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PREFACE 

 This book is designed in accordance with the new guidelines and  

syllabi – 2003 of the Higher Secondary Mathematics – First Year, 

Government of Tamilnadu. In the era of knowledge explosion, writing a 

text book on Mathematics is challenging and promising. Mathematics 

being one of the most important subjects which not only decides the 

career of many young students but also enhances their ability of 

analytical and rational thinking and forms a base for Science and 

Technology. 

 This book would be of considerable value to the students who 

would need some additional practice in the concepts taught in the class 

and the students who aspire for some extra challenge as well.  

 Each chapter opens with an introduction, various definitions, 

theorems and results. These in turn are followed by solved examples 

and exercises which have been classified in various types for quick and 

effective revision. The most important feature of this book is the 

inclusion of a new chapter namely ‘Functions and Graphs’. In this 

chapter many of the abstract concepts have been clearly explained 

through concrete examples and diagrams. 

 It is hoped that this book will be an acceptable companion to the 

teacher and the taught. This book contains more than 500 examples 
and 1000 exercise problems. It is quite difficult to expect the teacher to 

do everything. The students are advised to learn by themselves the 

remaining problems left by the teacher. Since the ‘Plus 1’ level is 

considered as the foundation course for higher mathematics, the 

students must give more attention to each and every result mentioned in 

this book. 

 



  

The chief features of this book are  

 (i) The subject matter has been presented in a simple and lucid 

manner so that the students themselves are able to 

understand the solutions to the solved examples. 

 (ii) Special efforts have been made to give the proof of some 

standard theorems. 

 (iii) The working rules have been given so that the students 

themselves try the solution to the problems given in the 

exercise. 

 (iv) Sketches of the curves have been drawn wherever 

necessary, facilitating the learner for better understanding of 

concepts. 

 (v) The problems have been carefully selected and well graded. 

 The list of reference books provided at the end of this book will be 

of much helpful for further enrichment of various concepts introduced. 

 We welcome suggestions and constructive criticisms from learned 

teachers and dear students as there is always hope for further 

improvement. 

 K. SRINIVASAN 
 Chairperson 
 Writing Team 
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7. FUNCTIONS AND GRAPHS 
7.1 Introduction: 
 The most prolific mathematician whoever lived, Leonhard Euler 
(1707−1783) was the first scientist to give the function concept the prominence 
in his work that it has in Mathematics today. The concept of functions is one of 
the most important tool in Calculus. 
 To define the concept of functions, we need certain pre-requisites. 
Constant and variable: 
 A quantity, which retains the same value throughout a mathematical 
process, is called a constant. A variable is a quantity which can have different 
values in a particular mathematical process. 
 It is customary to represent constants by the letters a, b, c, … and variables 
by x, y, z. 
Intervals: 
 The real numbers can be represented geometrically as points on a number 
line called the real line (fig. 7.1) 

 
Fig 7. 1 

 The symbol R denotes  either the real number system or the real line. A 
subset of the real line is called an interval if it contains atleast two numbers and 
contains all the real numbers lying between any two of its elements. 
For example, 
 (a) the set of all real numbers x such that x > 6 
 (b) the set of all real numbers x such that − 2 ≤ x ≤ 5 
 (c) the set of all real numbers x such that x < 5             are some intervals. 
 But the set of all natural numbers is not an interval. Between any two 
rational numbers there are infinitely many real numbers which are not included 
in the given set. Hence the set of natural numbers is not an interval. Similarly 
the set of all non zero real numbers is also not an interval. Here the real number 
0 is absent. It fails to contain every real number between any two real numbers 
say − 1 and 1. 
 Geometrically, intervals correspond to rays and line segments on the real 
line. The intervals corresponding to line segments are finite intervals and 
intervals corresponding to rays and the real line are infinite intervals. Here finite 
interval does not mean that the interval contains only a finite number of real 
numbers. 
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 A finite interval is said to be closed if it contains both of its end points and 
open if it contains neither of its end points. To denote the closed set, the square 
bracket [   ] is used and the paranthesis (     ) is used to indicate open set. For 
example 3∉ (3, 4), 3∈[3, 4] 

Type of intervals 

 Notation Set Graph 
Finite  (a, b) 

 [a, b) 

 (a, b] 

 [a, b] 

{x / a < x < b} 

{x / a ≤ x < b} 

{x / a < x ≤ b} 

{x / a ≤ x ≤ b} 

Infinite  (a, ∞) 

 [a, ∞) 

 (− ∞, b) 

 (− ∞, b] 

 (− ∞, ∞) 

{x / x > a} 

{x / x ≥ a} 

{x / x < b} 

{x / x ≤ b} 

{x / − ∞ < x < ∞} 
or the set of real numbers 

 

Note :  
 We can’t write a closed interval by using ∞ or − ∞. These two are not 
representatives of real numbers. 
Neighbourhood 
 In a number line the 
neighbourhood of a point (real 
number) is defined as an open 
interval of very small length. 

 

 In the plane the neighbourhood of a point 
is defined as an open disc with very small 
radius. 

 
 In the space the neighbourhood of a point 
is defined as an open sphere with very small 
radius. 

 
Fig 7. 2 
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Independent / dependent variables: 
 In the lower classes we have come across so many formuale. Among those, 
let us consider the following formulae: 

 (a) V = 
4
3  πr3 (volume of the sphere) (b) A = πr2 (area of a circle) 

 (c) S = 4πr2 (surface area of a sphere) (d) V = 
1
3  πr2h (volume of a cone) 

 Note that in (a), (b) and (c) for different values of r, we get different values 
of V, A and S. Thus the quantities V, A and S depend on the quantity r. Hence 
we say that V, A and S are dependent variables and r is an independent 
variable. In (d) the quantities r and h are independent variables while V is a 
dependent variable. 
 A variable is an independent variable when it has any arbitrary 
(independent) value. 
 A variable is said to be dependent when its value depends on other 
variables (independent). 
 “Parents pleasure depends on how their children score marks in 
Examination” 
Cartesian product: 
 Let A={a1, a2, a3}, B={b1, b2}. The Cartesian product of the two sets  
A and B is denoted by A × B and is defined as  

 A × B = {(a1, b1),  (a1, b2),  (a2, b1),  (a2, b2), (a3, b1),  (a3, b2)} 

 Thus the set of all ordered pairs (a, b) where a ∈ A, b ∈ B is called the 
Cartesian product of the sets A and B. 
 It is noted that A × B ≠ B × A (in general), since the ordered pair (a, b) is 
different from the ordered pair (b, a). These two ordered pairs are same only if 
a = b. 
Example 7.1: Find A × B and B × A if A = {1, 2}, B = {a, b} 

Solution: A × B = {(1, a) , (1, b) , (2, a) , (2, b)} 

   B × A = {(a, 1) , (a, 2) , (b, 1) , (b, 2)} 

Relation: 
 In our everyday life we use the word ‘relation’ to connect two persons like 
‘is son of’, ‘is father of’, ‘is brother of’, ‘is sister of’, etc. or to connect two 
objects by means of ‘is shorter than’, ‘is bigger than’, etc. When comparing 
(relate) the objects (human beings) the concept of relation becomes very 
important. In a similar fashion we connect two sets (set of objects) by means of 
relation. 



 4

 Let A and B be any two sets. A relation from A → B (read as A to B) is a 
subset of the Cartesian product A × B. 
Example 7.2: Let A = {1, 2}, B = {a, b}. Find some relations from A → B and 
B → A. 
Solution: 
 Since relation from A to B is a subset of the Cartesian product  

 A × B = {(1 , a) , (1, b) , (2 , a) , (2 , b)} any subset of A × B is a relation 
from A → B.  

 ∴{(1 , a), (1 , b), (2 , a), (2 , b)}, {(1, a), (1, b)}, {(1, b, (2, b)}, {(1 , a)} 
are some relations from A to B. 

 Similarly any subset of B × A = {(a , 1), (a , 2), (b , 1), (b , 2)}  is a 
relation from B to A. 

 {(a , 1), (a , 2), (b , 1), (b , 2)},  {(a, 1), (b, 1)}, {(a, 2), (b, 1)} are some 
relations from B to A. 

7.2 Function: 
 A function is a special type of relation. In a function, no two ordered pairs 
can have the same first element and a different second element. That is, for a 
function, corresponding to each first element of the ordered pairs, there must be 
a different second element. i.e. In a function we cannot have ordered pairs of 
the form (a1, b1) and (a2, b2) with a1 = a2 and b1 ≠ b2. 

 Consider the set of ordered pairs (relation) 
{(3 , 2), (5 , 7), (1 , 0), (10 , 3)}. Here no two 
ordered pairs have the same first element and 
different second element. It is very easy to check 
this concept by drawing a proper diagram (fig. 
7.3). 

 ∴ This relation is a function. 
 

Fig 7. 3 
 Consider another set of ordered pairs (relation) 
{(3, 5),  (3, − 1),  (2, 9)}. Here the ordered pairs (3, 
5) and (3, − 1) have the same first element but 
different second element (fig. 7.4). 
 This relation is not a function. 

 

 
Fig 7. 4 

 Thus, a function f from a set A to B is a rule (relation) that assigns a unique 
element f(x) in B to each element x in A. 
 Symbolically,   f :  A  →  B 
                   i.e.  x  →  f(x) 
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 To denote functions, we use the letters  
f, g, h etc. Thus for a function, each element of  
A is associated with exactly one element in B. The 
set A is called the domain of the function  
f and B is called co-domain of f. If x is in A, the 
element of B associated with x is  

 
Fig 7. 5 

called the image of x under f. i.e. f(x). The  set  of  all images of the elements of 
A is called the range of the function f. Note that range is a subset of the  
co-domain. The range of the function f need not be equal to the co-domain B. 
Functions are also known as mappings. 

Example 7.3 : Let A = {1, 2, 3}, B ={3, 5, 7, 8} and f from A to B is defined by  
f : x → 2x + 1    i.e.  f(x) = 2x + 1. 

 (a) Find f(1), f(2), f(3) 

 (b) Show that f is a function from A to B 

 (c) Identify domain, co-domain, images of each element in A and range of f 

 (d) Verify that whether the range is equal to codomain 

Solution: 

 (a)  f(x) = 2x + 1 

   f(1) = 2 + 1 = 3, f(2) = 4 + 1 = 5,     f (3) = 6 + 1 = 7 

(b)  The relation is {(1,3), (2, 5), (3, 7)} 

  Clearly each element of A has a unique 
image in B. Thus f is a function. 

(c) The domain set is A = {1, 2, 3} 

   The co-domain set is B = {3, 5, 7, 8}  
Fig 7. 6 

   Image of 1 is  3 ;  2  is 5 ;  3  is  7 
   The range of f is {3, 5, 7} 
(d)   {3, 5, 7} ≠ {3, 5, 7, 8} 
  ∴ The range is not equal to the co-domain 
Example 7.4: 
 A father ‘d’ has three sons a, b, c. By assuming sons as a set A and father  
as a singleton set B, show that  
 (i) the relation ‘is a son of’ is a function from  A → B  and  
 (ii) the relation ‘is a father of’ from B → A is not a function. 
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Solution: 

(i) A = {a, b, c},   B = {d} 

  a is son of d 

  b is son of d 

  c is son of d 
Fig 7. 7 

 The ordered pairs are (a, d), (b, d), (c, d). For each element in A there is a 
unique element in B. Clearly the relation ‘is son of’ from A to B is a function. 

(ii)  d is father of a 

  d is father of b 

  d is father of c 

 The ordered pairs are (d, a), (d, b), (d, c). The 
first element d is associated with three different 
elements (not unique) 

 
Fig 7. 8 

 Clearly the relation‘is father of’ from B to A is not a function. 

Example 7.5: A classroom consists of 7 benches. The strength of the class is 
35. Capacity of each bench is 6. Show that the relation ‘sitting’ between the set 
of students and the set of benches is a function. If we interchange the sets, what 
will be happened? 

Solution: 

 The domain set is the set of students and the co-domain set is the set of 
benches. Each student will occupy only one bench. Each student has seat also. 
By principle of function, '‘each student occupies a single bench’. Therefore the 
relation ‘sitting’ is a function from set of Students to set of Benches. 

 If we interchange the sets, the set of benches becomes the domain set and 
the set of students becomes co-domain set. Here atleast one bench consists of 
more than one student. This is against the principle of function i.e. each element 
in the domain should have associated with only one element in the  
co-domain. Thus if we interchange the sets, it is not possible to define a 
function. 

Note : 

  Consider the function  f :  A  →   B 

  i.e.        x  →  f(x)   where   x ∈ A,  f(x) ∈ B. 
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 Read ‘f(x)’ as ‘f of x’. The meaning of f(x) is the value of the function f at x 

(which is the image of x under the function f). If we write y = f(x), the symbol f 

represents the function name, x denotes the independent variable (argument) 

and y denotes the dependent variable. 

 Clearly, in f(x), f is the name of the function and not f(x). However we will 

often refer to the function as f(x) in order to know the variable on which f 

depends. 

Example 7.6: Identify the name of the function, the domain, co-domain, 

independent variable, dependent variable and range if   f : R → R defined by  

y = f(x) = x2 

Solution: 

 Name of the function is a square function. 

 Domain set is R. 

 Co-domain set is R. 

 Independent variable is x. 

 Dependent variable is y. 

 x can take any real number as its value. But y can take only positive real 
number or zero as its value, since it is a square function. 

 ∴ Range of f is set of non negative real numbers. 

Example 7.7: Name the function and independent variable of the following 
function: 

 (i) f(θ) = sinθ (ii) f(x) = x   (iii) f(y) = ey      (iv) f(t) = loget 

Solution: 

  Name of the function independent variable 

 (i) sine θ 

 (ii) square root x 

 (iii) exponential y 

 (iv) logarithmic t 
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The domain conversion 

 If the domain is not stated explicitly for the function y = f(x), the domain is 
assumed to be the largest set of x values for which the formula gives real  
y values. If we want to restrict the domain, we must specify the condition. 
 The following table illustrates the domain and range of certain functions. 

Function Domain (x) Range (y or f(x)) 

y = x2 (− ∞, ∞) [0, ∞) 
y = x  [0, ∞) [0, ∞) 

y = 
1
x  R − {0} Non zero Real numbers R − {0} 

y = 1 − x2  [− 1, 1] [0, 1] 

y = sinx (− ∞, ∞) 





− 

π
2, 

π
2   principal domain 

[− 1, 1] 

y = cosx (− ∞, ∞) 
[0, π] principal domain 

[− 1. 1] 

y = tanx 




− 

π
2, 

π
2   principal domain 

(− ∞, ∞) 

y = ex (− ∞, ∞) (0, ∞) 

y = loge
x (0, ∞) (− ∞, ∞) 

7.2.1 Graph of a function: 
 The graph of a function f is a graph of the equation y = f(x) 

Example 7.8: Draw the graph of the function f(x) = x2 
Solution: 

 Draw a table of some pairs (x, y) which satisfy y = x2 
x 0 1 2 3 − 1 − 2 − 3 
y 0 1 4 9 1 4 9 

 Plot the points and draw a smooth curve 
passing through the plotted points. 
Note: 
 Note that if we draw a vertical line to the 
above graph, it meets the curve at only one point 
i.e. for every x there is a unique y  

Fig 7. 9 
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Functions and their Graphs (Vertical line test) 
 Not every curve we draw is the graph of a function. A function f can have 
only one value f(x) i.e. y for each x in its domain. Thus no vertical line can 
intersect the graph of a function more than once. Thus if ‘a’ is in the domain of 
a function f, then the vertical line x = a will intersect the graph of f at the single 
point (a, f (a)) only. 
 Consider the following graphs: 

 
Fig 7. 10 

 Except the graph of y2 = x, (or y = ± x ) all other graphs are graphs of 

functions. But for y2 = x, if we draw a vertical line x = 2,  it meets the curve at 

two points ( )2, 2   and ( )2, − 2 Therefore the graph of y2 = x is not a graph of 
a function. 

Example 7.9: Show that the graph of x2 + y2 = 4 is not the graph of a function. 
Solution: 

 Clearly the equation x2 + y2 = 4 represents a circle with radius 2 and centre 
at the origin. 
 Take x = 1 

   y2 = 4 − 1 = 3 
   y = ± 3  
 For the same value x = 1, we have two  
y-values 3  and − 3 . It violates the definition 
of a function. In the fig 7.11 
the line x = 1 meets the curve  at  two  places   

Fig 7. 11 

 ( )1, 3  and ( )1, − 3  . Hence, the graph of x2 + y2 = 4 is not a graph of a 
function. 
7.2.2 Types of functions: 
1. Onto function 
 If the range of a function is equal to the co-domain then the function is 
called an onto function. Otherwise it is called an into function. 
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 In f:A→B, the range of f or the image set f(A) is equal to the co-domain B  
i.e. f(A) = B then the function is onto. 
Example 7.10 
     Let A = {1, 2, 3, 4}, B = {5, 6}. The function f is defined as follows:f(1) = 5, 
f(2) = 5, f(3) = 6, f(4) = 6. Show that f is an onto function. 
Solution: 
 f = {(1, 5), (2, 5), (3, 6), (4, 6)} 
 The range of  f,  f(A) = {5, 6} 
   co-domain B = {5, 6} 
  i.e.  f(A) = B 
 ⇒ the given function is onto 

 
Fig 7. 12 

Example 7.11: Let X = {a, b}, Y = {c, d, e} and f = {(a, c), (b, d)}. Show that 
 f is not an onto function. 
Solution: 
 Draw the diagram 
 The range of f is {c, d} 
 The co-domain is {c, d, e} 
 The range and the co-domain are not equal, 
and hence the given function is not onto  

Fig 7. 13 
Note : 
 (1) For an onto function for each element (image) in the co-domain, there 

must be a corresponding element or elements (pre-image) in the 
domain. 

 (2) Another name for onto function is surjective function. 
Definition:  A function f is onto if to each element b in the co-domain, there is 
atleast one element a in the domain such that b = f(a) 
2. One-to-one function: 
 A function is said to be one-to-one if each element of the range is 
associated with exactly one element of the domain. 
 i.e. two different elements in the domain (A) have different images in the 
co-domain (B). 
 i.e. a1 ≠ a2    ⇒    f(a1) ≠ f(a2)    a1, a2 ∈ A,  
 Equivalently  f(a1) = f(a2) ⇒  a1 = a2 
 The function defined in 7.11 is one-to-one but the function defined in 7.10 
is not one-to-one. 
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Example 7.12: Let A = {1, 2, 3}, B = {a, b, c}. Prove that the function f defined 
by  f = {(1, a), (2, b), (3,c)} is a one-to-one function. 
Solution: 
 Here 1, 2 and 3 are associated with a, b and 
c respectively. 
 The different elements in A have different 
images in B under the function f. Therefore f is 
one-to-one.  

Fig 7. 14 

Example 7.13: Show that the function y = x2 is not one-to-one. 
Solution: 
 For the different values of x (say 1, − 1) 
we have the same value of y. i.e. different 
elements in the domain have the same element 
in the co-domain. By definition of  one-to-one, 
it is not one-to-one (OR) 

   y = f(x)  = x2 

   f(1) = 12 = 1 

   f(− 1) = (− 1)2  = 1 

 
Fig 7. 15 

 ⇒  f(1) = f(− 1)          
 But  1 ≠  − 1. Thus different objects in the domain have the same image. 
 ∴ The function is not one-to-one.  
Note: (1) A function is said to be injective if it is one-to-one. 
   (2) It is said to be bijective if it is both one-to-one and onto. 
   (3) The function given in example 7.12 is bijective while the functions 
given in 7.10, 7.11, 7.13 are not bijective. 
Example 7.14.  Show that the function f : R → R defined by f(x) = x + 1 is 
bijective. 
Solution: 
 To prove that f is bijective, it is enough to prove that the function f is 
 (i) onto    (ii) one-to-one 
 (i) Clearly the image  set is R, which is same as the co-domain R. 

Therefore, it is onto. i.e. take b ∈ R. Then we can find b − 1 ∈ R such 
that f(b − 1) = (b − 1) + 1 = b. So f is onto. 

 (ii) Further two different elements in the domain R have different images 
in the co-domain R. Therefore, it is one-to-one.  

  i.e. f(a1) = f(a2) ⇒ a1 + 1 = a2 + 1 ⇒ a1 = a2 .  So  f  is one-to-one. 
 Hence the function is bijective. 
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3. Identity function: 
 A function f from a set A to the same set A is said to be an identity 
function if f(x) = x for all x ∈ A i.e. f : A → A is defined by f(x) = x for all  
x ∈ A. Identity function is denoted by IA or simply I. Therefore I(x) = x always. 
Graph of identity function: 
 The graph of the identity function 
 f(x) = x is the graph of the function  
y = x. It is nothing but the straight line  
y = x as shown in the fig. (7.16) 
 
  

Fig 7. 16 
4. Inverse of a function: 

 To define the inverse of a function f i.e. f−1 (read as ‘f inverse’), the 
function f must be one-to-one and onto. 
 Let A = {1, 2, 3}, B = {a, b, c, d}. Consider a function f = {(1, a), (2, b), 
(3, c)}. Here the image set or the range is {a, b, c} which is not equal to the co-
domain {a, b, c, d}. Therefore, it is not onto. 

 For the inverse function f−1 the co-domain of f becomes domain of f−1. 

 i.e. If f : A → B then f−1 : B → A . According to the definition of domain, 

each element of the domain must have image in the co-domain. In f−1, the 

element ‘d’ has no image in A. Therefore f−1 is not a function. This is because 
the function f is not onto. 

 
Fig 7. 17 a 

  f(1)  = a 
  f(2)  = b 
  f(3)  = c 
All the elements in  A have images 

 
Fig 7.17 b 

 f−1(a) = 1 

 f−1 (b) = 2 

 f−1 (c) = 3 

 f−1 (d) = ? 
    The element d has no image. 

 Again consider a function which is not one-to-one. i.e. consider  
 f = {(1, a), (2, a), (3, b)} where A = {1, 2, 3}, B = {a, b} 
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 Here the two different elements ‘1’ and ‘2’ have the same image ‘a’. 
Therefore the function is not one-to-one.  

 The range = {a, b} = B.      ∴ The function is onto. 

 

Fig 7. 18 

   f(1) = a 

   f (2) = a 

   f(3) = b 

Here all the elements in A has  

unique image 

   f−1(a) = 1 

   f−1 (a) = 2 

   f−1 (b) = 3 

 The element ‘a’ has two 
images 1 and 2. It violates the 
principle of the function that each 
element has a unique image. 

 This is because the function is not one-to-one. 

 Thus, ‘f−1 exists   if and only if    f is one-to-one and onto’. 

Note: 

 (1) Since all the function are relations and inverse of a function is also a 
relation. We conclude that for a function which is not one-to-one and 

onto, the inverse f−1 does not exist  

 (2) To get the graph of the inverse function, interchange the co-ordinates 
and plot the points. 

 To define the mathematical definition of inverse of a function, we need the 
concept of composition of functions. 

5. Composition of functions: 

 Let A, B and C be any three sets and let f : A → B and g : B → C be any 
two functions. Note that the domain of g is the co-domain of f. Define a new 
function (gof) : A → C such that (gof) (a) = g(f(a)) for all a ∈ A. Here f(a) is an 
element of B. ∴ g(f(a)) is meaningful. The function gof is called the 
composition of two functions f and g. 
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Fig 7. 19 

Note: 
 The small circle  o  in gof denotes the composition of g and f  

Example 7.15:  Let A = {1, 2}, B = {3, 4} and C = {5, 6} and f : A → B and  
g : B → C such that f(1) = 3,  f(2) = 4, g(3) = 5, g(4) = 6. Find gof. 
Solution: 
 gof is a function from A → C.  
 Identify the images of elements of 
A under the function gof. 
 (gof) (1)  = g(f(1)) = g(3) = 5 
 (gof) (2) = g(f(2)) = g(4) = 6 
i.e. image of 1 is 5 and 
image of 2 is 6   under gof 

∴  gof = {(1, 5), (2, 6)}  
Fig 7. 20 

Note: 
 For the above definition of f and g, we can’t find fog. For some functions f 
and g, we can find both fog and gof. In certain cases fog and gof are equal. In 
general fog ≠ gof  i.e. the composition of functions need not be commutative 
always. 

Example 7.16: The two functions f : R → R, g : R → R are defined by  

            f(x) = x2 + 1, g(x) = x − 1. Find fog and gof and show that fog ≠ gof. 
Solution: 

   (fog) (x) = f(g(x)) = f(x − 1) = (x − 1)2 + 1 = x2 − 2x + 2 

   (gof) (x) = g(f(x)) = g(x2 + 1) = (x2 + 1) − 1 = x2 

 Thus (fog) (x) = x2 − 2x + 2 

   (gof) (x) = x2 

  ⇒ fog ≠ gof 
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Example 7.17:  Let f, g : R → R be defined by f(x) = 2x + 1, and g(x) = 
x − 1

2   .  

                   Show that (fog) = (gof). 
Solution: 

   (fog) (x) = f(g(x)) = f 



x − 1

2   = 2



x − 1

2   + 1 = x − 1 + 1 = x 

   (gof) (x) = g(f(x)) = g(2x + 1) = 
(2x + 1) − 1

2   = x 

 Thus (fog) (x) = (gof) (x) 
  ⇒ fog = gof 
 In this example f and g satisfy (fog) (x) = x and (gof) (x) = x 
 Consider the example 7.17. For these f and g, (fog) (x)= x and (gof) (x) = x. 
Thus by the definition of identity function fog = I and gof = I  i.e. fog = gof = I 
 Now we can define the inverse of a function f. 
Definition: 
 Let f : A → B be a function. If there exists a function g : B → A such that 
(fog) = IB and (gof) = IA, then g is called the inverse of f. The inverse of f is 

denoted by f−1 
Note: 
 (1) The domain and the co-domain of both f and g are same then the 

above condition can be written as   fog = gof = I. 

 (2) If f−1 exists then f is said to be invertible. 

 (3) f o f −1 = f −1o f = I 

Example 7.18: Let f : R → R be a function defined by f(x) = 2x + 1.   Find f −1 
Solution: 

   Let g = f −1 
   (gof) (x) = x ‡ gof = I 
   g(f(x)) = x    ⇒   g(2x + 1) = x 

   Let  2x + 1 = y    ⇒  x = 
y − 1

2   

   ∴    g(y) = 
y − 1

2    or   f −1(y)   =  
y − 1

2   

  Replace y by x 

   f−1 (x) = 
x − 1

2   
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6. Sum, difference, product and quotient of two functions: 

 Just like numbers, we can add, subtract, multiply and divide the functions 
if both are having same domain and co-domain. 

 If f, g : A → B are any two functions then the following operations are 
true. 

 (f + g) (x) = f(x) + g(x) 

 (f − g) (x) = f(x) − g(x) 

 (fg) (x) = f(x) g(x) 

   



f

g   (x) = 
f(x)
g(x)  where g(x) ≠ 0 

   (cf) (x) = c.f(x) where c is a constant 

Note: Product of two functions is different from composition of two functions. 

Example 7.19:The two functions f, g : R→R are defined by f(x)=x + 1, g(x)=x2.  

                  Find   f + g,   f − g,    fg,   
f
g  ,   2f,   3g. 

Solution: 

 Function Definition 

 f f(x) = x + 1 

 g g(x) = x2 

 f + g (f + g) (x) = f(x) + g(x) = x + 1 + x2  

 f − g (f − g) (x) = f(x) − g(x) = x + 1 − x2  

 fg (fg) (x) = f(x) g(x) = (x + 1)x2 

 
f
g  



f

g   (x) = 
f(x)
g(x)  = 

x + 1

x2 , (it is defined for x ≠ 0) 

 2f (2f) (x) = 2f(x) = 2(x + 1) 

 3g (3g) (x) = 3g(x) = 3x2 

7. Constant function: 

 If the range of a function is a singleton set then the function is called a 
constant function. 

 i.e. f : A → B is such that f(a) = b for all a ∈ A, then f is called a constant 
function. 
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 Let A = {1, 2, 3}, B = {a, b}. If the 
function f is defined by f(1) = a, f(2) = a,  
f(3) = a then f is a constant function. 

  
Fig 7. 21 

 Simply, f : R → R, defined by f(x) = k is a 
constant function and the graph of this constant 
function is given in fig. (7.22) 
 Note that ‘is a son of’ is a constant function 
between set of sons and the singleton set 
consisting of their father. 

 
Fig 7. 22 

8. Linear function: 

 If a function f : R → R is defined in the form f(x) = ax + b then the function 
is called a linear function. Here a and b are constants. 

Example 7.20:  Draw the graph of the linear function f : R → R defined by  
f(x) = 2x + 1. 

Solution: 

 Draw the table of some pairs (x, f(x))   which satisfy  f(x) = 2x + 1. 

x 0 1 − 1 2 
f(x) 1 3 − 1 5 

 Plot the points and draw a curve passing 
through these points. Note that, the curve is a 
straight line. 
Note: 
 (1) The graph of a linear function is a 

straight line. 
 (2) Inverse of a linear function always 

exists and also linear. 

 
Fig 7. 23 

9. Polynomial function: 

 If f : R→R is defined by f(x) = an xn + an − 1 xn − 1+ …+ a1x + a0, where 
a0, a1,…, an are real numbers, an≠0 then f is a polynomial function of degree n. 

 The function f : R → R defined by f(x) = x3 + 5x2 + 3 is a cubic polynomial 
function or a polynomial function of degree 3. 
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10. Rational function: 
 Let p(x) and q(x) be any two polynomial functions. Let S be a subset of R 
obtained after removing all values of x for which q(x) = 0 from R. 

 The function f : S → R, defined by f(x) = 
p(x)
q(x) , q(x) ≠ 0 is called a rational 

function. 

Example 7.21: Find the domain of the rational function f(x) = 
x2 + x + 2

x2 − x
  . 

Solution: 
 The domain S is obtained by removing all the points from R for which g(x) 

= 0  ⇒    x2 − x = 0 ⇒  x(x − 1) = 0 ⇒ x = 0, 1     
 ∴ S = R − {0, 1} 
 Thus this rational function is defined for all real numbers except 0 and 1. 
11. Exponential functions: 

 For any number a > 0, a ≠ 1, the function f : R → R defined by f(x) = ax is 
called an exponential function. 

Note: For exponential function the range is always R+ (the set of all positive 
real numbers) 

Example 7.22: Draw the graphs of the exponential functions f : R → R+ defined 

by  (1)  f(x) = 2x        (2)  f(x) = 3x        (3)  f(x) = 10x. 
Solution: 

 For all these function  

f(x) = 1 when x = 0. Thus 

they cut the y axis at y = 1. 

For any real value of x, they 

never become zero. Hence 

the corresponding curves to 

the above functions do not 

meet the x-axis for real x. (or 

meet the x-axis at − ∞) Fig 7. 24 

 In particular the curve corresponding to f(x) = ex lies between the curves 

corresponding to 2x and 3x, as 2 < e < 3. 
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Example 7.23: 

 Draw the graph of the exponential function f(x) = ex. 
 
Solution: 

 For x = 0, f(x) becomes 1  

i.e. the curve cuts the y axis at  

y = 1. For no real value of  

x,  f(x) equals to 0. Thus it does not 

meet x-axis for real values of x. 
 

 
 

Fig 7. 25 

Example 7.24: 

 Draw the graphs of the logarithmic functions  

 (1)  f(x) = log2x        (2)  f(x) = logex            (3)  f(x) = log3x  

 
 
Solution: 

 The logarithmic function is 

defined only for positive real 

numbers. i.e. (0, ∞) 

 Domain :  (0, ∞) 

 Range    :  (− ∞, ∞) 
Fig 7. 26 

Note: 

 The inverse of exponential function is a logarithmic function. The general 
form is f(x) = logax, a ≠ 1, a is any positive number. The domain (0, ∞) of 

logarithmic function becomes the co-domain of exponential function and the 

co-domain (− ∞, ∞) of logarithmic function becomes the domain of exponential 

function. This is due to inverse property. 
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11. Reciprocal of a function: 

 The function g : S→R, defined by g(x) = 
1

f(x)  is called reciprocal function 

of f(x). Since this function is defined only for those x for which f(x) ≠ 0, we see 
that the domain of the reciprocal function of f(x) is R − {x   :   f(x) = 0}. 
Example 7.25: Draw the graph of the reciprocal function of the function  
f(x) = x. 
Solution: 

 The reciprocal function of f(x) is 
1

f(x)   

 Thus   g(x) = 
1

f(x)  = 
1
x  

 Here the domain of   

g(x) = R − {set of points x for which f(x) = 0} 

       =  R − {0} 

The graph of g(x) = 
1
x is as shown  in fig 7.27. 

 
Fig 7. 27 

Note: 

 (1) The graph of g(x) = 
1
x  does not meet either axes for finite real number. 

Note that the axes x and y meet the curve at infinity only. Thus x and y 

axes are the asymptotes of the curve y = 
1
x  or g(x ) = 

1
x  [Asymptote is 

a tangent to a curve at infinity. Detailed study of asymptotes is 
included in XII Standard]. 

 (2) Reciprocal functions are associated with product of two functions. 
  i.e. if f and g are reciprocals of each other then f(x) g(x) = 1. 
  Inverse functions are associated with composition of functions. 
  i.e.if f and g are inverses of each other then  fog = gof = I 
12. Absolute value function (or modulus function) 
 If f : R → R defined by f(x)  = | x | then the function is called absolute value 
function of x. 

 where | x | = 


      x   if  x  ≥  0
  −  x  if  x  <  0

 

 The domain is R and co-domain is set of all non-negative real numbers.  
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 The graphs of the absolute functions  
 (1)  f(x) = | x |         (2)  f(x) =  | x  − 1 |     (3)  f(x) = |x + 1| are given below. 

 
f(x) = | x | 

 
f(x) = | x− 1| 

 
f(x) = | x + 1| 

Fig 7. 28 
13. Step functions: 
(a) Greatest integer function 
 The function whose value at any real number x is the greatest integer less 
than or equal to x is called the greatest integer function. It is denoted by  x  
 i.e. f : R → R defined by f(x) =  x  
 Note that  2.5 = 2, 3.9 = 3, − 2.1 = − 3, .5 = 0, − .2 = − 1, 4 = 4 
 The domain of the function is R and the range of the function is Z (the set 
of all integers). 
(b) Least integer function 
 The function whose value at any real number x is the smallest integer 
greater than or equal to x is called the least integer function and is denoted by 
x 
 i.e. f : R → R defined by f(x) = x.    
 Note that 2.5  = 3,    1.09 = 2,   − 2.9  =  − 2,  3  = 3 
 The domain of the function is R and the range of the function is Z. 
 Graph of f(x) = x  Graph of f(x) = x  

 
Fig 7. 29 

 
Fig 7. 30 
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14. Signum function: 

    If f:R→R is defined by f(x) =  


| x |

x ,   x ≠ 0

  0,    x = 0
  then f is called signum function. 

  
 
   The domain of the function is R and 
the range is {− 1, 0, 1}.  
 
 

 
Fig 7. 31 

15. Odd and even functions 
 If f(x) = f(− x) for all x in the domain then the function is called an even 
function. 
 If f(x) = − f(− x) for all x in the domain then the function is called an odd 
function. 

 For example,  f(x) = x2,   f(x) = x2 + 2x4,   f(x) = 
1

x2 ,   f(x) = cosx are some 

even functions. 

 and  f(x) = x3,   f(x) = x − 2x3,   f(x) = 
1
x ,   f(x) = sin x  are some odd 

functions. 
 Note that there are so many functions which are neither even nor odd. For 
even function, y axis divides the graph of the function into two exact pieces 
(symmetric). The graph of an even function is symmetric about y-axis. The 
graph of an odd function is symmetrical about origin. 
Properties: 
 (1) Sum of two odd functions is again an odd function. 
 (2) Sum of two even functions is an even function. 
 (3) Sum of an odd and an even function is neither even nor odd. 
 (4) Product of two odd functions is an even function. 
 (5) Product of two even functions is an even function. 
 (6) Product of an odd and an even function is an odd function. 
 (7) Quotient of two even functions is an even function. (Denominator 

function ≠ O) 
 (8) Quotient of two odd functions is an even function. (Denominator 

function ≠ O) 
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 (9) Quotient of a even and an odd function is an odd function. (Denominator 
function ≠ O) 

16. Trigonometrical functions: 
 In Trigonometry, we have two types of functions. 
 (1) Circular functions               (2)Hyperbolic functions.  
 We will discuss circular functions only. The circular functions are 
 (a) f(x) = sinx (b) f(x) = cos x (c) f(x) = tan x 
 (d) f(x) = secx (e) f(x) = cosecx (f) f(x) = cotx 
 The following graphs illustrate the graphs of circular functions. 
(a)  y = sinx   or   f(x) = sin x 
 Domain(− ∞, ∞) 
 Range [− 1, 1] 

 Principal domain 



− 

π
2 , 

π
2  

 
Fig 7. 32 

 
(b) y = cos x 
 Domain (− ∞, ∞) 
 Range [− 1, 1] 
 Principal domain [0  π] 
 

 
Fig 7. 33 

(c) y  = tan x  

 Since tanx = 
sinx
cosx , tanx is defined only 

for all the values of x for which cosx ≠ 0.  
 i.e. all real numbers  except odd 

integer multiples of  
π
2  (tanx is not obtained  

for cosx = 0 and hence not defined for x, an 

odd multiple of 
π
2 ) 

Fig 7. 34 
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Domain = R − 








(2 k + 1) 
π
2  ,    k ∈ Z 

  Range = (− ∞, ∞) 
(d) y = cosec x 

 Since cosec x is the reciprocal of 
sin x, the function cosec x is not 
defined for values of x for which  
sin x = 0. 

 ∴ Domain is the set of all real 
numbers except multiples of π 

 Domain = R − {kπ},    k ∈ Z 

 Range = (− ∞, − 1] ∪ [1, ∞)  
Fig 7. 35 

 

(e) y = sec x 

 Since sec x is reciprocal of cosx,  
the function secx is not defined for all 
values of x for which  cos x = 0. 

   ∴ Domain = R − 








(2k + 1) 
π
2  , k ∈ Z 

 Range = (−∞, − 1] ∪ [1, ∞) 

  
Fig 7. 36 

 

(f) y = cot x 

 since cot x = 
cosx
sinx  , it is not 

defined for the values of x for which 
sin x = 0 

 ∴ Domain = R − {k π}, k ∈ Z 

 Range = (− ∞, ∞) 

  
Fig 7. 37 
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17.Quadratic functions 
 It is a polynomial function of degree two. 

 A function f : R → R defined by f(x) = ax2 + bx + c,  where a, b, c ∈ R,  
a ≠ 0    is called a quadratic function. The graph of a quadratic function is 
always a parabola. 

7.3 Quadratic Inequations: 
  Let f(x) = ax2 + bx + c, be a quadratic function or expression. a, b, c ∈ R, 
a ≠ 0 
  Then  f(x) ≥ 0,  f(x)  > 0,   f(x) ≤ 0 and   f(x) < 0     are known as quadratic 
inequations. 
  The following general rules will be helpful to solve quadratic 
inequations. 
General Rules: 
 1. If a > b, then we have the following rules: 
  (i) (a + c) > (b + c) for all c ∈ R 
  (ii) (a − c) > (b − c) for all c ∈ R 
  (iii) − a < − b 

  (iv) ac > bc,  
a
c  > 

b
c   for any positive real number c 

  (v) ac < bc, 
a
c  < 

b
c  for any negative real number c. 

  The above properties, also holds good when the inequality < and > are 
replaced by ≤ and ≥ respectively. 
 2. (i) If ab > 0 then either a > 0, b > 0 (or) a < 0, b < 0 
 (ii) If ab ≥ 0 then either a ≥ 0, b ≥ 0 (or) a ≤ 0, b ≤ 0 
 (iii) If ab < 0 then either a > 0, b < 0 (or) a < 0, b > 0 
 (iv) If ab ≤ 0 then either a ≥ 0, b ≤ 0 (or) a ≤ 0, b ≥ 0.    a, b, c ∈ R 
Domain and range of  quadratic functions 
 Solving a quadratic inequation is same as finding the domain of the 
function f(x) under the given inequality condition. 
 Different methods are available to solve a quadratic inequation. We can 
choose any one method which is suitable for the inequation. 
Note : Eventhough the syllabus does not require the derivation, it has been 
derived for better understanding. 
Method I:  Factorisation method: 

  Let ax2 + bx + c ≥ 0     … (1) 

  be a quadratic inequation in x where a, b, c ∈ R and a ≠ 0. 
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      The quadratic equation corresponding to this inequation is ax2 + bx + c = 0. 

The discriminant of this equation is b2 − 4ac. 
      Now three cases arises: 

Case (i):  b2 − 4ac > 0 

  In this case, the roots of ax2 + bx + c = 0 are real and distinct. Let the 

roots be α and β . 

  ∴ ax2 + bx + c = a(x – α) (x − β) 

  But    ax2 + bx + c ≥ 0 from (1) 

  ⇒ a(x – α) (x − β) ≥ 0 

  ⇒ (x − α) (x − β) ≥ 0  if a > 0  (or) 

   (x – α)  (x – β) ≤ 0   if a < 0 
  This inequality is solved by using the general rule (2). 

Case (ii):  b2 − 4ac = 0 

  In this case, the roots of ax2 + bx + c = 0 are real and equal. Let the roots 
be α and α  

  ∴ ax2 + bx + c  =  a(x − α)2.   

  ⇒   a(x − α)2 ≥ 0 

 ⇒ (x − α)2 ≥ 0 if a > 0 (or) (x − α)2 ≤ 0 if a < 0 
  This inequality is solved by using General rule-2 

Case (iii): b2 − 4ac < 0 

  In this case the roots of ax2 + bx + c = 0 are non-real and distinct. 

  Here  ax2 + bx + c = a 



x2 + 

bx
a  + 

c
a   

    = a 









x + 

b
2a

2

 − 
b2

4a2 + 
c
a   

    = a 









x + 

b
2a

2

 + 
4ac − b2

4a2  

  ∴ The sign of ax2 + bx + c is same as that of a for all values of x because  

  









x + 

b
2a

2

 + 
4ac − b2

4a2  is a positive real number for all values of x. 

  In the above discussion, we found the method of solving quadratic 

inequation of the type ax2 + bx + c ≥ 0.  
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Method: II 
  A quadratic inequality can be solved by factorising the corresponding 
polynomials. 

 1. Consider ax2 + bx + c > 0 

  Let ax2 + bx + c = a(x − α) (x − β) 

  Let α < β 

Case (i) : If x < α then x − α < 0 & x − β < 0 

   ∴ (x − α) (x − β) > 0 

Case (ii): If x > β then x − α > 0  & x − β > 0 

   ∴ (x − α) (x − β) > 0      

  Hence If (x − α)  (x − β) > 0 then the values of x lies outside α and β. 

 2. Consider ax2 + bx + c < 0 

  Let ax2 + bx + c = a(x − α) (x − β) ; α, β ∈ R 

  Let  α < β and also α < x < β 

  Then x − α > 0 and x − β < 0 

  ∴ (x − α) (x − β) < 0 

  Thus if (x − α) (x − β) < 0, then the values of x lies between α and β 
Method: III 
Working Rules for solving quadratic inequation: 

Step:1 If the coefficient of x2 is not positive multiply the inequality by − 1. 
Note that the sign of the inequality is reversed when it is multiplied 
by a negative quantity. 

Step: 2 Factorise the quadratic expression and obtain its solution by 
equating the linear factors to zero. 

Step: 3 Plot the roots obtained in step 2 on real line. The roots will divide 
the real line in three parts. 

Step: 4 In the right most part, the quadratic expression will have positive 
sign and in the left most part, the expression will have positive sign 
and in the middle part, the expression will have negative sign. 

Step: 5 Obtain the solution set of the given inequation by selecting the 
appropriate part in 4 

Step: 6 If the inequation contains equality operator (i.e. ≤,  ≥), include the 
roots in the solution set. 
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Example 7.26:  Solve the inequality x2 − 7x + 6 > 0 
Method I: 

Solution:  x2 − 7x + 6 > 0 

   ⇒ (x − 1) (x − 6) > 0 [Here b2 − 4ac = 25 > 0] 
  Now use General rule-2 : 

Either x − 1 > 0, x − 6 > 0 
⇒ x > 1,  x > 6 
we can omit x > 1 
⇒  x > 6 

(or)  (x − 1) < 0, (x − 6) < 0 
 ⇒ x < 1, x < 6 
 we can omit x < 6 
 ⇒  x < 1 

∴ x ∈ (− ∞, 1) ∪ (6, ∞) 
Method II: 
 x2 − 7x + 6 > 0 
  ⇒   (x − 1) (x − 6) > 0 
 (We know that if (x − α) (x − β) > 0 then the values of x lies outside of (α,β) 
 (i.e.)  x lies outside of (1, 6) 
  ⇒   x ∈ (− ∞, 1) ∪ (6, ∞) 
Method III: 
 x2 − 7x + 6 > 0 
 ⇒ (x − 1) (x − 6) > 0 
  On equating the factors to zero, we see that x = 1, x = 6 are the roots of 
the quadratic equation. Plotting these roots on real line and marking positive 
and negative alternatively from the right most part we obtain the corresponding 
number line as 

 
  We have three intervals (− ∞, 1),  (1, 6)  and (6, ∞). Since the sign of   
(x − 1) (x − 6) is positive, select the intervals in which (x − 1) (x − 6) is positive.
  
  ⇒ x < 1  (or)  x > 6 
  ⇒ x ∈ (− ∞, 1) ∪ (6, ∞) 
Note : Among the three methods, the third method, is highly useful. 

Example 7.27:  Solve the inequation − x2 + 3x − 2 > 0 
Solution : 

  − x2 + 3x − 2 > 0  ⇒ − (x2 − 3x + 2) > 0 

    ⇒ x2 − 3x + 2 < 0 
    ⇒ (x − 1) (x − 2) < 0 
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  On equating the factors to zero, we obtain x = 1, x = 2 are the roots of the 
quadratic equation. Plotting these roots on number line and making positive and 
negative alternatively from the right most part we obtain the corresponding 
numberline as given below. 

 
  The three intervals are (− ∞, 1),  (1, 2) and (2, ∞). Since the sign of  
(x − 1) (x − 2) is negative, select the interval in which (x − 1) (x − 2) is negative.
   

  ∴ x ∈ (1, 2) 

Note : We can solve this problem by the first two methods also. 

Example 7.28:  Solve : 4x2 − 25 ≥ 0 

Solution :    4x2 − 25 ≥ 0 

   ⇒ (2x − 5) (2x + 5) ≥ 0 

  On equating the factors to zero, we obtain x = 
5
2 , x = − 

5
2  are the roots of 

the quadratic equation. Plotting these roots on number line and making positive 
and negative alternatively from the right most part we obtain the corresponding 
number line as given below. 

 

  The three intervals are 



− ∞, − 

5
2 , 



− 

5
2,   

5
2   



5

2 , ∞  

Since the value of (2x − 5) (2x + 5) is positive or zero. Select the intervals in 

which f(x) is positive and include the roots also. The intervals are 



− ∞, − 

5
2  

and 



5

2 , ∞ . But the inequality operator contains equality (≥) also.  

∴ The solution set or the domain set should contain the roots − 
5
2 ,  

5
2 .  

Thus the solution set is  (− ∞,  
− 5
2    ]  ∪   [  

5
2 ,  ∞) 

Example 7.29:  Solve the quadratic inequation 64x2 + 48x + 9 < 0 
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Solution:   
 64x2 + 48x + 9 = (8x + 3)2 

 (8x + 3)2 is a perfect square. A perfect square cannot be negative for real x. 
 ∴ The given quadratic inequation has no solution. 

Example 7.30: Solve f(x)=x2+2x+6 > 0 or find the domain of the function f(x) 

  x2 + 2x + 6 > 0   

  (x + 1) 2 + 5 > 0 
  This is true for all values of x. ∴ The solution set is R 

Example 7.31:  Solve f(x) = 2x2 − 12x + 50 ≤ 0 or find the domain of the 
function f(x). 
Solution: 
  2x2 − 12x + 50 ≤ 0 

  2(x2 − 6x + 25) ≤ 0 

  x2 − 6x + 25 ≤ 0 

  (x2 − 6x + 9) + 25 − 9 ≤ 0 

  (x − 3) 2 + 16 ≤ 0 
  This is not true for any real value of x. 
  ∴ Given inequation has no solution. 
Some special problems (reduces to quadratic inequations) 

Example 7.32:  Solve: 
x + 1
x − 1

 > 0, x ≠ 1 

Solution: 

    
x + 1
x − 1

 > 0  

  Multiply the numerator and denominator by (x − 1) 

  ⇒    
(x + 1) (x − 1)

(x − 1)2   

  ⇒ (x + 1) (x − 1) > 0 [Q (x − 1) 2 > 0 for all x ≠ 1] 

 
  Since the value of (x + 1) (x − 1) is positive or zero select the intervals in 
which (x + 1) (x − 1) is positive. 
  ∴ x ∈ (− ∞, − 1)  ∪ (1, ∞) 
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Example 7.33:  Solve :  
x − 1

4x + 5   <  
x − 3
4x − 3

  

Solution:   
x − 1

4x + 5   <  
x − 3

4x − 3
  

  ⇒ 
x − 1

4x + 5   −  
x − 3

4x − 3
  < 0 (Here we cannot cross multiply) 

  ⇒ 
(x − 1) (4x − 3) − (x − 3) (4x + 5)

(4x + 5) (4x − 3)
  < 0 

  ⇒ 
18

(4x + 5) (4x − 3)
   <  0 

  ⇒ (4x + 5) (4x − 3) < 0       since 18 > 0 

  On equating the factors to zero, we obtain x = 
− 5
4   ,  x = 

3
4   are the roots 

of the quadratic equation. Plotting these roots on number line and making 
positive and negative alternatively from the right most part we obtain as shown 
in figure. 

 
  Since the value of (4x + 5) (4x − 3) is negative, select the intervals in 

which (4x + 5) (4x − 3) is negative. ∴ x ∈ 



− 5

4  , 
3
4   

Example 7.34 :  If x ∈ R, prove that the range of  the function f(x) = 
x2 − 3x + 4
x2 + 3x + 4    

is  



1

7,   7   

Solution: 

     Let y = 
x2 − 3x + 4
x2 + 3x + 4  

     (x2 + 3x + 4)y = x2 − 3x + 4 

   ⇒ x2 (y − 1) + 3x (y +1) + 4(y − 1) = 0 
  Clearly, this is a quadratic equation in x. It is given that x is real. 
   ⇒ Discriminant ≥ 0 

   ⇒ 9(y + 1) 2 − 16(y − 1) 2 ≥ 0 
   ⇒ [ ]3(y + 1) 2  − [ ]4(y − 1) 2  ≥ 0 

   ⇒ [ ]3(y + 1) + 4(y − 1)    [ ]3(y + 1) − 4(y − 1)   ≥ 0 

   ⇒ (7y − 1) (− y + 7) ≥ 0 
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   ⇒ − (7y – 1) (y − 7)  ≥  0 
   ⇒ (7y − 1) (y − 7)  ≤  0 
 

 
 

 

  The intervals are  



− ∞, 

1
 7  , 



1

7,  7   and (7, ∞). Since the value of  

(7y − 1) (y − 7) is negative or zero, select the intervals in which (7y − 1) (y − 1) 

is negative and include the roots 
1
7  and 7. 

  ∴ y ∈  



1

7,  7            i.e. the value of  
x2 − 3x + 4
x2 + 3x + 4  lies between 

1
7   and  7 

  i.e. the range of f(x) is 



1

7,  7   

EXERCISE 7.1 
  (1) If  f, g : R → R, defined by f(x) = x + 1 and g(x) = x2,  
  find (i) (fog) (x)    (ii) (gof) (x)     (iii) (fof) (x)  (iv) (gog) (x)  (v) (fog) (3) 
  (vi) (gof) (3) 
 (2) For the functions f, g as defined in (1) define 

  (i) (f + g) (x) (ii) 



f

g (x)    (iii) (fg) (x)     (iv) (f − g) (x)     (v) (gf) (x) 

 (3) Let f : R → R be defined by f(x) = 3x + 2. Find f−1 and  

  show that fof−1 = f−1of = I 
 (4)  Solve each of the following inequations: 

  (i) x2 ≤ 9 (ii) x2 − 3x − 18 > 0 (iii) 4 − x2 < 0 

  (iv) x2 + x − 12 < 0 (v) 7x2 − 7x − 84 ≥ 0 (vi) 2x2 − 3x + 5 < 0 

  (vii) 
3x − 2
x − 1

  < 2,  x ≠ 1  (viii)  
2x − 1

x   > − 1, x ≠ 0   (ix)  
x − 2

3x + 1   >  
x − 3
3x − 2

   

 (5) If x is real, prove that 
x2 + 34x − 71
x2 + 2x − 7

   cannot have any value between  

5 and 9. 

 (6) If x is real, prove that the range of f(x) =  
x2 − 2x + 4
x2 + 2x + 4  is between 



1

3,  3   

 (7) If x is real, prove that 
x

x2 − 5x + 9
   lies between − 

1
11  and 1. 
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8. DIFFERENTIAL CALCULUS 
 Calculus is the mathematics of motion and change. When increasing or 
decreasing quantities are made the subject of mathematical investigation, it 
frequently becomes necessary to estimate their rates of growth or decay. 
Calculus was invented for the purpose of solving problems that deal with 
continuously changing quantities. Hence, the primary objective of the 
Differential Calculus is to describe an instrument for the measurement of such 
rates and to frame rules for its formation and use. 
 Calculus is used in calculating the rate of change of velocity of a vehicle 
with respect to time, the rate of change of growth of population with respect to 
time, etc. Calculus also helps us to maximise profits or minimise losses. 
 Isacc Newton of England and Gottfried Wilhelm Leibnitz of Germany 
invented calculus in the 17th century, independently. Leibnitz, a great 
mathematician of all times, approached the problem of settling tangents 
geometrically; but Newton approached calculus using physical concepts.  
Newton, one of the greatest mathematicians and physicists of all time, applied 
the calculus to formulate his laws of motion and gravitation. 
8.1 Limit of a Function 
 The notion of limit is very intimately related to the intuitive idea of 
nearness or closeness. Degree of such closeness cannot be described in terms of 
basic algebraic operations of addition and multiplication and their inverse 
operations subtraction and division respectively. It comes into play in situations 
where one quantity depends on another varying quantity and we have to know 
the behaviour of the first when the second is very close to a fixed given value. 
 Let us look at some examples, which will help in clarifying the concept of 
a limit. Consider the function f : R → R given by 
   f(x) = x + 4.  
 Look at tables 8.1 and 8.2 These give values of f(x) as x gets closer and 
closer to 2 through values less than 2 and through values greater than 2 
respectively. 

x 1 1.5 1.9 1.99 1.999 

f(x) 5 5.5 5.9 5.99 5.999 

Table 8.1 
x 3 2.5 2.1 2.01 2.001 

f(x) 7 6.5 6.1 6.01 6.001 

Table 8.2 
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 From the above tables we can see that as x approaches 2, f(x) approaches 6. 
In fact, the nearer x is chosen to 2, the nearer f(x) will be to 6. Thus 6 is the 
value of  (x + 4) as x approaches 2. We call such a value the limit of f(x) as       x 

tends to 2 and denote it by 
lim

x → 2 f(x)=6. In this example the value 
lim

x → 2  f(x) 

coincides with the value (x + 4) when x = 2, that is, 
lim

x → 2  f(x) = f(2). 

 Note that there is a difference between ‘x → 0’ and ‘x = 0’. x → 0 means 
that x gets nearer and nearer to 0, but never becomes equal to 0. x = 0 means 
that x takes the value 0. 

 Now consider another function f given by f(x) = 
x2 − 4
(x − 2)

  . This function  

is not defined at the point x = 2, since division by zero is undefined. But f(x)  
is defined for values of x which approach 2. So it makes sense to evaluate 

lim
x → 2  

x2 − 4
(x − 2)

  . Again we consider the following tables 8.3 and 8. 4 which give 

the values of f(x) as x approaches 2 through values less than 2 and through 
values greater than 2, respectively. 

x 1 1.5 1.9 1.99 1.999 

f(x) 3 3.5 3.9 3.99 3.999 

Table 8.3 
x 3 2.5 2.1 2.01 2.001 

f(x) 5 4.5 4.1 4.01 4.001 

Table 8.4 

 We see that f(x) approaches 4 as x approaches 2. Hence 
lim

x → 2  f(x) = 4. 

 You may have noticed that f(x) = 
x2 − 4
(x − 2)

  = 
(x + 2) (x − 2)

(x − 2)
  = x + 2, if x ≠ 2. 

 In this case a simple way to calculate the limit above is to substitute the 
value x = 2 in the expression for f(x), when x ≠ 2, that is, put  x = 2 in the 
expression x + 2. 

 Now take another example. Consider the function given by f(x) = 
1
x  . We 

see that f(0) is not defined. We try to calculate 
lim

x → 0  f(x). Look at tables 8.5 

and 8.6 



 35

x  1/2 1/10 1/100 1/1000 

f(x) 2 10 100 1000 

Table 8.5 

x − 1/2 − 1/10 − 1/100 − 1/1000 

f(x) − 2 − 10 − 100 − 1000 

Table 8.6 
 We see that f(x) does not approach any fixed number as x approaches 0. In 

this case we say that  
lim

x → 0 f(x) does not exist. This example shows that there 

are cases when the limit may not exist. Note that the first two examples show 
that such a limit exists while the last example tells us that such a limit may not 
exist. These examples lead us to the following. 

Definition  

 Let f be a function of a real variable x. Let c, l be two fixed numbers. If f(x) 
approaches the value l as x approaches c, we say l is the limit of the function 

f(x) as x tends to c. This is written as 
lim

x → c f(x) = l. 

Left Hand and Right Hand Limits 

 While defining the limit of a function as x tends to c, we consider values of 
f(x) when x is very close to c. The values of x may be greater or less than c. If 
we restrict x to values less than c, then we say that x tends to c from below or 
from the left and write it symbolically as x → c − 0 or simply x → c−. The limit 

of f with this restriction on x, is called the left hand limit. This is written as 

Lf(c) = 
lim

x → c−
  f(x), provided the limit exists. 

 Similarly if x takes only values greater than c, then x is said to tend to c 
from above or from right, and is denoted symbolically as x → c + 0 or x → c+. 

The limit of f is then called the right hand limit. This is written as  

Rf(c) = 
lim

x → c+
  f(x). 

 It is important to note that for the existence of 
lim

x → c  f(x) it is necessary 

that both Lf(c) and Rf(c) exists and Lf(c) = Rf(c) = 
lim

x → c  f(x). These left and 

right hand limits are also known as one sided limits. 
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8.1.1  Fundamental results on limits 

 (1) If f(x) = k for all x, then 
lim

x → c  f(x) = k. 

 (2) If f(x) = x for all x, then 
lim

x → c  f(x) = c. 

 (3) If f and g are two functions possessing limits and k is a constant then 

  (i) 
lim

x → c  k f(x) = k 
lim

x → c  f(x) 

  (ii) 
lim

x → c  [ ]f(x) + g(x)   = 
lim

x → c  f(x) + 
lim

x → c  g(x) 

  (iii) 
lim

x → c  [ ]f(x) − g(x)   = 
lim

x → c  f(x) − 
lim

x → c  g(x) 

  (iv) 
lim

x → c  [ ]f(x) . g(x)   = 
lim

x → c  f(x) . 
lim

x → c  g(x) 

  (v)    
lim

x → c   



f(x)

g(x)    =  
lim

x → c  f(x)       
lim

x → c   g(x),       g(x) ≠ 0 

  (vi)  If  f(x) ≤  g(x) then 
lim

x → c  f(x) ≤  
lim

x → c  g(x). 

Example 8.1 : 

 Find  
lim

x → 1  
x2 − 1
x − 1

  if it exists. 

Solution: 
 Let us evaluate the left hand and right hand limits.  

When x → 1−, put x = 1 − h, h > 0. 

 

 Then  
lim

x → 1 −    
x2 − 1
x − 1

  = 
lim

h → 0   
(1 − h)2 − 1

1 − h − 1
  = 

lim
h → 0   

1 − 2h + h2 − 1
− h

  

  = 
lim

h → 0 (2 − h) = 
lim

h → 0 (2) − 
lim

h → 0 (h) = 2 − 0 = 2  

  When x → 1+ put x = 1 + h, h > 0 

 Then 
lim

x → 1 +  
x2 − 1
x − 1

  = 
lim

h → 0   
(1 + h)2 − 1

1 + h− 1
  = 

lim
h → 0   

1 + 2h + h2 − 1
h   

    = 
lim

h → 0   (2 + h) = 
lim

h → 0   (2)  +  
lim

h → 0   (h) 

    = 2 + 0 = 2, using (1) and (2) of 8.1.1 
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 So that both, the left hand and the right hand, limits exist and are equal. 
Hence the limit of the function exists and equals 2. 

 (i.e.) 
lim

x → 1  
x2 − 1
x − 1

   =  2. 

Note: Since x ≠ 1, division by (x − 1) is permissible. 

 ∴ 
lim

x → 1   
x2 − 1
x − 1

  = 
lim

x → 1  (x + 1) = 2 . 

Example 8.2:Find the right hand and the left hand limits of the function at x= 4 

   f(x) = 


| x− 4 |

x − 4
 for x ≠ 4

 0, for x = 4
      

Solution: 
 Now, when x > 4, | x − 4 | = x − 4 

Therefore  
lim

x → 4 +   f(x)= 
lim

x → 4 +   
| x− 4 |
x − 4

  = 
lim

x → 4 +   
x − 4
x − 4

  = 
lim

x → 4  (1) = 1 

 Again when x < 4, | x − 4 | = − (x − 4) 

 Therefore  
lim

x → 4 −
  f(x) = 

lim
x → 4 −

   
−(x − 4)
(x − 4)

   = 
lim

x → 4 −
  (− 1) = − 1 

 Note that both the left and right hand limits exist but they are not equal. 

 i.e. Rf(4) = 
lim

x → 4 +  f(x) ≠ 
lim

x → 4 −
  f(x) = Lf(4). 

Example 8.3    

 Find 
lim

x → 0   
3x + | x |
7x − 5 |x |

  ,  if it exists. 

Solution: 

 Rf(0) = 
lim

x → 0 +
   

3x + | x |
7x − 5 |x |

   = 
lim

x → 0 +
   

3x + x
7x − 5x

   (since x > 0, | x | = x) 

  = 
lim

x → 0 +
   

4x
2x   =  

lim
x → 0 +

   2 = 2  . 

 L f(0) = 
lim

x → 0 −
   

3x + | x |
7x − 5 |x |

  = 
lim

x → 0 −
     

3x − x
7x − 5(− x)

   (since x < 0, | x | = − x) 

  = 
lim

x → 0 −
   

2x
12x   =  

lim
x → 0 −

   



1

6   = 
1
6  . 

 Since Rf(0) ≠ Lf(0), the limit does not exist. 
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Note:  Let f(x) = g(x) / h(x) . 

    Suppose at x = c, g(c) ≠ 0 and h(c) = 0, then f(c) = 
g(c)

0  .  

     In this case 
lim

x → c  f(x) does not exist. 

Example 8.4 :  Evaluate 
lim

x → 3   
x2 + 7x + 11

x2 − 9
  . 

Solution: 

 Let f(x) = 
x2 + 7x + 11

x2 − 9
  . This is of the  form f(x) = 

g(x)
h(x) ,  

 where g(x) = x2 + 7x + 11 and h(x) = x2 − 9. Clearly g(3) = 41 ≠ 0 and  
h(3) = 0. 

 Therefore f(3) = 
g(3)
h(3)   =  

41
0   . Hence 

lim
x → 3  

x2 + 7x + 11

x2 − 9
  does not exist. 

Example 8.5:  Evaluate  
lim

x → 0   
1 + x − 1

x   

Solution: 

 
lim

x → 0   
1 + x − 1

x   = 
lim

x → 0    
( )1 + x − 1  ( )1 + x + 1

x( )1 + x + 1
  

  = 
lim

x → 0   
(1 + x) − 1

x ( )1 + x + 1
  = 

lim
x → 0   

1

( )1 + x + 1
  

  = 

lim
x → 0  (1)

 
lim

x → 0 ( )1 + x + 1
  = 

1
1 + 1

  = 
1
2  . 

8.1.2  Some important Limits 

Example 8.6 : 

 For 



∆x

a   < 1 and for any rational index n,   

  
lim

x → a    
xn − an

x − a
   =  nan − 1 (a ≠ 0) 
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Solution: 

 Put ∆x = x − a so that ∆x → 0 as x → a   and 



∆x

a   < 1 . 

 Therefore 
xn − an

x − a
  = 

(a + ∆x)n − an

 ∆x
  = 

an 



1 + 

∆x
a  

n
 − an

 ∆x
  

 Applying  Newton’s  Binomial Theorem for rational index we have 

 



1 + 

 ∆x
a  

n
 = 1 + 



n

1    



∆x

a  + 



n

2  



∆x

a  
2
  + 



n

3   



∆x

a

3
+…+ 



n

r   



∆x

a  
r
 +… 

 ∴ 
xn − an

x − a
  = 

an 





1 + 



n

1  



∆x

a  + 



n

2  



∆x

a  
2
 + …+ 



n

r  



∆x

a

  r
 + …  − an

 ∆x
 

  = 










n

1  an−1 ∆x+ 



n

2  an − 2 (∆x)2+…+



n

r  a n − r (∆x)r + … 

∆x
  

  = 



n

1   an − 1 + 



n

2   an − 2 (∆x) + …+ 



n

r   an − r (∆x)r − 1 + … 

  = 



n

1   an − 1 + terms containing ∆x and higher powers of ∆x . 

 Since   ∆x = x − a, x → a means ∆x → 0 and therefore  

  
lim

x → a   
xn − an

x − a
  = 

lim
∆x → 0   



n

1   an − 1 + 
lim

∆x → 0  

(terms containing ∆x and higher powers of ∆x) 

  = 



n

1   an − 1 + 0 + 0 + …  = nan − 1          since 



n

1  = n . 

 As an illustration of this result, we have the following examples. 

Example 8.7:  Evaluate  
lim

x → 1   
x3 − 1
x− 1

   

Solution: 
lim

x → 1   
x3 − 1
x− 1

  = 3(1)3 − 1  = 3(1)2 = 3  

Example 8.8:  Find  
lim

x → 0   
(1 + x)4 − 1

x   

Solution:  Put 1 + x = t so that t → 1 as x → 0 

 ∴    
lim

x → 0   
(1 + x)4 − 1

x   = 
lim

t → 1  
t4 − 14

t − 1
  = 4(1)3 = 4  
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Example 8.9:  Find the positive integer n so that 
lim

x → 2   
xn − 2n

x − 2
   =  32  

Solution:  We have 
lim

x → 2   
xn − 2n

x − 2
   =  n2n − 1 

  ∴ n2n − 1 =  32  =  4 × 8  = 4 × 23  = 4 × 2 4 − 1 

 Comparing on both sides we get n = 4 

Example 8.10:  
lim

θ → 0   
sin θ

θ    =  1  

Solution: 

 We take y = 
sin θ

θ  . This function is defined for all θ, other than θ = 0, for 

which both numerator and denominator become zero. When θ is replaced by  

− θ , the magnitude of the fraction 
sin θ

θ  does not change since 
sin (−θ)

− θ  = 
sin θ

θ  . 

Therefore it is enough to find the limit of the fraction as θ tends to 0 through 
positive values. i.e. in the first quadrant. We consider a circle with centre at  
O radius unity. A, B are two points on this circle so  
OA = OB = 1. Let θ be the angle subtended at the centre by the arc AE. 
Measuring angle in radians, we have sinθ  = AC, C being a point on AB such 
that OD passes through C. 

 cosθ = OC, θ  = 
1
2  arc AB,  OAD   = 90° 

   In triangle OAD, AD = tanθ.  

 Now length of arc AB = 2θ   and length 
of the chord AB = 2 sinθ   
  sum of the tangents = AD + BD = 2 tanθ  

Fig. 8.1 

 Since the length of the arc is intermediate between the length of chord and 
the sum of the tangents we can write  2 sin θ < 2θ < 2 tanθ. 

 Dividing by 2 sinθ , we have  1 < 
θ

 sinθ   <  
1

cos θ   or  1 >  
sinθ

θ    >  cos θ 

 But as θ → 0, cos θ, given by the distance OC, tends to 1 

 That is, 
lim

 θ → 0   cosθ = 1 . 
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 Therefore 1 > 
lim

 θ → 0   
sin θ

θ    >  1, by 3(vi) of 8.1.1 

 That is, the variable y = 
sin θ

θ   always lies between unity and a magnitude 

tending to unity, and hence  
lim

 θ → 0   
sin θ

θ   = 1. 

 The graph of the function y = 
sin θ

θ   is shown in fig. 8.2 

 
Fig. 8.2 

Example 8.11:  Evaluate 
lim

 θ → 0   
1 − cos θ

θ2   . 

Solution: 

   
1 − cos θ

θ2    = 
2 sin2 

θ
2

 θ2  = 
1
2  

sin2 



θ

2





θ

2

2  = 
1
2  







sin 

θ
2

θ
2

 

2

 

 If θ → 0, α = 
θ
2  also tends to 0 and 

lim
 θ → 0  

sin 
θ
2

θ
2

  = 
lim

 α → 0  
sin α

α   = 1  and 

hence 
lim

 θ → 0  
1− cosθ

θ2  = 
lim

 θ → 0   
1
2 







sin 

θ
2

θ
2

 

2

= 
1
2   







lim

 θ → 0 
sin 

θ
2

θ
2

 

2

= 
1
2 × 12 = 

1
2  
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Example 8.12:  Evaluate 
lim

x → 0 +
   

sin x
x

   

Solution: 

   
lim

x → 0 +
   

sin x
x

  = 
lim

x → 0 +
 



sin x

x  x  

    = 
lim

x → 0 +
 



sin x

x . 
lim

x → 0 +
 ( )x  = 1 × 0 = 0 . 

Note:  For the above problem left hand limit does not exist since x  is not real 
for x < 0. 

Example 8.13:   Compute 
lim

x → 0   
sin βx
sinαx

  , α ≠ 0 . 

Solution: 

 
lim

x → 0   
sin βx
sinαx

   = 
lim

x → 0    
β . 

sin βx
βx

 α . 
sin αx

αx

  =  
β  

lim
x → 0 



sin βx

βx

α 
lim

x → 0 



sin αx

αx

     

  = 
β 

lim
 θ → 0 



sinθ

θ

α 
lim

y → 0 



sin y

y

  = 
β × 1
 α × 1

 = 
β
α . 

since θ = βx → 0 as x → 0
 and y = αx → 0 as x → 0

 

Example 8.14:  Compute 
lim

x → π/6  
2 sin2x + sinx − 1

2 sin2x − 3 sinx + 1
  

Solution: 

We have  2 sin2 x + sin x − 1 = (2 sinx − 1) (sin x + 1) 

 2 sin2 x − 3 sin x + 1 = (2 sinx − 1) (sin x − 1) 

 Now 
lim

x → π/6  
2 sin2x + sinx − 1

2 sin2x − 3 sinx + 1
  = 

lim
x → π/6  

(2 sinx − 1) (sin x + 1)
(2 sinx − 1) (sin x − 1)

  

  = 
lim

x → π/6 
sin x + 1
sin x − 1

  



2 sin x − 1 ≠ 0 for x → 

π
6   

    = 
sin π/6 + 1
sin π/6 − 1

   =  
1/2 + 1
1/2 − 1

    =  − 3 . 
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Example 8.15:   
lim

x → 0   
ex − 1

x    =  1 . 

Solution:   We know that ex = 1 + 
x

1
   +  

x2

2
  + … + 

xn

n
  + … 

   and so       ex − 1 = 
x

1
   +  

x2

2
  + … + 

xn

n
  + … 

 i.e.   
ex − 1

x   = 
1

1
  + 

x

2
  + … + 

xn − 1

n
  + …  

     (‡ x ≠ 0, division by x is permissible) 

   ∴    
lim

x → 0   
ex − 1

x   = 
1

1
   =  1 . 

Example 8.16:  Evaluate 
lim

x → 3     
ex − e3

x − 3
 . 

Solution:        Consider  
ex − e3

x − 3
 .  Put y = x − 3.  Then y → 0 as x → 3. 

 Therefore 
lim

x → 3  
ex − e3

x − 3
  = 

lim
y → 0   

ey + 3− e3

y    =  
lim

y → 0   
e3 . ey − e3

y   

   = e3  
lim

y → 0   
ey − 1

y    = e3 × 1 = e3  . 

Example 8.17:  Evaluate 
lim

x → 0    
ex − sin x − 1

x   . 

Solution:    

 Now 
ex − sin x − 1

x   =  



ex − 1

x   − 



sin x

x   

 and so  
lim

x → 0    
ex − sin x − 1

x   = 
lim

x → 0  



ex − 1

x   − 
lim

x → 0  



sin x

x  = 1 − 1 = 0  

Example 8.18:  Evaluate 
lim

x → 0  
etan x − 1

tanx    

Solution:   Put tanx = y.     Then y → 0  as x → 0  

 Therefore 
lim

x → 0  
etan x − 1

tanx   = 
lim

y → 0   
ey − 1

y   = 1  
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Example 8.19:     
lim

x → 0   
log (1 + x)

x    =  1  

Solution:  We know that  loge (1 + x)  = 
x
1   − 

x2

2   + 
x3

3   −  …   

  
loge (1 + x)

x    = 1 − 
x
2   +  

x2

3   − … 

 Therefore
lim

x → 0   
loge (1 + x)

x   = 1. 

Note: logx means the natural logarithm logex. 

Example 8.20:   Evaluate 
lim

x → 1   
log x
x − 1

  . 

Solution: Put x − 1 = y.  Then y → 0 as x → 1. 

 Therefore 
lim

x → 1  
log x
x − 1

  = 
lim

y → 0   
log(1 + y)

y    

    = 1      (by example 8.19) 

Example 8.21:  
lim

x → 0   
ax − 1

x    =  log a,    a > 0    

Solution: We know that f(x) = elog f(x)  and so   ax = elogax
 = ex loga . 

 Therefore  
ax − 1

x  = 
ex loga − 1

x log a   × log a 

 Now as x → 0, y = x log a → 0 

 
lim

x → 0   
ax − 1

x   =  
lim

y → 0   
ey − 1

y    ×  log a = log a 
lim

y → 0   



ey − 1

y    

  = log a.   (since  
lim

x → 0  
ex − 1

x   = 1) 

Example 8.22: Evaluate  
lim

x → 0   
5x − 6x

x    

Solution: 

 
lim

x → 0   
5x − 6x

x   = 
lim

x → 0  
(5x − 1) − (6x − 1)

x    

  = 
lim

x → 0  



5x − 1

x   − 
lim

x → 0  



6x − 1

x   

    = log 5 − log 6 = log 



5

6   . 
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Example 8.23:  Evaluate 
lim

x → 0   
3x + 1 − cos x − ex

x   . 

Solution: 

 
lim

x → 0   
3x + 1 − cos x − ex

x   = 
lim

x → 0  
(3x − 1) + (1 − cos x) − (ex − 1)

x   

  = 
lim

x → 0  



3x − 1

x   + 
lim

x → 0  



1 − cos x

x   − 
lim

x → 0  



ex − 1

x   

  = log 3 + 
lim

x → 0   
2 sin2 x/2

x   − 1  

  = log 3 + 
lim

x → 0  
x
2   



sin x/2

x/2

2
 − 1 

  = log3 + 
1
2  

lim
x → 0 (x) 

lim
x → 0  



sin x/2

x/2

2
 − 1 

  = log 3 + 
1
2 ×  0  ×  1 −1 = log 3 − 1. 

Some important limits : 

(1) 
lim

x → ∞   



1 + 

1
x  

x
  exists and we denote this limit by e 

(2) 
lim

x → 0   (1 + x)1/x  =  e  [by taking x = 
1
y in (1)]  

(3) 
lim

x → ∞  



1 + 

k
x  

x
 = ek 

Note : (1) The value of e lies between 2 & 3  i.e.,   2< e < 3 

     (2) 
lim

x → ∞   



1 + 

1
x  

x
  = e   is true for all real x 

 Thus 
lim

x → ∞   



1 + 

1
x  

x
  = e for all real values of x. 

     Note that e = e1 = 1 + 
1
1!  + 

1
1!  + 

1
2!  + 

1
3! +…+ 

1
r! + … This number e is also 

known as transcendental number in the sense that e never satisfies a polynomial 

(algebraic) equation of the form a0xn + a1xn − 1+…+ an − 1 x + an = 0. 

Example 8.24: Compute 
lim

x → ∞  



1 + 

1
x  

3x
 . 
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Solution: Now    



1 + 

1
x  

3x
  = 



1 + 

1
x  

x
  



1 + 

1
x  

x
  



1 + 

1
x  

x
 and so 

 
lim

x → ∞  



1 + 

1
x  

3x
  = 

lim
x → ∞  



1 + 

1
x  

x
 . 



1 + 

1
x  

x
 . 



1 + 

1
x  

x
 

 
lim

x → ∞   



1 + 

1
x  

x
 . 

lim
x → ∞   



1 + 

1
x  

x
 . 

lim
x → ∞  



1 + 

1
x  

x
 = e. e. e. = e3 . 

Example 8.25:  Evaluate 
lim

x → ∞   



x + 3

x − 1
 
x + 3

. 

Solution:  

 
lim

x → ∞   



x + 3

x − 1
 
 x + 3

 = 
lim

x → ∞   



x − 1 + 4

x − 1

(x − 1) + 4
  

  = 
lim

x → ∞   



1 + 

4
x − 1

 (x − 1) + 4
  

  = 
lim

y → ∞   



1 + 

4
y  

y + 4
  (‡y = x − 1→ ∞ as x → ∞) 

  = 
lim

y → ∞  



1 + 

4
y  

y 

 



1 + 

4
y  

4  

  

= 
lim

y → ∞   



1 + 

4
y  

y
 . 

lim
y → ∞   



1 + 

4
y

4
 = e4.  1 = e4 

Example 8.26:  Evaluate 
lim

x → π/2   (1 + cosx)3 sec x. 

Solution:  Put cos x = 
1
y  .     Now  y →  ∞  as x →  

π
2 . 

 
lim

x → π/2  (1 + cosx)3 sec x = 
lim

y → ∞  



1 + 

1
y

3y

 = 
lim

y → ∞  









1 + 

1
y  

y

 

3

  

 = 





lim

y → ∞ 



1 + 

1
y  

y   3

 = e3. 

Example 8.27. Evaluate  
lim

x → 0   
2 x − 1
1 + x − 1

  

Solution : 

 
lim

x → 0   
2x − 1
1 + x − 1

  = 
lim

x → 0   
2x − 1

(1 + x − 1)
  



 

 1 + x + 1  
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  = 
lim

x → 0  
2x − 1

x   . 
lim

x → 0  ( )1 + x + 1   

  = log 2 . ( )1 + 1            





‡  
lim

x → 0  
a x − 1

x  = loga   

  = 2 log 2 = log 4 . 

Example 8.28: Evaluate 
lim

x → 0   
1 + x − 1 − x

sin− 1 x
   

Solution: 

 Put  sin− 1x = y. Then x = sin y and y → 0 as x → 0. 

 Now 
lim

x → 0   
1 + x − 1 − x

sin− 1 x
  = 

lim
x → 0  

(1 + x) − (1 − x)

 sin− 1x
   





1

1 + x + 1 − x
  

  = 
lim

y → 0  
2 sin y

y  . 
lim

y → 0   
1

1 + sin y + 1 − sin y
  

  = 2  
lim

y → 0  



sin y

y    




1

1 + 0 + 1 − 0
  

  = 2 × 1 ×  
1
2   = 1 

EXERCISE 8.1 
Find the indicated limits. 

 (1) 
lim

x → 1   
x2 + 2x + 5

x2 + 1
    (2)  

lim
x → 2 −

   
x − 2

2 − x
     

 (3) 
lim

h → 0   
(x + h)2 − x2

h     (4)  
lim

x → 1   
xm − 1
x − 1

  

 (5) 
lim

x → 4   
2x + 1 − 3

x − 2 − 2
  (6)  

lim
x → 0   

x2 + p2 − p

x2 + q2 − q
  

 (7) 
lim

x → a  
m

x − 
m

a
x − a

  (8)  
lim

x → 1   
3

x − 1
x − 1

  

 (9) 
lim

x → 0   
1 + x + x2 − 1

x   (10)  
lim

x → 0   
sin2 (x/3)

x2   

 (11) 
lim

x → 0   
sin (a + x) − sin (a − x)

x   (12)  
lim

x → 0  
log (1 + αx)

x   

 (13) 
lim

n → ∞   



1 + 

1
n

n + 5
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 (14) Evaluate the left and right limits of f(x)  = 
x3 − 27

x− 3
  at x = 3. Does the limit 

of f(x) as x → 3 exist? Justify your answer. 

 (15) Find the positive integer n such that 
lim

x → 3   
xn − 3n

x − 3
   =  108 . 

 (16) Evaluate 
lim

x → 0   
ex − esinx

x − sin x
  . Hint : Take ex or  esinx as common factor in 

numerator. 

 (17) If f(x)  =  
ax2 + b

x2 − 1
  , 

lim
x → 0  f(x) = 1  and 

lim
x → ∞   f(x) = 1,  

  then prove that  f(− 2) = f(2) = 1. 

 (18) Evaluate 
lim

x → 0  −     
| x |
x    and  

lim
x → 0  +     

| x |
x    . 

  What can you say about  
lim

x → 0    
| x |
x     ? 

 (19) Compute 
lim

x → 0    
a x − b x

x   ,  a, b > 0. Hence evaluate 
lim

x → 0   
5 x − 6 x

 x   

 (20) Without using the series expansion of log (1 + x),  

  prove that 
lim

x → 0  
log (1 + x)

x   = 1  

8.2 Continuity of a function 
 Let f be a function defined on an interval I = [a, b]. A continuous function 
on I is a function whose graph y = f(x) can be described by the motion of a 
particle travelling along it from the point (a, f(a)) to the point (b, f(b)) without 
moving off the curve.  

Continuity at a point 
Definition: A function  f is said to be continuous at a point c, a < c < b, if  

lim
x → c  f(x) = f(c) 

     A function f is said to be continuous from the left at c if  
lim

x → c  − f(x) = f(c).        

    Also f is  continuous from the right at c if 
lim

x → c  +  f(x) = f(c). Clearly a 

function is continuous at c if and only if it is continuous from the left as well as 
from the right. 
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Continuity at an end point 
 A  function f defined on a closed interval [a, b] is said to be  continuous at 
the end point a if it is continuous from the right at a, that is, 

lim
x → a  +  f(x)  =  f(a) . 

 Also the function is continuous at the end point b of [a, b] if  
lim

x → b  −  f(x) = f(b). 

 It is important to note that a function is continuous at a point c if 

 (i) f is well defined at x = c i.e. f(c) exists. (ii) 
lim

x → c  f(x) exists, and  

(iii) 
lim

x → c  f(x) = f(c). 

Continuity in an interval 
 A function f is said to be continuous in an interval [a, b] if it is continuous 
at each and every point of the interval. 
Discontinuous functions 
 A function f is said to be discontinuous at a point c of its domain if it is not 
continuous at c. The point c is then called a point of discontinuity of the 
function. 
 Theorem 8.1:  If f, g be continuous functions at a point c then the 
functions  
f + g, f − g, fg are also continuous at c and if g(c) ≠ 0 then f / g is also 
continuous at c. 
Example 8.29:  Every constant function is continuous. 
Solution: Let f(x) = k be the constant 
function. 
 Let c be a point in the domain of f. 
 Then f(c) = k. 

 Also 
lim

x → c   f(x) = 
lim

x → c  (k) = k, 

 Thus 
lim

x → c  f(x) = f(c). 

 Hence f(x) = k is continuous at c. 
 

Fig. 8.3 

Note : The graph of y = f(x) = k is a straight line parallel to x-axis and which 
does not have any break. That is, continuous functions are functions, which do 
not admit any break in its graph. 
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Example 8.30: The function f(x) = xn, x ∈ R is continuous. 
Solution. Let x0 be a point of R. 

 Then    
lim

x → x0
  f(x) = 

lim
x → x0

  (xn) = 
lim

x → x0
  (x. x … n factors) 

  = 
lim

x → x0
  (x). 

lim
x → x0

  (x)  … 
lim

x → x0
  (x) … (n factors) 

  = x0.x0 … x0         (n factors) = x0
n 

 Also     f(x0) = x0
n .  Thus   

lim
x → x0

  f(x) = f(x0) = x0
n  

 ⇒    f(x) = xn is continuous at x0 

Example 8.31: The function f(x) = kxn is continuous where k ∈ R and k ≠ 0. 

Solution. Let g(x) = k and h(x) = xn. 
 By the example 8.29, g is continuous and  by example 8.30, h is 

continuous and hence by Theorem 8.1,  f(x) = g(x) . h(x) = kxn is continuous. 
Example 8.32: Every polynomial function of degree n is continuous. 

Solution.  Let f(x) = a0xn +a1 xn − 1 + a2xn − 2 + … + an − 1 x + an , a0 ≠ 0 be a 

polynomial function of degree n.  

 Now by example 8.31 aix
i, i = 0, 1, 2, … n are continuous. By theorem 8.1 

sum of continuous functions is continuous and hence the function f(x) is 
continuous. 

Example 8.33: Every rational function of the form p(x) / q(x) where p(x) and 
q(x) are polynomials, is continuous  (q(x) ≠ 0). 

Solution. Let r(x) = p(x) / q(x) ,  q(x) ≠ 0 be a rational function of x. Then we 
know that p(x) and q(x) ≠ 0 are polynomials. Also, p(x) and q(x)  are 
continuous, being polynomials. Hence by theorem 8.1 the quotient p(x) / q(x)  is 
continuous. i.e. the rational function r(x) is continuous. 
Results without proof : 
(1) The exponential function is continuous at all points of R. 

 In particular the exponential function f(x) = ex is continuous. 

 (2) The function f(x) = logx, x > 0 is continuous at all points of R+, where R+ 
is the set of positive real numbers. 

(3) The sine function f(x) = sinx is continuous at all points of R. 
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(4) The cosine function f(x) = cosx is continuous at all points of R. 
 Note : One may refer the SOLUTION BOOK for proof. 

Example 8.34: Is the function f(x) =  


sin2x

x  ,  x ≠ 0

1 .  when x = 0
    continuous at x = 0?   

Justify your answer. 
Solution.  Note that f(0) = 1. 

 Now  
lim

x → 0  f(x) = 
lim

x → 0  
sin 2x

x    



‡for x ≠ 0,  f(x) = 

sin 2x
x   

    = 
lim

x → 0  2 



sin 2x

2x   = 2 
lim

x → 0  



sin 2x

2x   

    = 2  
lim

2x → 0   



sin 2x

2x   = 2.1 = 2 . 

 Since 
lim

x → 0  f(x)  =2 ≠ 1 = f(0),  the function is not continuous at x = 0. 

That is, the function is discontinuous at x = 0. 
 Note that the discontinuity of the above function can be removed if we define 

 f(x) =  


sin2x

x  ,  x ≠ 0

2,        x = 0
  so that for this function  

lim
x → 0  f(x) = f (0).  

Such points of discontinuity are called removable discontinuities. 
Example 8.35:.  Investigate the continuity at the indicated point: 

 f(x) =  


sin (x − c)

x − c
   if x ≠ c

0       if x = c
        at x = c 

Solution.  We have f(c) = 0 . 

   Now 
lim

x → c f(x)= 
lim

x → c   
sin (x − c)

x − c
 = 

lim
h → 0  

sin h
h   (‡ h = x − c → 0 as x→c)  

                            = 1 . 

 Since  f(c) = 0 ≠ 1 = 
lim

x → c  f(x) , the function f(x) is discontinuous at x = c.  

Note: This discontinuity can be removed by re-defining the function as  

    f(x) = 


sin(x − c)

x − c
   if x ≠ c

1       if x = c
 

 Thus the point x = c is a removable discontinuity. 
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Example  8.36:  A function f is defined on by  f(x) =



− x2         if x ≤ 0

5x − 4      if 0 < x ≤ 1

4x2 − 3x  if 1 < x < 2
3x + 4     if x ≥ 2

 

 Examine f for continuity at x = 0, 1, 2. 
Solution. 

 (i) 
lim

x → 0  −  f(x) = 
lim

x → 0  −  ( − x2) = 0 

  
lim

x → 0  +  f(x) = 
lim

x → 0  +  (5x − 4) = (5.0 − 4) = − 4 

 Since    
lim

x → 0  −  f(x) ≠ 
lim

x → 0  +  f(x), f(x) is discontinuous at x = 0 

 (ii) 
lim

x → 1  −
  f(x)  = 

lim
x → 1  −

  (5x − 4)  = 5 ×  1 − 4 = 1. 

  
lim

x → 1 +
  f(x) = 

lim
x → 1 +

  (4x2 − 3x) = 4 × 12 − 3 × 1 = 1 

 Also f(1) = 5 × 1 − 4 = 5 − 4 = 1 

 Since 
lim

x → 1  −
  f(x) = 

lim
x → 1 +

   f(x) = f(1), f(x) is continuous at x = 1 . 

 (iii) 
lim

x → 2  −
  f(x) = 

lim
x → 2  −

  (4x2 − 3x) 

   = 4 × 22 − 3 × 2 = 16 − 6 = 10 . 

 and  
lim

x → 2  +  f(x) = 
lim

x → 2  +  (3x + 4) = 3 × 2 + 4 = 6 + 4 = 10 . 

 Also   f (2) = 3 × 2 + 4 = 10 . 

 Since f(2) = 
lim

x → 2  f(x), the function f(x) is continuous at x = 2. 

Example 8.37: Let x denote the greatest integer function. Discuss the 
continuity at x = 3 for the function f(x) = x − x, x ≥ 0. 

Solution.   Now 
lim

x → 3  −  f(x) = 
lim

x → 3  −  x − x  = 3 − 2 = 1, 

   
lim

x → 3  +  f(x) = 
lim

x → 3  +  x − x   = 3 − 3 = 0, 

 and  f(3) = 0 . 

 Note that f(3) = 
lim

x → 3  +  f(x) ≠ 
lim

x → 3  −  f(x) . 

 Hence f(x) = x − x   is discontinuous at x = 3. 
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EXERCISE 8.2 
Examine the continuity at the indicated points   

 (1) f(x) = 


x3 − 8

x2 − 4
    if x ≠ 2

3          if x = 2
  at x  =  2   

 (2)  f(x)  =  x − | x | at x = 0  

 (3) f(x) = 


2x when 0 ≤ x < 1

3 when x = 1
4x when 1 < x ≤ 2

  at x = 1  

 (4)  f( x)  =  


2x − 1,  if x < 0
2x + 6, if x ≥ 0

    at x  =  0 

 (5) Find the values of a and b so that the function f given by 

   f(x)  = 


1, if x ≤ 3

ax + b, if 3 < x < 5
7,  if x ≥ 5

  is continuous at x = 3 and x = 5 

 (6) Let f be defined by f(x) =  



x2

2  , if 0 ≤ x ≤ 1

2x2 − 3x + 
3
2 , if 1 < x ≤ 2

  

   Show that f is continuous at x = 1 . 

 (7) Discuss continuity of the function f, given by f(x) = |x − 1| + |x − 2|,  
at x = 1 and  x = 2. 

8.3 Concept of Differentiation 
 Having defined and studied limits, let us now try and find the exact rates of 
change at a point. Let us first define  and understand what are increments? 

 Consider a function y = f(x) of a variable x. Suppose x changes from an 
initial value x0 to a final value x1 . Then the increment in x is defined to be the 

amount of change in x. It is denoted by ∆x (read as delta x).That is ∆x = x1 − x0. 

 Thus x1 = x0 + ∆x 

 If x increases then ∆x > 0, since x1 > x0. 

 If x decreases then ∆x < 0, since x1 < x0. 
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 As x changes from x0 to x1 = x0 + ∆x, y changes from f(x0) to f(x0 + ∆x). 

We put f(x0) = y0 and f(x0 + ∆x) = y0 + ∆y. The increment in y namely ∆y 

depends on the values of x0 and ∆x. Note that ∆y may be either positive, 

negative or zero (depending on whether y has increased, decreased or remained 
constant when x changes from x0 to x1). 

 If the increment ∆y is divided by ∆x, the quotient 
∆y
 ∆x

  is called the average 

rate of change of y with respect to x, as x changes from x0 to x0 + ∆x. The 

quotient is given by 

   
∆y
 ∆x

  = 
f (x0 + ∆x) − f(x0)

 ∆x
  

 This fraction is also called a difference quotient. 

Example 8.38: A worker is getting a salary of Rs. 1000/- p.m. She gets an 
increment of Rs. 100/- per year. If her house rent is half her salary, what is the 
annual increment in her house rent? What is the average rate of change of the 
house rent with respect to the salary? 

Solution: 

 Let the salary be given by x and the house rent by y. Then y = 
1
2  x. Also  

∆x = 100. Therefore, ∆y = 
1
2  (x + ∆x) − 

1
2  x = 

∆x
2    =  

100
2   = 50.  

 Thus, the annual increment in the house rent is Rs. 50/-.  

 Then the required average rate of change is 
∆y
 ∆x

  = 
50
100  = 

1
2  . 

Example 8.39: If y = f(x) = 
1
x , find the average rate of change of y with respect 

to x as x changes from x1 to x1 + ∆x. 

Solution: ∆y = f(x1 + ∆x) − f(x1) = 
1

x1 + ∆x
  − 

1
x1

   

   = 
− ∆x

x1 (x1 + ∆x)
   

   ∴   
∆y
∆x

  = 
− 1

x1 (x1 + ∆x)
  . 
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8.3.1 The concept of derivative 
 We consider a point moving in a straight line. The path s traversed by the 
point, measured from some definite point of the line, is evidently a function of 
time, 

s =  f(t) . 
 A corresponding value of s is defined for every definite value of t. If t 
receives an increment ∆t, the path s + ∆s will then correspond to the new instant 
t + ∆t, where ∆s is the path traversed in the interval ∆t. 
 In the case of uniform motion, the increment of the path is proportional to 

the increment of time, and the ratio  
∆s
 ∆t

  represents the constant velocity of the 

motion. This ratio is in general dependent both on the choice of the instant t and 
on the increment ∆t, and represents the average velocity of the motion during 
the interval from t to t + ∆t.  

 The limit of the ratio 
∆s
 ∆t

 , if it exists with ∆t tending to zero, defines the 

velocity v at the given instant :  v = 
lim

 ∆t → 0 
∆s
 ∆t

  .  That is 
lim

 ∆t → 0  
∆s
 ∆t

  is the 

instantaneous velocity v. 

 The velocity v, like the path s, is a function of time t; this function is called 
the derivative of function f(t) with respect to t, thus, the velocity is the 
derivative of the path with respect to time. 

 Suppose that a substance takes part in certain chemical reaction. The 
quantity x of this substance, taking part in the reaction at the instant t, is a 
function of t. There is a corresponding increment ∆x of magnitude x for an 

increment of time ∆t, and the ratio 
∆x
 ∆t

  gives the average speed of the reaction in 

the interval ∆t while the limit of this ratio as ∆t tends to zero gives the speed of 
the chemical reaction of the given instant t. 

 The above examples lead us to the following concept of the derivative of a 
function. 

Definition 

 The derivative of a given function y = f(x) is defined as the limit of the 
ratio of the increment ∆y of the function to the corresponding increment ∆x of 
the independent variable, when the latter tends to zero. 
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 The symbols y′ or f′(x) or 
dy
dx   are used to denote derivative: 

   
dy
dx  = y′ = f′(x) = 

lim
∆x → 0  

∆y
 ∆x

  

    = 
lim

∆x → 0   
f(x + ∆x) − f(x)

 ∆x
  

 It is possible for the above limit, not to exist in which case the derivative does 
not exist. We say that the function y = f(x) is differentiable if it has a derivative. 
Note. 
 (1) The operation of finding the derivative is called differentiation. 

  Further it should be noted, the notation 
dy
dx  does not mean dy ÷ dx. It 

simply means 
d(y)
dx    or 

d
dx  f(x), the symbol 

d
dx  is an operator meaning 

that differentiation with respect to x whereas the fraction 
∆y
 ∆x

  stands 

for ∆y ÷ ∆x. Although the notation 
dy
dx  suggests the ratio of two 

numbers dy and dx (denoting infinitesimal changes in  

y and x), it is really a single number, the limit of a ratio 
∆y
 ∆x

  as both 

the terms approach 0. 
 (2) The differential coefficient of a given function f(x) for any particular 

value of x say x0 is denoted by f ′(x0) or 



dy

dx  x = x0
 and stands for 

lim
∆x → 0   

f(x0 + ∆x) − f(x0)

∆x
   provided this limit exists. 

 (3) If the limit of  
f(x0 + ∆x) − f(x0)

∆x
  exists when ∆x → 0 from the right 

hand side i.e. ∆x → 0 through positive values alone, it is known as 
right or progressive differential coefficient and is denoted by  

f ′(x0+) = 
lim

∆x → 0   
f(x0 + ∆x) − f(x0)

∆x
  = Rf′(x0) . Similarly the limit of 

f(x0 − ∆x) − f(x0)

− ∆x
  as ∆x → 0 from the left hand side i.e. from negative 

values alone is known as the left or regressive differential coefficient 
and is denoted by  
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                        f ′ (x0−) = 
lim

∆x → 0   
f(x0 − ∆x) − f(x0)

− ∆x
   =  Lf ′ (x0) . 

 If Rf ′(x0) = Lf ′(x0), then f is said to be differentiable at x = x0 and the 

common value is denoted by f ′(x0). If R f ′(x0) and Lf ′ (x0) exist but are 

unequal, then f(x) is not differentiable at x0. If none of them exists then also f(x) 

is not differentiable at x0.  

 Geometrically this means that the graph of the function has a corner and 
hence no tangent at the point (x0, f(x0)).  

8.3.2  Slope or gradient of a curve  







Geometrical meaning of 
dy
dx   

 In this section we shall define what we mean by the slope of a 
curve at a point P on the curve. 
 
 Let P be any fixed point 
on a curve  y = f(x), and let Q 
be any other point on the same 
curve. Let PQ be the 
corresponding secant. If we let 
Q move along the curve and 
approach P, the secant PQ will 
in general rotate about the 
point P and may approach a 
limiting position PT. (Fig 8.4). 

 
Fig. 8.4 

Definition 
 The tangent to a curve at a point P on the curve is the limiting position PT 
of a secant PQ as the point Q approaches P by moving along the curve, if this 
limiting position exists and is unique. 
 If P0 is (x0, y0) and P is (x0 + ∆x, y0 + ∆y) are two points on a curve 

defined by y = f(x), as in Fig. 8.5, then the slope of the secant through these two 
points is given by 

 m′ = tan α0′ = 
∆y
∆x

  = 
f(x0 + ∆x) − f(x0)

− ∆x
 , where α0′ is the inclination of the 

secant.  
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 As ∆x approaches 0, P moves along the curve towards P0 ; and if f ′ (x0) 

exists, the slope of the tangent at P0 is the limit of the slope of the secant P0 P, 

or 

  m0 = tanα0 = 
lim

∆x → 0  
∆y
∆x

  = f ′(x0) = 



dy

dx  x = x0
 where α0 is the 

inclination of the tangent P0T and m0 is its slope. The slope of the tangent to a 

curve at a point P0 is often called the slope of the curve at that point. 

 Thus, geometrically 
we conclude that the 
difference ratio (or the 

difference coefficient) 
∆y
∆x

  

is the slope of the secant 
through the point  
P0(x0,y0) whereas the 

differential coefficient or 
the derivative of y = f(x) 
at x = x0 is the slope or 

gradient of the tangent to 
the curve at P0(x0,y0).  

 
Fig. 8.5 

Definition 

 If f(x) is defined in the interval x0 ≤ x < b, its right hand derivative at x0 is 

defined as f′(x0+) = 
lim

x → x0  +
   

f(x0 + ∆x) − f(x0)

∆x
  provided this limit exists; if 

f(x) is defined in the interval a < x ≤ x0 its left hand derivative at x0 is defined as  

 f′ (x0 −) =  
lim

x → x0 −    
 f(x0 − ∆x) − f(x0)

∆x
  provided this limit exists. 

 If f(x) is defined in the interval a ≤ x ≤ b, then we can write f′(a) for  
f′(a +), and we write f′(b) for f′ (b−) 
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Relationship between differentiability and continuity. 

Theorem 8.2  Every differentiable function is continuous.  

Proof. Let a function f be differentiable at x = c. Then  f′(c) exists and  

f′(c) = 
lim

x → c  
f(x) − f(c)

x − c
  

 Now f(x) − f(c) = (x − c)  
[ ]f(x) − f(c)

(x − c)
  ,  x ≠ c 

 Taking limit as x → c, we have  

 
lim

x → c  { }f(x) − f(c)   = 
lim

x → c  (x − c) . 
[ ]f(x) − f(c)

(x − c)
  

  = 
lim

x → c  (x − c) . 
lim

x → c  
f(x) − f(c)

x − c
  

   = 
lim

x → c  (x − c) . f′(c) = 0. f′(c) = 0. 

 Now        f(x) = f(c) + [ ]f(x) - f(c)    and  
lim

x → c  f(x) = f(c) + 0 = f(c) 

 and therefore f is continuous at x = c. 
 The converse need not be true. i.e. a function which is continuous at a point 
need not be differentiable at that point. We illustrate this by the following example. 
Example 8.40:  A function f(x) is defined in an interval [0, 2] as follows : 
   f(x) = x when 0 ≤ x ≤ 1 
    = 2x − 1 when 1 < x ≤ 2 
 Show that f(x) is continuous at 1 but not differentiable at that point. 
 The graph of this function is as shown in fig. 8.6 
 This function is continuous at x = 1. 

For,  
lim

x → 1 −  f(x) = 
lim

h → 0 f(1 − h) 

  = 
lim

h → 0  (1 − h) 

  = 1 − 0 = 1 

 
lim

x → 1+
  f(x) = 

lim
h → 0  f(1 + h) 

  = 
lim

h → 0  ( )2(1 + h) − 1  

  = 
lim

h → 0  (2h + 1) 

  = 1 . 

 

 
Fig. 8.6 
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 Thus f(x) is continuous at x = 1 

        Now      Rf ′(1) = 
lim

h → 0  
f(1 + h) − f(1)

h   

  = 
lim

h → 0  
[ ]2(1 + h) − 1  − [ ]2(1) − 1

h   = 
lim

h → 0   
2h
h   = 2  and  

   Lf′(1) = 
lim

h → 0  
f(1 − h) − f(1)

(1 − h) − 1
  = 

lim
h → 0  

(1 − h) − 1
− h

   

                                                     = 
lim

h → 0  
− h
− h

  =  1. 

 Since Rf′(1) ≠ Lf′(1), the given function is not differentiable at x = 1. 
Geometrically this means that the curve does not have  a tangent line at the 
point (1, 1). 

Example 8.41:  

 Show that the function y = x1/3=f(x) is not differentiable at x = 0. 

 [This function is defined and continuous for all values of the independent 
variable x. The graph of this function is shown in fig. 8.7] 

Solution: 

 This function does not have derivative at x = 0 

 For, we have y + ∆y = 
3

x + ∆x  

 ∆y = 
3

x + ∆x  − 
3

x  

 At x = 0,  y = 0 and ∆y = 
3

∆x  . 

Now 
lim

∆x → 0   
∆y
∆x

   

            = 
lim

∆x → 0  
f(0 + ∆x) − f(0)

∆x
  

 

Fig. 8.7 

   = 
lim

∆x → 0  
3

∆x − 0
∆x

  = 
lim

∆x → 0  
1

3
(∆x)2

  =  + ∞. 
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 Consequently this function is not differentiable at the point x = 0. The 

tangent to the curve at this point forms with the x-axis, an angle 
π
2  , which 

means that it coincides with the y-axis. 

Example 8.42:  Show that the function f(x) = x2 is differentiable on [0, 1]. 

Solution. Let c be any point such that 0 < c < 1 . 

 Then f′(c) =
lim

x → c   
f(x) − f(c)

x − c
  = 

lim
x → c  

x2 − c2

x − c
   =  

lim
x → c   (x + c) = 2c . 

 At the end points we have 

 f′(0) = 
lim

x → 0 +  
f(x) − f(0)

x − 0
  = 

lim
x → 0 + 

x2

x    = 
lim

x → 0  (x) = 0  

 and   f′(1) = 
lim

x → 1 −  
f(x) − f(1)

x − 1
   =  

lim
x → 1 − 

x2 − 1
x − 1

  

  = 
lim

x → 1 − (x + 1) = 2 . 

 Since the function is differentiable at each and every point of [0, 1],  

f(x) = x2 is differentiable on [0, 1]. 

EXERCISE 8.3 

 (1) A function f is defined on R+ by f(x) =   


x  if 0 < x < 1
1  if x ≥ 1  . 

  Show that f′(1) does not exist. 
 (2) Is the  function f(x) = | x | differentiable at the origin. Justify your answer. 
 (3) Check the continuity of the function f(x) = |x | + | x − 1 | for all x ∈ R. What 

can you say its differentiability at x = 0, and x = 1? 
 (4) Discuss the differentiability of the functions 

  (i) f(x) = 


1, 0 ≤ x ≤ 1
x,  x > 1

at x = 1  (ii) f(x) = 


2x − 3, 0 ≤ x ≤ 2

x2  − 3,  2 < x ≤ 4
at x = 2, x = 4 

 (5) Compute Lf′ (0) and Rf′(0) for the function f(x) = 


x(e1/x − 1)

(e1/x + 1)
,   x ≠ 0

0,    x = 0

 

8.4. Differentiation Techniques 
 In this section we discuss different techniques to obtain the derivatives of 
given functions. In order to find the derivative of a function y = f(x) from first 
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principles (on the basis of the general definition of a derivative) it is necessary 
to carry out the following operations : 

 1) increase the argument x by ∆x, calculate the increased value of the 
function 

  y + ∆y = f(x + ∆x). 

 2) find the corresponding increment of the function ∆y = f(x + ∆x) − f(x) ; 
 3) form the ratio of the increment of the function to the increment of the 

argument  
∆y
∆x

   =   
f(x + ∆x) − f(x)

∆x
   ;   

 4) find the limit of this ratio as ∆x → 0; 

  
dy
dx   =  f ′(x)  =  

lim
∆x → 0   

f(x + ∆x) − f(x)
∆x

  

 We shall apply this general method for evaluating the derivatives of certain 

elementary (standard) functions. As a matter of convenience we denote 
dy
dx  = f 

′(x) by y′. 

8.4.1 Derivatives of elementary functions from first principles 

I. The derivative of a constant function is zero. 

   That is,     
d
dx  (c) = 0,  where c is a constant … (1) 

Proof.  Let           f(x) = c      Then   f(x + ∆x) = c 

   
df(x)
dx   = 

lim
∆x → 0  

f(x + ∆x) − f(x)
∆x

  

   ∴ 
d
dx  (c) = 

lim
∆x → 0  

c − c
∆x

   = 0 . 

II. The derivative of xn is nxn − 1, where n is a rational number 

   i.e.        
d
dx  (xn) = nxn − 1 . … (2) 

Proof:  Let        f(x) = xn.     Then    f(x + ∆x) = (x + ∆x)n 

   Now  
d f(x)

dx   = 
lim

∆x → 0  
f(x + ∆x) − f(x)

∆x
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   ∴ 
d(xn)

dx   = 
lim

∆x → 0  
(x + ∆x)n− xn

∆x
   = 

lim
∆x → 0   

xn 




1 + 

∆x
x

 n
 − xn

∆x
  

    = 
lim

∆x → 0  xn  







1 + 

∆x
x  

n
 − 1

∆x
  

    = xn − 1 
lim

∆x → 0   













1 + 

∆x
x  

n
 − 1

∆x
x

  . 

 Put   y  =  1 + 
∆x
x   As  ∆x → 0,   y → 1 . 

   ∴ 
d(xn)

dx   = xn − 1 lim
y → 1  



yn − 1

y − 1
  

    = n xn − 1  

    = nxn − 1. 





‡ 
lim

y → a 
yn − an

y − a
 = nan − 1   

Note.  This result is also true for any real number  n. 

Example 8.43:  If y = x5 , find 
dy
dx

 

Solution : dy
dx = 5x5 − 1 = 5x4. 

Exampl 8.44: If  y = x  find 
dy
dx 

Solution : 
dy
dx = 1.x1 − 1 = 1x° = 1 . 

Example 8.45:  If y = x  find 
dy
dx .  

Solution:      

 Let us represent this function in the form of a power:   y  = x

1
2   ; 

 Then by formula (II) we get 

   
dy
dx  = 

d
dx  (x 

1
2 ) = 

1
2 x

1
2 − 1

  = 
1
2  x

− 
1
2  = 

1
2 x

  . 
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Example 8.46:  If y  = 
1

x x
   , find  

dy
dx .  

Solution:   

 Represent y in the form of a power. i.e.    y = x
− 

3
2  . 

   Then        
dy
dx  = − 

3
2   x

− 
3
2 − 1

  = − 
3
2   x

− 
5
2   

III. The derivative of   sinx   is  cosx  

 i.e.  if  y  =  sinx   then  
dy
dx   =  cosx    … (3) 

Proof: 
 Let  y = sinx. Increase the argument x by ∆x, then 

 y + ∆y = sin (x + ∆x)  

 ∆y = sin (x + ∆x) − sin x = 2 sin 
(x + ∆x − x)

2    cos 
(x + ∆x + x)

2   

  = 2 sin 
∆x
2   . cos 



x + 

∆x
2   

 
∆y
∆x

  = 
2 sin 

∆x
2  cos 



x + 

∆x
2

∆x
   =  

sin 
∆x
2

∆x
2

  cos 



x + 

∆x
2   

 
dy
dx  = 

lim
∆x → 0  

∆y
∆x

  = 
lim

∆x → 0  
sin 

∆x
2

∆x
2

  . 
lim

∆x → 0  cos 



x + 

∆x
2   

  = 1. 
lim

∆x → 0  cos 



x + 

∆x
2   . 

 Since f(x) = cosx is continuous 

  = 1. cosx 
lim

∆x → 0  f(x + ∆x) = 
lim

∆x → 0  cos (x + ∆x)  

  = cosx .  = cosx 
          
IV. The derivative of cosx is   − sinx 

 ie. if  y = cosx, then 
dy
dx  = − sinx . … (4) 

Proof:  Let y = cosx    Increase the argument x by the increment ∆x.  
  Then y + ∆y = cos (x + ∆x)  ; 
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   ∆y = cos (x + ∆x)  −  cosx 

    = − 2 sin 
x + ∆x − x

2    sin 
x + ∆x + x

2   

    = − 2 sin 
∆x
2    sin 



x + 

∆x
2   

   
∆y
∆x

  = − 
sin 

∆x
2

∆x
2

  . sin 



x + 

∆x
2   ; 

   
dy
dx  = 

lim
∆x → 0   

∆y
∆x

   =  − 
lim

∆x → 0  
sin 

∆x
2

∆x
2

  sin 



x + 

∆x
2   

    = − 
lim

∆x → 0  
sin 

∆x
2

∆x
2

  . 
lim

∆x → 0  sin 



x + 

∆x
2   

   Since sin x is continuous, 
lim

∆x → 0  sin 



x + 

∆x
2   = sin x  and  

lim
θ → 0   

sinθ
θ   = 1 

   ∴    
dy
dx  = − sin x . 

Theorem 8.3 
 If f and g are differentiable functions of x and c is any constant, then the 
following are true. 

 (i)  
d(cf(x))

dx   = c 
d ( )f(x)

dx    … (5) 

 (ii)  
d( )f(x) ± g(x)

dx   = 
d( )f(x)

dx    ± 
d( )g(x)

dx    . … (6) 

Example 8.47: If y  =  
3
x
 ,  find 

dy
dx  

Solution: y = 3 x
− 

1
2 

  
dy
dx  = 3



− 

1
2   x

− 
1
2 − 1

  = − 
3
2  x

− 
3
2    

Example 8.48:    If y = 3x4 − 1/ 
3

x , find 
dy
dx  
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Solution: 

   y = 3x4 − x−1/3  

   
dy
dx  = 

d
dx   (3x4 − x−1/3) = 3 

d(x4)
dx   − 

d
dx  (x− 1/3) 

    = 3 × 4x4−1 − 



− 

1
3   x

− 
1
3 − 1

   

    = 12x3 + 
1
3 x

− 
4
3  

V. If y =  logax then  
dy
dx  = 

1
x   logae    … (7) 

Corollary : If y = logex  then 
dy
dx  = 

1
x     … (8) 

Proof: In the previous result take a = e.  Then 
d
dx  (logex) = 

1
x  logee = 

1
x  . 1 = 

1
x . 

Example 8.49:  Find y′ if y = x2 + cosx. 

Solution:  We have y = x2 + cosx. 

   Therefore    y′ = 
dy
dx  = 

d
dx  (x2 + cosx) 

    = 
d(x2)

dx   + 
d(cosx)

dx    

    = 2x2 − 1 + (− sin x)  

    = 2x − sin x 
Example 8.50:  

 Differentiate 1/ 
3

x   + log5x + 8 with respect to x. 

Solution:  Let  y = x − 1/3 + log5x + 8 

   y′ = 
dy
dx   =  

d
dx  





x
− 

1
3 + log

5
x + 8   

    = 
d 





x
− 

1
3

dx   +  
d(log5x)

dx    + 
d(8)
dx    
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    = − 
1
3  x 

− 
1
3 − 1

 + 
1
x log5

e + 0,   

    = − 
1
3  x

− 
4
3 + 

1
x log

5
e 

Example 8.51 :  Find the derivative of x5 + 4x4 + 7x3 + 6x2 + 2   w.r. to x . 

Solution:   Let y = x5 + 4x4 + 7x3 + 6x2 + 8x + 2 

   y′ = 
d
dx  (x5 + 4x4 + 7x3 + 6x2 + 8x + 2) 

    = 
d(x5)

dx   + 
d(4x4)

dx    + 
d(7x3)

dx    + 
d(6x2)

dx    + 
d (8x)

dx  + 
d(2)
dx    

    = 5x4 + 4 × 4x3 + 7 × 3x2 + 6 × 2x + 8 × 1 + 0  

    = 5x4 + 16x3 + 21x2 + 12x + 8 . 

Example 8.52:  Find the derivative of y = e7x from first principle. 

Solution:  We have  y = e7x 

 y + ∆y = e7 (x + ∆x) 

 
∆y
∆x

  = 
e7x . e7∆x − e7x

∆x
  

  = e7x  





e7∆x − 1

∆x
  

 y′ =  
lim

∆x → 0  
∆y
∆x

  = 
lim

∆x → 0   e7x 





e7∆x − 1

∆x
  = e7x lim

∆x → 0  7 





e7∆x − 1

7∆x
  

  = 7 e7x  lim
t → 0   



et − 1

t          (‡ t = 7∆x→0 as ∆x → 0) 

  = 7 e7x  × 1  = 7e7x.               (‡ 
lim

t → 0   
et − 1

t   = 1) 

 In particular, if  y = ex, then  
d
dx  (ex) = ex … (9) 

Similarly we can prove 

 VI. The derivative of y = tanx w.r. to x is y′ = sec2x.  … (10) 

 VII. The derivative of y = secx w.r. to x is y′ = secx tanx … (11) 
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  VIII. The derivative of   y = cosec x as y′ = − cosec x cot x … (12) 

 IX. The derivative of  y = cotx as y′ = − cosec 2x  … (13) 
Note :  One may refer the SOLUTION BOOK for the proof. 

EXERCISE 8.4 

 1. Find 
dy
dx   if y = x3 − 6x2 + 7x + 6. 

 2. If f(x) = x3 − 8x + 10, find f′(x) and hence find f′(2) and f′(10). 

 3. If for f(x) = ax2 + bx + 12, f′(2) = 11, f′(4) = 15 find a and b. 
 4. Differentiate the following with respect to x: 

  (i) x7 + ex (ii) log7x +200 

  (iii) 3 sinx + 4 cosx − ex (iv) ex + 3tanx + logx6 

  (v) sin 5 + log10x + 2secx (vi) x − 3/2 + 8e + 7 tanx 

  (vii) 



x + 

1
x

3
  (viii) 

(x − 3) (2x2 − 4)
x   

Theorem 8.4:  (Product rule for differentiation) 
 Let u and v be differentiable functions of x. Then the product function 
   y = u(x)  v(x) is differentiable and 
   y′ = u(x)  v′(x) + v(x)  u′(x) … (14) 
Proof: We have  y = u(x)  v(x) 
   y + ∆y = u(x + ∆x)  v(x + ∆x) 

     ∆y = u(x + ∆x)  v(x + ∆x) − u(x)  v(x) 

   ∴   
dy
dx  = 

lim
∆x → 0  

∆y
∆x

   

    = 
lim

∆x → 0  
u(x + ∆x)  v(x + ∆x) − u(x)  v(x)

∆x
 . 

 Adding and subtracting u(x + ∆x)  v(x) in the numerator and then  
re-arranging we get: 

y′ = 
lim

∆x → 0  
u(x + ∆x) v(x + ∆x) − u(x + ∆x)  v(x) + u(x + ∆x)  v(x) − u(x) v(x)

∆x
  

  = 
lim

∆x → 0  
u(x + ∆x) [ ]v(x + ∆x) − v(x)  + v(x) [ ]u(x + ∆x) − u(x)

∆x
  

  = 
lim

∆x → 0  u(x+∆x).
lim

∆x → 0   
v(x + ∆x) − v(x)

∆x
 + v(x) 

lim
∆x → 0  

u(x + ∆x) − u(x)
∆x
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 Now, since u is differentiable, it is continuous and hence  

   
lim

∆x → 0  u(x + ∆x) = u(x)  

  Since u and v are differentiable we have 

   u′(x) = 
lim

∆x → 0  
u(x + ∆x) − u(x)

∆x
    

  and v′(x) = 
lim

∆x → 0  
v(x + ∆x) − v(x)

∆x
  . 

 Therefore y′ = u(x) v′(x) + v(x)  u′(x). 

 Similarly, if u, v and w are differentiable and if y = u(x)  v(x)  w(x) then  

   y′ = u(x)  v(x)  w′(x) + u(x)  v′(x)  w(x) + u′(x)  v(x)  w(x) 

Note (1). The above product rule for differentiation can be remembered as : 

           Derivative of the product of two functions 

      = (1st funct.) (derivative of 2nd funct.)+(2nd funct.) (derivative of 1st funct.). 

Note (2).  The product rule can be rewritten as follows : 

   (u(x) . v(x))′ = u(x) . v′(x) + v(x) . u′(x) 

   
( )u(x) . v(x) ′
u(x) . v(x)   = 

u′(x)
u(x)   + 

v′(x)
v(x)   . … (15) 

 It can be generalised as follows: 

 If u1, u2, … ,un are differentiable functions with derivatives u1′, u2′, …,  

un′ then 

   
(u1 . u2 … un)′

u1 . u2 … un
  = 

u1′
u1

   +  
u2′
u2

  + 
u3′
u3

  + … + 
un′
un

  . … (16) 

Example 8.53:  Differentiate ex tan x w.r. to x. 

Solution:  Let y = ex . tanx. 

 Then y′ = 
d
dx  (ex . tanx)  = ex 

d
dx  (tanx) + tanx 

d
dx  (ex)  

    = ex. sec2x + tanx . ex  

    = ex (sec2x + tanx) . 

Example 8.54:  If y = 3x4 ex + 2sinx + 7 find y′. 

Solution: y′ = 
d y
dx    =  

d(3x4 ex + 2sinx + 7)
dx    
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    = 
d(3x4 ex)

dx    + 
d(2 sinx)

dx    + 
d(7)
dx    

    = 3 
d(x4 ex)

dx    + 2 
d(sin x)

dx   + 0 

    = 3 



x4 

d
dx (ex) + ex 

d
dx (x4)  + 2 cosx    

    = 3 [x4 . ex + ex . 4x3] + 2 cosx  

    = 3x3 ex (x + 4) + 2 cosx . 

Example 8.55:  Differentiate (x2 + 7x + 2) (ex − logx) with respect to x. 

Solution: Let y = (x2 + 7x + 2) (ex − logx) 

   y′ = 
d
dx  [ ](x2 + 7x + 2) (ex − logx)   

    = (x2 + 7x + 2) 
d
dx  (ex − logx) + (ex − logx) 

d
dx  (x2 + 7x + 2) 

    = (x2 + 7x + 2)  



d

dx (ex) − 
d
dx (logx)   

     + (ex − logx) 



d

dx (x2) + 
d
dx (7x) + 

d
dx (2)   

    = (x2 + 7x + 2)  



ex − 

1
x   + (ex − logx) (2x + 7 + 0) 

    = (x2 + 7x + 2) 



ex − 

1
x   + (ex − logx) (2x + 7) . 

Example 8.56: Differentiate (x2 − 1) (x2 + 2) w.r. to x using product rule. 
Differentiate the same after expanding as a polynomial. Verify that the two 
answers are the same. 

Solution:  Let  y = (x2 − 1) (x2 + 2) 

   Now y′ = 
d
dx  [(x2 − 1) (x2 + 2)] 

    = (x2 − 1) 
d
dx  (x2 + 2) + (x2 + 2) 

d
dx  (x2 − 1) 

    = (x2 − 1) 



d

dx (x2) + 
d
dx (2)  + (x2 + 2) 



d

dx (x2) + 
d
dx ( − 1)   

    = (x2 − 1) (2x + 0) + (x2 + 2) (2x + 0) 

    = 2x (x2 − 1) + 2x (x2 + 2)   
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    = 2x (x2 − 1 + x2 + 2) = 2x (2x2 + 1) . 

Another method 

   y = (x2 − 1) (x2 + 2) = x4 + x2 − 2 

   y′ = 
d
dx  (x4 + x2 − 2) = 4x3 + 2x = 2x (2x2 + 1) 

 We observe that both the methods give the same answer. 

Example 8.57:  Differentiate ex logx  cotx 

Solution:      Let         y = ex logx cotx 
    = u1 . u2 . u3  (say) 

 where u1 = ex ; u2  = log x, u3 = cot x. 

   y′ = u1 u2 u3′ + u1 u3 u2′ + u2 u3 u1′ 

    = ex logx (− cosec2x) + ex cot x . 
1
x  + logx . cotx . ex 

    = ex  



 cotx . logx + 

1
x cotx − logx . cosec2x  

Note: Solve this problem by using Note 2. 

EXERCISE 8.5 

Differentiate the following functions with respect to x. 

  (1) ex cos x (2)  
n

x   log x  ,  x > 0 

  (3) 6 sin x log10x + e (4)  (x4 − 6x3 + 7x2 + 4x + 2) (x3 −1) 

  (5) (a − b sinx) (1 − 2 cosx) (6)  cosec x . cotx 

  (7)  sin2x (8) cos2x 

  (9) (3x2 + 1)2 (10)  (4x2 − 1) (2x + 3) 

  (11) (3 secx − 4 cosec x) (2 sin x + 5 cos x) 

  (12)  x2 ex sinx (13) x  ex log x. 

Theorem:  8.5 (Quotient rule for differentiation) 

 If u and v are differentiable function and if v(x) ≠ 0, then 
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d 



u

v
dx   = 

v 
du
dx − u 

dv
dx

v2    … (17) 

 i.e.   



u

v

′
 = 

vu′ − uv′

v2   .        

Exampl 8.58:   

 Differentiate 
x2 − 1

x2 + 1
   with respect to x . 

Solution:   

 Let     y = 
x2 − 1

x2 + 1
  = 

u
v ,  u = x2 − 1 ;  v = x2 + 1  

 y′ = 
d
dx   







x2 − 1

x2 + 1
= 

(x2+1) (x2−1)′ − (x2−1) (x2+1)′

(x2+1) 2    Using (17) 

    = 
(x2 + 1) (2x) − (x2 − 1) (2x)

(x2 + 1) 2    
[ ](x2 + 1) − (x2 − 1) 2x

(x2 + 1) 2   

    = 2x 
2

(x2 + 1) 2   =  
4x

(x2 + 1) 2  . 

Example 8.59:  Find the derivative of 
x2 + ex sinx
cosx + logx   with respect to x 

Solution:  

 Let    y = 
x2 + ex sinx
cosx + logx   =  

u
v  ,  u = x2 + ex sinx,  v = cosx + logx 

Now   y′ = 
vu′ − uv′

v2   

  = 
(cosx + logx) (x2 + ex sinx)′ − (x2 + exsinx) (cosx + logx) ′

(cosx + logx)2   

  = 
(cosx + logx) [ ](x2)′ + (exsinx)′  − (x2 + ex sinx) [ ](cosx)′ + (logx)′

(cosx + logx)2   
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  = 
(cosx + logx) [ ]2x + ex cosx + sin x ex  − (x2 + exsinx) 



− sinx + 

1
x

(cosx + logx)2   

  = 
(cosx + logx) [ ]2x + ex(cosx + sinx)  − (x2 + ex sin x) 



1

x − sinx

(cosx + logx)2   . 

Example 8.60:  Differentiate 
sinx + cosx
sinx − cosx

   with respect to x. 

Solution:  

 Let   y = 
sinx + cosx
sinx − cosx

  = 
u
v  ,   u = sinx + cosx,  v = sinx − cosx 

 y′ = 
vu′ − uv′

v2   = 
(sinx − cosx) (cosx − sinx) − (sinx + cosx) (cosx + sinx)

(sinx − cosx)2   

  = 
− [ ](sinx − cosx)2 + (sinx + cosx) 2

(sinx − cosx)2   

  = 
− ( )sin2x + cos2x − 2sinx cosx + sin2x + cos2x + 2sin x cos x

(sinx − cosx)2   

  = − 
2

(sinx − cosx)2  

EXERCISE 8.6 
Differentiate the following functions using quotient rule. 

 (1) 
5

x2  (2) 
2x − 3
4x + 5  (3) 

x7 − 47

x − 4
  

 (4) 
cos x + log x

x2 + ex   (5) 
log x − 2x2

logx + 2x2   (6) 
logx
sinx  

 (7) 
1

ax2 + bx + c
  (8) 

tan x + 1
tan x − 1

         (9) 
sin x + x cosx
x sin x − cosx

       (10) 
logx2

ex   

The derivative of a composite function (Chain rule) 

 If u = f(x) and y = F(u), then y = F(f(x)) is the composition of f and F. 

 In the expression y = F(u), u is called the intermediate argument. 
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Theorem 8.6: If u = f(x) has the derivative f′(x) and y = F(u) has the derivative 

F′(u), then the function of a function F(f(x)) has the derivative equal to  

F′(u) f′(x), where in place of u we must substitute u = f(x). 

Proof: We have u = f(x), y = F(u). 

 Now u + ∆u = f(x + ∆x), y + ∆y = F(u + ∆u) 

 Therefore  
∆u
∆x

   =  
f(x + ∆x) − f(x)

∆x
   and 

∆y
∆u

  = 
F(u + ∆u) − F(u)

∆u
  

 If f′(x) = 
du
dx  ≠ 0, then ∆u, ∆x ≠ 0. 

 Since f is differentiable, it is continuous and hence when ∆x→0, x + ∆x→x  

 and f(x + ∆x)→f(x). That is, 
lim

∆x → 0 (x+∆x) = x and 
lim

∆x → 0 f(x+∆x) = f(x). 

 Therefore 
lim

∆x → 0  (u + ∆u) = ∆u 

 Since ∆u ≠ 0 as ∆x → 0, we may write 
∆y
∆x

   =  
∆y
∆u

  . 
∆u
∆x

  

 Since both f and F are continuous functions  

 we have ∆u → 0 when ∆x → 0 and ∆y → 0 when ∆u → 0. 

 Therefore   
lim

∆x → 0   
∆y
∆x

  = 
lim

∆u → 0  
∆y
∆u

  . 
lim

∆x → 0 
∆u
∆x

  

  = y′(u)  u′(x) = F′(u)  f′(x)  = F′(f(x))  f′(x) … (18) 

 This chain rule can further be extended to   
   i.e. if        y = F(u), u = f(t), t = g(x)  then 

   
dy
dx = F′(u) . u′(t) . t′(x) 

   i.e.        
dy
dx = 

dF
du  . 

du
dt   . 

dt
dx  . … (19) 

Example 8.61:  Differentiate log x   with respect to x. 
Solution:  Let y = log x  

        Take u = x  , and so y = log u,  Then by chain rule 
dy
dx  = 

dy
du  . 

du
dx  

    Now  
dy
du  = 

1
u   ;  

du
dx  ; 

1
2 x
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Therefore by chain rule   
dy
dx = 

1
u  . 

1
2 x

   =  
1

x . 2 x
  =  

1
2x . 

Example 8.62:  Differentiate sin (log x) 
Solution:  Let y = sin u,  where u = log x 

 Then by chain rule  
dy
dx  = 

dy
du  . 

du
dx  ,  

 Now  
dy
du  = cos u  ; 

du
dx  = 

1
x  

 ∴    
dy
dx  = cos u . 

1
x   =  

cos (logx)
x   . 

Example 8.63:   

 Differentiate esinx2
 

Solution:   Let     y = esinx2
  ;  u = sinx2   ;  t = x2 

            Then  y = eu, u = sint, t = x2 

 ∴ By chain rule 

   
dy
dx = 

dy
du  . 

du
dt   . 

dt
dx   =  eu . cost. 2x 

    = esinx2
 . cos(x2) . 2x = 2x esin(x2) cos (x2) 

    = 2x esin(x2) cos (x2) . 
Example 8.64:  Differentiate sin (ax + b) with respect to x 
Solution:  Let          y = sin (ax + b) = sinu, u = ax + b 

   
dy
du  = cos u  ;  

du
dx  = a 

   ∴ 
dy
dx  = cos u . a = a cos (ax + b). 

EXERCISE 8.7 
Differentiate the following functions with respect to x 

 (1) log (sinx) (2) esin x (3) 1 + cotx  

 (4) tan(logx) (5) 
ebx

cos (ax + b)  (6) log sec 



π

4 + 
x
2   

 (7) log sin (ex + 4x + 5) (8) sin 





x
3
2           (9) cos ( )x       (10)  esin(logx). 
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8.4.2 Derivatives of inverse functions 
 If for the function y = f(x) there exists an inverse function x = φ(y) and if 
dx
dy  = φ′(y) ≠ 0, then  y = f(x) has derivative f′(x) equal to 

1
 φ′(y)

 ; that is 

   
dy
dx  = 

1
dx
dy

     … (20) 

Proof.  We have x = φ(y)     Then  
dx
dx  = 

d(φ(y))
dx     

  That is, 1 = φ′(y)  
dy
dx   (by chain rule) 

   1 = 
dx
dy  . 

dy
dx .    Hence,   

dy
dx  = 

1
dx
dy

  .   

Derivatives of inverse trigonometrical functions. 

I. The derivative of y = sin−1x is     
dy
dx  =

1

1 − x2
    … (21) 

Proof:       We have    y = sin−1x and x = sin y 

            Then   
dx
dy  = cos y  =  1 − sin2y  = 1 − x2   

    
d(sin−1x)

dx   = 
dy
dx   =  

1





dx

dy

  = 
1

1 − x2
  .  

II. The derivative of  y = cos−1x is 
dy
dx  = − 

1

1 − x2
  … (22) 

Proof:   We have y = cos−1x and x = cos y 

   ∴    
dx
dy  = − siny = − 1 − cos2y  =  − 1 − x2  

   
d(cos−1x)

dx   = 
dy
dx   =  

1





dx

dy

   =  
− 1

1 − x2
  . 

Aliter : We know that sin−1x + cos−1x = 
π
2  . 

 This implies 
d
dx  (sin−1x) + 

d
dx  (cos−1x) = 

d
dx  



π

2   
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1

1 − x2
  + 

d(cos−1x)
dx   = 0    ∴ 

d(cos−1x)
dx   = − 

1

1 − x2
  . 

III. The derivative of the function   y = tan−1x is 
dy
dx  = 

1

1 + x2   … (23) 

Proof:   We have y = tan−1x and  x = tany 

  This implies   x′ = 
d
dy  (tan y)  = sec2y = 1 + tan2y = 1 + x2 

     y′ = 
1

x′   =  
1

1 + x2    

IV. The derivative of y = cot−1x is y′ = − 
1

1 + x2  . … (24) 

Proof:  We have y = cot−1x and x = cot y. 

   
dx
dy  = − cosec2y =  − (1 + cot2y) = − (1 + x2) 

 ∴ by (20), 
dy
dx  = 

1
dx
dy

   =  − 
1

1 + x2  . 

 Aliter : We know that    tan−1x + cot−1x = 
π
2  . 

 Differentiating with respect to x on both sides,  

   
d (tan−1x)

dx   + 
d (cot−1x)

dx   = 
d 



π

2
dx     

   
1

1 + x2  + 
d (cot−1x)

dx   = 0 

   ∴ 
d (cot−1x)

dx   = − 
1

1 + x2  . 

V. The derivative of y = sec−1x is  
dy
dx  = 

1

x x2 − 1
        … (25) 

Proof:  We have      y = sec−1x and   x = secy 

   
dx
dy  = sec y tan y = sec y sec2 y − 1    
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 ∴ by (20),  
d (sec−1x)

dx   = 
dy
dx   =  

1
dx
dy

   =  
1

x x2 − 1
  . 

VI. The derivative of y = cosec−1x is  
dy
dx  = − 

1

x x2 − 1
  … (26)  

Proof: We have y = cosec−1x  and  x = cosec y 

   
dx
dy  = 

d (cosec y)
dy   =  − cosec y cot y 

    = − cosec y cosec 2y − 1  = − x x2 − 1  

Therefore by (20) 
dy
dx  = 

1
dx
dy

  = − 
1

x x2 − 1
  . 

Example 8.65: Differentiate y = sin−1 (x2 + 2x ) with respect to x. 

Solution:  We have y = sin−1 (x2 + 2x) 

  Take     u =  x2 + 2x    Then y = sin−1(u), a function of function.  
 Therefore by chain rule, 

   y′ = 
dy
du   

du
dx  = 

1

1 − u2
   

d (x2 + 2x)
dx  ,  by (21) 

    = 
1

1 − (x2 + 2x)2
  (2x + 2)  =  

2(x + 1)

1 − x2(x + 2)2
  . 

Example 8.66:  Find 
dy
dx   if y = cos−1 



1 − x

1 + x   . 

Solution:  We have y = cos−1 



1 − x

1 + x  . 

 Take  u = 
1 − x
1 + x .  Therefore y = cos−1(u), a function of function. 

By chain rule  
dy
dx  = 

dy
du  . 

du
dx  .  

 ∴  
dy
dx  = − 

1

1 − u2
  . 

d 



1 − x

1 + x
dx     

  = − 
1

1 − u2
   





(1+x) (−1) − (1−x) (1)

(1+x)2    =  − 
1

1−



1−x

1+x
2
 . 

− 2

(1 + x)2  
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  = −  
1

(1 + x)2 − (1 − x)2

1 + x

    
− 2

(1 + x)2  =  
(1 + x)

4x
    

2

(1 + x)2  =  
1

x (1 + x)
  . 

Example 8.67:  Find y′ if y = tan−1 (ex) 

Solution: We have y = tan−1 (ex).   Take u = ex  then y = tan−1 (u).  

  By chain rule,    y′ = 
dy
du  . 

du
dx  = 

1

1 + u2   
d (ex)

dx     =  
ex

1 + e2x  . 

EXERCISE 8.8 
Find the derivatives of the following functions: 

 (1) sin−1 



1 − x

1 + x       (2) cot−1 (ex2
)    

 (3) tan−1 (log x)        (4) y = tan−1 (cotx) + cot−1 (tanx) 

8.4.3 Logarithmic  Differentiation 
 We also consider the differentiation of a function of the form: 

 y = uv where u and v are functions of x. 

 We can write y = elog uv
 = evlog u 

 Now y falls under the category of function of a function.  

 y′ = evlog u    
d (v log u)

dx    

  = ev log u  



v . 

1
u u′ + log u.v′   = uv 



v

u u′ + v′ log u   

  = vuv − 1 u′ + uv (log u) v′. … (27) 

Another method: 

 y = uv    Taking logarithm on both sides 

 log y = log uv    ⇒    log y  =  v log u 
 Diff. both sides with respect to x 

   
1
y   

dy
dx  = v 

1
u  u′ + v′ log u 

   
dy
dx  = y 



v

u u′ + v′ log u   = uv  



v

u u′ + v′ log u    

Example 8.68:  Find the derivative of y = xα, α is real . 
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Solution . We have               y = xα 

   Then by (27)       y′ = α xα −1 . 1 + xα . (log x) . 0  

    = αxα − 1    (‡u = x, v = α , v′ = 0) 

Note: From example (8.74),we observe that the derivative of xn = nxn − 1 is true 
for any real n. 

Example 8.69:  Find the derivative of xsinx w.r. to x. 

Solution:  Let y = xsinx.    Here u = x ; v = sinx  ;  u′ = 1  ;  v′ = cosx. 

 Therefore by (27), y′ = 
dy
dx  = sinx . xsinx − 1 . 1 + xsinx (log x) cosx 

    = xsinx 



sinx

x  + cosx (log x)  . 

Example 8.70:  Differentiate :  
(1 − x) x2 + 2

(x + 3) x − 1
  

Solution: Let     y = 
(1 − x) x2 + 2

(x + 3) x − 1
  

 In such cases we take logarithm on both sides and differentiate. 

   logy = log (1 − x) x2 + 2  − log (x + 3) x − 1  

    = log (1 − x) + 
1
2  log (x2 + 2) − log (x + 3) − 

1
2 log (x − 1). 

Differentiating w.r. to x we get:  

 ∴ 
1
y   

dy
dx  = 

− 1
1 − x

   +  
2 x

2(x2 + 2)
  −  

1
x + 3  − 

1
2  . 

1
x − 1

  

  =  
x

x2 + 2
   +  

1
2   .  

1
x − 1

   −  
1

x + 3  

 ∴  
dy
dx  = y 





x

x2 + 2
 + 

1
2(x − 1)

 − 
1

x + 3   . 

  = 
(1 − x) x2 + 2

(x + 3) x − 1
   





x

x2 + 2
 + 

1
2(x − 1)

 − 
1

x + 3   

EXERCISE 8.9 
Differentiate the following functions w.r. to x. 

 (1) x
2

  (2) xx2
 (3) xtanx (4) sinx sinx 
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 (5) (tan−1x)logx (6) (log x)sin 
−1

x (7) 
(x2 + 2) (x + 2)

( )x + 4  (x − 7)
  

 (8) (x2 + 2x + 1)
x − 1

  (9)  
sin x cos (ex)

ex + log x
  (10) x sinx + (sin x)x 

8.4.4 The method of substitution 
 Sometimes, a substitution facilitates differentiation. Following example 
will demonstrate this method. 
Example 8.71: Differentiate the following w.r. to x 

 (i) (ax + b)n (ii) log (ax + b)n 

 (iii) sin−1 
2x

1 + x2 (iv) cos−1  
1 − x2

1 + x2  (v) sin2 (ax + b) 

Solution:   (i) We have  y = (ax + b)n.    Put u = ax + b . Then y = un. 

 Now y is a function of u and u is a function of x. By chain rule,  

   y′ = 
dy
du  . 

du
dx  = nun − 1. 

d (ax + b)
dx    

    = n (ax + b)n − 1. a  = na (ax + b)n − 1. 

 (ii)  Let y = log (ax + b)n.    Put ax + b = u .   Then as in (i)   y′ = 
na

ax + b . 

 (iii) Let  y = sin−1  
2x

1 + x2  .    Put x = tanθ  so that θ = tan−1x . 

 ∴  y = sin−1  
2 tanθ

1 + tan2θ
   = sin−1 (sin 2θ) 





‡ sin2θ =  

2 tan θ
1 + tan2θ

   

  = 2θ     (‡ sin−1 (sin θ) = θ) 

  = 2 tan−1 x . 

 ∴ 
dy
dx = 2 . 

d
dx   (tan−1x)  =  

2

1 + x2  . 

 (iv)  Let  y = cos−1  
1 −x2

1 + x2   .   Put x = tanθ. 

   Then θ = tan−1x  and   
1 − x2

1 + x2  = 
1 − tan2θ
1 + tan2θ

  = cos2θ 

    ∴ y = cos−1 (cos2θ)  =  2θ = 2 tan−1x 
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dy
dx  = 2 . 

1

1 + x2   =  
2

1 + x2  . 

 (v)   Let   y = sin2  (ax + b).  Put    ax + b = u  and  v  =  sin u 

  Then y = v2, v = sinu and u = ax + b. 
  Therefore by chain rule, 

    
dy
dx = 

dy
dv  . 

dv
du  . 

du
dx   = 2 v . cos u . a 

     = 2 a sin u . cos u  = a sin 2u = a sin 2 (ax + b). 
Example 8.72:   

       Differentiate (i) sin−1 (3x − 4x3)   (ii) cos−1 (4x3 − 3x)  (iii) tan−1 






3x − x3

1 − 3x2 . 

Solution: 

 (i) Let  y = sin−1 (3x − 4x3) 

  put x = sin θ, so that θ = sin−1x . 

  Now y = sin−1 (3sinθ − 4 sin3θ) 

    = sin−1 (sin3θ)  = 3θ = 3 sin−1x. (‡ sin3θ = 3 sin θ − 4 sin3θ) 

   
dy
dx = 3 . 

1

1 − x2
   =  

3

1 − x2
  

 (ii) Let y = cos−1 (4x3 − 3x) 

  Put x = cos θ, so that θ = cos−1 x. 

  Now y = cos−1 (4 cos3θ − 3 cos θ) 

    = cos−1 (cos 3θ)  (∴ cos 3θ = 4cos3θ − 3 cos θ)  

    = 3θ = 3 cos−1x. 

 ∴  
dy
dx  = − 

3

1− x2
  . 

 (iii)  Let    y = tan−1 






3x − x3

1 − 3x2   

   Put    x  = tanθ, so that θ = tan−1x . 

   y = tan−1  






3tanθ  − tan3θ

1 − 3tan2θ
  = tan−1 (tan3θ) = 3θ = 3 tan−1x. 

   ∴  
dy
dx  = 

3

1 + x2  . 
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EXERCISE 8.10 
Differentiate 

(1) cos−1 
1 + cosx

2   (2) sin−1 
1 − cos2x

2   (3) tan−1  
1 − cosx
1 + cosx  

(4) tan−1




cosx + sinx

cosx − sinx
   (5) tan−1 






1 + x2 − 1

x   (6) tan−1 
1 + x2

1 − x2   

(7) tan−1 
x + a

1 − ax
  (8) tan−1 

1 + x − 1 − x

1 + x + 1 − x
    

(9) cot−1







1+sinx + 1−sin x

1+sinx − 1−sin x
  Hint:sin2x/2+cos2x/2=1; sinx=2 sin x/2 cos x/2) 

8.4.5 Differentiation of parametric functions 
Definition  
 If two variables, say, x and y are functions of a third variable, say, t, then 
the functions expressing x and y in terms of t are called a parametric functions. 
The variable ‘t’ is called the parameter of the function. 
 Let x = f(t), y = g(t) be the parametric equations. 
       Let ∆x, ∆y be the increments in x and y respectively corresponding to an 
increment ∆t in t. 
 Therefore   x + ∆x = f(t + ∆t) and  y + ∆y = g(t + ∆t) 
 and          ∆x = f(t + ∆t) − f(t)   ∆y = g(t + ∆t) − g(t). 

 ∴ 
dy
dx  = 

lim
∆x → 0  

∆y
∆x

  = 
lim

∆x → 0 







∆y

∆t
∆x
∆t

  = 

lim
∆t → 0 

∆y
∆x

 
lim

∆t → 0 
∆x
∆t

     =  




dy

dt





dx

dt

     … (28)  

      where   
dx
dt    ≠ 0 .   Note that   ∆x → 0     ⇒   f(t + ∆t) → f(t)  ⇒    ∆t → 0. 

Example 8.73:  Find 
dy
dx   when x = a cos3t, y = a sin3t . 

Solution: We have x = a cos3t, y = a sin3t. 

       Now         ∴ 
dx
dt   = − 3a cos2t sin t  and  

dy
dt   = 3a sin2t cos t . 

 Therefore by (28)   
dy
dx  = 

dy
dt
dx
dt

   =  
3a sin2t cos t

− 3a cos2t sin t
  = − 

sint
cost   =  −  tan t . 
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Example 8.74:  Find 
dy
dx ,  if x = a (θ + sin θ), y = a (1 − cos θ). 

Solution:    We have  
dx
dθ = a (1 + cosθ)      

dy
dθ  = a(0 + sin θ) 

   ∴ 
dy
dx  = 

dy
dθ
dx
dθ

   = 
a sinθ

a(1 + cosθ)
   =  

2 sin 
θ
2  cos 

θ
2

 2 cos2θ
2

   = tan 
θ
2  . 

EXERCISE 8.11 

 Find 
dy
dx  if x and y are connected parametrically by the equations (without 

eliminating the parameter) . 

 (1) x = a cos θ, y = b sin θ  (2) x = at2,   y = 2at 

 (3) x = a sec3θ, y = b tan3θ (4) x = 4t, y = 
4
t    

 (5) x = 2 cos θ − cos 2θ, y = 2 sinθ − sin 2θ        

 (6) x = a 



cos θ + log tan 

θ
2  , y = a sin θ (7) x = 

3at

1 + t3
  ,  y =  

3at2

1 + t3
                  

8.4.6 Differentiation of implicit functions 

 If the relation between x and y is given by an equation of the form  
f(x, y) = 0 and this equation is not easily solvable for y, then y is said to be an 
implicit function of x. In case y is given in terms of x, then y is said to be an 

explicit function of x. In case of implicit function also, it is possible to get 
dy
dx  

by mere differentiation of the given relation, without solving it for y first. The 
following examples illustrate this method. 

Example 8.75: Obtain 
dy
dx  when x3 + 8xy + y3 = 64. 

Solution .   We have x3 + 8xy + y3 = 64. 

 Differentiating with respect to x on both sides, 

  3x2 + 8 



x 

dy
dx + y . 1   + 3y2 

dy
dx  = 0 

  3x2 + 8y + 8x 
dy
dx  + 3y2 

dy
dx  = 0 
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  (3x2 + 8y) + (8x + 3y2) 
dy
dx  = 0 

  (8x + 3y2) 
dy
dx  = − (3x2 + 8y)      ∴ 

dy
dx   = −  

(3x2 + 8y)

 (8x + 3y2)
   

Example 8.76:  Find 
dy
dx  when tan (x + y) + tan (x − y) = 1  

Solution: We have tan (x + y) + tan (x − y) = 1. 
 Differentiating both sides w.r. to x, 

 sec2(x + y) 



1 + 

dy
dx   + sec2 (x − y) 



1 − 

dy
dx   = 0 

 [sec2 (x + y) + sec2(x − y)] + [sec2(x + y) − sec2 (x − y)] 
dy
dx  = 0 

 [sec2(x + y) − sec2(x − y)] 
dy
dx  = − [sec2 (x + y) + sec2(x − y)] 

   ∴ 
dy
dx  = − 

sec2(x + y) + sec2(x − y)

sec2(x + y) − sec2(x − y)
  = 

sec2(x + y) + sec2(x − y)

sec2(x − y) − sec2(x + y)
  . 

Example 8.77:  Find 
dy
dx   if xy + xe− y + yex = x2. 

Solution: We have xy + xe− y + yex = x2  
 Differentiating both sides w.r. to x, 

 x 
dy
dx  + y.1 + xe− y  



− 

dy
dx  + e−y .1+ y.ex + ex  

dy
dx  = 2x 

 (y + e− y + yex) + (x − xe− y + ex) 
dy
dx  = 2x 

 (yex + y + e− y − 2x) + (ex − xe− y + x) 
dy
dx  = 0 

 (ex − xe− y + x) 
dy
dx  = − (yex + y + e− y − 2x) 

   ∴ 
dy
dx  = − 

(yex + y + e−y
 − 2x)

(ex
 − xe− y

 + x)
  = 

(yex + y + e−y − 2x)

(xe− y − ex − x)
  . 

EXERCISE 8.12 

Find  
dy
dx   for the following implicit functions. 

 (1) 
x2

a2   −  
y2

b2  = 1 (2) y = x sin y  (3) x4 + y4 = 4a2x3y3 

 (4) y tanx − y2 cos x + 2x = 0 (5) (1 + y2) secx − y cotx + 1 = x2  
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 (6) 2y2+
y

1 + x2 + tan2x + siny = 0 (7) xy = tan (xy)  (8) xm yn = (x + y)m + n 

 (9) ex + ey = ex + y (10) xy = 100 (x + y)             (11) xy = yx 

 (12) If ax2 + by2 + 2gx + 2fy + 2 hxy + c = 0, show that 
dy
dx  + 

ax + hy + g
hx + by + f   = 0  

8.4.7 Higher order Derivatives. 
 Let y = f(x) be a differentiable function of x.  

 Then we know its derivative 
dy
dx  = 

lim
∆x → 0  

f(x + ∆x) − f(x)
∆x

  is called first 

order derivative of y = f(x) with respect to x. This first order derivative  f′(x), a 

function of x may or may not be differentiable. If f′(x) is differentiable then   

d
dx 



dy

dx    = 
lim

∆x → 0   
f′(x + ∆x) − f′(x)

 ∆x
  is called second order derivative of  

y = f(x) with respect to x. It is denoted by 
d2y

dx2  .  

 Other symbols like y2, y′′, y
..

  or D2y where D2 = 
d2

dx2  also used to denote 

the second order derivative.  Similarly, we can define third order derivative of  y 
= f(x)  as 

     
d3y

dx3  = 
d
dx  







d2y

dx2   = 
lim

∆x → 0 
f′′(x + ∆x) − f′′(x)

∆x
 provided f′′(x) is differentiable.  

 As before, y3, y′′′, y
…

  or D3y is used to denote third order derivative. 

Example 8.78: Find y3,  if y = x2  

Solution: y1 = 
dy
dx  = 

d
dx  (x2) = 2x 

   y2 = 
d
dx   



dy

dx  = 
d
dx  (2x) = 2 

   y3 = 
d3y

dx3   =  
d
dx   







d2y

dx2   = 
d
dx  (2) = 0. 

Example 8.79: 
 Let y = A cos4x + B sin 4x, A and B are constants. Show that  y2 + 16y = 0 

Solution: 

 y1 = 
dy
dx  =  (A cos4x + B sin 4x)′  = − 4A sin4x + 4B cos 4x 
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 y2 = 
d2y

dx2   =  
d
dx 



dy

dx   

  = 
d
dx  (− 4 A sin 4x + 4B cos 4 x) 

  = − 16 A cos 4x − 16 B sin 4x 

  = − 16 (A cos4x + B sin 4x) = − 16y 

 ∴ y2 + 16y = 0 

Example 8.80:  Find the second derivative of the function log (log x) 
Solution:    Let y = log  (logx)  

 By chain rule,   
dy
dx = 

1
logx  . 

d (log x)
dx   = 

1
logx  . 

1
x  

  = 
1

x logx  = (x log x)−1   

 
d2y

dx2  = 
d
dx 



dy

dx   = 
d (x log x)−1

dx   = − (x logx)−2   
d (x log x)

dx   

  = − 
1

(x log x)2  



x . 

1
x + log x . 1    = − 

1 + logx

(x logx)2 . 

Example 8.81:  If y = log (cosx), find y3 

Solution:   We have       y = log (cosx)  

 y1 = 
d [log (cosx)]

dx  = 
1

cosx   
d (cos x)

dx  ,  by chain rule 

  = 
1

cosx  . (− sinx) = − tanx 

 y2 = 
d y1
dx    = 

d (− tanx)
dx   = − sec2x   

 y3 = 
d (y2)

dx    = 
d (− sec2x)

dx     = − 2 sec x . 
d (secx)

dx    

  = − 2 secx . secx . tanx  = − 2 sec2x tanx. 

Example 8.82:  If y = eax sin bx, prove that 
d2y

dx2  − 2a . 
dy
dx  + (a2 + b2) y = 0 

Solution: We have y = eax sin bx 

 
dy
dx  = eax . b cos bx + a eax sin bx 

  = eax (b cos bx + a sin bx) 
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d2y

dx2  = 
d
dx  






 

 e
ax (b cos bx + a sin bx)  

  = eax 





 

 − b2 sin bx + ab cos bx  + (b cos bx + a sin bx)a eax 

  = − b2(eax sin bx) + a  beax cos bx + a.eax(b cos bx + a sin bx) 

  = − b2  y + a  



dy

dx − aeax sin bx   + a 
dy
dx  

  = − b2  y + a 



dy

dx − a.y   + a 
dy
dx  

  = 2a  
dy
dx   −  (a2 + b2)y 

 Therefore,  
d2y

dx2  − 2a 
dy
dx + (a2 + b2)y = 0 . 

Example 8.83:   If y = sin (ax + b), prove that y3 = a3 sin 



ax + b + 

3π
2   . 

Solution: We have y = sin (ax + b) 

 y1 = a cos (ax + b)  = a sin 



ax + b + 

π
2   

 y2 = a2 cos 



ax + b + 

π
2    = a2 sin 



ax + b + 

π
2 + 

π
2   = a2 sin



ax + b + 2. 

π
2   

 y3 = a3cos 



ax + b + 2. 

π
2 = a3sin 



ax + b + 2.

π
2+

π
2  = a3 sin 



 ax + b + 3 

π
2  

Example 8.84: If y = cos (m sin−1x), prove that (1− x2)y3−3xy2 + (m2 − 1)y1= 0 

Solution: We have y = cos (m sin−1x) 

  y1 = − sin (m sin−1x) . 
m

1 − x2
 

  y1
2 = sin2 (m sin−1x) 

m2

(1 − x2)
  

 This implies     (1 − x2)y1
2 = m2 sin2 (m sin− 1x) = m2 [ ]1 − cos2 (m sin−1 x)   

 That is, (1 − x2) y1
2 = m2 (1 − y2). 

 Again differentiating, 

 (1 − x2)2y1 
d y1
dx    + y1

2 (− 2x) = m2 



− 2y 

dy
dx   

 (1 − x2) 2y1y2 − 2xy1
2 = − 2m2yy1 
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 (1 − x2) y2 − xy1 = − m2y 

 Once again differentiating, 

 (1 − x2) 
d y2
dx   + y2 (− 2x) − 





x .
d y1
dx + y1 . 1    = − m2 

dy
dx  

 (1 − x2) y3 − 2xy2 − xy2 − y1 = − m2y1 

 (1 − x2) y3 − 3xy2 + (m2 − 1) y1 = 0. 

EXERCISE 8.13 

 (1) Find 
d2y

dx2  if y = x3 + tan x. 

 (2) Find 
d3y

dx3   if y = x2 + cotx. 

 (3) Find the second order derivative of: 

  (i) x2 + 6x + 5 (ii) x sinx (iii) cot−1x . 

 (4) Find the third order derivatives of: 

  (i) emx + x3 (ii) x cos x . 

 (5) If y = 500 e7x + 600e− 7x, show that 
d2y

dx2  = 49y . 

 (6) If y = etan−1x  prove that (1 + x2) y2 + (2x − 1)y1 = 0 . 

 (7) If y = log (x2 − a2), prove that y3 = 2 




1

(x + a)3 + 
1

(x − a)3   . 

 (8) If x = sin t ;  y = sin pt show that (1 − x2) 
d2y

dx2  − x 
dy
dx + p2y = 0. 

 (9) If x = a (cos θ + θ sin θ), y = a (sin θ − θ cos θ), 

  show that    a θ 
d2y

dx2  = sec3θ. 

 (10) If y = (x3 − 1),   prove that  x2 y3 − 2xy2  + 2y1 = 0 . 
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TABLE OF DERIVATIVES 

                Function Derivative 

 1. k ;  (k is a cosntant) (k)′ = 0 

 2. kf(x) ( )kf(x) ′  = kf′(x) 

 3. u ± v (u ± v)′ = u′ ± v′ 

 4. u1 + u2 + … + un (u1+ u2 + … un)′ = u1
′ + u2

′+ … + un
′ 

 5. u . v (uv)′ = uv′ + vu′ 

   
(uv)′
uv   =

u′
u   + 

v′
v      

 6. u1.u2 … un (u1.u2 .. un) ′ = u1
′ u2u3.. un +u1u2

′.. un  

   + … + u1u2 … un − 1 un
′ 

   
(u1.u2 .. un)′

 u1.u2 .. un
  = 

u1
′

 u1
  + 

u2
′

 u2
  + … + 

un
′

 un
  

 7. xn (n ∈ R) (xn)′ = nx n −  1 

 8. loga
x (loga

x)′ = 
logae

x   

 9. loge
x (logx)′ = 

1
x  

 10. sinx (sin x)′ = cos x 

 11. cos x (cosx)′ = − sin x 

 12. tanx (tanx)′ = sec2x 

 13. cotx (cotx)′ = − cosec2x 

 14. secx (secx)′ = sec x . tan x 

 15. cosec x (cosec x)′ = − cosec x . cot x 

  Function Derivative 

 16. sin−1x (sin−1x)′ = 
1

1 − x2
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 17. cos−1x (cos−1x)′ = 
− 1

1 − x2
  

 18. tan−1x (tan−1x)′ = 
1

1 + x2 

 19. cot−1x (cot−1x)′ = − 
1

1 + x2 

 20. sec−1x (sec−1x)′ = 
1

x x2 − 1
  

 21. cosec−1x (cosec−1x)′ = − 
1

x x2 − 1
  

 22. 
u
v  



u

v

′ 
 = 

v.u′ − u.v′

v2   

 23. ex (ex) ′ = ex 

 24. uv (uv)′ = vuv − 1. u′ + uv (logu)v′ 

 25. ax (ax)′ = ax(log a) 

 26. 


y = f(x)

x = ϕ (y) (inverse of f)  
dy
dx   =  

1
dx
dy

  . 

 27. y = f(u), u = ϕ (x) 
dy
dx   =  

dy
du   .  

du
dx  . 

 28. 


 y = f(u)

 u = g(t)
 t = h(x) 

 
dy
dx   =  

dy
du   ×  

du
dt    ×  

dt
dx  . 

 29. 


y = g (t)

 x = f(t)  
dy
dx   =  

dy
dt
dx
dt

   =  
y′ (t)
x′ (t)

  

 30. f(x, y) = k 
dy
dx   =  

f1 (x,y)

f2 (x, y)  , f2 (x, y) ≠ 0 

Note : In the above formulae from 1 to 25  ( . )′ =  
d ( . )

dx    . 
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9. INTEGRAL CALCULUS 
9.1 Introduction: 
 Calculus deals principally with two geometric problems. 

 (i) The problem of finding SLOPE of the tangent line to the curve, is 
studied by the limiting process known as differentiation and 

 (ii) Problem of finding the AREA of a region under a curve is studied by 
another limiting process called Integration. 

 Actually integral calculus was developed into two different directions over 
a long period independently. 

 (i) Leibnitz and his school of thought approached it as the anti derivative 
of a differentiable function. 

 (ii) Archimedes, Eudoxus and others developed it as a numerical value 
equal to the area under the curve of a function for some interval. 
However as far back as the end of the 17th century it became clear that 
a general method for solution of finding the area under the given 
curve could be developed in connection with definite problems of 
integral calculus. 

 In the first section of this chapter, we study integration, the process of 
obtaining a function from its derivative, and in the second we examine certain 
limit of sums that occur frequently in applications. 

 We are already familiar with inverse operations. (+, −) ; (×, ÷), 





( )n,  
n

  
are some pairs of inverse operations. Similarly differentiation and integrations 
are also inverse operations. In this section we develop the inverse operation of 
differentiation called anti differentiation. 

Definition 

 A function F(x) is called an anti derivative or integral of a function f(x) on 
an interval I if 

   F′ (x) = f(x) for every value of x in I 

 i.e. If the derivative of a function F(x) w.r. to x is f(x), then we say that the 
integral of f(x) w.r. to x is F(x). 

  i.e. ⌡⌠ f(x) dx  = F(x) 
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 For example we know that  

   
d
dx  (sinx) = cosx,      then   ⌡⌠ cosx dx  = sinx. 

  Also 
d
dx  (x5) = 5x4,       gives  ⌡⌠

 

 5x4 dx    =  x5 

 The symbol ‘⌡⌠ ’ is the sign of integration. ‘⌡⌠ ’ is elongated S, which is the 

first letter of the word sum. 

 The function f(x) is called Integrand. 

 The variable x in dx  is called variable of integration or integrator. 

 The process of finding the integral is called integration. 

Constant of integration: 

 Consider the following two examples. 

Example 9.1: 

 





d
dx (2x + 5)   = 2

d
dx (2x)            = 2

d
dx (2x − 4)       = 2

d
dx( )2x − 7  = 2

         ⇒     ⌡⌠ 2dx   =  2x + ?  =  2x + C 

 Where this ‘C’ may be 5, 0, − 4 or − 7  as shown in the above example. 

(See fig. 1(a)). 

Example 9.2: 

 





d
dx (x2 + 1)   = 2x

d
dx (x2)         = 2x

d
dx(x2 − 4)    = 2x

             ⇒  ⌡⌠ 2xdx   = x2 + ? = x2 + C 

 ‘C’ is any constant  (See fig 1(b)) 
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 fig. 9.1.a fig 9.1.b 

     By the way it is accepted to understand that the expression ⌡⌠ f(x) dx  is not a 

particular integral, but family of integrals of that function. 

   If  F(x) is one such integral, it is customary to write ⌡⌠ f(x) dx = F(x) + C 

   Where ‘C’ is an arbitrary constant. ‘C’ is called ‘the constant of 

integration’. Since C is arbitrary,  ⌡⌠f(x) dx  is called the “indefinite integral”. 

Formulae 

⌡⌠xn dx  = 
xn + 1

n + 1   + c           (n ≠ − 1) 

⌡
⌠ 

1
xn dx  = − 

1

(n − 1) xn − 1  + c  ( n ≠ 1] 

⌡
⌠ 

1
x dx  = log x  + c 

⌡⌠ex dx  = ex  + c 

⌡⌠ax dx  = 
ax

loga   + c 

⌡⌠sinx dx  = − cosx + c 

⌡⌠cos x dx  = sinx + c 

⌡⌠cosec2x dx  = − cotx  + c 

⌡⌠sec2x dx  = tanx  + c 

⌡⌠secx tanx dx  = sec x  + c 

⌡⌠ cosecx cotx dx = − cosecx  + c 

⌡
⌠ 

1

1 + x2 dx  = tan−1x  + c 

⌡

⌠ 

1

1 − x2
  dx = sin−1x  + c 
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Example 9.3 – 9.7: Integrate the following with respect to x. 

  (3) x6 (4) x−2 (5) 
1

x10  (6) x  (7) 
1
x
  

Solution:   

(3)  ⌡⌠ x6 dx = 
x6 + 1

6 + 1     =  
x7

7  + c 

(4) ⌡⌠ x−2 dx = 
x−2 + 1

−2 + 1
   = − 

1
x  + c 

(5) 
⌡
⌠ 

1

x10 dx  = ⌡⌠ x− 10 dx   

  = 
x− 10 + 1

− 10 + 1
  + c  

  = 
x− 9

− 9
  + c 

 
⌡
⌠ 1

x10  dx = − 
1

9x9  + c 

  [Here we can also use the formula 

   
⌡
⌠ 

1

xn dx  = − 
1

(n − 1) xn − 1 where n ≠ 1] 

(6) ⌡⌠ x dx  = ⌡
⌠

 x

1
2  dx  

  = 
x

3
2

3
2

  + c  

  ⌡⌠ x  dx = 
2
3  x

3
2  + c 

(7) 
⌡
⌠ 1

x
  dx = ⌡

⌠
x
− 

1
2  dx 

   = 
x−1/2 + 1

− 1/2 + 1
 + c   

   = 
x 1/2

+ 1/2   + c 

  
⌡
⌠ 

1
x
  dx = 2 x  + c 

Example 9.8 – 9.10:  Integrate: 

  (8) 
sinx

cos2x
  (9)

cotx
sinx  (10) 

1

sin2x
    

Solution: 

 (8) 
⌡
⌠ 

sinx

cos2x
 dx = ⌡

⌠ 
sinx
cosx . 

1
cosx dx  = ⌡⌠ tanx secx dx  =  secx + c 

 (9) ⌡
⌠cotx

sinx  dx = ⌡⌠cosecx  cotx dx  = − cosecx + c 

 (10) 
⌡
⌠ 

1

sin2x
 dx  = ⌡⌠ cosec2x dx  = − cotx + c 
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EXERCISE 9.1 
Integrate the following with respect to x 

 (1) (i) x16 (ii) x
5
2  (iii) x7  (iv) 

3
x4  (v) (x10) 

1
7  

 (2) (i) 
1

x5  (ii) x−1 (iii) 
1

x

5
2

  (iv) 
1

3
x5

  (v) 




1

x3  

1
4  

 (3) (i) 
1

cosec x  (ii) 
tanx
cosx (iii) 

cosx

sin2x
  (iv) 

1

cos2x
  (v) 

1

e−x  

9.2 Integrals of function containing linear functions of x  
i.e. ⌡⌠ f(ax + b) dx  

 We know that 

  
d
dx   



(x − a)

10
10

   = (x − a)9   ⇒  ⌡⌠ (x − a)9dx      =  
(x − a)10

10   

  
d
dx  [sin (x + k)]  = cos(x + k)  ⇒  ⌡⌠ cos(x + k) dx  = sin(x + k) 

 It is clear that whenever a constant is added to the independent variable  
x or subtracted from x the fundamental formulae remain the same. 
 But 

  
d
dx   



1

l  (elx + m)   = elx + m   ⇒  ⌡⌠ elx + m dx            = 
1
l   e(lx + m) 

  
d
dx  



1

a sin(ax + b)   = cos (ax + b)  ⇒  ⌡⌠cos (ax + b) dx    =  
1
a  sin(ax + b) 

       Here, if any constant is multiplied with the independent variable x, then the 
same fundamental formula can be used after dividing it by the coefficient of x 

i.e. 
if  ⌡⌠ f(x) dx  = g(x) + c,   then  ⌡⌠ f(ax + b) dx  = 

1
a   g(ax + b) + c 

 The extended forms of fundamental formulae 

  ⌡⌠(ax + b)ndx  = 
1
a    



(ax + b)n + 1

n + 1   + c    (n ≠ − 1) 

  ⌡
⌠ 

1
ax + b dx  = 

1
a   log (ax + b) + c 
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  ⌡⌠ eax + b dx  = 
1
a  eax + b + c 

  ⌡⌠sin(ax + b)dx  = −  
1
a  cos (ax + b) + c 

  ⌡⌠cos (ax + b) dx  = 
1
a  sin (ax + b) + c 

  ⌡⌠sec2(ax + b)dx  = 
1
a  tan (ax + b) + c 

  ⌡⌠cosec2 (ax + b) dx  = −   
1
a  cot (ax + b) + c 

  ⌡⌠cosec (ax + b) cot (ax + b) dx  = −   
1
a  cosec (ax + b) + c 

  
⌡
⌠ 1

1 + (ax)2  dx = 
1
a  tan−1(ax) + c 

  
⌡

⌠ 1

1 − (ax)2
 dx = 

1
a  sin−1(ax) + c 

 The above formulae can also be derived by using substitution method, 
which will be studied later. 
Example 9.11 – 9.17:  Integrate the following with respect to x. 

 (11) (3 − 4x)7 (12) 
1

3 + 5x  (13) 
1

(lx + m)n  (14) e8 − 4x 

 (15) sin (lx + m) (16) sec2 (p − qx) (17) cosec (4x + 3)  cot (4x + 3) 
Solution: 

 (11) ⌡⌠(3 − 4x)7dx  = 



− 

1
4    

(3 − 4x)8

8   + c  

  ⌡⌠(3 − 4x)7dx  = − 
1
32  (3 − 4x)8+ c 

 (12) ⌡
⌠ 1

3 + 5x dx = 
1
5  log (3 + 5x) + c 

 (13) 
⌡
⌠ 1

(lx + m)n dx =  



1

l    






(− 1)

(n − 1) (lx + m)n − 1  + c 

      ∴  
⌡
⌠ 1

(lx + m)n dx  = − 



1

l(n − 1)
   

1

(lx + m)n − 1  + c 
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 (14) ⌡⌠e8 − 4xdx  = 



1

− 4
  e8 − 4x + c 

  ⌡⌠e8 − 4xdx  = − 
1
4  e8 − 4x + c 

 (15) ⌡⌠sin (lx + m) dx  = 



1

l   [ ]− cos (lx + m)   + c 

   = − 
1
l   cos (lx + m) + c 

 (16) ⌡⌠sec2 (p − qx) dx = 



− 

1
q   [tan(p − qx)] + c 

 (17) ⌡⌠cosec (4x + 3)  cot (4x + 3) dx  = − 
1
4  cosec (4x + 3) + c 

EXERCISE 9.2 
Integrate the following with respect to x 

 (1) (i) x4 (ii) (x + 3)5 (iii) (3x + 4)6 (iv) (4 − 3x)7 (v) (lx + m)8 

 (2) (i) 
1

x6  (ii) 
1

(x + 5)4  (iii) 
1

(2x + 3)5 (iv) 
1

(4 − 5x)7 (v) 
1

(ax + b)8  

 (3) (i) 
1

x + 2  (ii) 
1

3x + 2  (iii) 
1

3 − 4x  (iv) 
1

p + qx  (v) 
1

(s − tx)  

 (4) (i) sin (x + 3)  (ii) sin (2x + 4)  (iii) sin (3 − 4x) 

   (iv) cos (4x + 5) (v) cos (5 − 2x) 

 (5) (i) sec2(2 − x)  (ii) cosec2(5 + 2x) (iii) sec2 (3 + 4x) 

  (iv) cosec2(7−11x) (v) sec2(p − qx) 

 (6) (i) sec (3 + x) tan (3 + x) (ii) sec (3x + 4) tan (3x + 4)  

  (iii) sec (4−x) tan (4 − x)  (iv) sec (4 − 3x) tan (4 − 3x) 

  (v) sec (ax + b) tan (ax + b) 

 (7) (i) cosec (2 − x) cot (2 − x) (ii) cosec (4x + 2) cot (4x + 2)  

  (iii) cosec (3−2x) cot (3 − 2x) (iv) cosec (lx + m) cot (lx + m)  

  (v) cot (s−tx) cosec (s−tx) 

 (8) (i) e3x             (ii) ex + 3      (iii) e3x + 2         (iv) e5 − 4x        (v) eax + b 

 (9) (i) 
1

cos2 (px + a)
 (ii) 

1

sin2 (l − mx)
  (iii) (ax + b)−8  (iv) (3 − 2x)−1  (v) e−x 
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 (10) (i) 
tan (3 − 4x)
cos (3 − 4x)  (ii) 

1

ep + qx  (iii)  
1

tan(2x + 3) sin(2x + 3)  

  (iv) (lx + m)
1
2    (v) (4 − 5x)  

Properties of integrals 

 (1) If k is any constant then ⌡⌠kf(x) dx  = k ⌡⌠f(x) dx  

 (2) If f(x) and g(x) are any two functions in x then 

  ⌡⌠[ ]f(x) + g(x) dx  = ⌡⌠f(x) dx  + ⌡⌠g(x) dx  

Example 9.18 – 9.21:  Integrate the following with respect to x 

 (18) 10x3 − 
4

x5  + 
2

3x + 5
     (19) k sec2 (ax + a) − 

3
(4x + 5)2  + 2sin (7x − 2) 

 (20) ax + xa + 10 − cosec 2x  cot2x   (21) 
1
5  cos 



x

5 + 7   + 
3

(lx + m)    +  e
x
2 + 3

  

Solution: 

(18)  
⌡
⌠





10x3 − 

4

x5 + 
2

3x + 5
 dx   = 10 ⌡⌠x3 dx − 4

⌡
⌠dx

x5 + 2
⌡
⌠ 1

3x + 5
 dx  

   = 10 



x4

4   −  4 




− 

1

4x4   + 2 
[ ]2 3x + 5

3   

   = 
5
2 x4 + 

1

x4  + 
4
3  3x + 5 + c 

 (19) ⌡
⌠ 

 [k sec2 (ax + b) − 
3

(4x + 5)2 + 2sin (7x − 2)] dx 

   = k ⌡⌠sec2(ax + b) dx  −  ⌡
⌠

(4x + 5)
2
3 dx  +  2⌡⌠sin(7x − 2) dx  

   = k 
tan (ax + b)

a   − 
1
4  

(4x + 5)
2
3 + 1





2

3 + 1
  + (2) 



1

7   (− cos (7x − 2)) + c 

 = 
k
a  tan (ax + b) − 

3
20  (4x + 5)

5
3  − 

2
7  cos (7x − 2) + c 
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 (20) ⌡⌠ ( )ax + xa + 10 − cosec 2x  cot2x dx  

    = ⌡⌠ axdx  + ⌡⌠xadx + 10 ⌡⌠dx  − ⌡⌠ cosec 2x   cot 2x dx  

    = 
ax

loga   +  
xa + 1

a + 1   +  10x  +  
cosec 2x

2    +  c 

 (21) ⌡

⌠

 





1

5 cos 



x

5 + 7  + 
3

lx + m + e
x
2 + 3

 dx  

    = 
1
5  ⌡

⌠ cos 



x

5 + 7  dx  + 3 ⌡
⌠ 

1
lx + mdx   + ⌡

⌠
 e 

x
2 + 3

dx  

    = 
1
5  . 

1
( )1/5   sin 



x

5 + 7    + 3 



1

l   log (lx + m)  + 
1

(1/2)  e 
x
2 + 3

 + c 

    = sin 



x

5 + 7    + 
3
l   log (lx + m)  + 2e 

x
2 + 3

 + c 

EXERCISE 9.3 

Integrate the following with respect to x 

 (1) 5x4 + 3(2x + 3)4 − 6(4 − 3x)5 (2) 
3
x  + 

m
4x + 1  − 2 (5 − 2x)5 

 (3) 4 − 
5

x + 2 + 3 cos 2x (4) 3e7x − 4sec (4x + 3) tan(4x + 3) + 
11

x5  

 (5) p cosec2 (px − q) − 6(1 − x)4 + 4e3 − 4x    

 (6) 
4

(3 + 4x)  + (10x + 3)9 − 3cosec (2x + 3) cot (2x + 3) 

 (7) 6 sin5x − 
l

(px + q)m   (8) a sec2 (bx + c) + 
q

el − mx  

 (9) 
1





3 + 

2
3x

  − 
2
3  cos 



x − 

2
3   + 3 



x

3 + 4  
6
  

 (10) 7 sin  
x
7  − 8sec2 



4 − 

x
4   + 10 



2x

5  − 4  
3
2         (11) 2xe + 3ex + ee 

 (12) (ae)x − a−x + bx 
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9.3 Methods of Integration 
 Integration is not as easy as differentiation. This is first due to its nature. 
Finding a derivative of a given function is facilitated by the fact that the 
differentiation itself has a constructive character. A derivative is simply defined 
as 

 
Lt

∆x → 0   
f(x + ∆x) − f(x)

∆x
  

 Suppose we are asked to find the derivative of logx, we know in all details 
how to proceed in order to obtain the result. 
 When we are asked to find the integral of logx, we have no constructive 
method to find integral or even how to start. 
 In the case of differentiation we use the laws of differentiation of several 
functions in order to find derivatives of their various combinations, e.g. their 
sum, product, quotient, composition of functions etc. 
 There are very few such rules available in the theory of integration and 
their application is rather restricted. But the significance of these methods of 
integration is very great. 
 In every case one must learn to select the most appropriate method and use 
it in the most convenient form. This skill can only be acquired after long 
practice. 
 Already we have seen two important properties of integration. The 
following are the four important methods of integrations. 
 (1) Integration by decomposition into sum or difference. 
 (2) Integration by substitution. 
 (3) Integration by parts 
 (4) Integration by successive reduction. 
 Here we discuss only the first three methods of integration and the other 
will be studied in higher classes. 

9.3.1 Decomposition method 
 Sometimes it is impossible to integrate directly the given function. But it 
can be integrated after decomposing it into a sum or difference of number of 
functions whose integrals are already known. 

    For example (1 + x2)
3
, sin 5x cos2x, 

x2 − 5x + 1
x  , sin5x, 

ex + 1

ex  , (tanx + cotx)2 

do not have direct formulae to integrate. But these functions can be decomposed 
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into a sum or difference of functions whose individual integrals are known. In 
most of the cases the given integrand will be any one of the algebraic, 
trigonometric or exponential forms, and sometimes combinations of these 
functions. 
Example 9.22 -   Integrate  

 (22) ⌡⌠(1 + x2)
3
dx  = ⌡⌠ ( )1 + 3x2 + 3x4 + x6 dx  

   = x + 
3x3

3   + 
3x5

5   + 
x7

7   + c 

   = x + x3 + 
3
5  x5 + 

x7

7   + c 

 (23) ⌡⌠sin5x cos 2x  dx = ⌡
⌠ 

1
2 [ ]sin (5x + 2x) + sin (5x − 2x)   dx 

[‡ 2sin A cosB = sin (A+B) + sin(A − B)] 

   = 
1
2   ⌡⌠

 
 [sin7x + sin3x] dx 

   = 
1
2  



− cos7x

7  − 
cos3x

3   + c 

 ∴ ⌡⌠sin5x cos 2x  dx  =  −   
1
2  



cos7x

7  + 
cos3x

3   + c 

 (24) ⌡
⌠x2− 5x + 1

x  dx  = ⌡
⌠

 



x2

x  − 
5x
x  + 

1
x  dx  = ⌡

⌠ 



x − 5 + 

1
x dx  

   = ⌡⌠xdx − 5 ⌡⌠dx  + ⌡
⌠ 

1
x dx 

   = 
x2

2   − 5x + logx + c 

 (25) ⌡⌠ cos3x dx  = ⌡
⌠ 

1
4 [3cosx + cos 3x] dx  

   = 
1
4   





3 ⌡⌠ cosx dx + ⌡⌠ cos3x dx   

   = 
1
4  



3 sin x + 

sin 3x
3   + c 
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 (26) 
⌡

⌠ 

ex + 1

ex  dx  = 
⌡

⌠ 







ex

ex + 
1

ex   dx  =  ⌡⌠ 1dx + ⌡⌠e−x dx  

   = x − e− x + c 

 (27) ⌡⌠ (tanx + cotx) 2dx  = ⌡⌠( )tan2x + 2tanx cotx + cot2x  dx  

   = ⌡⌠ [( )sec2x − 1  + 2 + (cosec2x − 1)] dx  

   = ⌡⌠( )sec2x + cosec2x dx  

   = tanx + (− cotx) + c 

   = tanx − cotx + c 

 (28) ⌡
⌠ 

1
1 + cosx dx = 

⌡
⌠ 

(1 − cosx)
(1 + cosx) (1 − cosx)

  dx 

   = 
⌡
⌠ 

1 − cosx

1 − cos2x
 dx  = 

⌡
⌠ 

1 − cosx

sin2x
 dx 

   = 
⌡
⌠ 





1

sin2x
 − 

cosx

sin2x
 dx  = ⌡⌠ [ ]cosec2x − cosecx cotx  dx  

   = ⌡⌠ cosec2x dx  − ⌡⌠ cosecx cotx dx  

   = − cotx − (− cosec x) + c 

   = cosec x − cotx + c     
Note: Another method 

 









⌡
⌠ 1

1 + cosx dx = 

⌡
⌠

1

2 cos2 x
2

 dx = 
1
2 ⌡

⌠ sec2 
x
2 dx = 

1
2 

tan 
x
2

1
2

+c = tan 
x
2+c   

 (29) ⌡
⌠ 

1 − cos x
1 + cosx  dx  = 

⌡

⌠

 
2sin2 

x
2

2 cos2 
x
2

 dx   =  ⌡
⌠ tan2 

x
2 dx  
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   = ⌡
⌠ 



sec2 

x
2 − 1  dx  = 

tan 
x
2

1
2

  − x + c 

   = 2 tan 
x
2  − x + c … (i)   

Another method: 

  ⌡
⌠ 

1 − cos x
1 + cosx  dx  = 

⌡
⌠ 

(1 − cosx)
(1 + cosx) 

(1 − cosx)
(1 − cosx)

 dx  

   = 
⌡

⌠

 
(1 − cosx)2

1 − cos2x
 dx  = 

⌡

⌠

 
1 − 2cosx + cos2x

sin2x
 dx  

   = 
⌡

⌠

 






1

sin2x
 − 

2 cosx

sin2x
 + 

cos2x

sin2x
 dx  

   = ⌡⌠ ( )cosec2x − 2cosecx cot x + cot2x  dx  

   = ⌡⌠ [ ]cosec2x − 2cosecx cotx + (cosec2x − 1)  dx  

   = ⌡⌠ [ ]2 cosec2x − 2 cosec x cotx − 1  dx  

   = 2 ⌡⌠cosec2x dx − 2   ⌡⌠cosec x cotx dx  − ⌡⌠ dx  

   = − 2 cot x − 2 (− cosec x) − x + c 

  ⌡
⌠ 

1 − cos x
1 + cosx  dx  = 2 cosec x − 2 cotx − x + c … (ii) 

Note:  From (i) and (ii) both   2 tan 
x
2  − x + c     and  2 cosec x − 2 cotx − x + c   

are trigonometrically equal. 

 (30) ⌡⌠ 1 + sin 2x dx  = ⌡⌠ (cos2x + sin2x) + (2 sinx cosx)  dx   

   = ⌡⌠ (cosx + sin x) 2  dx  = ⌡⌠ (cosx + sin x) dx  

   = [sinx − cosx] + c 



 105

 (31) 
⌡
⌠

 
x3 + 2
x − 1

 dx  = 
⌡
⌠x3 − 1 + 3

x − 1
 dx   =  

⌡
⌠

 



x3 − 1

x − 1
 + 

3
x − 1

 dx  

   = 
⌡
⌠

 



(x − 1) (x2 + x + 1)

x − 1
 + 

3
x − 1

 dx  

   = 
⌡
⌠ 



x2 + x + 1 + 

3
x − 1

 dx  

   = 
x3

3   + 
x2

2   + x + 3 log (x − 1) + c 

 (32) 
⌡
⌠ 

cos2x

sin2x cos2x
 dx  = 

⌡

⌠

 
cos2x − sin2x

sin2x cos2x
 dx  

   = 
⌡

⌠

 






cos2x

sin2x cos2x
 − 

sin2x

sin2x cos2x
 dx  

   = 
⌡
⌠ 





1

sin2x
 − 

1

cos2x
 dx  

   = ⌡⌠(cosec2x − sec2x) dx  

   = − cotx − tanx + c 

 (33) 
⌡

⌠

 
3x − 2x + 1

6x  dx  = 
⌡

⌠

 






3x

6x − 
2x +1

6x  dx  = ⌡
⌠











3

6  
x
 − 2. 



2

6  
x

 dx  

   = ⌡
⌠











1

2  
x
 − 2 



1

3  
x

 dx  = ⌡⌠ (2−x − 2.3−x) dx  

   = 
− 2− x

log2   − 2 . 
(− 3−x)
log3  + c  

   = 
2

log3  3− x  −  
1

log2  2− x + c 

 (34) ⌡⌠ ex log2  . ex dx = ⌡⌠ elog2
x
  ex dx  =  ⌡⌠ 2xex dx  

   = ⌡⌠ (2e) x dx   =  
(2e)x

log2e  + c 
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 (35) 
⌡
⌠ 

dx

x + 3 − x − 4
  = 

⌡

⌠

 
x + 3 + x − 4

{ }x + 3 − x − 4  { }x + 3 + x − 4
 dx   

   = 
⌡
⌠

 
x + 3 + x − 4

(x + 3) − (x − 4)
 dx   = ⌡

⌠
 

x + 3 + x − 4
7  dx  

   = 
1
7   ⌡⌠[ ](x + 3)1/2  +  (x − 4)1/2  dx 

  
⌡
⌠ 

dx

x + 3 − x − 4
  = 

1
7    



2

3 (x + 3)3/2 + 
2
3 (x − 4)3/2  + c 

 (36) ⌡⌠ (x − 1) x + 1 dx  = ⌡⌠{(x + 1) − 2}( )x + 1   dx 

   = ⌡⌠ [ ](x + 1)3/2 − 2(x + 1)1/2  dx  

   = 
2
5  (x + 1)5/2 − 2. 

2
3  (x + 1)3/2 + c 

  ⌡⌠(x − 1) x + 1  dx = 
2
5  (x + 1)5/2  − 

4
3  (x + 1)3/2  + c 

 (37) ⌡⌠(3x + 4) 3x + 7 dx =  ⌡⌠{(3x + 7) − 3} 3x + 7 dx   

   = ⌡⌠ ((3x + 7) 3x + 7 − 3 3x + 7)  dx  

   = ⌡⌠((3x + 7)3/2 − 3 (3x + 7)1/2) dx  

   = 
1
3  

(3x + 7)5/2

5/2   − 3 .  
1
3   

(3x + 7)3/2

3/2   + c 

   = 
2

15  (3x + 7)5/2 − 
2
3  (3x + 7)3/2 + c 

 (37a)  
⌡
⌠ 

9

(x − 1) (x + 2)2  dx = 
⌡
⌠





A

x−1
+

B
x+2+ 

C

(x+2)2   dx     
resolve into
partial fraction 

   = 
⌡
⌠ 





1

x − 1
 − 

1
x + 2 − 

3

(x + 2)2   dx         

   = log (x − 1) − log (x + 2) + 
3

(x + 2)  + c 
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EXERCISE 9.4 
Integrate the following  

 (1) (2x − 5) (36 + 4x) (2) (1 + x3)
2
 (3) 

x3 + 4x2 − 3x + 2

x2   

 (4) 
x4 − x2 + 2

x + 1   (5) 
(1 + x) 2

x
  (6) 

e2x+ e−2x + 2

ex    

 (7) sin23x + 4cos 4x (8) cos32x − sin6x (9) 
1

1 + sinx   

 (10) 
1

1 − cosx
  (11) 1 − sin2x  (12) 1 + cos2x  

 (13) 
1

sin2x cos2x
  (14) 

sin2x
1 + cosx  (15) sin7x cos5x 

 (16) cos3x cosx (17) cos2x sin4x (18) sin10x sin2x 

 (19) 
1 + cos2x

sin22x
  (20) (ex − 1)2e−4x (21) 

1 − sinx
1 + sinx  

 (22) 
2x + 1 − 3x −1

6x   (23) exlogaex (24)  
ax + 1 − bx − 1

cx   

 (25) 




x + 

1
x

 
2
  (26) sinmx cosnx (m > n)    (27) cos px cosqx (p > q) 

 (28) cos25x sin10x (29) 
1

x + 1 − x − 2
   (30) 

1
ax + b − ax + c

   

 (31) (x + 1) x + 3)    (32) (x − 4) x + 7              (33) (2x + 1) 2x + 3     

 (34) 
x + 1

(x + 2) (x + 3)  (35)  
x2 + 1

(x − 2) (x + 2) (x2 + 9)
  

9.3.2 Method of substitution or change of variable 
 Sometimes the given functions may not be in an integrable form and the 
variable of integration (x in dx) can be suitably changed into a new variable by 
substitution so that the new function will be found integrable. 

 Suppose  F(u) = ⌡⌠ f(u) du,  

 then  
dF(u)

du   = f(u) 
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 Put u = φ (x),    then 
du
dx  = φ′(x) 

 Also we know that 
dF(u)

dx   = 
dF(u)

du   . 
du
dx  

    = f(u) φ′(x) 

   i.e. 
dF(u)

dx   = f [φ (x)] φ′(x) 

   ⇒ F(u) = ⌡⌠f [φ (x)] φ′(x) dx  

   ∴  ⌡⌠ f(u)du  = ⌡⌠f [φ(x)] φ′(x) dx  

 ⌡⌠ f [φ (x)]φ′ (x) dx = ⌡⌠f(u) du   

 The success of the above method depends on the selection of suitable 
substitution either x = φ(u) or u = g(x). 

Example 9.38 – 9.41: Integrate 

 (38) ⌡⌠ 5x4ex5
dx  (39) ⌡

⌠ cosx
1 + sinx dx  (40) 

⌡

⌠ 

1

1 − x2
 dx      (41)

⌡
⌠ 

1

1 + x2 dx  

 For the first two problems (38) and (39) the substitution in the form  
u = φ(x) and for (40) and (41) the substitution in the form x = φ(u). 

 (38) Let   I = ⌡⌠ 5x4ex5
dx  

  Put  x5 = u … (i) 

 ∴ 5x4 dx = du … (ii) 
 Since the variable of integration is changed from x to u, we have to convert 
entire integral in terms of the new variable u. 

 ∴ We get I = ⌡⌠ ( ) ex5
 ( )5x4 dx  

    = ⌡⌠ eu du  (by (i) and (ii)) 

    = eu + c 

    = ex5
 + c   (replacing u by x5, as the function 

       of given variable) 
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 (39) Let  I = ⌡
⌠ 

cosx
1 + sinx   dx 

  Put   (1 + sinx) = u … (i) 
   cosx dx = du … (ii) 

   ∴  I = ⌡
⌠ 

1
(1 + sinx) (cosx dx)  

    = ⌡
⌠ 

1
u du  (by (i) and (ii))  

    = logu + c 

  ⌡
⌠ 

cosx
1 + sinx   dx = log (1 + sinx) + c 

 (40) Let I = 
⌡

⌠ 

1

1 − x2
 dx  

  Put x = sinu  ….(i)   ⇒   u = sin−1x 

   dx = cos udu  … (ii) 

  ∴ I = 
⌡

⌠ 1

1 − x2
  dx 

    = 
⌡

⌠ 1

1 − sin2u
   (cosu du) by (i) and (ii) 

    = 
⌡

⌠ 1

cos2u
  (cosu du) 

    = ⌡⌠ du    =   u + c 

 ∴ 
⌡

⌠ 

1

1 − x2
 dx  = sin−1 x + c (Q u  = sin−1x) 

 (41) Let I = 
⌡
⌠ 

1

1 + x2 dx 

  put x = tanu ⇒  u = tan−1x 

   dx = sec2u du 
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  ∴ I = 
⌡
⌠ 1

1 + tan2u
  sec2u du 

    = 
⌡
⌠ 1

sec2u
  sec2u du   =  ⌡⌠du  

   I = u + c 

 ∴  
⌡
⌠ 1

1 + x2  dx = tan−1x + c 

Some standard results of integrals 

 (i) ⌡
⌠

 
f ′(x)
f(x)   dx  =  log [f(x)] + c 

 (ii) 
⌡

⌠ f ′(x)

f(x)
 dx  = 2 f(x)  + c 

 (iii) ⌡⌠f ′(x) [ ]f(x) n dx  = 
[ ]f(x) n + 1

n + 1   + c      where n ≠ − 1 

Proof : 

 (i) Let  I = ⌡
⌠

 
f ′(x)
f(x)   dx 

  Put f(x) = u 

  ∴ f ′(x)dx = du 

  ∴ I = ⌡
⌠1

u du    =  log u + c   =   log [f(x)] + c 

  i.e. ⌡
⌠

 
f ′(x)
f(x)   dx = log [f(x)] + c 

 (ii) Let I = 
⌡

⌠ f ′(x)

f(x)
 dx  

    = 
⌡
⌠ 

1
u

 du  where u = f(x) and du = f ′(x) dx 

    = 2 u  + c = 2 f(x)  + c 
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  ∴ 
⌡

⌠f ′ (x)

f(x)
 dx  = 2 f(x)  + c 

 

 (iii) Let I = ⌡⌠f ′(x) [ ]f(x) n dx               where n ≠ − 1 

  Put f(x) = u 

  ∴ f ′(x) dx = du 

  ∴ I = ⌡⌠ { }f(x) n ( ) f ′(x) dx   

    = ⌡⌠un du    =    
un + 1

n + 1   + c               (Q n ≠ − 1) 

∴ ⌡⌠f ′(x) [ ]f(x) n dx  = 
[ ]f(x) n + 1

n + 1   + c 

Examples 9.42 – 9.47: Integrate the following 

 (42) 
2x + 1

x2 + x + 5
  (43) 

ex

5 + ex  (44) 
6x + 5

3x2 + 5x + 6
  (45) 

cosx
sinx

  

  (46) (4x − 1) (2x2 − x + 5)4         (47) (3x2 + 6x + 7) (x3 + 3x2 + 7x − 4)11 

Solution 

 (42) Let  I = 
⌡
⌠ 2x + 1

x2 + x + 5
 dx  = 

⌡
⌠ 1

(x2 + x + 5)
 {(2x + 1) dx}  

  Put x2 + x + 5 = u 
   (2x + 1) dx = du 

  ∴ I = ⌡
⌠ 

1
u du    =  log u + c = log (x2 + x + 5) + c 

  ∴
⌡
⌠ 2x + 1

x2 + x + 5
 dx  = log (x2 + x + 5) + c 

 (43) Let I = 
⌡

⌠ ex

5 + ex dx  

  put 5 + ex = u 

   ex dx = du 
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  ∴ I = 
⌡
⌠ 

1

5 + ex (ex dx)  

  ∴  = ⌡
⌠ 

1
u du  

   I = logu + c    =   log (5 + ex) + c 

  i.e.
⌡

⌠ ex

5 + ex dx  = log (5 + ex) + c 

 (44) Let I = 
⌡

⌠ 6x + 5

3x2 + 5x + 6
 dx  

  put 3x2 + 5x + 6 = t 
   (6x + 5) dx = dt 

 ∴  I = 
⌡
⌠ 

1
t
 dt    =   2 t  + c = 2 3x2 + 5x + 6  + c 

 ∴ 
⌡

⌠ 6x + 5

3x2 + 5x + 6
 dx  = 2 3x2 + 5x + 6  + c 

 (45) Let I = 
⌡
⌠ cosx

sinx
 dx  

  put sinx = t 
   cosx dx = dt 

  ∴ I = 
⌡
⌠ 

1
t
 dt  

  i.e.  I = 2 t  + c = 2 sinx  + c 

  i.e. 
⌡
⌠ cosx

sinx
 dx  = 2 sin x  + c 

 (46) Let I = ⌡⌠(4x − 1) (2x2 − x + 5)4  dx 

  put 2x2 − x + 5 = u 
   (4x − 1) dx = du 

  ∴ I = ⌡⌠(2x2 − x + 5)4 ( )(4x − 1) dx   

    = ⌡⌠ u4du  =   
u5

5   + c =  
(2x2 − x + 5)

5

5   + c 
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 i.e. ⌡⌠(4x − 1) (2x2 − x + 5)4 dx = 
(2x2 − x + 5)

5

5   + c 

 (47) Let I = ⌡⌠(3x2 + 6x + 7) (x3 + 3x2 + 7x − 4)11 dx  

 put  x3 + 3x2 + 7x − 4 = u 

 ∴ (3x2 + 6x + 7) dx = du 

  ∴ I = ⌡⌠(x3 + 3x2 + 7x − 4)11  { }(3x2 + 6x + 7)dx   

    = ⌡⌠ u11du  

   I = 
u12

12   + c =    
(x3 + 3x2 + 7x − 4)12

12   + c 

              ∴⌡⌠(x3 + 3x2 + 7x − 4)11  (3x2+6x+7) dx = 
(x3 + 3x2 + 7x − 4)12

12   + c 

Example 9.48 – 9.67: Integrate the following 

 (48) x16 (1 + x17)
4
 (49) 

x24

(1 + x25)
10  (50) 

x15

1 + x32  (51) x(a − x)17 

 (52) cot x (53) cosec x (54) 
log tanx

sin2x   (55) sin15x cosx 

 (56) sin7x (57) tanx secx  (58) 
etanx

cos2x
  (59) 

e x

x
  

 (60) 
esin−1x

1 − x2
  (61) e2logx ex3

 (62) 
logx

x   (63) 
1

x logx        

 (64) 
1

x + x
   (65) 

ex/2 − e− x/2

ex − e−x  (66) 
xe − 1 + ex − 1

xe + ex    

 (67) αβ xα − 1 e −βxα    
(68) (2x − 3) 4x + 1)  

Solution:  

 (48) ⌡⌠x16 (1 + x17)
4
 dx 

  Let I = ⌡⌠x16 (1 + x17)
4
 (dx) 

  put 1 + x17 = u … (i)  
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   17x16dx = du 

   dx = 
1

17x16 du    … (ii) 

   ∴  I  = 
⌡
⌠x16(u)4 





1

17x16 dx   by (i) and (ii) 

     = 
1

17  ⌡⌠ u4du     =    
1
17  

u5

5   + c 

  ⌡⌠x16 (1 + x17)
4
 dx = 

1
85  (1 + x17)

5
 + c 

 (49) 
⌡

⌠ x24

(1 + x25)
10  dx 

  Let I = 
⌡

⌠ x24

(1 + x25)
10  dx 

  put  1 + x25 = u … (i) 

   25x4  dx = du  

   dx = 
1

25x24  du … (ii) 

  ∴ I = 
⌡

⌠x24

u10 




1

25x24 du   by (i) and (ii) 

    = 
1

25  
⌡
⌠ 1

u10 du    =  
1
25  





− 

1

9u9  + c   

 ∴   
⌡

⌠ x24

(1 + x25)
10  dx = − 

1

225 (1 + x25)
9  + c 

 (50) 
⌡

⌠ x15

1 + x32 dx  

  Let I = 
⌡

⌠ x15

1 + x32 dx  
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  put  x16 = u … (i) 

   16x15dx = du 

   dx = 
1

16x15 du  … (ii) 

  ∴  = 
⌡

⌠ x15

1 + u2 




1

16x15 du   by (i) and (ii) 

    = 
1

16  
⌡
⌠ 1

1 + u2 du  

   I = 
1

16  tan−1u + c 

  
⌡

⌠ x15

1 + x32 dx  = 
1

16  tan−1 (x16) + c 

 (51) ⌡⌠x(a − x)17 dx  

  Let I = ⌡⌠x(a − x)17 dx  

  put (a − x) = u      ⇒  x  =  a − u 

   dx = − du 

  ∴ I = ⌡⌠(a − u)u17 (− du)  

    = ⌡⌠(u18− au17) du  

   I = 
u19

19   − a 
u18

18   + c 

  ∴ ⌡⌠x(a − x)17 dx  = 
(a − x)19

19   − 
a(a − x)18

18   + c 

 (52) ⌡⌠cot x dx  

  Let I = ⌡⌠cot x dx  

  put  sin x = u 
   cosx dx = du 
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  ∴ I = ⌡
⌠cosx

sinx  dx   =  ⌡
⌠ 

1
u du   =  log u + c 

 ∴  ⌡⌠cot x dx  = log sinx + c 

 (53) ⌡⌠cosec x dx  

 Let  I = ⌡⌠cosec x dx  = 
⌡
⌠cosecx [cosecx − cotx]

[cosecx − cotx]
 dx 

 Put  cosecx − cotx = u      … (1) 

 (− cosec x cotx + cosec2x)dx = du 

 cosecx (cosecx − cotx) dx = du  …(2) 

 ∴    I = 
⌡
⌠cosecx [cosecx − cotx]

[cosecx − cotx]
 dx 

  = ⌡
⌠du

u     =  log u + c 

 ∴  ⌡⌠cosec x dx  = log (cosecx − cotx) + c 

 ⌡⌠cosec x dx  = log tan  
x
2  + c 

 (54) ⌡
⌠log tanx

sin2x  dx  

  Let I = ⌡
⌠log tanx

sin2x  dx  

  Put log tanx = u … (i) 

  ∴ 
1

tanx  sec2xdx = du       ⇒     
cosx
sinx   . 

1

cos2x
  dx  =  du 

  i.e. 
2

2sinx cosx  dx = du       ⇒     
2

sin2x  dx  =  du 

   dx = 
sin2x

2   du … (ii) 

  ∴ I = ⌡
⌠ u

sin2x . 



sin2x

2  du   by (i) and (ii) 
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    = 
1
2  ⌡⌠ udu    =   

1
2  



u2

2   + c 

   ⌡
⌠log tanx

sin2x  dx  = 
1
4  [log tanx]2 + c 

(55) ⌡⌠sin15x cosx dx  

  Let I = ⌡⌠sin15x cosx dx  

  Put  sinx = t     ⇒     cosx dx  =  dt 

  ∴ I = ⌡⌠ t15 dt   =  
t16

16  + c 

  ∴ ⌡⌠sin15x cosx dx  = 
sin16x

16   + c 

 (56) ⌡⌠sin7x dx  

  Let I = ⌡⌠sin7x dx  

  ∴  = ⌡⌠ sin6x sinx dx  = ⌡⌠ (1 − cos2x)3 (sinx dx)  

   Put cosx = t        ⇒    − sin x dx   =   dt 
   sinx dx = (− dt) 

  ∴ I = ⌡⌠(1 − t2)
3
 (− dt)  

    = ⌡⌠(1 − 3t2 + 3t4 − t6) (− dt)  

    = ⌡⌠(t6 − 3t4 + 3t2 − 1) dt  

    = 
t7

7   −  3 
t5

5   +  3 
t3

3  − t + c 

 ∴  ⌡⌠sin7x dx  = 
cos7x

7    −  
3
5   cos5x  +  cos3x − cosx + c 

(Note : This method is applicable only when the power is odd).  

 (57) ⌡⌠tanx secx dx  

 Let I = ⌡⌠tanx secx dx  

 Put   secx = t 
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 secx tanx dx = dt                        ∴ dx = 
dt

secx tanx  

Converting everything in terms of t. 

 ∴ I = ⌡
⌠ tan x    ( )t   



1

secx tanx dt    

  =  ⌡
⌠ 

t
secx dt    =   ⌡

⌠ 
t

t  dt  = 
⌡
⌠ 

1
t
 dt = 2 t  + c 

 ∴ ⌡⌠tanx secx dx  = 2 sec x  + c 

 (When the integrand is with ef(x) and f(x) is not a linear function in x,  
substitute  f(x) = u.) 

(58) 
⌡

⌠ etanx

cos2x
 dx  

 Let  I = 
⌡

⌠ etanx

cos2x
 dx  

 Put    tan x = t 

 sec2x dx = dt                         ∴ dx  =  cos2x dt 

 ∴ I = 
⌡

⌠ et

cos2x
  . cos2x dt   =   ⌡⌠ et dt   =  et + c 

 ∴  
⌡

⌠ etanx

cos2x
 dx  = etanx + c 

(59) 
⌡

⌠e x

x
 dx  

 Let   I = 
⌡

⌠e x

x
 dx  

 Put x = t              ∴ x  =  t2    ⇒   dx = 2tdt 

 ∴  I = ⌡
⌠ 

et

t   . 2t  dt   =   2 ⌡⌠ e
t
 dt    =   2 e

t
 + c 

 ∴    ⌡

⌠e x

x
 dx  = 2 e x + c 
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(60) 
⌡
⌠ esin−1x

1 − x2
 dx  

 Let  I = 
⌡
⌠ esin−1x

1 − x2
 dx  

 put sin−1x = t         

 
1

1 − x2
  dx = dt            ⇒    dx  =  1 − x2  dt    

 ∴  I = 
⌡

⌠  

et

1 − x2
  1 − x2  dt   

   = ⌡⌠ et dt    =  et + c 

 ∴  
⌡
⌠ esin−1x

1 − x2
 dx  = esin−1x + c 

(61) ⌡⌠e2logx ex3
 dx  

 Let  I = ⌡⌠e2logx ex3
 dx  

 put x3 = t          ⇒    3x2 dx = dt             ∴  dx  =  
1

3x2  dt 

 ∴    I = ⌡⌠ elogx2
 ex3

 dx     =    ⌡⌠ x2 ex3
 dx  

  = 
⌡
⌠ x2 et 





1

3x2 dt     

  =   
1
3  ⌡⌠ et  dt    =  

1
3  e

t 
+ c 

 ∴  ⌡⌠e2logx ex3
 dx  = 

1
3   e

x3
 + c 
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(62) ⌡
⌠logx

x  dx  

 Let  I = ⌡
⌠logx

x  dx  

 put    logx = u     ⇒    
1
x  dx = du                ∴   dx  = x du 

 ∴  I = ⌡
⌠ 

u
x (x du)    =   ⌡⌠u du    =    

u2

2   + c 

 ⌡
⌠logx

x  dx  = 
1
2  [logx]2 + c 

(63)  ⌡
⌠ 1

x logx dx  

 Let  I = ⌡
⌠ 1

x logx dx  

 put logx = u 

 
1
x  dx = du          ∴   dx  =  x du 

 ∴  I = ⌡
⌠ 

1
xu   (x du)  = ⌡

⌠1
u  du  =  log u + c 

 ⌡
⌠ 1

x logx dx  = log (logx) + c 

(64) 
⌡
⌠ 1

x + x
 dx 

 Let  I = 
⌡
⌠ 1

x + x
 dx 

 put x  = t        ⇒    x = t2   
 dx = 2t dt 

 ∴ I   = 
⌡
⌠ 1

t2 + t
  2t dt     =  2 ⌡

⌠ t
t(t + 1)  dt 

  = 2 ⌡
⌠ 



1

1 + t  dt    =  2 log (1 + t) + c 

 ∴  ⌡
⌠ 1

x + x
 dx = 2 log ( )1 + x   + c 
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(65) 
⌡

⌠ex/2 − e− x/2

ex − e−x  dx  

 Let  I = 
⌡

⌠ex/2 − e− x/2

ex − e−x  dx  

 put ex\2 = t     ⇒    
1
2  e x\2 dx  =  dt 

 dx = 
2

ex/2 dt   =   
2
t   dt 

 ∴    I = 
⌡
⌠ 

t − 1/t

t2 − 1/t2
  



2dt

t   

  = 2 

⌡
⌠ 

(t2 − 1)
t

(t4 − 1)

t2

  
dt
t    = 2 

⌡

⌠

 
(t

2
 − 1)

t
4
 − 1

  dt 

  = 2 
⌡

⌠

 
t
2
 − 1

(t
2
 − 1) (t

2
 + 1)

  dt   =  2 
⌡

⌠ 

1

1 + t
2  dt   = 2 tan

−1
t + c 

∴ 
⌡

⌠ex/2 − e− x/2

ex − e−x  dx  = 2 tan−1( )ex/2  + c 

(66) 
⌡

⌠xe − 1 + ex − 1

xe + ex  dx  

 Let  I = 
⌡

⌠xe − 1 + ex − 1

xe + ex  dx  

 Put   xe + ex = t         … (i) 

 (exe − 1+ ex) dx = dt ,                e(xe − 1 +ex − 1) dx  = dt 

 ∴   dx  = 
1

e(xe − 1 + ex − 1)
 dt  … (ii) 
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 ∴  I  =  ⌡
⌠

 
(xe − 1 + ex − 1)

t  






1

e( )xe − 1 + ex − 1
 dt    by (i) and (ii) 

                =  
1
e  ⌡

⌠1
t   dt   =   

1
e  log t + c  

 ∴  
⌡

⌠xe − 1 + ex − 1

xe + ex  dx  = 
1
e  log (xe + ex) + c 

 (67) ⌡⌠αβ xα − 1 e −βxα
 dx  

 Let  I = ⌡⌠αβ xα − 1 e −βxα
 dx  

 Put − βxα = u     ⇒     − αβxα − 1dx  =  du    ∴ dx = − 
1

αβ xα− 1  du 

 ∴   I = 
⌡

⌠ αβxα − 1 eu 







−1

αβ xα− 1  du  = − ⌡⌠ eu  du   =  − eu + c 

∴  ⌡⌠αβ xα − 1 e −βxα
 dx  =  − e−βxα

 + c 

(68) ⌡⌠(2x − 3) 4x + 1 dx 

 Let  I = ⌡⌠(2x − 3) 4x + 1 dx 

 Put  (4x + 1) =  t2      ⇒   x  =  
1
4  (t2 − 1)         ∴  dx  =  

t
2  dt 

 ∴   I = ⌡
⌠









2 . 
1
4 (t2−1)−3  (t) 



t

2  dt  =  ⌡
⌠1

2 (t2 − 1 − 6) . 
t2

2 dt 

  = 
1
4  ⌡⌠(t4 − 7t2) dt   =  

1
4  



t5

5 − 
7
3 t3   + c 

⌡⌠(2x − 3) 4x + 1 dx = 
1

20  (4x + 1)5/2− 
7
12 (4x + 1)3/2 + c 
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EXERCISE 9.5 

Integrate the following 

 (1) x5(1 + x6)
7
 (2) 

(2lx + m)

lx2 + mx + n
  (3) 

4ax + 2b

(ax2 + bx + c)10   

 (4) 
x

x2 + 3
  (5) (2x + 3) x2 + 3x − 5  (6) tanx 

 (7) sec x (8) cos14x sinx (9) sin5x  

 (10) cos7x (11) 
1 + tanx

x + log secx  (12) 
emtan

−1
x

1 + x2   

 (13) 
xsin−1 (x2)

1 − x4
  (14) 

5(x + 1) (x + logx)4

x   (15) 
sin (logx)

x   

 (16) 
cot x

log sinx  (17) sec4x tanx (18) tan3x sec x 

 (19) 
sinx

sin (x + a)  (20) 
cosx

cos (x − a)
                  (21) 

sin 2x

a cos2x + b sin2x
   

 (22) 
1 − tanx
1 + tanx  (23) 

tan x
sinx cosx (24) 

(log x)2

x   

 (25) e3logx ex4
 (26) 

xe − 1 + ex − 1

xe + ex + ee   (27) x (l − x)16 

 (28) x(x − a)m (29) x2 (2 − x)15 (30) 
sin x

x
  

 (31) (x + 1) 2x + 3  (32) (3x + 5) 2x + 1  (33) (x2 + 1) x + 1  

9.3.3 Integration by parts 

 Integration by parts method is generally used to find the integral when the 
integrand is a product of two different types of functions or a single logarithmic 
function or a single inverse trigonometric function or a function which is not 
integrable directly. 
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 From the formula for derivative of product of two functions we obtain this 
useful method of integration. 

 If f(x) and g(x) are two differentiable functions then we have 

   
d
dx  [ ]f(x) g(x)   = f ′(x) g(x) + f(x) g′(x) 

 By definition of anitiderivative 

   f(x) g(x) = ⌡⌠f ′(x) g(x) dx  + ⌡⌠ f(x) g′(x) dx  

 rearranging we get 

   ⌡⌠ f(x) g′(x) dx  = f(x) g(x) − ⌡⌠f ′(x) g (x) dx  … (1) 

 For computational purpose a more convenient form of writing this formula 
is obtained by  

         letting u = f(x)    and v = g(x) 

   ∴    du = f ′(x) dx   and  dv = g′(x) dx 

So that (1) becomes ⌡⌠ u dv = uv − ⌡⌠ v du  

 The above formula expresses the integral. 

 ⌡⌠ u dv  interms of another integral ⌡⌠ v du  and does not give a final 

expression for the integral ⌡⌠ u dv . It only partially solves the problem of 

integrating the product uv′. Hence the term ‘Partial Integration’ has been used 
in many European countries. The term “Integration by Parts” is established in 
many other languages as well as in our own. 

 The success of this method depends on the proper choice of u 

 (i) If integrand contains any non integrable functions directly from the 

formula, like logx, tan−1x etc., we have to take these unintegrable 
functions as u and other as dv. 

 (ii) If the integrand contains both the integrable function, and one of these 

is xn (where n is a positive integer). Then take u = xn. 

 (iii) For other cases choice of u is ours. 
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Examples              Suitable substitution for u 
No. Given Integrals u dv Reason for u 
1. 

⌡⌠logx dx  

⌡⌠tan−1 x dx  

log x  

tan−1x 

dx 

dx 

2. 
⌡⌠xn logx dx  log x xn dx 

3. 
⌡⌠ xn tan−1 x  dx  tan−1x xn dx 

 

logx and tan−1x are 
not integrable 
directly from the 
formula. 

4. 
⌡⌠xneax  dx    

(n is a positive 
integer) 

 

xn 

 

eax dx 

both are integrable 
and power of x will 
be reduced by 
successive 
differentiation 

5. 
⌡⌠xn(sinx or cos x)dx xn sinx dx  

or 
 cos xdx 

both are integrable 
and power of x will 
be reduced by 
successive 
differentiation 

6. 
⌡⌠ eax cos bx dx   or 

⌡⌠ eax sin bx dx  

eax or 
cos bx / sin bx 

Remains − 

Example  9.69 – 9.84: Integrate 

 (69) xex (70) x sin x (71) x logx (72) x sec2x 

 (73) x tan−1x (74) logx (75) sin−1x (76) x sin2x 

 (77) x sin 3x cos2x (78) x 5x (79) x3ex2 
(80) e

x
  

 (81) 
⌡

⌠x sin−1x

1 − x2
 dx (82) tan−1 





2x

1 − x2   (83) x2e3x (84) x2cos2x 

Solution: 

 (69) ⌡⌠xex dx   =  ⌡⌠(x) (exdx)  

 We apply integration by parts by taking  

   u = x   and    dv = ex dx 
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 Then du = dx and      v =  ⌡⌠  ex dx = ex 

   ∴     ⌡⌠xex dx  = xex − ⌡⌠ exdx  = xex − ex + c 

(70) ⌡⌠x sin x dx  = ⌡⌠(x) (sin x dx)  

 We use integration by parts with  
   u = x   and   dv = sin dx 
   du = dx and v = − cosx 

   ∴  ⌡⌠x sin x dx  = (x) (− cosx) − ⌡⌠ (− cosx) (dx)  

    = − x cosx + ⌡⌠cosx dx  

  ∴ ⌡⌠x sin x dx  = − x cosx + sinx + c 

(71) ⌡⌠x logx  = ⌡⌠(logx) (x dx)  

 Since  log x is not integrable take  
   u = logx  and    dv = x dx 

   ∴  du = 
1
x  dx            v  = 

x2

2   

  ∴ ⌡⌠x logx   = (logx) 



x2

2   − ⌡
⌠





x2

2    



1

x dx    

    = 
x2

2   logx − 
1
2  ⌡⌠ x dx  

  ∴ ⌡⌠x logx  = 
x2

2   logx − 
1
4 x2 + c 

 (72) ⌡⌠x sec2x dx   = ⌡⌠(x) (sec2x dx)  

 Applying integration by parts, we get dv = sec2x dx 

  ⌡⌠x sec2x dx  = x tanx − ⌡⌠tanx dx   v = tanx 

   = x tanx − log secx + c              u = x 

 ∴ ⌡⌠x sec2x dx  = x tanx + log cosx + c           du = dx 

(73) ⌡⌠x tan−1x dx  = ⌡⌠(tan−1x) (x dx)  
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 Applying integration by parts, we get  

  ⌡⌠x tan−1x dx  =  (tan−1x) 



x2

2   − 
⌡

⌠





x2

2  




1

1 + x2  dx  

   = 
x2

2   tan−1x − 
1
2  

⌡

⌠ x2

1 + x2 dx  

   = 
x2

2   tan−1x −
1
2  

⌡

⌠

 






(x2 + 1) − 1

1 + x2  dx  

   = 
x2

2   tan−1x −
1
2  

⌡

⌠

 






1+x2

1+x2−
1

1+x2  dx  

   = 
x2

2   tan−1x −
1
2  

⌡
⌠ 





1 − 

1

1 + x2  dx  

  I = 
x2

2   tan−1x −
1
2  [ ]x − (tan−1x)  + c 

 ∴⌡⌠x tan−1x dx  = 
1
2   [x2 tan−1x + tan−1x − x] + c 

 dv = xdx 

  u = tan−1x v = 
x2

2   

du = 
1

1 + x2  dx 

(74) ⌡⌠logx dx  = ⌡⌠(logx) (dx)  

 Applying integration by parts, we get 

    = (logx) (x) − ⌡
⌠x . 

1
x dx  

    = x log x − ⌡⌠ dx  

 ∴  ⌡⌠logx dx  = x logx − x + c 

 dv = dx 
  u = logx v = x 

du = 
1
x  dx 

 

 (75) ⌡⌠sin−1x dx  = ⌡⌠(sin−1x) (dx)  

 Applying integration by parts, we get 

  ⌡⌠sin−1x dx  = (sin−1x) (x) − 
⌡

⌠ x . 

1

1 − x2
  dx 

     = x sin−1x − 
⌡

⌠ 

x

1 − x2
  dx 

u = sin−1x dv = dx 

du = 
1

1 − x2
  dx v = x 

  
 

Applying substitution method by substituting 
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 1 − x2  = t 

 1− x2 = t2 
 − 2x dx = 2t d t 

 dx = 
2tdt
−2x

   =  
− t
x   dt 

 ∴    ⌡⌠sin−1x dx  = x sin−1x − ⌡
⌠x

t  



− t

x  dt  

  = x sin−1x + ⌡⌠ dt     =  x  sin−1x + t + c 

 ∴   ⌡⌠sin−1x dx  = x sin−1x + 1 − x2  + c 

 (76) ⌡⌠x sin2x dx  

 Let  I = ⌡⌠x sin2x dx  

    = ⌡
⌠ x 






1

2 (1 − cos2x)  dx  

    = 
1
2  ⌡⌠ (x − x cos 2x) dx 

    = 
1
2  





⌡⌠ xdx − ⌡⌠x cos2x dx   

   I = 
1
2  



x2

2  − I1                   … (1) 

where  I1 = ⌡⌠ x cos2x dx  

Applying integration by parts for I1 

   I1 = ⌡⌠ (x)  (cos2x dx)  

    = 



x sin2x

2  − ⌡
⌠ 

sin2x
2  dx   

    = 
x
2  sin2x − 

1
2  



− cos2x

2   

   I1 = 
x
2  sin2x + 

1
4  cos2x 

substituting I1 in (1)   we get 

   I = 
1
2  



x2

2  − I1   

[To eliminate power of  
sinx,  

sin2x = 
1
2  (1 − cos2x)] 

 
 
 
 
 
 
 
 
 
 dv = cos2x dx 

  u = x v = 
sin2x

2   

du = dx 
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    = 
1
2  



x2

2  − 



x

2 sin2x + 
1
4 cos2x  +c 

∴ ⌡⌠x sin2x dx  = 
x2

4   − 
x
4  sin2x − 

cos2x
8   + c 

 (77) ⌡⌠x sin 3x cos2x dx  = ⌡
⌠ x 

1
2 [ ]sin (3x + 2x) + sin(3x − 2x)  dx    

         



‡  sinA cosB = 

1
2  {sin(A + B) + sin (A − B)}   

  = ⌡
⌠ x 

1
2 [ ]sin (3x + 2x) + sin(3x − 2x)  dx  

Applying integration by parts, we get  u = x         dv = (sin5x + sinx)dx 

  = 
1
2  ⌡⌠x (sin5x + sinx) dx   du = dx     v  = 



− 

cos5x
5  − cos x   

  = 
1
2  





x 



− 

cos5x
5  − cosx  − ⌡

⌠




− 

cos5x
5  − cosx  dx   

  = 
1
2  





− x 



cos 5x

5  + cosx  + ⌡
⌠ 



cos 5x

5  + cosx  dx   

  =
1
2  



− x 



cos5x

5  + cosx  + 



sin5x

5 × 5
 + sinx  + c 

∴ ⌡⌠x sin 3x cos2x dx  = 
1
2  



− x 



cos5x

5  + cosx  + 
sin5x

25  + sinx  + c 

 (78) ⌡⌠x 5x dx  = ⌡⌠(x) (5x dx)  

Applying integration by parts, we get 

   ⌡⌠x 5x dx  = x 
5x

log5  − ⌡
⌠ 5x

log5 dx  

    = 
x5x

log5  − 
1

log5  . 
5x

log5  + c 

 ∴  ⌡⌠x 5x dx  = 
x5x

log5  − 
5x

(log5)2  + c 

 dv = 5x  dx 

  u = x v = 
5x

log5  

du = dx 

 For the following problems (79) to (82), first we have to apply substitution 
method to convert the given problem into a convenient form to apply 
integration by parts. 

 (79) ⌡⌠ x3ex2
 dx  
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Let I = ⌡⌠ x3ex2
 dx  

  put x2 = t 
  ∴ 2x dx = dt 

  ∴ dx = 
dt
2x  

  ∴  I = ⌡
⌠ x3 . et . 

dt
2x  

   = 
1
2  ⌡⌠ x2 et dt    =   

1
2  ⌡⌠ (t) (et dt)  

Now let us use integration by parts method 

  ∴   I = 
1
2  



 tet − ⌡⌠ et dt   

   = 
1
2  ( ) tet − et + c    =  

1
2 ( x2ex2

−ex2
+ c) 

∴⌡⌠ x3ex2
 dx  = 

1
2  (x2ex2

 − ex2
) + c 

 
 
 
 
 
 
 
 

 dv = et dt 

  u = t v = et 
du = dt 
 

 (80) ⌡⌠e
x
 dx  

 Let  I  = ⌡⌠e
x
 dx 

 put  x  = t 

   ∴   x = t2     ⇒     dx = 2t dt 

   I = ⌡⌠ et 2tdt  

    = 2 ⌡⌠ (t) (et dt)  

Now applying integration by parts, we get 

   I = 2 



tet − ⌡⌠et dt   

    = 2 (tet − et) + c 

 ∴  ⌡⌠e
x
 dx = 2





x e
x
 − e

x
  + c 

 
 
 
 
 
 
 
 
 dv = et dt 

  u = t v = et 
du = dt 
 
 
(‡ t = x ) 
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 (81) 
⌡

⌠x sin−1x

1 − x2
 dx   

 Let  I = 
⌡

⌠x sin−1x

1 − x2
 dx 

  putsin−1x= t           ⇒      x = sint 

  
1

1 − x2
  dx = dt 

   dx = 1 − x2  dt 

  ∴ I = 
⌡

⌠x 

t

1 − x2
  . ( )1 − x2 dt   

    = ⌡⌠ xt dt  

    = ⌡⌠(sint) (t) dt  

   I = ⌡⌠(t)  (sin t dt)  

Applying integration by parts, we get 

    = t (− cost) − ⌡⌠( − cost) dt  

    = − t cost + ⌡⌠cost dt  

    = − t cos t + sin t + c 

   I = − (sin−1x) ( )1 − x2   + x +c 

∴  
⌡

⌠x sin−1x

1 − x2
 dx= x − 1 − x2  sin−1x + c 

 
  
 
 
 
 
 
 
 
 
 
 
 dv = sin t dt 

  u = t v = − cos t 
du = dt 
 
 
 
 
 
 
 

‡t  = sin−1x  ⇒   sint = x 

cos t = 1−sin2 t = 1 − x2  

(82) 
⌡
⌠tan−1





2x

1 − x2  dx    

 Let  I = 
⌡
⌠tan−1





2x

1 − x2  dx  

  put x = tanθ      ⇒      dx = sec2θ  dθ 
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 ∴ I = 
⌡
⌠ tan−1 





2tanθ

1 − tan2θ
  sec2θ dθ 

   = ⌡⌠tan−1 (tan2θ) sec2θ dθ  

   = ⌡⌠2θ sec2θ dθ  

   = 2 ⌡⌠(θ) (sec
2
θ d θ)  

Applying integration by parts 

  ∴  I = 2 



θ tanθ − ⌡⌠tanθ d θ   

   = 2θ tanθ − 2 log secθ + c 

  I = 2 (tan−1x) (x) −2 log 1 + tan2θ +c 

∴
⌡
⌠tan−1





2x

1 − x2  dx  = 2x tan−1x−2 log 1+x2 +c 

 
 
 
 
 

 dv = sec2θ dθ 

  u = θ v = tanθ 
du = dθ 
 

 For the following problems (83)  and (84) we have to apply the integration 
by parts twice to find the solution. 

(83) ⌡⌠x2e3x dx  = ⌡⌠(x2) (e3x dx)   

Applying integration by parts, we get 

 ⌡⌠x2e3x dx  = 
x2e3x

3   − ⌡
⌠e3x

3   2x dx 

  = 
x2e3x

3   − 
2
3  ⌡⌠(x) (e3x dx)  

again applying integration by parts, we get 

 ⌡⌠x2e3x dx  = 
x2e3x

3  − 
2
3  








x. 
e3x

3  − ⌡
⌠

 
e3x

3  dx   

  = 
x2e3x

3  − 
2xe3x

9  + 
2
9 ⌡⌠e3x dx  

  = 
x2e3x

3  − 
2xe3x

9  + 
2
27 e3x  + c  

∴⌡⌠x2e3x dx = 
x2e3x

3  − 
2xe3x

9  + 
2e3x

27  + c  

 dv = e3x dx 

u = x2

du = 2x dx
 v = 

e3x

3   

 
 

 dv = e3x dx 

u = x
du = dx v = 

e3x

3   
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 (84) ⌡⌠x2cos2x dx  = ⌡⌠(x2)  (cos2x dx)    

Applying integration by part, we get u = x2

du = 2x dx
    

dv = cos2x dx

 v = 
sin2x

2
  

 ⌡⌠x2cos2x dx  = x2 
sin2x

2   − ⌡
⌠ 

sin2x
2  . 2x dx  

  = x2 
sin2x

2   − ⌡⌠(x) (sin2x dx)  

again applying
 integration by parts
 we get

 
u = x

du = dx    
dv = sin2x dx

 v = 
− cos2x

2
  

 ⌡⌠x2cos2x dx  = x2 
sin2x

2   − 






x( )− cos2x

2 −⌡
⌠





−cos2x

2  dx  

  = 
x

2
 sin2x

2   + 
x cos2x

2   − 
1
2  ⌡⌠ cos2x dx  

 I = 
x

2
 sin2x

2   + 
x cos2x

2   −  
1
4  sin2x + c 

∴⌡⌠x2cos2x dx  = 
1
2  x

2
 sin2x + 

1
2  x cos2x − 

1
4  sin2x + c 

 The following examples illustrate that there are some integrals whose 
integration continues forever. 
Example 9.85 – 9.87: Evaluate the following 

(85) ⌡⌠ ex cosx dx    (86) ⌡⌠ eax sin bx dx    (87) ⌡⌠sec3x dx  

Solution: 

 (85) ⌡⌠ ex cosx dx  = ⌡⌠ (ex)  (cosx dx)  

 Here both the functions in the integrand are integrable directly from the 
formula. Hence the choice of u is ours. 
Applying the integration by parts 

 ⌡⌠ ex cosx dx  = exsinx − ⌡⌠ sinx ex dx  

  = exsinx − ⌡⌠ (ex) (sin x dx)   … (1) 

Again applying integration by parts we get 

 
u = ex

 du = ex dx
  

dv = cosx dx
 v = sinx  

  
 

u = ex dv = sinx dx 

du = ex dx v = − cosx 
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 ⌡⌠ ex cosx dx  = ex sinx −



ex (− cosx) − ⌡⌠( − cosx) (ex dx)  

  = ex sinx + excosx − ⌡⌠ex cosx dx  

i.e. ⌡⌠ ex cosx dx  = ex sinx + excosx − ⌡⌠ex cosx dx  … (2) 

Note that ⌡⌠ ex cosx dx appears on both the sides. 

 ∴rearranging, we get 

 2 ⌡⌠ ex cosx dx  = (ex sin x + ex cosx) 

 ∴⌡⌠ ex cosx dx  = 
1
2  [ex sinx + ex cosx] + c 

 ⌡⌠ ex cosx dx  = 
ex

2   (cosx + sinx) + c 

(86) ⌡⌠ eax sin bx dx   =  ⌡⌠(sin bx) (eaxdx)  

 since both functions are integrable,  
         we can take any one of them as u 

 ⌡⌠eax sin bx dx  = (sin bx) 
eax

a  −⌡
⌠ 

eax

a  (b cosbx) dx  

  = 
1
a  eax sin bx − 

b
a 

⌡⌠cos bx . eax dx  

Again applying integration by parts we get 

 
u = sin bx

 du = b cos bx dx       

                    
dv = eax dx

 v = 
eax

a  
 

dv = eax dx 
u=cos bx

 du=−b sin bx dx v = 
eax

a    

 ⌡⌠ eax sin bx dx  = 
1
a  eax sin bx − 

b
a  








(cos bx) 



eax

a  − ⌡
⌠eax

a  (− b sinbx dx)   

  = 
1
a  eax sin bx − 

b

a2  eax cos bx − 
b2

a2  ⌡⌠eax sin bx dx  

 ⌡⌠ eax sin bx dx  = 
1
a  eax sinbx − 

b

a2  eax cos bx − 
b2

a2  ⌡⌠eax sin bx dx  

  The integral on the right hand side is same as the integral on the left hand side. 
 ∴ Rearranging we get 

 ⌡⌠eax sin bx dx  + 
b2

a2  ⌡⌠eax sin bx dx  = 
1
a  eax sin bx − 

b

a2  eax cos bx 
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 i.e. 








1 + 
b2

a2   ⌡⌠ eax sin bx dx  = 




1

a eax sin bx − 
b

a2 eax cos bx   

  






a2 + b2

a2   ⌡⌠ eax sin bx dx  = eax  




a sinbx − b cos bx

a2   

 ∴ ⌡⌠ eax sin bx dx   = 






a2

a2 + b2   × 
eax

a2   (a sin bx − b cos bx) 

∴  ⌡⌠ eax sin bx dx   =  






eax

a2 + b2   (a sin bx − b cos bx) + c 

 Whenever we integrate function of the form eax cos bx or eax sin bx, we 
have to apply the Integration by Parts rule twice to get the similar integral on 
both sides to solve. 
Caution: 
 In applying integration by parts to specific integrals, once pair of choice for 
u and dv initially assumed should be maintained for the successive integrals on 
the right hand side. (See the above two examples).  The pair of choice should 
not be interchanged. 

Consider the example: ⌡⌠ex sin x dx     Initial assumption 

 ⌡⌠ex sin x dx  = − ex cos x + ⌡⌠ cosx ex dx 

    Again applying integration by parts for R.H.S  
by interchanging the initial  assumption we get 

⌡⌠ex sin x dx = − excosx+ ⌡⌠cosx ex  −⌡⌠ex (−sin x) dx 

⌡⌠ex sin x dx = − excosx + cosx ex + ⌡⌠ex sin x dx  

 ⌡⌠ex sin x dx  = ⌡⌠ex sin x dx  ? 

  dv = sin x dx 

  u = ex v = − cosx 

du = ex dx 

 dv = ex dx 

  u = cos x  v = ex 
du = − sin x dx 
 

 Finally we have arrived at the same given problem on R.H.S! 

87) ⌡⌠ sec3x dx  = ⌡⌠(sec x)  (sec2x dx)  

Applying integration by parts, we get 

 ⌡⌠ sec3x dx  = sec x tan x −⌡⌠(tanx) (sec x tanx dx)  

  = sec x tan x −⌡⌠tan2x sec x dx  

 

  dv = sec2x dx 

  u = secx  v = tan x 

du = secx tanx dx 
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    = sec x tan x − ⌡⌠(sec2x − 1) sec x dx  

    = sec x tanx − ⌡⌠(sec3x − secx) dx  

    = sec x tan x − ⌡⌠ sec3x dx  + ⌡⌠secx dx  

   ⌡⌠ sec3x dx  = sec x tan x − ⌡⌠ sec3x dx  + log (secx + tan x) 

Rearranging we get, 

  2 ⌡⌠ sec3x dx  = sec x tanx + log (secx + tanx) 

   ⌡⌠ sec3x dx  = 
1
2  [secx  tanx + log (secx + tanx)] + c 

EXERCISE 9.6 

Integrate the followings with respect to x 

 (1) xe−x (2) x cosx (3) x cosec2x (4) x secx tanx 

 (5) tan−1x (6) x tan2x (7) x cos2x (8) xcos 5x cos2x 

 (9) 2x e3x (10) x2e2x (11) x2 cos3x (12) (sin−1x) 
esin−1x

1 − x2
  

 (13) x5 ex2
 (14) tan−1 







3x − x3

1 − 3x2         (15) x sin−1(x2)          (16) cosec3x 

 (17) eax cosbx (18) e2x sin 3x           (19) ex cos 2x            (20) e3x sin 2x  

 (21) sec32x        (22) e4x cos 5x sin2x            (23) e−3x cos3x 

Type I: 9.88 – 9.93: Standard integrals 

 (88) 
⌡
⌠ 

dx

a2 − x2  (89) 
⌡
⌠ 

dx

x2 − a2  (90) 
⌡
⌠ 

dx

a2 + x2  

 (91) 
⌡

⌠ 

dx

a2 − x2
  (92) 

⌡

⌠ 

dx

x2 − a2
  (93 

⌡

⌠ 

dx

x2 + a2
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Solution: 

(88)  
⌡
⌠ 

dx

a2 − x2  = 
⌡
⌠ 1

(a − x) (a + x)
 dx  

   = 
1

2a  
⌡
⌠ 2a

(a − x) (a + x)
 dx   

   = 
1

2a  
⌡
⌠(a − x) + (a + x)

(a − x) (a + x)
 dx         

or use Partial
fraction method 

   = 
1

2a  
⌡
⌠





1

a + x + 
1

a − x
 dx      

   = 
1

2a  [ ]log (a + x) − log(a − x)  

 ∴      
⌡
⌠ 

dx

a2 − x2  = 
1

2a  log 



a + x

a − x
  + c 

(89)  
⌡
⌠ 

dx

x2 − a2  dx  = 
⌡
⌠ dx

(x − a) (x + a)
  

   =  
1

2a  
⌡
⌠ 2a

(x − a) (x + a)
 dx  = 

1
2a  

⌡
⌠(x + a) − (x − a)

(x − a) (x + a)
 dx    

   = 
1

2a  
⌡
⌠





1

x − a
 − 

1
x + a  dx      

  = 
1

2a  [ ]log (x − a) − log(x + a)  

 ∴
⌡
⌠ 

dx

x2 − a2  = 
1

2a  log 



x − a

x + a   + c 

(90) Let I = 
⌡
⌠ 

dx

a2 + x2   

 put x = a tanθ  ⇒ θ = tan−1( )x / a  

 dx = a sec2θ dθ  
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 ∴  I = 
⌡

⌠ a sec2θdθ

a2 + a2 tan2θ
   = 

⌡

⌠a sec2θdθ

a2 sec2θ
   = 

1
a  ⌡⌠ dθ  

 I = 
1
a  θ + c 

 ∴    
⌡
⌠ 

dx

a2 + x2  = 
1
a  tan−1 

x
a  + c 

(91) Let  I = 
⌡

⌠ 

dx

a2 − x2
   

 put x = a sinθ ⇒ θ = sin−1 (x / a)      

 dx = a cosθ dθ  

 ∴  I   = 
⌡

⌠ a cosθ dθ

a2 − a2 sin2 θ
  = 

⌡

⌠ a cosθ dθ

a 1 − sin2θ
  

  = 
⌡
⌠ 1

cosθ cosθ d θ  =  ⌡⌠ dθ  

 I = θ + c 

 ∴  
⌡

⌠ 

dx

a2 − x2
  = sin−1 

x
a  + c 

 (92) Let I = 
⌡

⌠ 

1

x2 − a2
  dx 

  put u = x + x2 − a2  

        du = 






1 + 

(2x)

2 x2 − a2
 dx   =  







x2 − a2 + x

x2 − a2
  dx 

  ∴ dx = 
x2 − a2

x + x2 − a2
  du       = 

x2 − a2

u   du  

  ∴  I = 
⌡

⌠ 

1

x2 − a2
  . 






x2 − a2

u  du   

   = ⌡
⌠1

u  du 
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  I = log u + c 

  
⌡

⌠ 

1

x2 − a2
  dx = log ( )x + x2 − a2   + c 

 (Try the above problem by substituting x = a secθ) 

(93)  Let  I =  
⌡

⌠ 

dx

x2 + a2
  

 put u = x + x2 + a2  

       du = 






1 + 

2x

2 x2 + a2
 dx    =   







x2 + a2 + x

x2 + a2
  dx 

 ∴ dx = 
x2 + a2

x + x2 + a2
  du        =   

x2 + a2

u   du 

 ∴  I = 
⌡

⌠ 

1

x2 + a2
  . 






x2 + a2

u  du   

  = ⌡
⌠1

u  du 

 I  = log u + c 

 
⌡

⌠ 

dx

x2 + a2
  = log ( )x + x2 + a2   + c 

 (Try the above problem by substituting x = a tan θ) 

Remark: Remember the following useful substitution of the given integral as a 
functions of 

Given Substitution 

a2 − x2 x = a sinθ 

a2 + x2 x = a tanθ 

x2 − a2 x = a secθ 
Example 9.94 – 9.105 :  
 Integrate : 

 (94) 
1

1 + 9x2  (95) 
1

1 − 9x2  (96) 
1

1 + 
x2

16

  (97) 
1

1 − 4x2  
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 (98) 
1

(x + 2) 2 − 4
  (99) 

1

(2x + 1) 2 − 9
  (100) 

1

25 − x2
  (101) 

1

1 − 
x2

16

  

 (102) 
1

1 − 16x2
  (103) 

1

x2 − 9
  (104) 

1

4x2 − 25
  (105) 

1

9x2 + 16
  

Solution: 

(94) 
⌡
⌠ 1

1 + 9x2  dx = 
⌡
⌠ 

1

1 + (3x)2 dx  

  = 



tan−1 



3x

1   × 
1
3  + c 

  = 
1
3  tan−1 3x + c 

(95) 
⌡
⌠ 1

1 − 9x2  dx = 
⌡
⌠ 

1

1 − (3x)2 dx  

  = 
1

2.1  log 



1 + 3x

1 − 3x
  × 

1
3  

  = 
1
6  log 



1 + 3x

1 − 3x
  + c 

(96) 

⌡


⌠ 

1

1 + 
x2

16

  dx = 

⌡
⌠ 

1

1 + 



x

4
2
  dx 

  = 



1

1 tan−1 



x

4   
1

( )1/4   

  = 4 tan−1 



x

4  + c  

(97) 
⌡
⌠ 1

1 − 4x2 dx = 
⌡
⌠ 

1

1 − (2x)2  dx 

  = 



1

2.1 log 



1 + 2x

1 − 2x
  × 

1
2  
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  = 
1
4  log 



1 + 2x

1 − 2x
  + c 

(98)  
⌡
⌠ dx

(x + 2)2 − 4
 = 

⌡
⌠ 

dx

(x + 2)2 − 22  

  = 
1

2.(2)  log 



(x + 2) − 2

(x + 2) + 2   

  = 
1
4  log 



x

x + 4   + c 

(99) 
⌡
⌠ 1

(2x + 1) 2 − 9
  dx = 

⌡
⌠ 1

(2x + 1)2 − 32 dx 

                       =  



1

2.(3) log 



(2x + 1)− 3

(2x + 1) + 3  × 
1
2  

                       = 
1

12  log 



2x − 2

2x + 4     

                      =  
1
12  log 



x + 1

x + 2   + c 

 (100)  
⌡

⌠ 1

25 − x2
 dx = 

⌡

⌠ 

1

52 − x2
  dx 

  = sin−1 
x
5  + c 

(101)  

⌡


⌠ 1

1 − 
x2

16

  dx = 

⌡
⌠ 

1

1 − 



x

4
2
 dx 

  = 



sin−1 



x

4   . 
1

1/4 

  = 4 sin−1 



x

4  + c 

(102)  
⌡

⌠ 1

1 − 16x2
  dx  = 

⌡

⌠ 1

1 − (4x)2
 dx 

  = [ ]sin−1 (4x)   
1
4   
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  = 
1
4  sin−1 (4x) + c 

(103)  
⌡

⌠ 1

x2 − 9
  dx = 

⌡

⌠ 1

x2 − 32
  dx 

  = log ( )x + x2− 9  + c 

(104)  
⌡

⌠ 1

4x2 − 25
  dx = 

⌡

⌠ 

1

(2x)2 − 52
 dx 

                 = log [ ]2 x + (2x)2 − 52   × 
1
2  + c 

                 = 
1
2  log [ ]2x + 4x2 − 25   + c 

(105)  
⌡

⌠ 1

9x2 + 16
  dx = 

⌡

⌠ 

1

(3x)2 + 42
 dx 

  = log [ ]3 x + (3x)2 + 42   × 
1
3  + c 

                 =  
1
3  log [ ]3x + 9x2 + 16   + c 

Type II: integral of the form 
⌡
⌠ 

dx

ax2 + bx + c
   and  

⌡

⌠ dx

ax2 + bx + c
  

 In this case, we have to express ax2 + bx + c as sum or difference of two 
square terms to get the integrand in one of the standard forms of Type 1 
mentioned earlier. 

 We first make the co-efficient of x2 numerically one. Complete the square 

interms containing x2 and x by adding and subtracting the square of half the 
coefficient of x. 

 i.e.  ax2 + bx + c = a 



x2 + 

b
a x + 

c
a   

    = a 









x + 

b
2a

2
 + 

c
a − 



b

2a
2

  

OR      We can directly use a formula for 
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ax2 + bx + c = 
1
4a  [ ](2ax + b)2 + (4ac − b2)   

Example 9.106 – 9.113:  Integrate the following: 

 (106) 
1

x2 + 5x + 7
 (107) 

1

x2 − 7x + 5
  (108) 

1

x2 + 16x + 100
  

 (109) 
1

9 + 8x − x2
  (110) 

1

6 − x − x2
  (111) 

1

3x2 + 13x − 10
    

  (112) 
1

2x2 + 7x + 13
   (113) 

1

18 − 5x − 2x2
  

Solution: 

 (106) 
⌡
⌠ 1

x2 + 5x + 7
 dx = 

⌡
⌠ 

1





x + 

5
2

2
 + 7 − 



5

2
2  dx   = 

⌡
⌠ 

1





x + 

5
2

2
+ 

3
4

 dx  

   = 

⌡
⌠ 

1





x + 

5
2

2
 + 



3

2
2
  dx   = 

1
3

2

  tan−1  







x + 

5
2

3
2

  + c 

  
⌡
⌠ 1

x2 + 5x + 7
 dx = 

2
3

  tan−1 




2x + 5

3
  + c 

 (107) 
⌡
⌠ 1

x2 − 7x + 5
  dx = 

⌡
⌠

1





x − 

7
2

2
+5 − 



7

2
2  dx = 

⌡
⌠

1





x − 

7
2

2
 − 



29

2

2  dx 

   = 
1

2. 
29
2

  log 











x − 

7
2  − 

29
2





x − 

7
2  + 

29
2

  + c 

  
⌡
⌠ 1

x2 − 7x + 5
  dx = 

1
29

  log 




2x − 7 − 29

2x − 7 + 29
  + c 

 (108) 
⌡

⌠ 1

x2 + 16x + 100
 dx  = 

⌡

⌠ 

1

(x + 8)2 + 100 − (8)2
 dx  

   = 
⌡

⌠ 1

(x + 8)2 + 62
  dx 
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   = log [ ](x + 8) + (x + 8)2 + 62   + c 

   = log ( )(x + 8) + x2 + 16x + 100  + c 

(109) 
⌡

⌠ 1

9 + 8x − x2
  dx = 

⌡

⌠ 

1

9 − (x2 − 8x)
 dx = 

⌡

⌠ 

1

9 − { }(x − 4)2 − 42
  dx 

   = 
⌡

⌠ 

1

9 + 16 − (x − 4)2
  dx  =  

⌡

⌠ 

1

52 − (x − 4)2
  dx 

 
⌡

⌠ 1

9 + 8x − x2
  dx = sin−1  

x − 4
5   + c 

(110) 
⌡

⌠ 1

6 − x − x2
  dx = 

⌡

⌠ 

1

6 − (x2 + x)
 dx = 

⌡
⌠ 

1

6 − 












x + 

1
2

2
 − 



1

2
2

 dx  

  = 

⌡
⌠ 

1





6 + 

1
4  − 



x + 

1
2

2
 dx   =  

⌡
⌠ 

1





5

2
2
 − 



x + 

1
2

2
   

  = sin−1 







x + 

1
2

5
2

  + c  =  sin − 1 



2x + 1

5   + c 

  
⌡

⌠ 1

6 − x − x2
  dx = sin − 1 



2x + 1

5   + c 

 For the following problems 111 to 113 the direct formula  

 ax2 + bx + c = 
1

4a  [ ](2ax + b)2 + (4ac − b2)   is used. 

(111) 
⌡
⌠ 1

3x2 + 13x − 10
  dx = 

⌡
⌠ 

4 × 3

(2 × 3x + 13)2 − 4 × 3 × 10 − 132  dx 

  = 
⌡
⌠ 

12

(6x + 13)2 − 289
  dx  = 12 

⌡
⌠ 

1

(6x + 13)2 − 172  dx 
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  = 12×
1

2 × 17
  



log 



6x + 13 − 17

6x + 13 + 17   ×



1

6   + c         



6 is the coefficient

of x  

  = 
1

17  log 



6x − 4

6x + 30   + c  = 
1

17  log 



3x − 2

3x + 15   + c 

 
⌡
⌠ 1

3x2 + 13x − 10
 dx  = 

1
17  log 



3x − 2

3x + 15   + c 

(112) 
⌡
⌠ 1

2x2 + 7x + 13
  dx = 

⌡
⌠ 

4 × 2

(4x+7)2+104 − 49
  dx  = 8 

⌡
⌠ 

1

(4x+7)2+ 552 dx 

  = 8. 
1
55

  × tan−1 




4x + 7

55
  ×  



1

4      



4 is the coefficient

of x  

 
⌡
⌠ 1

2x2 + 7x + 13
 dx  = 

2
55

  tan−1 




4x + 7

55
  + c 

(113) 
⌡

⌠ 1

18−5x −2x2
 dx = 

⌡

⌠ 1

−{ }2x2+5x −18
dx    







negative sign

should not be taken
outside from the
square root

 

  = 
⌡

⌠

 
4 × 2

− { }(4x + 5)2 − 18 × 8 − 52
  dx  

  = 
⌡

⌠ 2 2

132 − (4x + 5)2
  dx 

  = 2 2  








sin−1 



4x + 5

13   × 



1

4   + c 

  = 
1
2
  sin−1 



4x + 5

13   + c 

∴ 
⌡

⌠ 1

18 − 5x − 2x2
 dx  = 

1
2
  sin−1 



4x + 5

13   + c 

Type III :Integrals of the form   
⌡
⌠ px + q

ax2 + bx + c
  dx  and  

⌡

⌠ 

px + q

ax2 + bx + c
  dx 
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 To evaluate the above integrals, we have to express the numerator px + q 
into two parts with suitable constants. One in terms of differential coefficient of 
denominator and the other without ‘x’ term. 

 Then the integrals will be separated into two standard form of known 
integrals and can easily be evaluated. 

 Let (px + q) = A 
d
dx  (ax2 + bx + c) + B 

  i.e. (px + q) = A(2ax + b) + B 

(A & B can be found by 
equating coefficients of x and 
constant  terms separately. 

 (i) 
⌡
⌠ 

px + q

ax2 + bx + c
  =  

⌡
⌠ 

 A(2ax + b) + B

ax2 + bx + c
  dx  

   = A 
⌡
⌠ 





2ax + b

ax2 + bx + c
 dx + B 

⌡
⌠ 

1

ax2 + bx + c
  dx                      

 








‡⌡
⌠f′(x)

f(x)  dx = log f(x) ⇒ 
⌡
⌠ 





2ax + b

ax2 + bx + c
 dx  = [log(ax2 + bx + c)]   

∴ 
⌡
⌠ px + q

ax2 + bx + c
  dx = A [log(ax2 + bx + c)] + B 

⌡
⌠ 

1

ax2 + bx + c
  dx  

 

(ii) 
⌡

⌠ 

px + q

ax2 + bx + c
  dx  = A 

⌡

⌠ 

 (2ax + b)

ax2 + bx + c
  dx  + B 

⌡

⌠ 

1

ax2 + bx + c
  dx                             







⌡

⌠ f ′(x)

f(x)
 dx  = 2 f(x)   ⇒   

⌡

⌠ 

 (2ax + b)

ax2 + bx + c
 dx = 2 ax2 + bx + c  

 
⌡

⌠ px + q

ax2 + bx + c
  dx =  A ( )2 ax2 + bx + c   + B 

⌡

⌠ 

1

ax2 + bx + c
 dx  

 

Example 114:   

 Integrate the followings: 

 (114) 
4x − 3

x2 + 3x + 8
  (115) 

3x + 2

x2 + x + 1
  (116) 

5x − 2

x2 − x − 2
  

 (117) 
3x + 1

2x2 + x + 3
  (118) 

x + 1

8 + x − x2
  (119) 

4x − 3

x2 + 2x − 1
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Solution: 

(114)  
⌡
⌠ 4x − 3

x2 + 3x + 8
  dx 

 let 4x − 3 = A 
d
dx  (x2 + 3x + 8) + B 

  4x − 3 = A(2x + 3) + B … (i) 

 rearranging 4x − 3 = (2A) x + (3A + B) 

 Equating like terms 2A = 4        ⇒   A = 2 

  3A + B = − 3     ⇒   B = − 3 − 3A = − 9 

 ∴ (i) ⇒ 

  (4x − 3) = 2(2x + 3) + (− 9) 

  ∴  
⌡
⌠ 4x − 3

x2 + 3x + 8
  dx = 

⌡
⌠ 

2(2x + 3) + (− 9)

x2 + 3x + 8
  dx 

   = 2 
⌡
⌠ 

(2x + 3)

x2 + 3x + 8
 dx  − 9 

⌡
⌠ 

dx

x2 + 3x + 8
  

  
⌡
⌠ 4x − 3

x2 + 3x + 8
  dx = 2I1 − 9I2  … (1) 

 Where I1 = 
⌡
⌠ 

(2x + 3)

x2 + 3x + 8
  dx  and   I2 = 

⌡
⌠ 

dx

x2+3x + 8
 dx 

  I1= 
⌡
⌠ 

(2x + 3)

x2 + 3x  + 8
  dx 

 put x2 + 3x − 18 = u  ∴  (2x + 3)dx = du  

 ∴    I1 = ⌡
⌠ 

du
u    =  log (x2 + 3x  + 8) … (2) 

  I2 = 
⌡
⌠ 

dx

x2 + 3x + 8
  = 

⌡
⌠ 4(1)

(2x + 3)2 + 4 × 8 − 32  dx 

   = 
⌡
⌠ 4

(2x+3)2 + ( )23 2 dx  =  4 × 
1
23

  × 
1
2   tan−1 

2x + 3
23

  

  I2 = 
2
23

  tan−1 
2x + 3

23
   … (3) 

 Substituting (2) and (3) in (1), we get 
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∴    
⌡
⌠ 4x − 3

x2 + 3x + 8
  dx = 2 log (x2 + 3x + 8) − 

18
23

  tan−1 
2x + 3

23
  

 (115) 
⌡
⌠ 3x + 2

x2 + x + 1
  dx 

 Let 3x + 2 = A 
d
dx  (x2 + x + 1) + B 

   (3x + 12) = A(2x + 1) + B   … (1) 
 i.e.    3x + 2 = (2A)x + (A + B) 
 Equating like terms 
  2A = 3    ;  A + B =  2 

  ∴ A = 
3
2    ; 

3
2  + B =  2    ⇒ B = 2 − 

3
2  = 

1
2  

 Substituting  A = 
3
2    and  B = 

1
2   in (1)  we get 

  ∴ (3x + 2) = 
3
2  (2x + 1) + 



1

2   

 ∴  
⌡
⌠ 3x + 2

x2 + x + 1
  dx = 

⌡


⌠3

2 (2x + 1) + 



1

2

x2 + x + 1
  dx 

   = 
3
2  

⌡
⌠ 

2x + 1

x2 + x + 1
  dx + 

1
2  

⌡
⌠ 1

x2 + x + 1
  dx 

 ∴  
⌡
⌠ 3x + 2

x2 + x + 1
  dx= 

3
2  { }log (x2 + x + 1)  + I … (2) 

 Where   I = 
1
2  

⌡
⌠ 1

x2 + x + 1
  dx  =  

1
2  

⌡
⌠ 4 × 1

(2x + 1)2 + 4 × 1 × 1 − 12  dx 

   = 2 
⌡
⌠ 1

(2x + 1)2 + ( )3 2  = 2 × 
1
3

   



1

2   tan−1 




2x + 1

3
  

  I = 
1
3

  tan−1 




2x + 1

3
  

 Substituting above I in (2), we get 

 ∴  
⌡
⌠ 3x + 2

x2 + x + 1
  dx = 

3
2  log (x2 + x + 1) + 

1
3

  tan−1 




2x + 1

3
  + c 
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(116) 
⌡
⌠ 5x − 2

x2 − x − 2
  dx 

 Let   5x − 2 = A 
d
dx  (x2 − x − 2) + B 

 5x − 2 = A(2x − 1) + B … (1) 

 5x − 2 = (2A)x − A + B 

equating like terms 2A = 5  ;  − A + B =  − 2   

 ∴ A = 
5
2     ;  − 

5
2  + B =  − 2  ⇒   B = − 2 + 

5
2   =  

1
2  

 Substituting   A =  
5
2   and  B  =  

1
2   in (1), we get 

  (5x − 2) = 
5
2  (2x − 1) + 

1
2  

 ∴  
⌡
⌠ 5x − 2

x2 − x − 2
  dx = 

⌡


⌠5

2 (2x − 1) + 



1

2

x2 − x − 2
  dx 

  = 
5
2  

⌡
⌠ 

2x − 1

x2 − x − 2
  dx + 

1
2  

⌡
⌠ 1

x2 − x − 2
  dx 

 ∴  
⌡
⌠ 5x − 2

x2 − x − 2
  dx = 

5
2  { }log (x2 − x − 2)  + I… (2) 

Where I = 
1
2  

⌡
⌠ 1

x2 − x − 2
  dx  =  

1
2  

⌡
⌠ 4 × 1

(2x − 1)2 − 8 − 1
  dx 

   = 
1
2  

⌡
⌠ 4

(2x − 1)2 − 32   =  
4
2  × 

1
2 × 3

  
1
2  log 



2x− 1 − 3

2x − 1 + 3
  

 I = 
1

3 × 2
  log 



2x − 4

2x + 2     = 
1
6  log 



x − 2

x + 1   

 Substituting I in (2), we get 

   
⌡
⌠ 5x − 2

x2 − x − 2
  dx = 

5
2  log (x2 − x − 2) +   

1
6  log 



x − 2

x + 1   + c 

Note : Resolve into partial fractions and then integrate. 

(117)  
⌡

⌠ 3x + 1

2x2 + x + 3
  dx 
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 Let  3x + 1 = A 
d
dx  (2x2 + x + 3) + B 

 3x + 1 = A(4x + 1) + B … (1) 
 3x + 1 = 4Ax + A + B 
equating like terms 4A = 3  ;  A + B = 1 

 ∴ A = 
3
4   B  =  1 − A = 1 − 

3
4  = 

1
4  

by (i) ⇒   ∴ 3x + 1 = 
3
4  (4x + 1) + 

1
4  

 ∴  
⌡

⌠ 3x + 1

2x2 + x + 3
  dx = 

⌡


⌠3

4 (4x + 1) + 
1
4

2x2 + x + 3
  dx 

  = 
3
4  

⌡

⌠ 

4x + 1

2x2 + x + 3
  dx + 

1
4  

⌡

⌠ 1

2x2 + x + 3
  dx 

 ∴  
⌡

⌠ 3x + 1

2x2 + x + 3
  dx = 

3
4 { }2 2x2+x+3 + I … (2)   









Q 
⌡
⌠ f′(x)

f(x)
 dx = 2 f(x)     

Where I = 
1
4  

⌡

⌠ 1

2x2 + x + 3
  dx 

  = 
1
4  

⌡

⌠ 4.2

(4x + 1)2 + 24 − 1
  dx 

  = 
1
2
  
⌡

⌠ 1

(4x + 1)2 + ( )23 2
  dx 

  I = 
1
2

  [ ]log (4x + 1) + (4x + 1)2 + 23   × 
1
4  

 substituting in (2) we get 

  
⌡

⌠ 3x + 1

2x2 + x + 3
  dx = 

3
2  2x2 + x + 3 + 

1
4 2

  
 
 { }log (4x+1)+ (4x+1)2+23 + c 

 (118)  
⌡

⌠ x + 1

8 + x − x2
  dx 

 Let  x + 1 = A 
d
dx  (8 + x − x2) + B 

 x + 1 = A(1 − 2x) + B … (1) 
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  = (− 2A)x + A + B 
equating like terms − 2A = 1  ;       A + B = 1 

 ∴ A = − 
1
2              B = 1 − A = 1 − 

1
2  = 

3
2  

Substituting A = − 
1
2  and       B =  

3
2  

by (1) x + 1 = − 
1
2  (1 − 2x) + 

3
2  

 ∴  
⌡

⌠ x + 1

8 + x − x2
  dx = 

⌡


⌠− 

1
2 (1 − 2x) + 

3
2

8 + x − x2
  dx  

  = − 
1
2 

⌡

⌠ 

(1 − 2x)

 8 + x − x2
  dx + 

3
2  

⌡

⌠ 1

 8 + x − x2
  dx 

 ∴  
⌡

⌠ x + 1

8 + x − x2
  dx = − 

1
2  { }2 8 + x − x2 +    I… (2)        

Where I = 
3
2  

⌡

⌠ 1

 8 + x − x2
  dx  

  = 
3
2   

⌡

⌠ 1

− {x2 − x − 8}
  dx 

  = 
3
2  

⌡

⌠ 4 × 1

− {(2x − 1)2 − 32 − 1}
  dx 

  = 
3
2  

⌡

⌠ 2

( )33 2 − (2x − 1)2
  dx 

  = 3 










1

2  sin−1 




2x − 1

33
  

 I = 
3
2  sin−1 





2x − 1

33
  

 substituting in (2) we get 

 
⌡

⌠ x + 1

8 + x − x2
 dx = − 8 + x − x2  + 

3
2  sin−1 





2x − 1

33
  + c 
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(119)  
⌡

⌠ 4x − 3

x2 + 2x − 1
  dx 

 Let  4x − 1 = A(2x + 2) + B   … (1) 
 4x − 3 = (2A)x + 2A + B 
equating like terms 
 4 = 2A  ;        2A + B 
 ∴ A = 2,             B = − 3 − 2A = − 3 − 4 = − 7 

Substituting   A = 2   and     B = − 7  in (1), we get 

 4x − 3 = 2(2x + 2) − 7 

 ∴  
⌡

⌠ 4x − 3

x2 + 2x − 1
  dx = 

⌡

⌠2(2x + 2) − 7

x2 + 2x − 1
  dx 

  = 2
⌡

⌠ 

2x + 2

x2 + 2x − 1
  dx+(− 7) 

⌡

⌠ 1

x2 + 2x − 1
  dx 

 ∴  
⌡

⌠ 4x − 3

x2 + 2x − 1
  dx = 2{ }2 x2 + 2x − 1 +    I … (2)         

Where I = − 7
⌡

⌠ 1

x2 + 2x −1
  dx  =  −7 

dx

(x + 1)2 − 1 − 1
  

  = − 7 
⌡

⌠ dx

(x + 1)2 − ( )2 2
  

  = − 7 log  { }(x + 1) + (x + 1) − ( )22      

 I = − 7 log { }(x + 1) + x2 + 2x − 1   

 substituting in (2) we get 

 
⌡

⌠ 4x − 3

x2 + 2x − 1
 dx = 4 x2+2x −1 − 7 log { }(x+1)+ x2+2x−1  + c 

 We have already seen that  

 
⌡

⌠ 1

a2 − x2
  dx = sin−1 

x
a  + c 
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⌡

⌠ 1

x2 − a2
  dx = log [ ]x + x2 − a2   + c 

 
⌡

⌠ 1

x2 + a2
  dx = log [ ]x + x2 + a2   + c 

 The three more standard forms similar to the above are 

Type IV: 

 (120)⌡⌠ a2 − x2 dx  = 
x
2  a2 − x2  + 

a2

2   sin−1 
x
a  + c  

 (121) ⌡⌠ x2 − a2 dx  = 
x
2  x2 − a2  − 

a2

2   log [ ]x + x2 − a2   + c 

 (122) ⌡⌠ x2 + a2 dx  = 
x
2  x2 + a2  + 

a2

2   log [ ]x + x2 + a2   + c 

(120) Let  I  =  ⌡⌠ a2 − x2 dx  

Applying integration by parts rule 

 I = x a2 − x2  − 
⌡

⌠x 







− 

x

a2 − x2
  dx 

        dv =  dx 

let u = a2 − x2  v = x 

   du = 
− 2x

2 a2 − x2
  dx 

    = x a2 − x2  − 
⌡

⌠

 
− x2

a2 − x2
  dx 

    = x a2 − x2  − 
⌡

⌠

 
a2 − x2 − a2

a2 − x2
  dx 

    = x a2 − x2  − 
⌡

⌠

 






a2 − x2

a2 − x2
 + 

(− a2)

a2 − x2
 dx   

    = x a2 − x2  − ⌡⌠ a2− x2  dx  + 
⌡

⌠ a2

a2 − x2
  dx 
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   I = x a2 − x2  −  I    + a2 
⌡

⌠ 

1

a2 − x2
  dx 

   I + I = x a2 − x2  + a2 . sin−1 x
a   

   ∴ 2I = x a2 − x2  + a2 sin−1 
x
a   

   I = 
x
2  a2 − x2  + 

a2

2   sin−1 
x
a  + c 

∴ ⌡⌠ a2 − x2  dx = 
x
2  a2 − x2  + 

a2

2   sin−1 
x
a  + c 

 (121) Let  I  =  ⌡⌠ x2 − a2 dx  

Applying integration by parts rule 

 I = x x2 − a2  − 
⌡

⌠x 







x

x2 − a2
  dx 

        dv =  dx 

let u = x2 − a2  v = x 

   du = 
2x

2 x2 − a2
  dx 

    = x x2 − a2  − 
⌡

⌠

 
x2 − a2 + a2

x2 − a2
  dx 

    = x x2 − a2  − 
⌡

⌠

 
x2 − a2

x2 − a2
  dx − 

⌡

⌠

 
a2

x2 − a2
  dx 

    = x x2 − a2 − ⌡⌠ x2 − a2 dx −a2 
⌡

⌠ 

1

x2 − a2
  dx 

   I = x x2 − a2  − I − a2 log [ ]x + x2 − a2    

   ∴ 2I = x x2 − a2  − a2 log  [ ]x + x2 − a2    

   ∴  I = 
x
2  x2 − a2  − 

a2

2   log [ ]x + x2 − a2   + c 

∴ ⌡⌠ x2 − a2  dx = 
x
2  x2 − a2  − 

a2

2   log [ ]x + x2 − a2   + c 

 (122) Let  I  =  ⌡⌠ x2 + a2 dx  
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Applying integration by parts rule 

 I = x x2 + a2  − 
⌡

⌠







x2

x2 + a2
  dx 

        dv =  dx 

let u = x2 + a2  v = x 

   du = 
2x

2 x2 + a2
  dx 

    = x x2 + a2  − 
⌡

⌠

 
x2 + a2 − a2

x2 + a2
  dx 

    = x x2 + a2  − 
⌡

⌠

 
x2 + a2

x2 + a2
  dx + 

⌡

⌠

 
a2

x2 + a2
  dx 

    = x x2 + a2  − ⌡⌠ x2 + a2  dx + a2 
⌡

⌠ 

1

x2 + a2
  dx 

   I = x x2 + a2  −   I    + a2 log [ ]x + x2 + a2   + c 

   ∴ 2I = x x2 + a2  + a2 log  [ ]x + x2 + a2   + c 

   ∴  I = 
x
2  x2 + a2  + 

a2

2   log [ ]x + x2 + a2   + c 

∴ ⌡⌠ x2 + a2  dx = 
x
2  x2 + a2  + 

a2

2   log [ ]x + x2 + a2   + c 

Example: 9.123 – 9.131:  

 Integrate the following : 

 (123) 4 − 9x2  (124) 16x2 − 25  (125)  9x2 + 16   (126) 2x − x2  

 (127) x2 − 4x + 6  (128) x2 + 4x + 1  (129) 4 + 8x − 5x2  

 (130) (2 − x) (1 + x)                            (131) (x + 1) (x − 2)  

Solution: 

 (123) 4 − 9x2  dx = ⌡⌠ 22−(3x)2dx = 
1
3  



(3x)

2  22 − (3x)2 + 
22

2  sin−1 
3x
2  +c 

   = 
1
3  



3x

2  4 − 9x2 + 2 sin−1 
3x
2   + c 
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 (124)⌡⌠ 16x2 − 25  dx = ⌡⌠ (4x)2 − 52 dx  

   = 
1
4  



(4x)

2  (4x)2 − 52 − 
25
2  log[ ]4x + (4x)2 − 52  

   = 
1
8  [ ]4x 16x2 − 25 − 25log ( )4x + 16x2 − 25  + c  

 (125) ⌡⌠ 9x2 + 16   dx = ⌡⌠ (3x)2 + 42 dx  

   = 
1
3  



(3x)

2  (3x)2 + 42 + 
42

2  log[ ]3x + (3x)2 + 42  

   = 
1
6  [ ]3x 9x2 + 16 + 16 log ( )3x + 9x2 + 16  + c 

 (126) ⌡⌠ 2x − x2   dx = ⌡⌠ 1 − {x2 − 2x + 1} dx = ⌡⌠ 12 − (x − 1)2  dx 

   = 
(x − 1)

2   1 − (x − 1)2  + 
12

2   sin−1 



x − 1

1   + c 

   = 
x − 1

2   2x − x2  + 
1
2  sin−1 (x − 1) + c 

 (127) ⌡⌠ x2 − 4x + 6 dx = ⌡⌠ x2 − 4x + 4 + 2  dx = ⌡⌠ (x − 2)2 + ( )22   dx 

   = 
(x − 2)

2   (x−2)2+( )2 2 +
( )2 2

2 log[ ](x − 2)+ (x − 2)2+( )2 2  +c 

   = 
(x − 2)

2  x2 − 4x + 6  +log [ ](x − 2) + x2 − 4x + 6   + c 

 (128) ⌡⌠ x2 + 4x + 1 dx = ⌡⌠ (x + 2)2 − ( )3 2 dx  

  =  
(x + 2)

2   (x + 2)2 − ( )3 2 − 
( )3 2

2   log [ ](x+2)+ (x+2)2−( )3 2  + c 

  = 
(x + 2)

2   x2 + 4x + 1  − 
3
2  log [ ](x + 2) + x2 + 4x + 1  + c 
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(129) ⌡⌠ 4 + 8x − 5x2 dx = ⌡⌠ − {5x2 − 8x − 4}  dx 

            



‡ ax2 + bx + c  = 

1
4a  [(2ax + b)2+(4ac−b2])  

   = 
⌡
⌠ 

1

4 × 5
 − {(10x − 8)2 − 80 − 64}  dx       

   = 
1
20

   ⌡⌠ 122 − (10x − 8)2  dx  

   = 
1
20

  









1

10  



10x − 8

2  122 − (10x − 8)2 + 



122

2  sin−1 
10x − 8

12   

   = 
1
20

  



1

10 (5x − 4) 80 + 16x − 100x2 + 
36
5  sin−1 



5x − 4

6   

   = 
1
20

  









5x − 4

10  20 (4 + 8x − 5x2) + 
36
5  sin−1 

5x − 4
6   

   = 
5x − 4

10   4 + 8x − 5x2  + 
36

20 × 5
  sin−1 

5x − 4
6   

 ∴ ⌡⌠ 4 + 8x − 5x2 dx = 
5x − 4

10   4 + 8x − 5x2  + 
18

5 5
  sin−1 

5x − 4
6   + c 

(130) ⌡⌠ (2 − x) (1 + x) dx = ⌡⌠ 2 + x − x2  dx =  ⌡⌠ − (x2 − x − 2)  dx 

   = 
⌡

⌠

 
− {(2x − 1)2 − 8 − 1}

4.1
  dx  =  

1
2  ⌡⌠ 32 − (2x − 1)2  dx 

   = 
1
2  



1

2 
(2x − 1)

2  32 − (2x − 1)2 + 



1

2  
32

2  sin−1 



2x − 1

3   

   = 
1
8  



(2x − 1) 8 + 4x − 4x2 + 9 sin−1 



2x − 1

3   

   = 
1
8  



2(2x − 1) 2 + x − x2 + 9 sin−1 



2x − 1

3   
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(131) ⌡⌠ (x + 1) (x − 2) dx = ⌡⌠ x2 − x − 2  dx =  
⌡

⌠

 
(2x − 1)2 − 8 − 1

4
  dx 

   = 
1
2 ⌡⌠ (2x − 1)2 − 32  dx  

 = 
1
2  





 



1

2  



2x − 1

2  (2x−1)2−32− 



1

2  



32

2 log { }(2x−1)+ (2x−1)2−32  

 ⌡⌠ (x+1) (x−2)dx  =  
1
2  



(2x−1)

4  (2x−1)2−9−
9
4 log{ }(2x−1)+ (2x−1)2−9   

EXERCISE 9.7 

Integrate the followings 

 (1) 
1

x2 + 25
  , 

1

(x + 2)2 + 16
 , 

1

 (3x + 5)2 + 4
 , 

1

2x2 + 7x + 13
  ,  

1

9x2 + 6x + 10
 

 (2) 
1

16 − x2  , 
1

9 − (3 − x)2  , 
1

7 − (4x + 1)2  , 
1

1 + x − x2  , 
1

5 − 6x − 9x2  

 (3) 
1

x2 − 25
  ,  

1

(2x + 1)2 − 16
  , 

1

(3x + 5)2 − 7
  , 

1

x2 + 3x − 3
  , 

1

3x2 − 13x − 10
  

 (4) 
1

x2 + 1
  ,  

1

(2x + 5)2 + 4
  , 

1

(3x−5)2+6
 , 

1

x2+3x+10
 , 

1

x2 + 5x + 26
  

(5)
1

x2−91
, 

1

(x+1)2−15
 , 

1

(2x + 3)2 − 16 
 , 

1

x2 + 4x − 12
  , 

1

x2 + 8x − 20
  

(6)  
1

4 − x2
 , 

1

25 − (x − 1)2 
 , 

1

11 − (2x + 3)2
  ,  

1

1 + x − x2
  , 

1

8 − x − x2
  

(7)  
3 − 2x

x2 + x + 1
  , 

x − 3

x2 + 21x + 3
  , 

2x − 1

2x2 + x + 3
  ,  

1 − x

1 − x − x2  , 
4x + 1

x2 + 3x + 1
  

(8) 
x+2

6+x −2x2
 , 

2x − 3

10 − 7x − x2 
 , 

3x + 2

3x2 + 4x + 7
  , 

1 + x
1 − x

  , 
6x + 7

(x − 4) (x − 5)
  

(9) 1 + x2  ,   (x + 1)2 + 4)  ,   (2x + 1)2 + 9  ,   (x2−3x+10)   

(10) 4 − x2  , 25 − (x + 2)2  , 169 − (3x + 1)2  , 1−3x−x2 , (2−x) (3+x) 
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9.4 Definite integrals 
 A basic concept of integral calculus is limit, an idea applied by the Greeks 
in geometry. 

 To find the area of a circle, Archimedes 
inscribed an equilateral polygon in a circle. Upon 
increasing the numbers of sides, the area of the 
polygon approaches the area of the circle as a limit. 
The area of an irregular shaped plate also can be 
found by subdividing it into rectangles of equal 
width. If the number of rectangles is made larger 
and larger by reducing the width, the sum of the 
area of rectangles approaches the required area  as  
a limit. The beauty and importance of the  

 

Fig. 9.2 

integral calculus is that it provides a systematic way for the exact calculations of 
many areas, volumes and other quantities. 

Integration as summation 

 To understand the concept of definite integral, let us take a simple case. 

 Consider the region R in the plane 
showing figure 9.3. The region R is 
bounded by the curve  
y = f(x) , the x-axis, and two vertical 
lines x = a and x = b, where b > a 

 For simplicity, we assume y = f(x) 
to be a continuous and increasing 
function on the closed interval [a, b]. 

 
Fig. 9.3 

 We first define a polygon contained in R. Divided the closed interval [a, b] 
into n sub intervals of equal length say ∆x. 

  ∴ ∆x = 
b − a

n   

 Denote the end points of these sub intervals by x0, x1, x2………xr…… xn. 

 Where x0 = a, x1 = a + ∆x, x2 = a + 2∆x, …… xr = a + r∆x, ……, xn = b 
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 The area of the polygon 
shown in figure 9.4 is the sum of the 
area of the rectangles (by taking the 
left hand   x values of the such 
intervals). 

Sn = A1 + A2 + …… + An 

    = f(x0) ∆x + f(x1)∆x …+f(xn−1) ∆x 

    = [f(a) + f(a + ∆x)+ … f(a+r  ∆x) … 

+ f(a + (n − 1)∆x)] ∆x 
 

Fig. 9.4 

  = ∑
r = 1 

n
     f {a + (r − 1) ∆x}.(∆x)     =  ∆ x  ∑

r = 1 

n
    f {a + (r − 1) ∆x} 

 Sn = 
b − a

n    ∑
r = 1 

n
   f {a + (r − 1) ∆x}                                 



‡∆x = 

b − a
n   

 Now increase the number of sub 
intervals multiply n by 2, then the number 
of rectangles is doubled, and width of 
each rectangle is halved as shown in 
figure. 9.5. By comparing the two figures, 
notice that the shaded region in fig.9.5 
appears more approximate to the region R 
than in figure 9.4. 
 So sum of the areas of the rectangles 
Sn, approaches to the required region R as 
n increases. 

 
Fig. 9.5 

 Finally we get, 
Lt

n → ∞   Sn = 
Lt

n → ∞  
b − a

n      ∑
r = 1 

n
   f {a + (r − 1) ∆x} → R 

 Similarly, by taking the right hand values of x of the sub intervals, we can 
have, 

   
Lt

n → ∞ Sn = 
Lt

n → ∞  
b − a

n   ∑
r = 1 

n
    f(a+r ∆x)  →  R   

              i.e. R  = 
Lt

n → ∞  
b − a

n   ∑
r = 1 

n
   f(a + r ∆x)    −   I 
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 Definition:  If a function f(x) is defined on a closed interval [a, b], then the 
definite integral of f(x) from a to b is given by  

   
Lt

n → ∞ 
b − a

n  ∑
r = 1 

n
  f(a + r ∆x) ,  where ∆x = 

b − a
n    (provided  the limit exists) 

 On the other hand the problem of finding the area of the region R is the 
problem of arguing from the derivative of a function back to the function itself. 

 Anti-derivative approach to find the area of the region R. 

 Let us consider the same region R 
(considering 9.6) bounded by the curve 
y = f(x) the x-axis and the two vertical 
lines, x = a and x = b, where  
b > a. 

 To evaluate the area of R, we 
need to consider the total area between 
the curve y = f(x) and the x-axis from 
the left to the arbitrary point P(x, y) on 
the curve. 

 
Fig. 9.6 

 Let us denote this area by Ax. 

 Let Q (x + ∆x, y + ∆y) be another point very close to P(x, y). 

 Let ∆Ax is the area enclosed by the strip under the arc PQ and x-axis. 

 If the strip is approximated by a rectangle of length y and width ∆x, then 
the area of the strip is y . ∆x. 

 

 Since P and Q are very close 

 ∆Ax ≈ y . ∆x      ∴   
∆Ax
∆x

  ≈ y 

 If the width ∆x is reduced, 
then the error is accordingly 
reduced. 

 If ∆x → 0 then ∆Ax → 0  
Fig. 9.7 

               ∴ 
Lt

∆x → 0   
∆Ax
∆x

  = y     ⇒     
dAx
dx   = y 
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 ∴ By definition of anti derivative      
dAx
dx   = y   ⇒   Ax = ⌡⌠ ydx  

 is the total area Ax, between the curve and x-axis upto the point P is given 

by the indefinite integral ⌡⌠ ydx  

Let ⌡⌠ydx  = F(x) + c 

   If x = a, then the area upto x = a, Aa is 

  ⌡⌠ydx  = F(a) + c 

  If x = b, then the area upto x = b, Ab is 

  ⌡⌠ ydx  = F(b) + c      

 ∴ The required area of the region  
     R is Ab  −  Aa 

given by 

⌡⌠
upto x = b

 ydx   −  ⌡⌠
upto x = a

 ydx   

= (F(b) + c) − (F(a) + c) 

 by notation  ⌡⌠
a

b
 ydx  =  F(b) − F(a) 

 ⌡⌠
a

b
 f(x) dx = F(b) − F(a)   − II  

gives the area of the region R bounded by 
the curve y = f(x), x axis and between the 
lines x = a and x = b. 
 a & b are called the lower and 
upper limits of the integral. 

 

 

 
Fig. 9.8 

From I & II, it is clear that 

R = 
Lt

n → ∞ 
b − a

n  ∑
r = 1 

n
  f(a + r∆x) = ⌡⌠

a

b
 f(x) dx = F(b) − F(a)   , if the limit exists 
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 To evaluate the definite integrals under this method, the following four 
formulae will be   very much useful. 

 (i)  ∑
r = 1 

n
   r = 

n(n + 1)
2   

 (ii)  ∑
r = 1 

n
   r2 = 

n(n + 1) (2n + 1)
6   

 (iii)  ∑
r = 1 

n
   r3 = 



n(n + 1)

2
2
  

 (iv)  ∑
r = 1 

n
   ar = a 



an − 1

a − 1
  ; (a ≠ 1) 

Illustration: 
 Consider the area A below the 
straightline y = 3x above the x-axis 
and between the lines  
x = 2 and x = 6. as shown in the 
figure. 
(1) Using the formula for the area of 

the trapezium ABCD 

 R = 
h
2  [a + b] 

  = 
4
2  [6 + 18]  = 2 × 24 

 R = 48 sq. units      … (i) 
 

Fig. 9.9 
(2) Integration as summation 
 Let us divide the area 
ABCD into n strips with equal 
widths. Here a = 2, b = 6 
∴ width of  each strip  

 ∆x = 
b − a

n   

 i.e.  ∆x = 
6 − 2

n   

 ∆x = 
4
n  

 
Fig. 9.10 
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 By definite integral formula 

 R = 
Lt

n → ∞  
b − a

n    ∑
r = 1 

n
   f(a + r ∆x) 

  = 
Lt

n → ∞  
4
n   ∑

r = 1 

n
   f 



2 + r 



4

n    

  = 
Lt

n → ∞  
12
n    ∑

r = 1 

n
  



2+

4r
n    ;    



 ‡ f(x) = 3x, f 



2+r 

4
n =3 



2+r 



4

n   

  = 
Lt

n → ∞  
12
n   









∑
r = 1 

n
 2 + 

4
n ∑

r = 1 

n
  r   

  = 
Lt

n → ∞  
12
n   



2n + 

4
n 

(n) (n + 1)
2   

  = 
Lt

n → ∞  
12
n   [ ]2n + 2(n + 1)   

  = 
Lt

n → ∞  12 



2 + 2 

(n + 1)
n   

  = 
Lt

n → ∞  12 



2 + 2 



1 + 

1
n   

  = 12 [2 + 2 (1 + 0)]                             as n  →  ∞,    
1
n  → 0 

  = 12 × 4 

 R = 48 square units … (ii) 
(3) By anti derivative method 

   R = ⌡⌠
a

b
 f(x) dx  = ⌡⌠

2

6
  3x dx   =  3 ⌡⌠

2

6
   x dx   = 3 



x2

2
6

2
  

    = 3 



62 − 22

2   = 3 



36 − 4

2    =  3 × 
32
2   

   R = 48 square units                                                      … (iii) 
 From (i), (ii) and (iii) it is clear that the area of the region is 

R = 
Lt

n → ∞ 
b − a

n  ∑f(a + r ∆x) = ⌡⌠
a

b
 f(x) dx ,   if the limit exists 
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Examples 9.132 − 9.134:  

 Evaluate the following definite integrals as limit of sums 

    (132) ⌡⌠
1

2
 (2x + 5) dx   (133) ⌡⌠

1

3

 x
2
 dx    (134)  ⌡⌠

2

5

 (3x
2
 + 4) dx     

 (132)   ⌡⌠
1

2
 (2x + 5) dx  

 Let f(x) = 2x + 5  and [a, b] = [1, 2] 

 ∆x = 
b − a

n   = 
2 − 1

n   = 
1
n  

 ∴ ∆x = 
1
n  

 f(x) = 2x + 5 

 ∴ f(a + r ∆x) = f 





1 + r   
1
n    =  2 



1 + 

r
n   + 5 

  Let us divide the closed interval [1, 2] into n equal sub intervals of 
each length ∆x. 
 By the formula 

 ⌡⌠
a

b
 f(x) dx  = 

Lt
∆x → 0  ∆x ∑

r = 1 

n
  f(a + r ∆x) 

 ⌡⌠
1

2
 (2x + 5)  = 

Lt
n → ∞  



1

n    ∑
r = 1 

n
    



2 



1 + 

r
n  + 5   

  = 
Lt

n → ∞  
1
n   ∑

r = 1 

n
   



7 + 

2
n r   

  = 
Lt

n → ∞  
1
n  . 









∑
r = 1 

n
  7 + 

2
n ∑

r = 1 

n
 r   

  = 
Lt

n → ∞  
1
n  



7n + 

2
n . 

n(n + 1)
2   

  = 
Lt

n → ∞  





7 + 
n + 1

n   
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  = 
Lt

n → ∞  



7 + 



1 + 

1
n   

  = (7 + 1)                        1/n → 0   as n → ∞ 

 ∴ ⌡⌠
1

2
 (2x + 5)  = 8 square units 

Verification :    ⌡⌠
1

2
 (2x + 5) dx  = 








2 





x

2

2  + 5x  
2

1
  

  = (2
2
 − 1

2
) + 5(2 − 1) = (4 − 1) + (5 × 1) 

 ⌡⌠
1

2
 (2x + 5) dx  = 8 square units 

 (133)  ⌡⌠
1

3

 x
2
 dx  

  Let f(x) = x
2
 and [a, b] = [1, 3] 

  Let us divide the closed interval [1, 3] into n equal sub intervals of 
each length ∆x. 

 ∆x = 
3 − 1

n   = 
2
n  

 ∴ ∆x = 
2
n  

 f(x) = x
2 

∴ f(a + r ∆x) = f 



1 + r  

2
n   

  =  



1 + r 

2
n

2
  

 f(a + r ∆x) =









1 + 
4
n r + 

4

n
2 r

2
  

 
Fig. 9.11 

 By the formula 

 ⌡⌠
a

b
 f(x) dx  = 

Lt
∆x → 0  ∆x ∑

r = 1 

n
  f(a + r ∆x) 
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 ⌡⌠
1

3

 x
2
 dx  = 

Lt
n → ∞  

2
n  ∑

r = 1 

n
   





1 + 

4
n r + 

4

n2 r2    

  = 
Lt

n → ∞ 
2
n 





∑1 + 

4
n ∑r + 

4

n2 ∑r2   

  = 
Lt

n → ∞  
2
n  









n + 
4
n . 

n(n + 1)
2  + 

4

n
2 

(n) (n + 1) (2n + 1)
6   

  = 
Lt

n → ∞  2





1 + 
2(n + 1)

n  + 
2
3 



n + 1

n  . 



2n + 1

n   

  = 
Lt

n → ∞  2 





1 + 2 





1 + 
1
n  + 

2
3 





1 + 
1
n  





2 + 
1
n   

  = 2 



1 + 2 + 

2
3 (1) (2)   as  

Lt
n → ∞  → 

1
n  → 0 

  = 2 



3 + 

4
3   

 ∴    ⌡⌠
1

3

 x
2
 dx  = 

26
3   square units. 

 (134)  ⌡⌠
2

5

 (3x
2
 + 4) dx  

  Let f(x) = 3x
2
 + 4  and [a, b] = [2, 5] 

  Let us divide the closed interval [2, 5] into n equal sub intervals of 
each length ∆x. 

 ∆x =  
5 − 2

n   

 ∴ ∆x = 
3
n  

 f(x) = 3x
2
 + 4 

∴ f(a + r ∆x) = f 





2 + r . 
3
n   

  = 3 





2 + 
3r
n

2
 + 4 

By the formula 
 

Fig. 9.12 
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 ⌡⌠
a

b
 f(x) dx  = 

Lt
∆x → 0  ∆x ∑

r = 1 

n
  f(a + r ∆x) 

 ⌡⌠
2

5

 (3x2 + 4)  dx = 
Lt

n→ ∞  
3
n   ∑

r = 1 

n
    



3 



2 + 

3r
n

2
 + 4   

  = 
Lt

n→ ∞  
3
n   ∑

r = 1 

n
   





3 





4 + 

12
n  r + 

9

n2 r2  + 4   

  = 
Lt

n→ ∞  
3
n   ∑

r = 1 

n
   





12 + 

36
n  r + 

27

n2 r2 + 4   

  = 
Lt

n→ ∞  
3
n   ∑

r = 1 

n
   





16 + 

36
n  (r) + 

27

n2 (r2)   

  = 
Lt

n→ ∞  
3
n  







∑16 + 

36
n  ∑r + 

27

n
2 ∑r

2
  

  = 
Lt

n→ ∞  
3
n  









16n + 
36
n  

(n) (n + 1)
2  + 

27

n
2 

n(n + 1) (2n + 1)
6   

  = 
Lt

n→ ∞  3 



16 + 18 

(n + 1)
n  + 

9
2 



n + 1

n  



2n + 1

n   

  = 
Lt

n→ ∞  3 





16 + 18 





1 + 
1
n  + 

9
2 





1 + 
1
n  





2 + 
1
n   

  = 3 



16 + (18 × 1) + 

9
2 (1) (2)   = 3 [43] 

 ⌡⌠
2

5

 (3x2 + 4)  dx = 129 square units. 
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10. PROBABILITY 
“The theory of probability is nothing more than good sense confirmed by 
calculation” 

− Pierre Laplace 
10.1 Introduction: 
 The word probability and chance are quite familiar to everyone. Many a 
time we come across statements like “There is a bright chance for Indian 
cricket team to win the World Cup this time”. 
 “It is possible that our school students may get state ranks in forthcoming 
public examination”. 
 “Probably it may rain today”. 
 The word chance, possible, probably, likely etc. convey some sense of 
uncertainty about the occurrence of some events. Our entire world is filled with 
uncertainty. We make decisions affected by uncertainty virtually every day. 
 In order to think about and measure uncertainty, we turn to a branch of 
mathematics called probability. 
 Before we study the theory of probability let us learn the definition of 
certain terms, which will be frequently used. 
 Experiment: An experiment is defined as a process for which its result is 
well defined. 
 Deterministic experiment: An experiment whose outcomes can be 
predicted with certain, under identical conditions. 
 Random experiment: An experiment whose all possible outcomes are 
known, but it is not possible to predict the outcome. 
 Example: (i) A fair coin is “tossed”    (ii) A die is “rolled” are random 
experiments, since we cannot predict the outcome of the experiment in any trial. 
 A simple event (or elementary event): The most basic possible outcome of 
a random experiment and it cannot be decomposed further. 
 Sample space: The set of all possible outcomes of a random experiment is 
called a sample space. 
 Event: Every non-empty subset of the sample space is an event. 
 The sample space S is called Sure event or Certain event.  The null set in 
S is called Impossible event.  
Example: When a single, regular die is rolled once, the associated sample space 
is  
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 S = {1, 2, 3, 4, 5, 6} 
 {1}, {2}, {3}, {4}, {5}, {6} are the simple events or elementary events. 
 {1}, {2, 3}, {1, 3, 5}, {2, 4, 5, 6} are some of the events. 
Mutually exclusive events (or disjoint events) 
 Two or more events are said to be mutually exclusive if they have no 
simple events (or outcomes) in common. (i.e. They cannot occur 
simultaneously). 
Example: When we roll a die the events {1, 2, 3} and {4, 5, 6} are mutually 
exclusive event 
Exhaustive events: 
 A set of events is said to be exhaustive if no event outside this set occurs 
and atleast one of these events must happen as a result of an experiment. 
Example: 
 When a die is rolled, the set of events {1, 2, 3}, {2, 3, 5}, {5, 6} and {4, 5} 
are exhaustive events. 
Equally likely events: 
 A set of events is said to be equally likely if none of them is expected to 
occur in preference to the other. 
Example:When a coin is tossed, the events {head} and {tail} are equally likely. 
Example: 

 
Trial 

Random 
Experiment 

Total 
Number of 
Outcomes 

Sample space 

(1) Tossing of a 
fair coin 

21 = 2 {H, T} 

(2) Tossing of 
two coins 

22 = 4 {HH, HT, TH, TT} 

(3) Tossing of 
three coins 

23 = 8 {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT} 

(4) Rolling of 
fair die 

61 = 6 {1, 2, 3, 4, 5, 6} 

(5) Rolling of 
two dice 

62 = 36 {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6),  (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), 
(3,1), (3,2), (3,3), (3,4), (3,5), (3,6),    (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), 
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6),   (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)} 

(6) Drawing a 
card from a 
pack of  52 
playing cards 

521 = 52 Heart  ♥ A 2  3  4  5  6  7  8  9  10  J  Q  K  Red in colour 
Diamond ♦ A 2  3  4  5  6  7  8  9  10  J  Q  K  Red in colour 
Spade  ♠ A 2  3  4  5  6  7  8  9  10  J  Q  K  Black in colour 
Club  ♣ A 2  3  4  5  6  7  8  9  10  J  Q  K Black in colour 
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Notations: 

 Let A and B be two events. 

 (i) A ∪ B stands for the occurrence of  A or B or both. 

 (ii) A ∩ B stands for the simultaneous occurrence of A and B. 

 (iii) Ā or A′ or Ac stands for non-occurrence of A  

 (iv) (A ∩ B
−

)  stands for the occurrence of only A.   

Example:  Suppose a fair die is rolled, the sample space is S = {1, 2, 3, 4, 5, 6} 

 Let A = {1, 2}, B = {2, 3}, C = {3, 4}, D = {5, 6}, E = {2, 4, 6} be some 
events. 

 (1) The events A, B, C and D are equally likely events, because they have 
equal chances to occur (but not E). 

 (2) The events A, C, D are mutually exclusive because  

  A ∩ C = C ∩ D = A ∩ D = φ. 

 (3) The events B and C are not mutually exclusive since B ∩ C={3 }≠ φ. 

 (4) The events A, C and D are exhaustive events, since A ∪ C ∪ D = S 

 (5) The events A, B and C are not exhaustive events since the event  
{5, 6} occurs outside the totality of the events A, B and C.  

  (i.e. A ∪ B ∪ C ≠ S). 

10.2 Classical definition of probability: 

 If there are n exhaustive, mutually exclusive and equally likely outcomes 
of an experiment and m of them are favourable to an event A, then the 

mathematical probability of A is defined as the ratio 
m
n       i.e. P(A) = 

m
n   

 In other words,  

 let S be the sample space and A be an event associated with a random 
experiment. 

 Let n(S) and n (A) be the number of elements of S and A respectively. 
Then the probability of event A is defined as   

 P(A) = 
n(A)
n(S)   =  

Number of cases favourable to A
Exhaustive Number of cases in S  

Axioms of probability 

 Given a finite sample space S and an event A in S, we define P(A), the 
probability of A, satisfies the following three conditions. 
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 (1) O ≤ P(A) ≤ 1 
 (2) P(S) = 1 
 (3) If A and B are mutually exclusive events, P(A ∪ B) = P(A) + P(B) 

Note: 
 If A1, A2 …… An are mutually exclusively events in a sample space S, 
then  
 P(A1 ∪ A2 ∪ … ∪ An) = P(A1) + P(A2) + P(A3) + … + P(An) 
Example 10.1: 
 If an experiment has exactly the three possible mutually exclusive 
outcomes A, B and C, check in each case whether the assignment of probability 
is permissible. 

 (i) P(A) = 
1
3   , P(B) = 

1
3  , P(C) = 

1
3  

 (ii) P(A) = 
1
4  , P(B) = 

3
4  , P(C) = 

1
4  

 (iii) P(A) = 0.5 , P(B) = 0.6 , P(C) = − 0.1 
 (iv) P(A) = 0.23 , P(B) = 0.67 , P(C) = 0.1 
 (v) P(A) = 0.51 , P(B) = 0.29 ,  P(C) = 0.1 
Solution: 
 (i) The values of P(A), P(B) and P(C) are all lying in the interval from [0, 1] 

  Also their sum P(A) + P(B) + P(C) = 
1
3  + 

1
3  + 

1
3  = 1 

  ∴ The assignment of probability is permissible. 
 (ii) Given that O ≤ P(A), P(B), P(C) ≤ 1 

  But the sum P(A) + P(B) + P(C) = 
1
4  + 

3
4  + 

1
4  = 

5
4  > 1 

  ∴ The assignment is not permissible. 
 (iii) Since P(C) = − 0.1, is negative, the assignment is not permissible. 
 (iv) The assignment is permissible because 0 ≤ P(A), P(B), P(C) ≤ 1 and  
  their sum P(A) + P(B) + P(C) = 0.23 + 0.67 + 0.1 = 1 
 (v) Eventhough 0 ≤ P(A), P(B), P(C) ≤ 1, 
  their sum P(A) + P(B) + P(C) = 0.51 + 0.29 + 0.1 = 0.9 ≠ 1. 
  Therefore, the assignment is not permissible 
Note: 
 In the above examples each experiment has exactly three possible 
outcomes. Therefore they must be exhaustive events (i.e. totality must be 
sample space) and the sum of probabilities is equal to 1. 
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Examples 10.2:  Two coins are tossed simultaneously, what is the probability of 
getting 
  (i) exactly one head (ii) atleast one head  (iii) atmost one head. 
Solution: 
 The sample space is S = {HH, HT, TH, TT},  n(S) = 4 
 Let A be the event of getting one head, B be the event of getting atleast one 
head and C be the event of getting atmost one head. 
 ∴ A = {HT, TH}, n(A) = 2    
      B = {HT, TH, HH}, n(B) = 3    
      C = {HT, TH, TT}, n(C) = 3 

 (i) P(A) = 
n(A)
n(S)  = 

2
4  = 

1
2     (ii) P(B) = 

n(B)
n(S)  = 

3
4     (iii) P(C) = 

n(C)
n(S)  = 

3
4  

Example 10.3: When a pair of balanced dice is rolled, what are the probabilities 
of getting  the sum (i) 7    (ii) 7 or 11    (iii) 11 or 12 
Solution: 

 The sample space S = {(1,1), (1,2) … (6,6)} 

 Number of possible outcomes = 62 = 36 = n(S) 
 Let A be the event of getting sum 7, B be the event of getting the sum 11 
and C be the event of getting sum 12 

 ∴ A = {(1,6), (2,5), (3,4), (4,3), (5,2),(6,1)},  n(A) = 6. 

  B = {(5,6), (6,5)},  n(B) = 2 

  C = {(6, 6)},  n(C) =1 

 (i) P(getting sum 7) = P(A) = 
n(A)
n(S)  = 

6
36  = 

1
6  

 (ii) P (7 or 11) = P(A or B) = P(A ∪ B) 
   = P(A) + P(B   (‡A and B are mutually exclusive i.e. A∩B=φ) 

   = 
6

36  + 
2

36  = 
8
36  = 

2
9  

  P(7 or 11) = 
2
9  

 (iii) P (11 or 12) = P(B or C)  =  P(B ∪ C) 
  = P(B) + P(C)        (‡ B and C are mutually exclusive) 

   = 
2

36  + 
1

36  = 
3

36   =  
1
12  

  P(11 or 12) = 
1

12  
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Example 10.4: Three letters are written to three different persons and addresses 
on three envelopes are also written. Without looking at the addresses, what is 
the probability that (i) all the letters go into right envelopes, (ii) none of the 
letters goes into right envelopes? 

Solution: 

 Let A, B and C denote the envelopes and 1, 2 and 3 denote the 
corresponding letters. 

 The different combination of letters put into the envelopes are shown 
below: 

                            Outcomes 

  c1 c2 c3 c4 c5 c6 

 A 1 1 2 2 3 3 
Envelopes B 2 3 1 3 1 2 
 C 3 2 3 1 2 1 

 Let X be the event of putting the letters go into right envelopes. 

 Y be the event of putting none of the letters go into right envelope. 

 S = { }c1, c2, c3, c4, c5, c6 , n(S) = 6   

 X = {c1},    n(X) = 1           Y = {c4, c5},      n(Y) = 2 

   ∴ P(X) = 
1
6    

   P(Y) = 
2
6  = 

1
3 

Example 10.5:  A cricket club has 15 members, of whom only 5 can bowl. 
What is the probability that in a team of 11 members atleast 3 bowlers are 
selected? 
 Let A, B and C be the three possible events of selection. The number of 
combinations are shown below. 

Combination of  
11 players 

Number of ways the 
combination formed 

 
Event 

5 Bowlers 10 Others 5 Bowlers 10 Others 

Total number of ways 
the selection can be 

done 

A 3 8 5c3 10c8 5c3 × 10c8 

B 4 7 5c4 10c7 5c4 × 10c7 

C 5 6 5c5 10c6 5c5 × 10c6 
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Solution: 
 Total number of exhaustive cases = Combination of 11 players from 15 
members 
 n(S) = 15c11 

 P (atleast 3 bowlers) = P[A or B or C] 

  = P[A∪ B ∪ C] 

  = P(A) + P(B) + P(C)       



Q A, B and C are

mutually exclusive events   

  = 
5C3 × 10C8

15C11
  + 

5C4 × 10C7
15C11

  + 
5C5 × 10C6

15C11
      

  = 
5C2 × 10C2

15C4
 + 

5C1 × 10C3
15C4

 +
5C0 × 10C4

15C4
   (QnCr= nCn−r) 

  = 
450

1365  + 
600

1365  + 
210
1365  = 

1260
1365  

 P (atleast 3 bowlers) = 
12
13  

EXERCISE 10.1 
 (1) An experiment has the four possible mutually exclusive outcomes  

A, B, C and D. Check whether the following assignments of probability 
are permissible. 

  (i)   P(A) = 0.37, P(B) = 0.17, P(C) = 0.14, P(D) = 0.32 
  (ii)  P(A) = 0.30, P(B) = 0.28, P(C) = 0.26, P(D) = 0.18 
  (iii) P(A) = 0.32, P(B) = 0.28, P(C) = − 0.06, P(D) = 0.46 
  (iv)  P(A) = 1/2,  P(B) = 1/4,  P(C) = 1/8,  P(D) = 1/16 
  (v) P(A) = 1/3,  P(B) = 1/6,  P(C) = 2/9,  P(D) = 5/18 
 (2) In a single throw of two dice, find the probability of obtaining (i) sum of 

less than 5  (ii) a sum of greater than 10, (iii) a sum of 9 or 11. 
 (3) Three coins are tossed once. Find the probability of getting (i) exactly 

two heads (ii) atleast two heads  (iii) atmost two heads. 
 (4) A single card is drawn from a pack of 52 cards. What is the probability 

that 
  (i) the card is a jack or king                  (ii) the card will be 5 or smaller  
  (iii) the card is either queen or 7. 
 (5) A bag contains 5 white and 7 black balls. 3 balls are drawn at random. 

Find the probability that (i) all are white  (ii) one white and 2 black. 
 (6) In a box containing 10 bulbs, 2 are defective. What is the probability that 

among 5 bulbs chosen at random, none is defective. 
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 (7) 4 mangoes and 3 apples are in a box. If two fruits are chosen at random, 
the probability that (i) one is a mango and the other is an apple (ii) both 
are of the same variety. 

 (8) Out of 10 outstanding students in a school there are 6 girls and 4 boys.  
A team of 4 students is selected at random for a quiz programme. Find 
the probability that there are atleast 2 girls. 

 (9) What is the chance that (i) non-leap year (ii) leap year should have  
fifty three Sundays? 

 (10) An integer is chosen at random from the first fifty positive  
integers. What is the probability that the integer chosen is a prime or 
multiple of 4. 

10.3 Some basic theorems on probability 
 In the development of probability theory, all the results are derived directly 
or indirectly using only the axioms of probability. Here we study some of the 
important theorems on probability. 

Theorem 10.1:  The probability of the impossible event is zero    i.e.  P(φ) = 0   

Proof:  
 Impossible event contains no sample point. 
   ∴ S ∪ φ = S 
   P(S ∪ φ) = P(S) 
   P(S) + P(φ) = P(S)      (Q S and φ are mutually 
exclusive) 
   ∴  P(φ) = 0 
Theorem 10.2: 

 If Ā is the complementary event of A,  P(Ā) = 1 − P(A)   

Proof: 
Let S be a sample space, we have  

 A ∪ A
−

  = S 

 P(A ∪ A
−

 ) = P(S) 

 P(A) + P(A
−

 ) = 1  

(Q A and A
−

  are mutually exclusive 
and P(S) = 1) 

 ∴ P(A) = 1 − P(A
−

 ) 

 

 
Fig. 10. 1 
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Theorem 10.3:  If A and B are any two events and B
−

  is the complimentary 
event of B 

P(A ∩ B
−

) = P(A) − P(A ∩ B)  
Proof:  A is the union of two mutually 

exclusive events (A ∩ B
−

 ) and (A ∩ B)  
(see fig 10.2) 

 i.e.  A = (A ∩ B
−

 ) ∪ (A ∩ B) 
 ∴  P(A) =

P[(A ∩ B
−

) ∪ (A ∩ B)]  

 (Q(A ∩ B
−

 ) and (A ∩ B) are 
mutually exclusive) 

 
Fig. 10. 2 

   P(A) = P(A ∩ B
−

 ) + P(A ∩ B) 

 rearranging, we get   P(A ∩ B
−

 )  = P(A) − P(A ∩ B) 

 Similarly   P (A
−

  ∩ B) = P(B) − P(A ∩ B) 
Theorem 10.4: (Additive theorem on probability) If A and B are any two 
events    

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)   

Proof:  We have 

 A ∪ B = (A ∩ B
−

 ) ∪ B    (See fig. 10.3) 

 P(A ∪ B) = P[(A ∩ B
−

) ∪ B]  

(Q A∩ B
−

  and B are  mutually  
exclusive event) 

  = P(A ∩ B
−

 ) + P(B)  
Fig. 10. 3 

  = [P(A) − P(A ∩ B)] + P(B)         (by theorem 3) 

 ∴ P(A∪ B) = P(A) + P(B) − P(A ∩ B) 
Note: The above theorem can be extended to any 3 events. 

 P(A∪B∪C) = {P(A)+P(B)+P(C)}  − {P(A ∩ B)+P(B ∩ C)+P(C ∩ A)} 

   + P(A∩B∩C) 
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Example 10.6:  
 Given that P(A) = 0.35, P(B) = 0.73 and P(A ∩ B) = 0.14, find 

 (i)P(A∪B)    (ii) P(A
−

 ∩B)    (iii) P(A∩B
−

 )     (iv) P(A
−

 ∪B
−

 )   (v) P(A∪ B
−

 ) 
Solution: 
 (i)  P(A ∪ B) = P(A) + P(B) − P(A ∩ B) 

    = 0.35 + 0.73 − 0.14 = 0.94 

   P(A ∪ B) = 0.94 

 (ii)  P(A
−

  ∩ B) = P(B) − P(A ∩ B) 

    = 0.73 − 0.14 = 0.59 

   P(A
−

  ∩ B) = 0.59 

 (iii) P(A ∩ B
−

 ) = P(A) − P(A ∩ B) 

    = 0.35 − 0.14 = 0.21 

   P(A ∩ B
−

 ) = 0.21 

 (iv) P(A
−

  ∪ B
−

 ) = P(A ∩ B
 

 ) = 1 − P(A ∩ B) = 1 − 0.14 

   P(A
−

  ∪ B
−

 ) = 0.86 

 (v)  P(A∪ B


 ) = 1 − P(A ∪ B) = 1 − 0.94 = 0.06        (by (1)) 

   P(A∪ B


 ) = 0.06 
Example 10.7: A card is drawn at random from a well-shuffled deck of 52 
cards. Find the probability of drawing (i) a king  or  a queen  (ii) a king  or  a 
spade   (iii) a king  or  a black card 
Solution: 
   Total number of cases = 52 
   i.e. n(S) = 52 
 Let A be the event of drawing a king ;        B be the event of drawing a 
queen 
  C be the event of drawing a  spade;      D be the event of drawing a 
black card 

 ∴ n(A) = 4,          n(B) = 4,            n (C) = 13,          n(D) = 26 

 also we have       n(A ∩ C) = 1,         n(A ∩ D) = 2 

 (i) P [king or queen] = [A or B] = P(A ∪ B) 
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   = P(A) + P(B)               



QA and B are mutually

exclusive i.e. A ∩ B = φ   

   = 
n(A)
n(S)  + 

n(B)
n(S)  

   = 
4

52  + 
4
52   =  

2
13  

 (ii) P[king or spade] = P(A or C) = P(A ∪ C) 

   = P(A)+P(C)−P(A∩C)   





QA and C are not mutually

exclusive   

   = 
4

52  + 
13
52  − 

1
52  = 

16
52  

   = 
4

13  

 (iii)P[king or black card] = P(A or D) = P(A ∪ D) 

   = P(A) + P(D) − P(A ∩ D)     



Q A and D are not

mutually exclusive   

   = 
4

52  + 
26
52  − 

2
52  = 

28
52  

   = 
7

13  

Example 10.8:   The probability that a girl will get an admission in IIT is 0.16, 
the probability that she will get an admission in Government Medical College is 
0.24, and the probability that she will get both is 0.11. Find the probability that  
(i) She will get atleast one of the two seats     (ii) She will get only one of the 
two seats 
Solution: 
 Let I be the event of getting admission in IIT and M be the event of getting 
admission in Government Medical College. 
 ∴ P(I) = 0.16, P(M) = 0.24 and P(I ∩ M) = 0.11 
 (i) P(atleast one of the two seats) 

    = P(I or M) = P(I ∪ M) 

    = P(I) + P(M) − P(I ∩ M) 

    = 0.16 + 0.24 − 0.11 
    = 0.29 
 (ii) P(only one of two seats) = P[only I or only M]. 
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= P[(I ∩ M
−

) ∪ ( I
−

 ∩ M)] 

= P(I ∩ M
−

 ) + P(I
−

  ∩ M) 

= {P(I)−P(I∩M)}+{P(M)−P(I∩M)}  

= {0.16 − 0.11} + {0.24 − 0.11} 
= 0.05 + 0.13 
= 0.18 

 
Fig. 10. 4 

EXERCISE 10.2 
 (1) A and B are two events associated with random experiment for which 

P(A) = 0.36, P(A or B) = 0.90 and P(A and B) = 0.25. Find (i) P(B),    

(ii) P(A
−

 ∩B
−

 ) 

 (2) If A and B are mutually exclusive events P(A) = 0.28, P(B) = 0.44, find  

  (i) P(A
−

 )   (ii) P(A ∪ B)   (iii) (A ∩ B
−

 )      (iv) P(A
−

  ∩ B
−

 ) 

 (3) Given P(A) = 0.5, P(B) = 0.6 and P(A ∩ B) = 0.24.  

  Find (i) P(A ∪ B)   (ii) P(A
−

  ∩ B) (iii) P(A ∩ B
−

 )    

  (iv) P(A
−

  ∪ B
−

 ) (v) P(A
−

  ∩ B
−

 ) 

 (4) A die is thrown twice. Let A be the event. “First die shows 4’ and B be 
the event, ‘second die shows 4’. Find P(A ∪ B). 

 (5) The probability of an event A occurring is 0.5 and B occurring is 0.3. If 
A and B are mutually exclusive events, then find the probability of 
neither A nor B occurring 

 (6) A card is drawn at random from a deck of 52 cards. What is the 
probability that the drawn card is (i)  a queen or club card  (ii) a queen or 
a black card 

 (7) The probability that a new ship will get an award for its design is 0.25, 
the probability that it will get an award for the efficient use of materials is 
0.35, and that it will get both awards is 0.15. What is the probability, that 

  (i) it will get atleast one of the two awards  (ii) it will get only one of the 
awards 
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10.4 Conditional probability: 
 Consider the following example to understand the concept of conditional 
probability. 
 Suppose a fair die is rolled once. The sample space is S = {1, 2, 3, 4, 5, 6}. 
 Now we ask two questions: 
 Q 1: What is the probability that getting an even number which is  
less than 4? 
 Q2 : If the die shows an even number, then what is the probability that it is 
less than 4? 
Case 1: 
 The event of getting an even number which is less than 4 is {2} 

 ∴ P1 = 
n({2})

n({1, 2, 3, 4, 5, 6})
  = 

1
6  

Case 2: 
 Here first we restrict our sample space S to a subset containing only even 
number i.e. to {2, 4, 6}. Then our interest is to find the probability of the event 
getting a number less than 4 i.e. to {2}. 

 ∴ P2 = 
n ({2})

n({2, 4, 6})  = 
1
3  

 In the above two cases the favourable events are the same, but the number 
of exhaustive outcomes are different. In case 2, we observe that we have first 
imposed a condition on sample space, then asked to find the probability. This 
type of probability is called conditional probability. 
Definition: (Conditional probability) : The conditional probability of an event 
B, assuming that the event A has already happened; is denoted by  
P (B/A)  and defined as  

  P(B/A) = 
P(A ∩ B)

P(A)     provided P(A) ≠ 0 

 Similarly  

  P(A/B) = 
P(A ∩ B)

P(B)       provided P(B) ≠ 0   

Example 10.9:   If P(A) = 0.4    P(B) = 0.5    P(A ∩ B) = 0.25    

 Find   (i) P(A/B) (ii) P(B/A)  (iii) P(A
−

/B)  

  (iv) P(B/A
−

)   (v) P(A/B
−

)  (vi) P(B
−

/A)  
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Solution: 

 (i) P(A/B) = 
P(A ∩ B)

P(B)   = 
0.25
0.50  = 0.5 

 (ii) P(B/A)  = 
P(A ∩ B)

P(A)   = 
0.25
0.40  = 0.625 

 (iii) P(A
−

/B)  = 
P(A
−

 ∩ B)
P(B)   = 

P(B) − P(A ∩ B)
P(B)   = 

0.5 − 0.25
0.5   = 0.5 

 (iv) P(B/A
−

)  = 
P(B ∩ A

−
)

P(A
−

)
  = 

P(B) − P(A ∩ B)
1 − P(A)

   =  
0.5 − 0.25

1 − 0.4
   =  0.4167 

 (v) P(A/B
−

)  = 
P(A ∩ B

−
)

P(B
−

)
  = 

P(A) − P(A ∩ B)
1 − P(B)

   =  
0.4 − 0.25

1 − 0.5
   =  0.3 

 (vi) P(B
−

/A)  = 
P(A ∩ B

−
)

P(A)   = 
P(A) − P(A ∩ B)

P(A)    =  
0.4 − 0.25

0.4    =  0.375 

Theorem 10.6 : (Multiplication theorem on probability) 
 The probability of the simultaneous happening of two events A and B is 
given by 

P(A ∩ B) = P(A) . P (B/A) 
or   P(A ∩ B) = P(B) . P(A/B) 

Note:  Rewriting the definition of conditional probability, we get the above 
‘multiplication theorem on probability’. 

Independent Events: 

 Events are said to be independent if the occurrence or non occurrence of 
any one of the event does not affect the probability of occurrence or  
non-occurrence of the other events. 

Definition: Two events A and B are independent if   P(A ∩ B) = P(A) . P(B)   

 This definition is exactly equivalent to    

P(A/B) = P(A),    P(B/A)  = P(B) 

Note: The events A1, A2 …… An are mutually independent if  

  P(A1 ∩ A2 ∩ A3 …… An) = P(A1). P(A2) … (An) 

Corollary 1:  If A and B are independent then A and B
−

  are also independent. 
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Proof: 
 Since A and B are independent 

 P(A ∩ B) = P(A) . (PB) … (1) 

    To prove A and B
−

  are independent, we have to prove 

 P(A ∩ B
−

 ) = P(A) . P(B
−

 ) 
    We know 

 P(A ∩ B
−

 ) = P(A) − P(A ∩ B) 

  = P(A) − P(A) . P(B)     (by (1)) 

  = P(A) [1 − P(B)] 

 P(A ∩ B
−

 ) = P(A) . P(B
−

 ) 

 ∴ A and B
−

  are independent. 
 Similarly, the following corollary can easily be proved. 

Corollary 2: If A and B are independent, then A
−

  and B
−

  are also independent. 

Note: If A1, A2… An are mutually independent then  A
−

1, A
−

2, … A
−

n are 
mutually independent. 
Example 10.10:  Two cards are drawn from a pack of 52 cards in succession. 
Find the probability that both are kings when 
 (i) The first drawn card is replaced       (ii) The card is not replaced 
Solution: 
 Let A be the event of drawing a king in the first draw. 
       B be the event of drawing a king in the second draw. 
Case i: Card is replaced: 
   n(A) = 4  (king) 
   n(B) = 4  (king) 
   and n(S) = 52 (Total) 
 Clearly the event A will not affect the probability of the occurrence of 
event B and therefore A and B are independent. 
   P(A ∩ B) = P(A) . P(B) 

    = 
4

52   ×  
4
52  

   P(A ∩ B) = 
1

169  
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Case ii: (Card is not replaced) 

 In the first draw, there are 4 kings and 52 cards in total. Since the king, 
drawn at the first draw is not replaced, in the second draw there are only  
3 kings and 51 cards in total. Therefore the first event A affects the probability 
of the occurrence of the second event B. 

 ∴ A and B are not independent they are dependent events. 

   ∴ P(A ∩ B) = P(A) . P(B/A)  

   P(A)  =  
4

52       ;        P(B/A)  = 
3
51  

    P(A ∩ B) = P(A) . P(B/A)  = 
4

52  . 
3
51  

    P(A ∩ B) = 
1

221  

Example 10.11: A coin is tossed twice. Event E and F are defined as follows : E 
= Head on first toss,  F = head on second toss.   

 Find (i) P(E ∩ F) (ii) P(E ∪ F)     (iii) P(E/F)  

         (iv) P(E
−

/F)  (v) Are the events E and F independent ? 

Solution:   The sample space is    

   S = {(H,H), (H, T), (T, H), (T, T)} 

   and   E = {(H, H), (H T)} 

   F = {(H, H), (T, H)} 

   ∴ E ∩ F = {(H, H)} 

 (i)  P(E  ∩ F) = 
n (E ∩ F)

n(S)    =  
1
4  

 (ii)  P(E ∪ F) = P(E) + P(F) − P(E ∩ F)       

    = 
2
4  + 

2
4  − 

1
4   =  

3
4       

   P(E ∪ F) = 
3
4  

 (iii)  P(E/F) = 
P(E ∩ F)

P(F)    =  
1/4
2/4   =  

1
2  

 (iv)  P(E
−

/F)  = 
P (E

−
 ∩ F)

P(F)    =  
P(F) − P(E ∩ F)

P(F)   
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    = 
2/4 − 1/4

2/4     =   
1
2  

   P(E
−

/F)  = 
1
2  

 (v)  P(E) = 
2
4   =  

1
2   ,   P(F)  =  

2
4   =  

1
2  

   P(E ∩ F) = 
1
4  

   ∴  P(E) P(F) = 
1
2  . 

1
2   =  

1
4  

 Since  P(E ∩ F) = P(E) . P(F),    E and F are independent. 
 In the above example the events E and F are not mutually exclusive but 
they are independent. 
Important Note: 
 Independence is a property of probability but mutually exclusion is a 
set-theoretic property. Therefore independent  events can be identified by their 
probabilities and mutually exclusive events can be identified by their events. 

Theorem 10.7: Suppose A and B are two events, such that P(A) ≠ 0, P(B) ≠ 0 
 (i) If A and B are mutually exclusive, they cannot be independent. 
 (ii) If A and B are independent they cannot be mutually exclusive. 

 (Proof not required) 

Example 10.12: If A and B are two independent events such that P(A) = 0.5 
and P(A ∪ B) = 0.8. Find P(B). 

Solution: 

 We have  P(A ∪ B) = P(A) + P(B) − P(A ∩ B) 

   P(A ∪ B) = p(A)+P(B)−P(A).P(B) (‡ A and B are independent) 

  i.e. 0.8 = 0.5 + P(B) − (0.5) P(B) 

   0.8 − 0.5 = (1 − 0.5) P(B) 

   ∴ P(B) = 
0.3
0.5   =  0.6 

   P(B) = 0.6 

Example 10.13:  A problem is given to 3 students X, Y and Z whose chances of 

solving it are 
1
2 , 

1
3  and 

2
5 respectively. What is the probability that the problem 

is solved? 
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Solution: 

 Let A, B and C be the events of solving the problem by X, Y and Z 
respectively. 

 ∴  P(A) = 
1
2   ;  P(A

−
 ) = 1 − P(A) = 1 − 

1
2  = 

1
2  

 P(B) = 
1
3   ;  P(B

−
 )  =  1 − P(B) = 1 − 

1
3   =  

2
3  

 P(C) = 
2
5   ;  P(C

−
 ) = 1 − P(C) = 1 − 

2
5   =  

3
5  

 P[problem is solved] = P[the problem is solved by atleast one of them] 

  = P(A ∪ B ∪ C)  =  1 − P(A ∪ B ∪ C


 ) 

  = 1 − P(A
−

  ∩ B
−

  ∩ C
−

 )  (By De Morgan’s Law) 

  = 1 − P(A
−

 ) . P(B
−

 ) . P(C
−

 )  

(‡ A, B, C are independent A
−

 , B
−

 , C
−

  are also independent) 

  = 1 − 
1
2  . 

2
3  . 

3
5   =  1 −  

1
5  

 P[problem is solved] = 
4
5  

Examples 10.14 : X speaks truth in 95 percent of cases, and Y in 90 percent of 
cases. In what percentage of cases are they likely to contradict each other in 
stating the same fact. 

Solution:  Let A be the event of X speaks the truth, B be the event of Y speaks 
the truth. 

 ∴ A
−

  and B
−

  are the events of not speaking the truth by X and Y 
respectively. 

 Let C be the event that they will contradict each other. 

 Given that 

 P(A) = 0.95     ∴ P(A
−

 ) = 1 − P(A) = 0.05 

 P(B) = 0.90    ∴  P(B
−

 ) = 1 − P(B) = 0.10 



 187

C = (A speaks truth and B does not speak truth  
or 

   B Speaks truth and A does not speak 
truth) 

 C = [(A ∩ B
−

) ∪ (A
−

 ∩ B)]   

 ∴ P(C) = P [(A ∩ B
−

) ∪ (A
−

 ∩ B)]   

 
Fig. 10. 5 

  = P(A ∩ B
−

 ) + P(A
−

  ∩ B)   

(Q A
−

  ∩ B and A ∩ B
−

  are mutually exclusive) 

  = P(A) . P(B
−

 ) + P(A
−

 ) . P(B)       (Q A, B
−

  are independent event also  

         A
−

 , B are independent events) 
  = (0.95) × (0.10) + (0.05) (0.90) 
  = 0.095 + 0.045 
  = 0.1400 
 P(C) =14% 

EXERCISE 10.3 
 (1) Define independent and mutually exclusive events. Can two events be 

mutually exclusive and independent simultaneously. 

 (2) If A and B are independent, prove that A
−

  and B
−

  are independent. 
 (3) If P(A) = 0.4, P(B) = 0.7 and P(B / A) = 0.5    find P(A / B) and  

P(A ∪ B). 
 (4) If for two events A and B, P(A) = 2/5, P(B) =3/4 and A ∪ B = (sample 

space), find the conditional probability P(A / B). 
 (5) If A and B are two independent events such that P(A ∪ B) = 0.6,  

P(A) = 0.2  find P(B) 
 (6) If A and B are two events such that   P(A ∪ B) = 5/6,     P(A ∩ B) = 1/3,  

  P(B
−

 ) = 1/2   show that A and B are independent. 
 (7) if the events A and B are independent and P(A) = 0.25, P(B) = 0.48,  

  find (i) P(A ∩ B) (ii) P(B / A) (iii) P(A
−

  ∩ B
−

 ) 
 (8) Given P(A) = 0.50, P(B) = 0.40 and P(A ∩ B) = 0.20.  

  Verify that  (i) P(A / B) = P(A),      (ii) P(A / B
−

 ) = P(A)    

                    (iii) P(B / A) = P(B)      (iv) P(B / A
−

 ) = P(B) 
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 (9) P(A) = 0.3, P(B) = 0.6 and P(A ∩ B) = 0.25  

  Find (i) P(A∪B)  (ii) P(A/B)  (iii) P(B/ A
−

 )   (iv) P(A
−

  / B)  (v) P(A
−

  / B
−

 ) 
 (10) Given P(A) = 0.45 and P(A ∪ B) = 0.75.  
  Find P(B) if (i) A and B are mutually exclusive  (ii) A and B are 

independent events  (iii) P(A / B) = 0.5       (iv) P(B / A) = 0.5 
 (11) Two cards are drawn one by one at random from a deck of 52 playing 

cards. What is the probability of getting two jacks if (i) the first card is 
replaced before the second is drawn (ii) the first cards is not replaced 
before the second card is drawn. 

 (12) If a card is drawn from a deck of 52 playing cards, what is the probability 
of drawing (i) a red king (ii) a red ace or a black queen. 

 (13) One bag contains 5 white and 3 black balls. Another bag contains 4 white 
and 6 black balls. If one ball is drawn from each bag, find the probability 
that (i) both are white (ii) both are black (iii) one white and one black. 

 (14) A husband and wife appear in an interview for two vacancies in the same 
post. The probability of husbands’ selection is 1/6 and that of wife’s 
selection is 1/5. What is the probability that 

  (i) both of them will be selected    (ii) only one of them will be selected 
  (iii) none of them will be selected 
 (15) A problem in Mathematics is given to three students whose chances of 

solving it are 1/2, 1/3 and 1/4  (i) What is the probability that the problem 
is solved (ii) what is the probability that exactly one of them will solve it. 

 (16) A year is selected at random. What is the probability that (i) it contains 
53 Sundays (ii) it is a leap year contains 53 Sundays 

 (17) For a student the probability of getting admission in IIT is 60% and 
probability of getting admission in Anna University is 75%. Find the 
probability that (i) getting admission in only one of these (ii) getting 
admission in atleast one of these. 

 (18) A can hit a target 4 times in 5 shots,  B  3 times in 4 shots,  C  2 times in 
3 shots, they fire a volley. What is the chance that the target is damaged 
by exactly 2 hits? 

 (19) Two thirds of students in a class are boys and rest girls. It is known that 
the probability of a girl getting a first class is 0.75 and that of a boys is 
0.70. Find the probability that a student chosen at random will get first 
class marks. 

 (20) A speaks truth in 80% cases and B in 75% cases. In what percentage of 
cases are they likely to contradict each other in stating the same fact? 
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10.5 Total probability of an event 
 

 If A1, A2 … An are mutually exclusive 

and exhaustive events and B is any event in 
S then 

 P(B) = P(A1) . P(B/A1)   

+P(A2) . P(B/A2)  … + P(An) P(B/An)  

 P(B) is called the total probability of 
event B 

 
Fig. 10.7 

Example 10.15:  An urn contains 10 white and 5 black balls. While another urn 
contains 3 white and 7 black balls. One urn is chosen at random and two balls 
are drawn from it. Find the probability that both balls are white. 

Solution: 

 Let A1 be the event of selecting urn-I and 
A2 be the event of selecting urn-II. Let B be 

the event of selecting 2 white balls. 

 We have to find the total probability of 
event B  i.e. P(B). Clearly A1 and A2 are 

mutually exclusive and exhaustive events. 

 
Fig. 10.8 

  P(B) = P(A1) . P(B/A1)  

+ P(A2) . P(B/A2)  … (1) 

  P(A1) = 
1
2   ; P(B/A1) = 

10C2
15C2

    

  P(A2) = 
1
2   ;  P(B/A2)  = 

3C2
10C2

   
Fig. 10.9 

Substituting in (1),  P(B) = P(A1) . P(B/A1) + P(A2) . P(B/A2) 

    = 


1

2   




10C2

15C2
  + 



1

2   




3C2

10C2
  = 

1
2  



3

7 + 
1

15   

   P(B) = 
26
105  
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Example 10.16: A factory has two machines I and II. Machine I produces 30% 
of items of the output and Machine II produces 70% of the items. Further 3% of 
items produced by Machine I are defective and 4% produced by Machine II are 
defective. If an item is drawn at random, find the probability that it is a 
defective item. 
Solution: 
 Let A1 be the event that the items are produced by Machine I, A2 be the 
event that items are produced by Machine II. Let B be the event of drawing a 
defective item. 

 ∴ P(A1) = 
30

100   ;  P(B/A1) = 
3

100  

 P(A2) = 
70

100   ; P(B/A2)  = 
4

100  

 We are asked to find the total 
probability of event B. 
 Since A1, A2 are mutually exclusive 
and exhaustive. 
 We have  P(B) = P(A1) P(B/A1)   

+ P(A2) P(B/A2)   

 
Fig. 10.10 

  = 



30

100   



3

100   + 



70

100   . 



4

100   

  = 
90 + 280

10000   

   P(B) = 0.0370 

Theorem 10.8: (Bayes’ Theorem): 
 
 

 Suppose A1, A2, … An are n 
mutually exclusive and exhaustive 
events such that  
P(Ai) > 0 for i = 1, 2 … n. Let B 
be any event with P(B) > 0 then 

 
Fig. 10.11 
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P(Ai/B) =  
P(Ai) P(B/Ai)

P(A1) P(B/A1) +P(A2) P(B/A2)+…+ P(An) P(B/An)  

 (Proof not required) 
 The above formula gives the relationship between P(Ai/B) and P(B/ Ai) 

Example 10.17:  A factory has two machines I and II. Machine I and II produce 
30% and 70% of items respectively. Further 3% of items produced by Machine 
I are defective and 4% of items produced by Machine II are defective. An item 
is drawn at random. If the drawn item is defective, find the probability that it 
was produced by Machine II. (See the previous example, compare the 
questions). 
Solution: 
 Let A1 and A2 be the events that the items produced by Machine I & II 
respectively. 
 Let B be the event of drawing a 
defective item. 

 ∴P(A1) = 
30

100   ; P(B/ A1) = 
3

100   

 P(A2) = 
70

100   ; P(B/ A2)  = 
4

100  

 Now we are asked to find the 
conditional probability  P(A2/ B)  

Fig. 10.12 
 Since A1, A2 are mutually exclusive and exhaustive events by Bayes’ 
theorem 

  P(A2/ B) = 
P(A2) . P(B/ A2)

P(A1) . P(B/ A1)  + P(A2) . P(B/ A2) 

   = 




70

100  × 



4

100

 



30

100  



3

100  + 



70

100  



4

100

 = 
0.0280
0.0370  = 

28
37  

  P(A2/ B) = 
28
37  

Example 10.18:  The chances of X, Y and Z becoming managers of a certain 
company are 4 : 2 : 3. The probabilities that bonus scheme will be introduced if 
X, Y and Z become managers are 0.3, 0.5 and 0.4 respectively. If the bonus 
scheme has been introduced, what is the probability that Z is appointed as the 
manager. 
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Solution: 
 Let A1, A2 and A3 be the events of X, 
Y and Z becoming managers of the 
company respectively. Let B be the event 
that the bonus scheme will be introduced.  

Fig. 10.13 

   ∴ P(A1) = 
4
9   ; P(B/ A1) =  0.3 

   P(A2) = 
2
9   ; P(B/ A2)  = 0.5 

   P(A3) = 
3
9   ; P(B/ A3)  = 0.4 

 We have to find the conditional probability  P(A3/ B) 
 A1, A2 and A3 are mutually exclusive and exhaustive events. Applying 
Bayes’ formula 

 P(A3/ B) = 
P(A3) . P(B/ A3)

P(A1) . P(B/ A1) + P(A2) . P(B/ A2)  + P(A3) . P(B/ A3) 

  = 



3

9  (0.4)

 


4

9  (0.3) + 


2

9  (0.5) + 


3

9  (0.4)
 = 

12
34  

 P(A3/ B) = 
6

17  

Example 10.19: A consulting firm rents car from three agencies such that 20% 
from agency X, 30% from agency Y and 50% from agency Z. If 90% of the cars 
from X, 80% of cars from Y and 95% of the cars from Z are in good conditions 
(1) what is the probability that the firm will get a car in good condition? Also 
(ii)  If a car is in good condition, what is probability that it has came from 
agency Y? 
Solution: 
 Let A1, A2, A3 be the events that the cars 
are rented from the agencies X, Y and Z 
respectively. 
 Let G be the event of getting a car in good 
condition. 

 
Fig. 10.14 
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   ∴ P(A1) = 0.20  ; P(G/A1) =  0.90 

   P(A2) = 0.30  ; P(G/A2)  = 0.80 

   P(A3) = 0.50  ; P(G/A3)  = 0.95 

 (i) We have to find the total probability of event G i.e. P(G) 

     Since A1, A2, A3 are mutually exclusive and exhaustive events and G is 

an event in S. 

  We have P(G) = P(A1) . P(G/A1) + P(A2) . P(G/A2) + P(A3) . P(G/A3) 

    = (0.2) (0.90) + (0.3) (0.80) + (0.5) (0.95) 

    = 0.180 + 0.240 + 0.475 

   P(G) = 0.895 

 (ii) We have to find the conditional probability A2 given G i.e. P(A2/G) 

  By Bayes’ formula 

 P(A2/G) = 
P(A2) . P(G/A2)

P(A1) . P(G/A1) + P(A2) . P(G/A2) + P(A3) . P(G/A3) 

  = 
(0.3) (0.80)

(0.895)                         (by (1) Dr  = P(G) = 0.895) 

  = 
0.240
0.895  

 P(A2/G) = 0.268 (Approximately) 

EXERCISE 10.4 
 (1) Bag A contains 5 white, 6 black balls and bag B contains 4 white,  

5 black balls. One bag is selected at random and one ball is drawn from 
it. Find the probability that it is white. 

 (2) A factory has two Machines-I and II. Machine-I produces 25% of items 
and Machine-II produces 75% of the items of the total output. Further 3% 
of the items produced by Machine-I are defective whereas  
4% produced by Machine-II are defective. If an item is drawn at random 
what is the probability that it is defective? 

 (3) There are two identical boxes containing respectively 5 white and 3 red 
balls, 4 white and 6 red balls. A box is chosen at random and a ball is 
drawn from it (i) find the probability that the ball is white (ii) if the ball is 
white, what is the probability that it is from the first box? 
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 (4) In a factory, Machine-I produces 45% of the output and Machine-II 
produces 55% of the output. On the average 10% items produced by I 
and 5% of the items produced by II are defective. An item is drawn at 
random from a day’s output. (i) Find the probability that it is a defective 
item (ii) If it is defective, what is the probability that it was produced by 
Machine-II. 

 (5) Three urns are given each containing red and white chips as given below. 
  Urn I : 6 red  4 white ;  Urn II : 3 red 5 white  ;  Urn III : 4 red 6 white 
  An urn is chosen at random and a chip is drawn from the urn.  
  (i)  Find the probability that it is white 
  (ii) If the chip is white find the probability that it is from urn II 
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OBJECTIVE TYPE QUESTIONS 
 (1) Identify the correct statement 
  (1) The set of real numbers is a closed set 
  (2) The set of all non-negative real numbers is represented by (0, ∞) 
  (3) The set [3, 7] indicates the set of all natural numbers between 3 and 7 
  (4) (2, 3) is a subset of [2, 3]. 
 (2) Identify the correct statements of the following 
  (i) a relation is a function 
  (ii) a function is a relation 
  (iii) ‘a function which is not a relation’ is not possible 
  (iv) ‘a relation which is not a function’ is possible 
  (1) (ii), (iii) and (iv)     (2) (ii) and (iii)       (3) (iii) and (iv)      (4) all 
 (3) Which one of the following is a function which is ‘onto’? 

  (1) f : R → R  ;   f(x) = x2 (2) f : R → [1,∞) ;    f(x) = x2 + 1 

  (3) f : R → {1, − 1}  ;  f(x) = 
| x |
x   (4) f : R → R  ;   f(x) = − x2 

 (4) Which of the following is a function which is not one-to-one? 

  (1) f : R → R   ;  f(x) = x + 1 (2) f : R → R  ;   f(x) = x2 + 1 

  (3) f : R → {1, − 1}   ;  f(x) = x − 1 (4) f : R → R  ;  f(x) = − x 

 (5) The inverse of f : R → R+  ;   f(x) = x2 is 
  (1) not onto  (2) not one-to-one 
  (3) not onto and not one-to-one (4) not at all a function 
 (6) Identify the correct statements 
  (i) a constant function is a polynomial function. 
  (ii) a polynomial function is a quadratic function. 
  (iii) for linear function, inverse always exists. 
  (iv) A constant function is one-to-one only if the domain is a singleton set. 
  (1) (i) and (iii)  (2) (i), (iii) and (iv)     (3) (ii) and (iii)        (4) (i) and (iii) 
 (7) Identify the correct statements 
  (i) the domain of circular functions are always R. 
  (ii) The range of tangent function is R. 
  (iii) The range of cosine function is same as the range of sine function. 
  (iv) The domain of cotangent function is R − {k π} 
  (1) all (2) (i) and (iii) (3) (ii), (iii) and (iv)       (4) (iii) and (iv)  
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 (8) The true statements of the following are 

  (i) The composition of function fog and the product of functions fg are 
same. 

  (ii) For the composition of functions fog, the co-domain of g must be the  
domain of f. 

  (iii) If fog, gof exist then fog = gof. 

  (iv) If the function f and g are having same domain and co-domain then 
fg = gf 

  (1) all          (2) (ii), (iii) and (iv)       (3) (iii) and (iv)        (4) (ii) and (iv)  

 (9) 
lim

x → − 6   (− 6) is  

  (1) 6 (2) − 6 (3) 36 (4) − 36 

 (10) 
lim

x → − 1  (x) is  

  (1) − 1 (2) 1 (3) 0 (4) 0.1 

 (11) The left limit as x → 1 of f(x)  =  − x + 3  is 

  (1) 2 (2) 3 (3) 4 (4) − 4 

 (12) Rf(0) for f(x) = | x | is 

  (1)  x (2) 0 (3) − x (4) 1 

 (13) 
lim

x → 1    
x1/3 − 1

x − 1
  is 

  (1) 
2
3  (2) − 

2
3  (3) 

1
3  (4) − 

1
3  

 (14) 
lim

x → 0   
sin 5x

x    is 

  (1) 5 (2) 
1
5  (3) 0 (4) 1 

 (15) 
lim

x → 0   x cot x is 

  (1) 0 (2) − 1 (3) ∞ (4) 1 

 (16) 
lim

x → 0  
2 x − 3 x

x    is 

  (1) log 



3

2   (2) log 



2

3   (3) log 2 (4) log 3 
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 (17) 
lim

x → 1     
ex − e
x − 1

   is 

  (1) 1 (2) 0 (3) ∞ (4) e 

 (18) 
lim

x → ∞   



1 − 

1
x

x
   is 

  (1) e (2) − e (3) 
1
e  (4) 0 

 (19) The function f(x) = | x | is 
  (1) continuous  at x = 0                  
  (2) discontinuous at x = 0 
  (3) not continuous from the right at x = 0  
  (4) not continuous from the left at x = 0 

 (20) The function f(x) = 


sin(x − 2)

x − 2
, x ≠ 2

  0,             x = 2
    is  discontinuous at 

  (1) x = 0 (2) x = − 1 (3) x = − 2 (4) x = 2 

 (21) The function f(x) = 
x2 + 1

x2 − 3x + 2
  is continuous at all points of R except at  

  (1) x = 1 (2) x = 2 (3) x = 1, 2           (4) x = − 1, − 2 

 (22) Let f(x) = x  be the greatest integer function. Then  
  (1) f(x) is continuous at all integral values 
  (2) f(x) is discontinuous at all integral values 
  (3) x = 0 is the only discontinuous point 
  (4) x = 1 is the only continuous point 
 (23) The function y = tan x is continuous at  

  (1) x = 0 (2) x = 
π
2  (3) x = 

3π
2   (4) x = − 

π
2  

 (24) f(x) = | x | + | x − 1 |  is  
  (1) continuous at x = 0 only (2) continuous at  x = 1 only 
  (3) continuous at both x = 0 and x = 1 (4) discontinuous at x = 0, 1 

 (25) If f(x) = 


kx2 for x ≤ 2
3  for x > 2

 is continuous at x = 2, the value of k is 

  (1) 
3
4  (2) 

4
3  (3) 1 (4) 0 
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 (26) Rf′(0) for the function f(x) =  


0  if x ≤ 0
x if x > 0  is 

  (1) 1 (2) 0 (3) − 1 (4) 2 
 (27) Lf′ (α) for the function f(x) = |x − α | is 
  (1) α (2) - α (3) − 1 (4) 1 

 (28) The function f(x) =  


2, x ≤ 1
 x, x > 1

 is  not differentiable at 

  (1) x = 0 (2) x = − 1 (3) x = 1 (4) x = − 2 

 (29) The derivative of f(x) = x2 | x | at x = 0 is 
  (1) 0 (2) − 1 (3) − 2 (4) 1 

 (30) ⌡⌠ sin2x dx  = 

  (1) 
sin3x

3   + c     (2) − 
cos2x

2   + c  

  (3) 
1
2  



x − 

sin2x
2   + c      (4) 

1
2  [1 + sin2x] + c 

 (31) ⌡⌠ sin 7x cos 5x dx  = 

  (1) 
1

35  cos 7x sin 5x + c (2) − 
1
2  



cos 12x

12  + 
cos2x

2   + c 

  (3)  − 
1
2  



cos 6x

6  + cosx   + c (4) 
1
2  



cos 12x

12  + 
cos2x

2   + c 

 (32) 
⌡

⌠ 

ex

ex + 1
  dx = 

  (1) 
1
2  x + c    (2) 

1
2  







ex

1 + ex

2
 + c     (3) log (ex + 1) + c (4) x + ex + c 

 (33) 
⌡
⌠ 

1

ex  dx = 

  (1) logex + c (2) − 
1

ex  + c (3) 
1

ex + c (4) x + c 

 (34) ⌡⌠log x dx  = 

  (1) 
1
x   + c      (2) 

(log x)2

2   + c     (3) x log x + x + c       (4) x log x − x + c 
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 (35) 
⌡
⌠ 

x

1 + x2  dx = 

  (1) tan−1x + c   (2) 
1
2 log (1 + x2) + c    (3) log (1 + x2) + c  (4) log x + c 

 (36) ⌡⌠ tanx dx  = 

  (1) log cos x + c    (2) log sec x + c    (3) sec2x + c    (4) 
tan2x

2   + c 

 (37) 
⌡
⌠ 

1
3 + 4x

  dx = 

  (1) 
1
2  3 + 4x  + c     (2) 

1
4  log 3 + 4x + c      

   (3) 2 3 + 4x  + c     (4) − 
1
2  3 + 4x  + c 

 (38) ⌡
⌠ 



x − 1

x + 1   dx = 

  (1) 
1
2  



x − 1

x + 1

2
  + c (2) x − 2 log (x + 1) + c 

  (3) 
(x − 1)2

2   log (x + 1) + c (4) x + 2 log (x + 1) + c 

 (39) ⌡⌠ cosec x dx  = 

  (1) log tan 
x
2  + c  (2) − log (cosec x + cot x) + c 

  (3) log (cosec x − cot x) + c (4) all of them 
 (40) When three dice are rolled , number of elementary events are  

  (1) 23 (2) 36 (3) 63 (4) 32 
 (41) Three coins are tossed. The probability  of getting atleast two heads is 

  (1) 
3
8 (2) 

7
8 (3) 

1
8 (4) 

1
2 

 (42) If P(A) = 0.35, P(B) = 0.73 and P(A ∩ B) = 0.14.   Then P(A
−

  ∪ B
−

 ) =  

  (1) 0.94 (2) 0.06 (3) 0.86 (4) 0.14 
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 (43) If A and B are two events such that P(A) = 0.16, P(B) = 0.24 and  
P(A∩B) = 0.11, then the probability of obtaining only one of the two 
events is 

  (1) 0.29 (2) 0.71 (3) 0.82 (4) 0.18 

 (44) Two events A and B are independent, then P(A/B) = 

  (1) P(A) (2) P(A ∩ B) (3) P(A) = P(B) (4) 
P(A)
P(B) 

 (45) A and B are two events such that P(A) ≠ 0, P(B) ≠ 0. If A and B are 
mutually exclusive, then  

  (1) P(A ∩ B) = P(A) P(B) (2) P(A ∩ B) ≠ P(A) . P(B) 

  (3) P(A/B)  = P(A) (4) P(B/A)  = P(A) 

 (46) X speaks truth in 95 percent of cases and Y in 80 percent of cases. The 
percentage of cases they likely to contradict each other in stating same 
fact is 

  (1) 14% (2) 86% (3) 23% (4) 85.5% 

 (47) A problem is given to 3 students A, B and C whose chances of solving it 

are 
1
3 , 

2
5 and 

1
4 . The probability to solve is  

  (1) 
4
5 (2) 

3
10 (3) 

7
10 (4) 

1
30 

 (48) Given P(A) = 0.50, P(B) = 0.40 and P(A ∩ B) = 0.20 then P(A/B
−

) = 

  (1) 0.50  (2) 0.40  

  (3) 0.70  (4) 0.10 

 (49) An urn contains 10 white and 10 black balls. While another urn contains 
5 white and 10 black balls. One urn is chosen at random and a ball is 
drawn from it. The probability that it is white, is 

  (1) 
5

11 (2) 
5

12 (3) 
3
7 (4) 

4
7 
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ANSWERS 
EXERCISE 7.1 

 (1) (i) x2 + 1    (ii) (x + 1)2    (iii) x + 2     

  (iv) x4     (v)  10     (vi) 16      

 (2) (i) x2 + x + 1   (ii) 
x + 1

x2    for x ≠ 0 (iii) x3 + x2    

  (iv) 1+x−x2   (v) x3 + x2 

 (3) f − 1(x) = 
x − 2

3   

 (4) (i) x ∈ [− 3, 3] (ii) x  ∈ (− ∞, − 3)∪(6, ∞)    

  (iii) x ∈ (− ∞, − 2) ∪  (2, ∞) (iv) x ∈ (− 4,3)     

  (v) x ∈ (− ∞, − 3] ∪ [4, ∞)   (vi) no solution 

  (vii) x∈(0, 1) (viii) x ∈ (− ∞, 0)∪(1/3, ∞)   

  (ix) x ∈ (− ∞, − 1/3)∪(2/3, ∞) 

EXERCISE 8.1 

 (1)  4 (2) 0 (3) 2x (4) m (5)  
2 2

3   (6) 
q
p  

 (7) 
m

a
ma    (8) 

2
3  (9) 

1
2  (10) 

1
9   (11) 2 cos a (12) α 

 (13) e  (14) yes ; 
lim

x → 3  f(x) = 27 (15) n = 4 (16) 1  

 (18) − 1 ; 1 ; 
lim

x → 0   
| x |
x   does not exist             (19) loge 



a

b   ; loge 


5

6   

EXERCISE 8.2 
 (1)  continuous at x = 2 (2) continuous at x = 0   
 (3) discontinuous at x = 1 (4) discontinuous at x = 0   

 (5) a = 3; b = − 8    (7) f is continuous at x = 1 and x = 2 

EXERCISE 8.3 
  (2) No ; Lf ′(0) = − 1; Rf ′ (0) = 1 

 (3) f is continuous on R; not differentiable at x = 0 and x = 1). 
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 (4) (i) f is not differentiable at x = 1  

   (ii) f is not differentiable at x = 2; but differentiable at x = 4 

 (5) Lf ′ (0) = − 1; Rf ′ (0) = 1 

EXERCISE 8.4 

 (1) 3x2 − 12x + 7      (2) 3x2 − 8 ; f ′ (2) = 4; f ′(10) = 292     (3) a = 1 ; b = 7 

 (4) (i) 7x6 + ex      (ii) 
log7e

x      

  (iii) 3 cosx − 4 sinx −ex     (iv) ex + 3 sec2x + 
6
x  

  (v) 
log10e

x   + 2 secx tanx     (vi) 
− 3

2x2 x
  + 7 sec2x  

  (vii) 3 




1 + x2 − 

1

x2 − 
1

x4   (viii) 




4x − 6 − 

12

x2  

EXERCISE 8.5 

   (1) ex (cosx − sinx)      (2) 
n

x
2x   



1 + 

logx
n      

  (3) 6 log10e 



sinx

x  + cosx logex   

  (4) (7x6 − 36x5 + 35x4 + 12x3 + 24x2 − 14x − 4)       

  (5) b (2 cos 2x − cosx) + 2a sin x             

  (6) − cosec x (cot2x + cosec2x) 

  (7) sin2x     (8) − sin 2x      

  (9) 12x (3x2 + 1)        

  (10) 2(12x2 + 12x − 1)    

  (11) 6tan2x + 20cot2x + 26    

  (12) xex [x cosx + x sinx + 2 sinx]           

  (13) 
ex

x
  



1 + x logx + 

logx
2   
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EXERCISE 8.6 

 (1)  − 
10

x3  (2) 
22

(4x + 5)2  (3) 
6x7 − 28x6 + 47

(x − 4)2   

 (4) 
ex 



1

x − sinx − cosx − logx  − 2x (cosx + logx) + x − x2 sinx

(x2 + ex)2   

 (5) 
4x(1 − 2logx)

(logx + 2x2)2  (6) 
sinx − x logx cosx

x sin2x
  (7) 

− (2ax + b)

(ax2 + bx + c)2      

 (8) 
− 2sec2 x

(tanx − 1)2  (9) 
− (x2 + 2)

(x sinx − cosx)2  (10) e−x 



2

x − 2logx   

EXERCISE 8.7 

 (1) cotx  (2) cosx esinx  

(3) 
− cosec2x

2 1 + cotx
   (4) 

sec2 (logx)
x   

 (5) 
ebx (a sin (ax + b) + b cos (ax + b))

cos2 (ax + b)
                  (6) 

1
2  tan 



π

4 + 
x
2   

 (7) (ex + 4) cot (ex + 4x + 5) (8) 
3
2  x  cos ( )x x    

 (9) 
− sin x

2 x
   (10) 

cos (logx) esin (logx)

x   

EXERCISE 8.8 

 (1) 
− 1

x (1 + x)
             (2) 

− 2x ex2

1 + e2x2          (3) 
1

x (1 + (logx)2)
     (4) − 2 

EXERCISE 8.9 

 (1)  
2x

2

x   (2) xx2 + 1
 (1 + 2 logx)  

 (3) xtanx  



tanx

x  + sec2x (logx)   
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 (4) sinxsinx cosx (1 + log sinx)  

 (5) (tan−1x)logx 






logx

(1 + x2) tan−1x
 + 

log (tan−1x)
x   

 (6) (logx)sin−1x  






log (logx)

1 − x2
 + 

sin−1x
x logx          

 (7)  
(x2 + 2) ( )x + 2

x + 4 (x − 7)
  






2x

x2 + 2
 + 

1
x + 2

 − 
1

2(x + 4) − 
1

x − 7
  

 (8) (x2 + 2x + 1)
x − 1

  






2 x − 1

(x + 1)  + 
log (x + 1)

x − 1
  

 (9) 
sin x cos (ex)

ex + logx
   








cotx − ex tan (ex) − 
(xex + 1)

x(ex + logx)
  

 (10) xsinx  



sinx

x  + logx cosx  + (sinx)x (x cotx + log sinx) 

EXERCISE 8.10 

 (1) 
1
2  (2) 1    (3) 

1
2  (4) 1 (5) 

1

2(1 + x2)
  

 (6) 
2x

1 + x4  (7) 
1

2 x (1 + x)
  (8) 

1

2 1 − x2
  (9)  − 

1
2  

EXERCISE 8.11 

 (1) − 
b
a  cot θ (2) 

1
t   (3) 

b
a  sinθ (4) − 

1

t2
  

 (5) tan 



3θ

2   (6) tanθ (7) 
t (2 − t3)

1 − 2t3
  

EXERCISE 8.12 

 (1) 
b2x

a2y
   (2) 

siny
1 − x cosy

      (3) 
x2 (x − 3a2 y3)

y2 (3a2 x3 − y)
       (4) 

2 + y (sec2x + y sinx)
2y cosx − tanx
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 (5) 
y cosec2x + (1 + y2) secx tanx − 2x

cotx − 2y secx
     

  (6) 2 






xy − (1 + x2)

2
 tanx sec2x

(1 + x2) [4y (1 + x2) + (1 + x2) cosy + 1]
  

 (7) − 
y
x      (8) 

y
x      (9) ex − y 







1 − ey

ex − 1
      (10)  

100 − y
x − 100

      (11) 
y (x log y − y)
x (y logx − x)

   

EXERCISE 8.13 

 (1)  2(3x + tanx + tan3x) (2) − 2(1 + 4cot2 x + 3cot4x) 

 (3) (i) (2) (ii) 2cos x − x sinx (iii)  
2x

(1 + x2)2  

 (4) (i) m3 emx + 6 (ii) x sinx − 3 cosx 

EXERCISE 9.1 
Add an arbitrary constant ‘c’ to all the answers from Exercise 9.1 to  
Exercise 9.9 

 (1) (i) 
x17

17   (ii) 
2
7  x7/2 (iii) 

2
9  x9/2 (iv) 

3
7  x7/3 (v) 

7
17  x17/7 

 (2) (i) − 
1

4x4  (ii) logx (iii) − 
2

3x3/2  (iv) − 
3

2x2/3  (v) 4x1/4 

 (3) (I) − cosx (ii) sec x (iii) − cosec x (iv) tanx (v) ex 

EXERCISE 9.2 

 (1) (i) 
x5

5   (ii) 
(x + 3)6

6    (iii) 
(3x + 4)7

21    (iv) − 
(4 − 3x)8

24   (v) 
(lx + m)9

9l   

 (2) (i) − 
1

5x5                 (ii) − 
1

3(x + 5)3             (iii) − 
1

8(2x + 3)4   

  (iv) 
1

30(4 − 5x) 6       (v) − 
1

7a(ax + b)7  

 (3) (i) log(x + 2)               (ii) 
1
3  log (3x+2)            (iii)− 

1
4  log (3 − 4x)   

  (iv) 
1
q  log (p + qx)      (v) − 

1
t   log (s − tx) 
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 (4) (i) − cos(x + 3)           (ii) − 
1
2  cos (2x + 4)        (iii) 

1
4 cos (3 − 4x) 

  (iv) 
1
4  sin (4x + 5)       (v) − 

1
2  sin (5 − 2x) 

 (5) (i) − tan (2 − x)            (ii) − 
1
2  cot (5 + 2x)         (iii) 

1
4  tan (3 + 4x) 

  (iv) 
1

11  cot (7 − 11x)   (v) − 
1
q  tan (p − qx) 

 (6) (i) sec (3 + x)           (ii) 
1
3  sec (3x + 4)              (iii) − sec (4 − x) 

  (iv) − 
1
3  sec (4 − 3x)    (v) 

1
a  sec (ax + b) 

 (7) (i) cosec (2 − x)        (ii) − 
1
4  cosec (4x + 2)      (iii) 

1
2  cosec (3 − 2x) 

  (iv) − 
1
l   cosec (lx + m)  (v)  

1
t   cosec (s − tx) 

 (8) (i) 
e3x

3      (ii) ex + 3    (iii) 
1
3  e3x + 2       (iv) − 

1
4  e5 − 4x (v) 

1
a  eax + b 

 (9) (i) 
1
p  tan (px + a)       (ii) 

1
m  cot (l − mx)                (iii) − 

1
7a  (ax + b)−7 

  (iv) − 
1
2  log (3 − 2x) (v) − e− x 

 (10) (i) − 
1
4  sec (3 − 4x)           (ii) − 



1

q   
1

ep + qx            (iii) − 
1
2  cosec (2x + 3) 

  (iv) 
2
3l  (lx + m)3/2             (v) − 

2
15   (4 − 5x)3/2 

EXERCISE 9.3 

 (1) x5 + 
3

10  (2x + 3)5 + 
1
3  (4 − 3x)6       

 (2) 3logx + 
m
4  log (4x + 1) + 

(5 − 2x)6

6   
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 (3) 4x − 5log (x + 2) + 
3
2  sin2x            

 (4) 
3
7  e7x − sec (4x + 3) − 

11

4x4  

 (5) − cot(px − q) + 
6
5  (1 − x)5 − e3 − 4x 

 (6) log (3 + 4x) + 
(10x + 3)10

100   + 
3
2  cosec (2x + 3) 

 (7) − 
6
5  cos 5x + 

1

p(m − 1) (px + q) m − 1  

 (8) 
a
b  tan (bx + c) + 

q

m el − mx  

 (9) 
3
2  log 



3 + 

2
3 x   − 

2
3  sin 



x − 

2
3   + 

9
7  



x

3 + 4
7

 

 (10) − 49 cos 
x
7  + 32 tan 



4 − 

x
4   + 10 



2x

5  − 4
5/2

  

 (11) 2 
xe + 1

e + 1  + 3ex + xee                               

(12)
(ae)x

1 + loga  + 
a−x

loga  + 
bx

log b  

EXERCISE 9.4 

 (1) 
8
3  x3 + 26x2 − 180x (2) 

x7

7   + 
x4

2   + x  

 (3) 
x2

2   + 4x − 3logx − 
2
x  (4) 

x4

4   − 
x3

3   + 2log (x + 1)  

 (5) 
2
5  x5/2 + 

4
3  x3/2 + 2 x  (6) ex − 

e−3x

3   − 2e− x 

 (7) 
1
2  



x − 

sin 6x
6   + sin4x (8) 

1
4  



3 sin2x

2  + 
sin 6x

6   + 
cos 6x

6   
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 (9) tanx − sec x (10) − cosecx − cotx    

 (11) ± (sinx + cosx) (12) 2  sinx 

 (13) tanx − cotx (14) x − sinx 

 (15) − 
1
2  



cos 12x

12  + 
cos 2x

2   (16) 
1
2  



sin 4x

4  + 
sin 2x

2   

 (17) − 
1
2  



cos 6x

6  + 
cos 2x

2   (18) 
1
2  



sin 8x

8  − 
sin 12x

12   

 (19) − 
1
2  cot x (20) − 



e−2x

2  − 
2
3 e−3x + 

1
4 e−4x   

 (21) 2 tanx − 2 secx − x (22) − 2 
3− x

log 3  + 
2−x

3log2  

 (23) 
(ae)x

1 + log a   

 (24) a 



(a / c)x

log a − logc
  − 

1
b   



(b/c)x

log b − log c
  

(25) 
x2

2   + 2x + logx 

 (26) − 
1
2  



cos (m + n)x

m + n  + 
cos (m − n)x

(m − n)
   

 (27) 
1
2  



sin (p + q)x

p + q  + 
sin (p − q)x

p − q
  

 (28) − 
1
2  



cos 10x

10  + 
cos 20x

40     

(29) 
2
9  [(x + 1)3/2 + (x − 2)3/2] 

 (30) 
2

3a(b − c)
  [(ax+b)3/2 + (ax+c)3/2] 

 (31)  
2
5  (x + 3)5/2 − 

4
3  (x + 3)3/2 
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 (32) 
2
5  (x + 7)5/2 − 

22
3   (x + 7)3/2  

 (33) 
1
5  (2x + 3)5/2 − 

2
3  (2x + 3)3/2 

 (34) 2 log (x + 3) − log (x + 2) 

 (35) 
5

52  log 



x − 2

x + 2   + 
8

39  tan−1 


x

3   

EXERCISE 9.5 

 (1) 
(1 + x6)

8

48   (2) log (lx2 + mx + n) (3) − 
2

9(ax2 + bx + c) 9   

 (4) x2 + 3  (5) 
2
3  (x2 + 3x − 5)3/2 (6) log secx  

 (7) log (secx + tanx) (8) − 
cos15x

15                  (9)  − 
cos5x

5   + 
2
3  cos3x − cosx 

 (10) 
− 1
7   sin7x + 

3
5  sin5x − sin3x + sinx             (11) log (x + log secx) 

 (12)
1
m  em tan−1x (13) 

1
4  (sin−1x2) 2 (14) (x + logx)5 

 (15) − cos (logx) (16) log log sinx (17) 
sec4x

4   

 (18) − secx + 
sec3x

3   (19) (x + a) cosa − sina log sin (x + a)  

 (20) (x − a) cosa + sina log cos (x − a)          

 (21) 
1

b − a
  log (a cos2x + b sin2x) 

 (22) log cos 



π

4 − x   (23) 2 tanx  (24) 
1
3  (logx)3   

 (25) 
1
4  ex4

       

 (26) 
1
e  log (xe + ex + ee)  (27)  

(l − x)18

18   − 
l(l − x)17

17   
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 (28) 
a

m + 1  (x − a)m + 1 + 
1

m + 2  (x − a) m + 2 

 (29) − 
(2 − x)18

18   + 
4

17  (2 − x)17 − 
1
4  (2 − x)16 (30) − 2 cos x  

 (31) 
1
2  



(2x + 3)5/2

5  − 
(2x + 3)3/2

3            

 (32) 
1
2  



3

5 (2x + 1)5/2 + 
7
3 (2x + 1)3/2   

 (33) 2 



(x + 1)7/2

7  − 
2
5 (x + 1)5/2 + 

2
3 (x + 1)3/2   

EXERCISE 9.6 

 (1) − xe− x − e−x (2) x sinx + cosx  

 (3) − x cotx + log sinx (4) x secx − log (secx + tanx) 

 (5) x tan−1x − 
1
2  log (1 + x2) (6) x tanx + log cosx − 

x2

2   

 (7) 
1
2  



x2

2  + 
x sin2x

2  + 
cos2x

4     

 (8) 
1
2  









sin 7x

7  + 
sin 3x

3  + 



cos 7x

49  + 
cos 3x

9   

 (9) 2



1

3 xe3x− 
e3x

9                     (10) 



x2

2  − 
x
2 + 

1
4   e2x 

 (11) 
1
3  x2 sin3x + 

2
9  x cos 3x − 

2
27  sin 3x (12) (sin−1 x − 1) esin−1x 

 (13) 
1
2  (x4 − 2x2 + 2)ex2

                            (14) 3



x tan−1x − 

1
2 log (1 + x2)   

 (15) 
1
2  [ ]x2sin−1 (x2) + 1 − x4                (16) − 

1
2  cosec x cotx + 

1
2  log tan 

x
2  

 (17) 
eax

a2 + b2  (a cos bx + b sin bx) (18) 
e2x

13  (2 sin 3x − 3 cos 3x) 
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 (19) 
ex

5   (cos 2x + 2 sin 2x) 

 (20) 
e3x

13  (3 sin2x − 2 cos 2x) 

 (21) 
1
4  [sec 2x tan2x + log (sec 2x + tan 2x)]  

 (22) 
e4x

2   



1

65 (4 sin 7x − 7 cos 7x) − 
1
25 (4 sin 3x − 3 cos 3x)   

 (23) 
e−3x

4   



3

10 (− 3 cos x + sin x) + 
1
6 (− cos 3x + sin 3x)   

EXERCISE 9.7 

 (1) (i) 
1
5  tan−1 



x

5  (ii) 
1
4  tan−1 



x + 2

4     (iii) 
1
6  tan−1 



3x + 5

2   

  (iv) 
2
55

  tan−1 




4x + 7

55
    (v) 

1
9  tan−1 



3x + 1

3   

 (2) (i) 
1
8  log 



4 + x

4 − x
    (ii) 

1
6  log 



x

6 − x
    (iii) 

1
8 7

  log 




7 + 1 + 4x

7 − 1 − 4x
  

  (iv) 
1
5

  log 




5 − 1 + 2x

5 + 1 − 2x
   (v) 

1
6 6

  log 




6 + 1 + 3x

6 − 1 − 3x
  

 (3) (i) 
1

10  log 



x − 5

x + 5     (ii) 
1
16  log 



2x − 3

2x + 5     (iii) 
1

6 7
   log 





3x + 5 − 7

3x + 5 + 7
  

  (iv) 
1
21

  log  




2x + 3 − 21

2x + 3 + 21
     (v) 

1
17  log 



3x − 15

3x + 2   

 (4) (i) log ( )x + x2 + 1    (ii) 
1
2  log [ ](2x + 5) + (2x + 5)2 + 4   

  (iii) 
1
3  log [ ](3x − 5) + (3x − 5)2 + 6      

   (iv) log 









x + 

3
2  + x2 + 3x + 10   
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  (v) log 









x + 

5
2  + x2 + 5x + 26   

 (5) (i) log ( )x + x2 − 91       (ii) log [ ](x + 1) + (x + 1)2 − 15   

  (iii) 
1
2  log [ ](2x + 3) + (2x + 3)2 − 16    (iv) log [ ](x+ 2)+ x2+4x−12  

  (v) log [ ](x + 4) + x2 + 8x − 20   

 (6) (i) sin−1 


x

2           (ii) sin−1 



x − 1

5        (iii) 
1
2  sin−1 





2x + 3

11
   

  (iv) sin−1 




2x − 1

5
    (v) sin−1 





2x + 1

33
  

 (7) (i) − log (x2 + x + 1) + 
8
3

  tan−1 




2x + 1

3
  

  (ii) 
1
2  log (x2 + 21x + 3) − 

27
2 429

  log 




2x + 21 − 429

2x + 21 + 429
  

  (iii) 
1
2  log (2x2 + x + 3) − 

3
23

  tan−1 




4x + 1

23
  

  (iv) 
1
2  log (1 − x − x2) + 

3
2 5

  log 




5 + 2x + 1

5 − 2x − 1
  

  (v) 2 log (x2 + 3x + 1) − 5  log 




2x + 3 − 5

2x + 3  + 5
  

 (8) (i) − 
1
2  6 + x − 2x2  + 

9
4 2

  sin−1  



4x − 1

7   

   (ii) − 2 10 − 7x − x2  − 10 sin−1  




2x + 7

89
  

  (iii) 3x2 + 4x + 7               (iv) sin−1x − 1 − x2  + c 

  (v) 6 x2 − 9x + 20  + 34 log [ ](x − 9/2) + x2 − 9x + 20   

 (9) (i) 
x
2  1 + x2  + 

1
2  log [ ]x + 1 + x2   
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  (ii) 
x + 1

2   (x + 1)2 + 4  + 2 log [ ](x + 1) + (x + 1)2 + 4   

  (iii) 
1
4  [ ](2x + 1) (2x + 1)2 + 9 + 9log { }(2x + 1) + (2x + 1)2 + 9     

  (iv) 
2x − 3

4   x2 − 3x + 10  + 
31
8  log [ ](x − 3/2) + x2 − 3x + 10   

 (10) (i) 
x
2  4 − x2  + 2sin−1 



x

2   (ii) 



x + 2

2   25 − (x + 2)2  + 
25
2   sin−1 



x + 2

5   

  (iii) 
1
6  



(3x + 1) 169 − (3x + 1)2 + 169 sin−1  



3x + 1

13   

  (iv) 
2x − 3

4   1 − 3x − x2  + 
13
8   sin−1 





2x + 3

13
  

  (v) 
2x + 1

4   6 − x − x2  + 
25
8    sin−1 



2x + 1

5  

EXERCISE 10.1 

 (1) (i) Yes   (ii) No   (iii) No, Q P(C) is negative   (iv) No, Q ∑P ≠ 1   (v) Yes 

 (2) (i) 
1
6  (ii) 

1
12   (iii) 

1
6   (3) (i) 

3
8   (ii) 

1
2   (iii) 

7
8     (4) (i) 

2
13  (ii) 

4
13  (iii) 

2
13  

 (5) (i) 
1

22    (ii) 
21
44   (6) 

2
9   (7) (i) 

4
7    (ii) 

3
7   (8) 

37
42   (9) (i) 

1
7  (ii) 

2
7   (10)  

27
50  

EXERCISE 10.2 

 (1) (i) 0.79  (ii) 0.10 (2) (i) 0.72 (ii) 0.72 (iii) 0.28 (iv) 0.28 

 (3) (i) 0.86  (ii) 0.36 (iii) 0.26  (iv) 0.76  (v) 0.14 (4) 
11
36    (5) 0.2    

 (6) (i) 
4

13   (ii) 
7

13   (7) (i) 0.45  (ii) 0.30 

EXERCISE 10.3 

 (1) No, for non empty events and possible for any one being null event. 
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 (3) (i) 
9

10   (ii) 
2
7   (4) 

1
5  (5) 0.5  

 (7) (i) 0.12  (ii) 0.48 (iii) 0.39   (9) (i) 
13
20   (ii) 

5
12   (iii) 

1
2    (iv) 

7
12    (v) 

7
8  

 (10) (i) 
3

10  (ii) 
6

11   (iii) 0.6 (iv) 0.525     (11) (i) 
1

169   (ii) 
1

221            

(12) (i) 
1

26   (ii) 
1

13    (13) (i) 
1
4   (ii) 

9
40   (iii) 

21
40  

(14) (i) 
1

30  (ii) 
3

10  (iii) 
2
3          (15) (i) 

3
4   (ii) 

11
24  

 (16) (i) 
5

28   (ii) 
1

14    (17) (i) 0.45 (ii) 0.9      (18) 
13
30      (19) 

43
60       (20) 

7
20          

EXERCISE 10.4 

 (1) 
89

198    (2) 
3

80    (3) (i) 
41
80    (ii) 

25
41     

 (4) (i) 
29

400    (ii) 
11
29    (5) (i) 

13
24    (ii) 

5
13  
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Objective Type Questions – Answers (Key) 
(1) 4 (2) 1 (3) 2 (4) 2 (5) 4 (6) 2 

(7) 3 (8) 4 (9) 2 (10) 1 (11) 1  (12) 2 

(13) 3 (14) 1 (15) 4 (16) 2 (17) 4 (18) 3 

(19) 1 (20) 4 (21) 3 (22) 2 (23) 1 (24) 3 

(25) 1 (26) 1 (27) 3 (28) 3 (29) 1 (30) 3 

(31) 2 (32) 3 (33) 2 (34) 4 (35) 2 (36) 2 

(37) 1 (38) 2 (39) 4 (40) 3 (41) 4 (42) 3 

(43) 4 (44) 1 (45) 2 (46) 3 (47) 3 (48) 1 

(49) 2      
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