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The reception accorded the first edition of Living Mathematics
has been highly gratifying. However, now that certain strengths
and weaknesses have become apparent, a rather thorough revision
has been thought advisable in order to improve the book as a text
while retaining and enhancing its general appeal.

Much as we hate to admit it, the first edition actually fell
somewhat short of perfection as a text. There were not enough
easy practice problems for the less sure-footed beginners, and
there were also a few large gaps in the lower treads of the mathe-
matical stairway that needed filling in for the sake of smooth
climbing. Besides, the less adept among the readers, who prob-
ably found 1t necessary on occasion to retrace their steps between
the “ifs’” and the ‘“therefores,” may possibly have been less and
less intrigued by a given facetious remark on each successive
encounter, until finally, on some height of frustration, they were
not intrigued at all, to put 1t mildly.

Now all this 1s part of the past. In the revised edition many
early practice problems have been included in each exercise;
inadequate treatments (as in the case of fractions) have been
amplified ; and some of the original flippancy has been eliminated
to soothe the feelings of the earnest beginner. Yet the book no
longer would be the Liwwing Mathematics that found favor with
many 1f we were to banish the light tone and treatment. The
businessmen, lawyers, doctors, painters, and second-story men
who plead guilty to a mathematical flair, and who naturally
have some facility in the field (otherwise they never would have
accepted our previous challenge to a lighthearted tilt) are hereby
given permission to skip the insultingly easy problems included
for drill purposes and to concentrate upon the amplified supply of
potential posers that may prove worthy of their mettle.

In teachers colleges, especially, there is a very definite place,
we believe, for a textbook of this type. The budding professor
of literature should learn, in what may well be his terminal course
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vi PREFACE TO THE SECOND EDITION

in mathematics, that the subject i1s not so cut and dried and
humorless as he had supposed; the prospective teacher of high-
school mathematics most certainly should encounter fresh points
of view, fresh approaches to old landmarks, and, above all, the
feeling that his subject may be made interesting and stimulating
as well as useful.

In Fun with Figures, which was previously the final chapter,
we are frankly appealing to the interested amateur mathemarti-
cian, whether or not (and the ‘“‘nots’”’ probably have it) he is
currently working for a diploma. In other words, freshmen, this
is not for you unless you consider yourself a little, shall we say,
superior. And that goes for the final chapter too. It opens a
new and largely unexplored field for those of you who like that
sort of thing. But frankly, these last two chapters are not written
for college students; they are offerings, pure and simple, to the
dilettantes of the pencil and the throbbing brain, for whom all
of living is not the pursuit of bread.

RarLrH S. UNDERWOOD

FrRaANK W. SPARKS
Lussock, TExAs
March, 1949



PREFACE TO THE FIRST EDITION

In writing this book we had in mind two distinet but, we trust,
compatible goals. The first was the production of a college text-
book which would provide enough of the conventional subject
matter to meet practical credit-transfer requirements. The
second was the goal of highlighting for nonspecialists the interest
that is inherent in mathematics itself and of fostering an appre-
ciation of its place in modern life. Our aim, in short, is to answer
in the text itself that perennial and petulant student query:
“What’s the good of all this?”’

The book provides a one-year course for those who will theo-
retically pursue the subject no farther, but among whom there
may possibly be salvaged a few devoted and surprised lifetime
addicts. Part One specifically covers the ground of an orthodox
three-semester-hour course in algebra. Part Two is a rounding-
out survey of the mathematical highlights in trigonometry,
analytic geometry, more advanced algebra, and calculus, with a
seasoning touch of the theory of numbers. There is more than
enough material for a full-bodied second course. And since those
who leave the subject should carry with them a background of
sympathy for and interest in the science which exalts the human
reason, a somewhat unconventional treatment has seemed to be
in order. The one adopted supplements the usual mathematical
technique with an informal discussion of its role in life, so that
the drudgery of the drill may be relieved somewhat by recurrent
glimpses of the objective.

But whatever the surface novelty of treatment, difficulties have
not been avoided, and reasonable rigor has been preserved. We
are acutely aware of, and quite in sympathy with, the hostile
criticism of any text from which the student ‘‘learns about mathe-
matics but does not learn mathematics.”” While one who has
mastered our book will not be an accomplished mathematician
(how many sophomores are?), he will have done about as much
plain thinking as is expected of most freshmen.

Vil



Vil PREFACE TO THE FIRST EDITION

The question remains whether a light and jaunty treatment is
suitable for a book with an essentially serious aim. We see no
harm in it. If it helps to dispel the idea that mathematics is a
painfully dull form of hard work which is to be highly recom-
mended for the specialists who will need it, but which contains
in itself nothing of drama, zest, humor, surprise, challenge, and
general human interest—then, we think, this manner of writing
will have been justified. We are writing, let us repeat, for the
great battalion of those who fear the subject—mot with the idea
of removing their difficulties, but rather with the hope of adding
interest and pleasure to their work.

Special acknowledgment and thanks are due to Professor
C. V. Newsom of the University of New Mexico, whose valuable
suggestions were for the most part incorporated into the text.
Additional help was received from sources too numerous to men-
tion, but including, of course, our colleagues at Texas Techno-
logical College.

Ravpa S. UNDERWOOD

Frep V. SpArks
LusBock, TEXAS

March, 1940
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CHAPTER 1
THE HAPHAZARD BEGINNING

1. Early counts. Man needed to count long before he learned
to write, and hence we can never get the true story of his mathe-
matical awakening. Our guesses, however, are not altogether
unguided, for some of the fossils of prehistory are imbedded in
words as well as in rocks. The fact that the words for five and
hand are much alike in some languages! suggests that our ances-
tors may have found the fingers convenient to keep track of
arrows, wives, sheep, and other things of that sort. Probably
an early number sense developed similar to that of the legendary
darky who, noticing an alligator making off with one of his brood,
yelled triumphantly into the cabin: ““See dere, Mandy, I done tole
you somethin’s been agittin dem chillun.”

Such a vague and inadequate number sense, however, which is
shared in some degree by animals and even birds, could not long
serve satisfactorily the needs of human society. The basic idea of
matching objects with fingers must have come long before history
opened her first page. Then, when the grand inspiration of
repeated matches came to some genius; that is, when five objects
became a ‘“hand,”’ so that one could start a second series with the
fingers again free to match, the useful art of counting may be said
to have begun.

2. And how they kept track of them. The methodical cave-
keeper of the “good old days’ probably used three scratches on a
bone or three stones in a pile to keep track of certain items in her
budget before she bothered her frowzy head about a name for the
abstract number ‘“three.” We might reasonably suspect, there-
fore, that the art of recording numbers developed along with, or at
least not much behind, the ability to count, and that both of these

! For example, compare the Sanskrit pantcha (five) with the related Persian pentcha

(hand), and the Russian piat (five) with piast (the outstretched hand). (After
Dantzig.)
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4 ALGEBRA

accomplishments stirred and flustered the brain beneath many a
thick skull long before anyone thought about noting events on a
brick or two for history. This surmise is given substance by the
historical fact that the Sumerians, Egyptians, and Chinese had all
developed systems of number writing before 3500 B.c.—a fact
which, with allowance for development time, places the primitive
beginning certainly much earlier. It is a highly significant fact,
indicating the influence of finger counting, that numbers less than
ten are represented by similar strokes, while a new symbol is used
for ten.

The Phoenicians were probably the first people to use the let-
ters of the alphabet to represent numbers, and their scheme was
later adopted by the Greeks and Hebrews. Probably the most
compact of the early number systems was that of the Romans—
borrowed, perhaps, from the Etruscans. This system also shows
the decided influence of finger counting, since new symbols were
adopted for each multiple of five. Itnumeration of fairly large
numbers is relatively simple with it; but the absence of a symbol
for zero and of an efficient place-value scheme made it cumber-
some and in fact practically uscless for computations. It is not
surprising that mechanical computing machines like the abacus
flourished in the days when 368 times 3233 was “CCCLXVIII
times MMMCCXXXIIL.” Perhaps matters of that sort were
responsible for some of the milder homicides of Nero, Caligula,
and other impetuous Roman gentlemen.

3. First fumbles. As soon as integers were invented and given
distinguishing marks for recording purposes, the problem of what
happens when they are shuffled was certain to come to the front.
Someone noticed for the first time that two stones combined with
two more always made a pile of four, and suddenly arithmetic, with
all its woes, descended upon little Willie’s ancestors. A couple of
stones were taken away experimentally, and lo, subtraction was
born! Three piles of four each were found, upon investigation,
to merge infallibly into twelve, starting the multiplication table
on its painful and mangled course through the schoolrooms. And
finally some ancient scholar, faced with a domestic insurrection
over a pile of turtle eggs during a famine, went into a fervor of com-
putation and came forth, in his extremity, with the art of division.
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While the reliability of this unverified account of prehistorie
events may be called into question by the sticklers for absolute
accuracy, it nevertheless does give proper emphasis to one funda-

11 (e Ml I

mental fact—the fact that early computations were almost cer-
tainly made with mechanical help of one sort or another. Again
the fingers, and sometimes the toes, came to the aid of the early
scholar. The art of finding the sum of two numbers less than 10
is known and surreptitiously practiced by present-day first graders
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struggling with their addition combinations. However, the fact
that the fingers can be used to obtain the product of two numbers
from 6 to 9 inclusive may be a surprise to most moderns, although
the method 1is still used by the peasant class in some parts of the
world today. In this process the thumbs in all cases represent 6,
and the other fingers in turn stand for 7, 8, 9, and 10. To find the
product of 7 and 8, for example, the finger on one hand represent-
ing 7 is placed in contact with 8 on the other (I'ig. 1a), and all fin-
gers beyond these are folded (Fig. 1b). Then the number of fin-
gers extended (Fig. 1c) is the tens digit of the result, and the prod-
uct of the folded fingers on each hand (3 X 2 = 6) is the units
digit. Thus the answer is 56. In finding the product of 6 and 7
by this method the number of extended fingers is 3, and the prod-
uct of the folded fingers is 12, but 30 4+ 12 = 42, the correct
product.

Number representations themselves served to record the final
results, but they did not come into the picture as part of the com-
puting machinery until a surprisingly late date—until, in fact,
after the Renaissance in Iturope. The explanation of this strange
backwardness in operations which seem easy for us is not hard to
find. It lies in the unscientific nature of number representation
before the Hindu place system came into use. We have already
suggested the tussles with Roman numerals which would have
taken place if the merchants of old Rome had multiplied with
pencil and paper as we do. As a matter of fact, they didn’t.
They used the abacus, a mechanical
contrivance as old as history, em-
bodying in its multitudinous forms
the simple principle of computing
by moving beads along strings,
much as we tally a billiard game.
It was the principle of the stone
pile, grown up and refined a bit.
In some of its forms it even presaged the place system in the
number writing of today. That is, units were represented on
one string, tens on another, and so forth. The skilled manipula-
tor could flip his beads and get quick results with fair-sized figures,
and this was all that was necessary in the days of old-fashioned

——

IF'16. 2. Abacus, or Chinese swanpan.
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astronomy and no national debts. Perhaps it was this very effi-
ciency of the abacus which delayed the invention of a way of writ-
ing numbers serviceable in their manipulation too. At any rate
these simple aids were still used by some European merchants as
late as the eighteenth century; in fact, they are used expertly
today in many oriental countries. Nor are they doomed, appar-
ently, to early extinction outside of museums, for their elegant
and talented modern descendants, the computing machines, still
perform prodigies in our counting rooms, doing our multiplying
and adding with a truly marvelous offhand infallibility.

4. Success at last! In spite of the great utility of the abacus
and its modern cousins, a better system of recording was sorely
needed for a long time. Not every farmer who sold thirteen pigs
at twenty-four coins apiece could carry along a computing machine
to keep from being cheated. The Hindus found a way out, and
to them we owe a debt of gratitude. During or before the ninth
century, they invented the place system of number writing, which,
coming to Iiurope through the Arabs, had gradually overcome the
inevitable human resistance to change and had won fairly wide-
spread acceptance there by the year 1400. And any new 1dea In
those days which could spread all the way from Asia to Europe in
a scant five centuries had to be of more than passing merit.

But the place system really was a masterpiece, though in prin-
ciple it merely poached upon the uses of the abacus. A number
which would have been represented on the abacus by three, two,
and six beads, respectively, on the three right-hand strings, be-
came 1n the place system three hundreds, two tens, and six units,
or 326. The idea was mathematical dynamite. Though appar-
ently absurdly simple, it opened tremendous possibilities, both in
written compactness and in computing power. Numbers ten
times as large as those handled by the most bestringed abacus
could be written down slapdash with just one more stroke of the
pencil.

But why was this great boon to mankind, which the great math-
ematician Laplace places “in the first rank of useful inventions,”
overlooked for so long by the keenest thinkers of the not-too-keen
dark ages? Maybe this is a clue: How would you represent, with
marks for the digits “‘one’’ to “nine’”’ inclusive, the quantity repre-
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sented on the four right-hand strings of the abacus by ‘‘six, blank,
blank, two”? Try it, and it comes out “6 2,” which looks like
nothing more than ‘“‘62’’ with a printer’s rupture. We might esti-
mate the number of unbeaded strings in the abacus representation
by measuring the width of the break, but who wants to read num-
bers with a ruler? We’d better go back to the abacus. But wait;
let’s try indicating the number of spaces left out. Perhaps with a
digit—like this: ““622.” No, that’s an obvious misrepresentation.
We'll just have to mark the spaces somehow—say with a simple,
handsome figure like a cirele. All right—we have “6002.”
Eureka, it is done! We have invented a new symbol, a new digit,
and a wonderful system of number representation!

Why didn’t we do it before? Well, it seemed rather silly to
place along with solid symbols like 6 and 8, whose meanings were
plain to anyone, a mark representing nothing at all. The Baby-
lonians did that 2,100 years ago; but it didn’t seem to get them
anywhere. That, upon reflection, i1s because they missed the
really important thing about that hard-to-invent zero symbol,
which is not the mark at all, but rather the space it fillsup. That
the Europeans were just beginning to learn about it in the four-
teenth century merely shows how much they were behind the true
Americans. For the Mayans of Central America used a scientific
place-value “zero’ in their sexagesimal system at the beginning of
the Christian era, an accomplishment which certainly entitled
them to laugh at our ancestors in a very superior way.

9. Growing pains.! Any schoolboy knows that when we mul-
tiply 826 by 725 we (1) write the numbers down, one above the
other; (2) multiply the top number by the digits below taken in
succession, beginning with the one at the right; (3) arrange the
piecemeal results in a sort of stagger formation backsliding to the
left as we go down; and (4) add the columns, getting the right
answer (or anyway we should). It seems natural to assume that
a trick as easy as all that must have been known always. But
perhaps we’ll be willing to give the honor right{ully due the inven-
tors of the process when we try for ourselves a few of the compli-
cated schemes which they were good enough to improve for us.
Most of these methods were worked out by clever individuals dur-

! This article may be omitted with no loss of continuity,
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ing the transition to the place system before the latter’s full possi-
bilities were realized; but others were still older.

One of the earlier methods, which could be carried out by use of
the abacus, was known as duplatton. The method is based on the
fact that the product of two numbers is equal to the product of
one-half of one of them by twice the other. For example

(16)(27) = (8)(54) = (4)(108) = (2)(216) = (1)(432) = 432

If the corresponding pairs of halves and doubles are arranged one
above the other in a line, we have

16 8 4 2 1
27 54 108 216 432

in which we see that the only odd number in the line of halvesis 1,
under which the answer is found. But of course if the multiplier
is odd to start with or if one of the halves turns out to be odd, a
difficulty enters that requires a bit of dodging, as in the case of
(19)(26). Here we start by writing 19 as 18 + 1, and then we
have

(19)(26) = (18 + 1)(26) = (18)(26) + 26
= (9)(52) +26 = (8 + 1)(52) 4+ 26 = (8)(52) +

= (4)(104) + 52 + 26 92 + 20
(2)(208) + 52 + 26

— (1)(416) + 52 + 26

— 416 + 52 + 26

— 404

The essential steps of this process can be shown by again using the
double-line scheme, thus

19 9 4 2 1
26 52 104 208 416

in which the top row is obtained by successive halving with the
leftover fractions discarded, and the bottom row by doubling.
The numbers to be added for the product are then found below the
odd numbers. Can you see why this will always work out?
Another scheme, known as the Gelosia or grating method, spread
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from India to China and Arabia, and thence to Italy. Though
old, it seems to involve the place-system principle, at least as we
reproduce it. Its use in the multiplication of 327 by 243 is shown

in I'ig. 3. The product, 12, of 4 by 3,

3 2 7

5 5 1 for example, is in the second rectangle
IS Sk 1 below 3. We get the final product by
1 0 2 4 s turning the page so that the diagonal
AN NANFE , lines are vertical and then adding the

7 ° columns from right to left. The method

1. 3. DProduct 79,461. . . . . . .
is ingenious but it fell into disuse after

the invention of printing (1454) because of the difficulty of
drawing the grating.

A method that uses a mixture of the Roman and Hindu-Arabic
numbers and represents a transitional stage between the abacus
and a positional notation was

found in a Paris manuscript. It CM|XM| M | C | X

is 1llustrated in Fig. 4 in the - 2 i

multiplication of 321 by 34. 1 | 2 | 3
This was probably the fore- R

runner of the chessboard method ol L L

shown in Fig. 5. R 3

This method needed only the
climination of the ‘“boxes’” to become the one of today. And
certainly one would be rash to deny that still further improve-
ments are possible.

In the matter of division we are forced to conclude, upon inspec-
tion of the older available methods, that the accomplished divider
e 1 Inthedaysof Charlemagne must

3 2

2 1 3 have been a person of some im-

; : g fl‘ 8 | portance. If he had had his

T 1 soclial rights (which seems, on the

s 1 5 | 3 | 4 whole, a bit unlikely), he should

6 98 7 ] 1 i T 7 8 have been equal, roughly, to
'1G. 0.

about two knights and perhaps
an earl. He probably performed the simpler of his dividing chores
by repeated subtraction on his abacus, as in the division of 29 by
8thus:29 — 8 = 21;21 — 8 = 13;13 — 8 = 5; and hence 29 +
8 = 3, with 5 over. Since the quotients weren’t always so small,
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he worked out various improvements for the big jobs; but we’ll
pass on to other things and leave the complicated details for the
larger histories.

6. The final achievement. In the place system we have a
method of number representation which is both compact and
tractable, making the ordinary operations of arithmetic fairly
easily mastered even by a child. Certain finishing touches are
needed, the chief of which is the decimal system. If we divide
25,300 by 10 and 100 successively we get 2,530 and 253, in which
the obvious resemblance is that the order of the nonzero digits is
not, changed. Once it occurs to us to indicate the number
25,300/10 by 2,530.0, using a period at the right of the unit’s
place to signify the end of the number, the rest is easy. Then
2230 = 253.0, which suggests the convenience of writing %32 =
25.3 and 235 = 2.53. Obviously this is allowable if we define the
symbols 25.3 and 2.53 as meaning the mixed numbers 25+% and
2+, which are the true quotients. The word ‘“‘period” is no
longer suitable to describe the marking point, however, since it is
now not necessarily at the end of the number, so that it has been
appropriately named the dectmal point (derived from the Latin
decem, or ten, which is the base of the place system). It is inter-
esting that the comma replaces the decimal point in the continen-
tal Ifuropean countries, and that, though the period is used in
England, it is written above the line instead of on it.

The introduction of the decimal notation, first mentioned in a
treatise by Stevin in 1585, was almost as important as the place
system. For now a double infinity of digit places stretched to the
right as well as to the left of the decimal point, and the ordered
digits themselves represented both the infinitesimally small and
the increasingly large according to the degree of the removal.

Admirable as it was, however, the completed system had limita-
tions and defects which persist to this day. For one thing, such
simple fractions as 4+ and + cannot be represented exactly in the
decimal notation without recourse to some device such as dots to
indicate infinite repetition. Thus 3§ is written decimally as .333
..., meaning “} equals 1% plus 15 plus similar fractions, each one
tenth as large as the preceding one, added on without end.” In
addition, other definite numbers, such as the one represented geo-
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metrically by the diagonal of a square with a side one unit long,
completely elude the system. It is impossible to represent this
number in the decimal notation even with the added convention of
dots representing repetitions, since there is not even a sequence of
digits, as in the case + = .142857142857 ... which is repeated
without end. Numbers of this kind, called wrrationals, will be
dealt with in more detail later; they are the incorrigibles, the out-
casts, the nonconformists in a scheme of number representation
which, though evidently short of perfection, is still one of the
greatest and least appreciated achievements of the human race.

EXERCISE 1

1. Write the following numbers in a column and find their sum:
three hundred and two, four thousand and twenty, five thousand and
five, one thousand one hundred and one, three million two hundred
thousand four hundred and thirty-seven.

Add the numbers in Probs. 2 to 4. Remember that in addition we
keep the decimal points in a line.

2. .006, 3.217, 467.2, 21.38.
3. 1,026, 4.139, .0712, 600.1.
4. 426.781, 10,073.2, .03,761.

5. I'ind the sum of six hundred and one-tenth, four and twenty-one
thousandths, three thousand twenty-one and twenty-two hundredths.

6. Change the following to decimal form and add: 12%, 37§, 4264.

7. Change the following to mixed decimals and find the sum to
three decimal places: 324%, 4713, 7%, 577%.

8. If the multiplicand is multiplied by 1,000 and the multiplier
by 100, how is the product changed?

9. When we multiply two numbers containing decimal places, we
treat the numbers as if they were integers and then point off as many

places as there are in the multiplicand and multiplier together. Use
the principle of Prob. 8 to show that this practice is correct.

10. Multiply 4,162 by 321. In the process of multiplication, why
are the products obtained when we multiply by 2 and 3 set over one
place and two places to the left respectively? Check your answer
by dividing it by 321.

11. Multiply 4,261 by 405. How does the zero in the multiplier
405 affect the multiplication process?
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Find the products of the numbers in Probs. 12 to 15.
12. 126.021 and 23.41. 13. 3.621 and .00627.
14. .5268 and .0782. 16. 37% and .1262.

16. A number contains four digits, with the second digit 7. How
is the value of the number changed if 7 1s replaced by 5? by 9? by 0?

17. The first two digits of a four-place number are 3 and 8 respec-
tively. How 1s the value of the number changed if the 3 is erased?

If the 3 is erased and 8 is replaced by 9?7 If the 3 and the 8 are in-
terchanged?

18. If the first and last digit of a four-place number are 7 and 2,
respectively, how is the value of the number changed if they are inter-
changed? If the 7 is erased and the 2 is replaced by 07

19. If 35 is multiplied by a two-digit number ending in 6, how 1is
the product changed if 6 is changed to 7?7 to 97 to 37

20. Note that ¥ = .5 1s a ferminating decimal fraction, whereas
¥ = .333 .. .1is repeating. Write 3/n in deeimal form when n = 4, 5,
6, 7, 8, 9, 10, 11, and 12. How many of these are repcating decimal
fractions? What can be said of the valucs of n that do not yield
repeating decimals?

21. Write each of the fractions 4, 4, 1, & 4 1 1 1 3. L 1 in
decimal form. Which of these are repeating decimals?

22. If the dividend is multiplied by 1,000 and the divisor is multiplied
by 10, how is the quotient affected?

23. When the dividend contains n more decimal places than the
divisor we treat the two as whole numbers, and then, after dividing,
we point off n places in the quotient. Use the principle of Prob. 22
to justify this procedure.

24. What is the procedure in division if the number of decimal places
in the divisor exceeds the number in the dividend? How can it be
justified?

25. How many times must 327 be successively subtracted from
69,978 in order to obtain the remainder zero?

Find the quotients obtained by dividing the first numbers of Probs.
26 to 29 by the second.

26. 462.17 by 32.3, answer to three decimal places.
27. 52.16 by 3.725, answer to four decimal places.
28. 137,067 by .00321.
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29. .2373 by 99.9. Divide until the digits start repeating.

30. Without changing to the Hindu-Arabic notation, show that
CXVI + XIII + VI + CCLXV = CD.

31. Without changing to the Hindu-Arabic notation, show that
XLIX + XIX 4 XXIV 4 XC 4+ XXVIII = CCX.

32. If people had four instead of five fingers on each hand, how
might this have changed our place system of number representation?
In the system which would then probably be used, if the digits 0, 1, 2,
3, 4, 3, 6, 7 were unchanged, how would 8 be written?

33. Multiply .142857 successively by 1, 2, 3, 4, 5, 6, 7, and 8. Do
you notice anything interesting about the arrangement of the digits
in the products?

34. To multiply a number by 25, we can divide it by 4 and then
move the decimal point in the quotient two places to the right. Why
does this work? Devise one more short cut in multiplication.

35. To divide a number by 250 we can first multiply by 4 and then
move the decimal point three places to the left. Why? Devise
another short cut in division.

36. Prove that if the sum of the digits in a number is divisible by 3
the number itself will be divisible by 3. HixT: Note that 426 (for
example) = 4(100) 4+ 2(10) 4+ 6 = 4(99) + 2(9) 4+ 4 + 2 + 6, in which
the last three digits are those in 426.

37. How can you tell without dividing whether a number is divisible
by 2? by 4? by 57 by 9?



CHAPTER II
ONWARD TO ALGEBRA

7. Two arts and some early artists. Just as the Hindu-Arabic
notation, with its two key inventions of zero and the place system,
gave us modern arithmetic, so the introduction of letters and sym-
bols to represent quantities and operations was the fundamental
invention of algebra. This somewhat brash statement seems to
call for definitions of the two fields mentioned, so here they are:

Arithmetic 1s the art of numerical representations and computing.

Algebra 1s the art of solving problems, or of finding unknown
quantities, when the nature of the arithmetical computations leading
to them 1s not at once evident.

It will be noticed that both of these subjects are defined as arts
rather than as sciences—a point of view which is in line with mod-
ern tendencies. Many arithmetic and algebraic results, such as
the conclusion that two and two make four, are scientific discov-
eries of fact perhaps inherent in the nature of things; but many
other mathematical verdicts, and certainly all the methods by
which they were obtained, are creative inventions belonging to the
realm of art in that the forms they took were designed rather than
discovered by man.

Another point in connection with the second definition is that
it does not mention the use of letters and symbols, which is the
essential feature of modern algebra. The view that symbolic
language is a powerful aid to algebra rather than a part of its basic
content and purpose is supported inferentially by mathematical
historians who list Ahmes of Egypt (about 1550 B.C.) as an early,
if not the first, algebraist.

This man Ahmes obligingly provided his readers with ‘“Rules
for inquiring into nature and for knowing all that exists, every
mystery, every secret.”” Since he undertook to meet this some-
what large order without an adequate number system or conven-
ient symbols of operation, we should perhaps pardon a few lapses
in the technique of the accomplishment. He tells us, for instance,

15
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that “a heap, its seventh, its whole makes 19’ and then defends
his claim to ‘““‘all knowledge’ by guessing, correcting, and strug-
gling with that heap until he finally gets it hacked and patched to
the right size. The schoolboy of today would let x represent the
number, or “heap.” It would follow that

:c+$= 19 Te4+x=7(19 Sr=133 and gz =163
The fact that Ahmes did not know how to invoke the mysterious
Mr. X for help should not bar him from due honor as an indomit-
able pioneer on the frontier of algebra.

The game became more or less fashionable. T'he (‘hinese writer
Sun Tsu! (Arst century A.p.) puts these words into the mouth of a
woman washing dishes at a river: “I don’t know how many guests
there were, but every two used a dish for rice between them, every
three a dish for broth, every four a dish for meat, and there were
065 dishes in all.”  He follows this with a rule for solving: Ar-
range the 65 dishes, multiply by 12, and then divide by 13.
Though this method was perhaps one of trial and error, his result
was the correct answer, which the aforesaid modern schoolboy
would probably get about as follows: l.et @ = the number of
guests. Then there would be a,2 dishes for rice, x,/3 for broth,
and x/4 for meat. The fact that there were 65 dishes altogether
is expressed In the equation

roa 5
LIt
whence
12(3+ 5+ ) = 1209

or
6x 4+ 4z + 3z = 132 = 65(12)
= 5(12) = 60

8. The oldest international language. These two solutions by
the modern hypothetical schoolboy (who, we must admit, is a
little surer of his z’s than some of his flesh-and-blood contempo-
raries) illustrate the three essential elements in the up-to-date
algebralc method. I'irst there is the letter for the unknown,

1 Florian Cajori, A Hustory of Mathematics, p. 73.



ONWARD TO ALGEBRA 17

usually x or, where several are involved, letters taken from the
last of the alphabet in accordance with the original suggestion by
the Frenchman Descartes. Then there are the symbols denoting
operations, such as + for plus and = for equals. Finally there is
the all-important statement of equality, or equation, which con-
tains the desired unknown wrapped up in such form that its value
can be found by anyone who knows the proper solving technique.

We'll go into that matter of technique more fully in the next
chapter. T'or the present we wish merely to note that problems
are solved expeditiously by use of a special compact language con-
sisting of letters for quantities and symbols for operations, put
together in groups to make statements. This useful mathemati-
cal language naturally developed slowly, being preceded by cum-
bersome written explanations from the pens of early investigators
who lacked our short-hand equipment even when, as in the case of
Ahmes, they did not noticeably lack confidence. It undoubtedly
came about in response to definite needs.

IFFor instance, in regard to operational symbols, the descriptions
of the same processes over and over again must have grown very,
very tiresome. It has been conjectured, therefore, in line with
this happy thought, that the plus sign (+) comes from a corrup-
tion of the Latin ef for and; the minus sign (—) descended from
the word minus itself by way of hurried scrawlings of the abbre-
viation m; the division sign (=) is due to the status of division as a
kind of extended or glorified subtraction; and, finally, the multi-
plication sign (X ) came into being from the fact that in multiply-
ing 45 by 23 in the column form we first take 3 times 5 and 4 and
then 2 times 5 and 4 in a manner which may be shown diagram-
matically thus: | X]|.

Again, the need for letters to represent unknown quantities is
impressed upon us rather painfully in questions of this sort:
“What is the number whose double, increased by 3, is 25 less than
the number which is equal to 6 times the sum of 2 and the original
number?” Our thinking is speeded up tremendously if we rewrite
the question thus: “What is  such that 2¢ + 3 = 6(x + 2) — 25?”
When we put it that way our troubles are practically over. We
can plunge into the problem with confidence and emerge after
very little head-scratching with x = 4. Though it sounded de-
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pressingly hard it was really quite simple, after all, when trans-
lated into modern algebraic language.

Thus we certainly have something valuable here. Besides be-
ing a language which puts our problems into such compact form
that their difficulties often prove to be merely a part of the old
verbal trappings, the mathematician’s written medium is inter-
national in its scope. His statement “3 + 5 = 8’ is understood
by many persons to whom the English sentence ‘“Three plus five
equals eight”” would be unintelligible. As a medium of thought
exchange which needs no translation for readers in many lands, the
language of algebra is one of the binding cultural forces in the world.

EXERCISE 2
Illustrative Example

Restate the following in symbolic form:

Four times a number diminished by 8 is equal to three times the
number increased by + of itself.

Solution: If we represent the number by z, replace the phrase “dimin-
ished by’’ with the symbol —, and ‘‘is equal to”” by =, the statement

becomes
4 — 8 =3z + (H)z

Restate the following assertions in symbolic form, noting that the

value of z is not to be found:

1. A number (x) increased by its double is 93.

2. A man lost one-third of his savings (x) and had $2,000 left.

3. The integer 21 is the sum of one-third and one-fourth of a certain
number (z).

4. Twice a certain number (z) increased by 6 is equal to three times
the number increased by one-half of itself.

5. The length and width of a rectangle whose dimensions are 10 yd.
by 6 yd. are each increased by z yd. thereby increasing the area by
35 sq. yd.

6. Tom and Bill had z dollars apiece when they went to the county

fair. Tom found a five-dollar bill at the race track and Bill lost $2
on the first race. Tom then had twice as much as Bill.

7. After a garden 20 yd. by 60 yd. is fenced off in one corner of a
square plot of side z, there remains 800 sq. yd. outside the garden.
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8. I have z dollars invested which yield an income of $100 per
year. If I save the earnings for 20 years I will have twice the amount
of the original investment.

9. Dick has z dollars, which is half as much money as Harry has,
but if Harry gives Dick $10, they will have equal amounts.

10. Two towns, A and B, are 100 miles apart. A car leaves 4 at
x miles per hour. A second car, traveling £ as fast, starts from B at the
same time, and they meet in 1 hr.

11. Mr. Benson drove to town from his ranch in 2 hr. at x miles per
hour. Coming back, he drove 10 miles an hour slower, and it took
him 3 hr. HinT: Remember the formula, Distance = (rate) (time).

12. A freight train which traveled at the rate of 40 miles per hour
left Jonesville at noon, 2 hr. ahead of a passenger train whose average
speed was 60 miles per hour. The passenger train overtook the freight
in x hr.

13. Ten years ago a father, whose age is now twice that of his son,
was three times as old as the boy. (Let x be the boy’s age.)

14, A stream flows at the rate of 4 miles per hour. A canoeing
party, which can travel at x miles per hour in still water, rowed 10
miles downstream and back in 2 hr.

156. If z 1b. of coffee worth 20 cents per pound is mixed with 20 Ib.
of 30-cent coffee, the mixture is worth 25 cents per pound.

16. Ten pounds of milk containing z per cent of butterfat, com-
bined with 20 1b. of 3 per cent milk, yields a mixture which tests 41 per
cent butterfat.

17. Three men trade for a business worth $10,000. Mr. Smith puts
up $1,000 in cash and an automobile worth = dollars; Mr. Brown, a
vendor’s lien note worth twice as much as Mr. Smith’s car; and Mr.
Jones, a town lot worth as much as the car and the note.

18. A college student left the campus for his home 400 miles away
on a truck which traveled for z hr. at 40 miles per hour. When it
left the highway, he proceeded on foot for 2 hr. at the rate of 4 miles
per hour, and then finished the journey in a passenger car whose speed
was 60 miles per hour and which required half as much time as he
spent 1n the truck.

19. It takes Tom 30 days, Dick 28 days, and Harry x days, each
working alone, to paint a house. When working together, they can
paint the house in 10 days.
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20. In accordance with an early practice called “riding and tyving,”
two men, having one horse between them, proceed as follows: Starting
at noon, the first rides 1 hr., ties the horse, and proceeds on foot.
The second walks until he reaches the horse, then mounts and
overtakes the first at z o’clock in the afternoon. The horse travels
at the rate of 8 miles per hour, and the men walk at the rate of 4
miles per hour.

9. Our own approach. Having seen how to state a problem
or condition by use of symbols, we come next to the matter of
their manipulation. In some fields, such as engineering, it is nec-
essary, in view of the time allotted to mathematics, to load the
students down with a lot of formal algebraic rules concerning
allowable ways to juggle letters and exponents, in the hope that
they will gradually come to see the usefulness of these rules later
on, when they actually have to apply them to technical problems.
For our purposes at least this method is not necessary. We shall
consider only the simpler algebraic machinery necessaryv for our
main business of solving practical problems met in everyday life.
Those who have learned to handle well those basic tools will prob-
ably be able, if the need arises, to work out for themselves the
refinements necessary for more difficult problems.

10. The first steps. Addition is such a rock-bottom necessity
that we shall consider it first of all. The matter of finding the
sum of two like objects and of three more of the same kind is sim-
ple; experience has taught us that this makes five like objects.
That is, in the language of algebra, 2a 4+ 3a = 5a. Consider,
however, the problem of adding 2a¢ + b and 3a + 2b. Is2a + b
+ 3a + 2b the same as 2a + 3a + b + 2b? If so, the answer is
easily seen to be 5a + 3b. But how do we know that we can
change the order of the terms in an addition problem? Well, to be
frank, we don’t; we merely see that it works every time it is tried
with numbers, as in the case 2 + 3 = 3 + 2 = 5. It has been
found helpful in practice to assume without proof the so called
commutative law of addition, which says of any two terms a and b
thata + b = b 4+ «.

The usefulness of this law may be seen in the problem of finding
the sum of the algebraic expressions: 2a + b + 3¢ + d, 2d + ¢
4+ a,and b + d 4+ ¢. The agreement that addition is commuta-
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tive allows us to change the order of the letters and to write the
various parts in columns of likes, thus:

20a + b+ 3¢+ d
a + ¢+ 2d
b+ ¢+ d

The sum 3a + 2b + 5¢ 4 4d is then readily found by adding the
separate columns.

Another important question comes up in connection with the
addition of three like terms, such as 5a¢ + 2a + 8a. Does this
mean that we add together 5a and 2a and then combine their sum
with 8a, or does it mean that we add 5a to the sum of the last two
terms? When we look at the results we see that the question is
immaterial in this case, since the answer is 15a regardless of the
preliminary grouping. Repeated trials lead to the same conclu-
sion. Hence we find it convenient to assume, again without proof,
that addition is associative. In symbolic language (a + b) + ¢
=a -+ (b4 o).

Just as, in the words of an old adage, ““it is a poor rule that does
not work both ways,” so in mathematics ‘it is a poor process that
does not have an inverse.”” This is a technical way of saying that
it should be possible to unwind that which is wound up, to undo
whatever is done. What, then, should be the inverse of addition?
The latter is the process of finding ¢ in the equation a + b = ¢,
when a and b are known. But if in the same equation the a and
¢ are known first and we are to find b so that the sum a -+ b shall
be the indicated ¢, then our method must be a taking apart of the
final addition to get the unknown portion of the sum. This in-
verse of addition is known as subiraction and is exhibited in the
form ¢ — a = b. It presents no new difficulty as long as a is less
than c. IEven the ancient computer with his abacus could flip out
the answer with easy disdain, since all he had to do was to take a
beads from ¢ beads and note how many he had left.

11. Into the looking glass. But when a is larger than c, there
we have something else again. We can’t take six beads away
from four and get anything that makes sense on the abacus. Nor
on anything else, according to the ancient mathematicians. But
our symbolic language is not so helpful after all if impossibilities
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keep popping up in it. Just as a matter of curlosity, is there any
sensible way of representing « such that 5 4+ @ = 3?7 Not only
does curiosity kill cats but i1t has also a way of resurrecting prob-
lems thought to be very dead by the baffied solvers of the past.
So it kept on bringing up this one. Since there is no  among the
known numbers such that 5 + 2 = 3, and since 5 — 2 = 3, why
not make up a new number “—2” such that 5 + (—2) = 37
Certainly there was nothing to stop mathematicians from invent-
ing such numbers and thereby furnishing themselves with ready-
made solutions of the hitherto unsolvable. The only practical
limitation of a good mathematical invention is that it shall not get
the inventor into contradictions. This condition was met easily
by the new creation, and so negafive numbers came into being,
distinguished from the corresponding positive ones by the presence
of the minus signs at the immediate left of their middles.

It’s about time, then, for a formal definition. A negative
number — b 1s the solution x = — b of un equation a + x = c where
a, b, and c are positive and ¢ + b = a.

Since the negative number is invented, we are free to make any
rules about it which do not involve contradictions. The rule that
a + (—b) = a — (+b), however, follows from our definition; and
the convention that the negative of a negative number is positive,
or —(—b) = b, can be justified, as we shall see, as a special
case of a rule for multiplication to be developed later.

And what a help these numbers proved to be! With the new
mathematical magic to bolster her calculations, Mrs. Housewife
could now neatly subtract the cost of a dress (10 dollars) from the
balance on hand (4 dollars) and enter the remainder (minus 6
dollars) in the list of family assets. Thus dead-end streets, finan-
cial and otherwise, were opened on every side. Little Jimmie’s
progress toward school at times might be logged with minus fig-
ures. The two eternities of before and after, split apart by the
passing moment, could be calibrated with negative and positive
numbers to measure the past and the future. Thermometers
fluctuate; trees grow up and down. The notion of direction in
time or place is fundamental in our thinking; and it was given an
important place in mathematies through the great idea of Des-
cartes. This we shall discuss in due time.
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EXERCISE 3
Combine the numbers in Probs. 1 to 4.
1.3+2-—-7. 2. 7T — (—6) — 2.

3. 11 — 74+ (—2) — (=7). 4 —(—9) — (—=5)+ (—6) — 7.

6. Noting your results in Probs. 1 to 4, formulate rules for adding
quantities with like signs and with unlike signs.

I'ind the sum of the expressions in Probs. 6 to 13.
6. 3z +2y + 2,2+ 4y + 1, 72 + 3y + 4.
7. 5a + 2b + 4c, 3a + b + 5¢, a + 6b + 5e.
8. 3v + 2y, 3y + 52, 7Tx + 4y + 2z, x + v.
9. 3a, 4b, 5a + ¢, 7b + 4c, 2a + 6b + 5ec.
10. 2z — 4y — 52, 5x + 8y — 2z, —3zx — 4y + 7=.
11, —r — 4s — 3¢, 5r — 2s + 4t, —3r + 7s — 6.
12. —3u + 4v — 2w, 2u — 6w, 8 + 2w.
13. 3a — 2b 4 4d, ba — 2¢ — 6d, —2a + 3b — 7d, 7b — 5¢c + 4d.

In Probs. 14 to 21, subtract the second expression from the first.
14. 8a, 5a. 156. a + 3b, 2a + 5b.

16. —7x, 5. 17. 4z — 3y + 7z, 2z + 5y + 3.
18. —5r 4 2s + 3¢, 6r — 4s — 2L,

19. 8a — 2b — 3¢, 11a — 7b + 6e.

20. 5x + 2z, 2z — 3y + 2.

21. 4u 4 7v 4 Tz, 3v — 8w + 2.

22. Noting your results in Probs. 14 to 21, formulate a rule for
subtracting like quantities.

I'ind z in each of Probs. 23 to 26.
23. 3+ 2 =17. 24. 8 4+ zx = 2, 26. 4 + x = 4.
26. —5 + 2z = —5.

27. Define and illustrate (a) the commutative law of addition;
(b) the associative law of addition.

28. The symbols ( ), [ ], and { } are called symbols of grouping.
When a pair of the above symbols preceded by a minus sign in an
expression is removed, the sign of every term inclosed in the pair
must be changed. Why?

Remove the symbols of grouping in Probs. 29 to 36 and combine.
Note that when one or more pairs are included in another, it is customary
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and as good a way as any, to remove the innermost symbols first.
29. a — 3b + (2a — b). 30. 3z + 2y + (—zx — 2y).
31. 3a + 4b — (2a — 3b). 32. 4v — 3y — (—2z + 4y).
33. 4a — [2a — (4a — 2a) + b).
34. 42 — [—3x — 2y — 42)].
3b6. 2a — {a — [3a — (2a + 3b) — b}}.
36. 3r — {42 — [2a — (3a — b) + 2b] — 4a]}.

37. If 0 indicates the normal height of a river on a river gauge,
+1 and —1 would indicate stages 1 ft. above and below, respectively,
the normal level. Give three other examples in which physical signif-
icance 18 given to negative numbers.

38. Ifa + b = mand a — b = n, express 3a + b in terms of m and n.

39. A boy 17 years of age attends school in a building that was
constructed 10 years before his birth. His home was built 5 years
after that and was remodeled when he was 8 years of age. The family
car was bought 6 years later. Which of the above numbers can be
interpreted as negative? How old i1s the car? What arithmetical
process did vou use to get the last answer? How old is the school
building? What rule dealing with negative numbers would enable
you to get the last result by subtraction?

40. The lobby of an office building is 20 ft. high, the other floors
are 10 ft. apart, and the basement floor is 12 [t. below the lobby floor.
An elevator boy starts from the lobby and makes the following suc-
cessive stops: third floor, second floor, eighth floor, third floor, lobby,
basement, fourth floor, lobby. If the upward dircction is positive,
find the total positive and total negative distances traversed.

12. Speeding up. In the early, formative stages of the sym-
bolic language, changes naturally came rather rapidly. For
instance, the product of the two numbers a and b was shortened to
a X b and finally to the form ab which we use today. Likewise
the product of four a’s was at first written aaaa; of five a’s, acaaa;
of a thousand a’s—well, you can see for yourself that an improve-
ment was needed. Herigone used the form a4 for aaaa (about
1634) and Descartes in 1637 suggested the present notation of a* to
represent the product of n factors a. The index n is known as the
exponent and the number a as the base.

The product a®a’, for example, must contain five a’s because of
the first factor and seven a’s on account of the second. Hence
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there are twelve a’s in the product, and a’s” = a'2. The more
general case in which the exponents are letters, so that they can
represent any positive integer whatever, yields the first law of
exponents,

(1)1 ara® = a™*t" (mandn posilive iniegers)

When the exponents are equal and the bases different, as is the
case a‘b? the early algebraist probably worried around with it
somewhat like this: “Wonder if I can get another law out of that.
Maybe I’d better write it out in the old form, thus: aaaabbbb. Now
if I rearrange it like this, abababab, and put some parentheses in, so,
(ab) (adb) (ab) (ab), then I'll have—why, sure, I'll have (ab)¢. Or,
just as easy, a!®'% = (ab)!%. Looks like I’ve got something
there! Of course I'll have to shift the letters around, but that
ought to be allowable since we can do it with numbers. For
instance,4 X 3 X 2=4X 3 X 2) =(2X4) X3 =24, Ewvi-
dently to prove this law I'll need a couple of postulates.”

At this point we unquote and give you that second law,

(2) a"b™ = (ab)™ (m a positive integer)

The postulates which we have to assume in order to prove the
law seem sensible enough:

1. Multiplication 1s commutative: that is, ab = ba.

2. Multiplication 1s associative; or, in symbols,

a(bc) = (ab)c = abc

A third postulate which should be mentioned here, though it is
not needed above, is this:

3. Multiplication s distributive, or a(b 4+ ¢) = ab + ac. Try
it out with numbers and be convinced.

There is a useful third law of exponents, as follows:

(3) (@™ = a™ (m and n posttive integers)

This law follows rather easily from Descartes’ definition of the
exponential form, since by it (a™)" contains n factors a™, and each
of these in turn has m factors a. Altogether, then, there are mn
factors a, which proves the law.

1 Equations whose numbers are printed in boldface arec important reference
formulas.
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So far we have had an easy time following the old pioneers.
The path of least resistance in algebraic progress lay practically
dead ahead, broad and smooth and without forks. But trouble
must have brought them up with a jerk when they tried multiply-
ing with the newfangled negative numbers. What, come to think
about it, ought to be the sign of the product of two minus quan-
tities? Probably you’ve heard that it’s positive, but is there any
special reason why that makes sense? Before we look into the
matter we’ll give the umpire’s final decision, set forth in such eas-
ily remembered form that all future headseratching can be reserved
for weightier matters: The product of two lerms of hike signs 1s
postitive; of unlike signs, negative.

Fair enough, you say, but what is this? Is it one of those con-
venient postulates, or is it, maybe, something that can be proved?
High-school algebras don’t say; but if you’ll grant us our premises,
definitions, and postulates, we’ll show that it belongs in the latter
category.!

We need first to recall our definition of a negative number —b
as the solution of the equation a + z = ¢, where a is positive and
larger than c and ¢ + b = a. We also need, by way of premises,
the following postulates, which are so in accord with our sense of
the fitness of things that they are what we might call “postu-
lates in the best of standing,”” or axioms. Iformally, an axiom s
an unproved statement which seems to accord with experience. As
far as the mathematician is concerned, axioms and postulates are
essentially the same, being merely bowstrings from which are shot
the inevitable conclusions that make up his stock in trade. On
the other hand, to the philosopher-mathematician the seeming
harmony with experience gives the axiom a decided edge in any
contest about usefulness. You may think of one informally, if
you wish, as something which any idiot should see ought to be
true, but which no idiot did until the Greek geometer Euclid made
seeing it fashionable. But enough of this; let us pass on to the
axioms themselves before the water gets too deep.

Axiom 1. If equals are multiplied by equals, the products are equal.

1 The ensuing discussion up to the last three paragraphs of this article will perhaps
be of more interest to the teacher than to the student, and may be omitted at the
teacher’s discretion without loss of continuity.



ONWARD TO ALGEBRA 27

Axiom 2. If equals are added to equals the sums are equal.
Axiom 3. If a, c, and d represent three positive integers with a

greater than c, then da s greater than dc.
Our rule for signs can then be deduced piecemeal in the follow-

ing steps. In all cases the multiplicand, or number multiplied,
will be represented by +b or —b, the multiplier by +d or —d,
and all letters will stand for positive numbers. We shall also find
it convenient to use the symbol > for 1s greater than and < for

18 less than.

i. Leta + b = ¢, with ¢ > a.
Then
d(a 4+ b) = dc (Axiom 1)
or
da + db = dc
(by the distributive postulate for multiplication)
Furthermore, dc > da, by Axiom 3. Hence, db is positive.

1. Leta + (=b) = a — b = ¢, witha > c.
Then
da + d(—0b) = dc (Axiom 1)
But da > dc by Axiom 3. Hence, d(—b) is negative.

i, (—d)(®d) = b(—d)
by the commutative postulate for multiplication. Therefore
(—d)(b) i1s negative by the preceding result.

1v. Let a + (—b) = ¢, witha > c.
(=d)a + (=b)] = (—d)c (Axiom 1)
(—d)(a) + (—d)(—=b) = (—d)c
(by the distributive postulate)
or
—da + (—d)(—b) = —dc (by 1i1)
Adding da + dc to both sides, by Axiom 2,
dc + (—d)(—b) = da
But since da > dc¢ by Axiom 3, (—d)(—b) must be positive.

Now that we have our rule of signs in multiplication as a conse-
quence of certain postulates and definitions, we can justify some
of the rules for addition and subtraction of algebraic terms, which
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most students use without knowing why. ‘“When we subtract we
change the sign of the quantity subtracted and add to the minu-
end”’—so drones the placid unquestioning learner. In symbols,
a —b = a-+ (—b)—a conclusion which follows from our defini-
tion of a negative number —b. But what about addition? What
1s this sum a + (—b) when a and b are positive quantities, or in
general what is the sum of terms of opposite signs? We can get
this sum by the formal rule of “‘subtracting the numerically smal-
ler from the numerically larger and prefixing the sign of the larger.”
Thus 5z — 2x = 3z obviously; but why should (—5x) 4+ 2z be
(—3z)? Because (—bz) + (2x) = (—1)(5x) + (—1)(—22) (by
the rule of signs) = (—1)[5x + (—2)] (by the distributive pos-
tulate of multiplication) = (—1)(52 — 2x) (from the above rule
of subtraction) = (—1)3z) = —3z.

In the solution of many problems it is necessary to find the prod-
uct of two algebraic sums. The limited machinery we have thus
far worked out enables us to do this in some cases, as for instance
in the multiplication of 22 — 2 + 1 by 222 — © — 1. The proc-
ess may be indicated thus:

x?—2z+1)2x2—2ax—1) = (&2 — 22 4+ 1)[222 4+ (—2x)

@ — 2 4+ @y D

+ (@ — 2 + 1)(—2x)

+ (@ — 2z + 1)(—1)

(by the distributive postu-

late)

= 2x* — 4x% 4 22% — 23 + 21?2

—x — 224+ 22 — 1

(by the distributive postu-
late and by the laws of expo-
nents and signs)

= 2z 4+ (—4zx® — x3)
+ (22% + 22 — 2?)
+ (—z + 2x) + (—1)
(by the commutative and
assoclative postulates of addi-
tion)

=2z —bax*+ 322+ 2 — 1

|
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The work may be much more conveniently arranged in the form

222 —  —1
2 —2x +1
221 — a3 — a2
— 423 4+ 22% 4+ 2x
222 — x — 1

20 — bt + 322+ x —1

When the two algebraic sums to be multiplied are binomials
we can perform the operation mentally by noting the pattern sug-
gested by the following typical multiplication:

3r + 4y
2x — oy
6z% + 8Szy
— 15zy — 2092
62 — Tay — 20y?

Here the first and last terms in the product are obtained by multi-
plying the two first and the two last terms, respectively, of the
binomials. The middle term is the sum of the products of the
two ‘“inside’” and the “outside’ terms when the indicated product
i1s written in the form 3z + 4y)(2x — 5y).

It may be noted that the sum of the inside and outside products
can be combined, as in the example above, whenever the two left
terms and also the two right terms are ‘‘like’’ or contain the same
letters with the same corresponding exponents. But even when
this is not the case, the product can be obtained mentally by fol-
lowing the indicated pattern. For example,

(@ + b)(c + d) = “left” 4+ “inside” + ‘“‘outside’” + ‘‘right”
ac + be + ad + bd

Or again,
Bz? + y») 2z + y?) = 62® 4 2xy® + 3%’ 4 ¢°

Certain special cases of these products of binomials recur often
enough to be worth memorizing by themselves, though we should
not lose sight of the fact that they may be obtained almost as
rapidly by following the one rule for multiplying binomials written
side by side. They are
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(4) (@+ b)? = a® + 2ab + b?
(5) (@ — b)? = @® — 2ab + b
(6) (@+ b)(a— b) = a® — b?

The last formula may be stated in English thus: The product of
the sum and difference of two quantities 1s equal to the difference of
their squares. The corresponding statements for the other two
are deferred to Prob. 55, Exercise 4.

EXERCISE 4

Perform the operations indicated in Probs. 1 to 8 and simplify.

1. 3)4) + 2)(=6) — (=5)).

2. (—=5)4) — (—=2)(=5) + (7)(=3).

3. (Bx)(—2y) + (—4x)(—2y) — (4x)(—3y).

4. (2a)(—3b)(—c) — (—3a)(+2b)(—3c) — (4a)(—5b)(2c).

B. (—2z)(—T7y) — (4a)(—2b) — (—3a)(—2b) — (7z)(—2y).

6. (—5r)(3s) — (7H)(—3u) + (2r)(—s) — (7t)(—4u).

7. 4(a — b) — 6(a + b) — 2a + 3b.

8. 6[r — 2(x — y) + 3y] — 4(xz — 2y) — 3z + 2.

Reduce and simplify the expressions in Probs. 9 to 22.

9. a’ala. 10. (2b%)(3b%). 11. (a®b)(3a%b?).
12. (2a®71)(3a). 13. (a??)". 14. (22%)5.

16. (—4ab)*(a’b). 16. (22%y)*(—xy?)s. 17. (2a®bc)*(3ab)?.
18. (2a®)(—3a'~?)(4a’1). 19. (22%)(4a?).

20. (za—l) (x2a+3) ($a+l)2. 21. (am—l)2(b3) (ab)2.

22, (a?™+1)(a'"™)(a)>.

Find the products indicated in Probs. 23 to 30.
23. (2* — zy + ¥ (= + v).

24. (a® + ab + b¥)(a — b).

26. z+y—2)(x—y+2).

26. (223 — 322+ 2z — 1)(x — 1).

27. (3a% — 2ab? — b%)(a + b).

28. (3a® — 4a% — 2ab? + b3)(a — b).

29. (z* + 2%y + 2% + 2 + ) (x — v).

30. (@®>+b*+c2—ab+ ac — be)(a + 2b — ¢).
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Find the products indicated in Probs. 31 to 46 mentally.

31. (2z + y)(x — 2y). 32. (3a 4+ b)(2a + 3b).
33. (4a — 3b)(a + b). 34. (Bxr — 2y)(4x + 3y).
36. (3r + 2s)(5r — 3s). 36. (xr —2y)(xz + 2y).

37. (3a — b)(3a + b). 38. (bx + 7y)(bz — 7vy).
39. (6z — 5y)(x + v). 40. (2a — 3b)(2a — 5b).
41. (2a® + b)(a — D). 42. (3x — 2)(222 + 3).
43. (2a + b)(c + 3d). 44. (ax? 4 by)(ax + by?).
46. (bh + 7k)(2h* — k?). 46. (xz — 2v)(vz — x).

Given (15)2 = 225, (18)% = 324, (25)? = 625, find the products in
Probs. 47 to 54 mentally.

47. (14)(16). 48. (17)(19). 49. (24)(26).
50. (13)(23). 51. (22)(28). 52. (15)(35).
53. (11)(25). 54. (19)(31).

656. Put into English the rule stated by Formulas (4) and (5).

66. The square of any two-digit number ending in 5 may be obtained
mentally by the following rule: Multiply the first digit by one more
than itself and write 25 after the product. Prove that this is true
by squaring 10¢ 4 5.

67. Using the process of Prob. 56, find the squares of all two-digit
numbers ending in 5.

68. Using (10t 4 u)?, devise a rule for squaring any two-digit number
mentally.

13. Breaking up. Now that we have finished temporarily
with multiplication, or “‘putting together,”” the inverse process of
division, or ‘“taking apart,”’ comes up for attention.

The symbol a/b, read ‘“a divided by b,” is called an algebrazc
fraction and represents a number x such that

(1) bx = a

In the fraction %, a is the numerator, b the denominator, and the
horizontal bar (division sign) represents the operation of division,
or of finding x when a and b are numbers. It also represents the
operation of finding a simpler form for an algebraic fraction when
the numerator and denominator are such combinations of letters

and numbers that the simplification is possible.
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To illustrate, just as 192 = 25, since (4)(25) = 100, so

x¥ 4+ 32+ dr + 6

2+ z+ 3 =z + 2 since (x + 2)(x? + z + 3)

=24+ 322+ 5+ 6

Evidently the indicated division is considerably shortened if we
know in advance two factors of the dividend, one of which is the
denominator. Thus the process of division may be divided into
two parts, to wit: (1) the laborious kind, or long division; and
(2) the prefabricated type of division known as factoring.

But before we can deal with long division it is necessary to have
before us some postulates concerning operations with fractions
and some additional laws of exponents. The first postulate is:

(O - &

or, the product of lwo or more fractions equals the product of the
numerators diwvided by the product of the denominators.

This rule is a good algebraic postulate in that it is in accord with
the rules of arithmetic. For example, since +(6), or ‘% times 6,”

is also read ‘4 of 6,”” which is 2, we see that +(6) = F) (&) =

%ﬁf—; = & = 2. Note that the denominator 1 is understood

when none 1s written, so that in general (a)(%) = (%)(%) = ab/c.
Another law of exponents is needed here, as follows:

(3) %: = a™ " (m > n; m and n positive tntegers)

Proof: By our definition of a fraction, a™/a™ is a number z
such that a™x = a™. But a*(@™~ ") = ag**™ ~2 = g™ by Law
1, Art. 12, and hence x = ™. The symbol a™ ™ as yet has no
meaning when m = n.

Thus a fraction such as axz™/bx", which often comes up in long
division, may be simplified as follows:

Zi: = (%) (i—:) by (2) = %:cm—n by (3)
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14. Long division. The details of a long division problem are
perhaps best explained by means of an example.

Problem: I'ind the quotient and remainder when 623 — 2y3 — 6xy?
— 722y 1s divided by 3z + v.

Note. If we call the first expression the dividend and the second one
the divisor (replacing in long division the words ‘“‘numerator’” and
“denominator”’ for the parts of a fraction) we have

dividend ) remainder
————— = quotient + ——
divisor divisor

Thus the word “quotient,” as used here, does not mean the total
result of the division unless the remainder is zero. The quotient of
17 divided by 5, for example, i1s 3, while the remainder is 2.

Solution: We'll write the mechanical steps first, numbering the
lines, and explain the details afterward.

1 22 — 3zy — y? (quotient)

2 3z + y/6x® — 72’y — 6ay* — 2y° (dividend)
3 6z + 22%

4 — 9x%y — Gxy? — 293

5 — Ozx?y — 3xy?

6 — 3ay® — 298

7 — 3zy® — 3

— 7/* (remainder)

On line 2 the divisor appears at the left of the dividend. In both
the terms are arranged in the order of descending powers of x (we
could have used ).

The first term of the dividend was divided by the first term of the
divisor, and the result, 22?, was written above in line 1 as the first
term in the quoticnt.

Next, the divisor was multiplied by 222, and the product terms were
placed on line 3 to be subtracted from corresponding terms in line 2.

The process was repeated until we finally reached the remainder, —g3.

16. Prefabricated division, or factoring. The easiest part of
factoring 1s that which can be disposed of in some formulas to be
memorized, such as the following:

(1) ar + ay = a(x + y)
(2) P —y= (@ -y +zy+ y?)
(3) P+ Yy =@+ —zy+ y?H)
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These formulas may of course be checked by simple multiplica-
tion of the indicated factors on the right. Iquations (4) to (6) of
Art. 12 may also be considered as factoring formulas when read
from right to left. As for trinomials in general, probably the best
method of factoring them is that of “trial and error.”” We start
with any pair of trial factors yielding the correct first and last
terms in the product, and then we test the choice by noting men-
tally the middle term in the product. For example, given
O6z? — Taxy — 3y?, we might try 6z — y)(x 4+ 3y). This is re-
jected at once since the product’s middle term is 17xy. Inciden-
tally this disposes of the trial factors (6 4+ y)(x — 3y) at the
same time. Next, 2z 4+ 3y)Bxr — y) vields 72y as the middle
term, so that we reverse the second signs and get (2x — 3y)
(3x + y) as the factors.

Illustrative Examples

(1) 12¢%° — 6a*0® 4+ 18ah® = 6a**(2al® — 1 4+ 3a*?). Here we have
divided each of the terms by their greatest common divisor, writing
the latter as a factor, according to Rule 1
(2) 64a* — 9b* = (8a®> — 3b)(8a*> + 3b) (Rule 6, Art. 12)
B) @+y?—422= x4+ vy — 22)(@ + y + 22) (Rule 6, Art. 12)
(4) 9> — b+ ¢)> =[3a — b+ ¢)] [3a + (b + ¢)]

= (3a—b—c)Ba + b+ ¢) (Rule 6, Art. 12)
(5) 1 —272* =13 — (32)* = (1 — 32) [1 + 32 + (32)?] (Rule 2)

= (1 — 3z) (1 + 3z + 92?)

(6) 8a® + 270 = (2a)® + (3b)® = (2a + 3b)(da® — 6ab + 9H*) (Rule 3)

EXERCISE b
Find the quotients indicated in Probs. 1 to 10.
1. (a® — b®) = (a — D). 2. (i®* 4+ 13 = (a+ D).
(22 — 8) =~ (z — 2). 4. (272° 4+ 8y + (3w + 2).

(@ — 2%y — 2> + o) + (x +y).

@ + 2%y — zy? — yf) + (2® + 20y + ).

(6at — 7a®b + a?? + 5ab® — 20Y) =+ (3¢® + ab — 12).

Bzt — 4ady — 3z%? — 4yY) + (22 — xy — 22).

9. (x® — 9> + (x — ). 10. (z* + 4yY) = (22 + 22y + 2¢°).
I'ind the quotients and remainders in Probs. 11 to 16.

11, (32* — 42y + %) +~ (x — 2y).

12. (4a® — 5ab + 3b%) + (2a — b).

® N> o w
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13. (3x® — 2zy® 4+ %) + (x — 2y).

14. (6a* — 4a%b — 3ab® — 5b%) + (3a — 2b).
16. (z* + y') + (z + y).

16. (z® — %) = (x + y).

TFactor the expressions in Probs. 17 to 54.

17. 2a — 4b + 6c. 18. 3z — 9y + 12.

19. 423 — 82 4 12xy. 20. 3a* — 45ab + 18ab>.
21. 2c(a + b) 4 3d(a + b).

22. @+y+2)(2u — @+y+ 203,

23. a? — 4. 24. 42?2 — o2

25. 9xt — 492 26. 25a® — 16b%.

27. 1628 — 2595, 28. 9a* — 14408

29. (x + y)* — 4. 30. (a — b)?2 —

31. (2 — 3y)* — 922 32. (4a — 2b)*> — a’.

33. 4 — (x + y)> 34. 2> — (y + 2)>

3b. 4a> — (20 — ¢)>. 36. 922 — (2 — 3y)~
37. a®> 4+ 4ab + 4b° 38. 42 4 4zxy + 9

39. a®> + 6ab + 9b% 40. 922 — 62y + 2

41. 4a®> — 12ab + 9b2. 42, 92 — 24xy + 169>
43. a* — ab — 2b2 44. 32> — 22y — 9~

45. 2a®> + 3ab — 202 46. 32 4 8xy — 312

47. 6a*> — 13ab + 6b°. 48. 8x° + 10xy — 12y2
49. 12a> + 95ab — 8. 50. 24x% — 145zy + 64~
bl. ab — 2b — 3a + ©. 92, a? — 2xy + 2 — 4y.
b3. ac — 2bc + 2ab — 4b>. b4d. 3xz — byz — wxr + 2wy.

16. Fractions, and what to do with them. In all operations
with fractions it is important to keep in mind the following

Basic rule: The value of a fraction is not changed when the
numerator and denominator are multiplied or dinided by the same
quantaty.

Fora/b = (a/b)(1) = (a/b)(c/c) = ac/bc by (2), Art. 13, and
we may also follow this argument from right to left.

The basic rule permits the dangerous practice of cancellation,
illustrated herewith in correct form:

be b _ be
ade dde  de
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A very solemn warning, however, is in order here. Many stu-
dents think that this official word ‘‘cancellation’ is a heaven-sent
license to easy-chair algebraists permitting, and in fact recom-
mending, the gleeful abolishment of all letters loitering in pairs
above and below some horizontal line, or even some different lines
in the same general neighborhood. For example, consider the
a+b a+b _ b
a4+ ¢ A+ c ¢
This type of mathematical sinning is not indulged in by clear
thinkers because the value of a fraction is usually changed when
the same quantity is subtracted from numerator and denominator.
If we could do 1t with numbers we would get, for instance,

% = }—::—_;- =:11—:i—; = % To summarize, cancellation brings
about a permissible and helpful simplification when the thing
canceled, say a, can be shown to be a factor of both the numerator

and the denominator, thus:

fraction which might be operated upon like this:

A(rest of numerator) _ rest of numerator .
a(rest of denominator)  rest of denominator

Frequently, in the multiplication of fractions by Rule 2, Art. 13,
we can save time if we look ahead and see what common factors
will oceur in the numerator and denominator of the product. We
can then cancel them before multiplying, thus avoiding unneces-
sary copying.

2a 2
Ezxzample 1. (&;Zb) (f;) = (’Sﬁ)(ﬁ) = 4ab.

2 — b a? a — 2b
E:z:ample 2. ( ab ><a2 — ab + Qb‘l)(a, — b)

_ [(M(M)H A0 ][ﬂ/%] _a
b (a—20)a—+b) [l a—F |~ b
Note that if, in Example 1, we had started with 83(1(;’1) + f;, the

canceling would have been ruled out by the presence of the plus
sign. We'll take up shortly the correct procedure in this case.
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The rule for division of fractions now follows logically from that
for multiplication. By our definition of an algebraic fraction,

a., c a/b c\ _a
p o Or o means a number x such that 'c( d) =7
Since

(5@~ 5= =56 - G))

Therefore we get the formula

3~ (10

which, stated as a directive, tells us that to ssmplify the quotient of
two fractions we tnvert the denominalor fraction and multiply it by
the numerator.

2
62 — 6y* | 3z +y)* bz —y)z+ty) r — 2y
z+2 © x—2y  r+2 Bz + y) @+

_2(x — 2y)(z — p)
(z + 2y)(x + y)

For addition of fractions we need the formula

Example:

@) 4,5 _ad?b
c ¢ c
which states in symbolic form the rule that fo add two or more
fractions with the same denominator, we place the sum of the numer-
ators over the common denominator.
This formula follows readily from the distributive law of
multiplication and the foregoing rules concerning fractions, thus:

o)) - ) () -2

It applies to subiraction as well as addition of fractions, since

g__lz=g+(—b)=a—b

C C C C C

At this point we need to learn, or recall, the meaning of the
phrase ‘‘least common multiple.”
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A common multiple of a set of algebraic expressions? (including
numbers as special cases) is an expression which is divisible by
each member of the set. It is the least common multiple (L.C.M.)
of the set if its degree and its numerical coefficients are smaller
than those of any other common multiple.? I‘or example, the
L.C.M. of 24, 36, and 48, or of 23 X 3, 22 X 32, and 2* X 3, is
24 X 32, or 144; while the L.C.M. of (y — 2)(y 4+ z) and (x — y)*
1s either (x — y)*(x + y) or (y — 2)*(x + v).

To apply the principle indicated by (2) to all fractions, we find
first the L.C.M. of the denominators involved, which we call the
least common denominator (L.C.D.). Then we replace each frac-
tion by an equivalent one containing the I..C'.D. as its denomina-
tor.

Example 1. TFind the sum of a/be, ¢/bd, and e ‘¢3d.
Solution: Here the L.C.D. i1s bc’d. Using the basie rule stated at
the beginninO' of this article, we have

e acd c3 eb acd + 3 + el

ettt b T Thda = el
a 22y
eamnle 9. % Y |
Rample (x — y)? e v oo@ =)@ — y)
B r(x + y) y —y) 2y
@—yet+y @ @—Ha—y @ = —y)
. at — yF 1
@ =y -y -y
EXERCISE 6

Perform the operations indicated in Probs. 1 to 14 and express the

answer 1n the simplest form.
1\/3\/16 5\(16\/ 15
L (B)G)E) 2 (Q(E)(7)
2\(9Y) . (15) 7\[16\ = (4
JHOMO « (91) = ()

) G
" \3y2/\8y/\ * " \20/\Ha* /\9b

1 The expressions are here understood to be integral and rational, which means
that the exponents of all letters involved are positive integers (see Art. 22).
2 We here consider an L.C.M. and its negalive as essentially the same.
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8.

10.

Qu? — 4b? 402bH? 3 .
12ab 3a + 2b/\3a — 2b

42 — y*\[ z — y T .
xr —y 22 4+ y/\2x — y

a? — ab — 6b*\[a? — b? b
14. ( a—b )(a — 3b)<a +

Combine the fractions in Probs. 15 to 38 into a single fraction in
the simplest form.

21.

23.

25.

26.

27.

29.

31.

9 5 3
171372
1 17 19
s T2 a0
7 1 5
3a+2a_6a.
3 7 17
5y+4y_20y.
g+2—|—a_b—|—2a
) 2a ab
b+a a-—-1 1

be b c
24+3k  3h—6  2h—1
2hl; T 4h T hk:
Sv +2y
3r +3y -ty
20> 4 6y 224y
x? — 4y x — 2y
6br+4y 1 3
x? — y? r+y T—y

16.

18.
20.
22.

24,

2
k

28.

30.

32.

)

39

4’ \(21°\ | (9y
72 )\16z /) =~ \da?)
a?b?

ngng@—é)

1o

DO =

7
s

_I_

ol b
EJ"‘ ©

& v
ol

_|_

71

122 4z

3t +4y 20 -6 3
2xy 3 2y

[
6
3
Z
5
2

_|_
X

+

a __a—2b.
+b 3a+ 3b
a-+ b 2

a? — b0 a—0b

1 2
a+b a-—0>

W <

4b
a® —

b
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a—2b+ 2a _2a2+2b2.
a-+b a—>b a? — b?

33.

34.

a-+b 4 a — 8b _
a? — 2ab — 3b*  a* — ab — 6b?

3 4 4 3y _ dz +7y
r+y 227+ 3ay — 2y 2 + 3xy + 247
4a — 2b b Sa — 10b
37. a> — b T 2a® — Hab + 302 2a® — ab — 3b*
x + Sy 7z + 9y _ 8¢ 4+ 13y
x> — o 32+ Tay + 4y 32 4+ xy — 4y

17. More Stories. Frequently we meet In mathematics a
fraction which is complex, or “several stories high.” Technically
a fraction 1s complex if its numerator or denominator contains
a fraction, or if there are fractions in both. In the sample:

a
5T 70

35.

36.

38. +

, 2 and 4e are called minor denominators.

%
— +d
4e T

To simplify a complex fraction we employ our basic rule and

multiply numerator and denominator by the L.C.M. of the minor
denominators. In the example above we get

a
(§ T b)4e _ 2ae + 4be
( c n d) Ao ¢ + 4ed
4e

In case the minor denominators themselves consist of two or
more terms, 1t 1s often simpler to employ the principle involved
in (1), Art. 16.

1 —
. 22—y ot — gyt — 1 a2 — Pt — 1
Ezample: T 1 Ry i Sy

_ 22—y —-1 -y +ay+y)
-y +y -yt —1
_ (@ =y =D+ xy + Y

@t y@E -y - 1)
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EXERCISE 7
Simplify the following complex fractions.
1
9 4 =
1.1+2 2. 22 &_i%
” L+3 573
3 2 1 1
173 ta -
4, — b T 6. 7
1+ 3 1- 1+
3 3 T a
b a y ! I
7. - - 8. R— 9. 7
b 1 1= x 1= a—1
Ty T
r — x +
10. — %Y. i, —*— 1
¥ x a
- Y z+ 1
b y?
1 — r+y -+
12. — 20 13, T
LT a—b - + ¥y
14248 15, > T 1/®
a* — 4 1
14, . 1 —
3 1—1/z
a — 2
L a’ b— b2
16.
a—+ b+ @ 1
b* b

18. Some useful laws. The five so-called laws of exrponents,
some of which have been given already, are so important that they
should be considered as a group in a form easily memorized, such
as the following:

Group one (repeated base)

(1) amg® = g™ "
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9:"_= m— n¥
(2) = a

Note that we hold the base

Group two (repeated exponent)
(3) a™b™ = (ab)™

a™ a\™
@ - (5)
Here we hold the exponent

Extra (single base)
(5) (am)n —_ amn

When the laws are learned in the form above the student is
somewhat less likely than he otherwise would be to make the mis-
take of claiming that 235%1s 107, or 102, or 77, or 7'2, or some other
equally absurd figure, because he can see that neither the base nor
the exponent 1s repeated and that there are ftwo bases. Thus he
knows at once (or should know) that none of the five laws of expo-
nents applies in this case. On the other hand, if a law does apply,
as In the case of 5'*2' he should remember that whatever is re-
peated s held, so that 51421 = (5 X 2)™ = 10, or 1 followed by
14 zeros, or 100 trillion. In this case the use of the law is much
quicker than multiplication.

For the cases in which the exponents are positive integers the
proofs of the laws are simple, and those not already given will be
left to the reader.

19. We define with discretion. The foregoing laws of expo-
nents may be said to give us a glimpse of one phase of absolute
truth in the sense that they are necessary and eternal consequences
of our agreed-upon definition of a*, where n is a positive integer,
a0, and m>nin (2), Art. 18. As distinguished from such “laws,”
mathematical postulates in general are merely provisional and
convenient agreements which may or may not represent underly-
ing verities.

* The qualification given in (3), Art. 13, will be shown in the next article to be
unnecessary.
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When we examine the laws more closely, however, we find that
much remains to be desired. For as yet they have meaning only
when the exponents are positive integers and, in the case of the
second law, when m>n. Now mathematicians look upon an ex-
ception much as nature is said to regard a vacuum. Their un-
friendly attitude is due to the fact that exceptions are injurious if
not fatal to each of the two most desirable attributes of a mathe-
matical result—simplicity and generality. Every qualifying
phrase works havoc with its simplicity; every exception ham-
strings its generality.

Therefore, with a unanimity seldom matched in other branches
of science, mathematicians all agreed that it would be highly con-
venient if the five laws could stand grandly intact and unqualified
in all cases. Of course the wish might have to be given up,
though with reluctance, if it led to contradictions. But, as it
turned out, the wish could be and was fulfilled almost better than
one had any right to expect in advance. The following defini-
tions did the job.

& an = 2
(2) @ =1
3 ¢t = (@) = (Ya) = Y@ whena >0

(Unfortunately, it will be seen, we end with one final qualification
after all; but one can’t have everything. The even roots of nega-
tive numbers pose special problems which will be treated in the
next chapter.)

As soon as it was realized that the process of broadening the
five basic laws of exponents was merely a matter of defining the
meaning of a”, when n is not a positive integer, in such a way that
the laws still hold without contradictions, the formulation of the
proper definitions was easy. For example, since a3/a® = 1/a?
actually, and since a®/a® = a®~5% = ¢~ 2by Law 2, it is iIncumbent
upon us to decree that a—?2 shall mean 1/a? Again; since
a™/a™ = 1, and a™/a™ = am~™ = a° by Law 2, it seems wise, if
we want to keep out of trouble, to insist that a® represents 1,
whatever one might have been inclined to guess from its appear-
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ance. Note that then a%a™ = 1-a™ = a™, as it should by Law
1, so that everything is still lovely. And finally (a*) (a*)(a*)
ought to be, if Law 1 is to hold, the same as a* + % +?23
= a?, whereas, if the usual meaning of cube root is upheld,

Va2 (W a2) (W a?) = a? for sure. Hence we define a¥ as /a2, or

as \/ar. But since either of the symbols (aﬂ")a
)

Nk

more generally, a
1

or (aE)P should represent a? if Law 3 is to hold, we decide that
P 1

a® = (@9)? = (Wa)? as well as “ar. Tor instance, 8% = /82
= /64 = 4, and 8% = (\/8)? = 2> = 4. Since there is no con-
tradiction 1n this, or any other arithmetic example of the two
definitions (with the given restriction), they are consistent and
may be used interchangeably, as convenient. The second form
involves less ““figuring’”’ in the above example, while the first
would be better in a case such as 7% = /72 = \¥49.

20. How to treat radicals. The expression +/a is called a
radical of order n. If the radicand a is not a perfect nth power,
v/a is called a surd. Though radicals, as we have seen, may
always be expressed by means of fractional exponents and com-
bined by use of the five basic laws, it is sometimes convenient to
pass directly to the desired result without taking the exponential
detour. We therefore list below some of the laws governing
radicals:

(1) vav'b = vab

and 3

(2) \,,\;g = {/g when a and b are not both negative
(3) Vva="a

(4) V@b = av/'b

Laws 1, 2, and 4 may be proved by raising both sides to the
nth power, applying the proper laws of exponents, and remem-
bering that (v/a)* = a by definition of v/a. To prove (3), we

1 1 1

note that v/\/g = @)™ = a™ [by Law 5, Art. 18] = 2.
Or, WV~/a)™ = [W//a)™* = Wa)* = a, and also (Va)™ = a.
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Illustrative Examples

(1) 2z 4z2 = V/(2x)(42%) = /8% = v/ (2x)% = 2z.
V6da= 564z (=32 [/_a} _ 2

(2) m = A —2x% \ sr2 5(7) - _5'

(3) ‘\/\7 252yt = \3/\/ 25x%yt = \3/\/ (bxy?)? = v/ 5yt

(4) V/16z%y’2° = v/ 16257 = v/ (82%5) (2x%y) = 2zy*V/ 2x%y.

Here we have sketched briefly the considerations beneath the
formal definitions, and we have seen that they are both simple and
logical. But since the human race took, as nearly always, a
rather devious path winding and looping toward this goal, you
should appreciate that goal, now that it is reached, more than
perhaps you do. For instance, going back along the zigzag trail a
little, Chuquet (1484) used 12° for 12; 12! for 12 times a nombre
linear, 122 for 12z2, 123 for 12z3, and so on. Though he shows
that he had some ideas about negative exponents, it was more
than two centuries before the troublesome details were cleared up.
The mathematical historian D. E. Smith states that ‘‘the first of
the writers to explain with any completeness the significance of
negative and fractional exponents was John Wallis (1655).”

EXERCISE 8

Reduce and simplify the expressions in Probs. 1 to 14.

25 21000
1. o8 2. o005
10 gda %
3. :1;—3 4, F X TET’.
25\ a 2h3\ 2
5. (m*)e 6. 2ab)_
(me)12 3a°b
7 ( 4z 3 8 30,2)3 8b3)2.
" \122%2/ "\ 2b/ \9a*
9. (3x)*(6y°)*. 10. (4a?)3(2a)3.
11. (27x)*(2y)°. 12. (3a%b)*(2ab’)%.

13. [(3a%b)*(4a®h®)][(6a%b%)¥(2a%)"]. 14. (2a%)*+ (3x)e+ (6a?)1~a(x?)1 e,
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Prove the statements in Probs. 15 to 17.
16. (24)%(36)% = (2%3%)2.
9(28) (49)]2 ,
16. N = 2274,
[ 2(3)*(7)
(625)(72)
100

Reduce the expressions in Probs. 18 to 23 to common fractions
without negative exponents:

17. 2(5%)(3?).

18. 2. 19. O
20. 1675, 21. [(64)%] .

27\ 17 8%\
2 |(5) ] 2. (%)

Find the numerical value of each of the expressions in Probs. 24 to 29.

24. 8% 4 4% 4 90 25. (79 — 1)5.

26. 4% + 8% 4 7(2)7%, 27. v/32/2.
3

28. V-2 29. /16 + 9.

V'3
Express each of Probs. 30 to 33 as a simple fraction or integer without
negative or fractional exponents:

93a —l/a a —1/b

o 2) . ()"
xmtn \72n platbr/2 |2

32. (xm+2n) 33. l:a;(a—b)/'l:l '

Simplify Probs. 34 to 35, canceling where it is allowable.

(m — n)x~2y3z™*

34. (m — n)xty 28

3712+ 47%)

" 372 — 477%)

36

Change the radical expression in each of Probs. 36 to 47 to the
simplest form.

36. V/3z%y V/ 6xyl. 37. V1240 v/3a2.

38. V/527y* vV 15zt 39. V/16a°b \/4ab®.
40. v/ 2a‘b* v/ 16abS. 41. v/8x%2 v/ 12257,
3h5 3 5,7

49 ‘\/8ab_ 43 \/54.1:1/

"V 2ab? RV
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/1284a'%" A/ 28877
. \/ 4a?b? | 45. 20y
\/302b \/@ \:ygx4y4 \3/12‘,1;!/2
16. = 47. 4
\/Zab ,\/41;2?/

48. Prove that V vVa = v \"75 = %

49. (a) Prove that Va2 + 1> = z + y 1s false.
(b) Can you give special values to x and y for which the statement
in (a) is true?

Simplify each of the expressions in Probs. 50 to 53.

Illustrative Example

In order to apply the above instructions to

3/ A 7 1 ]' I
(1) 4*4/18 + v/27(50)% — (16>/4(\@)

we first simplify each term separately thus:

4%4/18 = (29%V(9)(2) = (2)(3)(VvV2) = 642
V/27(50)% = 3[(25)(2)]*% = 3(25)*%(2)* = (3)(5)V'2
= 1542
1

a1 Y 2o By S S

1o (\/32> 2(\/06)(2)) 2[(4\/2)] - QW
= 8V/2.

Therefore, the expression (1) becomes

642 + 1502 — 82 = 132
50. (50)*% 4 (16)*% — (1),
51. \/48 — (27)% + 4%+/8.

1 -1
62. (4a)*t — (16a)’* +( ) .

25a
0341

B3. (27)*V12 + V/8(27)" — DRzl




CHAPTER III
A SENTENCE AND WHAT COMES OF IT

21. Questions and answers. An equation is a sentence in the
international language of mathematics. It is a compact symbolic
statement which records a result or proposes a question, and in the
latter form it is the detective tool which lies at the very heart of
algebra.

The working or conditional equation 1s a statement that two
expresstons will be equal of and only if certain values, as yet unknown,
are substituted for particular letters used in the statement. Such an
:v —
5 =
reduced to symbolic language the problem which worried Ahmes
of Egypt. Here the statement is true on condition that x = 133
and not otherwise. This number 132 is called the root of the
equation.

Much of the world’s knowledge is packed in formulas, or ex-
working equations which have been solved and, with the perma-
nent answer replacing the one-time unknown, honorably retired
subject to call. For example, if we represent by the Greek letter =
the constant ratio of the circumference to the diameter of a circle
(this fraction, incidentally, turns out to be nearly %%), then the
final answer to the question, “What is the area A of a circle with a
given radius r?”’ is neatly stored in the formula A = #r2

A second form of the equation which records a result or answers
an implied question is the identily, sometimes written with the
sign = replacing the equality sign. An identity is a statement
that a given mathematical expression is convertible by the laws of
mathematics to a second one also given. Or to put it in another

way, an ideniily 1s an equalion which 1s true for all values of the
letters 1nvolved. For example

(@ + b)2 = a? + 2ab + b2
48

equation, for instance, is ¢ + 19, which appeared when we
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as one may discover for himself by straight multiplication. If
the identity isn’t trivial and obvious, such as x = z, it may serve
as a useful reference formula. Many formulas, however, such as
Boyle’s law for gas, pv = ¢, meaning ‘‘pressure times volume is
constant,’”’ are not in any sense identities, since the equivalence of
the two expressions is shown by other than mathematical means.

Having disposed of the formula and identity as types of the
mathematical sentence which are much too important to be ig-
nored completely, we’ll get back to the first type discussed—sen-
tences strewed intriguingly with the scrawled signature of the
llliterate Mr. X. These conditional equations are the main busi-
ness in hand for this chapter. KEach one is a question, and we pro-
pose to show when to accept the implied challenge with confidence,
as well as when to wait cannily for the reserves. The latter, by
the way, are coming up in Chap. IX.

Conditional equation sentences are stmple or compound accord-
Ing to the number of unknowns. The single unknown is usually
represented by x (as a matter of custom, not necessity), and sev-
eral unknowns by letters near the end of the alphabet. Examples
of the simple sentence are 2z — v =4 or 22> — 3x + 1 = 0.
The compound sentence is illustrated by the symbolic translation
of the question: “What are two numbers whose sum is ten and
whose difference is four?”’” We translate thus: “ z 4+ y = 10;
x —y = 4.” The two parts of this statement are usually called
simultaneous equalions and are given as separate assertions
bracketed together, but we prefer to think of them as the con-
stituent parts of a compound sentence which gives us the neces-
sary clue to the required pair of numbers. Such sentences will
be dealt with later.

22. We take in less territory. First on our program is the
simple sentence. This comes up in the solution of many every-
day problems—such, for instance, as those which the student has
already met. In Exercise 2 his task was to reduce the English
statement of each problem to a mathematical sentence or equa-
tion. It will be noticed that in each case = appeared unencum-
bered with exponents, or that, in other words, the exponent one
was understood. In the next article we’ll consider equations
containing x? with or without an accompanying . Those con-
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taining 2%, z~2, ete., will be dodged consistently this side of our

chapter with the promised reserves. The symbolic statements
of most practical problems one meets will be found to involve z
with exponents which are positive integers only, and since the
study of such equations is especially useful we’ll restrict the rest
of this chapter to their consideration. And now, for the sake
of clarity, we’ll define our restricted subject in formidably precise
terms.

A rational integral equation is one of the type

AGQx" +ax" '+ ---4+a, =0
wn which the a’s are fixed numbers free of x and n 1s a positive integer.

The a’s are called coefficients, and represent integers usually,
though not necessarily.

If n = 1, the sentence is a first degree or linear equation (con-
nected, as we shall see, with a line). If n = 2, it is second
degree, or quadratic. 'The adjectives ‘‘rational” and “integral”
signify respectively that the exponents of x are whole numbers
and are positive. The origin of this usage is suggested by
numerical examples such as 3”*, or 4/3, which is not rational
(see Art. 25), and 372, or 3, which is not an integer.

Another formal definition is needed about here, to wit: Equa-
trons which are satisfied by the same values of the variable are called
equivalent.

Now, with the necessary formalities out of the way, we can
proceed.

23. The linear equation and how to subdue it. Please stay"
on the side lines while we dispose of the following sample assertion:

(1) Multiply both sides of the equation by 4, the least common
multiple of the denominators:

92 — 3 = 22 + 11
(2) Subtract 2z from both sides:

Qo — 3 — 22 = 2z + 11 — 22
or
i — 3 =11
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(3) Add 3 to both sides:
x—3+3=11+43

or

1x = 14

(Evidently if it had been convenient we could have subtracted

just as easily.)
(4) Divide both sides by 7:

r =31t =2 (answer)

and we know we're right when we substitute x = 2 back in the
original equation, getting an identity. The reader should check
this for himself.

Notice that the various steps in the solution were allowable
under Axioms 1 and 2 already given (about equals added to and
multiplied by equals, etec.), and by those below:

Axiom 4. If equals are subtracted from equals, the remainders
are equal.

Axiom 6. If equals are dinnded by nonzero equals the quotients
are equal.

Those statements certainly look plausible enough, though you
should remember that we have not proved them. We can see
the reason for the adjective ‘‘nonzero’’ in Axiom 5 when we try
dividing two numbers by zero, thus:

0 X 2 = 0 X 5 (true, since zero times any number is zero).
Then

X2 _BXDH
. o

To avoid such difficulties, it is agreed by algebraists that division
by zero 1s barred, since any fraction in the form a/0 does not
represent a number for any choice whatever of a.

Another point worth noticing is that the successive equations
we got in our solution were not the same at all. For instance,
the two sides of 7x = 14 are different from the sides of x = 2.
How, then, could the final one tell us what value of x will work in
the first one? The answer is that any number which, when it 1s
substituted for x, makes the two sides equal in the first sentence
will keep them equal in the sentences that follow. In other

or 2 = 5. (Can you see where we slipped ?)
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words, the process of solution consists of getting a succession of
equivalent equations in which the final one (x = 2 in our example)
makes perfectly clear the value of x necessary to balance the two
sides of all equations above it, including the first one.

We should be missing a golden opportunity if we did not, at
this strategic spot, point out with all the emphasis at our com-
mand the onc infallible guide to the solution of equations. To
this guide the faltering student should by habit retreat in
moments of doubt:

Golden rule of algebra. Always do to the lefl side what you do
to the right side, and 1ice versa.

And by that temporarily vague “do” we mean: add to it or
subtract from it anything you please, and multiply it or divide it
by any number you please except zero. One who observes this
practical rule may not get to his destination (the solution) by the
shortest route, but he will at least be staying on correct ground
where light may break through at any time, and he will not do
this awful thing that follows: “2x = 3, hence + =3 — 2 or 1”
(this i1s a sample of the more pitiful ‘“‘reasoning” by the gropers
without a chart). Students who were equally weak but were
more devout followers of the algebraist’s golden rule would never
have divided the left side by two without doing just that to the
right side.

We have dwelt at some length on this seemingly trivial point
because i1t i1s the essential guiding prineciple in the mechanical
solution of algebra’s fundamental problem—the tagging of un-
knowns tied up in equations. Itxperience has shown that time
spent upon this principle may be subtracted from that frittered
away otherwise in the wastelands of mathematical error.

EXERCISE 9

1. Give an example of a rational integral equation which is (a) linear,
(b) quadratic, (¢) of the sixth degree.

2. Give three equations which are different from but equivalent
to each of your three cquations in Prob. 1.

3. (a) Solve the equation 3(x — 4) + 2 = 3 — =.

(b) How many different equivalent equations did you get in your

solution of (a)?
(c) Prove that your solution of () is correct.
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Solve the equations in Probs. 4 to 23 and check your answers.

4. 3z — 2(x — 2) = 5x.

b. 20 — 7 — 3(2x — 5) =4 — 2z.
6. 5z = 4(3x — 6) — 3(2x — 7).
7. 22z — 3) — 3(4x — 15) = 2z(z — 3).
3 1 2 1
8.2111—?4':' —+6 9§+§—%“

10. —(4:1, — 8) = 4(— — i—) — 2(x + 5).

: 3 2
S A R R

)-P-IE-D

12, 3(:1: — %) = 2(z — 1) — 3a.

2 3 3
A3 — =] = <(4x — 2(x .
13 3(313 2) 2(-10, + 1) (x + 2)
3 20y = 3T L
14, 1(2:0 — 3) — 3(33, + 4) = 5 2(0.% + 1).
x—5  1lxa — 12 3x —2 bHr — 27
16. 8 T 6 2
2 1 1
Sy Rl —1=
17 1 10 1
"2x—1 2+ 3x—2 2+2
4 2 6
B i teras e—2-"
1. 3 2 1

w—1 2r+1 243
20. ax + a* = bx — .
ab + be + ac

abc

21, 24 T 42 =
a b c
22. a*r — «® = V’x — 2ab + D2

T r 2ab

23'a—b_a+b_(t'3—b‘~"

24. When a boy pedals his bicycle at the rate of 8 miles per hour
it requires 6 min. longer for him to get to school than it does for him

to return to his home at the rate of 10 miles per hour.

the school from his home?

How far is
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25. Tom, Dick, and Harry have 100 marbles between them. Tom
has % as many as Dick, and Harry has as many as both of the others.
How many does each have?

26. Sam and Jim were operating lemonade stands in the same block,
and Sam was getting 6 cents per glass for his product. When Jim
had disposed of all but 30 glasses of his supply, he sold out to Sam for
3 cents per glass. After a bit of figuring, Sam saw that he could mix
the purchased stock with his own and sell the mixture for 5 cents per
glass with no change in his total profit. How many glasses did Sam
have when the trade was made?

27. A farmer paid two laborers a total of $117 for their services. If
one of them worked 14 days longer than the other and the daily wage
was $6, how long did each work?

28. A salesman left Briggs at 8 A.M. for Atherton, where he had an
appointment for 4 p.M. He figured that if he averaged 40 miles per
hour, he would just make it. At a highway intersection he misread
the sign and traveled 30 miles in the wrong direction. Upon discover-
ing his error, he increased his speed to 50 miles per hour, continued
to Atherton by way of the intersection, and was just in time for his
appointment. How far was the intersection from Briggs?

29. If Jim can hoe a garden in 2 hr. and Peter can hoe it in 3 hr.,
how many hours will be required by the two of them working together?

30. A does a piece of work in a days and B in b days. (a) How
many days does it take the two of them? (b) Substitute in the formula
obtained in (a) to get the result when ¢ = 8 and b = 10.

31. If 2 qt. of water and 1 gal. of milk containing 3 per cent butterfat
are added to 2 gal. of 4 per cent milk, what is the percentage of butterfat
in the resulting mixture?

32. Point out the error in the following reasoning:

Let
a =0b
Then
a? = ab (Axiom 1)
Also,
a? — b = ab — b? (Axiom 4)
(@ — b)(a + b) = bla — b) (factoring each side)
Therefore,
(a+0b) =10 (Axiom 5)
Hence,

b+b=0b (since a = b)



A SENTENCE AND WHAT COMES OF IT 55

or
2b = b
Therefore,
2 =1 (Axiom 5)
33. (a) Solve the equation
4 1 2
G-+ D Tz+l z-=1_"
(b) Substitute your solution in (a) and show that it is not satisfied.

Explain.

24. The “quadratic” and how to tame it. Consider now our
formally defined rational integral equation with n = 2. The
general equation then becomes

agt? + ax + a, = 0
of which a special case 1s, for example,
2224+ 92+ 5 =0

Our problem is to find a numerical value for £ which will make the
left side of the equation equal to zero. The first solvers probably
“beat around the bush” for some time, but we’ll give you the
benefit of their experience and make only motions that count.
Watch that guiding principle.

(1) 2224+ 92+ 5 =0
We take off here.
(2) 2¢2 4+ 9z = —5H

This is called transposing or, in this case, bringing 5 across the
equality symbol and changing its sign. But notice that it really
amounts to subtracting 5 from each side.

(3) '+ BT = —%

(Divide both sides by 2, the coefficient of x2.)

Now comes the step which few students would find easily for
themselves. If the left side were a perfect square, as in z? = 4,
we could solve the equation easily by extracting roots, thus:
t=44v/4=2 or 2= —+/4=—2 (or, more briefly,
r = 4++4/4 = +2). Since we can add any number we please
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to both sides, let’s try to find one which will make the left side
of (3) a perfect square. The difficulty is overcome when we
notice that the third term, a?, of the perfect square z? 4+ 2axr + a2
= (2 + a)? i1s merely the square of one-half the coefficient of z in
the second term of 2% + 2ax. Comparing this with z? 4 3z,
we see that a? is in this case [$()]2 = ()2 = $L. Hence we fall

back upon Axiom 2 and add 1§ to both sides of (3), thus:

9 81 5 81
) TR T 2T
or
0\ 40 81 41
®) (e+5) = T+
Finally,
9 /EI__ V41
() TTET ENE T T
so that
9 . /41
¥=Tat T
or
Lo 9 _v4
YT 71T g

For the present we’ll think of 4/41 as the number between 6
and 7 whose square is 41. We shall soon have more to say about
such numbers, but until further notice they should be left as
radicals and not changed to their approximate decimal forms
(even if, as we optimistically assume, you know how to do this).

At this point you should hitch up your mental suspenders and
prove to yourself that you're getting a certain amount of skill in
algebraic manipulation. Try substituting

B _g+v£_ —9 + /41
T="3g7T g = 4

back into equation (1), remembering, of course, that (v/41)% may
be replaced by 41. Perhaps something will go wrong at first, but
the sky will clear at last if you’ll try as the copybook advises.
The bothersome /41 will conveniently expire at the hands of an
obliging negative counterpart. After convincing yourself that
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the two sides of the equation really do balance, you’ll probably

=9 _4\/H Then
you'll feel a pleasant glow of satisfaction and will realize that
the proper question to ask yourself about any answer is simply
“Does 1t work?”” The answer of a fellow student (or, for that
matter, the one in the back of the book) may occasionally, at
least, be incorrect; what you should try to develop is the ‘“let me
see for myself”’ attitude. When you have made this attitude
your habit you will have passed the first milestone on the road to
mathematical self-reliance.

Now that we have untangled our first quadratie, we’ll have an
intermission, and use it to see how the Greeks, who liked geo-
metric pictures of things, looked at the important unsnarling
operation of ‘‘completing the square.” Diophantus suggested .

have less trouble with the second root, z =

je- X —><-- =@ —->
X ' .
( 2
e
X
I
! 2
al| ax ax a
[}
!
h
Fig. 6. IF'1g. 7.

that if we think of 2 and a as lengths, then the expression 22 4+ 2ax
represents the area of Fig. 6. It is easy to see that we “com-
plete the square’’ by filling in the ‘“‘southeast’ section, as in Fig. 7.
Obviously, the big square has a side equal to z 4 @, so that its
area 1s (xr + a)2.

The next question that comes up is whether we can improve
upon the above method for solving quadratics. When a process
1s repeated so frequently that the worker can carry it through
with little mental effort, it is said to become ‘“mechanical.” In
industry a machine is.invented for such an operation; in mathe-
matics, we have the formula. Certainly a formula is needed here,
where, as a matter of routine, we always

(1) transpose the absolute term (the one not involving x) to
the right side;
(2) divide each side by the coefficient of x?;
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(3) complete the square;
(4) extract the square root of each side;
(5) solve for z, 1.e., get 1t off by itself on the left.

These operations, being repeated with monotonous regularity,
set, the stage perfectly for the triumphant entry of the formula.
To get it the mathematician resorts to an old but dependably
effective trick. Instead of special numbers connected with
particular problems, he uses letters to stand for any numbers
whatever. Then the infinite array of equations, such as 32 — 2z
+ 5 = 0 and 9,2862% 4+ 11,000,001z — % = 0 (customary
samples, like the first one, seldom give a fair idea of the extensive
ground we're being equipped to cover), are all represented by the
simple and innocent looking equation.

(7) ax* +bx+c=0

Just picture them in your mind’s eye—quadratic equations by the
millions and billions, covering row after row of fine seript on a
mile-wide page stretching endlessly beyond the sun and stars,
with coeflicients as big or little as you please—all to be solved
neatly in one fell swoop when the roots of (V) are torn out and
laid away in a formula! You should not leave your imagination
behind if you wish to appreciate the wonders of mathemadtics.

Watch closely, then, while we dispose of an infinite horde with
a few simple twists of our axioms. The technique is ready-madec
for us with our very first conquest of the particular case. We
need only apply it for the last time with the literal coefficients
replacing the numerical ones, and the thing is done. All right
then—begin.

(8) ax:+bx+c =0

We're off! Now transpose:

(9) ar® 4+ bx = —c¢

Now divide:

(10) e 4 (D) = €
x )= 3

Next, of course,

() - e )
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or, simplifying,

b \? c b?
(12) (c+52) = S+
4ac b?
T Tie T i
b — 4dac
4a®
(The road is easy, you see, if the bumps are taken slowly.)
b b* — 4dac
(13) X + 2a o i 4a2
_ j—_\/ b2 — 4dac
2a
and finally
—b /b — dac
(14) X =g T %4

There. The second degree equation is solved, once and for
all. It has two answers, which we’ll call r and s for convenience,
thus:

—b Vb2 — dac
Tzﬁ-{— 2a
and
_=b /b —dac
$=9q T 2a

The shorter form (14) is called the quadratic formula. To get
two solutions of a particular quadratic we simply replace the.
three letters in the answers by the numbers they represent in the
given case. For example

222 - 3x—4 =0
1s the same as
2224+ (=3 + (—4) =0
sothata = 2,b= —3andc = —4
Then

s =(=3) + V(=3 — @) (=4 _3++V9 + 32

2(2) 4
3 1+ +/41
4
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3 — VAL
4

But while we have now found a formula which will work in all
cases, 1t does not follow that all quadratic equations should be
solved by use of 1t. An elephant gun 1s somewhat ludicrous when
used on a chipmunk. On the same principle, given a quadratic
equation of the form aax?+ bx + ¢ =0 in which (a) b =0,
(b) ¢ = 0, or (c) two linear factors of the left side may be seen
easily by inspection, 1t 1s best to leave heavy equipment in the
rear and do the job without fuss and ceremony. For instance:

Similarly, s turns out to be

Example 1. Solve 92> — 4 = 0.
Solution: 2* = §;x = + 2.

Ezxample 2. Solve 32> + 5x = 0.

Solution: Factoring the left side we have 2(3x + 5) = 0. This is
satisfied when either factor is set equal to zero, since O(any number) = 0.
Thusz =0and 3z +5=0o0rax = —43.

Example 3. Solve 22> — 2 — 3 = 0.
Solution: Here (2 — 3)(x + 1) = 0, so that x = 3 or —1.

In the following exercise the student should apply these shorter
methods wherever possible. However, he should not spend much
time hunting for factors which are not readily apparent to him.

EXERCISE 10

Find the constants which, when added to the binomials in the respec-
tive parts of Probs. 1 to 10, make the resulting trinomials perfect
squares. Show the squares obtained.

Example: x* + 2x. The constant 1s (4 of 2)> = L. Then

-

1. 22 + 6. 2. 2° + 4ax.

4z Oba
2 . 2 Dt
30 x 5 4. :L + 7
3x Sz
2 _ 2 __
b. x i 6. x G
7. 22 + _abx- 8. 22 — 2(m + n)x.
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11 to 20. Write “= 0” after the given function in Probs. 1 to 10 and
solve the resulting equation by the shortest method.

Solve the equations in Probs. 21 to 30.
21. 22 — 2 = 0.

22. 922 — 25 = 0.

23. 22 —x — 2 = 0.

24, * 4+ 22 — 3 = 0.

2b. 22! —x — 3 = 0.

26, 422 +4x — 3 = 0.
27. 62® — 13z + 6 = 0.
28. 152 + 11z — 12 = 0.
29, 8x> — 10z + 3 = 0.
30. 2a%x® + abx — b*> = ().

Solve for x the equations in Probs. 31 to 40.
31. 32 + 9 = 2% 4 25.

32. z? —

2 3
3 7 2 1 T+ 2
B —gtatl=gat—
=9 1 _2+1 ) 2z
3. v+ —3 2 S

3b. ma® 4+ n = na* + .
36. 2* 4 2ax + b = (L(Z:L‘ + g)

1 1
3. —~ — — = 1
1 1 _:v'~’—|—2a_,
38':c—a r+a 22— a?
a x Qa* — a*?
¥ eteT Taw

40. x+4)@x+5) —5=3>+ D+ 2) + 1.

Solve Probs. 41 to 54 by completing the square:

41, 2 4+ 42 = 21. 42. 2 — 6 = —uo.

43. 8t = 4 — 3. 44. 3»* = 3r 4+ 6.
v 5 20 2102 310

45.3-—37—73-- 46.?4-7-—15.
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. 64222 31 48. 32 4 x4 5= 22
3r 4 19 + 6 . ¥ _ 4 -1
49. _ﬁ—{r&r-lr.r-ﬂ-l— 5 50. r 3= 19
51. Sar — 2r° = 2. 52. 1 — L = 2
m A
- _ 3ars 13 2«
83. »* 4+ ar — ab = br. 4. r 3 3
Solve Probs. 55 to 64 by use of the gquadratic formula:
55. r* + 2r — 3 = 0. 56. 3r* — 4r + 1 = 0.
57. 2x° 4 5r + 2 = 0. 88. r —2r*+ 1 = 0.
5. 3 4+ r =1~ 60. 1y = 24* — 7.
61. 3 — 5 = 2. 62. 2r* — x4 =1
63. 6+ r —2=10. 64. 5z — Tz 4+ 1 = M.

Solve Prohs. 65 to 70 by formula:
Example: 26 — 5rr +d =mr* —ex+ g+
Grouping in powers of x
2 —mr*+ex—r—r+d—g=0
or
2—mxr4+(e— 3w —lix+id—gi =0
Evidently
a=2—mb=e—r—1l.c=d—g
and

—ie —3r — 1y = e —5r — 1 — 42 — mitd — q)
2(2 — my

I =

65. ar* — bxr — ¢ = (.
mrc F nr +=r = 0.
az—r=2-—bx-ﬂ-c-
mx*t+nr+r =14+ 2r + 3.
4+ 2y — 3y = 1.

ar*+br4+ec=r+1+

3?38.31’.3

Solve the quadratics in Probs. 71 to 76 and check your solutions
by substituting each answer in the left side of the equation.

1. 24+ 4x — 5= 0. 72. 3r* — 7 = (.
73. 324+ 2z — 1 = 0. 4. 2r* 4+ — 5 = 0.
75. 324+ 6x4+2=0. 6. 4+ 3z — 5= 0.
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77. Find the side of a square whose diagonal is one foot longer
than its side.

78. A tinsmith wishes to cut a square piece of tin such that the
number of feet in the perimeter is equal to the number of square feet
in its area. Find the length of the side.

79. Two boys with only one lawn mower contract to mow a rec-
tangular lawn 50 by 120 ft. How wide a strip must the first boy
mow around the outer edge in order to cut half of it?

80. A college boy hitchhiking home made 100 miles in 2 hr. He
rode 45 miles in one car and 55 in another which traveled 10 miles per
hour faster than the first. TI'ind the speed of the cars.

81. A man and boy, working together, can hoe a field in 12 hr. The
man working alone could have hoed it in 10 hr. less time than would
have been required for the boy. How long would it take each?

82. When a man became violently ill on a barge floating down the
Missouri, a power boat put out from the barge, went downstream to
a city 30 miles away, and returned with serum, meeting the barge
when 1t had floated 10 miles downstream. If the current flowed 6
miles per hour, what was the speed of the boat?

83. The theory of relativity was formulated following an experiment
which was based on the simple principle that a boat requires more time
for making a round trip up and down a river than it needs to go the
same distance In still water. If the current flows 10 miles per hour,
at what speed would the time required for a round trip on the river
be twice that required for an equal round trip on a lake?

25. We meet a stranger. It is about time to do something
about those numbers like v/31 and /41, in which the radicand
is not a perfect square. A simple one to begin with is 4/2, which
comes up in the solution of 22 + v — ¥ = 0. We define it as the
number whose square is two, and find with little trouble that
1t 1s between 1.4 and 1.5 since (1.4)2 = 1.96 < 2, and (1.5)?
= 2.25 > 2. 'The ancients did a lot of ‘“‘scratch work’ on their
sand tables trying to find the fraction between 15 and 1§ which
would exactly do the trick. It was evident that 4/2 should be
called a number of some kind, since 1t was represented geomet-
rically by the diagonal of a square with unit sides, and it seemed
desirable that the general term ‘“number” should include all
words used to represent particular points in the line below:

0 % 1 2 and so on
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There was surely a point between 1 and 2 which was distant from
the zero point by the length of the unit square’s diagonal; and
therefore someone sufficiently bright should be able to find the
proper ‘“‘fraction,” or quotient of two integers, to represent it.
The i1dea seems plausible enough, and some bright Greek boy
might have been expected. under ordinary circumstances. to turn
up with the necessary quotient. The fact that no one did =o
need not be set down in dizparagement of the Greeks because, as a
matter of fact. the long-sought fraction simply does not exust.
And anyway it was a Greek—Euelid—who pointed out this sur-
prising fact. He did i1t about as follows:

Suppose v/2 = p ¢. where p and ¢ are integers and the fraction
is reduced to lowest terms. This means that all common factors
in numerator and denominator are divided out, as in the example:

30 2(3)/5;

42 1213)i7)

-1 Ot

Then either p or ¢ must be odd. since if both are even we may still
divide out the common factor 2. Resorting again to our indis-
pensable axioms, we have

N2 = p
after multiplying both sides by ¢. Hence
2¢2 = p’

since squaring both sides amounts to multiplying equals by
equals. Therefore p?is even, since it iz twice an integer. But if
p?1s even so must be p, since an odd number may be written in the
form 2n + 1,and 2n + 1)2=4n> +4n 4+ 1 = 2(2n> + 2n) + 1,
proving that the square of any odd number is odd. Hence p = 2s,
with s an integer, and we have

[ 8]

2 = (25)? = 45
or

qE — 282

This makes ¢ as well as p necessarily even, in spite of our
original premise that at least one of them was odd. Where’s the
hitch? When the conclusion of a mathematical argument is as
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absurd or impossible as the reasoning is flawless, the trained
mathematician automatically turns his ecritical gaze backward to
the premise which started the argument on its way. He knows
that the trouble must be in the ““if”’ part, and he uses the impres-
sive Latin phrase reductio ad absurdum, whose meaning should be
obvious, as a sort of a death chant over the ill-fated premise.

And now, if you’ll look back a bit, you'll see that we said
“Suppose /2 = p/q,” ete. Evidently our “supposing”’ en-
thusiasm got us into a pardonable error from which we were
ultimately saved only by the reductio technique. Having
hatched up a premise which collided mathematically with its
conclusion, we can announce with confidence the eternal falsity
of the premise and thus get a neat headlock on reality from the
rear. We know something for certain now, and that is that /2
cannot be expressed as the quotient of two integers.

But there it 1s. Not an integer, and not the quotient of two
integers, v/2 nevertheless has a faithful geometric representation
as the diagonal of a unit square, and hence must be admitted into
the fold of numbers. Here 1s a whole extensive class, including
/7 and V9 (as well as outlanders like =, the ratio of the cir-
cumference of a circle to the diameter), which calls for a new
adjective and a new definition—such as this:

An irrational number 1s one which cannot be expressed as the
quolient of two tntegers.

It follows, incidentally, that an irrational number cannot be
expressed exactly in decimal form. If, for instance, v/2 were
exactly 1.4142, it would be 14,142/10,000, or the quotient of two
integers. By the same token, any number representable in
decimal notation with a finite number of digits must be rational.

The account of the struggle to develop irrational numbers is
one of the most interesting chapters in the history of mathe-
matics. The combined genius of Dedekind and Cantor (working
in the latter part of the nineteenth century) brought about its
complete solution. Unfortunately, space demands that we leave
the fascinating sidetrack incompletely explored, and turn back
to the main highway.

26. Final touches on the real number system. Just what,
then, do we mean by a number? The concept seems to have
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altered no little since we graduated from the finger-counting, or
positive-integer, stage and began to deal with fractions, negative
numbers, and slippery irrationals. A formal definition is next
on our docket; but it will be given much more meaning by a pic-
ture of the so-called axis of real numbers, looking like this:

Noend here —3 —2 —1 0 1 2 3 or here etther.
o . . . . . —>

(On the side: That adjective real is a technical word to dis-
tinguish the numbers we have met up to date from some others,
called ymaginary, which will turn up in the next article.)

It should be noted that there is a place on the line, though not
on the paper, for any positive or negative integer whatever.
Evidently there are many points in between those representing
integers. If we agree that each of these points shall represent a
number, then we can say:

A real number 1s a posilive or negative quantily whaich corre-
sponds to one and only one point on the scaled axis of reals.

A rational number 1s a real one which can be expressed as the
quotient of two integers. We reserve the privilege of calling it
just a fraction when we feel like it. For instance, 2, 4, and 7
(or 1) are both rational numbers and fractions; but 4/2/3 and
1/4/5 cannot qualify.

It is a simple matter, of course, to find the points on the axis of
reals corresponding to any given fractions, and by choosing in-
creasingly large denominators we can get two such points in any
part of the line as close together as we please. The point represent-
ing v/2, for example, can be boxed in by the closely paired dots
standing for 1.4142 and 1.4143—two rational numbers differing by
one ten-thousandth of a unit. Tightening the snare still more,
we find an unending series of other rational pairs (obtainable by
the root-extraction process as well as in other ways) representing
closer and closer dot-pairs with the 4/2 point still enmeshed be-
tween them but never, as we have shown, coinciding with either
one of 1ts guards. In fact, though the points standing for fractions
are clustered in unlimited number in any minute segment of the
line, there remains an infinity of other dots in this same segment
which, like the 4/2 one, represent the irrationals. The latter are
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convenient ‘‘hole-fillers,” so when we combine them with the row
of densely packed points standing for rational numbers we can
say that any point whatever on the axis of reals is representable
by one and only one number.

This completes the list of the kinds of real numbers, but for the
sake of the record we’ll mention here that by another classifica-
tion, which includes the to-be-described imaginaries in its scope,
numbers are separated into two groups, the algebraic and the
transcendental. The former are the roots of rational integral
equations (for instance, /2 is one root of 22 — 2 = 0) and the
latter, including the famous = in their ranks, are not. That is to
say, there does not exist a single equation, among the infinite
number of the type deseribed, which contains = among its roots.
We realize that this unbolstered statement may seem a bit
sweeping, but it is just one of those things which have been proved
by methods too advanced for consideration here.

27. We are forced to invent. One would think that mathe-
maticians would be satisfied by the endless array of real numbers
at their disposal. But, as luck would have it, that formidable
set failed to provide them with the kind of numbers they needed
for roots of certain quadratics—even such a simple, innocent-
looking one as x%* = —1. Solving this equation they got
v = ++/—1 formally, but what actually? Certainly not +1 nor
—1, since (+1)2 = (—1)2 = 4+1and not —1. At first it seemed
the sensible thing to say that equations whose formal solutions
involved square roots of negative numbers had no actual solutions,
which was true enough if roots had to be numbers of the kind
known. Then the algebraists perhaps got to thinking that it
would be better for their prestige as solvers if they could produce
solutions in every case. Since they already had them in a sort of
written mathematical nonsense such as +/ —17 and the like, it
was necessary only to assign meaning to the gibberish, or, in
other words, invent a new kind of number, in order to increase
tremendously their solving range.

The idea does not seem startlingly brilliant now, and we can
appreciate its ingenuity more when we learn how long 1t was
incubating. One of the mathematicians who first faced the
problem was Chuquet, who in 1484 took the ‘‘no root’ position.
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Bombelli suggested, along about 1550, that the mathematical
outlanders be admitted to good standing. Girard, Wallis, and
Newton in the sixteenth and seventeenth centuries began to use
v/ —2, v/ —3, ete., without compunection. In 1777 Euler sug-
gested the use of ¢ for v/ —1, and the thing was done when, in 1801,
Gauss began a svstematic use of the symbol. We now say that

v/ —16

5 which comes up as the originally

the quantity 1 +

meaningless root of a? — 2x 4+ 5 = 0, 1s a number, albeit an
imaginary one. The part v/ —16 is simplified thus: v/ —16 =
V16(—1) = V/164/—1 = 4.

That symbol ‘2’ turns out to be unexpectedly potent, with
astonishing adaptability. With 1t we can express not only square
roots, but also fourth roots, sixth roots, and in fact any even roots
whatever of negative numbers. For example, remembering
that 1> = —1 by definition, we find that one number whose
fourth power is —1 is (1/4/2)(1 + 1), since [(1/4/2)(1 + )]
=+1+2i+11)=31+2t—1) =1, and hence [(1/4/2)
1+ )] == —1.

If we seek the point of intersection of two curves which really
do not cross, the usual algebraic method (to be explained later)
comes through tractably enough but leaves us with an ¢ on our
hands. In fact, whenever there are conditions in a problem
which cannot be satisfied by any members of the real number
system, the ubiquitous ¢ usually comes gallantly to the rescue
and, by its very appearance, warns us of the physical impossi-
bility of the conditions. We can then explain learnedly that there
1s no real solution, and yet show that we are equal to any task by
producing an 1maginary one.

If, however, one gains the impression that ¢ 1s a device for
saving the face of mathematicians, he is as wrong as it is possible
for a freshman to be, and this is very strong language. The
development of mathematics through the use of the imaginary
concept has been of inestimable practical service in many fields, as
in mechanies, physics, and engineering—particularly electrical
engineering. 1o be sure, the perverse engineers, having adopted
1 as their symbol for electrical current, callously replace the
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mathematicians’ sacred letter by a plebian 7, but it’s the same
idea in a different dress.

Numbers of the type a + b7, where © = v/ —1 and a and b are
real, are called complex. When b is not equal to zero (written
b # 0) they are 1maginary; when b = 0, they are real; and when
a = 0 and b # 0 they are pure imaginaries. Thus they provide
a comprehensive kind of number system, since all real numbers
are Included as special cases. The wide field of mathematics
dealing with them is called the complex variable field. Geo-
metrically, they can all be represented in the plane containing

- (0+20) » (1+21)

~(0+1) o 2+1)

o (—2-y)

o 1—-20)
14, 8.

the real axis (Fig. 8). We'll close the subject for our purposes
here, though we have barely opened it.

EXERCISE 11

1. A theorem in plane geometry states that a line segment drawn
from any point on the circumference of a circle perpendicular to a
diameter is the mean proportional between the segments of the diam-
eter. Show how this theorem can be used to construct a line of length
V35 vV5;vV8; v/n (n an integer).

2. By use of a series of right triangles show how to construct a
line of length 4/5 units. (HinT: start with a right triangle whose legs
are 1 unit in length.)

3. In the equation 2? 4+ bx — 1 = 0, which of the integral values
of b, from O to 5 inclusive, give irrational roots?

4. In the equation 2> + = + ¢ = 0, which of the integral values
of ¢, from 0 to 5 inclusive, give imaginary roots?
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Solve Probs. 5 to 10, expressing the answers in terms of 1.
b. 22+zx+1 = 0. 6. 222 —z2z+3 = 0.

7. 5 + 2> = 0. 8. 5 =212 — a2
9, 22— 2x+ Lk =0. (k> 1). 10. 2>+ 44—k =0.(k < — 4).

11. (a) Consider the two following contradictory results:
V=4V =1 = V(=4 (—4) = V+16 = +4
V=4 —4 = (20)(21) = 42 = 4(—1) = —4.

(b) Which of the two answers above is consistent with our definition
of the square root?

(¢) In view of your decision in (b), formulate a rule for multiply-
ing square roots of negative quantities and use this rule to find:

(1) v/ —9+/—16; (2) vV =3V —12;
(3) vV =2V —5; 4) v/ —10v/—1.
Find the products indicated in Probs. 12 to 17.
12. B+ —=3)(2 — vV —12). 13. (20 + 4)(3 + 1).
14. 4 — v/ —2)(1 + 1/3). 16. (27 + 3)(4 + 59).
16. \/21(5 + v/ —3). 17. /37 =41 + v/ =5).

IFind the quotients indicated in Probs. 18 to 22, expressing the
answer in the form a + bi.

Example: 9 4+ 1/ —3 _ 2+ i3 _ @2+ z\/g)(‘% + iv/5)
3—v =5 3—iv5 (3-=1V5)3 + V5

6 + V15 + 3vV3 + 2v5)i _ 6 — V15 + (3V/3 4 2v/5)¢

B 32 — (1V5)? 9 — (—9)
_ 6—\/ﬁ+(3\/3'+2\/5 ;
B 14 14
18. 2. 19, L . c0. L=V 4
7 T+ 1 14+ =5
91, 3=V =3, 22, 2_.
3+V—12 14++v-3
23. Noting that ¢ =7, 2 = —1, ® = 1(¢?) = {(—1) = —1, 7 = ()
=1(—1) = — (%) = —(—1) = +1, find similar simple forms for 7

28, 7, 28, 4%, 219, ¢!, ¢1%.  What is the general rule which will enable you

to express <" in simple form when 7 is any positive integer ?
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24. Demonstrate algebraically that the conditions of the following
problems are impossible.

(a¢) Find the side of a square such that its perimeter in inches is
5 units more than its area in square inches.

(b) Find the side of an equilateral triangle such that its altitude
in inches is v/3 more than its area in square inches.
26. In (3), Art. 19, we specified a > 0. In (/—4)3, replace v/ —4
by 2¢ and show that (\/—4)% = +/(—4)3
5 \ 3 o5 \3
26. Show that (— é — V%’L) = (— % + \/§z> = 13 =

27. Use the method of Euclid to prove that v/3 cannot be expressed
as the quotient of two integers.

28. Side lights on quadratics. The amateur detective may
find ample opportunity for practice in hunting and interpreting
clues in connection with the unknowns snarled up in rational
integral equations. It may at first seem useless to draw inferences
about the nature of the roots of a given quadratic when the actual
roots themselves can be found with little more effort. Our justi-
fication for playing the Sherlock role soon appears, however.
Aside from the fact that the information obtained in the detective
process 1s interesting in itself as well as suggestive of profitable
lines of attack on the higher degree equations to be met later, we
find, surprisingly enough, that there are at least two applications
which expedite the solution of the quadratic itself. These we
shall mention after setting forth the pertinent information.

Consider our formula portrait

_ —b Vb — dac
2a 2a
of the elusive Mr. X buried in the equation
ax?+ bxr +c =0

The portrait shows him to be a two-faced indix}idual; and if we
employ a letter alias for each of his aspects, we have
V' b* = 4ac

2a

—b
"= T

and

—b  /b* — dac

2a 2a

(vA]
I
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If a, b, and ¢ are integers or fractions, we can classify at once
the number-type of r and s by examining the quantity b2 — 4ac.
Since this last expression is an important clue in our analysis, it is
honored with the special name of discriminant, and is often
represented by the letter D.

Evidently, if D=0, »r = s = —b/2a are identical twins; but
if D = 0, the two roots are necessarily unequal, since the condi-
tion that r = s, or that

—b VD _—b_ /D

2a 20  2a 2a

requires that D = 0. If D is negative, its square root i1s imag-
inary, and so, therefore, are r and s. Finally, if D 1s positive,
r and s are seen to be rational or irrational according as D is or is
not a perfect square.

Another interesting and sometimes helpful result 1s that the
sum of the two roots of any quadratic is the negative of the
quotient of the coefficients of x and 22 and that the product of
the roots is the constant term divided by the coefficient of 2. In
symbolic language, for the quadratic ax?+ bx +¢ =0, r + s
turns out to be —b/a, and rs to be ¢/a. To prove this, we need
only do the necessary adding and multiplying of the foregoing
values for r and s. With the help of this formula we can tell
almost instantly that the sum of the roots of 22 — x + #}5 =
(for example) 1s just plain one, though the roots themsel\ es are
such cumbersome imaginaries that the feat 1s impressive for one
not in on the secret.

And now we are ready for the applications. By way of one
example, since we find that, for the quadratic 622 — z — 3 = 0,
D = 73 and not a perfect square, we know in advance that it is a
waste of time to seek factors of the left side. On the other hand,
the time spent in finding the value of D is not lost in this case,
since D appears in the quadratic formula.

The second use is in a quick check of the supposed answers as
soon as we get them (and a quadratic is not really solved if the
so-called answers are incorrect). For instance, suppose that in

\/41 V41 The

1 202 — 3x — 4 = d i S
solving 2z T 0, we get 4 i
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sum of these two numbers 1is

3\ (V4I\* _ 9 41 _ 32 _ . .
(1) — (—4—) =16 16" 16 - 2. Upon inspection of

the equation we see that these results are exactly what we should
get according to the respective formulas r 4+ s = —b/a and
rs = —c/a. Actually we have here a check which is often
considerably faster and more convenient than that obtained by
substitution of the roots as found in the given equation.

and their product 1is

DO o

EXERCISE 12

Find the discriminants of the quadratics in Probs. 1 to 10, and then
in each case determine whether the roots are (a) real or imaginary,
(b) equal or unequal, and (c¢) rational or irrational. Notk: If the
roots are imaginary, omit parts (b) and (c).

1. 24+ 3z + 1 =0. 2. 222+ 5z + 2 = 0.

3. 22+ 2x+1=0. 4. 3224+ 5 = 0.

b. x2+ 2+ 1 = 0. 6. 22> — 32z = 0.

7. 222 — 3¢ + 4 = 0. 8. 4 = a2

9. 222+ 32+ 1 = 0. 10. 100z* 4+ 2002 4+ 300 = O.

11 to 20. Still without solving, find the sum and the product of each
pair of roots in the cquations of Probs. 1 to 10.

Find the equations whose roots are the pairs of numbers in Probs.
21 to 28.

Examples: (1) 2 and —3.

The equation is (v — 2)fx — ( —3)] =0 or (x — 2)(x + 3) = 0,
since (2 —2)2+3) = (0)5) =0 and also (=3 —2)(— 3+ 3)
= (—5)(0) = 0.

(2) 2 + 3 and 2 — /3 (or 2 £ V/3).

The equation is [v — 2+ V3]t — (2 —+V3)] =0 or [z —2)
— V3 —2)+v3]=0, or (x—2P—(3?=0, or a*— 4z
+ 1 =0.

21, —2, —3. 99, + /3. 23. +i\/3.

24. 3 + /2. 25. 4 + v/ —0. 26. 5 + 1\/7.

27. a + \/b. 28. a + i\/D.
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Given 222 + kx + k = 2, find the value of k such that the conditions
in Probs. 29 to 34 are satisfied.

29. The sum of the roots shall be 4.

30. The product of the roots shall be —2.

31. One root shall be zero.

32. The roots shall be equal numerically but of opposite signs.
33. One root shall be twice the other (two answers).

34. One root shall be one more than the other (two answers).

Extend the method of Probs. 21 to 28 to find the equation whose
roots are the numbers in Probs. 35 to 38.

35. 1,2, 3, 4. 36. 1, —2, —3, 4.

37. 1 + /2,1 + 1. 38. a, b, ¢, d.

39. From your result in 38, draw some conclusions in regard to the
roots of a general fourth-degree equation similar to the results in the
text concerning the sum and product of the roots of a quadratic.

40. Show that the roots of 22 + 2x + ¢ = 0 are rational if ¢ has the
form (1 4+ n)(1 — n).

41. Show that the roots of 2 + bx — 1 = 0 are rational if b*> has the
form (n + 2)(n — 2).

29. A look ahead. RSince the thorough subduing of mere
quadratics involved so much mathematical spadework, including
the development of the irrational and imaginary number con-
cepts, we need not be surprised that equations of higher degree
baffled the algebraists for a long time. The story of various
attacks on the problem carries us back to the ancients—to
Greece, Persia, India, and China. During the Middle Ages the
effort was popular in Italy, where, in the sixteenth century, the
cubic or third-degree equation was solved by Cardan and
Tartaglia, and the biquadratic or fourth-degree by Ferrari. The
assault on fifth- and higher degree equations continued until the
nineteenth century, when it was finally proved that in the general
case they could not be solved, as were the lower degree equations,
in terms of radicals involving the coefficients. The two brilliant
mathematicians responsible for the proof were Abel of Norway,
who, incidentally, was twenty-seven when he died, and Galois of
France, killed in a duel at the age of twenty-one.
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It should not be inferred, however, that the results of Abel and
Galols mean that we cannot get the roots of an equation such as
x® — 4z’ + 7x — 1 = 0, oreven 32°"® 4+ 9z* 4+ 2 = 0 as precisely
as may be required for any practical purpose whatever. As a
matter of fact, a method has been devised by which the roots of
all rational integral equations (and those last four words cover a
lot of ground) can be approximated decimally to as many places
as desired. This, after all, is the best we can do decimally with
even such “found” roots as +/2 or /3. Since this general
method of attack (to be discussed in Chap. IX) is the most prac-
tical method for solving any equation of degree higher than two,
we shall omit here the usual explanations of the special method
applying only to cubics and biquadratics. These latter methods
have considerable mathematical and historical interest, to be sure,
and should be looked into by students who wish to pursue the
subject further; but they are rather too involved to be thrust
upon a first explorer, especially in view of the fact that there is an
easler way.

30. A couple of flank attacks. We have met, then, and as yet
have not conquered, the problem which, more than any other,
perhaps, lies at the very heart of algebra. That problem is the
working out of a practical technique for solving the general
rational integral equation. We have rather thoroughly disposed
of the first- and second-degree cases, and will attack the others
later, after we’ve brought up several chapters-full of mathe-
matical ammunition. Before we turn back, however, we should
notice that there are many higher degree equations which we can
solve even with our present equipment. One of these, for
instance, 1s

2205 — ot — 323 4 162> — 8x — 24 =0

whose formidable front conceals a weakness that could easily
bring about its downfall and solution at the hands of a bright
erade-school student. The solid front is more apparent than real;
it can be cracked by anyone who knows the first principles of
factoring. The discussion of this mathematical art appeared in
Chap. II, but it seems advisable at this point to carry it a bit
further.
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While the technique of factoring, or the breaking up of an
algebraic expression into simpler parts whose product it is, has
not been reduced to an infallible routine system even by skilled
algebraists, there are a few suggestions as to procedure which
often get rexults and are therefore worth remembering. One of
these 1s the experimental blocking of the expression to be fac-
tored into groups of one or more terms each. The ‘“three-three”
grouping of the left side of the equation above yields the following
result:

(22> — at — 3a%) + (162* — 8x — 24)

For brevity, suppose we designate this whole expression as f(2).
If now we take out the obvious common factors which show up
in each of the two groups, we have

flx) = 2322 —x — 3) + 822> — v — 3)

Obviously we’re getting somewhere now, since the same expres-
sion appears in two places. It will be correct to divide this out
and place it on the left, thus,

J@) = (22 — 2 — 3)@@’ + 8)

as may be verified by referring to the distributive law of multi-
plication or by performing the indicated multiplication. Since
a®+ b = (a + b)(a®> — ab + b*), we have 2* 4+ 8 = (z + 2)
(22 — 2z + 4), and our discouraging first equation becomes

fx)y = x*— 2 —3) @+ 2)@* -2 +4) =0

Now, as we have already seen in the case of the quadratic equa-
tion, any value of x which makes one of the factors of f(x) equal
to zero will satisfy the whole equation. The three factors, set
separately equal to zero, yield the five roots 3, —1, —2 1 + 1/3
and 1 — 14/3; and that, as a matter of fact, completes the list.
(It is easy to remember, as a matter of incidental information not
proved here, that an equation of the fifth degree always has five
roots, of the sixth degree, six roots, and in general of the nth
degree, n roots, where n i1s any integer whatever.) Whenever,
then, an equation has zero at the right of the equality sign (note
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this detail; it is highly important) and an expression at the left
which has been broken up into factors of the first or second degree,
the quadratic-and-linear-equation-solver can look upon it scorn-
fully as conquerable territory, no matter how high and imposing
may be its total degree.

In addition to our general suggestion of experimental blocking,
a few more hints on factoring may prove useful here. First of all,
an expression 1s not factored which looks mechanically like this:
( )4+ ( ), or maybe like this: ( ) — ( ). Misguided stu-
dents trying to factor z* — a® — 3x + 3a often think they have
the job done when they get it looking like this: (x 4+ a)(x — a)
— 3(x — a). This is a correct step on the way to the desired
result, which 1s (x + a — 3)(x — a), but every upright grader
will recognize it as worth one emphatic and chastizing zero when
it 1s iInnocently exhibited as ‘““the answer.”

The first rule, then, 1s to learn how a factored result appears
to the eye, leaving the mind out of consideration. After that it
will help to memorize a few formulas such as the following.
(Some of these appeared in Chap. II, but will be repeated here
for convenience.)

(1) —yt= @+ y@—y)

(2) 4 22y +y* = (@ +y)°

(3) = 22y +y* = (@ — y)?

(4) 224 (@ + b)x +ab = (x + a)(@ + D)
(5) P =yt = (@ —yEe+ay +y?

(6) Yyt = (x4 )@ — 2y + y?)

The first equation above often helps in the ‘“‘three-one’’ trial
blocking of a four term expression where the “two-two” attempt
fails. Thus the left side of a? + 2ax 4+ a®> — b2 = 0 may be
attacked as follows: (2 4+ 2ax) + (a® — b?%) = z(x + 2a) +
(@ + b)(a — b). This is correct and may look promising to
the novice, but it certainly does not show up the factors, if there
are any. Trying next the grouping: (2? 4+ 2ax + a?) — 0% we
see that the expression becomes (x 4 a)? — b?% which is obviously
the difference of two squares, so that (1) applies. This shows
that the factors are (x 4+ a + b)(@ + a — b) and that the roots
of the equation are accordingly 2 = —a — b and v = —a + b.
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Another piece of mathematical strategy, which sometimes
works on specially selected equations of high degree, is illustrated
in the solution of the equation

(7) xt+ 228 — T2 — 8x + 12 = 0
If we write —72? as 2* — 8z? 1t becomes
xt + 2xd 4 2 — 82— 8xr + 12 =0

The left side now breaks up into blocks whieh turn out to be
related like this:

22 (x?2+2x+1) —8x(x+ 1)+ 1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>