge is in G - {v,,v,}. Consider the tree {v,,v,,v,}as a subgraph

of G. Choose the edge of minimum weight among the edges incident

on v,,v,and v, and such that the other end vertex v,of this edge is in
G —{v,,v,,v,}. Proceeding like this we get a tree {Vv ,V,,V ,....... V. )
This tree is clearly a spanning tree of minimum weight of the graph G

and so is an optimal tree of G.

Remarks:

Prim’s algorithm is more efficient that Krushkal’s algorithm,
for we need not check connectivity and cyclicity of the construction at

any stage.
Problems:

1. Using Prims algorithm find an optimal tree of the graph G given

below:
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Solution:

Following the algorithm step by step we get the following

optimal tree.

Weight of optimal tree
= w(v,,v,)+w(v,v,)+w(v,v,)+w(v,v,)+
+ W(V3v;) +w(v,v,).
=10+20+30+10+30+20
=120

2. If 6> 2in any connected graph G, prove that G contains a

cycle.
Solution:

Given G is a connected graph with > 2. If G does not
contain cycles then G is a connected acyclic graph and so it is a

tree.
Therefore there are atleast two pendant vertices in G.

It 1s a contradiction to the data that the minimum degree of
any vertex is 0= 2.

Hence G contains a cycle.
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