MATHEMATICS

HIGHER SECONDARY — FIRST YEAR
VOLUME — I

REVISED BASED ON THE RECOMMENDATIONS OF THE
TEXT BOOK DEVELOPMENT COMMITTEE

Untouchability is a sin
Untouchability is a crime
Untouchability is inhuman

S
N2\  TAMILNADU

TEXTBOOK CORPORATION

S

- A n
4 of {5
/?‘1 .
COLLEGE ROAD, CHENNAI - 600 006

< N
“ann Troro0c



PREFACE

This book is designed in accordance with the new guidelines and
syllabi — 2003 of the Higher Secondary Mathematics — First Year,
Government of Tamilnadu. In the era of knowledge explosion, writing a
text book on Mathematics is challenging and promising. Mathematics
being one of the most important subjects which not only decides the
career of many young students but also enhances their ability of
analytical and rational thinking and forms a base for Science and
Technology.

This book would be of considerable value to the students who
would need some additional practice in the concepts taught in the class
and the students who aspire for some extra challenge as well.

Each chapter opens with an introduction, various definitions,
theorems and results. These in turn are followed by solved examples
and exercises which have been classified in various types for quick and
effective revision. The most important feature of this book is the
inclusion of a new chapter namely ‘Functions and Graphs’. In this
chapter many of the abstract concepts have been clearly explained
through concrete examples and diagrams.

It is hoped that this book will be an acceptable companion to the
teacher and the taught. This book contains more than 500 examples
and 1000 exercise problems. It is quite difficult to expect the teacher to
do everything. The students are advised to learn by themselves the
remaining problems left by the teacher. Since the ‘Plus 1’ level is
considered as the foundation course for higher mathematics, the
students must give more attention to each and every result mentioned in
this book.



The chief features of this book are

(i)

(ii)

(iii)

(iv)

v)

The subject matter has been presented in a simple and lucid
manner so that the students themselves are able to
understand the solutions to the solved examples.

Special efforts have been made to give the proof of some
standard theorems.

The working rules have been given so that the students
themselves try the solution to the problems given in the
exercise.

Sketches of the curves have been drawn wherever
necessary, facilitating the learner for better understanding of
concepts.

The problems have been carefully selected and well graded.

The list of reference books provided at the end of this book will be
of much helpful for further enrichment of various concepts introduced.

We welcome suggestions and constructive criticisms from learned

teachers and dear students as there is always hope for further
improvement.

K. SRINIVASAN
Chairperson
Writing Team
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SYLLABUS

MATRICES AND DETERMINANTS : Matrix Algebra — Definitions, types,
operations, algebraic properties. Determinants — Definitions, properties,
evaluation, factor method, product of determinants, co-factor

determinants. (18 periods)

VECTOR ALGEBRA : Definitions, types, addition, subtraction, scalar
multiplication, properties, position vector, resolution of a vector in two and

three dimensions, direction cosines and direction ratios. (15 periods)

ALGEBRA : Partial Fractions — Definitions, linear factors, none of which
is repeated, some of which are repeated, quadratic factors (none of
which is repeated). Permutations — Principles of counting, concept,
permutation of objects not all distinct, permutation when objects can
repeat, circular permutations. Combinations, Mathematical induction,
Binomial theorem for positive integral index—finding middle and

particular terms. (25 periods)

SEQUENCE AND SERIES : Definitions, special types of sequences and
series, harmonic progression, arithmetic mean, geometric mean,
harmonic mean. Binomial theorem for rational number other than
positive integer, Binomial series, approximation, summation of Binomial
series, Exponential series, Logarithmic series (simple problems)
(15 periods)

ANALYTICAL GEOMETRY : Locus, straight lines — normal form,
parametric form, general form, perpendicular distance from a point,
family of straight lines, angle between two straight lines, pair of
straight lines. Circle — general equation, parametric form, tangent
equation, length of the tangent, condition for tangent. Equation of chord
of contact of tangents from a point, family of circles — concetric circles,

orthogonal circles. (23 periods)



(6) TRIGONOMETRY : Trigonometrical ratios and identities, signs of

()

(8)

9)

(10)

T-ratios, compound angles A + B, multiple angles 2A, 3A, sub multiple
(half) angle A/2, transformation of a product into a sum or difference,
conditional identities, trigonometrical equations, properties of
triangles, solution of triangles (SSS, SAA and SAS types only),
inverse trigonometrical functions. (25 periods)

FUNCTIONS AND GRAPHS : Constants, variables, intervals,
neighbourhood of a point, Cartesian product, relation. Function — graph
of a function, vertical line test. Types of functions — Onto, one-to-one,
identity, inverse, composition of functions, sum, difference product,
quotient of two functions, constant function, linear function, polynomial
function, rational function, exponential function, reciprocal function,
absolute value function, greatest integer function, least integer function,
signum function, odd and even functions, trigonometrical functions,
quadratic functions. Quadratic inequation — Domain and range.
(15 periods)

DIFFERENTIAL CALCULUS : Limit of a function — Concept, fundamental
results, important limits, Continuity of a function — at a point, in an
interval, discontinuous function. Concept of Differentiation -
derivatives, slope, relation between continuity and differentiation.
Differentiation techniques - first principle, standard formulae, product
rule, quotient rule, chain rule, inverse functions, method of substitution,
parametric  functions, implicit function, third order derivatives.
(30 periods)

INTEGRAL CALCULUS : Concept, integral as anti-derivative, integration of
linear functions, properties of integrals. Methods of integration -
decomposition method, substitution method, integration by parts.

Definite integrals - integration as summation, simple problems.
(32 periods)

PROBABILITY : Classical definitions, axioms, basic theorems, conditional
probability, total probability of an event, Baye’s theorem (statement only),
simple problems. (12 periods)
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7. FUNCTIONS AND GRAPHS

7.1 Introduction:

The most prolific mathematician whoever lived, Leonhard Euler
(1707-1783) was the first scientist to give the function concept the prominence
in his work that it has in Mathematics today. The concept of functions is one of
the most important tool in Calculus.

To define the concept of functions, we need certain pre-requisites.
Constant and variable:

A quantity, which retains the same value throughout a mathematical
process, is called a constant. A variable is a quantity which can have different
valuesin a particular mathematical process.

It is customary to represent constants by the letters a, b, ¢, ... and variables
by x,y, z
Intervals:

The real numbers can be represented geometrically as points on a number
line caled thereal line (fig. 7.1)

<« : ' + t ' \E 4 v Tt ; »
3002 -1 0 1 2 3 4
Fig7.1

The symbol R denotes either the real number system or the real line. A
subset of the real lineis called an interval if it contains atleast two numbers and
contains al the real numbers lying between any two of its elements.

For example,

() theset of all real numbers x such that x > 6

(b) theset of all real numbersx suchthat —2<x<5

(c) theset of al real numbers x such that x <5 are some intervals.

But the set of al natural numbers is not an interval. Between any two
rational numbers there are infinitely many real numbers which are not included
in the given set. Hence the set of natural numbers is not an interval. Similarly
the set of al non zero real numbersis also not an interval. Here the real number
0 is absent. It fails to contain every real number between any two real numbers
say — land 1.

Geometrically, intervals correspond to rays and line segments on the real
line. The intervals corresponding to line segments are finite intervals and
intervals corresponding to rays and the real line are infinite intervals. Here finite
interval does not mean that the interval contains only a finite number of real
numbers.




A finite interval is said to be closed if it contains both of its end points and
open if it contains neither of its end points. To denote the closed set, the square
bracket [ ] is used and the paranthesis () is used to indicate open set. For
example 3¢ (3, 4), 3¢[3, 4]

Type of intervals

Notation Set Graph
Finite |(a, b) {x/a<x<b} C o N
a I
[a,b) {x/a<x<h} : Y
. )
(&bl  {x/a<x<b} p 5
a b
[a b] {x/a<x<b} ° °

a b
Infinite |(a, ) {x/x>a}

[a ) [x/x>a) g

(—co,b) [(x/x<b} el

(—oo,b] {Xx/x<b} e
(=00, 00) {X/—00<x<o0} « >
or the set of real numbers

b

A
]

Note:

We can’'t write a closed interval by using « or — . These two are not
representatives of real numbers.

Neighbour hood
In a number line the (.} >
neighbourhood of a point (rea a

number) is defined as an open
interval of very small length.

In the plane the neighbourhood of a point
is defined as an open disc with very small
radius.

In the space the neighbourhood of a point
is defined as an open sphere with very small
radius.

Fig7.2



Independent / dependent variables:

In the lower classes we have come across so many formuale. Among those,
let us consider the following formulae;

@V =g s (volume of the sphere) (b)) A = nr? (areaof acircle)

(c)S= Anr® (surface areaof asphere) (d)V = % nreh (volume of acone)

Note that in (a), (b) and (c) for different values of r, we get different values
of V, A and S. Thus the quantities V, A and S depend on the quantity r. Hence
we say that V, A and S are dependent variables and r is an independent
variable. In (d) the quantities r and h are independent variables while V is a
dependent variable.

A variable is an independent variable when it has any arbitrary
(independent) value.

A variable is said to be dependent when its value depends on other
variables (independent).

“Parents pleasure depends on how their children score marks in
Examination”

Cartesian product:

Let A={a1, ap, ag}, B={bq, bo}. The Cartesian product of the two sets

A and B isdenoted by A x B and is defined as

A xB={(ay, b1), (a1, bp), (a2 by), (a2 by), (ag, by), (as, ba)}

Thus the set of all ordered pairs (a, b) wherea € A, b € B is caled the
Cartesian product of the sets A and B.

It isnoted that A x B = B x A (in general), since the ordered pair (a, b) is
different from the ordered pair (b, a). These two ordered pairs are same only if
a=bh.

Example7.1: Find AxBandB x Aif A={1,2},B={a, b}
Solution: AxB={(1a),(b),(2a), 2 b}

BxA={(@a1,@2,(b1), (b2}

Relation:

In our everyday life we use the word ‘relation’ to connect two persons like
‘is son of’, ‘is father of’, ‘is brother of’, ‘is sister of’, etc. or to connect two
objects by means of ‘is shorter than’, ‘is bigger than’, etc. When comparing
(relate) the objects (human beings) the concept of relation becomes very
important. In a similar fashion we connect two sets (set of objects) by means of
relation.



Let A and B be any two sets. A relation from A — B (read as A to B) isa
subset of the Cartesian product A x B.
Example 7.2: Let A ={1, 2}, B ={a, b}. Find some relations from A — B and
B> A.
Solution:

Sincerelation from A to B is a subset of the Cartesian product

AxB={(1,a),(Lb),(2,a),(2,b)} awy subset of A x Bisarelation
from A — B.

~{(@,a),(,b),(2,a), 2,0} {(La), @b} {Lb b} {1, a}
are some relations from A to B.

Similarly any subset of B x A ={(a, 1), (a, 2), (b, 1), (b, 2)} isa
relation from B to A.

{@.1),@,2),(b,1),b,2}, {@1),b 1}, {(@2), b 1)} aesome
relations from B to A.

7.2 Function:

A function is a special type of relation. In afunction, no two ordered pairs
can have the same first element and a different second element. That is, for a
function, corresponding to each first element of the ordered pairs, there must be
a different second element. i.e. In a function we cannot have ordered pairs of
the form (a1, b1) and (ap, by) with a; = a» and by = bo.

Consider the set of ordered pairs (relation) elerflig;tl ot clgﬁ'ﬁ?r}]tdscl
{3,2,(5B,7),({@,0), (10, 3)}. Here no two
ordered pairs have the same first element and \ ]
different second element. It is very easy to check |
this concept by drawing a proper diagram (fig. ‘
7.3).

.. Thisrelation is afunction. Fig7.3

Consider another set of ordered pairs (relation)
{(3,5), (3,—1), (2,9)}. Here the ordered pairs (3, \
5) and (3, — 1) have the same first element but ‘-.
different second element (fig. 7.4).

Thisrelation is not afunction. ,
Fig7.4

Thus, afunction f from aset A to B isarule (relation) that assigns a unique
element f(X) in B to each element xin A.
Symbolicaly, f: A > B
i.e x - f(x)



To denote functions, we use the letters
f, g, h etc. Thus for a function, each element of
A isassociated with exactly one element in B. The
set A is called the domain of the function
f and B is called co-domain of f. If xisin A, the
element of B associated with xis Fig7.5

called the image of x under f. i.e. f(x). The set of all images of the elements of
A is caled the range of the function f. Note that range is a subset of the
co-domain. The range of the function f need not be equal to the co-domain B.
Functions are also known as mappings.

Example7.3: Let A ={1,2,3},B={3,5,7, 8} and f from A to B is defined by
fix>2x+1 ie f(x)=2x+1.

(8 Find f(1), f(2), f(3)

(b) Show that fisafunction from A to B

(c) Identify domain, co-domain, images of each element in A and range of f
(d) Verify that whether the range is equal to codomain

Solution:
) f(x) = 2x+1
f1) = 2+1=3,f(2)=4+1=5 f(3=6+1=7
(b) Therelationis{(1,3), (2, 5), (3, 7)} A B
Clearly each element of A has a unique "]
imagein B. Thusfisafunction. ]

(c) ThedomainsetisA ={1, 2,3}
Theco-domainsetisB ={3,5, 7, 8}
Fig7.6
Imageof 1is 3; 2 is5; 3is 7
Therangeof fis{3,5, 7}
(d {3,57 #{3,57,8}
.. Therangeis not equal to the co-domain
Example 7.4:
A father ‘d’ has three sons a, b, ¢. By assuming sons as a set A and father
asasingleton set B, show that

(i) the relation ‘isason of’ isafunction from A —» B and
(ii) the relation ‘is afather of’ from B — A isnot afunction.



Solution:

i) A={ab,c}, B={d}
aissonof d
bisson of d

cissonofd _
Fig7.7

The ordered pairs are (a, d), (b, d), (c, d). For each element in A thereisa
unique element in B. Clearly therelation ‘isson of’ from A to B isafunction.

(i) disfather of a
disfather of b
disfather of c

The ordered pairs are (d, @), (d, b), (d, ¢). The
first element d is associated with three different
elements (not unique)

Clearly therelation'is father of’ from B to A is not afunction.

Fig7.8

Example 7.5: A classroom consists of 7 benches. The strength of the class is
35. Capacity of each bench is 6. Show that the relation ‘sitting’ between the set
of students and the set of benchesis a function. If we interchange the sets, what
will be happened?

Solution:

The domain set is the set of students and the co-domain set is the set of
benches. Each student will occupy only one bench. Each student has seat also.
By principle of function, “each student occupies a single bench’. Therefore the
relation ‘sitting’ is afunction from set of Students to set of Benches.

If we interchange the sets, the set of benches becomes the domain set and
the set of students becomes co-domain set. Here atleast one bench consists of
more than one student. Thisis against the principle of function i.e. each element
in the domain should have associated with only one element in the
co-domain. Thus if we interchange the sets, it is not possible to define a
function.

Note:
Consider thefunction f: A > B
i.e x — f(X) where xe A, f(X) € B.



Read ‘f(x)’ as‘f of X'. The meaning of f(X) is the value of the function f at x
(which is the image of x under the function f). If we write y = f(x), the symbol f
represents the function name, x denotes the independent variable (argument)
and y denotes the dependent variable.

Clearly, in f(x), f is the name of the function and not f(x). However we will
often refer to the function as f(x) in order to know the variable on which f
depends.

Example 7.6: Identify the name of the function, the domain, co-domain,
independent variable, dependent variable and range if f: R — R defined by
y=1(x) =x°
Solution:

Name of the function is a square function.

Domain setisR.

Co-domain setisR.

Independent variable is x.

Dependent variableisy.

X can take any real number as its value. But y can take only positive red
number or zero asitsvalue, sinceit is a square function.

.. Range of f is set of non negative real numbers.

Example 7.7: Name the function and independent variable of the following
function:

(i) f(6) = sinb (i) f(x) = \/} (iii) f(y) = & (iv) f(t) = loget
Solution:

Name of the function independent variable
(i) sine 0
(ii) sguareroot X
(iii) exponential y
(iv) logarithmic t



Thedomain conversion

If the domain is not stated explicitly for the function y = f(x), the domain is
assumed to be the largest set of x values for which the formula gives real
y values. If we want to restrict the domain, we must specify the condition.

The following table illustrates the domain and range of certain functions.

Function Domain (X) Range (y or f(x))
y=x° (— 0, ) [0, )
y=~/x [0, =) [0, )
y=)—1( R —{0} Non zero Real numbers R-{0}
y=“,1—x2 1,71 [0, 1]
y = sinx (= 00, 0) [-1,71]

[— % g} principal domain

Y = COSX (= 00, ) [-1.1]
[0, =] principal domain

y = tanx (— % g) principal domain (=0 2)
y= & (= o0, o0) (0, )
y = loge® (0, ) (= 0, )

7.2.1 Graph of afunction:

The graph of afunction f isagraph of the equation y = f(X)
Example 7.8: Draw the graph of the function f(x) = X
Solution:

Draw atable of some pairs (X, y) which satisfy y = X
x| 0|21} 2|3|-1|-21]-3
y|O0|21]4]|9 1 4 9

Plot the points and draw a smooth curve Y
passing through the plotted points.
- 3,9
Note: (-3.9) (2(4) )
Note that if we draw a vertical line to the (24 S
above graph, it meets the curve at only one point (0, 0) X

i.e. for every x thereisauniquey Fig7.9
ig7.



Functionsand their Graphs (Vertical linetest)

Not every curve we draw is the graph of a function. A function f can have
only one value f(x) i.e. y for each x in its domain. Thus no vertical line can
intersect the graph of a function more than once. Thusif ‘a’ isin the domain of
afunction f, then the vertical line x = a will intersect the graph of f at the single
point (a, f (a)) only.

Consider the following graphs:

2 y = COSXx
= 7T T

Fig7.10
Except the graph of y2 =X, (or y = ++/x) al other graphs are graphs of
functions. But for y2 =X, if we draw avertical line x = 2, it meets the curve at
two points (2,/2) and (2, —/2) Therefore the graph of y? = x is not a graph of
afunction.
Example 7.9: Show that the graph of X2 + y2 = 4 is not the graph of afunction.
Solution:

Clearly the equation X2 + y2 = 4 represents a circle with radius 2 and centre
at the origin.
Take

x =1

~1=3 [

V3 0,0) \(2, 0)
For the same vaue x = 1, we have two
y-values+[/3 and —~/3. It violates the definition k /
of a function. In the fig 7.11 | A
theline x = 1 meetsthe curve a two places

< v x
0
T ORI

Fig7. 11
(1,+/3) and (1, -+/3) . Hence, the graph of x* + y? = 4 is not a graph of a
function.
7.2.2 Typesof functions:
1. Onto function

If the range of a function is equa to the co-domain then the function is
called an onto function. Otherwiseit is called an into function.



In f:A—B, the range of f or the image set f(A) is equal to the co-domain B
i.e. f(A) = B then the function is onto.
Example 7.10

Let A ={1,2,3,4},B ={5, 6}. Thefunction f is defined as follows:f(1) = 5,

f(2) =5, f(3) = 6, f(4) = 6. Show that f is an onto function.
Solution:

f={(1.5), (2 5), (3, 6), (4 6)}

Therange of f, f(A) = {5, 6} A B
co-domain B = {5, 6}

ie. f(A) = B '
= the given function is onto >\

Fig7.12
Example 7.11: Let X ={a, b}, Y ={c, d, €} andf ={(a, ¢), (b, d)}. Show that
fisnot an onto function.
Solution:
Draw the diagram
Therange of fis{c, d}
Theco-domainis{c, d, €
The range and the co-domain are not equal,
and hence the given function is not onto

Fig 7. 13

Note:

(1) For an onto function for each element (image) in the co-domain, there
must be a corresponding element or elements (pre-image) in the
domain.

(2) Another name for onto function is surjective function.

Definition: A function f is onto if to each element b in the co-domain, there is
atleast one element a in the domain such that b = f(a)
2. One-to-one function:

A function is said to be oneto-one if each element of the range is

associated with exactly one element of the domain.

i.e. two different elements in the domain (A) have different images in the

co-domain (B).

ilearzap = f(a)=flap) a,apeA,

Equivaently f(aj) =f(ap) = aj=ay

The function defined in 7.11 is one-to-one but the function defined in 7.10

iS not one-to-one.

10



Example 7.12: Let A = {1, 2, 3}, B ={a, b, c}. Prove that the function f defined
by f={(1, a), (2, b), (3,¢)} isaone-to-one function.

Solution:
Here 1, 2 and 3 are associated with a, b and A f B
C respectively.
The different elements in A have different -
images in B under the function f. Therefore f is -
one-to-one.

Fig7. 14

Example 7.13: Show that the functiony = %2 is not one-to-one.
Solution:

For the different values of x (say 1, — 1) y = x2
we have the same vaue of y. i.e. different |
elements in the domain have the same element \ / y=1
in the co-domain. By definition of one-to-one, : ;
it is not one-to-one (OR) pop— =1

= f(X SEG
f(f)l _ 1(2) — Fig7.15
f-)=(-1° = 1

= f(1) =f(-1)
But 1+ — 1. Thusdifferent objectsin the domain have the same image.
.. The function is not one-to-one.
Note: (1) A function is said to beinjective if it is one-to-one.
(2) Itissaid to be bijectiveif it is both one-to-one and onto.
(3) The function given in example 7.12 is bijective while the functions
givenin 7.10, 7.11, 7.13 are not bijective.
Example 7.14. Show that the function f : R — R defined by f(x) = x + 1 is
bijective.
Solution:
To prove that f is bijective, it is enough to prove that the function fis
(i) onto (ii) one-to-one
(i) Clearly the image set is R, which is same as the co-domain R.
Therefore, itisonto. i.e. takeb € R. Thenwecanfindb - 1 € R such
thatf(b— 1) =(b—1) + 1=h. Sofisonto.
(if) Further two different elements in the domain R have different images
in the co-domain R. Therefore, it is one-to-one.
ief(a)=fla) >a1+1l=arx+1=a;=ar. So f isone-to-one.
Hence the function is bijective.

11



3. Identity function:
A function f from a set A to the same set A is said to be an identity
function if f(X) = x for al x € Ai.e. f: A —> A is defined by f(x) = x for al
X € A. Identity function is denoted by |5 or simply |. Therefore |(X) = x aways.
Graph of identity function: e
The graph of the identity function (2.2)
f(x) = x is the graph of the function (1. 1)
y = X It is nothing but the straight line AT
y = x asshown in the fig. (7.16)

(-1.-1)
(-2,-2)

Fig7.16
4. Inverse of afunction:

To define the inverse of a function f i.e. 1 (read as ‘f inverse'), the
function f must be one-to-one and onto.

Let A={1,2 3}, B={ab,c, d}. Consder afunction f = {(1, a), (2, b),
(3, ©)}. Here the image set or the rangeis{a, b, ¢} which is not equal to the co-
domain{a, b, ¢, d}. Therefore, it is not onto.

For the inverse function f~* the co-domain of f becomes domain of .
ielff:A>Bthenfl:B—>A. According to the definition of domain,
each element of the domain must have image in the co-domain. In 1, the

element ‘d’ has no image in A. Therefore L is not a function. This is because
the function f is not onto.

A B
(domain)  (co-domain)

b
C
d
_ Fig7.17b
) Fig7.17a @) = 1
f(1) =a 1
f(2) =b b = 2
f(3) =¢ . _ fl = 3
All theelementsin A have images il = 2

The element d.has no image.
Again consider afunction which is not one-to-one. i.e. consider
f={(, a), (2,a), (3, b} whereA={1,2,3},B={a, b}

12



Here the two different elements ‘1’ and ‘2" have the same image ‘a’.
Therefore the function is not one-to-one.

Therange={a, b} =B. .. Thefunction is onto.

A f B B 1A
=) (&
Fig7.18

f1) = a i@ =1

f(2) =a fl@=2

f@ =b i1 (b) = 3
Here dl the elementsin A has The dement ‘a has two
unique image images 1 and 2. It violates the

principle of the function that each
element has a unique image.

Thisis because the function is not one-to-one.
Thus, ‘flexigts if and only if fisone-to-oneand onto’.

Note:

(1) Since dl the function are relations and inverse of a function is also a
relation. We conclude that for a function which is not one-to-one and
onto, the inverse f* does not exist

(2) To get the graph of the inverse function, interchange the co-ordinates
and plot the points.

To define the mathematical definition of inverse of a function, we need the

concept of composition of functions.

5. Composition of functions:

Let A, B and C be any threesetsand letf: A > B and g: B — C be any
two functions. Note that the domain of g is the co-domain of f. Define a new
function (gof) : A — C such that (gof) (a) = g(f(a)) for all a € A. Heref(a) isan
dement of B. .. g(f(a)) is meaningful. The function gof is called the
composition of two functionsf and g.

13



Fig7.19
Note:
The small circle o in gof denotes the composition of g and f
Example 7.15: LetA={1,2},B={3,4 andC={5,6} andf: A —» B and
g:B — Csuchthat f(1) =3, f(2) =4, g(3) =5, g(4) = 6. Find gof.
Solution:
gofisafunction from A — C.

I dentify the images of elements of
A under the function gof.
(gof) (1) =9g(f(1)) =9(3) =5
(gof) (2) = 9(f(2)) = 9(4) = 6
i.e.imageof lis5and
image of 2is6 under gof
- gof ={(1, 5), (2, 6)}
Note:

For the above definition of f and g, we can’t find fog. For some functions f
and g, we can find both fog and gof. In certain cases fog and gof are equd. In
general fog = gof i.e. the composition of functions need not be commutative
aways.

Example 7.16: Thetwo functionsf: R > R, g : R —» R are defined by

f(x) = X2+ 1, g(x) = x— 1. Find fog and gof and show that fog = gof.

Solution:
(fog) (x) = f(g(x)) = f(x— 1) = (x - 1)? + 1 =% - 2x+ 2
(gof) (9 = g(f(¥) = g0 + 1) = (¢ + 1) — 1=
Thus (fog) (¥) = X2 — 2%+ 2
(gof) (x) = X

= fog = gof

14



Example 7.17: Letf g: R— R bedefined by f(x) = 2x + 1, and g(X) :X;zl .

Solution:

Thus
f—

Show that (fog) = (gof).

(fog) () = Hald) =f(x;21) =2(X;21> +1=x-1+1=x
(gof) ) = gl = g(x+ 1y = EFED=1 -y

(fog) (x) = (gof) (X)
fog = gof

In this example f and g satisfy (fog) (X) = x and (gof) (X) = x
Consider the example 7.17. For these f and g, (fog) (X)= x and (gof) (X) = x.

Thus by the definition of identity function fog =1 and gof =1 i.e. fog = gof = |
Now we can define the inverse of afunction .

Definition:

Letf: A — B beafunction. If there exists afunction g : B — A such that
(fog) = Ig and (gof) = la, then g is called the inverse of f. The inverse of fis

denoted by 2

Note:

(1) The domain and the co-domain of both f and g are same then the
above condition can be written as fog = gof = 1.

2 If 1 exists then f is said to be invertible.
(3) fof t=flof=I
Example 7.18: Let f: R —» R beafunction defined by f(x) =2x+ 1. Findf -1

Solution:

Letg = £t
(gof) (x) = x - gof =1
gf(x) =x = g(2x+1)=x

Let 2x+1=y = x:%l

-1 _ -1
gy) =35 o fYy) = 5=

Replace y by x

1 _X—l
g ="5

15



6. Sum, difference, product and quotient of two functions:

Just like numbers, we can add, subtract, multiply and divide the functions
if both are having same domain and co-domain.

If f, g: A —» B are any two functions then the following operations are
true.

(f+9) () =f(x) +9()
(f-9) (¥ = f(x) - 9(x)
(fg) (x) = () 9(x)
(@ X = g(% whereg(x) =0

(cf) () = c.f(X) where c is aconstant
Note: Product of two functionsis different from composition of two functions.

Example 7.19: The two functionsf, g : R—>R are defined by f(x)=x + 1, g(x):xz.
Find f+g, f—-g, fg, 1 2f, 3g.

g
Solution:
Function Definition

f f(x)=x+1

g g(x) =x2

f+g (F+g) () =F(X) +g(X) =x+ 1 +x°

f-g (f-g) () =) - g(x) =x+1-x°

fg (fg) (¥) = f(x) g(¥) = (x + 1)x*

é @ (x)=g()% =%1, (it i defined for x = 0)

f (2) () = 2f(X) = 2(x + 1)

3g (39) (x) = 3g(x) = 3x°

7. Constant function:

If the range of a function is a singleton set then the function is called a
constant function.

i.,e. f: A—> Bissuchthat f(a) =bforal a e A, thenfiscalled a constant
function.

16



Let A = {1, 2, 3}, B = {a, b}. If the
function f is defined by f(1) = a, f(2) = a, —p
f(3) = athen f is a constant function. R
Fig7.21
Simply, f: R > R, defined by f(x) = kisa 1Y

constant function and the graph of this constant
function isgiveninfig. (7.22)

Note that ‘isason of’ is a constant function
between set of sons and the singleton set
consisting of their father. Fig7.22

M

8. Linear function:

If afunction f: R — R isdefined in the form f(x) = ax + b then the function
iscaled alinear function. Here a and b are constants.

Example 7.20: Draw the graph of the linear function f : R — R defined by
f(x) =2x+ 1.

Solution:
Draw the table of some pairs (x, f(X)) which satisfy f(x) = 2x + 1.
X 0 1 -1 2
f(x) 1 3 -1 5
Plot the points and draw a curve passing Ay Y= 2x+
through these points. Note that, the curve is a /
straight line.
Note: 25 0)/ ©. 1 .
(1) The graph of a linear function is a *
straight line. /
(2) Inverse of a linear function aways Fig7. 23

exists and also linear.
9. Polynomial function:

If f: R>Ris defined by f(X) = an X" + an _ 1 X"~ % ...+ agx + ap, where
ag, a1,..., ap arereal numbers, a,=0 then f is apolynomial function of degreen.

Thefunctionf: R — R defined by f(x) = xC + 5x% + 3isacubic polynomial
function or a polynomial function of degree 3.

17



10. Rational function:

Let p(x) and g(x) be any two polynomial functions. Let S be a subset of R
obtained after removing all values of x for which gq(x) = 0 from R.

Thefunctionf: S — R, defined by f(x) =

function.

%g, g(x) # Oiscalled arationa

) . . . o+ X+ 2
Example 7.21: Find the domain of the rational function f(x) =——>———
X5 =X

Solution:

The domain Sis obtained by removing all the points from R for which g(x)
=0= X-x=0= x(x-1)=0=x=0,1

. S=R-{0, 1}

Thus this rational function is defined for all real numbers except 0 and 1.
11. Exponential functions:

For any number a > 0, a # 1, the function f : R — R defined by f(x) = a*is
called an exponential function.

Note: For exponential function the range is aways R" (the set of all positive
real numbers)

Example 7.22: Draw the graphs of the exponential functionsf : R — R* defined
by (1) f(x)=2" (2) f(x)=3" (3) f(x) =10~
Solution:
For dl these function
f(x) = 1 when x = 0. Thus
they cut they axisat y = 1.
For any real value of x, they
never become zero. Hence
the corresponding curves to

the above functions do not
meet the x-axis for real x. (or

meet the x-axis at — o) Fig7.24

In particular the curve corresponding to f(x) = € lies between the curves
corresponding to 2* and 3, as2 < e< 3.
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Example 7.23:
Draw the graph of the exponential function f(x) = €*.

Solution:

For x = 0, f(X) becomes 1
i.e. the curve cuts the y axis at
y = 1. For no rea vaue of
X, f(xX) equalsto 0. Thus it does not

meet x-axis for real values of x.

Fig7.25
Example 7.24:
Draw the graphs of the logarithmic functions
(D) f() =logox  (2) f(x) =logex (3) f(x) =logax

X .
oA 5 &
“ \_,\t =1 \‘;\o‘:‘.

; %
A
N

Solution:

The logarithmic function is
defined only for positive red
numbers. i.e. (0, )

Domain: (0, «)

Range : (— oo, o)

Fig7.26

Note:

The inverse of exponential function is a logarithmic function. The genera
form is f(X) = loggx, a # 1, a is any positive number. The domain (0, «) of
logarithmic function becomes the co-domain of exponential function and the
co-domain (— oo, «) of logarithmic function becomes the domain of exponential
function. Thisis dueto inverse property.

19



11. Reciprocal of a function:

The function g : S—R, defined by g(x) = % is called reciprocal function
of f(x). Since this function is defined only for those x for which f(x) = 0, we see
that the domain of the reciprocal function of f(x) isR—{x : f(x) =0}.

Example 7.25: Draw the graph of the reciprocal function of the function
f(x) =x.
Solution:

Thereciprocal function of f(X) is%

1 1
Thus g(x) =7 =x
Here the domain of
0(X) = R — {set of points x for which f(x) = 0}
= R-{0}

The graph of g(x) = % isas shown infig 7.27.

Fig7.27
Note:

(1) The graph of g(x) :)—1( does not meet either axes for finite real number.

Note that the axes x and y meet the curve at infinity only. Thusx and y

1

axes are the asymptotes of the curvey = )—1( or g(x) =5 [Asymptoteis

a tangent to a curve at infinity. Detailed study of asymptotes is
included in XI1 Standard)].

(2) Reciprocal functions are associated with product of two functions.
i.e. if fand g are reciprocals of each other then f(x) g(x) = 1.
Inverse functions are associated with composition of functions.
i.eif f and g are inverses of each other then fog = gof =1
12. Absolute value function (or modulus function)

If f: R —> Rdefined by f(X) =|x|then thefunctionis called absolute value
function of x.

X if x>0
-xifx<0
Thedomainis R and co-domainis set of al non-negative real numbers.

where|x|={
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The graphs of the absolute functions
Q) f(x) = x| 2 f)=|x-1] (3) f(x) =|x+ 1| aregiven below.

Y- Yt 1Y
X x=1 5} x=-1 5
f(x) = | x| f(x) = | x= 1| f(X) = | x+1]
Fig7.28

13. Step functions:
(a) Greatest integer function
The function whose value at any real number x is the greatest integer less
than or equal to x is called the greatest integer function. It is denoted by | x J
i.e.f:R— Rdefined by f(x) =| x |
Notethat| 2.5]=2,139]=3,[-21]=-3,[.5]=0,[-.2]=-1,l4]=4
The domain of the function is R and the range of the function is Z (the set
of all integers).
(b) Least integer function
The function whose value at any rea number x is the smallest integer
|gr_eTater than or equal to x is called the least integer function and is denoted by
X
i.e.f: R— Rdefined by f(x) =[x/|.
Notethat[25] =3, [1.09]=2, [-29]=-2[3]=3
The domain of the function is R and the range of the functionis Z.

Graph of f(x) =[.xJ Graph of f(x) =[ x|
AY > Y
Sy=x Sy=x
/ #7
3+ A—0 3L o——e’
e 4
2| Ao 2 o—
//
I o ] p—=n
/
I I o W B 3 L1 L1 1 53X
S 1 2 3 X =2 -1 I 2 3
/(I—li— o— - |-
/
/A’/—o-z— o—n -2+
Fig7.29 Fig7.30
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14. Signum function:

1x] x=0
If fR>Risdefined by f(x) = { X~ then f is called signum function.
0, x=0
Y
The domain of the function is R and . 1) | %) = bz, x> 0
therangeis{- 1,0, 1}. (0.0) X
fix) =[x, x <0 ©.-1)
Fig7.31

15. Odd and even functions

If f(X) = f(— x) for dl x in the domain then the function is called an even
function.

If f(X) = — f(— x) for al x in the domain then the function is called an odd
function.

For example, f(x) = x5, f(x) =x2 +2x*, f(x) =

[~

, f(X) = cosx are some

N

X
even functions.

and f(x) = X, f(x) = x - 23, f(x) = )—l( f(x) = sin x are some odd
functions.

Note that there are so many functions which are neither even nor odd. For
even function, y axis divides the graph of the function into two exact pieces
(symmetric). The graph of an even function is symmetric about y-axis. The
graph of an odd function is symmetrical about origin.

Properties:

(1) Sum of two odd functionsis again an odd function.

(2) Sum of two even functionsis an even function.

(3) Sum of an odd and an even function is neither even nor odd.

(4) Product of two odd functionsis an even function.

(5) Product of two even functionsis an even function.

(6) Product of an odd and an even function is an odd function.

(7) Quotient of two even functions is an even function. (Denominator
function = O)

(8) Quotient of two odd functions is an even function. (Denominator
function = O)
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(9) Quotient of aeven and an odd function is an odd function. (Denominator

function = O)
16. Trigonometrical functions:
In Trigonometry, we have two types of functions.
(1) Circular functions (2)Hyperbolic functions.
We will discuss circular functions only. The circular functions are
(@ f(x)=snx (b) f(X) = cosx (o) f(x) =tanx
(d) f(x) = secx (e) f(X) = cosecx () f(x) = cotx
The following graphsillustrate the graphs of circular functions.
(@ y=sinx or f(x)=sinx Y
Domain(— oo, )
Range[- 1, 1]

Principal domain[—%,%} _ ., =~

(b) y=cosx
Domain (— oo, ) I

Range[- 1, 1] N . e RN

Principal domain [0 7] N~ o .| 7 x

Fig7.33
(c) y =tanx Y y=tan x
) Sinx . .

Since tanx = oSk’ tanx is defined only
for al the values of x for which cosx = 0.

i.e. al rea numbers except odd >
integer multiples of g (tanx is not obtained 3/ T hl0 % /r 3r
for cosx = 0 and hence not defined for x, an ’ i I
odd multiple of )

Fig7.34
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Domain=R—{(2k+1)%}, kez

Range = (- «, )
(d) y = cosec x Y y = cosec x

Since cosec X is the reciproca of
sin x, the function cosec x is not
defined for values of x for which
snx=0. L=

) . | | | »X

. Domain is the set of al real -F_x O = § 32
numbers except multiples of © 2 2 :

Domain=R-{kr}, keZ

Range = (- o, — 1] U [1, )

Fig7.35

y=secx
(e)y=secx

Since sec x is reciprocal of cosx,
the function secx is not defined for all
values of x for which cosx=0.

Domain=R—{(2k+ 1)%},kez

Range = (-0, — 1] U [1, )

(fly=rcot x
. _ CoX ., .
since cot x = g, it is not |
defined for the values of x for which | B | |
sinx=0 - _m\0| m\ ¥ 3m\n
- Doman=R-{kn}, ke Z 2 2 ’

Range = (- o, «) |
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17.Quadratic functions
It isapolynomial function of degree two.

A function f : R — R defined by f(x) = ax +bx+c, wherea, b, ceR,
a=0 iscaled aquadratic function. The graph of a quadratic function is
aways a parabola.

7.3 Quadratic Inequations:

Let f(x) = ax® + bx + ¢, be aquadratic function or expression. a, b, ¢ € R,
a0
Then f(X) >0, f(x) >0, f(x)<0and f(xX) <0 areknown asquadratic
inequations.
The following general rules will be helpful to solve quadratic
inequations.
General Rules:
1. If a> b, then we have the following rules:
(i) (@+tc)>(b+c)fordlceR
(i) @a-¢)>(-c)foradlceR
(i) —a<-b
(iv) ac> bc, a >% for any positive real number ¢

(v) ac< bc,%1 <% for any negative real number c.

The above properties, aso holds good when the inequality < and > are
replaced by < and > respectively.
2. (i) If ab>0theneithera>0,b>0(or)a<0,b<0
(ii) If ab>O0theneithera>0,b>0(or)a<0,b<0
(iii) 1f ab<Otheneithera>0,b<0(or)a<0,b>0
(iv) Ifab<Otheneithera>0,b<0(or)a<0,b>0. ab,ceR
Domain and range of quadratic functions
Solving a quadratic ineguation is same as finding the domain of the
function f(x) under the given inequality condition.
Different methods are available to solve a quadratic inequation. We can
choose any one method which is suitable for the inequation.
Note : Eventhough the syllabus does not require the derivation, it has been
derived for better understanding.
Method I: Factorisation method:

Let ax? + bx+c>0 ..
be a quadratic inequation in x wherea, b, c € Randa= 0.
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The quadratic equation corresponding to this inequation is ax® +bx + ¢ =0.
The discriminant of this equation is b® — 4ac.
Now three cases arises.
Case (i): b% - 4ac>0
In this case, the roots of ax® + bx + ¢ = 0 are red and distinct. Let the
rootsbe o and f3 .
s+ bx+c=ax—a) (X—PB)
But ax’+bx+c>0 from (1)
ax—a) (x-p)=0
X—a)(x-=B)=0 ifa>0 (or)
(x—a) x—pB)<0 ifa<o
Thisinequality is solved by using the general rule (2).
Case (ii): b®°-4ac=0
In this case, the roots of ax? + bx + ¢ = 0 are real and equal. Let the roots
bea and a

=
=

Ll +bx+c = a(x—oc)z.
= a(x-a)?=0

= (x—a)?20ifa>0(or) (x—a)?><0ifa<0
Thisinequality is solved by using General rule-2

Case (jii): b - 4ac<0
In this case the roots of ax2 + bx + ¢ = 0 are non-real and distinct.
Here ax+bx+c = a(x2+%x+§)

|:( )2 : :|
|:( )2 2:|

.. Thesign of ax? + bx + cis same as that of a for all values of x because

2 2
[(x + Z_ba) + %2—} isapositive real number for all values of x.

In the above discussion, we found the method of solving quadratic
inequation of the type ax® +bx+c>0.
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Method: 11
A quadratic inequality can be solved by factorising the corresponding
polynomials.

1. Consider ax’ + bx+¢>0
Letax2+bx+c=a(x—cx) x-P)
Leta<p
Case(i) : Ifx<athenx—-a<0& x-p<0
S (X=—a)(x-p)>0
Case (ii): Ifx>Bthenx—a>0 &x-p>0
S (X=—a)(x-p)>0
Hence If (x—a) (x— ) > 0then the values of x lies outside a. and .

2. Consider ax’ + bx+c<0
Letax2+bx+c:a(x—a) x=B);o,peR
Let a<Bandasoa<x<p
Thenx—a>0andx-p<0
S (X=a)(x=B)<0
Thusif (x—a) (x— ) <0, then the values of x lies between o and 3

Method: 111

Working Rulesfor solving quadratic inequation:

Step:1 If the coefficient of x° is not positive multiply the inequality by — 1.
Note that the sign of the inequality is reversed when it is multiplied
by a negative quantity.

Step: 2 Factorise the quadratic expression and obtain its solution by
equating the linear factorsto zero.

Step: 3 Plot the roots obtained in step 2 on real line. The roots will divide
therea linein three parts.

Step: 4 In the right most part, the quadratic expression will have positive
sign and in the left most part, the expression will have positive sign
and in the middle part, the expression will have negative sign.

Step: 5 Obtain the solution set of the given inequation by selecting the
appropriate part in 4

Step: 6 If the inequation contains equality operator (i.e. <, =), include the
roots in the solution set.
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Example 7.26: Solve the inequality X2 —Tx+6>0

Method I:
Solution: X —TX+6>0
-  (x-1)(x-6)>0 [Here b? — 4ac = 25 > (]
Now use Genera rule-2 :
Eitherx-1>0,x-6>0  (or) x-1<0,(x-6)<0
=>x>1, x>6 =>X<1,x<6
we canomitx>1 we can omit X < 6
= X>6 = x<1
X e (-, 1)U (6, )
Method I1:

X2 —Tx+6>0
= (x-1)(x-6)>0
(We know that if (x—a) (x— B) > 0 then the values of x lies outside of (o)
(i.e) xliesoutsideof (1, 6)
= Xe (-0, 1)U (6, )
Method I11:
X2 —7x+6>0
= (xX-1)(x-6)>0
On equating the factors to zero, we see that x = 1, x = 6 are the roots of
the quadratic equation. Plotting these roots on real line and marking positive
and negative aternatively from the right most part we obtain the corresponding

number line as
AL g QLLULLLLLLLLLLLILIIIIL
6

— oo 1

We have three intervals (— «, 1), (1, 6) and (6, «). Since the sign of
(x—1) (x— 6) is positive, select the intervalsin which (x — 1) (x — 6) is positive.

oo

= x<1 (or) x>6

=  Xe(—0,1) U (6, )
Note : Among the three methods, the third method, is highly useful.
Example 7.27: Solve the inequation — X2 +3x—2>0

Solution :
X +3x-2>0 = —(®-3x+2)>0
= X2 —3x+2<0
= x-1)(x-2)<0

28



On equating the factors to zero, we obtain x = 1, x = 2 are the roots of the
guadratic equation. Plotting these roots on number line and making positive and
negative alternatively from the right most part we obtain the corresponding
numberline as given below.

) (=) (+)
LU g @LLLLLLLLLLLLLILILIL,

—_ 00 fore]

1 2

The three intervals are (— o, 1), (1, 2) and (2, «). Since the sign of
(x—1) (x— 2) isnegative, select theinterval in which (x — 1) (X — 2) is negative.

Xxe(1,2
Note: We ca:1 sol)ve this problem by the first two methods al so.
Example 7.28: Solve: 4% -25>0
Solution: 4x*-25>0
= (2x-5)(2x+5)>0

. ) 5 5
On equating the factors to zero, we obtain x = 5.X=-5 ae the roots of

the quadratic equation. Plotting these roots on number line and making positive
and negative aternatively from the right most part we obtain the corresponding
number line as given below.
() (=) (+)
LU I g D2772777277727770777 N
o -5 512 =

; 5 5
Thethreelntervalsare(— 00, —%, (_ > % (E’ OO)

Since the value of (2x — 5) (2x + 5) is positive or zero. Select the intervals in

which f(X) is positive and include the roots also. The intervals are (— o0, —%
and @ oo). But the inequality operator contains equality (=) also.
. The solution set or the domain set should contain the roots — g g

Thus the solution set is (~ oo, _—25 1u [ g )

Example 7.29: Solve the quadratic inequation 64x° + 48X + 9 < 0
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Solution:
B64x° + 48x + 9 = (8x + 3)°
(8x + 3)2 isaperfect square. A perfect square cannot be negative for real x.
.. The given quadratic inequation has no solution.
Example 7.30: Solve f(x):x2+2x+6 > 0 or find the domain of the function f(X)
X2+ 2X+6>0
(x+1) 24550
Thisistruefor all valuesof x. .. The solution setisR

Example 7.31: Solve f(x) = 2x% — 12x + 50 < 0 or find the domain of the
function f(x).
Solution:

2% -~ 12x+50<0

2(x% — 6x + 25) < 0

X2 —6x+25<0

(- 6x+9)+25-9<0
(x-3)2+16<0

Thisis not true for any real value of x.

.. Given inequation has no solution.
Some special problems (reducesto quadratic inequations)

X+1
Example 7.32: Solve: 1" 0, x=1
Solution:
X+1
x—l>O
Multiply the numerator and denominator by (x — 1)
(x+1)(x=1)
= 2
(x-1)
= (x+1)(x-1)>0 [* (x—1)2>0foral x= 1]
(+) -) (+)
77777V TIIIITIIIIITIAN @LLLLLLLLLLLLLLLLLLLE
. i > =

Since the value of (x + 1) (x — 1) is positive or zero select the intervalsin
which (x + 1) (x— 1) is positive.
Xe (—w,—1) u(l, o)
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x-1 X—3
Example 7.33. Solve: Ix+5 < Ix_3
. x-1 Xx=3
Solution: 2x+5 <1x_3
x—=1 Xx-3
=  4x+5 " 4x-3°
(X=1D) (4x-3)—(x—3) (4x+5)
(4x + 5) (4x - 3)
18
= @5 @x-3 =0
= (4x+5)(4x-3)<0 sncel8>0

0 (Here we cannot cross multiply)

<0

. . =5 3
On equating the factors to zero, we obtain x ==~ , X =7, aretheroots

of the quadratic equation. Plotting these roots on number line and making
positive and negative aternatively from the right most part we obtain as shown
in figure.
(+t) (=) (+)
] QLU I g,
- —5/4 34
Since the value of (4x + 5) (4x — 3) is negative, select the intervals in

(=]

which (4x + 5) (4x — 3) isnegative. .. X € (_745 , %

-3+
Example 7.34: If x € R, provethat the range of the function f(x) :;27)(2 T g); +j

<L
Is [7, 7}
Solution:
_X-3x+4
Lety =+ 3x+4
(P +3x+4)y = x°—3x+4
= xz(y—1)+3x(y+1)+4(y—1) = 0
Clearly, thisisaquadratic equation in x. It isgiven that x isreal.
Discriminant > 0
9y+1)2-16(y-1)2>0
[3(y+ 1] - [4y-D]* 20
[3y+D+4y-1] [3y+1-4y-1] 20
(7y-1) (-y+7)=0

Ly ddy

31



-(7y-1)(y-7 20
(ty-1)(y-7 <0
) =) )

=
=

— oo P

L ®
-1/7 7

The intervals are (— o0, i), (:—L, 7) and (7, o). Since the vaue of

(7y — 1) (y — 7) isnegative or zero, select theintervalsin which (7y — 1) (y - 1)

. . . 1
is negative and include the roots > and 7.

)

)

©)
(4)

©®)

(6)
()

—3x+
Lye [1, } i.e. the value of % Ii&ebetween% and 7

i.e. therange of f(x) is [% 7}
EXERCISE 7.1
If f,g:R— R, defined by f(x) =x+ 1 and g(X) =2,
find (i) (fog) (x) (i) (gof) (x) ~ (iii) (fof) (x) (iv) (gog) (x) (v) (fog) (3)

(vi) (gof) (3)
For the functionsf, g as defined in (1) define

O F+g 9 (i) G 6 (i) (fg ) (V) ([F-9 ) (v)(d) K

Letf: R — R bedefined by f(x) = 3x + 2. Find f * and

show that fof % = fof = |

Solve each of the following inequations:

(i) ¥°<9 (i) x°-3x-18>0  (ii)4-x°<0

(V)% +x-12<0 (V) 7X°-7x—8420  (Vi)2x°—3x+5<0
(vii) 2= Lo 1x20 (0 555 > as

12 <2, x=1 (viii) ZX_

If X is real, prove that % cannot have any value between

5and9.

If xisreal, prove that the range of f(x) = ;z% is between E 3}

If xisreal, prove that 2 Ii&ebetween—l—l:L and 1.

5x+9

32



8. DIFFERENTIAL CALCULUS

Calculus is the mathematics of motion and change. When increasing or
decreasing quantities are made the subject of mathematical investigation, it
frequently becomes necessary to estimate their rates of growth or decay.
Calculus was invented for the purpose of solving problems that deal with
continuously changing quantities. Hence, the primary objective of the
Differential Calculus is to describe an instrument for the measurement of such
rates and to frame rules for its formation and use.

Cdculus is used in calculating the rate of change of velocity of a vehicle
with respect to time, the rate of change of growth of population with respect to
time, etc. Calculus also helps us to maximise profits or minimise losses.

Isacc Newton of England and Gottfried Wilhelm Leibnitz of Germany
invented calculus in the 17th century, independently. Leibnitz, a great
mathematician of all times, approached the problem of settling tangents
geometrically; but Newton approached calculus using physical concepts.
Newton, one of the greatest mathematicians and physicists of all time, applied
the calculus to formulate his laws of motion and gravitation.

8.1 Limit of a Function

The notion of limit is very intimately related to the intuitive idea of
nearness or closeness. Degree of such closeness cannot be described in terms of
basic algebraic operations of addition and multiplication and their inverse
operations subtraction and division respectively. It comesinto play in situations
where one quantity depends on ancther varying quantity and we have to know
the behaviour of the first when the second is very close to afixed given value.

Let uslook at some examples, which will help in clarifying the concept of
alimit. Consider the function f : R —» R given by

f(x) = x+4.

Look at tables 8.1 and 8.2 These give values of f(x) as x gets closer and
closer to 2 through values less than 2 and through values greater than 2
respectively.

x | 1| 15 [ 1.9 [ 1.99 | 1.999
f) | 5 | 55 | 59 | 599 | 5.999

Table8.1

X 3 25 | 21 [ 201 | 2.001

f(x) 7 65 | 61 | 601 | 6.001
Table8.2
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From the above tables we can see that as x approaches 2, f(x) approaches 6.
In fact, the nearer x is chosen to 2, the nearer f(X) will be to 6. Thus 6 is the
valueof (x+ 4) asx approaches 2. We call such avaluethelimitof f(x) as  x

lim lim
tends to 2 and denote it by X—3 D f(X)=6. In this example the value X—3 2 f(x)

;
coincides with the value (x + 4) when x = 2, that s, ., () =f(2).

Note that there is a difference between ‘x — 0" and ‘x = 0’. X —> 0 means
that x gets nearer and nearer to 0, but never becomes equal to 0. x = 0 means
that x takes the value 0.

. . . -4 _ _

Now consider another function f given by f(x) = ﬂ . This function
is not defined at the point x = 2, since division by zero is undefined. But f(X)
is defined for values of x which approach 2. So it makes sense to evaluate

lim x*-4 _ _ ' o
X2 (X=2) Again we consider the following tables 8.3 and 8. 4 which give
the values of f(x) as x approaches 2 through values less than 2 and through

values greater than 2, respectively.

X 1 15 1.9 1.99 | 1.999

f(x) 3 35 3.9 3.99 | 3.999
Table 8.3

X 3 25 2.1 2.01 | 2.001

f(x) 5 45 41 | 401 | 4.001
Table8.4

lim
We see that f(X) approaches 4 as x approaches 2. Hence X—3 D f(x) = 4.
-4 (x+2) (x—2)
x-2) = (x-2
In this case a simple way to calculate the limit above is to substitute the
value x = 2 in the expression for f(x), when x = 2, that is, put x = 2 in the
expression x + 2.

Y ou may have noticed that f(x) = =X+2,if x#2.

Now take another example. Consider the function given by f(x =:—)t . We

lim
see that f(0) is not defined. We try to calculate X—5 0 f(x). Look at tables 8.5
and 8.6



X 12 1/10 1/100 | 1/1000
(%) 2 10 100 1000
Table 8.5
X ~12 | —110 | -1/100 | - 1/2000
(%) —2 - 10 ~100 | -1000
Table 8.6

We see that f(X) does not approach any fixed number as x approaches 0. In

lim
this case we say that 50 f(xX) does not exist. This example shows that there

X
are cases when the limit may not exist. Note that the first two examples show
that such a limit exists while the last example tells us that such a limit may not
exist. These examples lead us to the following.

Definition
Let f beafunction of areal variable x. Let ¢, | be two fixed numbers. If f(X)
approaches the value | as x approaches ¢, we say | is the limit of the function

o . lim B
f(x) asx tendsto c. Thisiswritten as, Cf(x) =1.

Left Hand and Right Hand Limits

While defining the limit of a function as x tends to ¢, we consider values of
f(x) when x is very close to ¢. The values of x may be greater or less than c. If
we restrict x to values less than ¢, then we say that x tends to ¢ from below or
from the left and write it symbolically asx — ¢ — 0 or simply x — ¢_. The limit
of fwith thisrestriction on x, is called the left hand limit. Thisiswritten as
lim
Lf(c) =y c. f(x), provided the limit exists.

Similarly if x takes only values greater than c, then x is said to tend to ¢
from above or from right, and is denoted symbolically asx - c+0or x — c,.
The limit of f is then caled the right hand limit. This is written as

lim
Rf(c) =y _ Cy f(x).

i
It is important to note that for the existence of X :n c f(x) it is necessary

i
that both Lf(c) and Rf(c) exists and Lf(c) = Rf(c) = xf' c f(X). These left and

right hand limits are also known as one sided limits.
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8.1.1 Fundamental resultson limits

Q) Iff(x) = kforallxthen I. f(x) k.

I
(2) If f(x) =xfor al x, thenx_)C
(3) If fand g aretwo functions possessing limits and k is a constant then

() X“_TC kf(x) = k
.
(i) o 100+ g0o]

|-
Qi) o (10— (9]

f(x) = c.

x> 09
lim lim
NS RN

lim lim
x—c =y ¢ 9K

lim lim
x> 100y ¢ 909

;
), [0 9]

lim f(x lim lim
M x5 [J&)ﬂ x— ¢ ') x—sc 90, 9(x)=0
lim lim
(vi) If f(x) < g(x) thenx_>C f(x) < X C g(x).
Example 8.1 :
' lim x2
Find Xx—1 x—1 |f it exists.
Solution:

Let us evauate the left hand and right hand limits.
Whenx — 1 ,putx=1-h,h>0.

lim -1 lim (1-h?-1 lim 1-2h+h?-1
Xx—>1- x-1 "h->0 1-h-1 ~“h->0 -h
lim lim i
= 0@-N=p @y oM =2-0=2
Whenx — 1, putx=1+h,h>0
lim -1 lim (@+h?-1 lim 1+2h+h°-1
X>1+ x—1 h—>0 1+h-1 h—0 h
lim i lim
= M een=""o @+ T ®
=2+0=2,using (1) and (2) of 8.1.1

Then

Then
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So that both, the left hand and the right hand, limits exist and are equal.
Hence the limit of the function exists and equals 2.

. lim x*-1
("e')x—>1 x-1
Note: Sincex # 1, division by (X — 1) is permissible.
lim x*-1 _ lim
x>l x—1 x—1 XFD=E2
Example 8.2:Find the right hand and the left hand limits of the function at x= 4

[ x=4
f(X)={

=2

w_4 [orx=4

0,forx=4
Solution:
Now, whenx >4, |[x-4|=x-4

lim |x-4] lim x-4 lim _
X—=>4+ x-4 X4+ x—4_X—>4(1)_l

Againwhenx<4, |x—4|=-(x-4)
i lim  _x— lim
“(x=4) _ Cp--1

lim
Therefore y _, 4 () =x_4_ (x—4) ~x—>4_
Note that both the left and right hand limits exist but they are not equal.

lim B
Therefore | NV f(x)=

lim lim
e RMA)=, 4, (0% 4 10)=LIA).

Example 8.3
, lim  3x+|x| .. .. .
Find, _, o 7X—5 x| ’ if it exists.
Solution:
lim  3x+|x lim  3x+x .
RO =250, 75 8] “x>04 75 (10ex>0Ix1=¥
lim  gx lim
x>0, 2x ~ x>0, 272
lim  3x+|x lim 3X—x .
Lf(O):X_>0_ T_Sl&l‘l:x_)()_ 7)(_—5(_)() (sincex<0,|x|=-X)
lim 2x lim N 1
“x—>0_ 12x = x—>0_ (E) =6 -

Since Rf(0) = Lf(0), the limit does not exist.
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Note: Letf(x) =g(X)/ h(X) .
9(9
Suppose at X = ¢, g(c) = 0 and h(c) =0, then f(c) = 0 -
In thi M o d i
nthiscase, . . (X) does not exist.

lim 2+ 7x+11
Example 8.4 : Evaluar[ex_>3 2 9

Solution:
HTx+11 9x)
Letf()="—5"c=" . Thisisof the form f(x) =iy

where g(x) = X2+ 7x + 11 and h(x) = X2 - 0. Clearly g(3) = 41 = 0 and
h(3) =0.

lim x°+7x+
Therefore f(3) =%£(% = % .Hencex_)3 %

lim 3[1+x—1

Example 8.5: Evaluate X—> 0 X

does not exist.

Solution:
lim T+x-1 lim (1+x-1) (1+x+1)
x—0 X “x—>0 x(\1+x+1)

_lim 1+x-1 _ lim 1
x>0 x(\[T+x+1) x>0 (I+x+1)

lim
x50 @® 1 g
xlino JTexe1) ViT1 2

8.1.2 Someimportant Limits
Example 8.6 :

For }%X‘ < 1 and for any rational index n,

lim x"-a"
A~ n-1
Xxsa x_a - (a=0)
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Solution:

AX
Put Ax=x-asothat Ax > 0asx— a and!g <1.
Ax\ "
n 24 n
Therefor X'—a"  (@a+a)"-a" 2 (1+a) 4
eretore X—a AX - AX

Applying Newton's Binomia Theorem for rational index we have
(1029 =10 () () Q&) Q) (6 (5 -
x'—a" an[lJr(D (%X) +(9 (%X)er +(D (ATaX> r+ }_an

T x—-a AX
KD a1 Ax+ (2) a2 (AX 2+...+(D a" (A" + ... J
= AX
= (D a“’1+@) a”’Z(Ax)+...+(?) " A T+
M _n

(]) a" ™1 + terms contai ning Ax and higher powers of AX.

Since AX=X-a, X —> ameans AX — 0 and therefore
lim x"-a" lim M\ p_q, lim
X—>a x-a AXx—0 (])a TAx—>0
(terms containing Ax and higher powers of AXx)

:G) a" 1+0+0+... =na"? since(D:n.

Asanillustration of thisresult, we have the following examples.

lim x-1
Example 8.7: Evauate o1 1

. . lim X3—1 _ 3-1 _ 2 _
Solutlon.x_>1 1 =3(1) =3(1)°=3
lim g1+x)4—1

Example 8.8: Find X—> 0 >

Solution: Putl+x=tsothatt—>l1asx—0
lim @+x*-1  lim t*-1° _a1)?=

Xx—0 X t->1 t-1
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lim x"-2"

X—>2 x-2 = 32

Example 8.9: Find the positive integer n so that

lim x'-2" -1

Solution: Wehavex_>2 _ 2

2" 1= 32 = 4x8=4x28 =4x241

Comparlng on both sides we get n =4
lim s
Example 8.10: 00 %9 =1
Solution:

Wetakey = &9_ This function is defined for al 6, other than 6 = 0, for
which both numerator and denominator become zero. When 6 is replaced by

— 0, the magnitude of the fraction S'Te does not change si nceJ_—62 sg 0 .

Therefore it is enough to find the limit of the fraction as 6 tends to O through
positive values. i.e. in the first quadrant. We consider a circle with centre at
O radius unity. A, B ae two points on this circle o
OA = OB = 1. Let 6 be the angle subtended at the centre by the arc AE.
Measuring angle in radians, we have sind = AC, C being a point on AB such
that OD passes through C.

A
cosH =0C, 6 = arc AB, [OAD =90° 1
IntnangIeOAD, AD =tan0. o g ClE -
Now length of arc AB = 20 and length
of the chord AB = 2 sino
sum of the tangents= AD + BD = 2 tanf ) B
Fig. 8.1

Since the length of the arc is intermediate between the length of chord and
the sum of the tangents we can write 2 sin 6 <20 < 2 tan®.

0 1 sind
Dividing by 2sin6 , wehave 1<—— sno S coso O 1> 0 > cos 6

But as® — 0, cos 0, given by the distance OC, tendsto 1

That is, cos=1.

lim
"0 >0
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lim sino .
Therefore 1 > 050 o ° 1, by 3(vi) of 8.1.1

That is, the variable y = %9 always lies between unity and a magnitude
lim s
sin 0 -1

tending to unity, and hence 00 o

The graph of the functiony = %e isshowninfig. 8.2

YJL

X
m 2n 3n
Y
Fig. 8.2
lim 1-cos6
Example8.11: Evaluate  _, 02
Solution:
20 L2 Q) 0\ 2
1-cosg 29732 1902 1[92
0° 0> 2 (9@ 2| 0
U
smg
) [ 2 lim sna
If6—>0,a—2alsotendst00ande 08 a0 o 1 and
2
AW .0\ 2
A lim 1-cos®  lim 1[3"2| 1| 1im 32| 1 2ol
M50 g2 0502[ 9 | 2|0650 09 | 2772
2 2
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lim sin X
Example 8.12: Evaluate y -0, W

Solution:
lim sin X : lim Sin X
Xx—>0, \x “Xx—=>0,\ x Vx
||m Sinx ||m
=x—>0+( X )-X—>0+(\/;()=1X0=0-

Note: For the above problem left hand limit does not exist since~/x is not real
for x<O.

lim s
Example 8.13: Compute Sin

X— 0 sinax o0
Solution:
sin Bx lim (sin x)
lim sinpx _ lim i Bx _Bx—>0 Bx
X—>0 sinox ~ x—0 sinox lim (sinax)
& ax %y 500 ax
lim (s_ma)
Po50l0) px1 B sinced=px—0asx—0

lim (sj y) T axl o ady=ox—>0asx—>0
OLy—>0 y

lim 285+ sinx — 1
X—> /6 25in’ - 3sinx+ 1

Example 8.14: Compute

Solution:
We have 2§n’x+snx—1=(2snx—1) (Snx+ 1)
25in2x—3sinx+l:(Zsinx—l)(sinx—l)
lim in’x + sinx — lim inx — 1) (sin x +
Now 2sin“x+sinx—1 (2sinx=1) (sinx+1)

X 1/6 2gn2x—3sinx+1  X— /6 (2snx— 1) (Snx— 1)
_lim snx+1
T X—>nbsnx-1

_sinm/6+1 _ 1/2+1
T snn/6-1  1U2-1

(ZSinx—lthforx—)%)

= -3.
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lim -1

Example 8.15: x>0 x - 1.
n
Solution:  Weknow that € = 1 +— +ﬁ+...+x— +..
L 2 [n
2 n
andso 1= + X 4y
L |2 [n
ie ex_:I'—i+i+ + n—1+
e — TMEIS . ..
(- x=0, division by x is permissible)
lim -1 _1 _ 1
x>0 X _Ii -
lim  &-¢
Example 8.16: Evaluatex_>3 x_3 "
. . &=é
Solution: Consider x_3 Puty=x-3. Theny > 0asx— 3.
Theres lim &-¢ lim &*%:¢&  lim &.¢-¢
erelore v 53 x-3 “y—>0 y “y->0 y
lim &-1
-3 e-1 _3_,_-23
=€ y,0 vy =e’x1=¢€.
lim & —snx-1
Example 8.17: Evaluatex 50 X
Solution:
N g€ -snx-1 _ (ex—l) (sinx)
ow X - X U X
lim  &-snx-1 _ lim (ex—lj lim (sinx) _ _
andso , g X “x—>0\ X _xao(x)‘l_l‘o
lim *_1
Example 8.18: Evaluatex 50 tanx
Solution: Puttanx=y. Theny—0 asx—0
lim gaX_1 lim -1
Therefore X—0 tanx T y—>0 vy =1
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lim log(1+x) _ 1

Example 8.19: X—0 X
2 3
. X X
Solution: Weknow that log, (1+x) =7 —-% t3 - .
loge (1 +X) X X2
- x =1—§ 3o
lim 100e(1+X)
Thereforex 50 X =1.
Note: logx meansthe natural logarithm logex.
_ lim  log x
Example 8.20: Evalua*tex_>1 Y_1 -

Solution; Putx—1=y. Theny—> 0asx— 1.
lim logx _ lim log(l+y)
Therefore x>1x-1-y—0 y
=1 (by example8.19)

Examplegoy M &1 >0
xample821: .o =5 =loga a

Solution: We know that f(x) = €91 andso a* = 09" = gloga
a‘—1 gl

Therefore = — = xloga x log a
Now asx— 0,y=xloga— 0
lim a-1 lim ¢&-1 lim (-1
x>0 X =y—>0 y ><Ioga=|ogay_>0 (T)
=loga. (since X“_TO%=1)
lim 5%—6*

Example 8.22: Evaluate X — 0 X

Solution:
lim 5-6° Ilim (B*-1)-(6"-1)
Xx—0 X x>0 X

_lim (5"—1) lim (6"—1)
“X->0\ X J x>0\ X

= IogS—IogG=Iog(g) .




lim 3*+1-cosx-—¢€*

Example 8.23: Evaluate X

-0 X
Solution:
lim 3+1-cosx—€& lim (3*-1)+(1-cosx)— (- 1)
Xx—>0 X x>0 X
_lim (3X—1) lim (l—cosx) lim (e?‘—l)
“x500 x ) Txs0 X x>0\ X
Cogzs M 2sin® x/2
=109 X—>0 X -
Cogzs M Z(sinXIZ)Z
=093+, ,02 Ux2 ) ~
1 lim lim (sinx/2\2
_|093+2 x—>O(X)x—>O( x/2 ) -1

1
=log3+5x 0 x 1-1=log3-1.
Someimportant limits:

f
(1)X|—r>noo
(2))('21o (1+x)Y = e [by takingx:;llin(l)]

lim K) X
@y (175) =
Note: (1) Thevaueof elieshetween2& 3 i.e, 2<e<3

lim X
(2)X_>OO (1+)—1() =e istruefor al rea x

X
(1 + )—1() exists and we denote this limit by e

hus, " ( 1)X = efor all f
Thus, . \1+5) =e or al real values of x.
1 1 1 1 1 . .
Note that e=e1=l+ﬁ tqr tor tyrttgt ... Thisnumber eisaso
known as transcendental number in the sense that e never satisfies a polynomial
(algebraic) equation of the form agx" + a,x" ~ e+ a, x+a =0.

| _ lim ( ;)?“
Example 8.24. Computex_)Oo 1+X .

45



X

3x X X X
1 1 1

) = (143 (143 (143) oo

lim % lim 1 * 1~ 1\~

X—>oo(1+x) :x—>oo(1+§> '(1+§) '(1+§)

lim % lim X lim 1\ * 3
X —> o0 (1+X) X > o (1+X) 'X—)oo(1+X) —eee=¢g.

Solution: Now (1 +

[E

Example 25 Bvaute, '™ (223"
xample8.25: Evaluate, | (7
Solution:
lim  (x+3)*%  lim (x_1+4\x-D+4
X —> o x—l) T o X—>w | x-1
lim x-1)+4
S )
X —> 0 X—
lim 4
= Y —> o0 (1+)—/) (vy=X—1> 0 asx— )
(1) (1)
+
Yy —> ©
lim £Y  lim N4
y — o (“y) Yy o (1+Y) =e. 1=e

. lim 3secx
Example 8.26: Evd uate /2 (1 + cox) .

. 1
Solution: Put cosx =y . Now y— o asx— %

. . 3y . y
lim 3secx _  liM ( ;) _lim [( l)}
X_>n/2(l+cosx) Ty 1+y Ty l+y
3
)] -
Tly—>w +y =€

lim 2% _

Example 8.27. Evauate x>0 J1ix-1

Solution :

lim 2-1 lim 21 ( )
x—0 \/1+x—1 x>0 (1+x- 1) V1+x+1
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lim 2—1 lim
x>0 X x50 ("1+X+1)

lim a*-
=log2.(1+1) ( X_)Oaxl=loga)
=2log2=log4.

xample 8.28: Evaluate, ', .

Solution:
Put sin’lx:y.Thenx:sinyandy—>0asx—>0.
Now lim 3[1+x—3[1—x _ lim (1+x)-(1-X ( 1 )
x>0 gnlx x>0 gl I+ x+4[1-x
lim 2siny lim 1

Ty-0 Yy y-0 \J1+siny++/1-siny

5 lim (siny) 1
S Ty->00y ) (y1¥0+4/1-0
1
—2><1><2—1
EXERCISE 8.1
Find theindicated limits.
lim x2+2x+5 lim X—2
W xs1 24 @ x-2_ ooy
3 lim gx+h)2—x2 4 lim xM-1
®) h—>0 h (4) Xx—>1 x-1
- lim ~2x+1-3 ©) lim /X% +p°—
X—4 «[X_z_\/é x—>0 X2+q2—q
. lim mllx—mlza 8 lim 3x—1
()x—>a X—a (8) x—>1 4/x-1
lim \J1+x+xX-1 lim  sin® (x/3)
® v 0 X 19 y o0 X2
lim sin(a+Xx)—sin(a-x lim log (1+ ax
1y [y SHERESIEZ gy I e e
lim \n+S
@ 5, (149
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X3 — 27
X-3

(14) Evaluate the left and right limits of f(x) = at x = 3. Does the limit

of f(x) as x — 3 exist? Justify your answer.
lim x'—-3"
Xx—>3 x-3

(15) Find the positive integer n such that = 108.

lim & ™
(16) EvaIuateX_>0 X —SnX

numerator.
a+b lim
X2 — 1 "X —> O

_Hint : Take & or €™ as common factor in
17) 1Ff(x) = 0=1ad.™ fx=1
(17) 1ff(x) = (¥=1land,  f(x)=1

then prove that f(—2) =f(2) = 1.
lim 1x] q lim 1x]

(18) Evaluatex_>o_ x ad o4 X
lim  |x]
What can you say about x>0 X ?
lim a*-b* lim 5*X_6%

(19) Compute , & b>0.Henceevauate

Xx—>0 X x—>0 X
(20) Without using the series expansion of log (1 + X),
lim log(1+x) _
x—0 X =1
8.2 Continuity of a function
Let f be afunction defined on an interval | = [a, b]. A continuous function
on | is a function whose graph y = f(x) can be described by the motion of a
particle travelling along it from the point (a, f(a)) to the point (b, f(b)) without
moving off the curve.

prove that

Continuity at a point
Definition: A function fissaid to be continuous at apoint ¢, a<c<b, if
lim
s ¢ 100 =1()

lim
A function f is said to be continuous from the left at ¢ if X5 C — f(x) = f(c).
lim
x>+ 100
function is continuous at ¢ if and only if it is continuous from the left as well as
from the right.

Alsofis continuous fromtheright at c if =f(c). Clearly a

48



Continuity at an end point

A function f defined on a closed interval [a, b] is said to be continuous at

the end point aif it is continuous from theright at a, that is,

lim
x—a+
Also the function is continuous at the end point b of [a, b] if
lim

X—>b -
It isimportant to note that a function is continuous at a point c if

X) = f(a) .
f(x) =f(b).

¢
(i) f is well defined at x = ¢ i.e f(c) exists. (i) o

X5 C f(x) exists, and

.o lim
(iii) X5 C f(x) = f(c).
Continuity in an interval

A function f is said to be continuous in an interval [a, b] if it is continuous
at each and every point of theinterval.
Discontinuous functions

A function f is said to be discontinuous at a point c of its domain if it is not
continuous at c¢. The point ¢ is then called a point of discontinuity of the
function.

Theorem 8.1: If f, g be continuous functions at a point ¢ then the
functions
f+g, f- g fg ae dso continuous at ¢ and if g(c) = 0 then f / g is also
continuous at c.
Example 8.29: Every constant function is continuous.

Solution: Let f(xX) = k be the constant Y4
function.
Let c be apoint in the domain of f. y=k k>0
Then f(c) = k.
lim lim o
Alsox_)C f(x)—X_>C(k)—k, >
lim
Thusx e f(x) = f(c).

Hence f(X) = k is continuous at c. Fig. 8.3
Note : The graph of y = f(X) = k is a straight line parallel to x-axis and which
does not have any break. That is, continuous functions are functions, which do
not admit any break in its graph.

49



Example 8.30: The function f(x) = X", x € R is continuous.
Solution. Let x5 be apoint of R.

lim lim n lim
Then X % f(X) :x—>x0 (X):x—>x0 (x. X ... nfactors)
lim lim lim

X %, (X)-x—>x0 (x) X X (X) ... (nfactors)
X9Xg - %o (n factors) = x,"

|
Xy - Thus X_I)mXO f(X) = (%)) =%,

= f(x) = X" is continuous at X,

Also  f(x,)

Example 8.31: The function f(x) = kx" is continuous where k € R and k = 0.
Solution. Let g(X) = k and h(x) = x".

By the example 8.29, g is continuous and by example 8.30, h is
continuous and hence by Theorem 8.1, f(x) = g(x) . h(x) = kx" is continuous.
Example 8.32: Every polynomial function of degree n is continuous.

”‘2+...+an_1x+an,a0¢0bea

Solution. Let f(x) = ax" +a; X"~ 1 aX
polynomial function of degreen.
Now by example 8.31 aix', i=0,1,2, ... nare continuous. By theorem 8.1

sum of continuous functions is continuous and hence the function f(x) is
continuous.
Example 8.33: Every rational function of the form p(x) / q(x) where p(x) and
g(x) are polynomials, is continuous (g(x) = 0).
Solution. Let r(x) = p(x) / q(X) , q(x) = 0 be arationa function of x. Then we
know that p(x) and q(x) # O are polynomials. Also, p(x) and g(x) are
continuous, being polynomials. Hence by theorem 8.1 the quotient p(x) / q(x) is
continuous. i.e. the rational function r(x) is continuous.
Results without proof :
(1) The exponentia function is continuous at all points of R.
In particular the exponential function f(x) = € is continuous.
(2) The function f(x) = logx, x > 0 is continuous at all points of R, where R*
isthe set of positive real numbers.
(3) Thesinefunction f(x) = sinx is continuous at al points of R.
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(4) The cosine function f(x) = cosx is continuous at all points of R.

Note : One may refer the SOLUTION BOOK for proof.
Sin2x
. . — , x=0
Example 8.34: Isthe function f(x) = { X
1. whenx=0

continuous at X = 0?

Justify your answer.
Solution. Note that f(0) = 1.

lim lim sin2x sin 2X
Now X—> 0 f(x) = x>0 X (-.-forx;t 0, f(x) =T)

lim 2(§n2x>_2 lim (SihZX)
x—0 2X ) T x—>0\ 2

lim sin 2X
=2 5050 ( o ) =21=2.
lim
Sincex_) 0 f(x) =2 = 1 = f(0), the function is not continuous at x = 0.

That is, the function is discontinuous at x = 0.
Note that the discontinuity of the above function can be removed if we define

sin2x w20 lim
f(x) = 2X ’x:O so that for this function 'y f(x) = f (0).

Such points of discontinuity are called removabl e discontinuities.
Example 8.35:;. Investigate the continuity at the indicated point:

sin(x—c) .
f(x)={ X—C If x#c ax=c
0 ifx=c
Solution. We havef(c) =0.
lim _ lim sn(xx-c)_ lim sinh _
Now)(_mf(x)—)(_)C x—c —h—o0 h (- h=x-c— 0asx—C)

=1.
lim
Since f(c)=0=1= X—>C f(x) , the function f(x) is discontinuous at X = c.

Note: This discontinuity can be removed by re-defining the function as

B sn(x-¢ if x#c
f)=9 x-c
1 ifx=c

Thus the point x = ¢ is aremovable discontinuity.
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X2 ifx<0

Bx—4 ifO<x<1

Example 8.36: A functionfisdefinedonby f(xX) = > )
4x“—-3x if1<x<2

IX+4 ifx=>2
Examine f for continuity at x=0, 1, 2.
Solution.
. lim lim
0 oo 0=, o _(—d=0
lim i
X—>0+f(x):)(_)0+ (5x-4)=(5.0-4)=-4
S lim ¢ lim . ) isd _ “o
nce o _ 0=, g4 ¥ f(x) isdiscontinuousat x =
lim lim
(i) x1 X =x_1 (x-4) =5x1-4=1
lim lim 9 5
xo1, f(W=x51, -39=4x1"-3x1=1
Also f(1) =5x1-4=5-4=1

lim lim
Since  y_,1 f(x) =x>1, f(x) = f(2), f(x) iscontinuousat x=1.
lim lim 2
(iii) X_)2_f(x):x_)2_(4x - 3X)

=4x22-3x2=16-6=10.

lim lim
and X_)2+f(x):x_>2+(3x+4):3x2+4:6+4:10.
Also f(2)=3x2+4=10.

I

Sincef(2) = X T:Z f(x), the function f(x) is continuous at x = 2.

Example 8.37: Let [ x] denote the greatest integer function. Discuss the
continuity at x = 3 for the function f(x) = x —.xJ, x> 0.

. lim lim
Solution. Now X_)3_1‘(x)—x_)3_x—|_xJ—3—2—1,
lim lim
X—>>3 + f(X)=X_>3 + X_LXJ =3—3=0,
and f(3) =0.
li li
Notethat {(3)= 5 , 1)=, . 5 _ 0.

Hencef(x) = x - x] isdiscontinuousat x = 3.
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EXERCISE 8.2

Examine the continuity at the indicated points

)
&)
©)

(4)
©®)

(6)

()

-8
0=12_4 'fx¢2atx=2
3 ifx=2

f(X) = x—|x|ax=0
2xwhen0<x<1
f(x)={3whenx=l ax=1

dxwhen1<x<2
2x-1, ifx<0
09 = {2x+6,ifx20
Find the values of a and b so that the function f given by

ax=0

1,ifx<3
f(x) ={ax+b, if 3<x<5 iscontinuousat x=3andx=5
7, ifx>5
2
S, if0<x<1
Let f be defined by f(x) = 3
2¢-3x+%,if 1<x<2

Show that f is continuousat x=1 .
Discuss continuity of the function f, given by f(x) = [x — 1] + |x — 2],
ax=1and x=2.

8.3 Concept of Differentiation

Having defined and studied limits, let us now try and find the exact rates of

change at apoint. Let usfirst define and understand what are increments?

Consider a function y = f(x) of a variable x. Suppose x changes from an

initial valuex0 to afinal value Xq - Then the increment in X is defined to be the

amount of change in x. It is denoted by Ax (read as deltax).That is AX = X; — X,

Thusx1 = Xg + AX
If X increases then Ax > 0, sincex1 > Xg-

If x decreasesthen Ax < 0, since x; < X0
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As x changes from X, to x; = X, + AX, y changes from f(x;) to f(x, + AXx).
We put f(x) =y, and f(x, + AX) =y, + Ay. The increment in y namely Ay
depends on the values of x; and Ax. Note that Ay may be either positive,
negative or zero (depending on whether y has increased, decreased or remained
constant when x changes from x; to x,).

Ay
AX
rate of change of y with respect to x, as x changes from X, to X, + Ax. The

guotient is given by

If the increment Ay is divided by Ax, the quotient is called the average

Ay f(xg + AX) — f(Xg)
AX AX
Thisfraction is also called a difference quotient.

Example 8.38: A worker is getting a salary of Rs. 1000/- p.m. She gets an
increment of Rs. 100/- per year. If her house rent is half her salary, what is the
annual increment in her house rent? What is the average rate of change of the
house rent with respect to the salary?

Solution:

Let the salary be given by x and the house rent by y. Theny = % X. Also

1 1 A 100
Ax =100. Therefore, Ay=§ (X + AX) -3 x=7x =5 = 50.

Thus, the annual increment in the house rent is Rs. 50/-.

Then the required average rate of change is% = 15—0% :% .

1

Example 8.39: If y = f(x) = X find the average rate of change of y with respect

to x as x changes from x; to x; + Ax.

o _ 1
Solution: Ay = f(x; + Ax) — f(x,) Tx FAX X
oA
X (X +AX)
a -1
AX T X (X +AX)



8.3.1 The concept of derivative

We consider a point moving in a straight line. The path s traversed by the
point, measured from some definite point of the line, is evidently a function of
time,

s= f(t).

A corresponding value of s is defined for every definite value of t. If t
receives an increment At, the path s + Aswill then correspond to the new instant
t + At, where Asisthe path traversed in the interval At.

In the case of uniform motion, the increment of the path is proportional to

. . . A .
the increment of time, and the ratio Xst represents the constant velocity of the
motion. Thisratio isin general dependent both on the choice of the instant t and
on the increment At, and represents the average velocity of the motion during
theinterval fromttot + At.
_— . As . . . . . .
The limit of the ratio AL if it exists with At tending to zero, defines the
lim As lim As

velocity v at the given instant : v = At—0 AL That is At—0 Al is the
instantaneous vel ocity v.

The velocity v, like the path s, is a function of time t; this functionis called
the derivative of function f(t) with respect to t, thus, the velocity is the
derivative of the path with respect to time.

Suppose that a substance takes part in certain chemical reaction. The
guantity x of this substance, taking part in the reaction at the instant t, is a
function of t. There is a corresponding increment Ax of magnitude x for an

. . . AX S
increment of time At, and the ratio A dives the average speed of thereactionin

the interval At while the limit of this ratio as At tends to zero gives the speed of
the chemical reaction of the given instant t.

The above examples lead us to the following concept of the derivative of a
function.
Definition

The derivative of a given function y = f(x) is defined as the limit of the
ratio of the increment Ay of the function to the corresponding increment Ax of
the independent variable, when the latter tends to zero.
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dy

The symbolsy’or f(x) or dx e used to denote derivative:

dy ... lim Ay

dx ~ _f(x)_Ax—>0 AX
_lim f(x+ AX) - f(X)
T AX—>0 AX

It is possible for the above limit, not to exist in which case the derivative does
not exist. We say that the function y = f(x) is differentiable if it has a derivative.

Note.
€y

)

©)

f(Xg — AX) — (xp)

The operation of finding the derivativeis called differentiation.
Further it should be noted, the notation % does not mean dy + dx. It

simply means%%2 or d%( f(x), the symbol d% is an operator meaning
Ay

Ax stands

that differentiation with respect to x whereas the fraction

ay

for Ay + Ax. Although the notation gx suggests the ratio of two

numbers dy and dx (denoting infinitessimal changes in

y and x), it is really a single number, the limit of araIioéA))i( as both

the terms approach O.
The differential coefficient of a given function f(x) for any particular
. d

value of x say X, is denoted by f '(xp) or (a@ X = Xg
lim 0+ A% —f(xy)

AX— 0 AX

f(xg + AX) — f(x)

If the limit of  Ax exists when Ax — 0 from the right

hand side i.e. Ax — 0 through positive values alone, it is known as

right or progressive differential coefficient and is denoted by
lim  fOg+AX) —f(x))

AX—0 AX

and stands for

provided this limit exists.

f1(xg*) = = Rf{(x,) . Similarly the limit of

" Ax as Ax — 0 from the left hand side i.e. from negative

values aone is known as the left or regressive differential coefficient
and is denoted by

56



i f(xy — AX) — f(
f'(xo—):A)ilr_rl0 ToT Y ~Ax a = Lf' (xg) -

If Rf "(xy) = Lf '(Xy), then f is said to be differentiable at x = x; and the
common value is denoted by f '(xy). If R f '(xy) and Lf " (x,) exist but are
unequal, then f(X) is not differentiable at X, If none of them exists then al'so f(x)
is not differentiable at x.

Geometrically this means that the graph of the function has a corner and
hence no tangent at the point (xy, f(Xg)).

8.3.2 Slopeor gradient of a curve (Geometrical meaning of g)y()

In this section we shall define what we mean by the slope of a
curve at apoint P on the curve.

QD

Let P be any fixed point X
on acurve y = f(x), and let Q Y
be any other point on the same
cuve. Let PQ be the
corresponding secant. If we let
Q move aong the curve and
approach P, the secant PQ will
in general rotate about the
point P and may approach a
limiting position PT. (Fig 8.4).

Fig. 8.4
Definition

The tangent to a curve at a point P on the curve is the limiting position PT
of a secant PQ as the point Q approaches P by moving along the curve, if this
limiting position exists and is unique.

If Pyis (X Yp) and Pis (x5 + AX, Yy, + Ay) are two points on a curve
defined by y = f(x), asin Fig. 8.5, then the slope of the secant through these two
pointsisgiven by
_dy _ ot a9~ Tl

m(:tanOLO_Ax_ — AX

, Where oy is the inclination of the

secant.
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As Ax approaches 0, P moves along the curve towards P, ; and if f ' (x)
exists, the slope of the tangent at P is the limit of the slope of the secant Py P,
or

my = tanoy = A)ilio % =f'(x) = (%)x:xo where a is the
inclination of the tangent P,T and my is its slope. The slope of the tangent to a
curve at a point P is often called the slope of the curve at that point.

Thus, geometrically
we conclude that the
difference ratio (or the

difference coefficient) %

is the slope of the secant
through the point
PoXgYy) Whereas the
differential coefficient or
the derivative of y = f(X)
a x = X, is the slope or
gradient of the tangent to /A/
the curve at Py(X,,Yp)- %o

Fig. 85

Definition
If f(X) is defined in the interval X, < x <b, itsright hand derivative at X, is

| lim  fra-fog
defined as f'(xy+) = XX + — Ax provided this limit exists; if

f(X) isdefined in the interval a < x < x itsleft hand derivative at X is defined as

lim  f(xg—AX) —f(x)
(%)= X —> Xg— AX

provided this limit exists.

If f(x) is defined in the interval a < x < b, then we can write f'(a) for
f'(a+), and we write f'(b) for f' (b_)
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Relationship between differentiability and continuity.
Theorem 8.2 Every differentiable function is continuous.
Proof. Let a function f be differentiable at x = c. Then f(c) exists and

f’(c)= lim  f(x) — f(c)
X—>C X-c¢C

f(x) — f(c)

(x—0) , X#

Taking limit asx — ¢, we have

Now f(x) - f(c) = (x— ©)

li li f(x) - f
i 10} =, - T
lim lim  f(x) — f(c)

“xoc X0y s xc
lim p
(x-c).f(c)=0.f(c)=0.

“xoc '
Now f(x) = f(c) + [f(x) - f(c)] and Xlin c f(x) =f(c) + 0=1(c)

and therefore f is continuous at x = c.

The converse need not be true. i.e. a function which is continuous at a point
need not be differentiable at that point. We illustrate this by the following example.
Example 8.40: A function f(X) is defined in an interval [0, 2] asfollows:

f(x) = xwhen0<x<1
=2x-1whenl1l<x<2
Show that f(X) is continuous at 1 but not differentiable at that point.
The graph of thisfunctionis as shown in fig. 8.6
Thisfunctionis continuous at x = 1.
IV TR B ﬂ
- h'[':o (1-h) Dy

o

=1-0=1 s

For

lim lim
x—>1, f(x) = h—s 0 f(L+h)
lim
“ho
= "M @nen 0 ! 2
=1. Fig. 8.6

(1, 1)
o (2@+h)-1) 3
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Thus f(x) iscontinuous at x = 1

li -
RE'(1) = im  f(1+h)-1(1)

Now h—0 h
Cdim [2a+h)-1]-[21)-1] _ lim 2h _
“h->0 h “h0 h -2ad

e Im AR -f@) _ lim @-m-1
D=h50 @-m-1 “h>0 —h
lim —h

“hso-pn~ L

Since Rf(1) # Lf(1), the given function is not differentiable at x = 1.
Geometricaly this means that the curve does not have a tangent line at the
point (1, 1).

Example 8.41.
Show that the functiony = xV 3:f(x) is not differentiable at x = 0.

[This function is defined and continuous for all values of the independent
variable x. The graph of thisfunction is shown in fig. 8.7]

Solution:
This function does not have derivative at x=0

For, wehavey + Ay = 3\/X+Ax
Ay = \3/x+Ax - %/3(

3
Atx=0, y=0andAy=\/E< .

lim Ay
NOW 50 Ax
_lim {0+ Ax) —f(0)
TAX—=0 AX
Fig. 8.7
_lim 33[Ax—0_ lim 1 _.,
TAX—>0 Ax T Ax—>0 3 -T®
(A%)?
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Consequently this function is not differentiable at the point x = 0. The
tangent to the curve at this point forms with the x-axis, an angle% , which
means that it coincides with the y-axis.

Example 8.42: Show that the function f(x) = 2 is differentiable on [0, 1].
Solution. Let c beany point suchthat 0<c<1.

, lim fx)—fc _ lim x*-c? lim
Then (0) = ¢ "yTc “xoc x—c - xc X+toO=2c.

At the end points we have

. lim f-f©0) _ lim x* _ lim
O =x 50+ x—0 “x50+x “x—»0®0

. l () — f(1) I 2_
and (1) = im fx)-f(1)  lim x*-1

X—>1- x-1 ~x->1-x-1
lim
:x—>l—(X+l):2'

Since the function is differentiable at each and every point of [0, 1],
f(x) = X is differentiable on [0, 1.

EXERCISE 8.3
. . . " x if0<x<1

(1) A functionfisdefined on R™ by f(x) = {1 if x> 1

Show that f'(1) does not exist.
(2) Isthe function f(x) = | x| differentiable at the origin. Justify your answer.
(8) Check the continuity of the function f(x) = |x |+ |x— 1| for al x € R. What

can you say its differentiability at x =0, and x = 1?
(4) Discussthe differentiability of the functions

. 1,0<x<1 . 2x—3,0<x<2
(|)f(x)={X’ x> 1 ax=1 (||)f(x)={xz 3 2<X§4atx=2,x=4
xe* -1
(5) Compute Lf (0) and Rf'(0) for the function f(x) = (e¥* + 1) x#0
0, x=0

8.4. Differentiation Techniques

In this section we discuss different techniques to obtain the derivatives of
given functions. In order to find the derivative of a function y = f(x) from first
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principles (on the basis of the general definition of a derivative) it is necessary
to carry out the following operations :

1) increase the argument x by Ax, calculate the increased value of the
function

y + Ay = f(x + AX).
2) find the corresponding increment of the function Ay = f(x + Ax) — f(X) ;
3) form the ratio of the increment of the function to the increment of the

Ay fx+AX)—f(x) |
X )

argument Ax

4) find the limit of thisratio as Ax — 0;

dy ., lim f(x+AX) —f(X)
ax =K T Ax—0 AX

We shall apply this general method for evaluating the derivatives of certain

elementary (standard) functions. As a matter of convenience we denote% =f

‘(X byy".

8.4.1 Derivatives of elementary functionsfrom first principles
I. Thederivative of a constant function is zero.

That is, % (c) = 0, where cisaconstant . (D)
Proof. Let fx) = ¢ Then f(x+Ax)=c
di(x) _ lim  f(x+ Ax) —f(X)
dx T Ax—0 AX

d lim c-c

“ax © = ax50 ax -9

I1. Thederivative of X" isnx"~ 1 wheren isarational number
_ d .
e gg )= .. (2

Proof: Let f(x)=x". Then f(x+Ax)=(x+Ax)"

dfix)  lim  f(x+ Ax) — f(X)
Now gy T AX—>0 AX
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n
de lim o x+ A" lim X (1
dx T AX—>0 AX TAX—>0

lim {(“A?X)n‘ }

T AX—0 AX

Ax\ "
n_1 lim (1+ x) -1

AX— 0 AX
X

=X

A
Pt y=1+5% AsAX—>0, y—1.

LA _ n-n lim (Mj

dx X y—=>1\ly-1
=nx""1
_ lim y"-a" _ }
—_ -1 | .. — -1
=nx' [ y>ay_a =na
Note. Thisresultisalso truefor any real number n.
Example 8.43; Ify = x5,find%§
Solution : %¥ =50 L=5x4
Exampl 8.44: If y=x find%ﬁ
Solution : %¥= 1xt"t=1e=1.

Example 8.45: If y=1/x find%.

Solution:
1

Let us represent this function in the form of apower: y = xE
Then by formula (1) we get
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Example 8.46: Ify :%( find QY
Solution:

3
Represent y in the form of apower.i.e. y=Xx 2

3

2

5
dy _ 3 -35-1_3 -3
Then dx =~ 2 X =-5 X
Il. Thederivativeof sinx is cosx
o . d
i.e. if y = sinx then dx = cosx .. (3
Pr oof:
Let y=sinx. Increase the argument x by Ax, then
y+ Ay =sin (X + AX)
+ AX — + AX +
Ay:sin(x+Ax)—sinx:2$in(x AZX X) cos(x A2x )
- 250 cos(xr )
=2sin7 . Ccos| X+
5 g A ( +A_x) X
éy_smzcosx 5 _sm2 (+A_x)
Ax o Ax = TAx cos(X+7
2

AX
dy  lim oay tim "2 im (+Q<)
dx ~ AX—>0 AX “AX—>0 Ax "Ax—> 0 X2
2

_1 lim ( +A_x)
=L \y_y0 COS(X+7% ) .
Since f(X) = cosx is continuous

1 lim ¢ _lim
COSX A 10 (x+Ax)—AX_>Ocos(x+Ax)

=  COSX. = COX
IV. Thederivativeof cosxis — sinx
. d .
ie. if y=cosx, thendx =—dnX. ... (®

Proof: Lety=cosx Increasethe argument x by the increment Ax.
Then y + Ay = oS (X + AX) ;



Ay = cos(Xx+ AX) — cosx
. X+FAX—=X . X+tAX+X

=-2sn 2 sin >
- 2an an(xe )
= -2dn% Sn(x+75
sing(
Ay _ 2 ( A_X).
Ax S T Tax Snlxrg)s
2
. AX
dy  lim Ay lim 9172 .(+Q()
dx “AX—>0 Ax © Ax—>0 Ax SNx+2
2
AX
im0 im .(+Q<)
TTAX—>0 Ax CAx—0 IMXT2
2
S . . lim ( Q()_. q lim snd _
ncesinxiscontinuous, ,, o SiN{x+% ) =sinxand oo =5
dy .
dx——snx.

Theorem 8.3
If f and g are differentiable functions of x and c is any constant, then the
following are true.

d (f
0 ) _ 9 (00) e

i (169 - 909) d(f(xx» JCC) R

Example8.47: Ify = T fmd—y

1

Solution: y = 3x 2
dy n 21 3 -3
_ 1y 2-1__3 -3
x 3(‘2)" = 2 X

Example8.48: Ify=3x* —U\ﬁ( flnd—Y
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Solution:

y = A _ 13
A
dy _d 13y _ o d(X) 13
dx ~ dx (3 )=3 dx ~ax )
iy
= 3x 4t 1—(—§) x 3
4
= 12x3+%x_3
V.If y= log,x then g)}f =% log,e ... (7
Corollary : If y =logex theng)% ::;L .. (8
Proof: In the previous result take a = e. Thend% (logeX) :)—1( Iogee:)—l( 1=

X |~

Example 8.49: Findy ify= %2 + COSX.
Solution: We havey = X2 + COSX.

Therefore y = % == (x + COSX)

_dgx) d(cosx)
= Tdx T dx

= 2% 14 (—sinx)
= 2X—-sinx
Example 8.50:
Differentiate 1/ %/3( + I095x + 8 with respect to x.

Solution: Let y=x""+logx+8

1
y _g¥ —di(_3+I095x+8)
1
(x 3) dlogsX)  g(g)
=T dx dx  dx
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Wl

X +Xlog5 +0,
4

3,1,

X % 109:€e

Wl Wl

Example8.51 : Find the derivative of X+ +CH6x%+2 wrtox.
Solution: Let y = X2+ A+ T + 6x° + 8x + 2

’=%( 0C+ 4 + 3+ 65 +8x + 2)

_ded) .\ d(4x?) . d(7x3) .\ d(6x°) L4@), d@
- dx dx dx dx dx dx
=+ AxAC+ T3 +6x2X+8x1+0

= 5x* + 16x3 + 212 + 12x + 8.

Example 8.52: Find the derivative of y = e’ from first principle.

Solution: Wehave vy = e’
y+Ay = 7 (X + AX)
Ay e7x.e7Ax_e7x
AX AX
= o'X (eMx_ 1)
- AX
_ limoay _lim g e™_1 _gx lim e™_1
T AX—>0 Ax T AXx—0 AX Y Ax—>0 TAX

lim (-
=7 (u) (- t=7Ax—>0as Ax — 0)

t—>0 t
lim -1

— 7X — 947X » s - _

=7e” x1=7e". ('t—>0 t =1)
In particular, if y =€, then %( ) =¢ .. (9

Similarly we can prove

VI. Thederivativeof y=tanx w.r.toxisy = sec?x. ... (10)
VII. Thederivativeof y=secx w.r.tox isy’ = secx tanx ... (11
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VIII. Thederivativeof y=cosecx asy' =— Cosec X cot X ... (12

IX. Thederivativeof y=cotx asy = - cosec 2 ... (13)

Note: One may refer the SOLUTION BOOK for the proof.

EXERCISE 8.4
1 Find%i ify:x3—6x2+7x+6.
2. 1ff(x) = X2 — 8x + 10, find '(x) and hence find f'(2) and '(10).
3. Ifforf(x) = ax® +bx + 12, f(2) =11,f(4) =15findaand b.
4. Differentiate the following with respect to x;
(i) X" + & (ii) logx +200
(i) 3sinx + 4 cosx — € (iv) €+ 3tanx + logx®
(V) sin 5 +log o + 2secx (vi)x_3/2+8e+7tanx
3 _ _
(vii) (x+)—1() (viiiy &322 4) szz 4

Theorem 8.4: (Product rule for differentiation)
Let u and v be differentiable functions of x. Then the product function
y = u(X) v(x) isdifferentiable and
y =uX) V(X) +v(X) U(x) .. (19
Proof: We have y = u(xX) v(x)
y+ Ay = u(X + AX) V(X + AX)
Ay = u(X+ AX) V(X + AX) —u(X) v(X)
dy lim Ay
dx T Ax— 0 Ax
o lim u(x+ AX) v(x+ AX) — u(xX) V(X)
T AX—>0 AX '
Adding and subtracting u(x + AX) Vv(X) in the numerator and then
re-arranging we get:
o lim u(x+ AX) v(X + AX) — u(X + AX) V(X) + u(x + AX) V(X) — u(X) V(X)
Y = Ax >0 AX
_lim u(x+ AX) [v(x + AX) — V()] + v(X) [u(x + AX) — u(x)]
T AX—>0 AX

lim im (X +Ax) — v(X) lim  u(x+Ax) — u(x)

li
T AX—>0 U(X+AX)'AX -0 AX V(¥ AX—0 AX
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Now, since u isdifferentiable, it is continuous and hence
lim

AX— 0

Since u and v are differentiable we have

lim  u(x+ AX) — u(x)
u!(X) —_

u(x+ Ax) = u(x)

T AX—>0 AX
lim  v(x + AX) — V(X)
and V9 = AX— 0 AX '

Thereforey’ = u(x) v(X) + v(X) U'(X).
Similarly, if u, vand w are differentiable and if y = u(x) v(x) w(x) then
y = u() V() W) +u¥) V(X)) wix)+u(x) v(x) wx)
Note (1). The above product rule for differentiation can be remembered as:
Derivative of the product of two functions
= (1% funct.) (derivative of 2" funct.)+(2" funct.) (derivative of 1% funct.).
Note (2). The product rule can be rewritten as follows:
(UK . V(%) = u(¥) . V(%) + V(X) . U'(X)
(UK . v¥)' v | V(X

ux) . v(x) “ux  v(x) -+ (19)
It can be generalised as follows:
If u;, u,, ... ,u, are differentiable functions with derivatives u,’, u,’, ...,
u,’ then
(Uup.us...uy) Uy Us'  Uq U’
u11.u22“_.urr1] =u—11 +u—22+u—i +...+u—r;. ... (16)

Example 8.53: Differentiate € tan x w.r. to x.
Solution: Lety=¢*. tanx.

Then y = d%( (€. tanx) :exd% (tanx) +tanxd% (€

= & sec? + tanx . €
= & (sec?X + tanx) .
Example8.54: Ify=3x*& + 2sinx + 7 find y'.

4 .
Solution: y :%)% _ d(X engsmx+7)
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_d3*e)  d@snX) | d?)
- dx T ax *dx

_de*e)  _d(sinx)
=3 dx +2 dx +0

= 3[x4%( (€ + eX%( (x4)J + 2 cosx
=3[x*. &+ €. 4% + 2 cosx
= 3 & (x + 4) + 2 COSX .
Example 8.55: Differentiate (x2 + 7x + 2) (€° - logx) with respect to x.
Solution: Let y = (X% + 7x + 2) (€°— logx)

/ :d% [(0@+7x+2) (€ - logy)]
= (x2+7x+2)%( (eX—Iogx)+(eX—Iogx)%( O+ 7x+2)
= 0+ 7x+2) [d% (eX)—d%(logx)J
+ (€= logx) [%( ) +%((7x) +%((2)]
= (K +7x+2) (ex_l) +(€°~ logx) (2x + 7 + 0)

X

= (X +7x+2) (e?‘—l) + (e~ logx) (2x+ 7).

X

Example 8.56: Differentiate (x2 -1) (x2 + 2) w.r. to x using product rule.
Differentiate the same after expanding as a polynomial. Verify that the two
answers are the same.

Solution: Let y=(x*-1)(x+2)
Nowy = g [0~ 1) 6 +2)]

= (2D P+ + (@ +2) g (@1
= (2-1)| 0D + 5@+ 02 +2) [ 0D + & (- 1

= (X —1) (2x+ 0) + (X + 2) (2x + 0)
= 2X (- 1) +2X (X + 2)
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= 2x(x2—1+x2+2):2x(2x2+1) .
Another method
y=(C-1)C+2)=x*+x0-2
! =%( (x4+x2—2)=4x3+2x=2x(2x2+1)
We observe that both the methods give the same answer.
Example 8.57: Differentiate € logx cotx

Solution: Let y = € logx cotx
= U . U,. Ug (say)
where u; = e u, = log X, Us = cot X.

Y’ = UgUzug’ +ugugu +upuzuy
1
= ¥logx (- cosec’x) + € cot x. 3 +logx. cotx . &
1
=& [ cotx . logx + 3 cotx — logx . coseczx}

Note: Solve this problem by using Note 2.
EXERCISE 8.5

Differentiate the following functions with respect to x.

(1) € cosx 2) r\]ﬁ( logA/x , x>0
(3) 6sinxlog;x + e (4) (*-6C+ T+ 4ax+2) (X -1)

(5) (a—bsinx) (1 -2 cosx) (6) cosec x . cotx

(7) sin’x (8) cos’x

(9) (3x% + 1) (10) (4x%—1) (2x +3)
(11) (3 secx— 4 cosec X) (2 Sin X + 5 cos X)

(12) *? e sinx (13)/x €*log x.

Theorem: 8.5 (Quotient rulefor differentiation)
If uand v are differentiable function and if v(x) = 0, then
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& =T .. (17)

Exampl 8.58:
Differentiatexz_1 with respect to x
X+ 1 &P '
Solution:
X2—1 u 2 2
Let = == =x“-1;v=x+1
y 21V u=x V=X

, d 2 2 2 N 02 241y
y =3 (§2+ij: (x“+1) (x (l))(2+1()x2 1) (x“+1) Using (17)

_ P+ (@20 -0E-1) (29 [0€+1) - ¢-n]2x
B (x2+ 1)2 (x2+ 1)2

_ oy 2 _ 4x

oC+12  (C+1?T

X2 + e sinx
cosx + logx

Example 8.59: Find the derivative of with respect to x

Solution:

X2+ elsinx

= =4 u=%+esinx v=cosx+ logx
y cosx+logx ~ v ' 9

Let

Now y'= v’ —uv’

_ (cosx + logx) (4 + € sinx)'— (x* + e”sinx) (cosx + logx)
- (cosx + Iogx)2

_ (cosx + logx) [0+ (€sin) ] - 6@ + & sinx) [ (cos) "+ (logx) ]
- (cosx + Iogx)2

72



(cosx + logx) [2x + € cosx + sin x &] — (3 + €'sinx) (— sinx+)—l()

(cosx + Iogx)2

(cosx + logx) [ 2x + &(cosx + sinx)| — (6@ + & sin ) G— sinx)

(cosx + Iogx)2

inx +
Example 8.60: Differentiatew with respect to x.
SinX — Cosx
Solution:
Let _ SinX+ CoX_ U =sinx + V =sinx
Y = g —cosx —v ¢ UTS COSX, V = Sinx — COSX
,wu'—w’  (sinx—cosx) (cosx— sinx) — (Sinx + cosx) (cosx + sinx)
Vv (sinx—cosx)2
- [(si nx — cosx)2 + (sinx + cosx)] 2
- (sinx — cosx)2
- (sin2x+ COS?X — 2SINX COSX + SIN°X + COS?X + 2sin xcosx)
- (sinx - cosx)2
-2
(sinx — cosx)2
EXERCISE 8.6
Differentiate the following functions using quotient rule.
5 2x-3 x -4’
(1) Q75 ) R
cos X + log X Iogx—2x2 logx
4 5 6) <
) X+ & ()Iogx+2x2 ©) sin
1 tanx+1 Sin X + X cOsX Iogx2
(7)ax2+bx+c ®) tanx—1 ©) Xsnx-cosx (10 P

The derivative of a composite function (Chain rule)
If u="f(x) andy = F(u), theny = F(f(X)) is the composition of f and F.
In the expression y = F(u), u is called the intermediate argument.
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Theorem 8.6: If u = f(x) has the derivative f (x) and y = F(u) has the derivative
F{u), then the function of a function F(f(x)) has the derivative equal to
F(u) f(X), wherein place of uwe must substitute u = f(X).
Proof: We have u = f(x), y = F(u).

Now u + Au = f(X + AX), y + Ay = F(u + Au)

Au _ f(x+Ax) —f(X) Ay _ F(u+ Au) — F(u)
Therefore Ax AX and AU AU
, du
If f(X) “Odx * 0, then Au, Ax = 0.
Sincef isdifferentiable, it is continuous and hence when Ax—0, X + Ax—>X

I I
and f(x + AX) (). Thatis, ' o (crax) =xand 1) o fx+ax) = f(x).

Therefore A;IT) 0 (u+Au) =Au
Ay _ Ay Au
AX AU " AX
Since both f and F are continuous functions
we have Au — 0 when Ax — 0 and Ay — 0 when Au — 0.
lim Ay lim Ay |lim Au
AXx—0 Ax ~ Au—0 Au "Ax— 0 Ax
=y U =F) fx =FF®) fx ..@18)
This chain rule can further be extended to
i.e if y = F(u), u=1(t), t =g(x) then
% =F).u(t).tX®
o Q_dF du ot
1€ dx T du-dt -dx -
Example 8.61: Differentiate log~/x with respect to x.
Solution: Lety=logA/x

Since Au # 0 as AX — 0, we may write

Therefore

... (19)

Takeu=+/x ,andsoy=logu, Thenbychainrule% =g¥ %

dy 1 du 1
Now Gy =y rax 2\x
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, dy_ 1 1 __ 1 _ 1
Therefore by chain rule ax=u .2\/;( = \/;(2\/;( = o
Example 8.62: Differentiate sin (log X)
Solution: Lety=sinu, whereu=log x

Thenbychainrule% =g)é % ,

Now % = cosu ;% =:—)t
dy _ 1 _ cos(logx)
dx =cosu.y = X :

Example 8.63:
{12
Differentiate e®™

L2
Solution: Let y=e&"™ : u=sin® ; t=x°
Then y=¢€", u=sint, t=x°
.. By chainrule
dy _dy du dt _
dx = du-dt ‘dx - € . Cost. 2x
2 .
= "™ cog(x?) . 2x = 2x %" cos (x9)

in(x2
= 2x e9") cos (5 .
Example 8.64: Differentiate sin (ax + b) with respect to x

Solution: Let y=sn(ax+b)=snu,u=ax+b
gﬁ = Ccosu ; % =a
% = cosu.a=acos(ax+b).
EXERCISE 8.7

Differentiate the following functions with respect to x

(1) log (sinX) (2) "X (3) /1 + cotx

X T X
(4) tan(logx) ) cos(ax+ b) (@ +b) (6) logsec |4 +5

(7)logsin (&°+4x+5) (8 sin (x%) 9 cos(\x)  (10) eSn(ow),
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8.4.2 Derivatives of inver se functions
If for the function y = f(X) there exists an inverse function x = ¢(y) and if

1
d),(y),thatls

%¥ =%( ... (20)

dy

g—; = ¢(y) # 0, then y = f(x) has derivative f (x) equal to

Proof. Wehavex=¢(y) Then 8—)): :g%(m

That is, 1=¢1y) % (by chain rule)

Derivatives of inversetrigonometrical functions.
1 dy 1

X is = ... (21
12

Proof: Wehave y= sinx andx=siny

Then g-; = cosy = \/1—sin2y :\/1—x2

dsnlx dy 1 1

|. Thederivativeof y=sin~

dx  Tdx (d_x)
dy
1, 9y 1
XIS =—
dx 1—x2

i

I1. Thederivative of y=cos” ... (22)

Proof: Wehavey = cos x and x = cos y

g—i(/ :—siny:—\ll—coszy = —\/1—x2

dgc%s‘lx)zgyziz -1 .
IR

Aliter : We know that sin™2x + cos 1x =% .
1

Thisimplies%( (sin_lx) +%( (cosx) =%( (@
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1 +d(cos’lx) ] d(cos’lx) _ 1

=0 . = .
NI dx dx 12

1 . dy 1
X sy 1412 ... (23)

I11. The derivative of thefunction y=tan™

Proof: Wehavey = tan xand x = tany
Thisimplies x = (tany) =sec?y=1+tanPy=1+x°
1
1+x°
_1
1+%x%°

/

y =

* I 2la

IV. The derivative of y = cot x isy = — ... (29

Proof: Wehavey=cot™xand x=coty.
g—); = —cosec?y = — (1 +coty) =— (1 + %)

1
- by (20), = =

Aliter : Weknow that tan x + cot 'x = g .
Differentiating with respect to x on both sides,
a3
dtan ) d(cotl “\2
dx Tk - odx

1 d(otl _
142 T X =0

. d(cot’lx) _ 1
. dX - 1+X2 .

cis ¥ oL .. (25)

dx ~— r‘,xz—l

Pr oof: Wehave y= sec xand x= secy

g—; = secytany=secy\/sec?y— 1

V. Thederivativeof y = sect
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d(sec 'x) _dy 1 1
. by (20), = = =T
dx dx d_); o — 1
VI Thederivativeofy-cosec‘lxis gy 1 (26)
Proof: We have y = cosec x and X = COSecy
co
dy JTY) —cosecy coty

- osecy\/co 2y 1 =-x\x¥-1
Therefore by (20) % = %( =—

dy

X\/xz—-l

Example 8.65: Differentiatey = snt (x2 + 2x ) with respect to x.
Solution: Wehavey =sin™ (X + 2x)
Take u=x>+2x Then y= sin_l(u), afunction of function.
Therefore by chain rule,
dy du 1 dpe+2x)
TR S o R A G
1-u
2(x+1)

\/1 (x +2x ( 1- x(x+2)

_Y =l (=X
Example 8.66: Find 5, if y=cos (1+x) .

- _ 1 (1=X
Solution: We havey = cos (l+x)'

Take u= :1L Tx- Thereforey = cos™ (u) afunction of function.

By chain rule %¥ =gﬁ % .
d(l—x)
Sy 1 1+x
: dx__ﬂ/l_uz' dx
___1 [(1+x)( - (1—x) (1)} 1 -2
1-u? (1+%)°

N 1—@%32 (1+%°
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B 1 2 @+x 2 1
T @ex?o@x? @02 A @4x? T Ax@Ex
1+x
Example 8.67: Findy'if y = tan ()
Solution: We havey = tant (¢). Takeu=€* theny=tan™* (u).

, ,_dy du__ 1 dE) __¢€
By chainrule, Y Tdu ok T1a 2 OX T 1+

EXERCISE 8.8
Find the derivatives of the following functions:
. 1(1=x _ 2
(1) sin 1(1+X) (@) cot ™t (&)
(©) tant (log X) @y= tant (cotx) + cot™t (tanx)

8.4.3 Logarithmic Differentiation
We dso consider the differentiation of a function of the form:

y = u’ where u and v are functions of x.

. V
We can writey = g9V = g10gu

Now y falls under the category of function of afunction.

y'=¢ dx

1 ’ ’ V / /7
= gvlogu [v.au +Iogu.vJ =u"[au +v IoguJ

=w’' " tu'+u (logu) Vv’ .. 27

Another method:
y = u Taking logarithm on both sides
logy =logu¥ = logy = vlogu
Diff. both sides with respect to x

1d
y dx

gy — M ’ 7 — Vv \_/ ’ ’
dx‘y(uu +vIogu)—u (uu +vlogu)

Example 8.68: Find the derivative of y = x*, aisreal .

1 ! 4
vy Uty logu
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Solution . We have y=x*
Thenby 27) y' =ax*1.1+x*.(logx).0
=ox*" ! (cu=xv=a,v'=0)

Note: From example (8.74),we observe that the derivative of X" = nx" ~ Listrue
for any rea n.

Example 8.69: Find the derivative of x3™ w.r. to x.
Solution: Lety=x3™ Hereu=x;v=sinx ; u'=1; v'= cosx.

Therefore by (27), y = % =sinx . ™1 1 +x%™ (log X) cosx

= 3™ (ﬂ + cosx (log x))

gl—x)llx + 2

Example 8.70: Differentiate :
P (x+3)\x—1

(a- x)}[x +2
Solution: Let =
Y= x+3)\x-1

In such cases we take logarithm on both sides and differentiate.
logy = log (1 —X) x2+2 log (x +3)\/x—1
=log (1-X) +5 Iog(x2+2) log (x + 3) — Iog(x—l).

Differentiating w.r. to X we get:

ldy -1, _ 2x 101 1
Ty A T1-x C opd+2) X*+3 7 2°x-1
_ L1 1 L
T x%+2 2 Tx-1 X

o dy X
'+ dx _y[x+2 2(x 1) x+3]

(lx)x2+2[x 1 1}

+ —
x+3)\x-1 [¥+2 2x-1) x+3
EXERCISE 8.9
Differentiate the following functionsw.r. to x.
2 2 -
1) V2 (2) X* (3) X (4) sinx S™
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-1 2
—1.,logx sin” " (X +2) (x+1[2)
(5) (tanx) (6) (log x) (7 (\/m) (x—7)
(®) (6@ + 2x + 1)\/XTl ) %i—ﬁ (10) x 5™ + (sin x)*
8.4.4 The method of substitution

Sometimes, a substitution facilitates differentiation. Following example
will demonstrate this method.

Example 8.71: Differentiate the following w.r. to x

(i) (ax+b)" (ii) log (ax + b)"
2
(iii) sin_11+X2 (iv) cos ™t ;Xz (v) Sin® (ax + b)

Solution: (i) Wehave y=(ax+b)". Putu=ax+b.Theny=u".
Now yisafunction of uand uisafunction of x. By chainrule,

,_dy du_ -, 3 d(@x+b)
Y =Qu-agx - : dx

=n(ax+b)" " La=na(@x+b" L

.. _ n _ ..., _Nna
(i) Lety=log(ax+hb)". Putax+b=u. Thenasin (i) Y =ax+b-
2X
iii Let y=sint . Putx=tan® sothat 0 = tan x.
(i) y 1+%°
Ly=snt 2P il (6n 20) (z-sinZO: —Zta’“gj
1+ tan“6 1+ tan“0
=20 (- sint(sin0)=0)
= 2tan 1 x.
SOy, d
SLdx T 2. (tanx) = 142
2
. 1 1-=x
iv Let = cos . Put x=tan®.
(iv) y 1452

1-x° 1—tan’
> = anz = c0s20
1+x 1+tan“0

Ly = cost (cos20) = 26 = 2 tan x

Then 9 = tan x and
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dy |, 1 __2
N A

(v) Let y=sin2 (ax+b). Pt ax+b=uand v = sinu

Theny:vz,v:sinuandu:ax+b.
Therefore by chain rule,
dy _dy dv du _
dx = dv - du - dx =2v.cosu.a

= 2asnu.cosu =asin2u=asin 2 (ax + b).
Example 8.72:
. . | 3 . 1,, 3 1 KX
Differentiate (i) sin”~ (3x — 4x°) (ii) cos ~ (4x™ — 3x) (iii) tan m
Solution:
(i) Let y=snt@Ex-4d
put X = sin0, sothat 0 = sin"x..
Now y = snt (3sin9—4sin39)
= sn1(sin30) =30 =3snx (~ sin30 =3sin 0 — 4 sn%0)
ay _ 3 1 _ 3
™ 1o2 T 1o
(ii) Let y:cos’1(4x3—3x)
Put X = cos®, sothat 0 =cos > x.
Now y = cost (4 cos®0 — 3 cos 0)
= cost (cos36) (.. cos36 = 4c0s%0 — 3 cos 0)

=30 =3cos Xx.
oy 3
©dx 12
(i) Let y=tan? (3’( = ng
y 1-3%°

Put X = tan@, sothat 0 = tan 'x..
o3
y = tan* (wj =tan ! (tan30) =30 =3 tan .
1- 3tan“6

o dy__3
.dX_1+X2.
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EXERCISE 8.10
Differentiate

_1_ {1+ cosx . 1. |1—cos2x 1 1 — cox
(1)cos "\ | 2 (2) sin ’\/T (3) tan ’\,l+cosx

. 2
@ tan_l(cosx + smx) ©) tar (}[ 1+x°— 1] (6) ta 12X

COSX — SINX X 12
_ 3[x+3[a _ 3[1+x—3[1—x
7tan 1 8) tan
() 1-+/ax ®) NI+x+41-x

_1\/1+sinx +1/1-s N . .
(9) cot ST Sl X} Hint:sin®x/2+cos’x/2=1; Sinx=2 sin x/2 cos X/2)

\J1+sinX —/1-sin x
8.4.5 Differentiation of parametric functions
Definition

If two variables, say, x and y are functions of a third variable, say, t, then
the functions expressing X and y in terms of t are called a parametric functions.
Thevariable ‘t’ is called the parameter of the function.

Let x =f(t), y = g(t) be the parametric equations.

Let AX, Ay be the increments in x and y respectively corresponding to an
increment Atint.

Therefore x+ Ax = f(t + At) and y + Ay = g(t + At)

and Ax = f(t + At) — f(t) Ay =g(t + At) — g(t).

Ay lim Ay (gy)

~dy _ lim Ay lim | At| At—>0Ax

TdX TAX—>0 AX T AX—> 0| Ax | T lim Ax _(d_x) - (28)
At]  At—>0At dt

where % #0. Notethat Ax—0 = ft+A)>f(t) => At—>O0.

dy

Example8.73: Find 5, whenx=a cos’t, y=a sint.

X
Solution: We have x = a cos™, y= asin’t.
dx 52'[ : gy .
Now St = -3acostsint and ot = 3asin% cost .

dy
dy dt 3asin’t cost _sint

Therefore by (28) dx —E( = T sacoisnt | cost = — tant.
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Example 8.74: Find%, ifx=a(®+sn0),y=a(l-coso).

Solution: We have %=a(1+cose) gx=a(0+sin9)
do do
dy 0 0
dy d0 _ asing B 23|n2cos2 9
dx T dx Ta(l+cosd) T p @7
do 200325

EXERCISE 8.11

Find % if x and y are connected parametrically by the equations (without

eliminating the parameter) .

()x=acosb,y=bsn® (2)x=at2, y = 2at
(3)x:asec?’6,y:btan36 (4)x:4t,y:%
(5) x=2c0os6—cos20,y=2sn0—sin 20

_ Q) o _3at _ 3at?
(6)x-a(cose+logtan2 ,y=asno (7)x—1+t3,y_ e

8.4.6 Differentiation of implicit functions

If the relation between x and y is given by an equation of the form
f(x, y) = 0 and this equation is not easily solvable for y, then y is said to be an
implicit function of x. In case y is given in terms of x, then y is said to be an

explicit function of x. In case of implicit function also, it is possible to get %

by mere differentiation of the given relation, without solving it for y first. The
following examples illustrate this method.

Example 8.75: Obtain % when X2 + 8xy + y3 = 64.

Solution . We have x° + 8xy + y3 =64.
Differentiating with respect to x on both sides,

d d
3x2+8[xa¥+y.1} +325 =0

2 dy dy _
3x +8y+8xdx +3y2dx =0



(3% + 8y) + (8x + 3%)% =0

d 3 +
B+ E = -(3C+8) g Lﬁ

Example 8.76: Fi nd%)){ whentan (x+y) +tan (x-y) =1

Solution: We havetan (x +y) +tan (x—y) = 1.
Differentiating both sidesw.r. to x,

secz(x+y) (l+g¥) +secz(x—y) (1—%@ =0
[sec? (x-+y) + sec?(x — y)] + [sec?(x+ ) — e (x— V)] & =0
[sec2(x + ) — 580X~ )] B = - [sec? (x-+) + secZ(x - )]

Cdy _ secf(x+y) +sec’(x—y) _seci(x+y) +sec’(x—Y)
O T secf(x+y) —sec?(x—y)  seci(x—y) —seci(x+Y)

Example 8.77: Find g%

if xy + xe Y + ye< =2,

Solution: We have xy + xe Y + ye* = x?
Differentiating both sidesw.r. to x,

x% +yl+xe Y (—g¥)+e_y.l+y.ex+eX % = 2x

(y+e Y +ye +(x—xe_y+ex)% = 2X
(yex+y+e‘y—2x)+(ex—xe‘y+x)g¥ =0

(€—xe Y +x) gx = —(y+y+e Y-2x)

cdy _ (efry+e¥o2 _(yelry+eV-2x)
OX -xeY+x) - (xeY-€&-x
EXERCISE 8.12
dy

Find dx for the following implicit functions.
2
(1) ? —)k)éz:l (2)y=xsiny (3)x4+y4=4a2)<3y3
4 ytanx—yzcosx+2x:O (5) (1+y2)secx—ycotx+1:x2
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(6) 2)/2+1—ﬁ&+tan2x+siny=0 () xy=tan(xy) (8)X"y"=(x+y)"""

(9) &+e&/=¢g"Y (10) xy = 100 (X +Y) (11) ¥ =y

(12) If ax® +by? + 2gx + 2fy + 2 hxy + ¢ = 0, showthafn%i +?]Xx—w)yL:% =0

8.4.7 Higher order Derivatives.
Lety = f(x) be adifferentiable function of x.

. L lim (x+AX) —f(x) . .
Then we know |tsder|vat|ve% = Ax—5 0 fx AAXX fx is called first

order derivative of y = f(x) with respect to x. This first order derivative f(x), a
function of x may or may not be differentiable. If f(X) is differentiable then

|- 7, _ 7, . - -
%(%) = Axlr_n)o fx+ A -1 X+AZX F(x is called second order derivative of

dy

y = f(X) with respect to x. It is denoted by o2

2
Other symbols like y,, y”, § or D% where D? = o(Ij_xz also used to denote

the second order derivative. Similarly, we can define third order derivative of y
=f(x) as

dy d (dy) _ lim f{x+ax) -1
S X \gd) T Ax—>0 AX
Asbefore, v,y 'y or D% is used to denote third order derivative.
Example 8.78: Findys, ify= X2

provided f (x) is differentiable.

Q.

Solution: Y1 = gk :d% (x2) =2X

Example 8.79:
Lety=A cos4x + B sin 4x, A and B are constants. Show that y, + 16y =0

Solution:
dy - , ;
Y1 = gx = (AcosAx+Bsindx) =—4A sindx + 4B cos 4x
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_dy _ 2(92)
Y2= 42 T dx\dx
= dgx (-4 Asin4dx+ 4B cos 4 X)
= —16 A cos4x— 16 B sin 4x
= — 16 (A cosAx + B sin 4x) = — 16y
Example 8.80: Find the second derivative of the function log (log x)
Solution: Lety=1log (logx)

. dy 1 d(ogx) 1 1
By chainrule, g = logx = dx  “logx " x
= XTogx = (xlog x)*
d%y _g(gy) _d(xlogxt o2 9.x109%)
o2 " axlax) =7 ax -~ (xlogX) dx
=—;2 [x.:—L+Iogx.1} =—1+—|0912.
(x log X) X (x logx)
Example 8.81: If y=log (cosx), find y,
Solution: Wehave vy = log (cosx)
1= d[Iogd()::osx)] :colsx d(cd())(sx)’ by chainrule
= Cosx . (= sinx) = — tanx
91 dtanw) .,
25 @ T ax oS
_d(y2) _d(—seczx) _ d (secx
Y3=7dx T dx = 2SeCX. gy

= — 2.S8CX . SECX . tanx = — 2 secX tanx.
Example 8.82: If y=e™sin bx, provethatg—zxg —2a.%¥ +(a2+b2)y:0
Solution: We havey = €™ sin bx
% = ™. bcosbx +ae®™sinbx

= e® (b cosbx + a sin bx)
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S—ng :%( {eax(bcosbx+asinbx)}

=eax{—bzsinbx+abcosbx}+(bcosbx+asinbx)aeax

= — b%(e™ sin bx) + a be™ cosbx + a.e™(b cosbx + a sin bx)

=-by+a (gﬁ—aeaxsinbx) +ag§

:—b2y+a(g¥—a.y) +ag¥
d

=2aa¥ - (a2+b2)y

dy ay 2 2
Therefore, dXZ_Zadx+(a +b)y=0.

Example8.83; If y=sin (ax+ b),prOVEthat}lg:aSgn(aXerJr%n) :

Solution: Wehavey = sin (ax + b)
y, = acos(ax + b) :asin(ax+b+g)
Yo = azcos(ax+b+g) :azsin(ax+b+g+g) :azsin(ax+b+2.%)
y. :a3cos(ax+b+2.%):a3sin(ax+b+2.%+g):assin(ax+b+3%)
Example 8.84: If y = cos(m sin‘lx), prove that (1- x2)y3—3xy2 + (m2 -1y,=0

Solution: We havey = cos(msi n’lx)

_ . ) m
yl——Sln(msm X)\/TXZ

yl2 = sin? (msi n_lx)

(1)
Thisimplies (1- x2)yl2 = P sin? (msin~ 1x) =n? [1 — cos? (msin_1 x)]
That is, LX)y, 2 =P (1-yA).
Again differentiating,
dy
-2 ge +9,2 29 =~y )
(1- X2) 2y,Y, = 2Xy12 = - 2m2yy1
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1)y, xy; = -y
Once again differentiating,
dy, dy, dy
(1—XZ)W +y2(—2x)—[x.W+yl. 1| = _mzdx
(l—xz)y3—2xy2—xy2—y1 = _mzyl
(1-x3) y53— 3xy, + (M’ ~ 1)y, = 0.
EXERCISE 8.13

1) Find@

if y=>3+tanx.
ol Y

2 Findj—sxg ify:x2+cotx.

(3) Find the second order derivative of:
0) X2+ 6x+5 (it) x sinx (iii) cot 2x .
(4) Find thethird order derivatives of:

(i) €™+ x3 (ii) X Cos X .

(5) If y=500e™+600e ™, show that % = 49y .

—1
(6) 1fy=e? " provethat (1 +x) y, + (2x— 1)y, = 0.

(7) 1fy=log (* - &), provethat y5 = 2[(x " " - a)‘ﬂ |

dy

(8) Ifx=sint; y:s;inptshowthat(l—xz)gx2 —x%ﬁ+p2y:0.
(9) Ifx=a(cosb+6snb),y=a(sind -0 cosb),
2
show that aeiy = sec0.

(10) 1fy=(-1), provethat x*y,—2xy, +2y,=0.
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10.
11
12.
13.
14.
15.

16.

o > w DB

TABLE OF DERIVATIVES

Function
k; (kisacosntant)
kf(x)
uzxv
Up+Uy+ ..+ U

u.v

up.us...u,

x"(n e R)

log,”

log,*

sinx
COS X
tanx
cotx
SECX

COSEC X
Function

sin~x

Derivative

(k)'=0

(kf(x))” = kf (x)

utv)'=u'tv’

(Ut Uy +.ou) =0 +u,% L+

(uv)’= uv’+wu’

’/ 4 4
(uv) u v
= +—
uwv “u v
/_ 4 + 4
(UpUy . uy) =Ug UsUg. U +U U L U
’
+ ...+ UUs . U U
/’ 4 ’ ’
(Upu,..up) U Uy Up,

UpU,.. Uy = Uq + u, *
x")'=nx""1
(Iogax)’:'ﬂiie
(099 =
(sin x) = cosx
(cosx)'=—sin x
(tanx)’: sec?x
(cotx)’: — cosec?X
(secx)': sec X . tan X

(cosec x)’= — COSEC X . cot X
Derivative

1
1-x?

(sinx) =

90



17.  cosx (cos'lx) ‘= B
1-x
18. tan™x (tan™x) "= 1
' 1+x2
19. cot™x (cot™x) "= - 1
' 1+%?
1 4 1
20. sec X (secx) = >
x“-1
21.  coseC x (cosecx) = - —1
x’\/x2 -1
u Uy vu'—uy’
22. v (V) = 2
23. €& ) '=¢&
24. u' Wy =wu’" L u"+u" (logu)v’
25. a* (@) "= a*(log a)
. ol a1
" X=¢(y) (inverseof f) dx ~dx -
dy
d dy du
27, y=f(u),u=0 ) Qo a
y=1w dy dy du
28. u=g(t)} a%zaﬁ X gt X dx -
t=h(x)
&
29 y=g(t)} dy _dt_y(®
) x = f(t) dx ~ dx _X/(t)
dt
f1 (xy)
_ dy _ 1
30. f(x,y) =k T Ty 20600
Note: In the above formulaefrom 1to 25 (.)'= ﬂd;) .
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O.INTEGRAL CALCULUS
9.1 Introduction:

Calculus deals principally with two geometric problems.

(i) The problem of finding SLOPE of the tangent line to the curve, is
studied by the limiting process known as differentiation and

(ii) Problem of finding the AREA of aregion under a curve is studied by
another limiting process called Integration.

Actually integral calculus was developed into two different directions over

along period independently.

(i) Leibnitz and his school of thought approached it as the anti derivative
of adifferentiable function.

(if) Archimedes, Eudoxus and others developed it as a numerical vaue
equal to the area under the curve of a function for some interval.
However as far back as the end of the 17" century it became clear that
a general method for solution of finding the area under the given
curve could be developed in connection with definite problems of
integral calculus.

In the first section of this chapter, we study integration, the process of

obtaining a function from its derivative, and in the second we examine certain
limit of sumsthat occur frequently in applications.

We are already familiar with inverse operations. (+, -) ; (x, <), (( ", Q[)
are some pairs of inverse operations. Similarly differentiation and integrations
are also inverse operations. In this section we develop the inverse operation of
differentiation called anti differentiation.

Definition

A function F(X) is called an anti derivative or integral of afunction f(x) on

aninterva | if
F (x) = f(x) for every vaueof xin |l

i.e. If the derivative of afunction F(x) w.r. to x is f(x), then we say that the

integral of f(x) w.r. to x is F(x).

ie Sidx = FK
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For example we know that

dix (sinx) cosx, then [ cosxdx =sinx,

Also dix (x5) = 5 gives f5x4 dx =x°

The symbol f isthe sign of integration. f iselongated S, which isthe
first letter of the word sum.
The function f(x) is called I ntegrand.
Thevariablex in dx iscalled variable of integration or integrator.
The process of finding the integral is called integration.
Constant of integration:
Consider the following two examples.
Example 9.1:
%( (2x+5) =2
%( (2¥) =2

> = [2dx = 2x+? = 2x+C
—d(2x 4 =2
dx \“* -

d
ax(2x-\7)=2 |
Where this‘C’' may be 5, 0, — 4 or —+[7 as shown in the above example.
(Seefig. 1(a)).
Example 9.2:

%((x2+1) =2X
%((xz) = 2x = [2xdx =x*+2=x2+C
%((%—4) = 2x

‘C’ isany constant (Seefig 1(b))
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fig. 9.1.a fig9.1.b
By the way it is accepted to understand that the expression f f(x) dx isnot a

[ 2dx

particular integral, but family of integrals of that function.
If F(X) isonesuch integra, it is customary to write f f(x) dx=F(x) + C

Where ‘C' is an arbitrary constant. ‘C’ is cdled ‘the constant of
integration’. Since C is arbitrary, ff(x) dx iscaled the“indefiniteintegral”.

Formulae
n+1 .
X cos x dx =sinx+c
fx”dx =71 *¢ (n=-1) f
1 1 f cosec?x dx =—cotx +cC
—5 dx =_ﬁ +c (n=z1]
X (n-1)x Jsec® dx =tanx +c
1
fxdx =logx +c Jsecextanx dx - =secx +c
fexdx =€ +c fcosecxcotxdx:—CO%cx +cC
X
X _ @
fa dx = loga "€ J1+X2dx =tan"x +c
fsinxdx = —CcosXx +cC 1
—zdx =sin"Ix +¢
'\/1—x
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Example 9.3 — 9.7: Integrate the following with respect to x.

_ 1
@ @ O
Solution:
6+1 7
6 - X - X
(S)fx dx = 611 - 7°*tC
—2+1
~2 - X - _=
(4)fx dx = or1 - "x*e
1 =[x 10
5) 0 dx = J x T dx
_X—10+1+
“-10+1 "¢
_x°
__9 (o
1 1
T dX =-—g +¢cC
JXIO o

[Here we can also use the formula

Jindx :—ﬁwheren;tl]
X (n-1) x

Example 9.8 —9.10: Integrate:

(6)

(6) S xdx

S Al dx

) j%( dx

4o

1
10) ——
( )sinzx

2/x +c¢

= [tanx secx dx = secx + ¢

fcosecx cotx dx = — COsecX + C

Solution:
® f;g;‘x o f;—”;‘(.ﬁ(dx
© [ ax =
(20) f;lzx dx = f cosec?x dx = — cotx + ¢
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EXERCISE 9.1
Integrate the following with respect to x

5 1
(1) (i) x® M2 @i ¢ e
1
@ 0% ixt Gy L= 0[5
X2 e
@ Dy (os (2% M-s (v)e%x

9.2 Integrals of function containing linear functions of X
i.e. [ f(ax +b) dx

We know that
10
%( [g%l)m} = (x-a)° = [x-a%x = (%1)_
%( [sin (x+K)] =cos(x+ k) = fcos(x+k) dx =sin(x + k)

It is clear that whenever a constant is added to the independent variable
x or subtracted from x the fundamental formulae remain the same.

But
d (1 jx+ — Jx+m IXx+m —
x| TETM| =e - [¢ dx =

%( Eldn(a“ b)} = cos(ax+b) = fcos(ax+ b)dx =

X+ m)

1
I
1 .
a sin(ax + b)

Here, if any constant is multiplied with the independent variable x, then the
same fundamental formula can be used after dividing it by the coefficient of x

i.e

if ff(x) dx =g(x) +c, then ff(ax+b) dx :5%1 glax+b) +c

The extended forms of fundamental formulae

n+1
f(ax+b)”dx = % [gaXTT)l—}+c (n#-1)
1 1
jax+bdx = 3 log(ax+b)+c
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feaX+bdx - ax+b

O |

+C

g
. 1
fsin(ax + b)dx = S cos(ax+b)+c

f cos (ax + b) dx = %sin(ax+b)+c
Jsec(ax + b)dx = %tan (ax +b) +c
fcosecz(ax+b)dx = - %cot(ax+b)+c
fcosec(ax+b)cot(ax+b)dx = - a%lcosec(ax+b)+c
f 1+(1ax)2 o = 3@ o
J\/ﬁ dx = % sin"l(ax) +cC

The above formulae can also be derived by using substitution method,
which will be studied later.

Example 9.11 - 9.17: Integrate the following with respect to x.

1 1
(11) (3-4x)’ (12) 335« (13) (Ix+m)"

(15) sin (Ix+ m) (16) sec? (p-ax) (17) cosec (4x + 3) cot (4x + 3)
Solution:

(14) €~ ¥

8
a1 S (@3- 4% dx _ (_ %1) ﬁ%i ‘e
f (3 4x)dx = - 3—12 (3-4x%+c
(12) fsfsxdx = Zlog(3+59+c
1 _ 1 (- 1)
(13) j(lx )" dx = (I) [(n IRy 1} +C

j(lx+1m)”dx ) _(l(nl—l)) (|x+i1)”—1+
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14 B ¥ux

f &8~ Mdx
(15)  fsin(Ix +m) dx
(16)  J'sec? (p - o) dx
(17)

[ cos(Ix+m)] +c

()

—T CoSs

(Ix+m)+c

(-3) ttan(p- g1 +c

fcosec (4x+3) cot (4x+3)dx = —%1 cosec (4x+3) + ¢

Integratethe following with respect to x

D
)

©)
(4)

©®)

(6)

()

®)
9)

(i) (x + 3)°
.. 1
1)+ 5%

0323 O3

(i) sin (x + 3)
(iv) cos (4x +5)
(i) sec’(2- )

(iv) cosec?(7-11x)

(i) x*

N L
0] NC

(i) sec (3+x) tan (3 +x)
(iii) sec (4—x) tan (4 - x)

EXERCISE 9.2
(i) 3x+4)° (V) (4-3%)" (v) (x+m)®
(i) —— (iv) —= V) —
(2x +3)° (4-5%)7 (ax + b)®
(i) 3——{4x (i) p +1qx ) (s —1 tx)
(ii) sin (2x + 4) (iiii) sin (3 — 4x)

(V) cos(5—2x)

(ii) cosec?(5 + 2x)

(v) sec’(p— a¥)
(ii) sec (3x + 4) tan (3x + 4)
(iv) sec (4 — 3x) tan (4 - 3x)

(iii) sec? (3 + 4x)

(v) sec (ax + b) tan (ax + b)

(i) cosec (2 —x) cot (2 —x)
(iii) cosec (3—2x) cot (3 -

(i) cosec (4x + 2) cot (4x + 2)

2X) (iv) cosec (Ix + m) cot (Ix + m)

(v) cot (s-tx) cosec (s-tx)

(i) e+ 3

ax + b

5—4x (V) g

i) e>*2  (iv)e

—X

. 1 .
® cos? (px + a) (i)

sin? (I = mx)

(i) (ax + b) ™8 (iv) 3-2x)71 (v) &
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. tan (3—4x) L1 1
0 O os3-ag Do (1) tan(2+3) sn(x +3)

1

(iv) (Ix + m)2 W) (@ -5%)

Propertiesof integrals
(1) If kisany constant then [kf(x) dx =k [f(x) dx

(2) If f(x) and g(x) are any two functionsin x then
ST + 900]dx = [(x) dx + [g(x) dx
Example 9.18 —9.21: Integrate the following with respect to x

(18) 10x3—% +V3x2—+5 (19) k sec? (ax + a) — S(@X+5)2 + 2sin (7x - 2)

X
1 3 5+3
(20) @ + x® + 10 — cosec 2x cot2x (AN cos()—5(+7) Tix+m Tt e

Solution:

3 4 _ 2 _ 3 dx 1
(18) J(le 5 3X+5jdx =10 fx dx—4jx5+2f = d
A 23x+5
= 10(’2) - 4(— 1) +2

4 a¢ 3

5 1 4
:§x4+F +3\3x+5+c¢

(19) f [k sec? (ax + b) — \3/ (4x + 5)% + 2sin (7x — 2)] dx

2
k J'sec?(ax + b) dx — f(4x+5)3dx + 2fsin(7x - 2) dx

2
§+1
= el g (4)@?1) +@)(7) Cosx-2) v

3

Kk 3 2 2
3 tan (ax+b) —55 (4x+5)3 -3 cos(7x—2) +¢
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(20) J (a¥+x®+ 10 - cosec 2x cot2x)dx
= [a¥dx + [XPdx + 10 fdx — [ cosec2x cot 2x dx

a* xatl COSEC 2X

:Ioga+a+1+10XJr 2 *cC

(21)](%cos()—é+7) +e2 )
jcos( +7)dx +3f|x+mdx +fe>_2(+3dx
243

(]J5) sm( +7) +3()Iog(|x+m)+(1/2) 2" %4 ¢

X
5+3
= sin(§+7) +T log (Ix+m) +2e2 " +¢
EXERCISE 9.3
Integratethe following with respect to x

1
5
1
5

(1) 5+ 3(2x + 3)% — 6(4 - 3%)° ) % + e —2(6-20°

11
3 4- + 3 cos2x (4) 3e 3e™ - 4sec (4x + 3) tan(4x + 3) + ;

X+2

(5) p cosec® (px — q) — 6(1 — x)* + 463~ X

(6) ﬁ + (10x + 3)° — 3cosec (2x + 3) cot (2x + 3)

: I 2 L
7) 6sm5x——(px+q)m (8) asec (bX+C)+eI—mx

9) (3+3x) %cos(x—%) +3(§+4)6

Nlw

(10) 7sin 3 - 8sec (4 4) +10 (25)‘ 4) (11) 26€ + 3¢ + €

(12) (ae)*-a*+b*

100



9.3 Methods of I ntegration

Integration is not as easy as differentiation. This is first due to its nature.
Finding a derivative of a given function is facilitated by the fact that the
differentiation itself has a constructive character. A derivative is simply defined
as

Lt f(x + Ax) — f(X)

AX— 0 AX

Suppose we are asked to find the derivative of logx, we know in al details
how to proceed in order to obtain the result.

When we are asked to find the integral of logx, we have no constructive
method to find integral or even how to start.

In the case of differentiation we use the laws of differentiation of severa
functions in order to find derivatives of their various combinations, e.g. their
sum, product, quotient, composition of functions etc.

There are very few such rules available in the theory of integration and
their application is rather restricted. But the significance of these methods of
integration is very great.

In every case one must learn to select the most appropriate method and use
it in the most convenient form. This skill can only be acquired after long
practice.

Already we have seen two important properties of integration. The
following are the four important methods of integrations.

(1) Integration by decomposition into sum or difference.

(2) Integration by substitution.

() Integration by parts

(4) Integration by successive reduction.

Here we discuss only the first three methods of integration and the other
will be studied in higher classes.

9.3.1 Decomposition method
Sometimes it is impossible to integrate directly the given function. But it

can be integrated after decomposing it into a sum or difference of number of

functions whose integrals are already known.

X2 —5x+1
X

€+1
e

do not have direct formulae to integrate. But these functions can be decomposed

3 . 5 2
For example (1 + XZ) , Sin 5x cos2X, , Sin°x, , (tanx + cotx)
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into a sum or difference of functions whose individual integrals are known. In
most of the cases the given integrand will be any one of the agebraic,
trigonometric or exponential forms, and sometimes combinations of these
functions.

Example9.22 - Integrate

(22) f a+ x2)3dx f (1 +3C+ 3 + x6)dx

L3¢ 3¢ X
X*737 ¥'5 7

+C

.
3,3 5, X
X+X+5X+7+C

(23)  [sin5xcos2x dx

f%[s‘n(5x+2x) +sin (5x— 2] dx

[ 2sin A cosB =sin (A+B) + sin(A — B)]

S [sin7x + sin3x] dx

NI NI

7 ~ 3
1 [cos7x cosS3X
2177 *tT3 |*¢

2 2
X—b6x+1 X 5% 1 1
(24) f—x dx = f(; v ) dx = f (x -5+ ;)dx

X

[— COS7X cos3x}
+C

f Sin5x cos 2x dx

Q.
X

11
Ly
o
X
|
(6)]
=
o
X
+
%

—5x+logx+c

(25) f cos’x dx = [3cosx + cos 3X] dx

N N Ny

1

4

[3 J cosxdx + [ cos3x dx]
EE

] 4
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(26) Jexef(ldx - J@%J dx = [ 1dx+ fe

X

= X-e "+cC

(27) f (tanx + cotx) 20x f (tanzx + 2tanx cotx + cot2x) dx
= f [(sec2x - 1) +2+ (coseczx —1)] dx

= f (seczx + coseczx) dx

= tanx+ (- cotx) + ¢
= tanx-—cotx+c

(zg)f 1 dx — (1 - cosx)

1+ cosx (1 + cosx) (1 - cox)
1 — cosx 1 - cosx
= ——dXx = | —— dx
jl— cos’x f sin’x

j[% - %} dx = f [coseczx — COSECX cotx] dx

sin“x  Sin“x

f cosec?x dx — f COSECX Cotx dx

— COtx — (— cosec X) + ¢
COSEC X — COtX + C

Note: Another method

X
tans
1 - (1 _lrex, 172 X
j1+cosxdx‘ ) 825dx—2 sec” 5 dx =5 1 +C=tan>+C
cos™5 >
2sin5
1-cosx _ _ 2 X
@ Jires® = | SzldX—ftan 2 dx
cos™5
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I
—
E\\

N
N
|
N,

o

3

Il

I\)II—“

|

=

+

o

X :
2tans —x+c ... (i)

Another method:

1—cosxd _ ((1—cosx) (1—cosx)
1+ cosx X (1+ cox) (1 - cosx)

— 2 J—
ng COSX) o =J1 2005x+coszxdx

dx

1 - cosx sin’
1 2 CcosX  COSX

= o - .ot o |
sin sin“x  sin“x

f (coseczx — 2cosecx cot X + cotzx) dx

f [coseczx — 2c0secx cotx + (cosec? — 1)] dx

f [2 COSEC?X — 2 COSEC X COtX — l] dx

2 fcosec® dx - 2 Jcosec x cotx dx — [ dx

—2cotx—2(-cosecx)—x+c

1-cosx

1+cosxdx = 2cosecXx—2cotx—Xx+cC ... (i)

Note: From (i) and (ii) both 2tan>—2( —X+c and 2cosecXx—2cotx—X+¢C

are trigonometrically equal.

(30) [ ~/I+sin2xdx

f \/(coszx + sinzx) + (2sinx cosx) dx

S \[(cosx+sinx) 2 dx = [ (cosx+ sinx) dx

[sinx — cosx] + ¢
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3 3 s
X+ 2 B_1+3 B_1 3
31) fx_ldx _f — o _ﬂx_lJ,X_JdX
2
j[(X—l)(x tx+1) 3 de
x-1 x—1

j(x2+x+1+i)dx
X=1

3
X§ +§ +x+3log(x-1)+c

4
(32) f 00X _ J cos’x—sin’x

sin’x coszx sin’x cos’
( cofx _ __sin’ ) N
sin’xcos’X  sin’x cos’X

J )

J (cosec? — sec?x) dx

(B2 "2 Ta
J[(%) o) = S @23 ox

— 2_ X 2 (_ 3—X)

log2 ~ <" log3
2 1

log

X oX+1
(33) J% dx

+C

— X
Togz 3

I
—
_
8
N
@,
53
I
—,
N

X
@,
3

34) [ 1092 X gx

I
—
~~
N
o)
X
a
X
I
o
Q
RO
@
+
o
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(35)J dx :J X+ 3+x—4 q
Frad ) s ) (e g

_ j)[x+3+3[x—4dx :j3[x+347-3[x—4dx
1

X

(x+3)-(x-4)
=3 f[(x+3)ﬂ2 + (x—4)”2] dx

I
Nl

[% (x+332+2 (x- 4)3’2J +c

(36) S (x-Dx+idk = [{(x+1)-2(x+1)
= S+ 0¥ - 20+ 1)V ax
= %(x+1)5’2—2.§ x+1)%2+c
Sx-D\x+1dx = %(x+1)5/2—%(x+1)3/2+c

@7 [(x+a)\Bx+T7dx =  [{(3x+7)—3}\[3x+ 7 dx

= [(Bx+7)\Bx+7-33x+7) dx

= f((3x+ 7% -3(3x+7)"?) dx

= 3 52 ~°-3 32 ¢

2 2
= 1 x+7%2-5 x+ 7+

37 9 4« = ([AB,_C resolve into
(378) f (x—1) (x+2)2 S | A (x+2)? X partial fraction

=il

Iog(x—l)—log(x+2)+ﬁ +c
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Integratethefollowing

EXERCISE 9.4

(1) (2x-5)(36+4x) (2) (1L+ x3)2

X —x2+2

@ X1
(7) s N%3x + 4cos 4x

1
1 - cosx

(10)

1
(13) sin’x cos’x
(16) cos3x cosx
1 + cos2x
sin?2x
X+ 1 3X -1
6X
@ (6 )’

(28) cos?5x sin10x

(x+1)\x+3)

X+1
(x+2) (x+3)

(19)

(22)

(31)

(34)

2
O

(€] C0S>2X — SiN6X

(11)\/1 - sin2x

)
sin“x
(14) 1 + cosx

(17) cos2x sindx
(20) (€* - 1)%e

(23) 093X

X+ M3+ 2

@2

&+ e 42

©

1
(9)1+sinx

(12) /1 + cos2x

(15) sin7x cosbx

(18) sin10x sin2x
1-sinx
1+ snx

(21)

<t 1 b~ 1
@) " —

(26) sinmx cosnx (m>n) (27) cos px cosgx (p > q)

1
@) 51 Jx—2
(32) (x—4)\[x+ 7

X+1

(30) 1
Jacrb_axTe
(33) (2x+ 1)\[2x + 3

(35

S >
(xX-2) (x+2) (x*+9)

9.3.2 Method of substitution or change of variable

Sometimes the given functions may not be in an integrable form and the
variable of integration (x in dx) can be suitably changed into a new variable by
substitution so that the new function will be found integrable.

Suppose

then

F(u)

dF(u)
du
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Putu=¢ (x), then% =¢'(X)

Also we know tha U _ Y
= (W) ¢’
P T R Z)

= Fuw = fTl0M] ¢ dx

Siwdu = [T0M] ¢'() dx

S 116 (919" (9 dx = [T(u) du

The success of the above method depends on the selection of suitable
substitution either x = ¢p(u) or u = g(x).
Example 9.38 — 9.41: Integrate
COSX

39) J Ex*eX (39) | T3 g 0% (40) j\ﬁ dx (41)jﬁ dx

For the first two problems (38) and (39) the substitution in the form
u = ¢(x) and for (40) and (41) the substitution in the form x = ¢p(u).

(38) Let | = [ 5ex
Put X° = u ()
5x* dx = du .. (ii)

Since the variable of integration is changed from x to u, we have to convert
entire integral in terms of the new variable u.

5
o Weget | = f(ex ) (5x* dx)
= [du (by (i) and (ii))
= dl+c
5 . 5 :
= & +c (replacing u by x°, asthe function

of given variable)

108



(39) Let |

Put (1+sinx)
cosx dx

COSX
1+ sinx

(40) Let I

Put
dx

(41) Let I

put
dx

dx

COsX

T+snx 9X

u
du

f m (cosx dx)

1
fudu

logu+c

- (i)
(i)

(by (i) and (ii))

log (1 +sinx) + ¢

1
1-x2

dx

J

1

) = u=snx

... (i)

m (cosudu) by (i) and (ii)
P\/ﬁ (cosu du)

fdu = u+c
Sin_1X+C ( u =Sin_1x)
1
dx
J1+x2
tanu = u=tan x
sec?u du
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I
—
N‘

-

g
N

c

a

c
|

—
a
c

1 _
f1+x2 dx = tan"x+c

Some standard results of integrals

fl
0 ffi(xl)l dx = log[f(x)] +c

1
c
+
o

(ii) \f/—f((—%dx =2+[f(x) +c
[f(x)]n+1

(iii) ff'(x)[f(x)]”dx: n+1 tc wheren=-1

Proof :
(i) Let I = J%)z()l dx
Put f(x) = u
f (x)dx = du
I = fﬁdu =logu+c = log[f(X)] +c
ie fT(%l dx = log[f(X)]+c
(i) Let | = J\%(;)% dx
= f\/—la du where u = f(x) and du = f (x) dx

= 22Ju +c=2+[f(x) +c
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i/—f%%dx = 2+[f(x) +c

(iii) Let | = ST [f)]" dx wheren = — 1
Put f(x) = u
f(x)dx= du
| = S (1) o)
un +1
= fundu = L1 *¢ (v nx-1)
/ " [feo]”
L ST ax = S e
Examples 9.42 — 9.47: Integrate the following
2X+ 1 e 6x + 5 COSX

W2, s WBorx 4 35016 (45) Jsinx
(46) (4x — 1) (2% - x+5)* (47) (3 +6x+ 7) (C + 32+ Tx— )
Solution

2xX+1 1
42) Let | = |=———dx=|——"—{(2x+1d
(42) jx2+x+5 X f(x2+x+5){( ) ixt
Put x2+x+5 =u
(2x+1)dx = du

f%du = Iogu+c:Iog(x2+x+5)+c

+
.'.szzx—ldx = log (¢ +x+5)+¢

+X+5
= ¢ dx
(43) Let I P
put 5+& = u
€dx = du
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_ _1
| = j5+ex(exdx)

1
= fadu

| = Jlogu+tc = log(5+€)+c

. e _
|.e.J5+ede = log(5+€)+c

(44) Let |

6x+5
z—dx
'\/3x +5x+6
t
dt

f\%dt = At +c=2\3C+5x+6 +cC
6x+5

=2k = 273 +5x+6 +c

\/3x +5Xx+6

put 3 +5x+ 6
(6x + 5) dx

COSX

put sinx =t
cosxdx = dt
| = f\%dt
ie I = 23/t +c=2/snx +c¢
. COSX -
i.e \/ﬁ(dx = 24/shx +cC
(46) Let I = [(ax-1) (¢ -x+5)* dx

put 2¢-x+5 = u

(4x-1)dx = du

J (@@ - x+5)* ((4x - 1) dx)

5
5
24— x+
fu4du: %+C:£—;5)_+C
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5
2%X°_x+5

ie [(ax-1) (2¢-x+5%dx = z +c
(47) Let I = f(?,x2 +6X+7) (x3 +3C+ TX— 4)11 dx
put x>+ 3%+ 7x-4 = u
(3x2 +6x+7)dx= du
I = JoC+ 33+ 7x— 4™ {3+ 6x+ 7)ax}
= f utdu
_ u_12 _ (x3+3x2+7x—4)12
|'= "3 *c= 12 e
3 12
f (x3 +3C + Tx— 4)11 (3x2+6x+7) dx = S 3X21+27X 4) +cC
Example 9.48 — 9.67: Integrate the following
16 14 x4 X 17
48) x (L+x") (49) ) (50) &7 (51) x(a-x)
(1 +x%) 1+x
(52) cot x (53) cosec x (54) %9%‘ (55) s Nx cosx
7 etanx e\/;(
56) sin 57) tanx+/sec 58) —%— 59) —=
(56) sin' (Nnxsex (B o (9
—
e’n X 2logx X3 logx 1
(60) m (61) 0% & (62) = (63) %] 00X
1 K2 _ o X2 e-lpex-1
Gy ) % 69 5 &
©7) apx*~Le P (68) (2x—3)\/Ax+ 1)
Solution:
4
48) JX18(1+x7)" dx
4
Let = /X8 +xt) (dx)
put 1+x7 = u ()]
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17x8dx = du

1 y
dx = I&Edu .. (i)
1 _ )
= fle(u)“(l?dexj by (i) and (ii)
5
1 4 1 u
=37 Julau = 55+

4 5
fx16(1+x17) dx = 8_15 (1+x17) +c

(1+x
4
Let I = X 10 dx
(1+>%)
put 1+x%° = u .. ()
25x* dx = du
1 ..
dx = R du ... (i)
24
X 1 . .
I = Ju10(25x24du) by (i) and (ii)

L (o - A[- 2

JL PV SR
1+ x25)10 225 (1 + x25)9

X15
50 dx
0 [
15
X
Let | = Jl + X32 dx
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16

put X
16x2dx

15
X
Jl 2 dx

1) [x@-x"" dx

Let I

put (a-x

dx

I
f x(a— x)17 dx

(52) fcotxdx

Let [
sin X
cosx dx

put

u .. ()

du

1 .
165 du (1))

15
X 1 . .

Jm (ﬁ du) by (i) and (ii)
1 1
7 |T——=du
16 fl + U2
1
16 tan "u+c
1_16 tan~t (x16) +cC

= fx(a - x)17 dx

= U = x=a-u

= —du

= f(a-uu (- du)

= f (u18— au17) du

= 19 ~@7g *C€

_ (a-= x)19 a(a- x)18

= 19 ~~ 18 *¢

= fcotxdx

= u

= du
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CcoSX 1
b= fsinxdX —judu = logu+c

fcotxdx log sinx + ¢

(53) Jcosec x dx

_ _ (‘cosecx [cosecx — cotx]
Let | = fcosecx dx —f Fe—— dx
Put cosecx — cotx = u .. (D
(- cosec x cotx + coseczx)dx =du
cosecx (cosecx — cotx) dx = du ...(2
COsecx [cosecx — cotx]
I = dx
[cosecx — cotx]
_(du _
= f y = logu+c
fco%cxdx = log (cosecx — cotx) + ¢
X
fcosecx dx =logtan 5 tC
log tanx
(54) |~gmox X
B log tanx
Let I = f Sn2x dx
Put logtanx = u ... ()
1 2 _ cox _1 . _
tanxsecxdx = du = Sinx'coszxdx_du
- __2 _ 2
1.8 55X cosx X = du = Sn2x dx = du
dx = % du (i)

fﬁ ' (% du) by (i) and (i)
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2
- S fu = 3]+

log tanx 1 2
f—ggmdx = g llogtanx]” +c
(55) f sinx cosx dx
Let I = fsinlsxcosxdx
Put sinx = t = cosxdx = dt
16
_ 15, - U
| = St®dt =15 +c
: ~16
. . 15 _sn™Xx
s fan xcosxdx = —qeT tcC

(56) Jf'sin’x dx
Let I = f sin’x dx

= fsinGXSinxdx =f(1—coszx)3(sinxdx)

Putcosx = t = —sinxdx = dt
snxdx = (—db)

o= Ja-
= Ja-3?+3* 1% (- d)

= Jd®-3*+3-1)dt

7 5 3
t t t
7
. cos'x 3
f sn’xdx = 7~ - § COS’X + COS™X — COSX + C

(Note : This method is applicable only when the power is odd).

(57) f tanx~/secx dx
Letl = ftanXx/secxdx

Put secx = t
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dt
secx tanx

secxtanx dx = dt sodx=
Converting everything in terms of t.

ftanx (W) (Sec)(ltanx dt)
%dt = jltﬂdt :f\%dtzz\ﬁ g
ftanx\/@dx = 2\/@( +c

(When the integrand is with e® and f(x) is not a linear function in x,
substitute f(x) = u.)

etanx
58 dx
( )Jcoszx
tanx
e
Let | = dx
Jcoszx
Put tanx = t
sec’xdx = dt - dx = cos?xdt
t
e
| = .cosxdt = ddt = é+c
Jcoszx f
tanx
€ tanx
dx = e“"+c
cosPx
e\/—x
(59 de
e\/—x
Let | = \/;( dx
Put\x = t LX =t = dx= 2t
t
e
| = fTﬂ da = Zfetdt = 2et+c
NG
e _ X
\/;(dx = 2e\/—+c
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Si n_lx
(60) J € ux

Vi 7

sin_lx
Let | = £ - dx
1-xX

put snix = ot

L1
st%z dx = eg”_lx +C
(61) J €299 & gy

3
Let | = [ gy
1

putx® = t = 3Cdx=dt sodx = 2 dt
| = fe'ogxz e?‘3 dx = fxz ex3 dx
= J 2 € (ﬁ dt)
:%fetdt=:glet+c
e2Iogx ex3 dx = % ex3 +e
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62) f 100X 3¢

Let | = f'%(gl(d
put logx = u = 3 dx=du dx =xdu
2
| = f (xdu) = fudu = 5 +c
logx
j—xg—dx = 2 [logx]©+c
(63) xlogxdx
: 1
Let I = f—xlogxdx
putlogx = u
)—1( dx = du s dx = xdu
o= fx_:b (xdu):j% du = logu+c
1
jx logx dx = log(logx)+c

(64) X+1\/;( dx

1
Let | = JX""\/;(dX
put+/x
dx

t = x=t

2t dt

] _ (1 t

Zf( )dt =2log(1+t)+c
1 _

; fx+\/;(dx = 2log(1++/x) +c
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e
pue?® = t = %eX\de—dt
2 2
dx = Edt = Tdt
Do (tmwm (Z_dt)
?— 2 \ ¢
(t>-1)
£t4_;11 L N
t

1 -1
= dt =2 | ——>2dt =2tan t+c
J(t —1)<t +1) Jl+t

2_ X2
J% dx =2 tan‘l(exlz) +c

Xe—l+ex—1
(66) j—x‘% KX

e-1 -1
Let | = jidx

X+ e
Put x*+¢& = t ()
e +e)dx = dt, e+ Y ax = dt
1 .
dx = mdt ... (i)
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o [eet e 1 o
.I —J t (e(xe_l+ex_1)jdt by (i) and (ii)
=(_1ef% dt = %Iogt+c

e-1, x-1
3 j%dx = (—lelog(xe+ex)+c

(67) faB 3~ Lo B gy

Japxe-te s

Let | =
Put-Bx* = u = —ofx* ldx = du .'.dx:—OLBXOL_1 du
| = J apx* 1 “( _i_ljdu=—fe“ du = —-e"+c
aof X
. focB x~le P gy = _ e B 4
(68) J(2x— 3)\[ax+ L dx
= [(2x-3)/ax+ 1 dx
Put (4x+1) =t2 = x=%1(t2—1) dx=%dt

f{ 4(t -1)- 3}(t)Odt = j%(tz—l—G).gdt
:%f(t“—?tz)dt _i(i %P) +

S@x-AFLdx =55 (4x+ )52 5 (ax+ )32+
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Integratethefollowing
7
(1) @+

X

X +3

(7) secx

(4)

(10) cos’x

xsin T (x?

NP

cot X

(16) log sinx

Sinx

(19) sin(x + a)

1 - tanx
1 + tanx

(22)
(25) €310 &

(28) x(x-a)™

(31) (x+1)+/2x+3

EXERCISE 9.5

(2x +m)

IX2 + mx + N
(5) 2x+3)\ X%+ 3x—5

(8 cos'x sinx

)

1 + tanx

(11) X + log secx

(14) 5(x+1) ())(( + Iogx)4
(17) sec’ tanx

COSX
cos (X — a)

(23 Mtanx_

SiNX cosX

(20)

Xefl_l_exfl

(26) xE+ e+ e®

(29) ¥ (2 - x)¥°

(32) (3x+ 5)/2x + 1

9.3.3 Integration by parts

21)

4ax + 2b
®) @+ bx+ 9

(6) tanx

(9) sin>x

-1
emtan X

(12) 1+ X2
(15) sin (logx)

X

(18) tan’x sec x

sin 2x
acos? + b sin’

2
(24) glogxx)

7) x (I -8

(30) ﬂfﬁ( X
(33) (¥ + Dfx+1

Integration by parts method is generally used to find the integral when the
integrand is a product of two different types of functions or a single logarithmic
function or a single inverse trigonometric function or a function which is not

integrable directly.
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From the formula for derivative of product of two functions we obtain this
useful method of integration.

I £(x) and g(x) are two differentiable functions then we have
21160 9091 = 169 909 + (9 ¥
By definition of anitiderivative
09 90 = ST 909 ok + [ 13 g9 e
rearranging we get
SIg0 & =f9am-[T0gmd .1

For computational purpose a more convenient form of writing this formula
is obtained by

letting u=f(x) andv=g(x
du=f(x)dx and dv=g'(x) dx
So that (1) becomes fudvz uv—fvdu

The above formula expresses the integral .

Judv interms of another integral ['vdu and does not give a final

expression for the integra fudv. It only partially solves the problem of

integrating the product uv'. Hence the term ‘Partial Integration’ has been used
in many European countries. The term “Integration by Parts’ is established in
many other languages as well asin our own.

The success of this method depends on the proper choice of u
(i) If integrand contains any non integrable functions directly from the

formula, like logx, tan~2x etc., we have to take these unintegrable
functions as u and other as dv.

(if) If the integrand contains both the integrable function, and one of these
isx" (where nisa positive integer). Then take u = x".
(iii) For other cases choice of uisours.
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Examples Suitable substitution for u
No. Given Integrals u dv Reason for u
1 ﬂ ogx dx log x dx
logx and tan"x are
f tan "t x dx tan 1x dx not integrable
directly from the
2. fxn logx dx log x X" dx formula
3 S ¥ tantx dx tan”'x X" dx
4, fx”eax dx both are integrable
N ™ gy | and power of x will
(n is a positive be reduced by
integer) successive
differentiation
5. fx”(sinx or cos X)dx X7 sinxdx | both are integrable
or and power of x will
cos xdx | Pe rgduced by
successive
differentiation
6.1 [ e cosbxdx or eor Remains -
cosbx/ sin bx
J €™ sinbx dx
Example 9.69 —9.84: Integrate
(69) xe* (70) x sin x (71) xlogx  (72) x sec’x
(73) x tan x (74) logx (75)sinx  (76) x Sin’x
2 X
(77) xsin3xcos2x  (78) x 5° (79) X%  (80) e\/—
—
6y P22 ax (82 tan_l( 2 ) (83) %> (84) X2cos2x
\J1-52 1-%

Solution:

69) fxe¥dx = J(x) (€dx)

We apply integration by parts by taking
u=x and dv=e‘dx
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Then du = dxand v=fexdx=ex
Jxe¥ax = xe“— [ &dx =xe¥— & +c

(70) [xsinxdx = [(¥) (sinx dx)

We use integration by parts with
u=x and dv=sindx

du = dxand v =— cosx
© fxsinxdx = (x) (- cosx) - [ (- cosx) (dx)

= —xcosx+fcosx dx
fxsinxdx = — X COSX + SiNX + C

(71) [xlogx = [(logx) (x dx)

Since log x is not integrable take
u=logx and dv=xdx
2

» du =)—1( dx % =X7
Sxlogx = (logx) (X;) J(X;) G dx)
=X72Iog %f dx
X2 1
fxlogx = 2 logx — sz c
(72) [xsec®xdx = J(x) (sec? dx)
Applying integration by parts, we get dv = sec®x dx
Sxsecxdx = xtanx— [tanx dx v = tanx
= xtanx—logsecx +c u=x
fxseczxdx = Xxtanx +log cosx +c du = dx

(73) f X tan x dx = f (tan_lx) (xdx)
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Applying integration by parts, we get dv = xdx
2
Sxtanxdx = (tan"x) Zj ustan’x  v= XE
1 + x2
1
2 G 1 " du:—1+X2 dx
=5 tan "x-3 Jl >d
_ X_ o1
=2t 2 1 +Xx2
_ x_ 1+x2 1
=2t 102 142)°
X -1 1
==t — 1- d
2 ZJ( l+x2j g
2
I = XE tan x —% [x— (tan’lx)] +C
f X tan x dx = % [x2 tan 1x + tan x — X +c
(74) flogxdx = [(logx) (dx)
Applying integration by parts, we get dv = dx
= logx V =X

1
= (logx) (X) — | x.3 dx

X du=)—l( dx
= xlogx— [ dx

flogxdx =xlogx—x+¢

75) Jsinxdx = f(sinx) (d¥)
Applying integration by parts, we get u=sn1x dv = dx

.1 .1 1 1
fsm xdx = (sin x)(x)—Jx.\/: dx du=—fF— dx v=x
1-x° 1-x2
—vanl J X
=Xsn X— dx
\/l—x2

Applying substitution method by substituting
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Jis@ =t
1

2 =2
—2xdx = 2tdt
=2 = g
fsm xdx = xsin x— f( dt)
:xsin‘x+fdt = x snix+t+c

fsin_lxdx = xsin_lx+\/1—x2 +cC

(76) f x sin’x dx

Let | = fx sin®x dx [To eliminate power of
sinx,
1 .2 _1
= fx{z (1- cost)} dx sinx=7% (1 - cos2x)]
::_2L f(x—xcost) dx
% [fxdx fxcostdx}
12
I=§[E—I]} .. (D
where l1 = f xcos2x dx
Applying integration by partsfor 11 dv = cos2x dx
l1= [ (X) (cos2x dx) U= x stn;Zx
[xstx fstx } du = dx
X — COS2X
=3 sm2x—2 2
X

1
1= D) sm2x+;1 COS2X
substituting 11 in (1) we get

=4 [%-u]
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1 [ . 1
=3 [5— ()—2( sin2x t2 costﬂ +C
2
. . S2.
fxsmzxdx =XZ —ﬁ sm2x—co8 X vc

(77) fxsin 3x cos2x dx :jx:—zL[sin(3x+2x)+sin(3x—2x)] dx
( SinA cosB=% {sin(A+B)+sin(A—B)})

= fx% [sin (3x+2x) + sin(3x — 2x)] dx
Applying integration by parts, we get u=x dv = (sinbx + sinx)dx

% fx(sin5x+s'nx) dx du=dx v =(— COES)SX—COSX)

1 COSbX COSHX

5 [X(-—5 —cox —f—T—cosx dx
1 cos bx €os 5x
5|-x{Tg +cox +f 5t cosx)dx

1 (cosSer )+ sin5x+ . N

= |- %75 COosx 5, 5T SNX c

] . d _;[ (cosSx ) Sin5x . }
..fxsm3xc032x X =5 |-X|"5 + COSX | + 25 +sinx|+c

(78) Jx5%dx = f(x) (5°dx)

Applying integration by parts, we get dv = 5% dx
5% 5% 5%
X —_ — -
fxs dx _X|095_j|095dx u=x V= Togs

= Tog5 ~Tog5 "Togs * €

x5 5%
x5dx =7 ———5 +¢
S 1095 ™ (10gs5)2

For the following problems (79) to (82), first we have to apply substitution
method to convert the given problem into a convenient form to apply
integration by parts.

79) /3 dx
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2
Let I=fx3ex dx

put x° = t
co2xdx = dt
dt
dx=§
- (3o oat
. I—fx (€L o

1 1
=5 [@dd =5 [
Now let us use integration by parts method

(tet—fetdt)
(te-e'+c) = %(xzexz—exz+ 0)
.-.fx3e"2dx :% (xzexz—exz)+c

NI NI

(80) f e\/;( dx
Let | = f e\/;(dx
put Ax =t
L x =t = dx=2tdt
| = [ 2t
=2 () (¢ )

Now applying integration by parts, we get
I = Z(tet—fetdt)

=2(te - &) +c

u=t
du=dt

u=t
du=dt

dv = €' dt
v=e

dv = e dt
v=¢

fe\/;(dx :2( xe X \/;9 +cC (th\ﬁ()
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sl
Xsn X

—
Xsin X
Let | = —zdx
1-X
putsin‘lx=t = Xx=snt
1
> dx = dt
1-x

dx = \1-> dt
|:Jx\/l%x2 C(W1-22d)
= [xtat

= [(sint) (t) ot dv = sintdt

I= () (sintd) u=t v = - cost
f du=dt

Applying integration by parts, we get
= t (- cost) - f(— cost) dt

= —tcost + fcost dt

= —tcost+sint+c

| = —(sin_lx) (\ll—xz) +X+C
xsin . t=snx = snt=x
—dx=x—\/1—x2 snix+c
N1-x% cost=/1-sn?t=4/1- ¥

2X
82) |tan ] d
(82) | tan (1—x2) X

Let | = J tan‘l( ~ 2) dx
1-x

putx =tand = dx = sec?0 do
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| = jtan_l (%j sec20 do

= f tant (tan20) sec?0 do

= 20 sec®0 do dv = sec20 do
2 u=0 v=tand
= 2 J(6) (s°0 d 0) du=do

Applying integration by parts
+ 1=2[6t@n0 - ftan do]
= 20tanb — 2log secH + ¢

=2 (tan_lx) (x) —2log\/1+ tan0 +c
.'.Jtan_l(l 2 ij dx = 2xtan x-2 log\/ 1+x° +C

For the following problems (83) and (84) we have to apply the integration
by parts twice to find the solution.

83) /%™ dx = (@) (> dx)

Applying integration by parts, we get dv = e dx
23X 3x _\2 3X
2 3X _ e u=x — e
fx = 3 2xdx du = 2x dx V=13
2 3x
=X 2 (00>
. . dv = eXdx
again applying mtegratlon by parts, we get 2
u=x e
(e X2 20 & (e, du = dx V=g
2 3x
= f 3 dx
x2e3x ~ 2xe3x 3
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(84) f x2cos2X dx = f (x2) (cos2x dx)

> dv=cos2xdx

u=x sin2x

Applying integration by part, we get du = 2x dx v=5

fxzcostdx =x2¥(— %.Zde
= x2¥( ~ [0 (sin2x )
again applying U=x dv = sin2x dx
integration by parts d _ d — COS2X
we get U=t v=—"—

f x2cos2x dx = X° S r;Zx - {X(_ C; SZX)—f(_C%SZX dx)}

xzsin2x xcos2x 1
=——— +—7— -7 [ cos2xdx

x25in2x xcos2x 1
| = > +—> — Z sin2x+c

1 1 1
. JXPoos2x dx =5 x23in2x+2 X COS2X —7 Sin2x + ¢

The following examples illustrate that there are some integrals whose
integration continues forever.
Example 9.85 — 9.87: Evaluate the following

@5) [ e cosxdx (86) f e™sinbxdx (87) fsec®x dx
Solution:
(85) f e cosxdx = f (€ (cosx dx)

Here both the functions in the integrand are integrable directly from the
formula. Hence the choice of uis ours.
Applying the integration by parts u=¢€e* dv=cosxdx
J & cosxdx = esinx— J sinx e dx du=gdx V=SnX

= &sinx— J (@) (sinxdx) ... (1)

Again applying integration by parts we get u=e* dv = sinx dx
du=€‘dx Vv =-cosx
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fexcosx dx = exsinx—[eX (- cosx)—f(—cosx) (e dx)}
= & sinx+ &'cosx — f € cosx dx
ie J & cosxdx = € sinx+ &'cosx— ¥ cosxdx ... (2)

Note that f € cosx dx appears on both the sides.
..rearranging, we get
2fexcosxdx = (&“sin x + € cosx)

.'.fexcosxdx =% [€¥sinx + € cosx] +¢C
fexcosxdx :%X (cosx + sinx) + ¢

86) J ™ sinbxdx = J(sinbx) (e¥dx)

since both functions are integrable, u=snbx
we can take any one of them as u du = b cos bx dx
X (e dv = e™dx
fe sin bx dx —(smbx) a — | 7 (bcosbx) dx e
V="
— l aX H b: 9 a
“a & S X =5 dv=e™dx
Jcosbx . ™ dx U=C0S bx _&¥

_ o _ du=—bsinbxdxV ™ a
Again applying integration by parts we get
feaxsinbxdx =%e smbx—b[(cosbx)( ) fa (—bsinbxdx)}

1

=3 € smbx—bze cos bx — Zfe sin bx dx

J € sinbx dx =§ eaxsinbx—% eaxcosbx—% S sinbx dx

Theintegral on the right hand side is same as the integral on the left hand side.
.. Rearrangi ng We get

fe smbxdx+ fe sinbx dx = le sinbx — bze cos bx
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i.e 1+a2 fe sinbxdx =|Z€ smbx—aze cos bx

2 .
+ —
(a azb%) feaxsin bxdx = & (asmbx aZb cosbx)

2 ax
J ™ sinbx dx =(a—2j xea—z (asin bx— b cos bx)

a’+b
eaX
. J e snbxdx = || (asinbx—bcoshx)+c
a“+b

Whenever we integrate function of the form e™ cos bx or € sin bx, we
have to apply the Integration by Parts rule twice to get the similar integral on
both sides to solve.

Caution:

In applying integration by parts to specific integrals, once pair of choice for
u and dv initially assumed should be maintained for the successive integrals on
the right hand side. (See the above two examples). The pair of choice should

not be interchanged.
Consider theexample: fex sin x dx I nitial assumption

Je'snxdx = - cosx+ J cosxedx dv = sinx dx
u=é = — COSX

Again applying integration by partsfor R.H.S du = & dx
by interchanging theinitial assumption we get dv = & dx

Je&sinxdx = — ecosx+ fcosx € — [ € (—sinx) dx U=cosx v =&
S sinxdx = — ecosx + cosx €+ [ sinx dx du=-sinxdx
Je'sinxdx = [esinxdx ?
Finaly we have arrived at the same given problem on R.H.S!
87) f secxdx = f (secx) (seczx dx)
Applying integration by parts, we get

s w2
S sec®dx = secxtan x — [ (tanX) (sec x tanx dx) dv = secx dx

u=secx VvV =tanx
= secxtanx—ftanzxsecxdx
du = secx tanx dx
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:secxtanx—f(seczx—l)secxdx

=secxtanx—f(sec3x—secx)dx

= secxtan x — J secx dx + [secx dx
fsec3xdx =secxtanx—fsec3xdx + log (secx + tan X)

Rearranging we get,

2fsec3xdx = sec X tanx + log (secx + tanx)

fsec3x dx :% [secx tanx + log (secx + tanx)] + ¢

EXERCISE 9.6
Integratethe followings with respect to x

(1) xe* (2) x cosx (3) x cosec?X (4) x secx tanx

5) tan~1x (6) x tan’x (7) x cos’X (8) xcos b5x cos2x

@ 2xe¥  (10) X% (11) x2 cos3x (12) (sn"1x) s
N

3
13) 8 (14) tan (%j 15 xsn 1) (16) cosecx

(17) e™cosbx  (18) € sin 3x (19) € cos 2x (20) € sin 2x
(21) sec®2x (22) €™ cos 5x sin2x (23) e cos®x
Typel: 9.88-9.93: Standard integrals
dx dx dx
88 89 90
( )Jaz—xz ( )sz—az ( )Ja2+x2

dx dx dx
(91) J—(—az 2 (92) J—{—XZ 2 (93 J—{—xz 2
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Solution:
dx 1
) fa?_% - f@—m<a+mdx

1 2a
::55f@—m@+mdx

(@a-x (a+x X fraction method

1 ga—x)+§a+x)d or use Partial
T 2a
1

L, 17y
2a a+X a-x X

2_151 [log (a+ x) - log(a—X)]

dx il (a+x)+
jaz—x2 - 2a %a-x) "¢

dx dx
®9 J%_gdszQ—wa+w

1 2 1 +a) - (x—
L (2 1 (k+ta-(x-3a)

2a J(x-a)(x+a) = 22 ) (x-a)(x+a)

S | S S
= 2a ||x—a x+al|¥

% [log (x - a) — log(x + a)]

dx
90 Letl =
(90) |7:2
putx = atand = 0 =tan }(x/a)
dx = asec’0do
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ax
j¥+%
Let |

(91)

put x
dx

R S
: J [32_,2
(92) Let

putu =

du =

- (B

a sec’0do N E! sec®0do
a + a2 tan%0 a2 sec0
1
6_1 0+c
1. 1X
3 tan +cC

asnd=0=sn(x/a)

a cosd do
acodd  (_acosdo
'\/az—azsinze a\/l—sinze

1
fcosecosede = [de
0+c

L -1X
sn gz +c

N R S
I = f\/raz dx

[

—\/mdx
w - MEed

JZ_X)_j dx

/X - a2

u

2 )

1
= fadu
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| = logu+c
;2 dx = Iog(x+\/x2—a2) +C
\x® - a
(Try the above problem by substituting x = a sec)
dx
JV%+¥
putu = x+\/x2+a2
du = (l+¢jdx ( X+ a +x]
2\x% + a2 \¥ + a?
g o Era ;Cd
h x+\x% + a°
= 1 ( X2+ a’ du)
o= waz-v

1
= fa du

I = logu+c

(Try the above problem by substituting x = atan 0)

Remark: Remember the following useful substitution of the given integral as a
functions of

(93) Let |

u

Given Substitution
a2 — X2 X=asno
a2+ x2 X = atand
X2 — a2 X = a seco
Example 9.94-9.105:
Integrate :
SRS 97 —l9x2 (%) sz S —14x2
1+ 16
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1 1 1

1 1 1
x+2)2-4 (99)(2X+1)2_9 (100) 2 (101) 1 2z
\/1-16

(98)

1 1 1 1
102) —— (103) —— 104) ——— (105 ——
( )\/1—16x2 ( )\/x2—9 ( )\/4x2—25 ( )\/9x2+16

Solution:
1 1
94 dx = dx
(%4) f1+9x2 f1+(3x)2
_1(3X 1
=\t 1) %3 +C
N
=3 tan ~ 3x+cC
1 1
95 dx = dx
(%) fl—gx2 Jl—(Sx)Z

(96) 1 > dx = 1x ax
L2
16 4

11
©n J1—4x2dx_ Jl—(zx)2 o
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(98)

(99)

(100)

(101)

(102)

Lol
=4 199(1 9y T€

dx _ dx
j(x+2)2—4_ (x +2)° - 22
1 (x+2)-2
=20 %9 ((x+2) +2)
1
i) e

1 dx = 1 dx
j(2x+1)2—9 J(2x+1)2—32

- sG]

_4, (2x—2)
=12 '9\2x+ 4

_1 x+1
=12 l0g{x373) +¢

—gn1X 4
=8n 5 C

)
= a5 (§) +c

1 B 1

= [sin (40)] %1
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(103) f\/le—_g dx = '\/X21f32 dx

1 1
(104) j\/T—ZS dx = dex
= log [2x+\/m] x% +cC
=% log [2x+\/m:| +cC

1 (1
=Iog[3x+\l(3x)2+42] ><%+C
:% Iog[3x+\/9x2+16] +cC

Typell: integral of theform . and —{dx—

In this case, we have to express ax + bx + ¢ as sum or difference of two
square terms to get the integrand in one of the standard forms of Type 1
mentioned earlier.

We first make the co-efficient of x° numerically one. Complete the square

interms containing 2 and X by adding and subtracting the square of half the
coefficient of x.

: 2 _ b .c
ie. ax +bx+c-a[x2+ax+aJ

o2 3]

OR  Wecandirectly use aformulafor
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1
ax® + bx + c =75 [(2ax + b)> + (4ac— b?)]

Example 9.106 — 9.113: Integrate the following:

1 1
107) 5——— 108) -7
(10 )x2+5x+7 ( )x2—7x+5 (109) X2 + 16x + 100

1 1
109 110) 77— 11) —————
( )'\/9+8x X2 ( )'\/6—x—x2 M 58 13 10
1
112) ————— 113) —=
iz M 5 22
Solution:

1
(106) jx2+5x+7dx

|
.
X
+
SE)
N
+
\,
|
NN
nigl
N
o
X
|
;q:
/>?\
+
NI
N
+
MNlw
o
X

X+35
= dx itanl( 2 +C
B 5\2 3)\2 A3 /3

) (“@ +@9 2 2

L1 dx = 2 tan (ZX ﬂ
Jx +5x+7 \3 \3

(107) jm X:J( q+5 OZ dx = X 921 @2 dx

+

c

sz—;x+5 dx:\/12_9 log@ ;+\/\/:gj

(108) %dx = > 1 > dlx
/52 + 16x + 100 \J(x+8)2 + 100 — (8)
= —12 2dx
\V(X+8) +6
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= log [(x +8) +/(x+ 82 +62] +c

= log ((x+8) +'\/x2+ 16x + 100) +cC

(109) [—1— dx =J 1 dx = 1 dx
\J9+8x—x \J9- (@ - 8x) \Jo-{(x- 4?43
1 1
= dx = | —=d
J\/9+16—(x—4)2 § f\/sz—(x—4)2 §

;2 dx = sin’t Xg4 +c
'\/9+8x—x

( 1

(110 ﬁ ™= mdxzj\/ﬁ—{(x+l)2-(l)z}

+

L > dx=sin‘1(2X5 1) +cC

6 -X—x
For the following problems 111 to 113 the direct formula
ax + bx + c:%l [(2ax + b)? + (4ac - b?)] isused.

1 4x3

2 dx = 2
3x“+13x - 10 (2x3x+13)“-4x3x10-1

- (— s [—E— X
J (6x + 13)° - 289 f (6x + 13)° — 172

111 d
( ) 32 X
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= 121 [l (6“13—17)} (1) (Bis thecoefcien)
'“2 17 '99(ex+13+17)] X6) *¢  \ofx

| (GX 4) | (3X 2)
_17 9 \6x+30 +C‘17 %9 {3x+15

;dx-ilo (3x—2) e
f3x2+13x—10 =17 '99(3x+15

1 4x2 1
112) | —5——— dx = dx =8 | ——5 —F—dx
(112) j 2%+ 7x+ 13 J (4x+7)%+104 — 49 J (4x+7)%+\[55?
4x + (1) (4 is the coeffici ent)

_o L o1 1
—8.\/5—5><tan (\/ﬁi of x
L dx = 2 tant (—4X+7) +cC
j2X2+7x+13 /55 \/55

negative sign
(113) J; dx = dx should not be taken
\ —22 \/— outside from the
1o _{ 245X 18 uare root
_ V4 x2
) \/ {(4x+57-18x8- 52}
= > 22 > dx
JN13°—(4x+5)

= 2\/§ {sinfl (4)(1; } XGJ +
_\/_2 —1( 133 ‘e
1 . 1 (4AX+
[t () -

_u_ dx and

. __Px+q
Typelll :Integrals of the form dx
yp €g ax +bx + Jﬂ/axz+bx+c
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To evaluate the above integrals, we have to express the numerator px + q
into two parts with suitable constants. One in terms of differential coefficient of
denominator and the other without ‘X' term.

Then the integrals will be separated into two standard form of known

integrals and can easily be evaluated.
(A & B can be found by

d
Let  (px+a) = A dx (ax2 thx+c)+B equating coefficients of x and
i.e. (px+q) =A(2ax+hb)+B constant terms separately.
(i) f px+q _ j A(2ax+b) +B dx

ax+bx+c ax +bx+c
2ax+b 1
=A —————— |dx+B | —5— dx
j(ax2+bx+c) jax2+bx+c

( 14()2)2 dx = log f(x) = J(axgixgxi Cj dx = [|og(aX2 + bx + C)]J

=A[l 2ybx+0Q)]+B | —5——
jax+bx+ dx [log(ax” + bx + c)] jax2+bx+cdx

_ (2ax+bh)

iy (=229 = [A2ED Lp dx
\ax + bx+c \ax +bx+c \/ax2+bx+c
[j\f/%dxzlef(x) = j\/%d —2\/ax +bx+c]

X+ C

j\/m dx = A(2\/ax2+bx+c) +ijﬁ:dx

Example 114:
Integrate the followings:
4x—-3 3xX+2 5x -2
- = 116) 5 ——
142, o+ s 115 e v 1 1162
4x — 3

3X+1

X+ 1
(117)\/ 2C +x+3 (118)\/8+x—x2 (119)\/x +2x-1
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Solution:

4x-3
(114) jx2+3 +8 o
let 4x—3=A%( (°+3x+8)+B
Ix-3=A2x+3)+B ... (i)
rearranging 4x -3 = (2A) x+ (3A + B)

Equating like terms 2A =4 = A=2
3A+B=-3 = B=-3-3A=-9
()=
(4x-3) =2(2x+3)+(-9)
j 4x—3 Jg2x+3)+g—9;
¥

+3x+8 X2 +3x+8

_ZJ (2x+3) d _gj dx

X2+ 3x+8 X2+ 3x+8

+3x+8

Where Iy = JM dx and Izzjidx

X2 +3x+8 X2+3x + 8

= [(=&X*3)
1_Jx2+3x+8

put X +3x—18=u .. (2x+ 3)dx=du

|1=f0'—ljJ = Jog (@ + 3x + 8) e

dx )
|2 = f > =

fxz4x_3 dx =211 -9l .. (1)

R+3x+8  J(2x+32+4x8-3F
— 4 l _12Xx+3
_j(2X+3)2+(\/Z3)2 dx = 4><\/—3 > tan \/—3
1 2X+3

Substituting (2) and (3) in (1), we get
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Ix-3 _ 18 . 12x+3
J—X2+3X+8dx-2|og(x2+3x+8)—\/ztan 23

33X+ 2
115) |5 —— dx
(115) XC+x+1

Let 3x+2=A%((x2+x+1)+B

(3x+12)= A(2x+1)+B
i.e x+2=(2A)x+ (A +B)
Equating like terms
2A=3 ; A+B =2
3
2

Nw
NI

3
, 2tB =2 =>B=2-

>
I

Substituting A=% and B=% in(1) weget

L(3x+2) = % (2x+1) + (:—ZL)

R _JM
. x X =

dx
2ix+1 XC+x+1

3 2x+1 dx+l 1 dx
_fo2+x+1 2fx2+x+1
3x+2 3
. X2+X+1dx—2{log(x2+x+1)}+l . (2

1 1 1 4x1
Where =5 |[5——— dx =35 dx
2Jx2+x+1 2 (2x+1)2+4><1><1—12

- Lt (ZX + 1)
3 \3
Substituting above | in (2), we get

) X+2 3 1 q(2x+1
. J—xz dx =5 Iog(x2+x+l)+\/§tan ( >+c

+x+1 NE
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5x-2
116) |5 —— dx
( )sz—x—Z
_ad 2
Let 5x-2=A54 x*-x-2)+B

bx—-2=A(2x-1)+B .. (D
bx—2=(2A)x-A+B
equating liketerms 2A =5; -A+B= -2

~.~A=g ;—g+B=—2:> B:_2+g :%
P ) 1.
Substituting A =5 and B = 5 in(1), weget
(5x—2):g(2x—1)+:—2L
) 1
5X — 2 E(ZX—1)+(§)
B L S N Y
X—X-2 XT—X-2
5 2x-1 1 1
=5 | 57— — dx+5 |5/ dx
ZJXZ—X—Z 2fxz—x—z
5x -2 5
E —— dx =3 {log(®-x-2)} +1... (2
sz_x_z > {1og( )} +1.. )
1 1 1 4x1
Where == [=———— dx == [—2—
ZJXZ—X—Z 2 Jix-12-8-1
14 24 11, [ZX—l—S}
T2 Jx—12-32 T 2%2x32'9x-1+3

el Ll
=332 199 x72] =6 !09(x+1

Substituting | in (2), we get

5X—2 5 1 X—
Z o, =7 log(-x-2) + % Iog(XJrl) +c

Note: Resolveinto partial fractions and then integrate.
3x+1

0 T2t ries &

149



Let 3x+1=A%( (2 +x+3)+B

3x+1=A4x+1)+B .. (D)
3x+1=4Ax+A+B
equating like terms 4A =3 ; A+B=1

=% B=1-A=1- % %1
. 3 1
by (i) = .'.3x+1=;1(4x+1)+;1

3 1
2@x+1)+7

3X+1
——
f 2x° +x+3 J'\/m3 '
U3 [+l ;dx
R e o [ 0 5y

1

Where | =7 | 7—— dx
4[’\/2x2+x+3
J\/(4x+1) +24-1

RE J\/(4x+1) )
=@ [log (ax+ 1) +~/(ax+ 1)2 + 23] x5

dx

substituting in (2) we get

x4+l dx :g \/2x2 +Xx+3 +i { log (4x+1)+\/(4x+1)2+23} +cC
2P +x+3 42
118) (21— o
\/8+x—x2

Let x+1=A%( (8+x-x9)+B
x+1=A(l1-2x)+B .. (1)
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=(-2A)X+A+B
equating liketer'ms —-2A =1,; A+B=1

A——% B=1-A=1- % %
Substituting = —% and B= 5
by (1) x+1=—%(1—2x)+%

X+ 1 . J'Z(l 2x)+§CI
Lol dx = | T dx
8+x—x° m
_ 1 (A-29 1 dx
2J'\/8+x X2 f\/8+x—x2
\/;de——l{zv8+x x}+
+X

Where [

1
—— d
J —{xz—x—8} X

_3 4x 1
N-{@x-1)%-32-1)

_3 2
2 J\/(@)z—@x—nz
B (5]

(%)
substituting in (2) we get

x+1 2x-1
— \/8+x + ( )+c
\/8+x \/33

Nlw Nlw

dx

NlCAJ w
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4x -3

119) |—7—=— dx
(19 \/x2+2x—1
Let 4x-1=A(2x+2)+B .. (D)
dx-3=(2A)x+2A +B
equating like terms

4=2A ; 2A +B
LA =2 B=-3-2A=-3-4=-7
Substituting A=2 and B=-7in(1),weget
AX—3=2(2x+2)-7
Ix-3 _(2(2x+2)-7

N o= \/x2+2x—1dx

- 2JL i+ 7) [———
'\/x2+2x—1 \/x2+2x—1
\/%dx=2{2\/x2+2x—1}+ )

Where I:—7;dx:—7d—)2(
D@+ 2x -1 \(x+1)2-1-1

_ dx
=-7log {(x+l)+\/m}
| :—7Iog{(x+l)+\/m}

substituting in (2) we get

\/7% dx = 4\x%+2x -1 -7 log { (X+1)+\/x2+2x—1} +C

We have aready seen that

1 _anlX
J dx = sin atc
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J\/— dx—log[x+\/x —a] +C
J\/z—z dx = log [x+\2+2a7] +c
X“+a

The three more standard forms similar to the above are

TypelV:
(120 NPk =5 F2 +2 s
(121) S\ = a2 dx =§\/m—2 Iog[x+\/T] ‘e
122 S\ +aax =5+ +5 Iog[x+ﬁ] re
(120) Let | = f[a2—x2dx

Applying integration by partsrule dv = dx

|_X\/:2 J(\/—Z dx Ietu:\/azfx2 V=X

a—xj — 2X

du=—F——=d

e

r 2
=X\'a2—X2— \/azxfxzdx

2 2 2

:x\/az—xz— E _a;( _XS dx
:x\/az—xz— ( _x° C a) jdx

J Wa2-x2 RN

—yfa2_ 2 _ 2 2 a
= x\/a? - ¥ f a XdX+J\/E2dX
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I :x\laz—x2 — +a2j\/a21fx2 dx

| +1 :x\/az— +a2.:5in’1§1
2I=x\/a2— +azsin_1§1
| =)—2( \a? - x? +a72 sin_lg +c
f\/a e dx:)—z(\/a e +2 st atc
(20 Let | = J\@—a?dx

Applying integration by partsrule dv = dx
N Ie’cu=\/x2—a2 vV =X
| = x\x*-a° -
J ( X _aj 2X

du= dx
2\lx2— a2

_ 2 x2a+a
N Jm

2
a2 | X | &
= X\X a Jm dx Jm dx
:x\/xz—a2—f\/xz—azdx—azj\/le—2 dx

—-a

| =x\[x®-a% -1 -a’log [x+'\/x2—a2]
=x\x-a% —a® Iog [x+\/x2 a2]

)—z(m— Iog[x+\/:] +cC
f’\/xz—a2 dx=§\/x2—a2 —(’jlizlog[x+\/x2—a2 +C

(122) Let | = J\@+a?dx
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Applying integration by partsrule dv = dx

I—X\W— ( j let u=\/x%+a’ V=X
x+a

2X

du= r—xz 2dX
[ X +a—a
- 2
=X x2+a —J {—X

2., .2 2
— w2y a2 | XEE a

=X\ x“+a J x2+a2dx+j 21 dx
=x\2+a? - J\¥+a? dx+azj\/—% dx

X“+a
I:x\/x2+a2— I +a2Iog[x+\/x2+a2] +C
L2 =x\ X +al +al Iog [x+\@+a?] +c

l=xRra + Iog[x+\/x2+ +c
f\/x +a? dx= \/x +a? +5 Iog[x+\/x2+a] +C

Example: 9.123 -9.131:

Integrate the following :
123)\J4-92  (124)\/16¢—-25 (125) \[9@ + 16 (126)\/2x- %
L2\ C—ax+6 (128)\)+ax+1 (129)\[4+8x - 5x
(130) \V2-% @+ (13)\(x+1) (x-2)

Solution:

2
123) \J4- 9@ dx = J\22—(3)%dx =2 §3—X1 2 (392+% an 1 4
2 2
:§[37X\/4 o +2sn 37)(}+c
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(124)J\[16@ — 25 dx= J~[(4x)? - 52 dx
=3 [@m—%'OQ[MH/MH
= £ [4x\[16@ = 25— 25109 (4x +\[162 - 25)] +c
125 JA[od+16 dx= JN[(3%2+ 42 dx
S N v s A e e |
= 2 [ax\/o + 16 + 1610g (3x + [ + 16) ] +¢
@26) J\2x—@ dx= JA[1- @ - 2x+ 1 dx=JA12— (x- 1)? dx
- D 112 +172 gn‘l(xil) re
XL oo + 2 st k-1 +c
127) N ax+ 6= S\ ax+a+2 dx= [\[x- 22+ (V22 dx
WS N A I E) ) (PN opc s B
=22\ [2 v 6 +og [(x-2) +\@—ax+ 6] +c
(128) S\ + ax+ 1dx = fA[(x+ 22— (\3)2 ix

3 2
= 852 v 27— (3 Z—N—;L log [ (+2)+/0+2%-(v3)7] + ¢
~EGAErae1 -3 g [ e ace ]
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(129) JN[4+8x—52dx = /- {52 —8x— 4} dx

( aC+bx+c = % [(2ax + b)?+(4ac-b?] ))

- j\/41—5\/—{(10x—8)2—80—64} dx
X
_ 1 f\[122 2
= \/7—0 12° - (10x — 8)“ dx
1 [ 10¢=8_ [177 (10x_ )2 (12? 110x- 8)}
1 [1 > 36 . 1(5x-4
= \/ﬁ E(Sx—4)\/80+16x—100x +7g sin ( 6 )}
1 5x-4 _15x 4
= \/ﬁ_( )\/_0\1(4+8x 5x)+ 6 J
B5x— 4 5 36 _.5x—4
10 \/4 + 8x — 5x +@X55|n 6
f’\/4+8x—5x2dx:5X164 \4+8x - 5% +;\% sin‘lsxﬁ_4 +C
130) J\VE-x0@+xdx=J\2+x—2 dx= S/-(@-x-2) dx

G801 o
10T o vt (e (25
)l

)l

(2x-1) 8+4x 4% +9sin” (

_2(2x—1)\/ 2+x—x2+9sn” (

|
®l ol NI
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2
@31 JVxr) -2 dx= [\E-x-2 dx= j\/W—s—l N
%f\/m dx

2O No 72 Q) Sosf eyl 7R |
f \(X+1) (x=-2)dx = % [%2 m—% Iog{ (2x-1)+ m}}

EXERCISE 9.7

Integrate the followings
0 - 1 1 1 1
X2 +25 " (x+2)°+16° (3x+5)%+4 2%+ 7x+13 ' 9 +6x+10
1 1 1 1 1
16-%% '9-(3-%2 '7T—(@x+1)? "1+x-x° '5-6x—9x°
@ 1 1 1 1
X2 —25 " (2x+1)°-16 ' (3x+5)%-7 'x*+3x-3 '3x°- 13x- 10
@) —L 1 1 1 1
3 +1 A (@2x+5)2+4 \(3x5)2+6 \[x%+3x+10 \[x@ + 5x + 26
(L 1 1 1 1
=91 \[(x+1)2-15 '\ (2x+ 3)2 - 16 "/} +4x— 12 '\/}% + 8x— 20
6 L 1 1 1 1
432 25— (x=1)2 \J11 - (2x+3)2 1+ x—x \/8-x— 2
@ 3= x— 3 2x—1 1-x 4x+1
CAx+1 CH2Ix+3 "2+ x+3 " 1-x—-x° ¥ +3x+1
X+2 2X—3 X+2 1+x 6Xx+7

8 : \ , \

()\/6+x—2x2 \10-7x—x2 "3+ ax+7 N 1=X"\[(x-4) (x-5)
ON1+x2 , \Jx+12+4) , \J@x+1)2+9, \/(-3x+10)
10)\/4 -3 \[25— (x+2)% ,\[169 - (3x+ 1)2 , \1-3xx2 , \[(2-%) (3+X)

)
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9.4 Definiteintegrals

A basic concept of integral calculus is limit, an idea applied by the Greeks
in geometry.

To find the area of a circle, Archimedes
inscribed an equilateral polygon in a circle. Upon
increasing the numbers of sides, the area of the
polygon approaches the area of the circle as a limit.
The area of an irregular shaped plate also can be
found by subdividing it into rectangles of equal
width. If the number of rectangles is made larger
and larger by reducing the width, the sum of the
area of rectangles approaches the required area as
alimit. The beauty and importance of the

integral calculusisthat it provides a systematic way for the exact calculations of
many areas, volumes and other quantities.

Integration as summation
To understand the concept of definiteintegral, let us take asimple case.

Consider the region R in the plane Y y=flx)
showing figure 9.3. The region R is
bounded by the curve
y = f(x) , the x-axis, and two vertica
linesx=aand x=b, whereb>a

— R
For simplicity, we assume y = f(x) X
. . . xX=da x=bh
to be a continuous and increasing
function on the closed interval [a, b]. Fig. 9.3

We first define a polygon contained in R. Divided the closed interval [a, b]
into n sub intervals of equal length say Ax.

b-—a
SOAX = n
Denote the end points of these sub intervals by xg, X1, Xo......... Xrouennn Xn.
Wherexg=a, Xy =a+ AX, Xp = a+ 2AX, ...... Xr=a+rAx ...... ,Xn=b
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The area of the polygon
shown in figure 9.4 is the sum of the
area of the rectangles (by taking the
left hand x vaues of the such
intervals).

= f(xg) AX + f(X0)AX ... +(Xn-1) AX
=[f(a) + fla+ AX)+ ... f(a+r AX) ...
+f(a+ (n— 1)Ax)] Ax

f{a+(r-1) Ax}.(AX)

||M3

r=1

_ n

=9;3 Y fla+(-1) A%
r=1

b y=flx)

| Ar=Jla i) Ar
~

Fig.9.4
n

= Ax Y f{a+(r-21) Ax}

Now increase the number of sub
intervals multiply n by 2, then the number
of rectangles is doubled, and width of
each rectangle is halved as shown in
figure. 9.5. By comparing the two figures,
notice that the shaded region in fig.9.5
appears more approximate to the region R

thanin figure 9.4.

So sum of the areas of the rectangles
Sh, approaches to the required region R as

n increases.

Lt Lt
Finally we get

"N— o0 S"':n—>oo

b
n

r=1

QMfo%

Y y=fx)

X

X=d x=b
R
Fig. 9.5

a

— E f{at(r-1)Ax¢ >R

r=1

Similarly, by taking the right hand values of x of the sub intervals, we can

have,

Lt Lt b-a

Sh

N> M nosow n

flatr AX) »> R

i.e. R :n—)oo n

Lt b-a

fla+rAx)| — |
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Definition: If afunction f(x) is defined on a closed interval [a, b], then the
definite integral of f(x) from ato b isgiven by
Lt b-a D

Nnesoo N > fa+r Ax)|, WhereAx=bfa (provided the limit exists)
r=1

On the other hand the problem of finding the area of the region R is the
problem of arguing from the derivative of afunction back to the function itself.

Anti-derivative approach to find the area of theregion R.

Let us consider the same region R Y vy =fix)
(considering 9.6) bounded by the curve
y = f(X) the x-axis and the two vertical
lines, x = a and x = b, where

b>a

To evaluate the area of R, we | R
need to consider the total area between T=a rry.] X
the curve y = f(X) and the x-axis from Fig. 9.6

the left to the arbitrary point P(x, y) on
the curve.
Let usdenotethisarea by Ay.
Let Q (X + A, y + Ay) be another point very closeto P(X, y).
Let AAy isthe area enclosed by the strip under the arc PQ and x-axis.
If the strip is approximated by a rectangle of length y and width Ax, then
the area of the stripisy . Ax.
Y y =flx)
Since Pand Q are very close

AAx
AAy=y.AX .. ax Y

Q(x + Ax, y + Ay)

If the width Ax is reduced,
then the error is accordingly —

reduced. X
If AX—> Othen AAx— 0
Fig. 9.7
Lt  AAx dAx
“Ax—0 ax Y T Tdx 7Y
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d
. By definition of anti derivative  —5~

=y = Ay= [ydx

is the total area Ay, between the curve and x-axis upto the point P is given

by the indefinite integral | ydx

Let fydx =F(x) +c
If x=a, thentheareauptox=a, A;is
Jydx =F(a) +c
If x=Db, thentheareauptox=b, Apis
[ ydx =F(b) +c
.. Therequired area of the region

RisAp — Aj
given by
f ydx — f ydx
uptox=b uptox=a
= (F(b) +¢) - (F(a) +c)
b
by notation [ ydx = F(b) - F(a)
a

b
S f(x) dx = F(b) - F(a) -
a

gives the area of the region R bounded by
the curve y = f(x), x axis and between the
linesx=aandx=h.

a & b are called the lower and
upper limits of theintegral.

From| & 11, itisclear that

y=flx)
Aa

xX=a x=0b X
y=flx)

A:‘)
X=da xXx= b X
y=flx)

R
X=a x=b X

Fig. 9.8

b
Lt -
R b

r= a

“no Oo_a glf(an rax) = [ f(x) dx= F(b) - F(a)| , if the limit exists

162



To evaluate the definite integrals under this method, the following four

formulae will be very much useful.

n +
() yoro= M
r=1
(ii) T2 - hnt b 1)
r=1
r=1
n n_
(iv) L = a@_ll) (@21)
r=1
Ilustration: y=3
Consider the area A below the c
straightline y = 3x above the x-axis /6, 18)
and between the lines
X = 2 and x = 6. as shown in the
figure. )
(1) Using the formulafor the area of DY
the trapezium ABCD R 18
R = g [a+Db] 6
=5 [6+18] =2x24 A0 B
R =48sq. units ... (i) Fig. 9.9
(2) Integration as summation y=3x
Let us divide the area /
ABCD into n strips with equal C
widths. Herea=2,b=6 /
.. width of each strip
b-a —
Ax =" 3
6-2 7 s
e Ax =7 =
4 <
AX = n A B
x=2 x=6
Fig. 9.10
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By definite integral formula

Lt b-a DI
R=n_>OOT > f(a+r AX)
r=1
Lt 4 N 4
“noowon Zf(ZH(ﬁD
r=1
Lt 12 D/ 4 4 4
T hosoo N > (2+F) ; [ f(x):Sx,f(2+rﬁ):3[2+r (ﬁ)ﬂ
r=1
Lt 12 h_4 1N
:n%mF{ 22+ﬁ z'}
r=1 r=1
Lt 1_2[2 +z_1gn)gn+1)}
"noown |MTh 2
Lt 12
" hD o n [2n+2(n+1)]
L
- U 12[2+2MJ
n— oo n
Lt 1
_n—>0012[2+2(1+ﬁﬂ
=12[2+2(1+0)] asn — oo, %—)O
=12x4
R = 48 square units ... (i)

(3) By anti derivative method

b 6 6 6
R= [f()dx = [ 3xdx =3[ xdx =3[§L
a 2 2

62— 22 364 32
= 3|: 2 ]:3|: 2 J =3X7

R = 48 sguare units ... (i)
From (i), (ii) and (iii) it is clear that the area of theregionis

Lt b-a

b
:n_)OOTZf(a+rAx):ff(x) dx|, if thelimit exists

a

R
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Examples 9.132 —9.134:
Evaluate the following definite integrals as limit of sums

2 3 5
(132) [ (x+5)dx (133) J Cdx (134) J (3¢ +4) ox
1 1 2

2
(132) [ (2x+5) dx

1
Letf(x) = 2x+5 and[a, b] =[1, 2]
b-a 2-1 1
AX = @ ="n =n
1
LAX = R
fx) = 2x+5

1 r
~fa+rax)y = f(1+r ﬁ) = 2(l+ﬁ) +5
Let us divide the closed interval [1, 2] into n equal sub intervals of
each length Ax.
By the formula
b n

Lt
ST ox = ax 50 Ax 2 fl@a+rray
a r=1
2
Lt n
fers = 5 (5 I (2(1g)+s)
1 r=1
Lt 1 N 2
“noon 2 (7+ﬁl’)
r=1
Lt 1 n 2 N
= = X T7+y Zr}
n n
N—= L=1 r=1
Lt 1[ 2 n(n+1)
“noown M-~ 2

Lt [ n+1}
“how|/t™h
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o (74 (1ed)]

=(7+1) Un—-0 asn—>w
2
f(2x+5) = 8 square units
1
2 g 2
Verification: [ (2x+5)dx =|2(7 )+ 5x 1
1
2 2
=2 -19+52-1)=(4-1) +(5x 1)
2
J (2x+5) dx = 8 square units
1
3
133) J %% dx
1

Letf(x) =x’ and [a, b] = [1, 3]
Let us divide the closed interval [1, 3] into n equal sub intervals of
each length Ax.
-1 2 y=x2
n

;

2
f(a+rAx):f(1+r n

N2
= (1”ﬁ) X

fla+r AX) = x=1 x=3

4 4 5
1+ﬁ|’+;2|’

Fig.9.11

By the formula

b Lt n

ST ox = ox 50 Ax 2 fl@a+ray

a r=1
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3
Lt 2 0 4 4
fxzdx = A > (1+—r+ 2r2)
=1

Lt 2

[zu b Zr]

Lt 2
nsowon(Ntn:

4 (N (n+1)(2n+ 1)}
6

ofoed

2 26 .
f X dx =3 squareunits.
1

5

134) J (3¢ +4) dx
2

Letf() =3¢ +4 and[a, b] =

n_mz[ 2(n;1) 2(

1
1w 2102147

= 2[1+2+§(1) (2)}

n;l).(an:-lﬂ
(147 (2+5)]

1

t
S 50 —>n—0

Let us divide the closed interval [2, 5] into n equal sub intervals of

each length Ax.

(@)

-2
AX

3‘

Sl w

SO AX
fx) = 3 +4
3
Sf@a+rAx) = f(2+r .ﬁ)

3r2
=32+ +4

By the formula

y=3x2+4

Y /




b Lt
Sk = ax 50 Ax Z fla+r Ax)

a =1
5
Lt 3 D
forsnas 8 3 6630
n
S h L (e B g)
r=1
n
:nl-)too% D (12+—r+2—2r +4)
r=1
Lt 3 n 27
“nsen X |BER050)]
_ Lt 3 27
-nwﬁ[mmz”—zﬂ
Lt 3 36(n) (n+1) 27n(n+1) 2n+1)
= n-o | 160 tZ 6
Lt (n+1) 9/n+1\/2n+1
:n—>oo3[16+18 n +2( n )( n ﬂ
Lt 1y 9 1 1
= = 0 3[16+ 18(1+ﬁ)+'2(1+ﬁ)(2+ﬁ)}
9
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10. PROBABILITY

“The theory of probability is nothing more than good sense confirmed by
calculation”

— Pierre Laplace
10.1 Introduction:

The word probability and chance are quite familiar to everyone. Many a
time we come across statements like “There is a bright chance for Indian
cricket team to win the World Cup this time”.

“It is possible that our school students may get state ranks in forthcoming
public examination”.

“Probably it may rain today”.

The word chance, possible, probably, likely etc. convey some sense of
uncertainty about the occurrence of some events. Our entire world is filled with
uncertainty. We make decisions affected by uncertainty virtually every day.

In order to think about and measure uncertainty, we turn to a branch of
mathematics called probability.

Before we study the theory of probability let us learn the definition of
certain terms, which will be frequently used.

Experiment: An experiment is defined as a process for which its result is
well defined.

Deterministic experiment: An experiment whose outcomes can be
predicted with certain, under identical conditions.

Random experiment: An experiment whose all possible outcomes are
known, but it is not possible to predict the outcome.

Example: (i) A fair coin is “tossed”  (ii) A die is “rolled” are random
experiments, since we cannot predict the outcome of the experiment in any trial.

A simple event (or elementary event): The most basic possible outcome of
a random experiment and it cannot be decomposed further.

Sample space: The set of all possible outcomes of a random experiment is
called a sample space.

Event: Every non-empty subset of the sample space is an event.

The sample space S is called Sure event or Certain event. The null set in
S is called Impossible event.

Example: When a single, regular die is rolled once, the associated sample space
is
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S={1,2,3,4,5, 6}

{1}, {2}, {3}, {4}, {5}, {6} are the simple events or elementary events.

{1}, {2, 3}, {1, 3,5}, {2,4,5, 6} are some of the events.

Mutually exclusive events (or disjoint events)

Two or more events are said to be mutually exclusive if they have no
simple events (or outcomes) in common. (i.e. They cannot occur
simultaneously).

Example: When we roll a die the events {1, 2, 3} and {4, 5, 6} are mutually
exclusive event
Exhaustive events:

A set of events is said to be exhaustive if no event outside this set occurs
and atleast one of these events must happen as a result of an experiment.
Example:

When a die is rolled, the set of events {1, 2, 3}, {2, 3,5}, {5,6} and {4, 5}
are exhaustive events.

Equally likely events:

A set of events is said to be equally likely if none of them is expected to
occur in preference to the other.

Example:When a coin is tossed, the events {head} and {tail} are equally likely.
Example:

Random | Total Sample space
Trial | Experiment | Number of
Outcomes
(1) | Tossing of a ) {H, T}
fair coin
() | Tossingof | 2*=4 {HH, HT, TH, TT}
two coins
(3) | Tossing of Y=g {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
three coins
(4) | Rolling of 6'=6 {1,2,3,4,5,6}
fair die
(5) | Rollingof | 67=36  |{(L1), (12), (13), (L4), (L), (L), (.1),(22), (23), (24), (2.5), (26).
two dice (3,1),(3.2),33),(34),3,5),3.60), (41),42),(43),(44),45),(40),
(5.1).(5.2).(5.3), 5.4). 5.5, (5.6), (6,1),(6.2), (6.3), (64), (6.5), (6.6)}
(6) | Drawing a 521 =5 |Heart vA23456789101J Q K Redin colour
card from a Diamond ¢A23456789107J Q K Redin colour
pack of 52 Spade AA23456789107J Q K Blackin colour
playing cards Club *A23456789 107 Q KBlackin colour
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Notations:
Let A and B be two events.
(i) A u B stands for the occurrence of A or B or both.

(i1) A M B stands for the simultaneous occurrence of A and B.

(iii) A or A’ or A° stands for non-occurrence of A

iv) (Anm ]§) stands for the occurrence of only A.
Example: Suppose a fair die is rolled, the sample space is S = {1, 2, 3,4, 5, 6}

Let A={1,2},B={23},C={(3,4},D={56},E={2 4,6} be some
events.

(1) The events A, B, C and D are equally likely events, because they have
equal chances to occur (but not E).

(2) The events A, C, D are mutually exclusive because
ANnC=CnD=AnNnD=¢.

(3) The events B and C are not mutually exclusive since B N C={3 }# ¢.

(4) The events A, C and D are exhaustive events, sincc AU CuD=S

(5) The events A, B and C are not exhaustive events since the event
{5, 6} occurs outside the totality of the events A, B and C.

ie. AUBUC=NS).

10.2 Classical definition of probability:

If there are n exhaustive, mutually exclusive and equally likely outcomes
of an experiment and m of them are favourable to an event A, then the

m m
mathematical probability of A is defined as the ratio Iy i.e. P(A) = n

In other words,

let S be the sample space and A be an event associated with a random
experiment.

Let n(S) and n (A) be the number of elements of S and A respectively.
Then the probability of event A is defined as

N(A) _ Number of cases favourable to A
n(S) ~ Exhaustive Number of cases in S

P(A) =

Axioms of probability

Given a finite sample space S and an event A in S, we define P(A), the
probability of A, satisfies the following three conditions.
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1)0<PA)L1

2)PE)=1

(3) If A and B are mutually exclusive events, P(A U B) = P(A) + P(B)
Note:

If A, Ay ...... Ap are mutually exclusively events in a sample space S,

P(Af VAU ... UAp=PA]) +P(A2) + P(A3) + ... + P(Ap)
Example 10.1:

If an experiment has exactly the three possible mutually exclusive
outcomes A, B and C, check in each case whether the assignment of probability
is permissible.

1 1 1
i P@A)=3 ., P®B)=7, PC) =3

1 3 1
(i) PA)=7.,  PB)=3. PC)=75
(iii) P(A)=0.5, P(B)=0.6, P(C)=-0.1
(iv) P(A)=0.23, P(B)=0.67, P(C)=0.1
v) P(A)=0.51, P(B)=0.29, P(C)=0.1

Solution:

(i) The values of P(A), P(B) and P(C) are all lying in the interval from [0, 1]
1 1 1
Also their sum P(A) + P(B) + P(C) =3 +73 +73 =1

.. The assignment of probability is permissible.
(ii) Given that O <P(A), P(B),P(C)<1

1 3 1 5
But the sum P(A) + P(B) +P(C) =7 +7 +73 =7 >1

.. The assignment is not permissible.
(>iii) Since P(C) =— 0.1, is negative, the assignment is not permissible.
(iv) The assignment is permissible because 0 < P(A), P(B), P(C) <1 and
their sum P(A) + P(B) + P(C) =0.23 +0.67+ 0.1 =1
(v) Eventhough 0 < P(A), P(B), P(C) <1,
their sum P(A) + P(B) + P(C) =0.51 + 0.29+ 0.1 =09 # 1.
Therefore, the assignment is not permissible
Note:
In the above examples each experiment has exactly three possible
outcomes. Therefore they must be exhaustive events (i.e. totality must be
sample space) and the sum of probabilities is equal to 1.

172



Examples 10.2: Two coins are tossed simultaneously, what is the probability of
getting
(i) exactly one head (ii) atleast one head (iii) atmost one head.
Solution:
The sample space is S = {HH, HT, TH, TT}, n(S)=4
Let A be the event of getting one head, B be the event of getting atleast one
head and C be the event of getting atmost one head.

~ A = (HT, TH}, n(A) =2
B = (HT, TH, HH}, n(B) =3
C = {(HT,TH,TT}, n(C) =3
nA) 2 nB) 3 nC) 3

. |
1 PA) =NS) =4 =2 (i) P(B) =NS) =4 (iii) P(C) =1S) =2
Example 10.3: When a pair of balanced dice is rolled, what are the probabilities
of getting the sum (i) 7 (ii) 7or 11 (iii) 11 or 12
Solution:
The sample space S = {(1,1), (1,2) ... (6,6) }

Number of possible outcomes = 62 =36= n(sS)

Let A be the event of getting sum 7, B be the event of getting the sum 11
and C be the event of getting sum 12

A = {(1,6),(2,5),(34), (4,3), (5,2),6,1)}, n(A) =6.
B = {(5,6), (6,5}, n(B)=2
C = {(6,6)}. nC)=1

. . naA 6 1
(i) P(getting sum 7) = P(A) = @ =36 =6
(i) P (7 or 11) = P(A or B) =P(A U B)
= P(A) + P(B (A and B are mutually exclusive i.e. ANB=0)

_6 2 8 2
=36 36 536 =9

P(7 or 11)

(ii)P (11 or12) = PBorC) = P(BuU C)
= P(B) + P(C) (- B and C are mutually exclusive)
2 1 3 1
=36 %36 736 T 12
1

P(1lor12) = 15
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Example 10.4: Three letters are written to three different persons and addresses
on three envelopes are also written. Without looking at the addresses, what is
the probability that (i) all the letters go into right envelopes, (ii) none of the
letters goes into right envelopes?

Solution:

Let A, B and C denote the envelopes and 1, 2 and 3 denote the
corresponding letters.

The different combination of letters put into the envelopes are shown
below:

Outcomes
Ch | & | G| C |G
A 1 1 2 2 3
Envelopes B 2 3 1 3 1
C 3 2 3 1 2
Let X be the event of putting the letters go into right envelopes.

—_ N WO

Y be the event of putting none of the letters go into right envelope.

S = {c1, &2, C3, C4, C5, C6 }, N(S) = 6

X={c}, nX)=1 Y={cC5}, nY)=2
1
P(X) =
2 1
P(Y) =% =3

Example 10.5: A cricket club has 15 members, of whom only 5 can bowl.
What is the probability that in a team of 11 members atleast 3 bowlers are
selected?

Let A, B and C be the three possible events of selection. The number of
combinations are shown below.

Combination of Number of ways the Total number of ways
Event 11 players combination formed the selection can be
SBowlers 10 Others | 5Bowlers 10 Others done
3 8 5¢3 10cg 5¢3x 10cg
B 4 7 3¢y 10¢y 5¢4x 10c7
5 6 5Cs 10cg 5C5 x 10cg
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Solution:
Total number of exhaustive cases = Combination of 11 players from 15
members
n(S) = 15¢;;
P (atleast 3 bowlers)=P[A or B or C]
=P[AUB U (C]
-~ A, B and C are
=P(A) + P(B) + P(C) (muu;ally exclusive events)
5C3x 10Cg  5C4 x 10C7; 5Cs5 x 10C¢
=T 15C; YU 1s¢;  tUo15Cq
5Cy x 10C, 5Cy x 10C3 5Cqy x 10C4
=715, + 15C, + 15C, (*-nCr= nCn-r)
450 600 210 1260
=1365 T 1365 T 1365 ~ 1365

12
P (atleast 3 bowlers)=73

EXERCISE 10.1

(1) An experiment has the four possible mutually exclusive outcomes
A, B, C and D. Check whether the following assignments of probability
are permissible.

(i) P(A)=0.37,P(B)=0.17, P(C) =0.14, P(D) = 0.32
(i) P(A) =0.30, P(B) =0.28, P(C) = 0.26, P(D) = 0.18
(iii) P(A) = 0.32, P(B) = 0.28, P(C) = — 0.06, P(D) = 0.46
(iv) P(A)=1/2, P(B)=1/4, P(C)=1/8, P(D)=1/16
(v) P(A) =1/3, P(B) = 1/6, P(C) =2/9, P(D)=5/18

(2) In a single throw of two dice, find the probability of obtaining (i) sum of
less than 5 (ii) a sum of greater than 10, (iii) a sum of 9 or 11.

(3) Three coins are tossed once. Find the probability of getting (i) exactly
two heads (ii) atleast two heads (iii) atmost two heads.

(4) A single card is drawn from a pack of 52 cards. What is the probability
that
(i) the card is a jack or king (i1) the card will be 5 or smaller
(iii) the card is either queen or 7.

(5) A bag contains 5 white and 7 black balls. 3 balls are drawn at random.
Find the probability that (i) all are white (ii) one white and 2 black.

(6) In a box containing 10 bulbs, 2 are defective. What is the probability that
among 5 bulbs chosen at random, none is defective.
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(7) 4 mangoes and 3 apples are in a box. If two fruits are chosen at random,
the probability that (i) one is a mango and the other is an apple (ii) both
are of the same variety.

(8) Out of 10 outstanding students in a school there are 6 girls and 4 boys.
A team of 4 students is selected at random for a quiz programme. Find
the probability that there are atleast 2 girls.

(9) What is the chance that (i) non-leap year (ii) leap year should have
fifty three Sundays?

(10) An integer is chosen at random from the first fifty positive
integers. What is the probability that the integer chosen is a prime or
multiple of 4.

10.3 Some basic theorems on probability

In the development of probability theory, all the results are derived directly
or indirectly using only the axioms of probability. Here we study some of the
important theorems on probability.

Theorem 10.1: The probability of the impossible event is zero i.e. |P(¢) =0

Proof:
Impossible event contains no sample point.

LSud=S
P(S U ¢) = P(S)
P(S) + P(¢) = P(S) ("~ S and ¢ are mutually
exclusive)
~ P(¢)=0
Theorem 10.2:

If A is the complementary event of A, |[P(A) =1—P(A)]

Proof:
Let S be a sample space, we have 7 S

AUA =S

P(AUA) = P(S)
P(A)+P(A) =1

(A and A are mutually exclusive Fig. 10.1
and P(S)=1)

~P(A)=1-PA)
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Theorem 10.3: If A and B are any two events and B is the complimentary

event of B

P(A N B) =P(A) - P(A N B)

Proof: A is the union of two mutually

exclusive events (A N B ) and (A N B)
(see fig 10.2)

ie. A= (AnB)U(ANB)
. P(A) =

P[(A " B) U (A N B)]

(A n ﬁ) and (A N B) are
mutually exclusive)

P(A) =
rearranging, we get PANB) =
Similarly P(A NnB) =

Fig. 10. 2

P(ANB)+P(ANB)
P(A) - P(A N B)

P(B) - P(A N B)

Theorem 10.4: (Additive theorem on probability) If A and B are any two

events

[P(A UB) =P(A) + P(B) — P(A N B)]

Proof: We have
AUB=(ANB)UB (See fig. 10.3)
P(A UB) = P[(A N B) U B]

("~ AN B and B are mutually
exclusive event)

= P(ANB)+P(B)

= [P(A) - P(A N B)] + P(B)
. P(AU B) = P(A) + P(B) — P(A N B)

Fig. 10. 3

(by theorem 3)

Note: The above theorem can be extended to any 3 events.
P(AUBUC) = {P(A)+P(B)+P(C)} — {P(A N B)+P(B N C)+P(C N A)}

+ P(AnNBNC)
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Example 10.6:
Given that P(A) = 0.35, P(B) = 0.73 and P(A n B) = 0.14, find

()P(AUB) (ii) P(A NB) (iii)) PGAmB) (iv) P(A UB) (v) P(AUB)
Solution:
@) P(A U B) = P(A) + P(B) - P(A N B)
=0.35+0.73-0.14 = 0.94
P(A UB) = 0.94

(ii) P(A N B) = P(B) - P(A N B)
=0.73-0.14=0.59

P(A N B) = 0.59

(iii) P(ANB) = P(A) - P(A " B)
=0.35-0.14=0.21

P(ANB) =021
@iv) P(AA UB)=P(ANnB)=1-P(ANB)=1-0.14
P(A UB) =0.86
v) P(AUB)=1-P(AUB)=1-094=0.06  (by (1)

P(AUB) = 0.06
Example 10.7: A card is drawn at random from a well-shuffled deck of 52
cards. Find the probability of drawing (i) a king or a queen (ii) a king or a
spade (iii) a king or a black card

Solution:
Total number of cases = 52
i.e. n(S) =52
Let A be the event of drawing a king ; B be the event of drawing a
queen
C be the event of drawing a spade; D be the event of drawing a
black card
- N(A) =4, nB) =4, n(C)=13, n(D) =26

also we have NANC)=1, nNAnD)=2
(i) P [king or queen] = [A or B] =P(A U B)
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- A and B are mutually
= P(A)+P(B) (exclusive ie. ANB= (I))
nA) ne)
= ns) )
4 4 2
=527%52 713

(i) P[king or spade] = P(A or C) =P(A U C)
= P(A)+P(C)-P(ANC)
( "+ A and C are not mutually)

exclusive
4 13 116
=52t 752 %
_ 4
- 13

(iii)P[king or black card]= P(A or D) = P(A U D)

> A and D are not
P(A) + P(D) - P(AN D) (mutually exclusive)
4 26 2 28

=52 %52 7527
_ L
- 13
Example 10.8: The probability that a girl will get an admission in IIT is 0.16,
the probability that she will get an admission in Government Medical College is
0.24, and the probability that she will get both is 0.11. Find the probability that
(i) She will get atleast one of the two seats (i) She will get only one of the
two seats
Solution:
Let I be the event of getting admission in IIT and M be the event of getting
admission in Government Medical College.
- P(I)=0.16, PMM) = 0.24 and P(I n M) =0.11
(1) P(atleast one of the two seats)
=Pl orM) =PI U M)
=PI + PM) - P(I n M)
=0.16+0.24-0.11
=0.29
(i) P(only one of two seats) = P[only I or only M].
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(D

2)

3)

4

(&)

(6)

)

P[I A M) U (I " M)] I M

PANM)+P(I nM)
{P()-PA~M) } +{P(M)-PI~M) }
{0.16 = 0.11} + {0.24 — 0.11}

0.05 +0.13

T |
0.18 Only 1 Only M

Fig. 10. 4

EXERCISE 10.2

A and B are two events associated with random experiment for which
P(A) = 0.36, P(A or B) = 0.90 and P(A and B) = 0.25. Find (i) P(B),

(ii) P(A "B )
If A and B are mutually exclusive events P(A) = 0.28, P(B) = 0.44, find

() P(A) (i))P(AUB) (iii))(ANB) (iv)P(A N"B)
Given P(A) = 0.5, P(B) = 0.6 and P(A N B) = 0.24.

Find i) P(A UB) (i) P(A N B) (iii) LA " B)

(iv) P(A UB) V)P(A N B)

A die is thrown twice. Let A be the event. “First die shows 4’ and B be
the event, ‘second die shows 4°. Find P(A U B).

The probability of an event A occurring is 0.5 and B occurring is 0.3. If
A and B are mutually exclusive events, then find the probability of
neither A nor B occurring

A card is drawn at random from a deck of 52 cards. What is the
probability that the drawn card is (i) a queen or club card (ii) a queen or
a black card

The probability that a new ship will get an award for its design is 0.25,
the probability that it will get an award for the efficient use of materials is
0.35, and that it will get both awards is 0.15. What is the probability, that

(i) it will get atleast one of the two awards (ii) it will get only one of the
awards
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10.4 Conditional probability:

Consider the following example to understand the concept of conditional
probability.

Suppose a fair die is rolled once. The sample space is S = {1, 2, 3, 4, 5, 6}.

Now we ask two questions:

Q 1: What is the probability that getting an even number which is
less than 4?

Q2 : If the die shows an even number, then what is the probability that it is
less than 4?

Case 1:
The event of getting an even number which is less than 4 is {2}
P = n({2}) _1
n({1,2,3,4,5,6}) ~ 6
Case 2:

Here first we restrict our sample space S to a subset containing only even
number i.e. to {2, 4, 6}. Then our interest is to find the probability of the event
getting a number less than 4 i.e. to {2}.

) _n¢2ph 1
~P=nm2 46 =3

In the above two cases the favourable events are the same, but the number
of exhaustive outcomes are different. In case 2, we observe that we have first
imposed a condition on sample space, then asked to find the probability. This
type of probability is called conditional probability.

Definition: (Conditional probability) : The conditional probability of an event
B, assuming that the event A has already happened; is denoted by
P (B/A) and defined as

PANB
PB/A) = "R provided P(A) %0
Similarly
PANB
P(A/B) = (P—((I;) ) provided P(B) # 0

Example10.9: IfP(A)=04 PB)=0.5 P(ANB)=0.25
Find (i) P(A/B) (i) P(B/A) (iii) P(A/B)
(iv) P(B/A) (v) P(A/B) (vi) P(B/A)
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Solution:

. P(ANB) 025
(i) P(A/B)= (Pa?) ) =535 =05
(ii) P(B/A) :P(f;(g)B) =8;i(5) = 0.625

P(ANB) PB)-P(ANB) 05-025
PB) - P(B) =" 05 =05

(iii) P(A/B) =

P(BNA) _PB)-P(AnB) 0.5-0.25

(iv) P(B/A) = = = 0.4167
P& 1-P(A) 1-0.4
- P(ANB) PA)-P(ANB) 04-0.25
(v) P(A/B) = = = =03
PE) 1 —P(B) 1-05
i) PB/A) = PANB) _PA)-PANB) _04-025 _ .

P(A) P(A) 0.4

Theorem 10.6 : (Multiplication theorem on probability)

The probability of the simultaneous happening of two events A and B is
given by

P(ANnB)=P(A).P (B/A)
or P(AnB)=P(B).PA/B)
Note: Rewriting the definition of conditional probability, we get the above
‘multiplication theorem on probability’.

Independent Events:

Events are said to be independent if the occurrence or non occurrence of
any one of the event does not affect the probability of occurrence or
non-occurrence of the other events.

Definition: Two events A and B are independent if |P(A N B) = P(A) . P(B)]

This definition is exactly equivalent to
P(A/B)=P(A), P(B/A) =P(B)
Note: The events Aj, Ay ...... Ap are mutually independent if
PAAiINnAyNAz...... Ap) =P(A1). P(Ay) ... (Ap)

Corollary 1: If A and B are independent then A and B are also independent.
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Proof:
Since A and B are independent
P(AnB) = P(A).(PB) .. (1)

To prove A and B are independent, we have to prove

PANB) = P(A).PB)
We know
PANB) = P(A)-P(ANB)
= P(A)-P(A).PB) (by (1)
= P(A) [1-P(B)]
PANB) = P(A).P®B)

- AandB are independent.
Similarly, the following corollary can easily be proved.

Corollary 2: If A and B are independent, then A and B are also independent.

Note: If Aj, Aj... A are mutually independent then Kl, AQ, Kn are
mutually independent.
Example 10.10: Two cards are drawn from a pack of 52 cards in succession.
Find the probability that both are kings when
(i) The first drawn card is replaced (ii) The card is not replaced
Solution:
Let A be the event of drawing a king in the first draw.
B be the event of drawing a king in the second draw.
Case i: Card is replaced:
nA) =4 (king)
nB) =4 (king)
and n(S) = 52 (Total)
Clearly the event A will not affect the probability of the occurrence of
event B and therefore A and B are independent.
P(AnB) = P(A) . P(B)
4 4
=52 52

1
P(ANnB) = 169
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Case ii: (Card is not replaced)

In the first draw, there are 4 kings and 52 cards in total. Since the king,
drawn at the first draw is not replaced, in the second draw there are only
3 kings and 51 cards in total. Therefore the first event A affects the probability
of the occurrence of the second event B.

.. A and B are not independent they are dependent events.

~P(ANB) = P(A).P(B/A)
4 3

P(A) = 35 :  P(B/A) =37
P(ANB) = P(A).P(B/A) =% 53—1

1
P(ANB) = 71

Example 10.11: A coin is tossed twice. Event E and F are defined as follows : E
= Head on first toss, F =head on second toss.

Find(i) P(E N F) (ii) P(E U F) (iii) P(E/F)

@iv) P(}_E/F) (v) Are the events E and F independent ?
Solution: The sample space is
S = {(H.H), (H, T), (T, H), (T, T) }
and E = {(H,H), HT)}
F = {(H,H),(T,H)}
. ENnF = {(H, H)}

EAF) 1
) P(E mF)=n(TQ)) =7
(ii) P(E U F) = P(E) + P(F) — P(E A F)
2 2 1 3
=4t474 =1
3
PEUF =3
PEANF) 14 1
(iif) P(E/F) :% =54 =7
- P(ENF P(F)—P(ENF
) Py -LEQE _ PO-PEOT)
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_24-14 1
- 2/4 -2
= 1
P(E/F) = 2
2 1 2 1
) PE)=% =5, PF) =7 =3
1
P(ENF) = s
1 1 1
. P(E) P(F) =5.5 =72
Since P(EnF) =P(E).P(F), E andF are independent.

In the above example the events E and F are not mutually exclusive but
they are independent.

Important Note:

Independence is a property of probability but mutually exclusion is a
set-theoretic property. Therefore independent events can be identified by their
probabilities and mutually exclusive events can be identified by their events.

Theorem 10.7: Suppose A and B are two events, such that P(A) # 0, P(B) #0
(1) If A and B are mutually exclusive, they cannot be independent.
(ii) If A and B are independent they cannot be mutually exclusive.
(Proof not required)

Example 10.12: If A and B are two independent events such that P(A) = 0.5

and P(A U B) = 0.8. Find P(B).

Solution:

We have P(A UB) = P(A) + P(B) - P(A N B)

P(AUB) = p(A)+P(B)-P(A).P(B) (- A and B are independent)
ie. 0.8 = 0.5+P(B)- (0.5 P(B)
0.8—-0.5 = (1-0.5)P(B)
- PB) = % = 0.6
P(B) = 0.6

Example 10.13: A problem is given to 3 students X, Y and Z whose chances of
11 2
solving it are 2:3 and 3 respectively. What is the probability that the problem

is solved?
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Solution:

Let A, B and C be the events of solving the problem by X, Y and Z
respectively.

1 - 1 1

“PA)= 5 1 PA)=1-PA)=1-75 =7
1 = 1 2
PB)= 3 ;PB)=1-PB)=1-3 =73
2 — 2 3

PC)= 5 ;PC)=1-PO)=1-35 =3

P[problem is solved] P[the problem is solved by atleast one of them]

= PAUBUC) =1-PAUBUC)
= 1-P(A nB NnC) (By De Morgan’s Law)
= 1-P(A).PB).PC)

(-~ A, B, C are independent A,B,C arealso independent)
1 2 3 1

=1-3.3.5=1-3

4
P[problem is solved] = 3

Examples 10.14 : X speaks truth in 95 percent of cases, and Y in 90 percent of
cases. In what percentage of cases are they likely to contradict each other in
stating the same fact.

Solution: Let A be the event of X speaks the truth, B be the event of Y speaks
the truth.

A and B are the events of not speaking the truth by X and Y
respectively.

Let C be the event that they will contradict each other.
Given that

P(A) =095 .. P(A)=1-P(A)=0.05

P(B) =090 .. P(B)=1-PB)=0.10
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C = (A speaks truth and B does not speak truth A B

or
B Speaks truth and A does not speak

truth)
C= [(ANnB)U(ANB)
~ P(C)= P[(ANB)U (AN B)] Fig. 10.5
=P(AnB)+PA NB)
(A nBand ANB are mutually exclusive)
= P(A). P(E ) + P(l_\ ). P(B) (" A, B are independent event also
A, Bare independent events)
= (0.95) x (0.10) + (0.05) (0.90)
= 0.095 + 0.045
= 0.1400
P(C) =14%
EXERCISE 10.3
(1) Define independent and mutually exclusive events. Can two events be

2)
3)

4
&)
(6)

(7

8)

mutually exclusive and independent simultaneously.

If A and B are independent, prove that A and B are independent.

If P(A) = 04, P(B) = 0.7 and P(B / A) = 0.5 find P(A / B) and
P(A U B).

If for two events A and B, P(A) = 2/5, P(B) =3/4 and A U B = (sample
space), find the conditional probability P(A / B).

If A and B are two independent events such that P(A U B) = 0.6,
P(A) =0.2 find P(B)

If A and B are two events such that P(A U B)=5/6, P(A "B)=1/3,

P(E )=1/2 show that A and B are independent.
if the events A and B are independent and P(A) = 0.25, P(B) = 0.48,

find (i) P(A N B) (i) P(B/ A) (iii) P(A " B)
Given P(A) = 0.50, P(B) = 0.40 and P(A N B) = 0.20.

Verify that (i) P(A/B)=P(A), (i) P(A/B)=P(A)
(iii) PB/A)=P(B)  (iv) P(B/A ) =P(B)
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©))

(10)

(11)

12)

(13)

(14)

(15)

(16)

7

(18)

(19)

(20)

P(A)=0.3,P(B) =0.6 and P(A " B) =0.25

Find (i) P(AUB) (ii) P(A/B) (iii) P(B/A) (iv) P(A /B) (v)P(A /B)
Given P(A) = 0.45 and P(A U B) =0.75.

Find P(B) if (i) A and B are mutually exclusive (ii) A and B are
independent events (iii) P(A /B) =0.5 iv)PB/A)=0.5

Two cards are drawn one by one at random from a deck of 52 playing
cards. What is the probability of getting two jacks if (i) the first card is
replaced before the second is drawn (ii) the first cards is not replaced
before the second card is drawn.

If a card is drawn from a deck of 52 playing cards, what is the probability
of drawing (i) a red king (ii) a red ace or a black queen.

One bag contains 5 white and 3 black balls. Another bag contains 4 white
and 6 black balls. If one ball is drawn from each bag, find the probability
that (i) both are white (ii) both are black (iii) one white and one black.

A husband and wife appear in an interview for two vacancies in the same
post. The probability of husbands’ selection is 1/6 and that of wife’s
selection is 1/5. What is the probability that

(i) both of them will be selected (ii) only one of them will be selected
(iii) none of them will be selected

A problem in Mathematics is given to three students whose chances of
solving it are 1/2, 1/3 and 1/4 (i) What is the probability that the problem
is solved (ii) what is the probability that exactly one of them will solve it.
A year is selected at random. What is the probability that (i) it contains
53 Sundays (ii) it is a leap year contains 53 Sundays

For a student the probability of getting admission in IIT is 60% and
probability of getting admission in Anna University is 75%. Find the
probability that (i) getting admission in only one of these (ii) getting
admission in atleast one of these.

A can hit a target 4 times in 5 shots, B 3 times in 4 shots, C 2 times in
3 shots, they fire a volley. What is the chance that the target is damaged
by exactly 2 hits?

Two thirds of students in a class are boys and rest girls. It is known that
the probability of a girl getting a first class is 0.75 and that of a boys is
0.70. Find the probability that a student chosen at random will get first
class marks.

A speaks truth in 80% cases and B in 75% cases. In what percentage of
cases are they likely to contradict each other in stating the same fact?
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10.5 Total probability of an event

If Aj, Ay ... Ap are mutually exclusive
and exhaustive events and B is any event in
S then

P(B)=P(Ay) . P(B/A1)

+P(Aj) . P(B/A2) ... + P(Ap) P(B/Ap)

P(B) is called the total probability of
event B Fig. 10.7

Example 10.15: An urn contains 10 white and 5 black balls. While another urn
contains 3 white and 7 black balls. One urn is chosen at random and two balls
are drawn from it. Find the probability that both balls are white.

S B

\-&B

Solution:

the event of selecting 2 white balls.

ja

Let A be the event of selecting urn-I and A
Ay be the event of selecting urn-II. Let B be w
We have to find the total probability of

event B ie. P(B). Clearly A; and A are

mutually exclusive and exhaustive events. Fig. 10.8

P(B) = P(A;).P(B/A)) /Q
+P(Ay) . P(B/Ay) ... (1) White | Black ™ i

10C
; P(B/Ay) :Tcz Unl| 10 5 as)

P(AD)

N—= N

Urn 1l 3 7 (10)

3C,
P(A) = 5 : PBIAY) =Toc,

Fig. 10.9
Substituting in (1), P(B) = P(A}).P(B/A)) + P(A,) . P(B/A))

- () 150 + ) [7oc,) =3 (44
P(B) = %
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Example 10.16: A factory has two machines I and II. Machine I produces 30%
of items of the output and Machine II produces 70% of the items. Further 3% of
items produced by Machine I are defective and 4% produced by Machine II are
defective. If an item is drawn at random, find the probability that it is a
defective item.
Solution:

Let Aj be the event that the items are produced by Machine I, A, be the

event that items are produced by Machine II. Let B be the event of drawing a
defective item.

30 3 S
L P(AY) = 100 ° P(B/Al)zm

70 4
P(A2) = 15 :P(B/AY) =750

We are asked to find the total
probability of event B.
Since Aj, Ay are mutually exclusive

and exhaustive.
We have P(B) = P(Ap) P(B/A1)
+ P(A,) P(B/A2)

- (i) (350) *(50) - (700)
=\100) \100) *\100) - \100
90 +280
= 710000

P(B) = 0.0370
Theorem 10.8: (Bayes’ Theorem):

Fig. 10.10

Suppose Aj, Aj, ... Ay are n
mutually exclusive and exhaustive
events such that
PAj)>0fori=1,2...n LetB
be any event with P(B) > 0 then

Fig. 10.11
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P(Aj) P(B/Aj)
P(A1) P(B/A1) +P(A2) P(B/A2)+...+ P(Ap) P(B/Ap)

P(Ai/B) =

(Proof not required)
The above formula gives the relationship between P(Aj/B) and P(B/ Aj)

Example 10.17: A factory has two machines I and II. Machine I and II produce
30% and 70% of items respectively. Further 3% of items produced by Machine
I are defective and 4% of items produced by Machine II are defective. An item
is drawn at random. If the drawn item is defective, find the probability that it
was produced by Machine II. (See the previous example, compare the

questions).
Solution:
Let A1 and Aj be the events that the items produced by Machine I & 1I
respectively.
Let B be the event of drawing a S

defective item.

30 3
~P(AY) = 100 ; P(B/Ay) =100

70 4
P(A2) =790 :PB/A2) =159

Now we are asked to find the Ar
conditional probability P(A,/ B) Fig. 10.12

Since Aj, Ap are mutually exclusive and exhaustive events by Bayes’

theorem
P(A2) . P(B/ A2)
P(A2/B) = BA) P(B/A]) +P(A2) . P(B/ A2

70N (4
(IOOJX(IOO) 0.0280 28
 (fo0) () + (o) o) "7
100/ \100) * {100/ \100

28
P(Ay/ B) = 37

Example 10.18: The chances of X, Y and Z becoming managers of a certain
company are 4 : 2 : 3. The probabilities that bonus scheme will be introduced if
X, Y and Z become managers are 0.3, 0.5 and 0.4 respectively. If the bonus
scheme has been introduced, what is the probability that Z is appointed as the
manager.
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Solution:

Let A, Ay and A3 be the events of X,
Y and Z becoming managers of the
company respectively. Let B be the event
that the bonus scheme will be introduced.

S /[
Aj A
o ?,\‘“%
p.:"&
A,
Fig. 10.13

4
S P(AYD = 9 ;P(B/Ay) =03
2

P(Ay) =5 :P(B/Aj) =05
P(A3) :% :P(B/ A3) =0.4

We have to find the conditional probability P(Az/ B)
Aj, Ay and A3 are mutually exclusive and exhaustive events. Applying

Bayes’ formula

P(A3) . P(B/ A3)

P(A3/B) =B(A]). P(B/A]) + P(A2) . P(B/ Ap) + P(A3).P(B/ A3)

B)os

12

) @ 0.3) + @ 0.5) + @ (0.4) L

6
P(A3/B) =15

Example 10.19: A consulting firm rents car from three agencies such that 20%
from agency X, 30% from agency Y and 50% from agency Z. If 90% of the cars
from X, 80% of cars from Y and 95% of the cars from Z are in good conditions
(1) what is the probability that the firm will get a car in good condition? Also
(i) If a car is in good condition, what is probability that it has came from

agency Y?
Solution:
Let Ay, Aj, A3 be the events that the cars
are rented from the agencies X, Y and Z
respectively.
Let G be the event of getting a car in good
condition.
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- P(A}) = 0.20 ; P(G/A{) = 0.90
P(A,) = 0.30 ; P(G/A) =0.80
P(A3) = 0.50 ; P(G/A3) =0.95

(i) We have to find the total probability of event G i.e. P(G)

Since Aj, Ay, Az are mutually exclusive and exhaustive events and G is

an event in S.

We have P(G)

P(A)) . P(G/A7) + P(Ap) . P(G/A3) + P(A3) . P(G/A3)
(0.2) (0.90) + (0.3) (0.80) + (0.5) (0.95)

0.180 + 0.240 + 0.475

0.895

P(G)

(i1)) We have to find the conditional probability A, given G i.e. P(A>/G)

(D

2)

3)

By Bayes’ formula
P(A2) . P(G/A2)
P(A2/G) = BAT) P(GIA]) + P(A2) . P(G/AD) + P(A3) . P(G/A3)
(0.3) (0.80)
(0.895)

0240
= 0.895

0.268 (Approximately)

(by (1) Dr = P(G) = 0.895)

P(A5/G)

EXERCISE 10.4

Bag A contains 5 white, 6 black balls and bag B contains 4 white,
5 black balls. One bag is selected at random and one ball is drawn from
it. Find the probability that it is white.

A factory has two Machines-I and II. Machine-I produces 25% of items
and Machine-II produces 75% of the items of the total output. Further 3%
of the items produced by Machine-I are defective whereas
4% produced by Machine-II are defective. If an item is drawn at random
what is the probability that it is defective?

There are two identical boxes containing respectively 5 white and 3 red
balls, 4 white and 6 red balls. A box is chosen at random and a ball is
drawn from it (i) find the probability that the ball is white (ii) if the ball is
white, what is the probability that it is from the first box?
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&)

In a factory, Machine-I produces 45% of the output and Machine-II
produces 55% of the output. On the average 10% items produced by I
and 5% of the items produced by II are defective. An item is drawn at
random from a day’s output. (i) Find the probability that it is a defective
item (ii) If it is defective, what is the probability that it was produced by
Machine-II.

Three urns are given each containing red and white chips as given below.
Umn1:6red 4 white; Urn Il : 3 red 5 white ; Urn III : 4 red 6 white
An urn is chosen at random and a chip is drawn from the urn.

(i) Find the probability that it is white

(ii) If the chip is white find the probability that it is from urn II
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)

©)

(4)

©)

(6)

()

OBJECTIVE TYPE QUESTIONS
Identify the correct statement
(1) The set of real numbersis aclosed set
(2) The set of all non-negative real numbersis represented by (0, o)
(3) The set [3, 7] indicates the set of all natural numbers between 3 and 7
(4) (2, 3) isasubset of [2, 3].
Identify the correct statements of the following
(i) arelationisafunction
(ii) afunctionisarelation
(iii) *afunction whichisnot arelation’ is not possible
(iv) ‘arelation whichisnot afunction’ is possible
(D) (i), (iii) and (iv)  (2) (i) and (iii)) () (iii)and (iv) (4) 4l
Which one of the following is afunction which is ‘onto’ ?

Mf:R>R; f(x)=x 2 f:Ro>[1m); fX)=x+1
@Rf:R>{1,-1} ; f(x) = i @Df:R>R; f(x)=—x2
Which of the following is afunction which is not one-to-one?
DFf:R>R ; f()=x+1 Qf:R>R; f(X)=x>+1
QBFf:R>{1,-1} ; fx=x-1 @fF:R>R; f(X)=-x
Theinverseof f: R— R" ; f(x) =x2is

(2) not onto (2) not one-to-one

(3) not onto and not one-to-one (4) not at al afunction

Identify the correct statements

(i) aconstant function is apolynomial function.

(ii) apolynomial function isaquadratic function.

(iii) for linear function, inverse always exists.

(iv) A constant function is one-to-one only if the domain is a singleton set.
(D) (i) and (iii) (2) (i), (iii) and (iv)  (3) (ii) and (iii) (4) (i) and (iii)
Identify the correct statements

(i) thedomain of circular functions are dways R.

(ii) Therange of tangent functionisR.

(iii) Therange of cosine function is same as the range of sine function.
(iv) The domain of cotangent functionisR — {k r}

(1) al (2) (i) and (iii) (3) (ii), (iii) and (iv) (4 (iii) and (iv)
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(8) Thetrue statements of the following are

(i) The composition of function fog and the product of functions fg are
same.

(if) For the composition of functions fog, the co-domain of g must be the
domain of f.

(iii) If fog, gof exist then fog = gof.
(iv) If the function f and g are having same domain and co-domain then

fg=of
(1) all (2) (i), (iii) and (iv) () (iii) and (iv) (4) (ii) and (iv)
I
© g 6)is

16 -6 (3) 36 (4)-36
(10) , , 1 is

@-1 21 (3)0 4o1
(11) Theleftlimitasx— 1of f(x) = —x+3 is

D2 )3 (34 (4 -4
(12) Rf(O) for f(x) =|x|is

1) x 2o (3)—x 41

i 13

(13) xT L —_11 's

W3 -2 33 @-1
(14) XI:no sinx5x is

(05 @3z (3)0 @1
(15) X—50 Xcotxis

@o -1 (3) 41
1 o 25 s

(D log @) (2) log (%) (3) log 2 (4) log 3
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a7 4 lee is

M1 20 @« e
w9 ", (15

(e (2)-e (3)2 (@0

(19) Thefunctionf(x) =|x]|is
(1) continuous at x=0
(2) discontinuous at x =0
(3) not continuous from theright at x=0
(4) not continuous from the left at x =0

sin(x—2)
(20) Thefunctionf(x):{ x—2 *X*2 is discontinuous at
0, X=2
() x=0 2Qx=-1 (B x=-2 4 x=2

(21) Thefunction f(x) = ﬁ is continuous at all points of R except at
X2 = 3x + 2

Dx=1 (2)x=2 (B x=1,2 @) x=-1,-2
(22) Letf(x) =|x] bethe greatest integer function. Then

(2) f(x) is continuous at all integral values

(2) f(x) isdiscontinuous at all integral values

(3) x=0isthe only discontinuous point

(4) x = 1isthe only continuous point
(23) Thefunctiony = tan x is continuous at

T 3n T
() x=0 (2)x:§ (3)x:7 (4)x:—§
24) () =|x|+|x-1] is
(1) continuous at x = 0 only (2) continuous at x =1 only
(3) continuous at bothx=0andx=1 (4) discontinuousat x=0, 1
_ [l forx<2. ; _ .
(25) If f(x) = {3 forx>2 1S continuous at x = 2, the value of kis

3 @3 (31 (@0
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(26) Rf'(0) for the function f(x) = {)(() i][fxx>soo is
M1 20 -1 42
(27) Lf (o) for thefunction f(xX) =[x — o | is
Do ) -« -1 41
{2 x<1
(28) Thefunction f(x) = Y x> 1 is not differentiable at
(D x=0 2x=-1 B x=1 @AHx==-2
(29) The derivative of f(x) = X [x]atx=0is
Do 2-1 -2 41
30) [ sinxdx =
;3
) sn;x re (2)_co;2x
@3 [X_sgsz +e (4)% [1+sin2X] +c
(31) f sin7xcos5xdx =
D 3—15 CosS7xsinbx+c (2 - % [_coséZx + _0032 XJ
3) - % [co?3 6X N cosx} te @) % [cos1 ;.ZX N co;Zx}
32 X1 dx =
1 1( &Y
D35 x+c (25 T+ tC (3)log (€°+1) +c (4 x+e+c

(33

(34)

j— dx =

(1) loge*+c (2 - ;X+c (3)§(+c (4 x+c

Jlogxdx =

i @t

+c (@) xlogx+x+c (4 xlogx—x+c
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(35

(36)

(37)

(39)

(39)

(40)

(41)

(42)

X
j1+x2 dx =

(1) tan X + ¢ (2):—2Llog(l+x2)+c (3)log (1 +x2) + ¢ (4) logx +c

S tanxdx =
2 taan
(Dlogcosx+c (2)logsecx+c (3)secx+c (4) 2 *cC
1 dx =
j\/3+4x =
(l)%\/3+4x +cC (2)%1Iog\/3+4x+c
() 2\/3+4x +¢C (4)—%\/3+4x +cC
X_
j(_x+ 1) dx =
1 (x=1)2
(1)2 w+1) *t¢ (2)x-2log(x+1)+c
2
(3)§X—21L|og(x+1)+c (4) x+2log (x+1) +c
fcosecxdx =
(D log tan)—z( +cC (2) —log (cosec x + cot X) + ¢
(3) log (cosec x— cot x) + ¢ (4) dl of them
When three dice arerolled , number of elementary events are
(1 2° 23° (3 6° 4 F
Three coins are tossed. The probability of getting atleast two headsis
3 7 1 1
Mg @3 g 43

If P(A) = 0.35, P(B) = 0.73and P(A~ B) =0.14. ThenP(A UB)=
(1) 0.94 (2) 0.06 (3) 0.86 (4) 0.14
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43

(44)

(45)

(46)

(47)

(49)

(49)

If A and B are two events such that P(A) = 0.16, P(B) = 0.24 and
P(A~B) = 0.11, then the probability of obtaining only one of the two
eventsis

(1) 0.29 (2071 (3) 0.82 (4)0.18

Two events A and B are independent, then P(A/B) =

WP®  @PANE  @PW=PE) @) pe

A and B are two events such that P(A) = 0, P(B) = 0. If A and B are
mutually exclusive, then

(1) P(A N B) = P(A) P(B) (2) P(AN B) = P(A) . P(B)

(3) P(A/B) =P(A) (4) P(B/A) =P(A)

X speaks truth in 95 percent of cases and Y in 80 percent of cases. The
percentage of cases they likely to contradict each other in stating same
factis

() 14% (2) 86% (3) 23% (4) 85.5%
A problem is given to 3 students A, B and C whose chances of solving it

are% , % and%1 . The probability to solveis
4 3 7 1
Dg @710 ® 10 @30

Given P(A) = 0.50, P(B) = 0.40 and P(A n B) = 0.20 then P(A/B) =
(1) 050 (2) 0.40
(3)0.70 (4) 0.10

An urn contains 10 white and 10 black balls. While another urn contains
5 white and 10 black balls. One urn is chosen at random and a ball is
drawn from it. The probability that it iswhite, is

W 22 ®3 @3
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ANSWERS

EXERCISE 7.1
1 ()x°+1 (i) (x + 1) (i) x + 2
(iv) X* (v) 10 (vi) 16
(2 ()x°+x+1 (ii)%zl forx=0 (i) X°+ %
(iv) 1+x—x° (v) X + 52
_ X—2
@ W ="3"
4 ()yxe[-3,3 (i) x € (~ o0, — 3) (6, )
(iiiyx € (=0, —2) U (2, x) (iv)x e (-4,3)
(V) X € (=0, — 3] U [4, ) (vi) no solution
(vii) xe(0, 1) (viii) X € (= o0, 0)U(1/3, )
(ix) X € (= o0, — U/3)(2/3, )
EXERCISE 8.1
a4 @0 @ @m 22 ©3
Na g2 1 1
™ Ta @3 93 (19 g (11) 2cosa (12) o
(13) e (14) yes; Xlin3 f(x) =27 (15)n=4 (16) 1
(18) —1;1; XIT:O J%l does not exist (29) loge (%) ; 10ge (a
EXERCISE 8.2
(1) continuousat x =2 (2) continuous at x =0
(3) discontinuousat x=1 (4) discontinuousat x=0
(5) a=3;,b=-8 (7) fiscontinuousat x=1and x =2
EXERCISE 8.3
(2 No;Lf'(0)=-1Rf'(0)=1

©)

fis continuous on R; not differentiable at x = 0 and x = 1).
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(4) (i) fisnot differentiableat x =1
(ii) fisnot differentiable at x = 2; but differentiable at x =4
(5) Lf'(0)=-1;Rf"(0)=1

EXERCISE 8.4
(1) 3x°-12x+7 (2)3x°-8;f'(2)=4'(10)=292 (3)a=1;b=7
|
@) (i) e+ (ii)%7e
(iii) 3 cosx — 4 sinx —&* (iv)ex+3seczx+§
|
(v) ogxl 0° + 2 secx tanx (vi) ﬁ( + 7 sec?X
(vii)3(1+x2—x—12—x—14) (viii) (4x—6—)1(—§)
EXERCISE 8.5
n
(1) & (cosx— sinx) © 32% (1 + '—°ng>—()

(3) 6log10e (s_)r:x + cosx Iogex)

(4) (758 - 36x° + 35x* + 125 + 2452 — 14x — 4)
(5) b (2 cos 2x — cosx) + 2asin x

(6) — cosec x (cot2x + coseczx)

(7)sin2x  (8) —sin 2x

(9) 12x (3x° + 1)

(10) 2(12x% + 12x — 1)

(11) 6tan®x + 20cot?x + 26

(12) x€* [x cosx + X sinx + 2 sinX]

(13) \%( (1 + X logx +|—0291()
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EXERCISE 8.6

10 22 6x’ — 28x° + 4/
W -3 Gl OF 47
e ()—1(— SiNX — COSX — Iogx) — 2x (cosx + logx) + X — X Sinx
@) 0@ + &2
4x(1 — 2logx) sinX — X |ogx cosx — (2ax +b)
©®) (logx + 2x2)2 ©) X sin’x 0 (ax2 + bx + c)2
- 2sec? x (X +2) (2
® (tanx — 1)2 © (xsinx — cosx)2 (10e ( - ZIOQX)
EXERCISE 8.7
(1) cotx (2) cosx ™
cosec’X 4 glogx}
( )2\/1+cotx “)
P X (asin (ax + b) + b cos (ax + b)) X
© o (b ©3 (53
(7) (€+4) cot (€ + 4x + 5) (8) % \/x cos (x+/x)
—sin4/x cos (logx) 3" (109)
© % (10) .
EXERCISE 8.8
2
-1 — 2x€* 1
@ VX (1+X) @ 1+e° (% (1 + (log¥)?) -2
EXERCISE 8.9

\E R
Q) 5@ 2 sz l(1+ 2 logx)

(3) X (ﬂ + sec?x (Iogx))
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(4)
©®)

(6)

()

©)

)

(10)

D

(6)

)

©)

)

smS™ cosx (1 + log sinx)

(tan‘lx)'ogx[ logx _, log (ta”_lx)j
(1 +x?) tan Ix X

l0g0S™ x{log(logx) sin 1x}

\/: +x|ogx
(x+2)(x+«/i){ 1 1 1}

WXHAX-T) |[@+2 x+y2 2x+4) x-7
\x-1[24x-1 Iog(x+l)

(x2 +2x+ 1) x+ 1) \/—1

sinx cos () M}

o oot @) L

KSInX (%( + logx COSX) + (sinx)® (x cotx + log sinx)
EXERCISE 8.10

2 1 (3)% (41

NI~

2X 1

EXERCISE 8.11

-3 coto @71 (3) 7 sinb
20 t(2-t)
tan (—) 6) tand 7
> (6) (7 120

EXERCISE 8.12

b siny M

1 1
e Doman OS2 ©-2

)

4) -

2(1+x)

N|'—‘

2 +y (sec? + Y Sinx)

2y ()1 X cosy ()y2(3 -y (4) 2y cosx — tanx
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y COsec x+(l+y2) secx tanx — 2x

©) cotx — 2ysecx
(1+x) tanxseczx
(6) 2 2
(1+X)[4y(1+ )+ (1+°) cosy + 1]

oL ef oS wRE apiime)

EXERCISE 8.13
@ 2(3x+tanx+tan3x) (2 —2(1+4cot2x+3cot4x)
. . . 2X
3) () (2 i) 2c0s X — X Sinx i) —— 55
@ 0O (if) ()(1+X2)2
(4) (i) m>e™+6 (i) x sinx — 3 cosx
EXERCISE 9.1

Add an arbitrary constant ‘c’ to al the answers from Exercise 9.1 to
Exercise 9.9
17

1) (i))i_7 (ii)% W72 (iii)g 912 (iv)§ 713 (v)% 717

)] (i)_4_:>L<4 (i) logx (iii) - 33,2 (iv) - 223 (v)4x1/4

(3 (I)—cosx (ii)secx  (iii)—cosecx  (iv) tanx (v) &
EXERCISE 9.2
5 6 7 8 9
w 0% 0% @G m-Y wg
1 ) 1 1

@ 0-58 1)~ 3x+57 ()~ gax + 32

. 1 1

M a-596 Y Zaax+b)
@) () logx+2) (i) 3 log (3x+2) (i) log (3- 49

(V) log(p+a) ()~ log(s—)
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(4) (i) - cos(x + 3) (ii)—% cos (2x + 4) (iii)%cos(3—4x)
(iv)%1 sin (4x + 5) (v)—% sin (5 - 2X)

5) (i) —tan (2-%) (ii)—% cot (5 + 2X) (iii)%1 tan (3 + 4%)
(iv)l—l1 cot (7 - 11%) (v)—% tan (p— )

©6) (i) sec (3+ ) (ii)% sec (3x + 4) (iii) — sec (4— %)
(v)-3 $c(4-39 (V)3 sec(ax+b)

(7) (i) cosec (2 - %) (ii)—%1 cosec (4x + 2) (iii)% cosec (3— 2X)

(iv)—l—1 cosec (IXx+m) (v) % cosec (s—tX)

e3x

® O3 (e (iii)%e?’“z (iv)—%1 S (v)%ea"*b

9 (i)% tan (px + a) (ii)% cot (I - mx) (iii) _7_1a (ax+ b)‘7
(iv) —% log (3 - 2x) (v)—e*
(10 (i)—%1 sec (3 - 4x) (ii)—@) epin (iii)—% COSEC (2x + 3)
N2 32 2 32
(|V)§ (Ix+m) (V) -15 (4 -5x)
EXERCISE 9.3

1) x° +1—% (2x +3)° +% (4-3x°

o6
(2 3Iogx+%| log (4x + 1)+(%<)—
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(©)] 4x—5|og(x+2)+% sin2x

3 11
4) s e"—sec(4x+3)-—4
@ 3 (4x+3) -5

(5) —cot(px—) +& (1—x°— &34
10
6) log (3+4x)+§%)— +% cosec (2x + 3)
1
p(m-1) (px+q) ™1

-9
tan (bx +¢) + ——
me

og(3+24) -2 sn(x-2) +2 (% !
og 3+3x -3 8n{x-3) +3 3+4

2% 5/2
(10) —49cosZ + 32 tan 4—Z +10|= -4
7 4 5

6
7 - T Cos5x+

ol

®)

NIw

9)

Xe+1
11) 2 + 3¢+ xe°
e+l
- (ae)® a” b
(12)1+Ioga *Toga *Togb
EXERCISE 9.4
8 x' X
(1) 3 x°+26x"—180x @7 +75 +x
2 4 3
?) X§+4x—3Iogx—)—2( (@)% -% +2log (x+1)
—3X
5 3 3
1 Sin 6x . 1 /3sin2x sin6x\ cos 6x
(7)§(x— 6)+sm4x (8);1( 5t 6)+ 6
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(9) tanx—secx (10) — cosecx — cotx

(11) =+ (sinx + cosx) (12)/2 sinx

(13) tanx— cotx (14) X — sinx

) -3 (P5F+%%) w9z ()

a7 - % (co?3 6x . coz ZX) (18) % (si n88x s néZx)
(19) _:_2L cot X (20) - (%X _ % ey % e_4xj
(21) 2tanx — 2 secx — X (22)_2% +%_gxz

o 12

(@9 a Loéaa/—czng} _% Log (t?/—C)I);g c}

2
(25) % +2x +logx

1 |cos(m+n)x cos(m-—n)x
(26) _2[ m+n (m-n) ]

1lisn(p+gx sin(p-gXx
(27)2[ p+ra ' p-g J

1 [cos10x cos 20X
(28) ‘E[ 10 * 40 J

(29)5 [(x+ D¥2 + (x— 237

2
3a(b-c¢)

(1) 2 (x+392-3 x+32
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(32) % (x+7)¥2 - % (x+7)¥2

(33) % (2x+3)%? —% (2x+3)%?

(34) 2 Iog (x+3)—log (x+2)

X—2 8 _1(X
(35) 52 log (x+2) +39 tan l(g)

EXERCISE 9.5
6.8
£1+_X)_ 2 -2
M @ log (b +matn)  (3)- 577 =3
4) \x2+3 (5) % (¢ +3x—-5)%2  (6) log secx
5 5.

(7) log(secx+tanx)  (8) — cosl 9 - CO; % COS>X — COSX
(10) = sm7x + g sin®x — sin°x + sinx (11) log (x + log secx)
(12)5 ntan (13)%1 (sn 3 2 (14) (x + logx)®

4

(15) - cos(logx) (16) log log sinx Qa7 —5 sec X

3
(18) —secx+segx (19) (x + @) cosa— sinalog sin (x + a)
(20) (x—a) cosa+ sinalog cos (x— @)
(21) b_ia log (a cos’x + b sinzx)
(22) log cos (ﬁ - x) (23) 2+[tanx (24) % (logx)®
(25) % &

o (- x) 10 -x*
(26) 35 Iog €+ e +€% (27) -1
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m+2

x-am*t+ (x-a)

a
(8) m+1 m+2
)18

(29) _%L +% (2-x)17—%1 (2-%®  (30)- 2cos/x

1 (2x+3)5’2 (2x+3)3/2}
(31) 2[ 3
(32) %E +1)72 4+ (2x+1)3/2}
7/2
(33) z[ﬁx_lL %(x +1)52 +%(x N 1)3/2}
EXERCISE 9.6
(1) -xe *-e* (2) x Sinx + cosx
(3) — xcotx + log sinx (4) x secx — log (secx + tanx)
2
(5) xtan‘lx—% log (1 +x?) (6) x tanx + log cosx—xi
1[x® xsin2x cos2x
@) 5 [—+ 2 +T}
8 1 ((sin X N sin SX) N (cos X L 908 3XD
® 27 3 29 T 9
1 e XX x 1
9) 2[3 xe3x——} (10) (7‘5*2) e
1
(12) %xzsin3x+§ xcos3x—2—27 sin 3x (12) (sin 1 x—-1) " X
1 A o2 2 1, 1 2
(13) 5 (X*'— 2 +2)¢" (14) 3 xtan x5 log (1 +x)
(15) % [xzsin’1 (x2) +\ll—x4] (16) - 2 cosecxcotx+ log tan2
e~ e~
a7 m (acosbx+bsinbx) (18) 13 (2sin 3x — 3 cos 3x)
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(29 %X (cos2x + 2 sin 2x)
e3x
(20) 73 (3sin2x— 2 cos 2x)

(21) % [sec 2x tan2x + log (sec 2x + tan 2X)]

e4x 1 _ 1 _
(22) 5 [—5(4sm 7X—7c0s7X) — 55 (4sin 3x—30053x)}

e3x

23) —(— [1% (-3cosx+sinx) + 6(— cos3x +sin 3x)}
EXERCISE 9.7

@ O)F tan*lO(u)4t *1( 42) (iii)(lstan’l(?’x;%
4x + M}

. 2 _ 1 _
) (U)W e (3

\T7+1+4x

(2) (')BIOQG Q (“)GIOQ(G x) ("')S\ﬁlog(\ﬁ 1- 4xj

,\E—) 1+ 2x \/6+1+3X
“%"’9(@1 2] ()6\/3'09(\/3 =

Q) 7g 10 '09(>):+g) (i) 16 16 Iog(2§+g) (“I)G\/—7 Iog@i:"‘g‘*ﬁj

1 2x+3—4/21 3x 15

@ ()1og (x+\+1) ()3 log [(2x+5) +\[(2x+572+4]
(iii)% log [(3x - 5) +\[(3x— 5)2+ 6]
(|v)IogK 3>+\/x +3x+10}

211



©)

(6)

()

®)

9)

() log Kx+% +\/mJ

()1og (x+\p@-91) (i) log [(x+ 1) +[(x+ 12 15]

(iii)% log [ (2x+ 3) +\[(2x + 3~ 16] (iv) log [ (x+ 2)+\s+4x-12]
) log [(x + 4) + 732 + 8x— 20]

(i)sin’l()—z() (ii)s’n( ) (|||)25|n (2“13)

o ) e )

@i - Iog(x +x+1)+\/§ tan~ (ZX\/é)
27 (2x+21—\/4_29)

(||)2Iog(x + 21X+ 3) - 2@' 2x+ 21 +[429
(i 5 log (2x2+x+3)—E tan L (4\)‘/131)
(iv)%log(l—x—x2)+2\3/§ (\\//??B

2x+3-4/5 )

(v) 2log (x° + 3x + 1) =[5 |09(2x+3 ++/5
1 9 . 1 (4&x-=-1
-3 \/6+x—2 +4—\/—2 sint (T)
(ii) - 210~ 7x -2 — 10sin 2 (23819

(i) \/3C + 4x+ 7 (v) snix—\1-% +c
(v) 6\ — 9x + 20 + 34log [ (x - 9/2) + 52— 9x+ 20]
3 1+ +3 log [x+/1+>]
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(10)

D
)

©®)

)
©)

(6)

)

(i) 252 \Joxr 12+ + 210g [+ 1) +oxr D2+ 4]

iz [@x+ D@x+ 12+ 9+ 909 @x+ 1) +\f(2x+ 12+ 9} ]
(iv) 2X4_3 A= 3x+10 +3—81Iog [(x—3/2) +\x@— 3x + 10]

()5 4= +2sint (’—2() (i) (&22) 25-(x+2)P +2 gn—l(%z)
(i) | 3¢+ V169 - 3+ 12+ 10087 (P15

0252 i+ et (2

W2 o + B et (22

EXERCISE 10.1

(i) Yes (ii) No (iii) No, " P(C) isnegative (iv) No, - >P=1 (v) Yes
)3 ()35 (e GOe ()3 (i)g @015 ()5 i)
3 (03 O OO ()3 B ©05 M3 o 2

EXERCISE 10.2
(i) 0.79 (i) 0.10 (2) (i) 0.72 (ii) 0.72 (iii) 0.28 (iv) 0.28

(i) 0.86 (ii) 0.36 (iii) 0.26 (iv) 0.76 (v) 0.14 (4)% (5) 0.2
(i)li3 (ii)% (7) (i) 0.45 (ii) 0.30
EXERCISE 10.3

No, for non empty events and possible for any one being null event.

213



@) ()ap ()3 @z (5) 05
(7) (i) 0.12 (ii) 0.48 (iii) 0.39 (9) (i);—g (ii)1—52 (iii)% (iv)1—72 OF
(10) (i)l% (ii)% (iii) 0.6 (iv) 0.525  (11) (i)ﬁ}g (ii)z—%1
(12 ()35 ()15 W OF )75 ()5
(1) () 35 ()55 (i) 15 M3 (i)
(16) (i)z% (ii)li4 (17) (i) 0.45 (ii) 0.9 (18)%—3 (19)2—3 (20)%

EXERCISE 10.4

) o Qs B0 (i)a
@ ()2 ()3 60O ()
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Objective Type Questions— Answers (Key)

(14 21 (32 42 (54 (6) 2
3 (8) 4 9) 2 (10) 1 a1 (12) 2
(13)3 (14) 1 (15) 4 (16) 2 17) 4 (18) 3
(19) 1 (20) 4 213 (22) 2 (23)1 (24)3
(25) 1 (26) 1 273 (28)3 (29) 1 (30) 3
(31) 2 (323 (33) 2 (34) 4 (35) 2 (36) 2
@1 (38) 2 (39) 4 (40) 3 (41) 4 42)3
(43) 4 (44) 1 (45) 2 (46) 3 @73 (48) 1
(49) 2
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