MATHEMATICS

HIGHER SECONDARY — FIRST YEAR
VOLUME -1

REVISED BASED ON THE RECOMMENDATIONS OF THE
TEXT BOOK DEVELOPMENT COMMITTEE

Untouchability is a sin
Untouchability is a crime
Untouchability is inhuman

S
N2\  TAMILNADU

TEXTBOOK CORPORATION

S

- A n
4 of {5
/?‘1 .
COLLEGE ROAD, CHENNAI - 600 006

< N
“ann Troro0c



PREFACE

This book is designed in accordance with the new guidelines and
syllabi — 2003 of the Higher Secondary Mathematics — First Year,
Government of Tamilnadu. In the era of knowledge explosion, writing a
text book on Mathematics is challenging and promising. Mathematics
being one of the most important subjects which not only decides the
career of many young students but also enhances their ability of
analytical and rational thinking and forms a base for Science and
Technology.

This book would be of considerable value to the students who
would need some additional practice in the concepts taught in the class
and the students who aspire for some extra challenge as well.

Each chapter opens with an introduction, various definitions,
theorems and results. These in turn are followed by solved examples
and exercises which have been classified in various types for quick and
effective revision. The most important feature of this book is the
inclusion of a new chapter namely ‘Functions and Graphs’. In this
chapter many of the abstract concepts have been clearly explained
through concrete examples and diagrams.

It is hoped that this book will be an acceptable companion to the
teacher and the taught. This book contains more than 500 examples
and 1000 exercise problems. It is quite difficult to expect the teacher to
do everything. The students are advised to learn by themselves the
remaining problems left by the teacher. Since the ‘Plus 1’ level is
considered as the foundation course for higher mathematics, the
students must give more attention to each and every result mentioned in
this book.



The chief features of this book are

(i)

(ii)

(iii)

(iv)

v)

The subject matter has been presented in a simple and lucid
manner so that the students themselves are able to
understand the solutions to the solved examples.

Special efforts have been made to give the proof of some
standard theorems.

The working rules have been given so that the students
themselves try the solution to the problems given in the
exercise.

Sketches of the curves have been drawn wherever
necessary, facilitating the learner for better understanding of
concepts.

The problems have been carefully selected and well graded.

The list of reference books provided at the end of this book will be
of much helpful for further enrichment of various concepts introduced.

We welcome suggestions and constructive criticisms from learned

teachers and dear students as there is always hope for further
improvement.

K. SRINIVASAN
Chairperson
Writing Team
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SYLLABUS

MATRICES AND DETERMINANTS : Matrix Algebra — Definitions, types,
operations, algebraic properties. Determinants — Definitions, properties,
evaluation, factor method, product of determinants, co-factor

determinants. (18 periods)

VECTOR ALGEBRA : Definitions, types, addition, subtraction, scalar
multiplication, properties, position vector, resolution of a vector in two and

three dimensions, direction cosines and direction ratios. (15 periods)

ALGEBRA : Partial Fractions — Definitions, linear factors, none of which
is repeated, some of which are repeated, quadratic factors (none of
which is repeated). Permutations — Principles of counting, concept,
permutation of objects not all distinct, permutation when objects can
repeat, circular permutations. Combinations, Mathematical induction,
Binomial theorem for positive integral index—finding middle and

particular terms. (25 periods)

SEQUENCE AND SERIES : Definitions, special types of sequences and
series, harmonic progression, arithmetic mean, geometric mean,
harmonic mean. Binomial theorem for rational number other than
positive integer, Binomial series, approximation, summation of Binomial
series, Exponential series, Logarithmic series (simple problems)
(15 periods)

ANALYTICAL GEOMETRY : Locus, straight lines — normal form,
parametric form, general form, perpendicular distance from a point,
family of straight lines, angle between two straight lines, pair of
straight lines. Circle — general equation, parametric form, tangent
equation, length of the tangent, condition for tangent. Equation of chord
of contact of tangents from a point, family of circles — concetric circles,

orthogonal circles. (23 periods)



(6) TRIGONOMETRY : Trigonometrical ratios and identities, signs of

()

(8)

9)

(10)

T-ratios, compound angles A + B, multiple angles 2A, 3A, sub multiple
(half) angle A/2, transformation of a product into a sum or difference,
conditional identities, trigonometrical equations, properties of
triangles, solution of triangles (SSS, SAA and SAS types only),
inverse trigonometrical functions. (25 periods)

FUNCTIONS AND GRAPHS : Constants, variables, intervals,
neighbourhood of a point, Cartesian product, relation. Function — graph
of a function, vertical line test. Types of functions — Onto, one-to-one,
identity, inverse, composition of functions, sum, difference product,
quotient of two functions, constant function, linear function, polynomial
function, rational function, exponential function, reciprocal function,
absolute value function, greatest integer function, least integer function,
signum function, odd and even functions, trigonometrical functions,
quadratic functions. Quadratic inequation — Domain and range.
(15 periods)

DIFFERENTIAL CALCULUS : Limit of a function — Concept, fundamental
results, important limits, Continuity of a function — at a point, in an
interval, discontinuous function. Concept of Differentiation -
derivatives, slope, relation between continuity and differentiation.
Differentiation techniques - first principle, standard formulae, product
rule, quotient rule, chain rule, inverse functions, method of substitution,
parametric  functions, implicit function, third order derivatives.
(30 periods)

INTEGRAL CALCULUS : Concept, integral as anti-derivative, integration of
linear functions, properties of integrals. Methods of integration -
decomposition method, substitution method, integration by parts.

Definite integrals - integration as summation, simple problems.
(32 periods)

PROBABILITY : Classical definitions, axioms, basic theorems, conditional
probability, total probability of an event, Baye’s theorem (statement only),
simple problems. (12 periods)
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1. MATRICESAND DETERMINANTS

1.1 Matrix Algebra

1.1.1 Introduction

The term ‘matrix’ was first introduced by Sylvester in 1850. He defined a
matrix to be an arrangement of terms. In 1858 Cayley outlined a matrix algebra
defining addition, multiplication, scalar multiplication and inverses. Knowledge
of matrix is very useful and important as it has a wider application in almost
every field of Mathematics. Economists are using matrices for socia
accounting, input — output tables and in the study of inter-industry economics.
Matrices are also used in the study of communication theory, network analysis
in electrical engineering.

For example let us consider the marks scored by a student in different
subjects and in different terminal examinations. They are exhibited in a tabular
form as given below.

Tamil English Maths Science Socia Science

Test1 70 81 88 83 64
Test 2 68 76 93 81 70
Test 3 80 86 100 98 78

The above statement of marks can also be re-recorded as follows :

First row 70 8l 88 83 64
Second row 68 76 93 81 70
Third row 80 86 100 98 78

First second Third Fourth Fifth

Column Column Column  Column Column

This representation gives the following informations.

(i) The elements along the first, second, and third rows represent the test

marks of the different subjects.

(ii) The elements along the first, second, third, fourth and fifth columns

represent the subject marks in the different tests.

The purpose of matrices is to provide a kind of mathematical shorthand to
help the study of problems represented by the entries. The matrices may
represent transformations of co-ordinate spaces or systems of simultaneous
linear equations.



1.1.2 Definitions:

A matrix is a rectangular array or arrangement of entries or elements
displayed in rows and columns put within a square bracket or parenthesis. The
entries or elements may be any kind of humbers (real or complex), polynomias
or other expressions. Matrices are denoted by the capital letterslike A, B, C...

Here are some examples of Matrices.

1 4 First Row 1 -4 2 First row (R1)
A=l 2 5 Second Row B = 6 9 4 Second row (Rp)
3 6 Third Row 3 -2 6 Third row (R3)
First  Second First Second Third
Column Column Column Column Column

Ci C2 C3
Note : In a matrix, rows are counted from top to bottom and the columns are
counted from left to right.

i.e. (i) Thehorizontal arrangements are known as rows.

(i) Thevertica arrangements are known as columns.

To identify an entry or an element of a matrix two suffixes are used. The
first suffix denotes the row and the second suffix denotes the column in which
the element occurs.

From the above example the elements of A are a;q = 1, ajp = 4, ax1 = 2,
a»=5a31=3andazx =6
Order or sizeof amatrix

The order or size of a matrix is the number of rows and the number of
columns that are present in a matrix.

In the above examples order of A is3 x 2, (to be read as 3-by-2) and order
of Bis3x 3, (to beread as 3-by-3).

In general amatrix A of order m x n can be represented as follows::

all a2 e alj s aln
A= &1 &2 ... & .. ap i row
:th
J
column



This can be symbolically written as A = [&jj]m x n-

The element a;; belongs to i" row and thejth column. i being the row index

and j being the column index. The above matrix A isan mx n or m-by-n matrix.
The expression m x n isthe order or size or dimension of the matrix.

Example 1.1: Construct a3 x 2 matrix whose entries are given by ajj =i — 2]

Solution: The general 3 x 2 matrix is of the form

a1l a2
A =[aj] =| 821 a2| wherei =1, 2, 3(rows), j=1,2(columns)
azl as
Itisgiventhat aj; =i - 2]
aj1=1-2=-1 a;p=1-4=-3 -1 -3
a=2-2=0 ax»p=2-4=-2 ..Therequired matrixisA=| 0 -2
az1=3-2=1 agp=3-4=-1 1 -1

1.1.3 Typesof matrices

(1) Row matrix: A matrix having only onerow is called arow matrix or arow
vector.

Examples (i) A=[gjlix3=[1 —7 4]isarow matrix of order 1 x 3.
(i) B=[bjjJlix2=[5 8]isarow matrix of order 1 x 2
(ifi) C=[cjjl1x 1 =[100] isarow matrix of order 1 x 1
(2) Column matrix:

A matrix having only one column is called a column matrix or a column
vector.
1

Examples (i) A=[aij]3xlz{—7} isacolumn matrix of order 3x 1
4

25
(i) B=[hjjl2x1 :[30} isacolumn matrix of order 2 x 1

(ifi) C=[cjjl1x 1 =[68] isacolumn matrix of order 1 x 1

Note: Any matrix of order 1 x 1 can be treated as either a row matrix or a
column matrix.



(3) Square matrix

A sguare matrix is amatrix in which the number of rows and the number of
columns are equal. A matrix of order n x n is aso known as a square matrix of
order n.

In a square matrix A of order n x n, the elements ai1, axp, azz ... anp are
called principal diagonal or leading diagonal or main diagonal elements.

24

A =[gjlax2 = [6 8} is asquare matrix of order 2
123

B =[hjjlax3=|4 5 6| isasquare matrix of order 3.
7 8 9

Note: In general the number of elementsin a square matrix of order nis n%. We
can easily verify this statement from the above two examples.

(4) Diagonal Matrix:
A square matrix A = [ajj]n x n IS Said to be a diagonal matrix if aj; = 0 when
i #]j
In a diagona matrix al the entries except the entries along the main
diagonal are zero.
400
For example A =[ajj]3x3=|0 5 O] isadiagonal matrix.
006
(5) Triangular matrix: A sguare matrix in which all the entries above the

main diagonal are zero is called a lower triangular matrix. If all the entries
below the main diagonal are zero, it is called an upper triangular matrix.

327 2 0 0
A=|0 5 3| isanuppertriangular matrixandB={4 1 O/ isalower
001 8 -57

triangular matrix.
(6) Scalar matrix:
A square matrix A = [gjln x n is sad to be scaar matrix if

___{a it i=j
4i=lo if i=zj



i.e. A scalar matrix is adiagona matrix in which all the entries along the
main diagonal are equal.

50 V5 0 0
A:[aij]2x2:|:0 5} B = [bijlax3z=| 0 5 O | are examples
0 0 45

for scalar matrices.
(7) Identity matrix or unit matrix:
A square matrix A = [aj]n x n IS said to be an identity matrix if

) _{1 if i=]
=10 if i#j
i.e. An identity matrix or a unit matrix is a scalar matrix in which entries

along the main diagonal are equal to 1. We represent the identity matrix of
ordernas Iy

10 100
I = [0 J, I3={0 1 0| areidentity matrices.
001

(8) Zero matrix or null matrix or void matrix
A matrix A = [ajj]m x n is said to be a zero matrix or null matrix if al the
entries are zero, and isdenoted by O  i.e. gjj = O for al the values of i, |

00 00O
[0 0], [0 0} , {0 0 0] are examples of zero matrices.
00 00O

(9) Equality of Matrices:

Two matrices A and B are said to be equal if

(i) both the matrices A and B are of the same order or size.

(if) the corresponding entries in both the matrices A and B are equal.

i.e. the matrices A = [gjjlmx nand B = [bjjlpx q aeequa if m=p,n=q
and gjj = bjj for every i andj.

Example 1.2 :
Xy 4 3 i
If[z W} :[1 5} then find the values of x, y, z, w.
Solution:

Since the two matrices are equal, their corresponding entries are also equal.
x=4 y=3 z=1 w=5



(10) Transpose of a matrix:

The matrix obtained from the given matrix A by interchanging its rows
into columns and its columns into rows is called the transpose of A and it is

denoted by A’ or AT,

IfA—F _OTthenAT—[L‘ 2 1}
1 s -3 05

Note that if A isof order mx nthen AT isorder n x m.
(11) Multiplication of a matrix by a scalar

Let A be any matrix. Let k be any non-zero scalar. The matrix kA is
obtained by multiplying al the entries of matrix A by the non zero scalar k.

i.e. A = [ajjlmx n= KA = [Kajjlmx n

Thisis called scalar multiplication of a matrix.
Note: If amatrix A isof order mx n then the matrix KA is also of the same

1 7 2
-6 39
(12) Negative of a matrix:

Let A be any matrix. The negative of amatrix A is— A and is obtained by
changing the sign of all the entries of matrix A.

i.e.A:[aij]man—A:[— aij]mxn

LetA_[cosG sine} " A_[—cose —sine}
“l-sno cosd) M AT sine - cosd

1.1.4 Operations on matrices
(1) Addition and subtraction

Two matrices A and B can be added provided both the matrices are of the
same order and their sum A + B is obtained by adding the corresponding entries
of both the matrices A and B

i.e. A =[ajlmxnand B =[bjjlmxn then A +B=[gj+bjjmxn

For example If A :[

Similarly A-B=A+(=B) =[ajlmxn*[-bijlnxn
= [&j — bijlmxn
Note:
(1) ThematricesA + B and A — B have same order equal to the order of
A or B.



(2) Subtraction istreated as negative addition.
(3) The additive inverse of matrix A is— A.
i.e. A+(=A)=(-A)+A =0 =zeromatrix

7 2 4 -7
For example, if A=|{8 6 |andB=| 3 1

9 -6 8 5

7 2 4 -7 7+4 2-7 11 -5
thenA+B=|8 6 |+| 3 1|=(8+3 6+1| =|11 7| ad
9 -6 -8 5 9-8 -6+5 1 -1

7-4 2+7 3 9
A-B=A+(-B)= +—3 —1:8—3 6-1|=| 5 5
9 —6

8 -5 [9+8 —-6-5] [17 -11

(2) Matrix multiplication:

Two matrices A and B are said to be conformable for multiplication if the
number of columns of the first matrix A is equal to the number of rows of the
second matrix B. The product matrix ‘AB’ is acquired by multiplying every row
of matrix A with the corresponding elements of every column of matrix B
element-wise and add the results. This procedure is known as row-by-column
multiplication rule.

Let A be amatrix of order m x n and B be a matrix of order n x p then the
product matrix AB will be of order mx p

i.e. orderof Aismxn, order of Bisnx p

Then the order of ABismx p= (nucr’? tr)ﬁrat?ifxrzws) x (numot;amftr?g I;mns)

The following example describes the method of obtaining the product
matrix AB

51 4 6 4 3
Let A:736 B=|3 2 5
2x3 7 3 1/3x3

It isto be noted that the number of columns of the first matrix A isequal to
the number of rows of the second matrix B.



.. Matrices A and B are conformable, i.e. the product matrix AB can be

found.
_[2 1 4} g ‘21 2
AB=17 36

731

~ 2 1 4 6 2 1 4 4 2 1 4 3 7
3 2 5

7 3 1

7 3 6 6 7 3 6 4 7 3 6 3
3 2 5

| 7 3 1 -
) ) +(4)

_ [(2) @O+ME+@@" Q@H+DEA+AEF @O+MO)+“ (1)}
ME+QE+® 7 M@AH+F@+O ) N+ O +(6) 1)
[12+3+28 8+2+12 6+5+4 J |:43 22 15}
= .. AB=

=
=
=

T 142+9+42 28+6+18 21+15+6 93 52 42

It isto be noticed that order of AB is 2 x 3, which isthe number of rows of
first matrix A ‘by’ the number of columns of the second matrix B.
Note: (i) If AB =AC, itisnot necessarily true that B = C. (i.e)) the equa
matrices in the identity cannot be cancelled asin algebra.
(i) AB = O does not necessarily imply A=0OorB=0

1 11
For example, A—[_l J #0 andB—[l J 0

] _[ 1 —1} [1 1} _[o 0}_0
wAB=| o | |11]=l00=

(iii) If A is a square matrix then A.A is also a square matrix of the
same order. AA is denoted by A2, Similarly A’A = AAA = A8

If | isaunit matrix, thenl =12=13= . =",

1.1.5 Algebraic properties of matrices:
(1) Matrix addition is commutative:

If A and B are any two matrices of the same order then A + B =B + A.
This property is known as commutative property of matrix addition.

(2) Matrix addition is associative:
i.e. If A, B and C are any three matrices of the same order



thenA+(B + C) = (A+B)+C. This property is known as associative property
of matrix addition.
(3) Additiveidentity:

Let A be any matrix then A + O = O + A = A. This property is known as
identity property of matrix addition.

The zero matrix O is known as the identity element with respect to matrix
addition.

(4) Additiveinver se;

Let A be any matrix then A + (— A) = (- A) + A = O. This property is
known as inverse property with respect to matrix addition.

The negative of matrix A i.e. — A isthe inverse of A with respect to matrix
addition.
(5) Ingeneral, matrix multiplication is not commutative i.e. AB = BA
(6) Matrix multiplication is associativei.e. A(BC) = (AB)C
(7) Matrix multiplication is distributive over addition

i.e. ()AB+C)=AB+AC (ii)(A+B)C=AC+BC
(8) Al =1A = A where | isthe unit matrix or identity matrix. Thisis known as
identity property of matrix multiplication.

Example 1.3; IfA=[1 8} B=[1 3} C=[_4 6}

43 7 4 3 _5
Provethat (i) AB = BA (ii) A(BC) = (AB)C
(iii) A(B +C) = AB + AC (V) Al = IA = A
Solution:
. 1813 _ [@O+@ @ (O)E)+(®) @]
O AB=la 3l 7 dFlo@w+e®m @E+@ @l
[1+56 3+32J ) [57 35}
=l4+21 12+12] T |25 2 - (@)
BA = 1 3] (18] _ [MO+R@ OB+ Q)]
7 A4 3 LM +r@@E@ D)+
_[1+12 8+9J_[13 17} 5
=17+16 56+12] —| 23 68 SC)
From (1) and (2) we have AB = BA
) 57 357 [-4 6
(i) (AB)C= 5 24} [ 3 _5} ... from (1)
_ [(57) (- 4) +(35) (3) (57) (6) +(35) (- 5)}
L(25) (=4) +(24) (3) (25)(6) +(24) (-5)




~ [— 228+ 105 342 - 175}
"L -100+72 150-120

[—123 167}
L-28 30

ac |t 3} [—4 6}
L7 4 3 -5

- (AB)C =

LN EH+AHE) DO+ (D)

BC-_ 5 —9}
Tl-16 22

A(BC) -:411 gJ [— 12 _22}

_ _(1) B)+®) (-16) () (=9 +(8 (22)} _ [5 - 128
L) B5)+(3) (-16) (4) (-9 +(3) (22)] ~[20-48
[— 123 167
ABC) = _og 30}

From (3) and (4) we have, (AB)C = A(BC)

B+C-_1 3} {—4 6] _[1—4 3+6} _[—3
(i) “l7 4 3 -5] |7+3 4-5] |10
AB+c— [ } [—3+80 9—8}
( ) -12+30 36-3
AB+O) =] 18 33J
AB = 5 2} . from (1)
AC_ [ } [—4+24 6—4?]_[2
- -16+9 24-15] |-
AB + AC = (57 35} +[2o —34] [57+2o 35— 34}
25 24 25-7 24+9
= 18 33}

10

.. (3

-0+

_[DEH+E)E) (1)(6)+(3)(—5)} :[ —4+9 6—15}
-28+12 42-20

176}

— 36 + 66,

.. (4

)

... (5

0 -3
7

4

4

... (6)



From equations (5) and (6) we have A(B + C) = AB + AC

10
(iv) Sinceorder of Ais2x 2, takel =[0 J.

18] [10] [1(1)+80) 1(0)+8(1)] _
Al =14 ?J [o J ‘[4(1) +3(0) 4(0) +3(1)J =

[t 9-s e

n=[o 1] L4 o] Lo 1 0w +19) lova ora

19 - @

.. From(7) and (8) Al=1A=A

[1+0 O+8}
4+0 0+3

23 ) 2
Example1.4: If A= 45 find A<-7A -2l

Solution: 2. AA_[z 3} [2 3} _[4+12 6+15}
ution: = “las| las]Tle+20 12+25

2o [16 21} .

= |28 37 - @

A 7[2 3} _[—14 —21} ,

“TA= —Tl45] 7| 28 _35 -

) - 10} _[—2 o} X

—2= =250 =1 L, e

D)+ +(3)gives A2-7TA-21=A%+ (- 7A) + (- 2I)
[ 7+ e 2
16-14-2 21—21+o} _ [o OJ

. 2 _ _
L. AT-TA 2l_[28—28+0 37-35-2] ~loo]~

O

| i _[14} q _[50}
Example15: IfA= 03| @ B= 39|

show that (A + B)? = A2 + 2AB + B2

11



Solution: A+B:[1 4} +[5 OJ [1+5 4+0} [6 4}
) 03 39 0+3 3+9
(A+B)2=(A+B)(A+B)=[6 4}[ J [36+12 24+48}
312 [3 12 18+36 12+ 144

48 72
(A +B)° = [54 156} (@)

). [ } [1 J‘[“O 4+12} _[1 16}
A 03 “lo+o o+9l7lo 9
> 50] [ 25+0 0+0] [25 O
82=88=3 o] [3 o) =l15+27 0+81) ~La2 1)
_[ “ }_[5+12 O+36J _[17 36}
AB = = 0+9 0+27) =| 9 27
2[17 36} . [ 34 72}
2AB=2 g 27| = |18 =4

1 16} [34 72} [25 OJ_[1+34+25 16+72+0}
0o 9l'18 54/%42 81/ 0+18+42 9+54+81

60 88}
60 144

From (1) and (2) we have
(A +B)? =A%+ 2AB + B?

A2+2AB+BZ:[

A2+2AB+BZ=[ . )

1 2] [x
Example 1.6: Findthevalueof x if [2x 3] [_3 0} [3} =

X
Solution: [2x—9 4x+ 0] [3} = O (Multiplying on first two matrices)

=N [x-9x+4x(3)] =0 = [2F-9x+12] =
- [2x° + 3X] =
e 22 +3x=0 = x(2x+3)=0
Hencewehavex=0, x= 23
Example1.7: Solve: X +2Y = [ J : -Y = [_; 3 2}

12



4 6
Solution:  Given X +2Y = [ J .. (D

-8 10
10
x-v=|_5 3 N
T4 6 1 0
DW-@ = X+2)-(X-Y)= | g 10} —[_2 _2}
"3 6 173 6
=16 12J:>Y:§ -6 12}
12
= =12 4}
Substituting matrix Y in equation (1) we have
12 T 4 6]
x+2[_2 J =[-8 10]
2 4 T 4 6]
= X+[—4 sJ =[-8 10]
T 4 6] 2 4 2 2
= X=1_8 10] ‘[—4 8} :[—4 z}
T2 2 12
Xy 2J a”de[—z 4J
EXERCISE 1.1

D
)

©)

(4)

Construct a3 x 3 matrix whose elementsare (i) ajj =i+ (ii) aj=1ix]

3X — _
Findthevalu%ofx,y,zif[ X X y} :[0 ﬂ

2X+z 3y—w 3 2
2x  3X-y| [3 2 _
If [2x+z 3y—w} -[4 7} findx,y,zw
n‘A:B1 _ﬂ B:[‘l1 _ﬂ andcz[_i _i find each of the
following
()-2A+B+C) (i) A-BB-C) (i) A+(B+C) (iv)(A+B)+C
(VA+B (vi)B+A (vii) AB (viii) BA
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®)

(6)

()

®)

9)

(10)

(11)

(12)

(13)

(14

12 3 2 0 1 1 1-1
GivenA=[—13 4] B=[2—1—2}andc=2 1 -2

20 -1 1 1-1 1 -1 1
verify the following results:

(i) AB % BA (i) (AB) C=A(BC) (i) A(B+C) =AB +AC
-2 13 47 0
SoIve:2X+Y+[ 5 -7 3}=O . X=Y =[—1 2 —6}

4 5 4 -2 8 -5
3 -5 2 . . .
IfA:_4 5 , show that A“ — 5A — 14 | = O where | is the unit matrix

of order 2.

3 -2 . 2
IfA= 4 _2 find k so that A< =kA - 2I

1 22
fA=[2 1 2|, showthat A2—4A-51=0
2 21

Solvefor xif 2 1 [Zx 3}_[3 4}
vetor X1 23+14—37
1 1 2]rx
Solveforxif [x 2 -1]|-1 -4 1 [2} =[0]
-1 -1 -2]L1
IfA—[l 2} B—[3 _1} ify the following:
=120 =1 o] verify thefollowing:
(i) (A +B)’>=A%2+AB +BA +B? (ii) (A -B)?%A%-2AB +B?
(i) (A+B)?=A%+2AB+B?  (iv)(A-B)’=A%2-AB-BA+B?
(v) A2-B%% (A +B) (A - B)

. . . [3 =3 2 _
FmdmatnxleA—[2 Q B—[ 4 _J and5C+2B = A

IfA—[l _1} dB—[X 1} d (A +B)?=AZ+ B2 find xand
=, 4@ _y_lan( ) = , find xand y.
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1.2 Determinants

1.2.1 Introduction:

The term determinant was first introduced by Gauss in 1801 while
discussing quadratic forms. He used the term because the determinant
determines the properties of the quadratic forms. We know that the area of a
triangle with vertices (X1, y1) (X2, ¥2) and (X3, y3) is

1

5 [xaly2—ya) +x2 (y3—y1) +x3 (y1-y2)] .. (@)

Similarly the condition for a second degree equation in x and y to represent
apair of straight linesis  abc + 2fgh — af® — bg® — ch®= 0 (2

To minimize the difficulty in remembering these type of expressions,
Mathematicians developed the idea of representing the expression in
determinant form.

x1 y11
The above expression (1) can be represented in the form % X2 Y2 1.
X3 y3 1
a hg
Similarly the second expression (2) can be expressedas |h b f| =0.
gfc
Againif we eliminate x, y, z from the three equations
aiXx+by+c1z=0 ; axx+hbyy+cpz=0 ; azx+bgy+czz=0,
weabtain aj(by c3—bzcy) — by (apc3—agco) + ¢ (apbz—agzhy) =0

ai by ¢
This can be written as |[& b2 C2| = 0. Thus a determinant is a particular
ag bz c3
type of expression written in a special concise form. Note that the quantities are
arranged in the form of a square between two vertical lines. This arrangement is
called a determinant.
Difference between a matrix and a determinant
(i) A matrix cannot be reduced to a number. That means a matrix is a
structure alone and is not having any value. But a determinant can be
reduced to a number.
(ii) The number of rows may not be equal to the number of columnsin a
matrix. In a determinant the number of rows is aways equal to the
number of columns.
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(iii) On interchanging the rows and columns, a different matrix is formed.
In a determinant interchanging the rows and columns does not alter
the value of the determinant.
1.2.2 Definitions:

To every sguare matrix A of order n with entries as real or complex
numbers, we can associate a number called determinant of matrix A and it is
denoted by |A | or det (A) or A.

Thus determinant formed by the elements of A issaid to be the determinant
of matrix A.

A _[311 ar2 aj1 a2
“lag ax ap1 ax
To evaluate the determinant of order 3 or above we define minors and
cofactors.
Minors:
Let | A | = |[&;j]| be a determinant of order n. The minor of an arbitrary

=aij agp —axa

}thenits |A]=

element g;; is the determinant obtained by deleting the i row and jth columnin
which the element g;j stands. The minor of &; is denoted by Mj;.
Cofactors:
The cofactor is a signed minor. The cofactor of a;j is denoted by Ajj and is
defined as Ajj = (- 2)' ¥ Mmj;.
The minors and cofactors of ajq, ajo, aj3 of a third order determinant
a1 a2 a3
a1 az2 az| areasfollows:

a31 agzg2 ass
o : _ |82 @az3| _
(i) Minor of a1 isMq1 = agy ax| - apoaz3 — azp apa.
axp a3
: 1+1
Cofactor of a1is A11=(-1 Mq1= ‘ = ayazz—azx a
11 11=(1) 117 | a3, ag 22233 — a32 a23
o . ay1 az3
(iMinor of a2 iSM12.= | 5. g, = 221333~ 831823
) a1 a3
Cofactor of ajpis Ao = (—1)1+2 M1 =— asy ass‘ = — (ap1833 - a3 az1)

16



az1 ap
agz1 azz

(iii)  Minor of ajzisM13 = ‘ =ap1ag2— ag1 ax

a1 axp

=ap ap-aza
aay asz‘ 21832 — 831 2

Cofactor of agzis A1z=(-1)**3M3= ’

Note: A determinant can be expanded using any row or column as given below:
a1 a2 a3
Let A= |az1 a2 a3
az1 az2 ass
A=a1 Al +ap App +ai3 A1z or  ag1 My1 — agp My + ag3 M13
(expanding by R1)
A=ajg A1r+axnAz +az Az of ajg Mg —apy Mg + agp Map
(expanding by C,)
A=ap Apr +ap Axp +axaAzz or  —ap; Mo +agp My —ax3 M3
(expanding by R»)
Example 1.8:

Find the minor and cofactor of each element of the determinant
3 4 1

0 -12
5-26
. . . -1 2

Solution: Minor of 3isM11 = o6 =—6+4=-2
. . 02
Minor of 4isM12 = 15 6 =0-10=-10
. . 0 -1
Minor of 1isMq3 = 5 _9 =0+5=5
. . 4 1
Minor of 0isMoq = .26 =24+2=26
. . 31
Minor of —1isMoy = 5 6 =18-5=13
) . 3 4
Minor of 2isMo3 = |5 _» =—6-20=-26

17



Minor of 5isMa1 = _41 ;‘ =8+1=9
Minor of —2isM3> = g; =6-0=6

Minor of 6isM33 = 3 _41‘ =-3-0=-3
Cofactor of 3isA1; = (DY IMpp =My =-2
Cofactor of 4isA1z = (-1)1"?Mip=-M1p=10
Cofactorof 1isA13 = (-1)'*3Mi3=M3=5
Cofactor of 0isAy; = (-1)? 1My =-My =-26

(-2 2Mzp=Mp=13
(- 1)**3Ma3=-Mo3=26
13" Mg =Mz =9
(-3 %Mz =-Mg=-6
(-1°*3Mgg=Mgz=-3

Cofactor of — LisAop

Cofactor of 2isAo3

Cofactor of 5isAz

Cofactor of — 2isAzp

Cofactor of 6isAz3
Singular and non-singular matrices:
A sguare matrix A issaid to be singular if |A |=0
A sguare matrix A issaid to be non-singular matrix, if | A | = 0.

123
For example, A :{4 5 6} isasingular matrix.
789
A= 411 E 2 _1‘5 6 2{4 6 +3}4 5
789 8 9 7 9 7 8

= 1(45 - 48) — 2 (36 — 42) + 3(32 — 35)
=-3+12-9=0

175
B=|2 6 3| isanon-singular matrix.

489
..8_222_1‘63 7‘23 5‘26‘
'||_489_89_49+48

18



= 1(54-24)-7(18—-12) + 5 (16 — 24)
= 1(30) — 7(6) + 5(- 8)
=-52+0

.. The matrix B is anon-singular matrix.

1.2.3 Properties of Deter minants

There are many properties of determinants, which are very much useful in
solving problems. The following properties are true for determinants of any
order. But here we are going to prove the properties only for the determinant of
order 3.

Property 1:

The value of a determinant is unaltered by interchanging its rows and
columns,

Pr oof:
a; by ¢
Leta=|a2 b2 |,
ag bz c3
Expanding A by the first row we get,
A = ay(byc3—bgcp) —by(az c3 —ag cp) + ¢y (abz —az by)
= ajboc3 — ajhscy — aghqc3 + agbiCy + asbscy — agbocy .. (D

Let us interchange the rows and columns of A. Thus we get a new
determinant.
a a as
A1 = |b1 b2 Db3|. Since determinant can be expanded by any row or any
C1 C C3
column we get
A1 = ag(bacz — cobg) — by (azC3 — cpag) + ca(azbs — bpag)
= ajbycz — ajbscy — aghics + agbico + asbscy — agbocy ... (@
From equations (1) and (2) wehave A=A; Hence the result.
Property 2:
If any two rows (columns) of a determinant are interchanged the
determinant changesits sign but its numerical value is unaltered.
Pr oof:
ap by ¢
LetA=|a2 b2 C2
as b3 C3
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A
A

Let A1 be the determinant obtained from A by interchanging the first and
second rows. i.e. R1and Ro.

ay(b2 c3 - b3 ¢2) — bi(az c3 — ag ¢2) + ¢1 (axhz —ag by)
a1bocz — a1bscy — aghqcs + agbiCy + axbscy — agbocy .. (D

a by ¢
Al=|a1 b1 &
az b3z c3

Now we have to show that A1 = — A.

Expanding A; by Ry, we have,

A1 = —ay(boc3 —bscy) + bi(azcs — azcy) — ca(azbs — aghy)

— [aabzcs — aibacy + aghics + aghyco + aghbaes — aghocy] ... (2)
From (1) and (2) weget A1 = — A.

Similarly we can prove the result by interchanging any two columns.
Corollary:

The sign of a determinant changes or does not change according asthere is
an odd or even number of interchanges among its rows (columns).

Property 3:

If two rows (columns) of a determinant are identical then the value of the
determinant is zero.

Pr oof:

Let A be the value of the determinant. Assume that the first two rows are
identical. By interchanging R and R> we obtain — A (by property2). Since Rq
and R areidentical even after the interchange we get the same A.

e A=—A = 2A=0 ie A=0
Property 4.

If every element in arow (or column) of a determinant is multiplied by a
constant “K” then the value of the determinant is multiplied by k.

Pr oof:
a by
LetA=|a2 b2 ¢
as b3 C3
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Let A1 be the determinant obtained by multiplying the elements of the first

ka; kb kcq
rowby ‘K thenA;=| a2 b2 c2|.
az bz c3

Expanding along R1 we get,
A1 = kag (bacg — bscp) — kby(apcs — asey) + keg(agbs — agbo)
k[a1boc3 — ajbsco — asbqc3 + agbyCy + aghscy — aghbocq]
kA. Hence the resuilt.

A
Note:

(1) Let A beany square matrix of order n. Then kA is also a square matrix
which is obtained by multiplying every entry of the matrix A with the
scalar k. But the determinant k |A| means every entry in arow (or a
column) is multiplied by the scalar k.
(2) Let A beany square matrix of order nthen | kA | =K' A |.
Deduction from properties (3) and (4)

If two rows (columns) of a determinant are proportiona i.e. one row
(column) is a scalar multiple of other row (column) then itsvalueis zero.
Property 5:

If every element in any row (column) can be expressed as the sum of two
quantities then given determinant can be expressed as the sum of two
determinants of the same order with the elements of the remaining rows
(columns) of both being the same.

a1t+Xy Pi1tyr 11tz
Pr oof: LetA = b1 b b3
C1 C2 Cc3

Expanding A aong the first row, we get

1 b1 by
A= (0a+X) |, o ~BLHYD ¢ o] Tt ¢, o,
_ bz bs by bs| b1 b
T M 3] TP 3] T o
by b3 b1 b3 by by
T e sl e el TR o
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a1 P11 X1 Y1 21
= |by by bg| +|by by b3

C1 C2 C3 C1 C2 C3
Hence the result.

Note: If we wish to add (or merge) two determinants of the same order we add
corresponding entries of a particular row (column) provided the other entriesin
rows (columns) are the same.

Property 6:

A determinant is unaltered when to each element of any row (column) is
added to those of severa other rows (columns) multiplied respectively by
constant factors.

i.e. A determinant is unaltered when to each element of any row (column)
is added by the equimultiples of any parallel row (column).

Pr oof:
ap by ¢
LetAa=|a2 by ¢
ag bz c3

Let A1 be a determinant obtained when to the elements of C; of A are

added to those of second column and third column multiplied respectively by |
and m.

ap+lbg+me; by ¢
A= |ag+lbp+me; by c
ag+tlbg+ncs by c3
ap bl C1 |b1 b1 C1 mCq bl C1

= |ag b2 co| +|lIb2 bz c2| + |mc2 b2 C2|  (by property 5)
as b3 C3 |b3 b3 C3 mC3 b3 C3
ai by ¢ . . .

“la b __Cl!sproport!onal tocz!ntheseponddet.
2 D2 €2 +0+0]- C, isproportional to Cginthethird det.
ag bz c3

Therefore A1 = A. Hence the result.

Note:
(1) Multiplying or dividing all entries of any one row (column) by the
same scalar is equivalent to multiplying or dividing the determinant
by the same scalar.
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(2) If all the entries above or below the principal diagonal are zero (upper
triangular, lower triangular) then the value of the determinant is equal
to the product of the entries of the principal diagonal.

For example, let us consider

327

053

001
The value of the determinant A is 15.

The product of the entries of the principal diagonal is3 x5 x 1 =15,
x-1 X X-2
Example1.9: Solve | 0 x-2 x-3| =0
0 0 x-3
Solution: Since al the entries below the principal diagona are zero, the vaue
of the determinant is (x—1) (x—2) (x—3)
L x=1)(x-2)(x-3)=0 = x=1, x=2, x=3

|A | = =3(5-0)-2(0-0)+7(0-0) =15

. |x 5 1 -2
Example 1.10:  Solvefor x if ‘7 X‘+’—1 1‘ =0
i X 5 1 -2
Solution : ‘7 x‘+‘_1 1‘ =0

= (X¥-35+(1-2)=0= x*-35-1=0 = x*-36=0
= x2=36 = x=+6

o

Example1.11:  Solvefor x if

W N -
xX X

0
X
1
Solution:

(0)!2 i} —1|)1( i} +(0)‘)1( g =0 = 0-1pP-x+0=0
2

-X“+x=0 iex(1-x=0 = x=0, x=1
1 a b+c X+2a Xx+3a x+4a
Example 1.12: Evauate(i) |1 b c+a| (i) [x+3a X+4a x+5a
lc a+b X+4a x+5a X+ 6a
Solution:
1 a b+c 1 a at+b+c
() LetA=|1 b c+al =(1b a+b+c| C3>C3+C;
l1c a+b lc a+b+c
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= 0 [+ Cjisproportional to Cg]

Xx+2a x+3a x+4a X+2a a 2a
. C2>C-C
(i) LetA=|x+3a x+4a x+5al =|x+3a a 2a Cos Cae C
X+4a x+5a x+6a Xx+4a a Z2a 3 3THL
=0 [+ Cyisproportional to Cg]
2X+y Xy
Example1.13: Provethat |2y+z Yy z| =0
2z+x 7z X
2X+y Xy 2X Xy y Xy
Solution: 2y+z y z| =|2yy z| +|z Yy z
2z+x z X 22 z X X z X
B [ G is proportional to C in thefirst det}
= 0+0 * Cqisidentical to C3in the second det.
=0
1 a a2
Example 1.14: Provethat |1 b b?| =(a-b)(b-c)(c-a)
1 ¢ ¢
Solution:
1 a @ 0 a-b a’-b° Ri>Ri-Ry
1bb’ =]|0 b-c b*-c®?| Re>Rx-Rs3
1 ¢ c? 1 ¢ c?

0 1 a+b| Take(a—b)and(b-0)
=(@a-b)y(b-c) |0 1 b+c from Ry and R,
1 ¢ 2 respectively.

= (a-b) (b-¢) [()) (b + ) - (1) (a+ )] = (a-b) (b-0) (c-2)

1 1 1
Example1.15: Provethat |1 1+x 1 | =xy
1 1 1+y
1 1 1 111
Solution: 1 1+x 1 =10 x 0| Ro=>Rx-R
1 1 1+y 0 0yl RR>R3—R;

= xy [ upper diagonal matrix]
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a® bc b+c
Example 1.16: Provethat 10?® ca c+a| =0
1c?> ab a+b

l/a abc a(b+c)
1/b abc b(c+a)
l/c abc c(a+b)
la 1 alb+c)
b 1 b(c+a)
l/c 1 c(a+b)
bc 1 a(b+c)
ca 1 b(c+a)
ab 1 cla+b)
bc 1 ab+bc+ca
ca 1 ab+bc+ca
ab 1 ab+bc+ca
bc11
call
ab 11

- W (0) [ Cpisidentical to Cg]

Ua® bc b+c

2 _ L
1/b* ca c+a = 2be
1Uc? ab a+b

Multiply R1, Ro, R3
by a, b, c
respectively

Take abc from Co

1 .
= 2bo Multiply C4 by abc

1
ﬁ C3—>C3+Cy

_ (abtbc+ca)

abe Take (ab + bc + ca) from C3

=0
b’c® bc b+c
Example 1.17: Provethat ca® ca c+a| =0
a’b’> ab a+b
b%c®> bc b+c
Solution: LetA=|c%a® ca c+a
a’h?> ab a+b
Multiply R1, R and R3 by a, b and ¢ respectively
ab’c® abc ab+ac
A= ﬁ: bc%a® abc bc+ab
ca’h® abc ca+bc
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1 ab+ac
1 bc+ab

abc
1 ca+bc

ab

bc 1 ab+bc+ca
ca 1 ab+bc+ca
ab 1 ab+bc+ca
bc
ca
ab

abc (ab + bc + ca) (0)
0

abc

abc (ab + bc + ca)

atb+c
-C
-b

—C

Example 1.18: Provethat

Solution:
atb+c
—C
-b

-b
-a
atb+c

-
atb+c
-a

a+b
-(b+0)
-b
1 1
-1 1
b
0
-1
-b

=(a+b)(b+c)

2

= (a+b) (b+0) 1

1

=(a+b) (b+0)x(-2) (:b

11
11
11

atb+c
-a

-1
1
—-a atb+c

—-a a+b+c

Take abc from C1 and Co

C3—>C3+Cy

Take (ab + bc + ca) from C3

[~ Coisidentical to Cg]

-b
-a
atb+c

= 2(a+b) (b+c) (c+a)

Ri1>R1+Ry
Ro—> Ry +R3

a+b
b+c
—a

-(a+b)
b+c
a+b+c

Take(a+h), (b+c)
fromR1 and Ry
respectively

0
1

R]_ - R1+ R2

1
a+b+c

=(@a+b)(b+c)x(-2)[-(@a+b+c)+D]

=(a+h)(b+c)x(-2)[-a-]
A=2@+b)(b+c)(c+a
a+L ab ac
Example1.19; Provethat | ab b%+% bc | =A%(@+Db%+c®+1)
ac bc 2+
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a2+x ab ac
Solution: LetA = ab b2+x bc

ac bc 2+
Multiply R1, R2 and R3,by a, b and c respectively
1 a(a2 +2) ab a’c
A =Sig ab®  b(b®+1r) b
ac? bc? c(c2 +2)
Take a, b and c from Cq, C, and Cg respectively
b a%+ a° a°
abc
=oe | P2 PPen b
? 2 A+
a*+PHcPHn atbPHcPn a+b™C A | R Ry + Ry +Rs
= b? %+ b?
c? c? 24
1 1 1
= @+b?++2) b b2+ b
P P
1 00 c o
(a2 2 2 2 2—>L2-Cg
=@+b°+c +2)|b® A O Cs— Cs-Cy
2
cc 0 A
L0
2,02, 2
= +b“+c°+
seon [,
a+L  ab ac
ab  b2+%  bc | =A%@+b2+c?+)
ac bc 2+
EXERCISE 1.2
2 6 4
(1) Find the vaue of the determinant |[-5 —-15 —-10| without usual
1 3 2

expansion.
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)

©)

(4)

(%)

(6)

(7)

(8)

9)

Identify the singular and non-singular matrix

1 4 9 1 2 3
0 [4 9 16] (ii)[ 4 5 6 }
-2 -4 -6

9 16 25
2 x 4 4 3 9
Solve (i) |3 2 1| =-3 (ii)|3 -2 7|=-1
1 2 3 4 4 x
a-b b-c c-a 1 ab c(a+h)
Evaluate (i) |b—-c c-a a-b| (i) |1 bc alb+c)
c-a a-b b-c 1 ca b(c+a)
a-b-c 2a 2a
Provethat | 2b  b-c-a 2b | =(a+b+c)°
2c 2c c-a-b

l+a 1 1

1 1 1
Provethat | 1 1+b 1 =abc(1+5+5+6)
1 1 1+c

where a, b, ¢ are non zero rea numbers and hence evaluate the

1+a 1 1
vaue of 1 l1+a 1
1 1 1+a
1 a a3
Provethat |1 b b®| =(a-b)(b-c)(c-a)(@+b+c)
1 c c3
X x2 1—x3
If x,y, zareall differentand |y y?* 1-y3| =0
z z2 1—z3
then show that xyz=1
1 a @] |1 a be
Provethat (i) |1 b b?| =|1 b ca
1 ¢ 2 1 c ab
y+z Xy
(i) [2+Xx Z X|=(x+y+2) (x-2)
X+y y z
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(10) Provethat
2

b+c c+a atb a b c -a~ ab ac
(i) |atr r+p prg|=2|p q r| (i) | ab —-b® bc | =4a%hc?
Y+Z 74X Xx+y Xy z ac be -
a b c
(i) [b ¢ a|=3abc-a3-b>-c3
b
a b C
(iv) [a-b b-c c-a] =a®+Db%+c>- 3abc
b+c c+a a+b

1.2.4 Factor method
Application of Remainder theorem to deter minants
Theorem:

If each element of a determinant (A) is polynomia in x and if A vanishes
for x = athen (x— a) isafactor of A.

Pr oof:

Since the elements of A are polynomial in x, on expansion A will be a
polynomial functionin x. (say p(x)). Forx=a, A=0

i.,e.p(X)=0whenx=a, i.ep(@=0
.. By Remainder theorem (x — @) is afactor of p(x).
i.e. (x—a)isafactor of A.

Note:

(1) Thistheorem isvery much useful when we have to obtain the value of
the determinant in ‘factors’ form. Thus, for example if on putting
a = b in the determinant A any two of its rows or columns become
identical then A = 0 and hence by the above theorem a — b will be a
factor of A.

(2) If r rows (column) are identical in a determinant of order n (n > r)
when we put x = a, then (x—a)" ~ Lisafactor of A.

(3) (x+ a)isafactor of the polynomial f(x) if and only if x=—aisaroot
of the equation f(x) = 0.
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Remark: In this section we dea certain problems with symmetric and cyclic
properties.

1 a a°
Example 1.20: Provethat [1 b b%| =(a-b)(b—c)(c—a)(@a+b+c)
1 ¢ ¢
Solution:
1aa 1b b
LetA= |1 b b%|.Puta=b, A= |1 b b3| =0 [+ Ryisidentical to Ry]
1¢c 1ccd

.. (a—b) isafactor of A.

Similarly we observe that A is symmetricin a, b, ¢, by puttingb =c¢, c = a,
we get A = 0. Hence (b — ¢) and (c — a) are aso factors of A. .. The product
(a—b) (b—c) (c — a) isafactor of A. The degree of this product is 3. The product
of leading diagonal elementsis1.b. 3. The degree of this product is 4.

.. By cyclic and symmetric properties, the remaining symmetric factor of

first degree must be k(a + b + ¢), where k is any non-zero constant.

1 a a°

Thus [1 b b° =(a-b)(b-c)(c-a)k(a+b+c)
1 ¢ ¢
To find the value of k, give suitable values for a, b, ¢ so that both sides do

not become zero. Takea=0,b=1,c=2.
1 00
111
1 2 8

L A=(@-b)(b-c)(c-a)(a+b+c)
Note: An important note regarding the remaining symmetric factor in the
factorisation of cyclic and symmetric expressionina, band c

If m is the difference between the degree of the product of the factors
(found by the substitution) and the degree of the product of the leading diagonal
elements and if

(1) miszero then the other symmetric factor is a constant (k)

(2) misonethen the other symmetric factor of degree Lisk(a+ b+ ¢)

(3) mistwo then the other symmetric factor of degree 2 is

k(@ + b? + c?)+ (ab+bc+ca)

k@) () (-1) (2 = k=1
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Example 1.21:

1 a a
Prove by factor method |1 b b®| =(a—b) (b—c) (c-a) (ab + bc + ca)
1 ¢
Solution:
1a as 1 b2 b
LetA= |1 b2 B3| Puta=b A=|10b% b®| =0 [-Ri=Rj
12 ¢ 1 ¢ ¢

.. (a— D) isafactor of A.

By symmetry on putting b = ¢ and ¢ = a we can easily show that
A becomes zero and therefore (b — ¢) and (¢ — a) are also factors of A.

This means the product (a — b) (b — ¢) (c — a) is afactor of A. The degree
of this product is 3. The degree of the product of leading diagona elements b%c®
isb.

. The other factor is k(@ + b? + ¢ + I(ab + bc + ca)

1a a
1 b? b®|=[Kk@?+b?+c?+I(ab+bc+ca)] (a—b) (b-c) (c-a)
1 ¢

To determine k and | give suitable values for a, b and ¢ so that both sides

do not become zero. Takea=0, b=1 andc=2

100

11 11=k®+Q@]H-1E

1 4 8

=>4=(5k+2))2 = 5k+2=2 .. (D
Againputa=0,b=-1andc=1

10 O

11 -1 =[k@+I-1] +1) (-2 ()

11 1

=2=(2k-1)(-2) = 2k-1=-1 ..(2

Onsolving (1) and (2) wegetk=0and| =1
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o A= (ab+bc+ca)(a-b)(b-c)(c—a)
=(@a-b)(b-c)(c—a) (ab+bc+ca)
(b+ (:)2 a° a°
Example 1.22: Provethat | b?>  (c+a)? b? | =2abc(a+b+c)®
? ? (a+ b)2
Solution:
(b+ c)2 a® a°
LetA= b? (c+a)2 b? Puta=0 weget
? ? (a+ b)2
(b+c? 0 0
A= b? ¢ b’| =0 [+ Cyisporportional to Cg]
c? ? b’
.. (a-0) =aisafactor of A.
Similarly on putting b = 0, ¢ = 0, we see that the value of A is zero.
- a, b, carefactorsof A. Puta+ b+ c=0, wehave

—a)? @ 2
A=| b® (=b?> % | =0
2 2 (-0?

Since three columns areidentical, (a+b + (:)2 isafactor of A.

soabc(a+b+ c)2 is afactor of A and is of degree 5. The product of the
leading diagonal elements (b + ¢)? (c + a)° (a + b)? is of degree 6.

.. The other factor of A must bek(a+ b + c).

(b+c)2 a’ a®
B2 (c+a? b® | =kabc(@a+b+c)?
? ? (a+b)2
Takethevaluesa=1, b=1andc=1
4 1 1
21 4 1 =kD) D) @) @E)° = 54 = 27k = k=2
11 4

" A=2abc(a+b+c)3
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Example 1.23: Show that =(x— a)2 (x + 2a)

Solution:

1l
o

Put x=a SoOA=

v ®
D ®
D O

Since al the three rows are identical (x — a)2 isafactor of A.
Put x = — 2a.

—-2a a a 0 a a
A=| a -2a a |=|0 -2a a |=0 [C;—>Ci1+Cyr+Cg
a a -2a 0 a -2a

(x + 2a) isafactor of A.

(X = a)2 (x + 2a) is afactor of A and is of degree 3. The degree of the
product of leading diagonal element is also 3. Therefore the other factor must be
k.

X a a
a x a| =k(x-a)?(x+2a).
a a x
X a a
Equatex?’termonbothsid&s, 1=k a x a :(x—a)z(x+2a)
a a x
xt1 3 5
Example 1.24: Using factor method, prove | 2 x+2 5 | = (x-1)% (x + 9)
2 3 x+4
x+1 3 5
Solution: LetA=| 2 Xx+2 5
2 3 x+4
2 35
Putx=1, A=1]2 3 5/ =0
2 3 5

Since al the three rows are identical, (x — 1)2 isafactor of A.

33



-8 3 5|/ |03 5
Putx=-9inA,thenA=| 2 -7 5|=|0 -7 5| =0 [-C;—>Cy+Cy+Cg]
2 3 -5/ 103 -5

o (x+9)isafactor of A.
The product (x — 1)2 (x +9) isafactor of A and is of degree 3. The degree
of the product of leading diagonal elements (x + 1) (x + 2) (x + 4) isalso 3.
.. The remaining factor must be a constant “k”
x+1 3 5
2 x+2 5
2 3 x+4
sideswegetk=1
ThusA = (x - 1)2 (x+9

= k(x - 1)2 (x +9). Equating x> term on both

EXERCISE 1.3
1 a a2
(1) Using factor method showthat {1 b b? =(a-b)(b-c)(c-a)
1 ¢ ¢
b+c a-c a-b

(2) Proveby factor method [b—-c c+a b-a| =8abc
c-b c-a a+b

x+a b c
(3) Solveusingfactor method | a Xx+b ¢ | =0
a b x+c
a b c
(4) Factorise |a® b® c?
bc ca ab
b+c a a°
(5) Showthat [c+a b b? =(@a+b+c(a-b)(b-c)(c—a)
a+b ¢ ¢

1.2.5 Product of determinants

Rule for multiplication of two determinants is the same as the rule for
multiplication of two matrices.

While multiplying two matrices “row-by-column” rule alone can be
followed. The process of interchanging the rows and columns will not affect the
value of the determinant. Therefore we can aso adopt the following procedures
for multiplication of two determinants.
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(1) Row-by-row multiplication rule

(2) Column-by-column multiplication rule

(8) Column-by-row multiplication rule
Note: The determinant of the product matrix is equal to the product of the
individual determinant values of the square matrices of same order.

i.e. Let A and B be two square matrices of the same order.

Wehave| AB|=|A]| |B]

This statement is verified in the following example.
cos) - sine] [ cosd sind
sind  cosh [ —snd cosh
thenshowthat |[AB| = |A| |B]|

Example 1.25; If A = [ } are two square matrices

Solution:
Gi thatA—[Cose —sine] dB_[cose sine}
ven “lsno cosd |TYP T _sno cosd
AB = [cose —sine} [cose sine}
~ Lsin® cosH ] [—-sin® cosd
_[ 05?0 +sin%0 coses'ne—sinecoﬁ}_[l O}
sind cosd — cosH sind 0050 + sin0 01
10
|AB| = 0 1 =1 .. (D
_|cos® -snO| Lo
|A]= SN0 cosd = cos?0 +sin9=1
cosd  sing .2
|B|= _sno cosd = cos?0 +sn%0 = 1
[A] |BIF1x1=1 ...(2
From (1) and (2) |[AB| = |A]| |B]
o c b|? b2 + ¢ ab ac
Example 1.26: Showthat [C 0 a| = ab ?+a’ bc
b ao ac bc a2 + b2
ocbl? [ochbl|och
Solution: LHS =|c 0 al =|Cc 0 al [C 0O a
b ao b aol |[bao

o+c?+b? o+o0+ab o+ac+o
= | o+o+ab c?+o+a’ bc+o+o0

o+ac+0 bc+o+o b2+al+0
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2+ b2 ab ac

= ab 2+ a2 bc =R.H.S.
ac bc  b2+a?
ar by? a®+a®  agby + aghy
Example 1.27: Provethat bl = 5 5
a b2 aiby +aghy  by“+by
Solution:
a; bi|? |ap by| |ag by
L.H.S. = a byl T lay by |ay by
_lar @] |an bp (I nterchange rows and
" |by by| |az by columns of the first determinan
a12 + a22 aiby + aghy
- ajbq + aghy b12 + bzz
2bc — a2 2 b? a b cl?
Example1.28: Showthat | ¢® 2ca-b® a® |=|b c a
b2 a2 2ab — c2 c ab
Solution:
abcl? |abocllabec
RH.S = b ¢c al =|b ¢ al] |[b ¢ a
c ab c a bl lc ab
_ z 2 ; 1 i b ¢ _Interchanging Ry and R3
- x(-1) "inthe 2™ determinant
c ab b a
a b c|]|-a -b -c
= |b c a c a b
c ab b c a

_a’+bc+ch —ab+ab+c® —ac+bl+ac

= —_ab+c?+ab —b®+ac+ac —bc+bc+al

_ac+ac+b? —bc+al+bc —cZ+ab+ba

2bc — a2 2 b?
= 2 2ac — b? a2 =L.H.S.
b? a2 2ab—c?
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1.2.6 Relation between a determinant and its co-factor deter minant
ag b1 ¢
Consider A= |22 b2
az bz c3
LetA1,B1,Cq... ... be the co-factors of a1, by, 1 ... ... inA
AL B ¢

. The cofactor determinantis |[A2 B2 Cz
Az B3 Cg
by ¢ Q a b
by c3 a3 C3 a3 bs‘
= A =aq (co-factor of a;) + by (co-factor of by) + c1 (co-factor of ¢q)
= A=ajA1+by1B1+c1Cq
i.e. The sum of the products of the elements of any row of a
determinant with the corresponding row of co-factor determinant is equal
to the value of the deter minant.
Similarly A = aAo + bpBo + cCo A =azA3+ h3B3z+c3C3
Now let us consider the sum of the product of first row elements with the
corresponding second row elements of co-factor determinant i.e. let us consider
the expression
a1A2 +b1B2 +¢1C

+C1

LetAbeexpandedby Ry .. A=g -b

b1 ¢ ai C a; by

T Ty eyl TPllag g T ag bs’

= —ay(bgc3 — bacy) + by(aicz — agcy) — ci(azbz — azby)

=0
.. The expression ajA2 + b1Bo + ¢1C> =0
Thuswe have

ajA3 +b1B3+¢c1C3=0 ; apA1+byB1+¢cyC1=0; apAz+boB3z+coC3=0

azA1+b3Br+c3C1=0 ; azAr+bgBr+c3C2=0

i.e. The sum of the products of the elements of any row of a
determinant with any other row of co-factor determinant isequal to 0
Note: Instead of rows, if we take columns we get the same results.
S A=ajA1 +agAo + azAj
A =Db1B1 + boB2 + b3B3
A =c1C1 +cCo + c3C3
Thus the above results can be put in a tabular column as shown below.
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Row-wise Column-wise

Ri | R2 | Rs Ci | C | C3
r A 0 0 C1 A 0 0
) 0 A 0 Co 0 A 0
ra 0 0 A c3 0 0 A

Whereri'sg's are i row and i column of the original determinant R;'s, C's

arei™ row and i™ column respectively of the corresponding co-factor determinant.
aq b g
Example 1.29: If Ay, B, Cy arethe co-factorsof ag, by, crinA=|a&2 b2 ¢
a3 by c3
A1 B1 C
thenshow that |A2 Bz Cp| =A?
Az Bz Cs

a; bp ¢ |[A1 B C

Solution: |&2 b2 c2| |A2 B2 C;

ag bz c3| |A3 Bz C3
ajA1 +b1B1 +¢c1Cp agAx + 1B+ ¢c1C  ajAz + biB3 + ¢1C3
= |agA1+ boB1 +CoCqp apAs +boBy +¢1Co  apA3z + boB3g + coC3
azA1+ 3By +c3C1 agAz+bgBa+c3C2 agAz+bzBz+c3Cs

A 0 O
=10 A 0|=a3
0 0 A
A1 B1 C A1 B G
ie Ax |A2 B2 Cal =A% = |A2 B2 Cp| =4?
Az B3 C3 A3 B3z Cs
EXERCISE 1.4
1 a 3_2 1—2&2 —a2 —a2
(1) Showthat |a 1 a| =| -&° -1 a’-2a
aal ~a® a’-2a -1
1 x X2 a1 2a (a—x)2 (b—x)2 (c—x)2
(2 Showthat |1 y V?| [b? 1 2b| =|(@-y)? (b-y)® (c-y)?

1z 2 1 2 (a—z)2 (b—z)2 (c—z)2
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2.VECTOR ALGEBRA

2.1 Introduction:

The development of the concept of vectors was influenced by the works of
the German Mathematician H.G. Grassmann (1809 — 1877) and the Irish
mathematician W.R. Hamilton (1805 — 1865). It is interesting to note that both
were linguists, being specialists in Sanskrit literature. While Hamilton occupied
high positions, Grassman was a secondary school teacher.

The best features of Quaternion Calculus and Cartesian Geometry were
united, largely through the efforts of the American Mathematician J.B. Gibbs
(1839 — 1903) and Q. Heariside (1850 — 1925) of England and new subject
called Vector Algebrawas created. The term vectors was due to Hamilton and it
was derived from the Latin word ‘to carry’. The theory of vectors was also
based on Grassman’ s theory of extension.

It was soon realised that vectors would be the ideal tools for the fruitful
study of many ideas in geometry and physics. Vector algebrais widely used in
the study of certain type of problemsin Geometry, Mechanics, Engineering and
other branches of Applied Mathematics.

Physical quantities are divided into two categories — scalar quantities and
vector quantities.

Definitions:
Scalar : A quantity having only magnitude is called a scalar. It is not
related to any fixed direction in space.
Examples : mass, volume, density, work, temperature,
distance, area, real numbers etc.

To represent a scalar quantity, we assign a real number to it, which gives
its magnitude in terms of a certain basic unit of a quantity. Throughout this
chapter, by scalars we shall mean real numbers. Normally, scalars are denoted
by a, b, c...

Vector : A quantity having both magnitude and direction is caled a

vector.
Examples : displacement, velocity, acceleration, momentum,
force, moment of aforce, weight etc.

Representation of vectors:

Vectors are represented by directed line segments such that the length of
the line segment is the magnitude of the vector and the direction of arrow
marked at one end denotes the direction of the vector.
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- -
A vector denoted by a = AB is
determined by two points A, B such that the

magnitude of the vector is the length of the %

Fig. 2.1
line segment AB and its direction is that from A to B. The point A is called

initial point of the vector AB and B is caled the terminal point. Vectors are
generally denoted by Z , T)> , _c> ... (read as vector a, vector b, vectorc, ... )
M agnitude of a vector

The modulus or magnitude of a vector Z = AB isa positive humber
which is a measure of its length and is denoted by |Z| = Iﬁl = AB The

9
modulus of a isasowrittenas‘a’
- — -
Thus |a| =a,; |b| =b ; |c| =cC

[aB| = a8 ; [cB| =co : [R3] =ro

Caution: The two end points A and B are not interchangeable.
Note: Every vector AB has three characteristics:

Length : Thelength of AB will be denoted by [AB | or AB.

Support :  The line of unlimited length of which AB is a segment is
called the support of the vector AB

Sense : Thesenseof AB isfromA to B and that of BA isfromB to

A. Thus the sense of a directed line segment is from its initial
point to the terminal point.

Equality of vectors:

Two vectors Z and T)> are said to be equal, written as Z = T)) , if they
have the

(i) same magnitude (ii) same direction
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Infig (2.2) AB || CD and AB = CD B

'AB and CD arein the same direction D
Hence AB =CD ora = b A

C

Fig. 2.2

2.2 Typesof Vectors
Zeroor Null Vector:
A vector whose initial and terminal points are coincident is called a zero or

null or avoid vector. The zero vector is denoted by 8

Vectors other than the null vector are called proper vectors.
Unit vector:

A vector whose modulusis unity, is called a unit vector.

The unit vector in the direction of E) is denoted by a (read as ‘a cap’).
Thus |a] =1

. -
The unit vectorsparallel to a are+ a

- > . . . .
Result: a =|a| a [i.e. any vector = (its modulus) x (unit vector in that
direction)]

(3-3)

i

vector in that direction
modulus of the vector

Ingeneral |unit vector in any direction =

Like and unlike vectors:

Vectors are said to be like when they have the same sense of direction and
unlike when they have opposite directions.
—

like vectors

unlike vectors
Fig.2.3
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Co-initial vectors:

Vectors having the sameinitial point are called co-initia vectors.
Co-terminusvectors:

Vectors having the same terminal point are called co-terminus vectors.
Collinear or Paralld vectors:

Vectors are said to be collinear or parallel if they have the same line of
action or have the lines of action parallél to one another.

Coplanar vectors:

Vectors are said to be coplanar if they are parallel to the same plane or they
liein the same plane.

Negative vector:

The vector which has the same magnitude as that of Z but opposite
direction is called the negative of a and is denoted by — a . Thusif AB = a

— -
then BA =- a .
Reciprocal of a vector:

_)
Let a be anon-zero vector. The vector which has the same direction as

that of E} but has magnitude reciprocal to that of E} is called the reciprocal of
- . . —->\-1 —>\-1| 1
a andlswrlttenas( a) Where)(a) (=5
Freeand localised vector:

When we are at liberty to choose the origin of the vector at any point, then
it is said to be afree vector. But when it isrestricted to a certain specified point,
then the vector is said to be localised vector.

2.3 Operationson vectors:
2.3.1 Addition of vectors:

B
Let OA =a,AB = b Join OB. 2
A X -
Then OB represents the addition (sum) of the O b
- -
vectors a and b . o) ar A
Thisiswritten as OA + AB = OB “
B Fig.2.4
—_ - — >
Thus OB = OCA+AB =a +b



Thisis known as the triangle law of addition of vectors which states that, if
two vectors are represented in magnitude and direction by the two sides of a
triangle taken in the same order, then their sum is represented by the third side
taken in the reverse order.

Applying the triangle law of addition of vectorsin A
AABC, we have
BC +CA =BA
_— = —
= BC +CA =-AB £ 5 o
—_— == = = .
= AB +BC +CA =0 Fig.2.5

Thus the sum of the vectors representing the sides of a triangle taken in
order isthe null vector.

Parallelogram law of addition of vectors:

If two vectors Z and _b) are represented in Q R
magnitude and direction by the two adjacent sides
of a paralelogram, then their sum _c) is 3)
represented by the diagonal of the parallelogram
which is co-initial with the given vectors. :
_ R == o ? P
Symbolically we have OP + OQ =OR Fig. 2.6

Thus if the vectors are represented by two adjacent sides of a
paralelogram, the diagona of the parallelogram will represent the sum of the
vectors.

By repeated use of the triangle law we can find the sum of any number of
vectors.

_— D = > —— D —=> -_—
Let OA =a,AB=b,BC=¢C,cD=d,DE = ¢
be any five vectors as shown in the fig (2.7). We D C
observe from the figure that each new vector is
drawn from the terminal point of its previous one.

—_— D = e == ——

OA + AB +BC +CD + DE =OE

Thus the line joining the initial point of the
first vector to the terminal point of the last vector is
the sum of al the vectors. Thisis called the polygon
law of addition of vectors.

vl

O A
Fig. 2.7
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Note : It should be noted that the magnitude of _a) + B) isnot equal to the sum

of the magnitudes of Z and B) .
2.3.2 Subtraction of vectors:

- - - -
If a and b are two vectors, then the subtraction of b from a is

defined as the vector sumole> and—? and is denoted bya> —B) .

2-5=2+(%)
l¢ OA=a adAB = b
Then OB =OA +AB =a + b

1
ol

To subtract b from a , produce BA to B’

— - -
suchthat AB=AB'. .. AB' =—AB =-Db

Now by the triangle law of addition

o5 =08 +aB =2 +(-B) =3 -
Properties of addition of vectors;
Theorem 2.1:

e R -

Vector addition is commutativei.e, if a and b are any two vectors then
e I
a+b=Db+a

B

_)
le¢ OA=a, AB=b A B
InAOAB, OA +AB = OB Ly
(by trianglelaw of add) >
= a+b =08 .. .(1
Complete the parallelogram OABC 0] S A
a
CBE =OA=a; OC=AB =b Fig. 2.9
In AOCB, wehave OC + CB = OB ie=b +a =08 ..

9
From (1) and (2) wehave a + b =
.. Vector addition is commutative.



Theorem 2.2:

Vector addition is associative
9
b

ol

i.e. For any three vectors

.
a )
(2:8)+2 =2 +(3+2)

Pr oof :

T S G
Let OA =a ; AB =Db ; BC =c¢

Join OandB ; OandC ; AandC

—_— — —_—

In AOAB, OA +AB = OB
= a+b = OB
—_— = -

In AOBC, OB +BC = OC
- o) - —

= (a +b)+ c = 0OC
_— - —

In AABC, AB +BC = AC
> > —

= b +c = AC
_— — -

In AOAC OA +AC = OC
- > > —

= a +(b +c) = OC

- 2\ -
From(2)and(4),wehave(a +b)+ c =

.. vector addition is associative.
Theorem 2.3:

- - =2 =
For every vector a , a +0 =0+
vector. [existence of additive identity]
Pr oof:

LetOA = a
Then E)+8 = OA
~a+8 =a
Also 8+Z = 03
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Q)

... (2) [using ()]

.3

... (4) [using (3)]

%
-0A =a
%
-0A = a



N
a

o]

. C+a =
S T TR

a+0=0+a =a
Theorem 2.4:

- -
For every vector a, there corresponds avector —a such that
- -\ = >\ - . L
a+\- a) =0 = (— a)+a [existence of additive inverse]

Proof: LetOA = a.ThenAG =- a

Hence

Let m be a scaar and E) be any vector, then mE) is defined as a vector
having the same support as that of & such that its magnitude is | m | times the

magnitude of & and its direction is same as or opposite to the direction of a
according as mis positive or negative.

Result : Two vectors @ and B are collinear or paralel if and only if 2=mb
for some non-zero scalar m.

— . .
For any vector a we define the following:
- - - — —> 2
(1) a =a ; (-1) a=-a ; 0a =0
- . - . . . .
Note: If a isavectorthen5a isavector whose magnitude is 5 times the
. - o - - .
magnitude of a and whose direction is same as that of a . But — 5a isa
vector whose magnitude is 5 times the magnitude of a and whose direction is

. -
oppositeto a .
Properties of Multiplication of vectorsby a scalar

The following are properties of multiplication of vectors by scalars.

- >
For vectors a , b and scalars m, n we have
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0 m(—_a’) =(-ma =-(m€>) (i) (=m) (—_a’) =ma
- —

(iii) m(ng) =(mn) a :n(ma) (iv) (m+n)E) :mg +n€1)

Theorem 2.5 (Without Proof) :
If _a) and _b) are any two vectorsand misascalar
thenm(3>+T))) :mg +mT)>.

Result : m(? - _b)) = mg - m_b)
2.4 Position vector

If apoint O isfixed as the origin in space B
(or plane) and P is any point, then OP is
called the position vector (P.V.) of P with N p
respect to O. r
From the diagram OP = T 4 > A
Similaly OA is caled the position Fig. 2. 11

vector (P.V.) of A with respect to O and OB
isthe P.V. of B with respect to O.

Theorem 2.6: AB = OB — OA where OA and OB arethe P.Vsof A and B
respectively.

Proof: Let O be the origin. Let Z and _b) be the position vectors of points
A and B respectively

— > == > B
Then OA =a ; OB =b N
In AOAB, we have by triangle law of b
addition
OA +AB = OB X
A -o@-ok-5-2  _° "
= - - Fig. 2. 12
—
i.e AB = (PVofB)-(PVofA)
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Note : In AB , the point B is the head of the vector and A is the tail of the
vector.

- AB = (P.V. of the head) — (P.V. of thetail). Similarly BA = OA — OB

The above rule will be very much useful in doing problems.
Theorem 2.7: [Section Formula — Internal Division]

Let A and B be two points with position vectors E) and _b) respectively
and let P be a point dividing AB internally in the ratio m: n. Then the position
vector of Pis given by

- > P
E)) _M m
T m+n A
Pr oof: i
Let O betheorigin. I
e T
Then OA =a ; OB =b o
Fig. 2. 13
i . e
Let the position vector of PwithrespecttoObe r i.e. OP =1

Let Pdivide AB internally intheratiom: n

AP
Then Bg =% — NAP=mPB =nAP =m PB

~n(oB-0R) =m(eB-08) =n(7-3)=m(B-7)

- - - - - - — -

= nr —-na =mb —-mr = mr +nr =mb +na
- — —
= (m+n) r =mb +na

- o
— _mb +na
T m+n

Result (1): If Pisthe mid point of AB, then it dividesAB intheratio 1: 1.

1.b+lLa a+b
.. TheP.V. of Pis 1+1 = 2
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- =
a+b

2

. PV.of themidpoint Pof ABis OB = r =
Result (2): Condition that three points may be collinear

. - > -
Proof: Assume that the points A, P and B (whose PVsae a, r and b
respectively) are collinear

5 mb+na
m na
We have r =—————

m+n
- > >
(m+n)r = mb +na
- > >
= (m+n)r —mb -na =0

In this vector equation, sum of the scalar coefficientsin the
LHS =(m+n)—-m-n=0
Thus we have the result, if A, B, C are collinear points with position

> 2> > . .
vectors a, b, c respectively then there exists scalars x, y, z such that

x_a) +y_b) +z_c> =8 andx+y+z=0
Conversely if the scalars x, ¥, z are such that x + y + z = 0 and

- — - = . . . - - -
xa +yb +zc = O then the points with position vectors a , b and ¢
are collinear.

Result 3: [Section formula — External division]

Let A and B be two points with position vectors Z and _b> respectively
and let P be a point dividing AB externally in the ratio m : n. Then the position
vector of Pis given by

B P
—_ mB) — n_a> A
opP =————
m-n

Pr oof:
Let O bethe origin. A and B are the two

points whose position vectorsare a and b

Then OA = & ; OB = b Fig. 2. 14

Let P divide AB externally in the ratio m: n. Let the position vector of P
. - . -
with respect toObe t i.e. OP = r
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AP m
We have PB ~n = nAP = mPB
= nNAB =-mPB [ﬁ&P—B) . }
are in the opposite direction
= n(ﬁ”—@f) :—m(@)—@) = n(?—Z):m(_r)—_g)
- > — —> > > - >
= nr —na =mr —-mb = mb —-na =mr —-nr
- > -
= mb -na =(m-n) r
- >
— _mb -na
F = mon
Theorem 2.8: The medians of atriangle are concurrent.
Pr oof:

Let ABC be atriangle and let D, E, F be the mid points of its sides BC, CA
and AB respectively. We have to prove that the medians AD, BE, CF are
concurrent.

Let O be the origin and 3), _b> _c> be the position vectors of A, B, C
respectively.
The position vectors of D, E, F are A (a)
e e e

b+c c+a a+b
2 2 v 2
Let G; be the point on AD dividing it
internally intheratio2: 1 Bk D Cw@
Fig. 2. 15
20D + 10A
PV.of Gy =——%71
- o
ZEb + c]+l—> RN
—> 2 2 d+b+c
0G; = 3 =7 3 (1)

Let G, be the point on BE dividing it internally intheratio 2 : 1

20E +10B
—
OG, == 541
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>, 2
-52)+1b = -
a C

N
0G, = 3 === g - @)
Similarly if G divides CFintheratio 2: 1 then
- - -
oG, = 55 ©

From (1), (2), (3) we find that the position vectors of the three points
G,, Gy, G3 are one and the same. Hence they are not different points. Let the

common point be denoted by G.

Therefore the three medians are concurrent and the point of
concurrenceis G.

Result:

The point of intersection of the three medians of a triangle is called the
centroid of thetriangle.

- -

— a c

-
+ b+
The position vector of the centroid G of AABC is OG = g

where a , b, ¢ arethe position vectors of the vertices A, B, C respectively
and O isthe origin of reference.

-> o> >
Example 2.1: If a, b, ¢ be the vectors represented by the three sides of a
e e
triangle, taken in order, then provethat a + b + ¢ = O
Solution:
Let ABC be atriangle such that A
BC =a,CA=b adAB = ¢ 2 0
2 +b +c =BC +CA +AB
B > C
=BA +AB (. BC +CA =BA @
. Fig. 2. 16
—
=BB =0
Example 2.2:

If Z and _b) are the vectors determined by two adjacent sides of a regular
hexagon, find the vectors determined by the other sides taken in order.



Solution:
Let ABCDEF be aregular hexagon E D

suchthat AB = a andBC = b
Since AD || BC such that AD = 2.BC

AD = 2BC =2 e c
In AABC, wehave AB + BC = AC
= AC= a+b b
— —_— =
INAACD, AD = AC +CD A > B
Fig. 2. 17
B = a8 -a¢ =28 -(3+3)=3 -3
— — -
DE = -AB =-a
B = -BC=-0b
wm=-B=-(8-3)=2 -8
Example 2.3:

The position vectors of the points A, B, C, D are _a>, B) 23) + S_b),

a —2b respectively. Find DB and AC
Solution: Given that

OA =a : OB=b : 0@=2a +3b : OB =a -2b
DB =ﬁ>_aa’_?_(2_z? =B -a +2b =3b - a
— - =
AC = 0OC - O0OA

:(?a+ez)_z

=a +3b

Example 2.4: Find the position vector of the points which divide the join of the

points A and B whose P.Vs are Z - 2_b) and ZZ - _b) internally and
externally intheratio 3: 2
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Solution:

e e
OA =a -2b ; OB =2a -b
Let Pdivide AB internally intheratio 3 : 2

PV.of P= 3053120A _ (22 - b)+2(a 25)

_6a-3b+2a-4b _8a-7b
= 5 =~ 5

Let Q divide AB externaly intheratio 3: 2

- —
a b

uilloo
[G1EN]

30B - 20A 3(2a—b) 2( 28)

PV.of Q===
S T T S -
—6a -3b -2a +4b =4a +b

Example 2.5: If Z and _b) are position vectors of points A and B respectively,
then find the position vector of points of trisection of AB.

Solution:

Let P and Q be the points of

trisection of AB A p Q B )
Let AP=PQ=QB = A (say) Fig. 2. 18

PdividesAB intheratiol: 2

%
— 1OB+20A 1 b+2 a b+2a
PV.of P = 0P = 1+2 = 3 3

Q isthe mid-point of PB

_, _,b+2a p b+2a+3b

OP + OB 3 3 2a +4b
PV.OlQ=""""="3 - 2 =7 6

_a+2b

- 3

Example 2.6: By using vectors, prove that a quadrilateral is a paralelogram if
and only if the diagonals bisect each other.
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Solution:
Let ABCD be a quadrilateral D(d) (@
First we assume that ABCD is a parallelogram
To prove that its diagonals bisect each other
Let O bethe origin of reference.

~OR=a,0B=b,00=c,0B=d A@ B )
. . — - Fig.2.19
Since ABCD isaparalelogram AB = DC
-~ OB-OA = OC-OB = b-a=c-d
- 3 - - _b>+3 Z+_c>
= b + = a+c = > == >

i.e. P.V. of the mid-point of BD = P.V. of the mid-point of AC. Thus, the
point, which bisects AC aso, bisects BD. Hence the diagonals of a
parallelogram ABCD bisect each other.

Conversely suppose that ABCD is a quadrilateral such that its diagonals
bisect each other. To provethat it is a parallelogram.

Let Z , T)’ , _c> , ﬁ be the position vectors of its vertices A, B, C and D
respectively. Since diagonals AC and BD bisect each other.

P.V. of the mid-point of AC = P.V. of the mid-point of BD

a+c _Brd > o 2.3
= 2=2:> Cc +

(D)

- > > :
= b-a=c-dieAB = DC
%

Aso) > d-a=c-b ie AD =BC

Hence ABCD is a parallelogram.
Example 2.7:

In a triangle ABC if D and E
respectively, show that BE + DC =

e the midpoints of sides AB and AC

ar
33—
ZBC



Solution:
For convenience we choose A as the origin.

Let the position vectors of B and C be _b) and

%

c respectively. Since D and E are the

mid-points of AB and AC, the position vectors
- -

of Dand E are% and % respectively.

%
Now  BE =PV.ofE-PV.ofB = 5-b
%
_) b
DC =PV.of C-PV.of D = € -5
_c> - > _b) 3> 3>
— —
BE + DC =7—b tCc -5 = EC_Eb
:% _c>—T3)) :g[P.V.ofC—P.V.ofB]
33—
=3 BC

Example 2.8: Prove that the line segment joining the mid-points of two sides of
atriangleis parallel to the third side and equal to half of it.
Solution:
Let ABC be a triangle, and let O be the A (@)
origin of reference. Let D and E be the
midpoints of AB and AC respectively.

D E
Let OA =a, OB=b,0C=¢
> o .
= _a+h B () c@
PV.of D=0D =~ Fig. 2.21
a+c
PV.OfE = OE = 5
a+cl| [a+Db
Now DE = OF - OD = -\
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atc-a-b 1 (> ) 1 1
-—a-— — = —
= ) =3 (C—b) =5 (OC—OB) =5 BC
.. DE :% BC = DE|BC
— 1— 1 1
Also DE =3 BC = |DE| =5 |BC| = DEZEBC

1
Hence DE || BC and DE = 5 BC.

Example 2.9: Using vector method, prove that the line segments joining the
mid-points of the adjacent sides of a quadrilateral taken in order form a
parallelogram.
Solution:
Let ABCD be a quadrilateral and let P, Q, D(d) R c@
R, S be the mid-points of the sides AB, BC, .
CD and DA respectively.
Then the position vectors of P, Q, R, Sare
a+b b+ c+d d+a
2 2 2 2 A p B(b)
respectively. Fig. 2. 22

In order to prove that PQRS is a parallelogram it is sufficient to show that

—

PG = SR and PS = QR

b+¢| [a+p] -2
H p—
Now PQ = PV.of Q-PV.of P= > - > ==
- =) > >
R = P.V.ofR—P.V.osz(C+g}—@+aj=C_a
2 2 2
— —
PO = SR

=PQ|| SR and PQ = SR
Similarly we can prove that PS= QR and PS|| QR
Hence PQRS is a parallelogram.

Example2.10:

Let a, b, c bethe position vectors of three distinct points A, B, C. If

. - = >
there exists scalars |, m, n (not al zero) suchthat la +mb +nc =0and |l + m
+ n =0 then show that A, B and C lieon aline.
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Solution:
Itisgiventhat |, m, n arenot al zero. So, let n be anon-zero scalar.

- — - - - -
la +mb +nc = 0 = nc =-\la+mb
- — - — - —
N la +mb - la +mb la +mb
c =- = Cc = - =

n -(+m ~ I+m

= Thepoint C dividesthelinejoining A and B intheratiom: |
Hence A, B and C lieson the same line.

- - . - = > -
Note: a , b arecollinear vectors=> a =1 b or b =X a for somescalar A

Collinear points. If A, B, C are three points in a plane such that AB = ABC

— — —_— —
oo AB = AAC (or) BC = LAC for some scalar A, then A, B, C are
collinear.

Example 2.11: Show that the points with position vectors

- — — —> - - - - - .
a -2b +3c,-2a +3b —-c and4a -7b +7c aecollinear.

Solution:
Let A, B, C be the points with position vectors

_a> —2_b) +3_c),—2_a) +3_b> —_c> and 43) —7B> +7_c) respectively.

OA =a -2b +3C, 0B =—2a +3b-¢,0C =4a -7b +7¢

— = — - > > - > >
AB = OB - OA =(—2a+3b—c)—(a—2b +3c)
=_2a +3b -C -a +2b -3¢ =-3a +5b —4¢

=4a -7b +7¢ +2a -3b +C =6a -10b +8¢C
—_— > - > -> o

Clearly BC =6a -10b +8c = —2(—3a +5b—4c) = —2(AB)
— —
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)
©)

(4)

)

(6)
(7)

(8)
9)

(10)

(11)

(12)

EXERCISE 2.1

If a and b represent two adjacent sides AB and BC respectively of
aparalleogram ABCD. Find the diagonals AC and BD .

—_ e = = . .
If PO + OQ =QO + OR , show that the points P, Q, R are collinear.
Show that the points with position vectors
Z —ZT)) +3_c),—23) +3T)> +2_c> and—8_a) +13T)> are collinear.

— — -
Show that the points A, B, C with position vectors—2a +3b +5c ,

e e > > , .
a +2b +3c and7a - c respectively, are collinear.
If D isthe mid-point of the side BC of atriangle ABC, prove that

—_— — —>
AB + AC =2AD

If Gisthe centroid of atriangle ABC, provethat GA +GB +GC = O
If ABC and A'B'C’ aretwo triangles and G, G’ be their corresponding

centroids, prove that AA" +BB' +CC =3GG

Prove that the sum of the vectors directed from the vertices to the
mid-points of opposite sides of atriangleis zero

Prove by vector method that the line segment joining the mid-points of
the diagonals of atrapezium is paralel to the parallel sides and equal to
half of their difference.

Prove by vector method that the internal bisectors of the angles of a
triangle are concurrent.

Prove using vectors the mid-points of two opposite sides of a
quadrilateral and the mid-points of the diagonals are the vertices of a
parallelogram.

If ABCD is a quadrilateral and E and F are the mid-points of AC and

. _— D = == —
BD respectively, provethat AB + AD + CB + CD =4 EF

2.5 Resolution of a Vector
Theorem 2.9 (Without Proof) :

- - . -
Let a and b betwo non-collinear vectors and r be a vector coplanar

with them. Then _r> can be expressed uniquely as _r) = Ig + m_b) wherel, m
are scaars.

58



Note : We call IZ + mB) as alinear combination of vectorsZ and _b> , Where
I, mare scalars.
Rectangular resolution of a vector in two dimension
Theorem 2.10:
If Pisapoint in atwo dimensiona plane which has coordinates (X, y)

then OP =xi +yj ,where i and j are unit vectorsaong OX and

QY respectively.
Proof:
Let P(x, y) be apoint in a plane with Yt
reference to OX and OY as
cp—ordi nate axes as shown in the A P(x, y)
figure.
Draw PL perpendicular to OX.
ThenOL =xand LP=Yy >
-> - . o 7 L 2
Let i , j bethe unit vectorsaong Fig. 2. 23

OX and OY respectively.
- T -
Then OL =xi and LP =y|j
Vectors OL and LP are known as the components of OP aong x-axis

and y-axis respectively.
Now by triangle law of addition

— - - > o >
OP = OL +LP =xi+yj =71 (s)
- > >
SLor = Xi oty
Now OF* = OL*+LP* = x*+y°

. b = NRTP = [7] = E

Thus, if apoint Pin aplane has coordinates (x, y) then

() T =OP =xi +yj

@ [7]=[o8] = b +y7| =\

(iii) The component of oP along x-axis is a vector x_i) and the

— . —
component of OP aong y-axisisavectory j
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Components of a vector AB in termsof coordinatesof A and B
Let A(xq, yp) and B(xy, y,) be any two

. ; - - 1 B(xa,v2)
points in XOY plane. Let i and j be
unit vectors aong OX and OY A
r&pa:“ Vely' Alxpy) ra N
AN =Xo—X1, BN=y,—-y;
—_— - —
~ AN =(xo—-x)) i , NB .
_ N O L M X
=02-Y) | Fig. 2. 24

Now by triangle law of addition
— —_— — - -
AB = AN +NB =(x—X) i +(Y2-Yp) |
- . -
Component of AB aong x-axis = (Xo — Xq) i
Component of AB aong y-axis = (Y, — Y1) ?
AB? = AN?+ NB2 = (%, - x7)? + (y5 - yp)?

= AB= \/(Xz —x)7 + (Y2 - yp)°
which gives the distance between A and B.

Addition, Subtraction, Multiplication of a vector by a scalar and equality
of vectorsin terms of components:

Let _a> = al_i> + az? and _b) = b1_|> + bz?
We define
(|)a +b =(a1| +a2J)+<b1| +b2])=(a1+b1) | +(a2+b2)J
(ll)a -b =(a1| +a2J)—<b1| +b2]) =(a1—b1) | +(a2—b2)J
(i) ma = m(al_i> + az?) = mal_i) + mazT> where mis ascalar
(lV) E) = _b> = al_i) + a.zT> = b:]__l> + bz? = 1= bl and ay = b2

Example 2.12: Let O be the origin and P(— 2, 4) be a point in the xy-plane.
— - - .
Express OP intermsof vectors i and j . Alsofind Iﬁgl
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Solution: The position vector of P, OP = —21 +4]

|ﬁﬂ = |—2T’+4T’| =\/(- 2%+ (4)? =4+ 16 =+/20
=25

Example 2.13: Find the components along the coordinates of the position
vector of P(— 4, 3)

Solution:
The position vector of P= OP = — 47+ 37
- o -
Component of OP aong x-axisis—4 i

i.e. component of oP aong x-axis is a vector of magnitude 4 and its
direction is along the negative direction of x-axis.

Component of OP aong y-axisis3 j

i.e. the component of oP along y —axisis a vector of magnitude 3, having
its direction along the positive direction of y-axis.

— . . - -
Example 2.14: Express AB in terms of unit vectors i and j , where the

pointsare A(— 6, 3) and B(—2,-5). Find dso Iﬁl
Solution:

. —_—>
Given OA =-6

—>

AB

=47 -8}
[aB| = |4T’—8T’| =42 + (- 8)2 =+/16 + 64 =+/80
:4\/5

Theorem 2.11 (Without Proof) :
> o > . e
If a, b, c arethreegiven non-coplanar vectorsthen every vector r in

space can be uniquely expressed as_r> = Ig + mT)> + n_c> for some scalars|,
mand n
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Rectangular Resolution of a vector in three dimension
Theorem 2.12:

%
If a point P in space has coordinate (X, y, 2) then its position vector r is

X_i> + yT) + z_k) and |_r>| = \/xz + y2 +7 where _I> ? _k) are unit vectors
along OX, OY and OZ respectively.

Proof: Z
OX, OY, OZ are three mutualy A%
) - > > . T v
perpendicular axes. i, j, k are unit
vectors along OX, OY, OZ respectively. U P
Let P be any point (X, y, 2) in space and let =
ﬁ)) =_|’) O :" S; Y
Draw PQ perpendicular to XOY ‘?‘0‘ J
plane and QR perpendicular to OX R 4 4
Then OR=Xx;RQ=y;QP=2z T
- - == - —=2 —> X
S OR =xi ;RQ =yj ; QP =zKk Fig. 2. 25
—_— _y e = == ==
Now OP = 0OQ + QP =0OR + RQ + QP
OP = Xi +yj +zk = r =xi +yj +zk

Thus if P is a point (X, y, 2 and is the position vector of P, then

- D > D>
r=xi +yj +zk
From the right angled triangle OQP, OF? :OQ2 + QP2
From the right angled triangle ORQ, OQ2 =OR? + RQ2
. OP= OR?’+RQ°+QP? = OP?=x2+Vy°+7

RSN v U ey e
B

2.6 Direction cosines and direction ratios

Let P(x, y, 2 be any point in space with reference to a rectangular
coordinate system O (XYZ). Let a, B and y be the angles made by OP with the
positive direction of coordinate axes OX, OY, OZ respectively. Then cosa,

cosp, cosy are called the direction cosines of OB .
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Inthefig 2.25 OQP =90°;|POZ =y ..[OPQ =v (~QP|OZ)
_Yy
’

. T ; B XYy z —af
.. The direction cosinesof OP are ; Wherer = x2+y2+z2

ror
Result 1: Sum of the sguares of direction cosinesis unity.

- €Sy = 5p = COsy =% Similarly cosa. =)F(and cosp

cos?o. + COS?B + cos?y = @2+ G)zj{%z _ x2+r2+22
= % =1 [+ 2= +y?+ 7

r
-, oo + 0032[3 + coszy =1
Result 2: Sum of the squares of direction sinesis 2.
sino. + sin2[3 + sinzy =(1- COSZOL) +(1- 0052[3) +(1- coszy)
=3- [C032a+COSZB+Coszy] =3-1=2

%o+ sin?p + sin%y = 2

sin
Direction ratios:

Any three numbers proportional to direction cosines of a vector are called
itsdirection ratios. (d. r's).

> _ >, D 7
Let r =xi +yj +zk beany vector

— . - X Z
= Direction cosinesof r are’, % T Wherer=\lx2+y2+z2

X

z
= cosa = ; cosf =¥ ; cosy =  where a, B, y be the angles made

by _r> with the coordinate axes OX, QY, OZ respectively

X z
:—=r,—L=r, —— =7
coso cosp cosy
X z
= =Y =r

coso. ~ COsB  cosy
= X:Yy:Z=cosu: CosP: cosy

i.e. the coefficients of i, j, k in the rectangular resolution of a vector are
proportional to the direction cosines of that vector.

N . > 2 > >
.. %, Y, z arethedirectionratios of thevector r =xi +y| +zk
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Addition, Subtraction and Multiplication of a vector by a scalar and
equality in terms of components:

- - - - - - - -
Leta =ayi +ayj +tagk and b =byi +byj +bgk beanytwo
vectors.

Then

(l) E) +_b) = (a1+b1)_i)+ (az+b2)?+ (3.3+b3)_k)

N > - - - -

(i) a-b = (ag-by)i +(ag-Dby)j +(az-b3)K

(iii) ma = a7 +a,] +agk)

- - - :
= mapi +mayj +magk wheremisascaar

(iv) 3 = beoa=byay=byandag=bhs

Distance between two points:
Let A (X1, Y1, 1) and B(Xy, Y», Z,) be any two points

OB - OA
(Xz_i) + Y2T) + Zz_k>> - (Xl_i) + yl? + 21?)

- - -
Xo=x) 1T +(2-YD ] +* (-7 K

—
Then AB

- The distance between A and B is AB = Iﬁl
- - -
[88] = [0e-x0 7 + 02—y T + -2 %)
=\ (0~ x)%+ (v~ Y1) + (22— 1)

> o >
Example 2.15: Find the magnitude and direction cosinesof 2i — j +7Kk
Solution:

27 -7+ 7R | =@ CoPr 2
NA+1+49 =54 = 3\/6

Directioncosineson_i) T)+7_k>are 2. L, 1
- 3/6  3/6 36

Magnitude of 2_i> - T) + 7_k>

Example 2.16: Find the unit vector in the direction of 3_i) + 4? - 12_k)



Solution: Let Z =3_i)+4?—12T<)

12| = |67 + 47 - 2% -2+ @2+ c 122
=+/9+16 + 144 =+[169 =13

%
a 3| +4j—12k

I
a

. . . . — . N
Unit vector inthedirectionof a is a =

Example 2.17: Find the sum of the ve(:tors_i> - T) + 2T<) and 2_i) + 3? - 4_k>
and also find the modulus of the sum.
Solution:

_i) T)+2_k)

2 3
(-7 e2®) + (27 +57-4R) 23T 42T 2%
+b| @+ 2+ (2P =\aTATE
- T

Example 2.18: If the position vectors of the two points A and B

Let

cri, ol

are_i> + 2? - 3T<) and 2_i) - 4? + _k> respectively then find Iﬁl
Solution:

If Obetheorigin, then OA = 1 +2] —3K, OB =21 —4] +
T —
AB = OB - OA

[a8 | =7+ Co7+ @ =53
Example 2.19: Find the unit vectors paralel to the vector — 3_i> + 4?
; - -> >
Solution: Let a =-3i +4]j

|2| - VCa2+4 =vyov1s =5
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_a) 1 - 1 - >
a=——=——a :g(—Si +4j)

— -

E{IRE(
, - -3 > 4>
Unit vectors parale to a aret a =+ (? [ +§])

Example 2.20: Find the vectors of magnitude 5 units, which are paralel to the
-
vector2i — |

. - —,> -
Solution: Let a 2

=]
Ei | NEETERCEN

a =ﬂ =% (27—?) =f—5 7—713 ]

o)

Vectors of magnitude 5 parallel to 2_i) - T) =+5a
2 >
=5 (ET -5 T)=+ (257 -5 7)

e S
Example 2.21: Show that the points whose position vectors 2i +3j —-5Kk,
- > > - > D .
3i+j—-2kand 6i -5 +7k arecollinear.
Solution: Let the pointsbe A, B and C and O bethe origin. Then
— e = - e = S S S &
OA =2i +3j -5k ; OB=3i +j -2k;0C=6i -5] +7k

_— —— —> -

AB = 0B - 0A =37 +] —2k) (2| +3] —5k)

Ac =4?—8?+1i?=4(T’—2J+3k)
—
= 4 AB

Hence the vectors AB and AC are pardlel. Further they have the
common point A.

.. The points A, B, C arecollinear.
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Example 2.22: If the position vectors of A and B are 3_i> - 7? - 7T<) and

5_i)+4?+3T<) , find 'AB and determineits magnitude and direction cosines.
Solution:
Let O betheorigin. Then

OA =3i -7] -7k, OB =5i +4j +3K
28 =08 & = (57 +47+38) (57 -77-7%)
AB =27 +11] +10K
[a8| =27+ @+ @02 =15
o _ 2 11 10
Thedirection cosinesare s, 15 15
EXERCISE 2.2

(1) Find the sum of the vectors 4_i) + 5? + _k> - 2_i> + 4? - _k> and

S_i) - 4? + 5_k> . Find also the magnitude of the sum.
2 1fa=31-] -4K, b=-27 +4]-3Kand o= 1 +2]-K
find [2a - B +3¢
(3) The position vectors of the vertices A, B, C of atriangle ABC are
respectively
2T +3] +4K, - 1 +2] - Kand3i—-5]+6K
Find the vectors determined by the sides and cal culate the length of the
sides.
(4) Show that the points whose position vectors given by
()21 +3] +5K, 1 +2] +3K, 71 = K
()7 —2] +3K, 21 +3] —4K and—7] +10K are collinear.
(5) Ifthe vectorsg = 2_i> - ST) and _b) =— 6_i) + mT) are collinear, find the
value of m.

(6) Find aunit vector in the direction of _|)+\/—3 T)

67



(7) Find the unit vectors parallel to the sum of 3_i> - 5? + 8_k)
and—-2] -2K

(8) Find the unit vectors parallel to 33) - 2_b> + 4_c> where Z:S_i)—? —4_k),

- e e - I S
b=-2i +4)] -3k, c=1i +2] -k

(9) The vertices of atriangle have position vectors
47 +5] +6K,51 +6] +4K,61 +4] +5K. Prove that the
triangleis equilateral.

(10) Show that the vectors 2_i>—?+_k>, 3?—4?—4_k>, ?—3?—5_k)
form aright angled triangle.

. S e I e A e 2

(11) Provethatthepoints2i +3j +4k, 3i +4j +2k, 4i+2] +3Kk

form an equilateral triangle.

(12) If the vertices of atriangle have position vectors _I) + 2? + 3T<),

2_i> + 3_j) + T<) and 3_i> + ? + 2_k>, find the position vector of its
centroid.

(13) If the position vectors of Pand Q are _|> + ST) - 7_k>

and 5_i> - 2? + 4_k) , findP—Q) and determine its direction cosines.
(14) Show that the following vectors are coplanar

()7 —2] +3K, —20 +3] —4K, — ] +2K

I P I S - e I S S

@i)5i +6j +7k, 7i —-8j +9k, 3i +20) +5Kk
(15) Show that the points given by thevectors4_i>+5?+_k) —T)—TZ

3_i) + 9? + 4T<) and — 4_i) + 4? + 4T<) are coplanar.
(16) Examine whether the vectors_i) + 3? + _k> , 2_i) - ? - _k>

and 7? + 5_k) are coplanar.
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3. ALGEBRA
3.1 Partial Fractions:
Definitions:
Rational Expression: An expression of the form % where p(x) and
g(x) = 0arepolynomiasin xiscaled arational expression.
BX — 2 3x2 + 2x-1

The expressions ,
P xz+3x+2 x2+x—22

are examples for rational

expressions.
Proper Fraction: A proper fraction is one in which the degree of the

numerator is less than the degree of the denominator.
Th i x+ 1 L les f
e expressions , are examples for proper
P xz+4x+3 x5+xz—5 ) PSR

fractions.
Improper Fraction: An improper fraction is a fraction in which the degree of
the numerator is greater than or equal to the degree of the denominator.

X +5x"+4 X —x+1

The expressions , are examples for improper
P xz+2x+3 xz+x+3 P prop

fractions.
Partial Fraction:
- I’ _5
Consider thesumof 35 and {7

We simplify it asfollows:

7 5 7x=1)+5x-2) 7x-7+5x-10  12x-17
x—2 TXx1T x—2)(x-1) - x-2(x-1) ~(x-2(x-1)
12x—17

Conversely the process of writing the given fraction *-2) (x=1) as

7 5 . L . . .
X—2 tx—1is known as splitting into partial fractions (or) expressing as
partial fractions.

A given proper fraction can be expressed as the sum of other simple
fractions corresponding to the factors of the denominator of the given proper
fraction. This process is caled splitting into Partial Fractions. If the given
pX)
a(x)
aproper rationa fraction by dividing p(x) by g(x).

fraction is improper then convert into sum of a polynomial expression and
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Working Rule:
pKX)
a() -
Type 1: Linear factors, none of which is repeated.

If a linear factor ax + b is a factor of the denominator q(x) then

Given the proper fraction Factorise g(x) into prime factors.

corresponding to this factor associate a ssimple fraction where A is a

_A
ax+b’
constant (A = 0).
i.e., When the factors of the denominator of the given fraction are al linear
factors none of which is repeated, we write the partial fraction asfollows:
X+ 3 A B
X+5) (2x+ 1) = X+5 Tox+1 where A and B are constants to

be determined.

. . ) 3xX+7
Example 3.1: Resolve into partial fractlons—z—x
X —3x+2
The denominator x2 — 3x + 2 can be factorised into linear factors.

x2 —3x+2:x2—x—2x+2:x(x—1)—2(x—1):(x—l) (x=2)

We assume Z3X+7 = 'ﬁ‘ + ? where A and B are constants.
X —3x+2 X-1 " x-2
3X+7 AX-2)+B(x—-1)
= 7 =
X" —3x+2 (x-1) (x-2)
= AX+7 = Ax-2)+B(x-1) ...(
Equating the coefficients of like powers of x, we get
Coefficient of x : A+B=3 ... (2
Constanttem : -2A-B=7 ...(3)
Solving (2) and (3) we get
A=-10
B =13
3x+7 -10 13 13 10

Sl 3+ x-1 Tx-27x-2 " x-1
Note: The constants A and B can aso be found by successively giving suitable
valuesfor x.
Tofind A, putx=1 in (1)

3(1) +7 = A(l-2)+B(0)
10 = A(-1)
A= -10
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Tofind B, put x=2in (1)
32+7=A0+B(2-1)

B =13
. 3x+7_  _-10 13
Woax+2 x-1 Tx-2
x+7 13 10

X -3x+2 x-2  x-1

Example: 3.2: Resolveinto partia fractions —ZL
X" =4 (x+1)
The denominator (x2 —4) (x+ 1) can be further factored into linear factors
e 0C—4) (x+1) = (x+2) (x=2) (x+1)
X+4 A B C
(xz—4)(x+1) =x+2 t x_2 t X+ 1 where A, B and C are
constants to be determined.
X+4 _AX=2) (x+1)+B(x+2) (x+1)+C(x+2) (x—2)
(= 4) (x+ 1) (x+2) (x=2) (x+1)
= X+4=A(X-2)(x+1) +B(x+2) (x+ 1) +C(x+2) (x-2) ... (D)
Tofind A, putx = —-2in (1)
-2+4=A(-2-2)(-2+1)+B(0) + C(0)
2=4A => A=112
TofindB, putx=2in(1), wegetB=1/2
TofindC, putx=-1in(1), wegetC=-1

‘ X+ 4 _ 12 N 1/2 N -1
T+ (X2 T (x=2) T x+1
x+4 1 1 1

a1 | 26+ T 2x-2) T x+1
Type 2: Linear factors, some of which arerepeated

If alinear factor ax + b occurs n times as afactor of the denominator of the

given fraction, then corresponding to these factors associate the sum of n simple
fractions,

A1 A2 Az An
+ + T
ax+b " (ax+b)?  (ax+h)® (ax + b)"

Where A1, Ao, Ag, ... Ay are constants.
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. . . 9
Example 3.3: Resolveinto partial fractions——————

(x=1) (x+2)
9 _A B ,_C
x—1) (x+2)°  X-1  X+2 7 (x4 2)°
9 AKX+ HBX-1) (X+2) + Cx— 1)
(x-1) (x+2)° (x-1) (x+2)°
N 9= AKX+22+BX-1) (x+2) +Cx-1) ... (1)
Tofind A, put x =1 in(1)
We get 9=A(1+2)2 = A=1
Tofind C, put x=-2in(1)

We get 9=C(-2-1) =C=-3
In (1), equating the coefficient of x2 on both sides we get
A+B=0
= 1+B=0 =B=-1
) 9 1 1 3
Cx-D+)T X-1 X2 (x4 )
Type 3: Quadratic factors, none of which isrepeated
If a quadratic factor ax2 + bx + ¢ which is not factorable into linear factors
occurs only once as a factor of the denominator of the given fraction, then

+
corresponding to this factor associate a partial fraction —9& where A
ax" +bx+c
and B are constants which are not both zeros.
Consider —sz—
X+ (X +1)
2x A Bx+C

We can write this proper fraction in the form = +
prop X+ K+ X174

The first factor of the denominator x + 1 is of first degree, so we assume its
numerator as a constant A. The second factor of the denominator x2 +1isof an
degree and which is not factorable into linear factors. We assume its numerator
asagenerd first-degree expression Bx + C.

x2 -2x-9

Example 3.4: Resolve into partial fractions —
(X"+x+6)(x+1)
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2
X —2X-9 Ax+ B C

= +
OC+x+6) (x+1)  x+x+6 X+l

X-2x-9  (AX+B) (x+ 1)+ COC +x+6)
OC+x+6) (x+1) O +x+6) (x+ 1)
= X2~ 2x—9 = (AX+ B) (x+ 1) + C(<* + X + 6) ()
TofindC put x=-1in(1)
Weget 1+2-9=C(1-1+6) > C=-1
Tofind B, put x =0 in(1)
We get -9=B+6C
-9=B-6 = B=-3
Tofind A, Pu x=1in(1)
1-2-9=(A-3)2+(-1)(8 = -10=2A-14
A=2
2
X -2x-9  2x-3 1
< Tl T x+1
(X +x+6)(x+1) X +x+6
x2+x+1
Example 3.5: Resolve into partial fractions—o————
X —5X+6

Solution:

Here the degree of the numerator is same as the degree of the denominator,
i.e. animproper fraction.

on divis 4 x+1 1 6x—5 )
n division - =1+ — —
X —5x+6 X —5x+6
6x -5 A B

Let = +
X°—5x+6 X-2  Xx-3
6x—5=A(Xx-3) + B(x-2)
By puttingx=2, —A=12-5 = A=-7
By puttingx=3, B=18-5 = B=13
x2+x+1 7 13
+

W _Bx+6  Xx—2  x-3

K ax+1 7 13

. - 1_ +
W)= X~ —5x+6 1-%=2*%=3
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EXERCISE 3.1
Resolve into partial fractions

P SN 'S PRSI L5
(x-1) (x+1) 6 — 5X + X (x-1) (x-2) (x-3)
@) ——— G P () —2—
x-1) (x+2) x+2) (x-1) x-2)" (x+3)

- X2~ Bx+2 © 2% _Bx—7 o -3
X" (x+2) x-2) x+2) (X" +1)

X+ 2 7x2—25x+6 x2+x+1

0 ryeodeny Moz n -2 P xn

3.2 Permutations:

Factorial:
The continued product of first n natural numbers is caled the

“nfactorial” and is denoted by n! or |n

ie n I1x2x3x4x..x(n-1)xn
5l = 1x2x3x4x5 =120

Zero Factorial:

We will require zero factoria in the latter sections of this chapter. It does
not make any sense to define it as the product of the integers from 1 to zero. So,
we define 0! = 1.

Deduction:

n!' = 1x2x3x4x..x(n-1)xn
= [1x2x3x 4x..x(n=1Dn
= [(-11n

Thus, n = n[(n-2)]
For example,
81 = 87!

3.2.1 Fundamental Principles of Counting:

In this section we shall discuss two fundamental principles viz., principle
of addition and principle of multiplication. These two principles will enable us
to understand permutations and combinations and form the base for
permutations and combinations.
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Fundamental Principle of Multiplication:

If there are two jobs such that one of them can be completed in m ways,
and when it has been completed in any one of these m ways, second job can be
completed in n ways; then the two jobs in succession can be completed in
m x N ways.

Explanation:

If the first job is performed in any one of the m ways, we can associate
with this any one of the n ways of performing the second job: and thus there are
n ways of performing the two jobs without considering more than one way of
performing the first; and so corresponding to each of the m ways of performing
the first job, we have n ways of performing the second job. Hence, the number
of waysin which the two jobs can be performedism x n.

Example 3.6: In a class there are 15 boys and 20 girls. The teacher wants to
select a boy and a girl to represent the class in a function. In how many ways
can the teacher make this selection?

Solution :
Here the teacher isto perform two jobs :
(i) Selecting aboy among 15 boys, and
(ii) Selecting agirl among 20 girls
Thefirst of these can be performed in 15 ways and the second in 20 ways.
Therefore by the fundamental principle of multiplication, the required
number of waysis 15 x 20 = 300.
Fundamental Principle of Addition:

If there are two jobs such that they can be performed independently in
m and n ways respectively, then either of the two jobs can be performed in
(m+ n) ways.
Example 3.7: In a class there are 20 boys and 10 girls. The teacher wants to
select either a boy or a girl to represent the class in a function. In how many
ways can the teacher make this selection?

Solution:
Here the teacher isto perform either of the following two jobs:
(i) selecting aboy among 20 boys. (or)
(ii) Selecting agirl among 10 girls
Thefirst of these can be performed in 20 ways and the second in 10 ways.

Therefore, by fundamental principle of addition either of the two jobs can
be performed in (20 + 10) = 30 ways.
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Hence, the teacher can make the selection of either a boy or agirl in 30
ways.
Example 3.8: A room has 10 doors. In how many ways can a man enter the
room through one door and come out through a different door?

Solution:

Clearly, a person can enter the room through any one of the ten doors. So,
there are ten ways of entering into the room.

After entering into the room, the man can come out through any one of
the remaining 9 doors. So, he can come out through a different door in 9 ways.

Hence, the number of ways in which a man can enter a room through one
door and come out through a different door = 10 x 9 = 90.

Example 3.9: How many words (with or without meaning) of three distinct
letters of the English alphabets are there?

Solution:

Here we have to fill up three places by distinct letters of the English
alphabets. Since there are 26 letters of the English alphabet, the first place can
be filled by any of these letters. So, there are 26 ways of filling up the first
place.

Now, the second place can befilled up by any of the remaining 25 letters.
So, there are 25 ways of filling up the second place.

After filling up the first two places only 24 letters are left to fill up the
third place. So, the third place can befilled in 24 ways.

Hence, the required number of words
= 26 x 25 x 24 = 15600
Example 3.10:
How many three-digit numbers can be formed by using the digits 1, 2, 3, 4, 5.
Solution :

We have to determine the total humber of three digit numbers formed by
using the digits 1, 2, 3, 4, 5.

Clearly, the repetition of digitsis allowed.

A three digit number has three places viz. unit’s, ten’s and hundred’s. Unit's
place can be filled by any of the digits 1, 2, 3, 4, 5. So unit’s place can be filled
in 5 ways.

Similarly, each one of the ten’s and hundred’ s place can befilled in 5 ways.

.. Total number of required numbers

= B5x5x5=125
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Example 3.11: There are 6 multiple choice questions in an examination. How
many sequences of answers are possible, if the first three questions have
4 choices each and the next three have 5 each?

Solution:

Here we have to perform 6 jobs of answering 6 multiple choice questions.

Each of the first three questions can be answered in 4 ways and each one of
the next three can be answered in 5 different ways.

So, the total number of different sequences

=4x4x4x5x5x%x5=8000
Example 3.12: How many three-digit numbers greater than 600 can be formed
by using the digits 4, 5, 6, 7, 8?
Solution:

Clearly, repetition of digits is allowed. Since a three-digit number greater
than 600 will have 6, 7 or 8 at hundred's place. So, hundred’s place can be
filled in 3 ways.

Each of the ten’s and one's place can befilled in 5 ways.

Hence, total number of required numbers

=3x5x5=75
Example 3.13: How many numbers divisible by 5 and lying between 5000 and
6000 can be formed from the digits 5, 6, 7, 8 and 9?
Solution:

Clearly, a number between 5000 and 6000 must have 5 at thousand’s place.
Since the number isdivisible by 5 it must have 5 at unit’s place.

Now, each of the remaining places (viz. Hundred’s and ten’s) can befilled in
5 ways.

Hence the total number of required numbers

=1x5x5x1=25
Example 3.14: How many three digit odd numbers can be formed by using the
digits4,5,6,7,8,9if :

(i) therepetition of digitsis not alowed?

(ii) therepetition of digitsis allowed?
Solution:

For anumber to be odd, we must have 5, 7 or 9 at the unit’s place.

So, there are 3 ways of filling the unit’s place.

(i) Since the repetition of digits is not allowed, the ten's place can be filled

with any of the remaining 5 digitsin 5 ways.
Now, four digits are left. So, hundred’ s place can befilled in 4 ways.
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(i)

So, required number of numbers

=3x5%x4=60

Since the repetition of digits is alowed, so each of the ten's and
hundred’ s place can be filled in 6 ways.

Hence required number of numbers=3 x 6 x 6 =108

10.

11.

EXERCISE 3.2

In a class there are 27 boys and 14 girls. The teacher wants to select
1 boy and 1 girl to represent a competition. In how many ways can
the teacher make this selection?

Given 7 flags of different colours, how many different signals can be
generated if a signa requires the use of two flags, one below the
other?

A person wants to buy one fountain pen, one ball pen and one pencil
from a stationery shop. If there are 10 fountain pen varieties, 12 ball
pen varieties and 5 pencil varieties, in how many ways can he select
these articles?

Twelve students compete in a race. In how many ways first three
prizes be given?

From among the 36 teachers in a college, one principal, one vice-
principal and the teacher-in charge are to be appointed. In how many
ways this can be done?

There are 6 multiple choice questions in an examination. How many
sequences of answers are possible, if the first three questions have 4
choices each and the next three have 2 each?

How many numbers are there between 500 and 1000 which have
exactly one of their digits as 8?

How many five-digit number license plates can be made if

(i) first digit cannot be zero and the repetition of digits is not
allowed.

(ii) the first digit cannot be zero, but the repetition of digits is
alowed?

How many different numbers of six digits can be formed from the
digits 2, 3,0, 7, 9, 5 when repetition of digitsis not allowed?

How many odd numbers less than 1000 can be formed by using the
digits 0, 3, 5, 7 when repetition of digitsis not allowed?

In how many ways can an examinee answer a set of 5 true / false
type questions?
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12.  How many 4-digit numbers are there?
13.  How many three — letter words can be formed using a, b, ¢, d, eif :
(i) repetitionisallowed (ii) repetition is not allowed?
14. A coin is tossed five times and outcomes are recorded. How many
possible outcomes are there?
3.2.2. Concept of Permutations:
The word permutation means arrangement.

For example, given 3 letters a, b, ¢ suppose we arrange them taking 2 at a
time.

The various arrangements are ab, ba, bc, cb, ac, ca.

Hence the number of arrangements of 3 things taken 2 at atime is 6 and this
can be written as 3P2 = 6.

Definition:

The number of arrangements that can be made out of n things taking r at a
timeis called the number of permutations of n thingstakenr at atime.
Notation:

If n and r are positive integers such that 1< r < n, then the number of al
permutations of n distinct things, taken r at atime is denoted by the symbol P(n,
r) or nPr.

We use the symbol nPr throughout our discussion. Thus nPr = Total number
of permutations of n distinct thingstaken r at atime.

Note: In permutations the order of arrangement is taken into account; when the
order is changed, a different permutation is obtained.

Example 3.15: Write down all the permutations of the vowels A, E, I, O, U in
English alphabetstaking 3 at atime and starting with E.

Solution: The permutations of vowels A, E, I, O, U taking three at atime and
starting with E are

EAl, EIA, EIO, EQI, EOU, EUO, EAO, EOA, EIU, EUI, EAU, EUA.
Clearly there are 12 permutations.

Theorem 3.1:
Let r and n be positive integers such that 1 <r <n.
Then the number of all permutations of n distinct thingstaken r at atimeis

givenby n(n-1) (n-2)... (n-r-1)
ie nPr=n(n-1)(n-2)...(n-r-1)
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Pr oof:
Let nPr denote the number of permutations of n thingstakenr at atime.
Clearly the total number of permutations required is same as the number of
possible ways of filling up r blank spaces by n things.

I N N [

1 2 3 r

Let there be r blank spaces arranged in arow

Thefirst place can be filled by any one of the n thingsin n ways.

If the first place is filled up by any one of the n things, there will be
(n— 1) things remaining. Now the second place can be filled up by any one of
the (n — 1) remaining things.

Hereit can befilled upin (n — 1) ways.

Hence the first two places can be together filled in n(n — 1) ways.

Having filled up these two places, we have (n — 2) things remaining with
which we can fill up the third place. So the third place can be filled up by any
one of these thingsin (n — 2) ways.

Hence the first three places can be together filled in n(n — 1) (n — 2) ways.

Proceeding in this way, we find that the total number of ways of filling up
ther spacesis

nin—121) (n—2)... uptor factors
ienn-1)(n-2) ... (n-r-1)

~nPr=nin-1)(n-2)... (n—ril) =nn-1)(n-2)...(n-r+1)
Theorem 3.2:

L n!
Let r and n be positiveintegerssuchthat 1 <r <n. Then nPr = -1

Pr oof:
nPr=n(n-1)(n-2) ... (n-r-1)
_n(n-1)(n-2)... (h-r=1) (n-n(n-r+1)..21
- (n-r) (n— rjrfl) .21

_ n!
N GEE]!
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Theorem 3.3:
The number of all permutations of n distinct things, taken al at atimeisn!

Pr oof: nPr = nin-1)(n-2)... (n-r-1)
By puttingr = n, nPn=nn-1) (n-2) ... (n-n-1)

nn-1) (n-2)...(n-n-1)
nn-H(n-2)...1

=nl
S.nPn=n!
Remark: We have already defined 0! = 1. This can aso be derived asfollows.
|
We know that nPr = —2
(n=r)!
. _ __n
By puttingr = n, nPn = (n—n)!
n!
= nt =g ("> nPn =n!)
|
- o= =1
o=1
Example 3.16: Evaluate 8P3
. 8! 8l (8x7x6)x5!
Solution: 8P3 = @-3)! =5 = 5|
=8x7x6
= 336
Example3.17: If 5Pr =6P_1, findr
Solution: 5Pr = 6Pr_1
5! 6!
= = —
G-nt  (6-r—1)
5  6x5
= G- T @7-n)
51 6 x 5!
= B-n! {T-nE-n} G-I
R
= S @7-n6-71)
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(7=1)(6=1) =6 = 42—Tr—6r+r°—=6 = 0

jd
—  °_13r+36=0 = (-9 (-4) =0
= r=9orr =4
= r=4 (v 5Pr ismeaningful for r <5)
Example 3.18:
If nP4 = 360, find the value of n.
Solution: NP, = 360 = (nf!4)! —6x5x4x3
n! 6x5x4x3x2l 6!
= (n-4)! ~ 2! =2
= nl = 6!
= n==6
Example 3.19:
If 9Pr = 3024, findr.
Solution: 9Pr = 3024
= =9x8x7Tx6=9P,
= r=4
Example 3.20:
If(n-1)P3:nP4 = 1:9,findn.
Solution:

(n-1)P3:nP4=1:9
=>n-)(n-2)(n-3):nh-1)(n-2)(n-3)=1:9
=ie9dn-1)(n-22)(n-3)=nn-1) (n-2) (n-3)
=n=9
Example 3.21: In how many ways can five children stand in a queue?
Solution:

The number of ways in which 5 persons can stand in a queue is same as the
number of arrangements of 5 different things taken al at atime.

Hence the required number of ways

= sP5=5 =120

Example 3.22: How many different signals can be made by hoisting 6
differently coloured flags one above the other, when any number of them may
be hoisted at one time?
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Solution:
The signals can be made by using at a time one or two or three or four or
fiveor six flags.

The total number of signals when r-flags are used at a time from 6 flags is
equal to the number of arrangements of 6, taking r at atimei.e. 6P
Hence, by the fundamental principle of addition, the total number of
different signals
= 6P1teP2+6P3+6P4+6P5+6P6
6+(Bx5)+(6x5x4)+(6 x5x4x3)+(6x5x4%x3 x2)
+(6x5x4x3x2x1)

= 6+30+ 120+ 360+ 720 + 720 = 1956
Example 3.23: Find the number of different 4-letter words with or without
meanings, that can be formed from the letters of the word ‘NUMBER'’

Solution:
There are 6 lettersin the word ‘NUMBER'.
So, the number of 4-letter words
the number of arrangements of 6 letterstaken 4 at atime
= 6P4
= 360
Example 3.24: A family of 4 brothers and 3 sisters is to be arranged in a row,
for a photograph. In how many ways can they be seated, if

(i) al the sisters sit together.
(i) all the sisters are not together.
Solution :
(i) Sincethe 3 sisters are inseparable, consider them as one single unit.

This together with the 4 brothers make 5 persons who can be arranged
among themselvesin 5! ways.

In everyone of these permutations, the 3 sisters can be rearranged among
themselvesin 3! ways.

Hence the total number of arrangementsrequired =5! x 3! =120 x 6 =720

(ii) The number of arrangements of al the 7 persons without any restriction
=7 = 5040

Number of arrangements in which all the sisters sit together = 720

.. Number of arrangementsrequired = 5040 — 720 = 4320
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3.2.3 Permutations of objectsnot all distinct:

The number of mutually distinguishable permutations of n things, taken all
at atime, of which p are aike of one kind, q alike of second such that p + g =n,
.._n
Example 3.25: How many permutations of the letters of the word ‘ APPLE’ are
there?

Solution:
Herethere are 5 letters, two of which are of the same kind.
The others are each of its own kind.
| |
.. Required number of permutationsis= ﬁ = % = %) = 60

Example 3.26: How many numbers can be formed with the digits 1, 2, 3, 4, 3,
2, 1 so that the odd digits always occupy the odd places?

Solution:
Thereare 4 odd digits 1, 1, 3, 3 and 4 odd places.

|
So odd digits can be arranged in odd placesin % ways.
I
The remaining 3 even digits 2, 2, 4 can be arranged in 3 even placesin %
ways.
. 4 3!
Hence, the required number of numbers = 511 X1 = 6x3=18

Example 3.27: How many arrangements can be made with the letters of the
word “MATHEMATICS'?
Solution:
There are 11 letters in the word ‘MATHEMATICS' of which two are M’s,
two are A’s, two are T'sand all other are distinct.
11!

.. required number of arrangements I 4989600

3.2.4 Permutations when objects can repeat:
The number of permutations of n different things, taken r at a time, when
. . . r
each may be repeated any number of timesin each arrangement, isn

Consider the following example:
In how many ways can 2 different balls be distributed among 3 boxes?
Let A and B bethe 2 balls. The different ways are
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Box 1 Box 2 Box 3

[
[
[
[
]
[
] ]
[ [
[] []
i.e. 9ways. By formulan’ = F?=9 ways

Example 3.28: In how many ways can 5 different balls be distributed among
3 boxes?
Solution:

There are 5 balls and each ball can be placed in 3 ways.

So the total number of ways = 35 =243
Example: 3.29: In how many ways can 3 prizes be distributed among 4 boys,
when (i) no boy gets more than one prize?
(ii) aboy may get any number of prizes?
(iii) no boy gets all the prizes?
Solution:
(i) Thetotal number of waysis the number of arrangements of 4 taken 3 at
atime.
So, the required number of ways=4P3 =4! =24
(ii) The first prize can be given away in 4 ways as it may be given to
anyone of the 4 boys.
The second prize can also be given away in 4 ways, since it may be obtained
by the boy who has aready received a prize.
Similarly, third prize can be given away in 4 ways.
Hence, the number of waysin which all the prizes can be given away
—4x4x4 =4 =64
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(iii) Since any one of the 4 boys may get all the prizes. So, the number of
waysin which aboy get all the 3 prizes= 4.
So, the number of waysin which aboy does not get al the prizes = 64-4=60
3.2.5 Circular Permutations:

We have seen that the number of permutations of n different things taken al
together is n!, where each permutation is a different arrangement of the n things
in arow, or astraight line. These permutations are called linear permutations or
simply permutations.

A circular permutation is one in which the things are arranged along acircle.
It isalso caled closed permutation.

Theorem 3.4

The number of circular permutations of n distinct objectsis (n — 1)!
Proof:

Letaj, ap, ..., an-1, ay bendistinct objects.

Let the total number of circular permutations be x.

Consider one of these x permutations as shown in figure.

Clearly this circular permutation providesn

near permutations as given below =
ai, a, as, ey @n-1, @
a21 a31 a4, ceey an y al Ay .2 ay
ag, ay, as, ey a, az .
...... a, . a3
...... » .
an1a;|_,az, ey an_z, an—l L
1
Fig.3. 1

Thus, each circular permutation gives n linear permutations.
But there are x circular permutations.

So, total number of linear permutationsis xn.

But the number of linear permutations of n distinct objectsisn!.

LxXno= onl

n!

= X = 7
Xx = (n=-1)!

.. The total number of circular permutations of n distinct objectsis (n— 1)!

Note: In the above theorem anti-clockwise and clockwise order of arrangements
are considered as distinct permutations.
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Difference between clockwise and anti-clockwise arrangements:
Consider the following circular permutations:
a 3 a 3

ay a, a, a,

al al
Fig. 3.2 Fig.3.3
We observe that in both, the order of the circular arrangement is ay, a,, as, as.

In fig (3.2) the order is anti-clockwise, whereas in fig. (3.3) the order is
clockwise.

Thus the number of circular permutation of n things in which clockwise and
anti-clockwise arrangements give rise to different permutationsis (n — 1)!
If there are n things and if the direction is not taken into consideration, the

. o1
number of circular permutationsiss (n - 1)!

Example 3.30:

In how many ways 10 persons may bearrangedina (i) line (ii) circle?
Solution:

(i) The number of ways in which 10 persons can be arranged in a line

=10P10 = 10!
(ii) The number of ways in which 10 persons can be arranged in a circle
=(10-1)'=9

Example 3.31: In how many ways can 7 identical beads be stung into aring?

Solution: Since the arrangement is circular either clockwise arrangement or
anti-clockwise arrangement may be considered.

|
.. The required number of ways =% 7-1 = % = 360

Example 3.32: In how many ways can 5 gentlemen and 5 ladies sit together at a
round table, so that no two ladies may be together?

Solution:
The number of waysin which 5 gentlemen may be arranged is (5— 1)! = 4!
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Then the ladies may be arranged among themselvesin 5! ways.
Thus the total number of ways = 4! x 5! =24 x 120 = 2880

Example 3.33: Find the number of ways in which 8 different flowers can be
strung to form a garland so that 4 particular flowers are never separated.

Solution:

Considering 4 particular flowers as one flower, we have five flowers, which
can be strung to form a garland in 4! ways.

But 4 particular flowers can be arranged in 4! ways.
.. Required number of ways = 4! x 4! =576

a r wD

o

9.

EXERCISE 3.3

Evaluate the following :

(1) sP3 (i) 15P3 (iii) 5Ps (iv) 25P20 (V) 9Ps

If P4=20.nP3, findn.

If 10Pr = 5040, find the value of r.

If 56P(r+6) :54P(r+3) = 30800 : 1, findr

If Pm stands for mPm , then provethat 1 + 1.P1 + 2.P> + 3.P3 + ...
+n.Py=(n+1)!

Provethat nPr = (n- 1)Pr + 1. (n- )P - 1)-

Three men have 4 coats, 5 waistcoats and 6 caps. In how many ways can

they wear them?

How many 4-letter words, with or without meaning, can be formed, out
of the letters of the word, ‘LOGARITHMS, if repetition of letters is not
alowed?

How many 3-digit numbers are there, with distinct digits, with each digit
odd?

10.Find the sum of all the numbers that can be formed with the digits

2,3,4,5taken al at atime.

11.How many different words can be formed with the letters of the word

‘MISSISSIPPI’ ?

12. (i) How many different words can be formed with letters of the word

‘HARYANA'?
(ii) How many of these begin with H and end with N?

13.How many 4-digit numbers are there, when a digit may be repeated any

number of times?

14.1n how many ways 5 rings of different types can be worn in 4 fingers?
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15.In how many ways can 8 studentsare seated ina (i) line (ii) circle?

16.1n how many ways can a garland of 20 similar flowers are made?
3.3 Combinations:

The word combination means selection. Suppose we are asked to make a
selection of any two things from three things a, b and c, the different selections
are ab, bc, ac.

Here thereis no reference to the order in which they are selected.

i.e. ab and ba denote the same selection. These selections are called
combinations.

Definition:

A sdlection of any r things out of n things is called a combination of

nthingsr at atime.

Notation:
The number of all combinations of n objects, taken r at a time is generally

denoted by hCr or C(n,r) or G‘) . We use the symbol C; throughout our

discussion.

Number of ways of selecting

ThusnCy = {r objects from n objects

Difference between Permutation and Combination:

1. In a combination only selection is made whereas in a permutation not
only a selection is made but also an arrangement in a definite order is
considered.

i.e. in a combination, the ordering of the selected objects is immaterial

whereas in a permutation, the ordering is essential.

2. Usually the number of permutation exceeds the number of combinations.

3. Each combination corresponds to many permutations.

Combinations of n different thingstaken r at atime;

Theorem 3.5:
The number of all combinations of n distinct objects, taken r at a time is
. _ n!
givenby 1C; = —(n—r) Il

Proof: Let the number of combinations of n distinct objects, takenr at atime be
denoted by hCr.

Each of these combinations contains r things and all these things are
permuted among themselves.
.. The number of permutations obtainedisr !
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Hence from all the n,C; combinations we get hCy x r! permutations.
But this gives al the permutations of n thingstakenr at atimei.e. nPy .

Hence, nCr.r! = Py
nPr
nCr = r_'
n! n!
T (n=n)tr! ( nF)r_(n—r)!>
Properties

(DnCh=1 (2QnCo =1 A nCr =nCn-r 0<r<n
Pr oof:

I
(1) Weknow that nCr = mlni _nr.)' r'

] n! n!

Puttingr =n,wehave Ch = (n—n)! n! =0 n!
=1
(2) Puttingr =0, we have
n! n!
nCo = (n”oyror T T L
n! n!
(3) Wehave nCn-r = —\ (h-n'r!
(n=r)! (n— n—r)!
= nCr

Note: The above property can be restated as follows:
If x and y are non-negative integers such that x + y = n, then nCx = nCy
(4) If nand r are positive integers such that r < n,
then nCr + nC(r — 1) = (n+1)Cr
Proof: We have
n! n!

e I o T (Y TRy
ol n!
T (n=n)!r! * (n-r+21)! (-1
n! n!

- (n=r)! r{.(r—l)!} * (n—r+1){(n.— N (r-11
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_ n! 1 1
T (n=r)! (r-1)! {r * n—r+1}

B n! {n—r+1+r}
T (= (-1 |r(n-r+1)

n! n+1
- (n=n)!(r-12)! {r(n— r+ 1)}
_ (n+1){nl}
Tn=r+1D)(=-0)!r(r-1)!
___(n+1)!
T (n-r+1r!
___ (n+1)!
T (n+1-n)lr!
= (n+1)Cr
(5) If nand r are positive integerssuch that 1 <r <n,

n
then nCr =7 (n-1)C(r - 1)

Proof:
]
”Cr:m—iﬂn
_ nin—1)!
- - -Dtr(r-2)
n (n—1)!

N (GRS (ES) [N (R

=7 (-1Cr-1)

(=]

@)If1<r<n,then n.(n-1)Cr-1)=(n-r+1).nCq-1)
Pr oof:

(n=1)!

(n—l)—(r—l)]!(r—l)!}
n!

T (n=1)! (r-1)!

_ (n—r+Dn!

T(n=r+1) (n-n)!(r-1)

Wehave n.n-1Cr-1) = n{[
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n!
=(-r+1 [(n—r+l)! (r—l)!J

_ n!
=(-r+d) {(n—rf_t)! (r—l)!}
=(-r+1).nCr -1

(7) For any positive integers x and y,

nCx = nCy=> X=y or Xx+y=n
Proof: Wehave nCx = nCy
= nCx = nCy=nCn-y) [ nCy:nC(n—y)]
=X = Yy OF X=n-y

U
x
1l

y or X+y =n
Note: If nCx=nCy andx=y, thenx+y=n
Example 3.34: Evaluate the following :

5
(i) 6C3 (i) X sCr
r=1
Solution:
. 6P3 6x5x4
) 6C3 = 3 T 1x2x3 =20
. 5
(if) > 5Cr = 5C1+5C2+5C3+5C4+5Cs
r=1

5+10+10+5+1=31
Example 3.35: If hC4 =nCs, find 12Ch
Solution:
n"Csa=nCe = n=4+6=10
Now 12Cn = 12C10

12x11
=12C(12-10) =12C2 =75

= 66
Example 3.36: If 15C; @ 15C(y — 1) = 11:5, findr
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Solution:

15Cr 11
15Cr 115C(r-1)=11:5 :m— 5
15!
r'(a5-r)! _ 1
= 15! - 5
r=1!'(15-r+21)!

15! r-1)!'(16-r! 11

= n@as-ry X 151 = 5

r-1)'(16-nN{(15-n} 11

= r(r— 1) (15-r)! - 5

6-r 11

= r ~— 5
= 5(16-r) = 11r = 80=16r

= r=5

Example 3.37: Show that the product of r consecutive integersisdivisible by r!
Solution:
Let ther consecutiveintegersben+1,n+2,n+3,...,n+r
Hence their product= (n+1) (n+2) (n+3) ... (n+r)
_123..n(n+1)(n+2)...(n+r)

123...n
_(n+0)!
- on
~ their product _ (n+r)!
" r! -onr!

= (n+r)Cr Which isan integer.
.. The product of r consecutive integersisdivisible by r!

Example 3.38: Let r and n be positive integers such that 1 <r < n. Then prove
the following :

nCr  n-r+1
nCr—1) =~ r
n!
oG ri(n-r)!
Solution: nCr-1) - ni

(r-121)! (ﬁ —r+1)!

93



_ n! r-=D'(n-r+1)!

- X n!

_r=-D-r+H{(n-nt}

- rr=21!'(n-r)!

_h-r+1

- r
Example 3.39 : If nPr = nP(r + 1) and nCr = nC(r - 1) , find the values of nand r
Solution:

n! n!

nPr=nP(r+1) = n-n = (n—r.— 1)!
1 1
= n-nn-r-1! ~(n-r-1)!
= n-r =1 ... (1
n! n!
nCr =nCer-1) = nin-r! ~ -1 (n—r+1)!
n! n!
= rr=)'(n-n! ~— - (h-r+1){(n-n1}
1 1
= r Thn-or+1
= n-r+1 =r
= n-2r =-1 ... (2
Solving (1) and (2) wegetn=3andr =2
EXERCISE 3.4

1. Evaluate thefollowing:

(i) 10Cs (ii) 200Co8 (iii) 75C75
2. If nC10=nC12, find 23Ch

3. If gCr—7C3=7Co, findr

4. 1f 16C4 = 16Cr + 2, find [ C2

5. Find nif (i)z.ncg=%) nC2 (i) nC(n— 4)=70

6. If (n+2)C8: (n-2)P4="57:16,findn.
7. 1f 28Cor 1 24C(2r — 4) = 225: 11, find r.
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Practical problems on Combinations
Example 3.40: From a group of 15 cricket players, ateam of 11 playersisto be
chosen. In how many ways this can be done?
Solution:

There are 15 players in a group. We have to select 11 players from the
group.

.. The required number of ways= 15C11

15x14x13x 12
15C11 = T o 3xg  136OWays
Example 3.41: How many different teams of 8, consisting of 5 boys and 3 girls
can be made from 25 boys and 10 girls?
Solution:
5 boys out of 25 boys can be selected in 25Cs ways.

3 girlsout of 10 girls can be selected in 10C3 ways.

.. The required number of teams = 25C5 x 10C3 = 6375600

Example 3.42: How many triangles can be formed by joining the vertices of a
hexagon?
Solution:

There are 6 vertices of a hexagon.

One triangle is formed by selecting a group of 3 vertices from given
6 vertices.

This can be done in gC3 ways.
|
.. Number of triangles = gC3 :% =20

Example 3.43:

A class contains 12 boys and 10 girls. From the class 10 students are to be
chosen for a competition under the condition that atleast 4 boys and atleast
4 girls must be represented. The 2 girls who won the prizes last year should be
included. In how many ways can the selection are made?

Solution:
There are 12 boys and 10 girls. From these we have to select 10 students.

Since two girls who won the prizes last year are to be included in every
selection.

95



So, we have to select 8 students from 12 boys and 8 girls, choosing atleast
4 boys and atleast 2 girls. The selection can be formed by choosing

(i) 6boysand2girls
(ii) 5boysand 3girls
(iii) 4 boysand 4 girls
.. Required number of ways = (12Cg x 8C2) + (12Cs x 8C3) + (12C4 x gCq)
(924 x 28) + (792 x 56) + (495 x 70)
= 25872 + 44352 + 34650
= 104874
Example 3.44: How many diagonals are there in a polygon?
Solution: A polygon of n sides has n vertices. By joining any two vertices
of apolygon, we obtain either aside or adiagonal of the polygon.
Number of line segments obtained by

joining the vertices of an sided }=Number of ways of selecting 2 out of n
polygon taken two at atime

Out of these lines, n lines are the sides of the polygon.
.. Number of diagonals of the polygon = g(nz;l) -n
_ n(h-3
- 2

Example 3.45 How many different sections of 4 books can be made from 10
different books, if (i) thereisno restriction

(i) two particular books are always selected;

(i) two particular books are never selected?
Solution:

|
(i) The total number of ways of selecting 4 books out of 10 = 1004%06, =210

(i) If two particular books are always selected.
This means two books are selected out of the remaining 8 books

|
.. Required number of ways = gCp = % =28

(iii) If two particular books are never selected
This means four books are selected out of the remaining 8 books.

|
.. Required number of ways = gCyq = ﬁ =70
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Example 3.46:

In how many ways players for a cricket team can be selected from a
group of 25 players containing 10 batsmen, 8 bowlers, 5 all-rounders and 2
wicket keepers? Assume that the team requires 5 batsmen, 3 all-rounder, 2
bowlers and 1 wicket keeper.

Solution:
The selection of team is divided into 4 phases:
(i) Selection of 5 batsmen out of 10. This can be donein 10Cs ways.
(ii) Selection of 3 al-rounders out of 5. This can be donein 5C3 ways.
(iii)Selection of 2 bowlers out of 8. This can be donein gCo ways.
(iv)Selection of one wicket keeper out of 2. This can be donein 2Cq ways.
.. The team can be selected in 10Cs x 5C3 x gC2 x 2C1 ways
= 252 x 10 x 28 x 2 ways
= 141120 ways

Example 3.47: Out of 18 points in a plane, no three are in the same straight
line except five points which are collinear. How many

(i) straightlines (ii) triangles can be formed by joining them?
Solution:
(i) Number of straight lines formed joining the 18 points,
taking 2 at atime = 18Co =153
Number of straight lines formed by joining the 5 points,
taking 2 at atime=5C> =10
But 5 coallinear points, when joined pairwise give only oneline.
.. Required number of straight lines=153-10+ 1=144
(i) Number of triangles formed by joining the 18 points,
taken 3 at atime = 18C3 =816
Number of triangles formed by joining the 5 points,
taken 3at atime=5C3=10
But 5 callinear points cannot form atriangle when taken 3 at atime.
.. Required number of triangles= 816 — 10 = 806
EXERCISE 3.5

1. If there are 12 persons in a party, and if each two of them shake hands
with each other, how many handshakes happen in the party?
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. In how many ways a committee of 5 members can be selected from
6 men and 5 women, consisting of 3 men and 2 women?
. How many triangles can be obtained by joining 12 points, five of, which
are collinear?
. A box contains 5 different red and 6 different white balls. In how many
ways 6 balls be selected so that there are atleast two balls of each colour?
. In how many ways can a cricket team of eleven be chosen out of a batch
of 15 playersif
(i) thereisno restriction on the selection

(ii) aparticular player isaways chosen;

(iii) aparticular player is never chosen?
. A candidate is required to answer 7 questions out of 12 questions which
are divided into two groups, each containing 6 questions. He is not
permitted to attempt more than 5 questions from either group. In how
many ways can he choose the 7 questions.
. There are 10 points in a plane, no three of which are in the same straight
line, excepting 4 points, which are collinear. Find the

(i) the number of straight lines obtained from the pairs of these points
(i) number of triangles that can be formed with the vertices as these

points.

. In how many ways can 21 identica books on Tamil and 19 identica
books on English be placed in a row on a shelf so that two books on
English may not be together?
. From aclass of 25 students, 10 are to be chosen for an excursion party.
There are 3 students who decide that either al of them will join or none
of them will join. In how many ways can they be chosen?

3.4 Mathematical Induction:
Introduction:

The name ‘Mathematical induction’ in the sense in which we have given
here, was first used by the English Mathematician Augustus De-Morgan
(1809 — 1871) in his article on ‘Induction Mathematics' in 1938. However the
originator of the Principle of Induction was Italian Mathematician Francesco
Mau Rolycus (1494 — 1575). The Indian Mathematician Bhaskara (1153 A.D)
had also used traces of ‘Mathematical Induction’ in hiswritings.

“Induction is the process of inferring a general statement from the truth of
particular cases’.
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For example,4=2+2, 6=3+3, 8=3+5, 10=7+3andsoon.

From these cases one may make a genera statement “every even integer
except 2 can be expressed as a sum of two prime numbers. There are hundreds
of particular cases where this is known to be true. But we cannot conclude that
this statement is true unless it is proved. Such a statement inferred from
particular cases is called a conjecture. A conjecture remains a conjecture until it
is proved or disproved.

L et the conjecture be a statement involving natural numbers. Then a method
to prove a general statement after it is known to be true in some particular cases
is the principle of mathematical induction.

Mathematical induction is a principle by which one can conclude that a
statement is true for al positive integers, after proving certain related
propositions.

The Principle of Mathematical Induction:

Corresponding to each positive integer n let there be a statement or
proposition P(n).

If (i) P(1)istrue,

and (ii) P(k+ 1) istrue whenever P(K) istrue,

then P(n) istrue for al positive integersn.

We shall not prove this principle here, but we shall illustrate it by some
examples.

Working rulesfor using principle of mathematical induction:

Step (1) :  Show that the result istruefor n = 1.

Step (2) : Assume the validity of the result for n equal to some
arbitrary but fixed natural number, say k.

Step (3) :  Show that theresult isalso truefor n =k + 1.

Step (4) : Conclude that the result holds for al natural numbers.

Example 3.48: Prove by mathematical induction n2 +niseven.

Solution: Let P(n) denote the statement  “ n2 +niseven”

Step (1):
Putn = 1
n2en = 12+1
= 2, whichiseven
- P(1) istrue
Step (2):

Let us assume that the statement be true for n = k
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(i.e) assume P(k) betrue.
(i.e) assume “ k2 + kiseven” betrue (D
Step (3):
To prove P(k + 1) istrue.
(i.e) to prove (k + 1)2 +(k+1)iseven
Consider  (k+1)°+(k+1) = K+2k+1+k+1
K2+ 2k + K+ 2
(P +1) +2(k + 1)
an even number + 2(k + 1), from (1)

sum of two even numbers
an even number

- P(k+ 1) istrue.
Thusif P(K) istrue, then P(k + 1) isaso true.
Step (4):
.. By the principle of Mathematical induction, P(n) istruefor al neN.
i.e.n”+nisevenforal neN.

L . +1
Example 3.49: Prove by Mathematical induction1+2+3+ ...+ n= L n2 ,
neN
. +1
Solution: Let P(n) denote the statement: “1+2+3+...+n= n n2 K
Putn=1
+
P(1) isthe statement : 1= le—lz
12)
1= 2
=1
- P(1) istrue
Now assume that the statement be true for n = k.
(i.e) assume P(k) be true.
. k(k+1
(i.e.) assume 1+2+3+...+k= 2 ... (1) betrue
To prove P(k+ 1) istrue
. k+1)(k+2) .
(ile)toprovel +2+3+ ... +k+ (k+1)= ﬁ_%_) istrue,

[1+2+3+...+|<]+(|<+1)=K%2 + (k+1)  from (1)

100



k(k+1) +2(k+ 1)
B 2
_(k+D) (k+2)
B 2
- P(k+ 1) istrue.
Thusif P(K) istrue, then P(k + 1) istrue.
By the principle of Mathematical induction, P(n) istruefor all neN

+
1+2+3+...+n=mnz—12 for al neN

Example 3.50: Prove by Mathematical induction
nn+1) (2n+1)
12422424 en2 2 MOEDENEL ¢ g nen

Solution:
13 ”
Let P(n) denote the statement 12 + 22 + 32 +..+ n2 =J—L(—ln n: 162n *1
Putn=1
1(1+1)[2(1) +1
P(l)isthestatement:lzz ( )(_[3 (1) +1]
1(2) (3)
1= 6
1=1
- P() istrue.
Now assume that the statement be true for n = k.
(i.e) assume P(K) be true.
. + +
(o) 124224374 i@ irlli@el) e
To prove: P(k + 1) istrue
(i.e.) to prove: 12+22+32+. . .+k2+(k+1)2 = (er D) (k +62) (2k+3) istrue.

k(k+1) (2k+1)
[12+2%+3%+ . +K] + (k+1)° = kk+162k+1 + (k+ 1)

_ k(k+1) (2k+1) +6(k + 1)
- 6

(k+ 1) [K(2k+ 1) + 6(k + 1)]
- 6

_ (k+1) (2k*+ 7k + 6)

- 6
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12+ 22+ 32+ I k2+ (k+1)2 = (k+1) (k+62) (2k+3)
. P(k+1)istrue
Thusif P(K) istrue, then P(k + 1) istrue.
By the principle of Mathematical induction, P(n) istruefor al neN

. (n+1) (2n+1)
(i.e) 12+22+...+n2=nn 6 L for al neN
Example 3.51: Prove by Mathematical induction
(n+1)(n+2)
12+23+34+ +nn+1) =0+ n*2

3 ,heN.
Solution:
Let P(n) denote the statement “1.2+2.3 + 3.4 +...+ n(n + 1)= Lt 13 n+2
Putn=1
' 11+1)(A1+2)
P(1) isthe statement : ~ 1(1+1) = 11 13 1+2
1p = 148
23)
2= 3
2=2
. P(1) istrue.

Now assume that the statement be true for n=k.
(i.e.) assume P(k) betrue

: k(k+1) (k+2)
(i.e)assume 1.2+23+34+.. . +kk+1) = kk+13 k+2 be true

Toprove: P(k+ 1) istrue
i.e. to prove:
12+23+34+ +k(k+ 1)+ (k+ 1) (k+ ) = DA (3

Consider 1.2+23+34+ .. ., +tkk+1)+(k+1)(k+2
[L2+23+ ... +kk+1)] +(k+ 1) (k+2)

k(k + 13Hk+2) + (k+1) (k+2)

_ kk+1)(k+2)+3(k+1) (k+2)
- 3

_ (k+1D) (k+2) (k+3)

- 3
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- P(k+ 1) istrue
Thusif P(K) istrue, P(k + 1) istrue.
By the principle of Mathematical induction, P(n) istruefor al neN.

+1 + 2
12+23+34+ . +n(n+1) = OHL0O2) 20

Example 3.52: Prove by Mathematical induction 23n — lisdivisible by 7, for
all natural numbersn.

Solution:
Let P(n) denote the statement “2°" — 1 is divisible by 7"
Putn=1
Then P(1) isthe statement : 23(1) -1= 23 -1

8-1
7, whichis divisible by 7

. P(1) istrue
Now assume that the statement be true for n = k
(i.e.) assume P(K) betrue. (i.e)*“ 23k —lisdivisibleby 77 betrue

Now to prove P(k + 1) istrue. (i.e) to prove 23 k+1)_ lisdivisibleby 7
Consider 22K _q-%*3 4
=K B =0% g1
=% 8_1+48-8  (add and subtract 8)
-2*_1s8+8-1
= (23k— 1) 8+ 7=amultipleof 7+ 7
= amultiple of 7
~ 236D s divisibleby 7

- P(k+ 1) istrue
Thusif P(K) istrue, then P(k + 1) istrue.
By the principle of Mathematical induction, P(n) istruefor al ne N

. 2" _1isdivisible by 7 for al natural numbersn.
Example 3.53: Prove by Mathematical induction that a" — b" is divisible by
(a—b) foral ne N
Solution: Let P(n) denote the statement “a” — b" is divisible by a— b,
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Putn=1

Then P(1) is the statement : a —-b~ = a-bisdivishlebya-b
- PQQ) istrue.

Now assume that the statement be true for n = k.

(i.e) assume P(K) betrue. (i.e) a“— b¥isdivisible by (a— b) betrue.

ak—bk
= a_b - c (say) whereceN
- A_b¢ = ca-b)
N & = b ca-b) (D)

Now to prove P(k + 1) istrue. (i.e.) to prove: a k+1_ bk *1 isdivisible

bya-b
Consider ak+1—bk+1 ak.a—bk b

[0+ c@a-b)] a-b“b

ba + ac(a— b) — bb

b(a—b) + ac (a b

(a—b) (b + ac) is divisible by (a— b)

- P(k+ 1) istrue.
By the principle of Mathematical induction, P(n) istruefor al ne N
- a"—bisdivisbleby a— bfor al ne N
EXERCISE 3.6
Prove the following by the principle of Mathematical Induction.
(1) (2n+1) (2n-1)isan odd number for al ne N
(2) 2+4+6+8+...+2n=n(n+1)
(3) 1+3+5+ . +(2n-1)=n’

4 1+4+7+...+(3n—2)=m%2

(5) 4+8+12+...+4n=2n(n+1)
n? (n+ 1)?
(6) 13+23+33+...+n3=%

1 1 1 1 1
N5+ +3m +..+5m =1-%
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(8) Inthearithmetic progressiona, a+d,a+2d, ...

the nth termisa+ (n—1)d

© 5" - 1isdivisible by 24 for all ne N

10) 102"~ L+ 1isdivisibleby 11.

(11) n(n+1) (n+ 2)isdivisible by 6 where nisanatural number.
(12) Thesum S, =n°+3n° +5n + 3isdivisibleby 3 for all ne N
(13) 7°"+ 16n— 1 isdivisible by 64

(14) 2">nforalne N

3.5 Binomial Theorem:
Introduction:
A BINOMIAL is an algebraic expression of two terms which are
connected by the operation *+’ (or) ‘-’
For example, x+ 2y, Xx—vy, x3+4y, a+b etc.. are binomids.

Expansion of Binomialswith positive Integral Index:

We have aready learnt how to multiply a binomial by itself. Finding
squares and cubes of a binomial by actual multiplication is not difficult.

But the process of finding the expansion of binomials with higher powers
such as (x + a)lo, (x+ a)17, (x+a) 25 etc becomes more difficult. Therefore we
look for a general formula which will help us in finding the expansion of
binomials with higher powers.

We know that
(x+a) 1:x +a=1Cq xlaO +1C1 xVat

(x+ a)2 =x2 + 2ax + a2 = 2C0x2a0 + zclxlal + 2C2x0a2

(x+ a)3 :x3 + 3x2a + 3xa2 + a3 = 3Cox3a0 + 3C1x2a1 + 3C2xla2 + 3C3x0a3

(x+a)4:x4+4x3+6x2a2+4x513+514:400x4<310+4C1x3a1+4ngzaz+4C:3x1:'313+4C4x0a4
Forn=1, 2, 3, 4 the expansion of (x + a)n has been expressed in avery
systematic manner in terms of combinatorial coefficients. The above
expressions suggest the conjecture that (x + a)n should be expressible in the
form,
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(x+a)" =nCo a0 + nCix" ~ e o+ nCn- 1 st a L nensla”
In fact, this conjecture is proved to be true and we establish it by using
the principle of mathematical induction.

Theorem 3.6: (Binomial theorem for a Positive Integral Index)

Statement: For any natural number n

n_0 n—lal+

(x+a)" =nCox"a  +nCix ra

a+..

+nCn_1 xa? " nensla”

...+ nCrx"~

Pr oof:
We shall prove the theorem by the principle of mathematical induction.
Let P(n) denote the statement :
x+a)" = nCoxna0+ nCix" ~ e v A

+nCn1 xa" L nenxla”

Step (1) :
Puun=1
Then P(1) isthe statement : (X + a)1 = 1Cox1 a’+ 1C1 X 1-1,1
X+a=x+a
.. P(1) istrue
Step (2):
Now assume that the statement be true for n =k

(i.e) assume P(k) be true.
(x+ a)k =kCoxk ao+k01x k=11, kCo x K224 4 kCr x KTy 4 kCk o
betrue ... (1)
Step (3):
Now to prove P(k + 1) istrue
(i.e) Toprove

(k+1) -1.1 (k+1)-2 2

K+1 k+1
(x+a) = (k+1)Cox + (k+ 1)C1X a +(k +1)Cox a+..

k+1)—r _r k+1
+(k+1)Crx( ) a+..+k+1Ck+1a
Consider  (x+a)<* 1 = (x+a)(x+a)

= [kCoxk+ kClxk Ll kCo xK =22

+kCy AL kaak] (x+a)

+... +kC(r_1)xk —=1) -1
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= [kCoxk+1+kClxka1+kngk 124 +kCr_1xk_r+2ar_l
+ kCrxk_ Tl s kaxak]
+[kCoxka+ kC1xk_ 12 +kngk_2a3+ ot kCr_lxk S iy
+KCy X _rar+1+...+kaak+]]
x+a Tl = ke T4 (ke + keg) Xa + (kCp + ke x K T L a?
b GG DT T sk T
We know that kCr+kC|’_1 = (k+ ]_)Cr
Put r=1,23, ... etc.
kC1+kCp = (k+1)C1
kC2 +kC1 = (k+1)C2
kCr + kCy_q = (k+1)Cr for1<r<k
kCo=1 = k+1Co
kCk =1 = k+1)Ck+1)
.. (2) becomes
k+1 k+1 k k-12
(x+a) =  k+1CoX “T+k+pCixa+tk+1Cox a
k+ 1-
+...+ k+1Cr X rar+...+(|(+1)C(|<+1)ak+l

. P(k+ 1) istrue
Thusif P(K) istrue, P(k + 1) istrue.
.. By the principle of mathematical induction P(n) istrue for all neN

-11

(x+a)" =nC0xna0+nC1xn a +..+nCrxX"Ta+ ...

+nNCp-1 xt a' L nCn xoan for al neN
Some obser vations:

1. Intheexpansion

(x+a)" :nCoxna0+nC1xn B I o g

+nCp-1 xta" ~ L nen xoan, the general termisnC, X"~ " d'.

Since thisis nothing but the (r + 1)th term, it isdenoted by Ty 4+ 1
ie Try1 = nCrx" 4.

2. The(n+ 1)th termis Th+1 = nChX' "a"=nCpa", thelast term.

Thusthere are (n + 1) termsin the expansion of (x + a)"
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. The degree of x in each term decreases while that of “a’ increases such
that the sum of the powersin each term isequal to n.

n n n-—r_r
Wecanwrite(x+a) = > nCyX a

r=0
. nCp, nCq, nCy, ..., nCy, ... , nCp are caled binomia coefficients. They
are also writtenasCg, C1,Co, ..., Ch,

. From the relation nC; = nCp, _  , we see that the coefficients of terms
equidistant from the beginning and the end are equal.

. The binomia coefficients of the various terms of the expansion of
(x+ a)nfor n=1,2, 3, ... formapattern.

Binomials Binomial coefficients
(x+a)° 1
(x+ a)1 1 1
(x+2)° 1 2 1
(x+a)° 1 3 3 1
(x+a) 1 4 6 4 1
(x+a)° 1 5 10 10 5 1

This arrangement of the binomia coefficients is known as Pascal’s

triangle after the French mathematician Blaise Pascal (1623 — 1662). The
numbers in any row can be obtained by the following rule. The first and last
numbers are 1 each. The other numbers are obtained by adding the left and right
numbersin the previous row.

1, 1+4=5 4+6=10, 6+4=10, 4+1=5 1

Some Particular Expansions:

(x+ a)n =nCop xna0 + nClxn

In the expansion

-11 _
a +..+nCrx" "a +...

+nCn_1 ha? "L nenla . @)

. Ifweput —a intheplaceof a weget
11 n-2 a2—

 (x—a)"=nCox" = nC1 x" " a + nCox

r_r

+D)'nex" T L+ e, &
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We note that the signs of the terms are positive and negative
aternatively.

2. Ifweput 1 intheplaceof a in (1) we get,
(l+x)n = 1+nC1x+nC2x2+ ot nCrxr + ... +nCnxn ...(2
3. Ifweput —x intheplaceof x in(2) we get
(l—x)n =1-nCyix+ nC2x2— (- l)r nCrxr +.. +(- 1)n nCnxn
Middle Term:

The number of terms in the expansion of (x + a)n depends upon the index n.
Theindex is either even (or) odd. Let us find the middle terms.
Case(i) : niseven

The number of termsin the expansion is (n + 1), which is odd.

Therefore, thereis only one middle term and it is given by Tg +1
Case(ii) : nisodd

The number of termsin the expansion is (n + 1), which is even.

Therefore, there are two middle terms and they are given by Tn+1 and

2

Tn+3

2
Particular Terms:

Sometimes a particular term satisfying certain conditions is required in

the binomial expansion of (x + a)n. This can be done by expanding (x + a)n and
then locating the required term. Generally this becomes a tedious task, when the

index n is large. In such cases, we begin by evaluating the genera term
Tr+1 and then finding the values of r by assuming T,+1 to be the required term.

To get the term independent of x, we put the power of x equal to zero and

get the value of r for which the term is independent of x. Putting this value of
r in Tr4+1, we get the term independent of x.

- . L 5 . (.2 3\
Example 3.54:Find the expansion of : (i) (2x + 3y)™ (ii) (Zx - x)
Solution:
(i) (2x+3y)°=5C0(29° (3)° +5C1 (29" (3" +5C2 (29° (3y)°
+5C3 (29% (3)° + 5Ca (29" 39" + 505 (20° (39)°
= 132 (1) + 5(16¢Y) (3y) + 108) (9y9)

109



+10(44) (27y°) + 5(20) 8Ly + (1) (1) (243y°)
.5 4 32 23 4 5
= 32X +240x 'y + 720X y" + 1080xy + 810xy + 243y

i) (22 = ac0)" (-5 +ac (-5
+4C2 (20)° (‘ %2 *4C3 (@) (‘ %3 +4Ca (X)) (_ %4
- 01680 + 468 (_ % + 6(4x) (%) + 429 (—%

81
@ @ ()
= 16x8 - 96x° + 216x2—2—)1(6 +8—411
X
Example 3.55: Using binomial theorem, find the 7th power of 11.
Solution:
117 = (1+10)’
7,0 6,1 5, .2 4, 3 3, 4
=7C0 (1) (10) +7C1 (1)~ (10)"+7C2(1)"(20) +7C3(1) (10)"+7C4 (1)7(10)
2, .5 1,6 0,7
+7Cs5 (1)” (10" + 7Ce (1) (10) " + 7C7 (1)~ (10)

_ 7x6, 2 7Tx6x5, 3 7x6x5_ 4 7x6 5 6 7
_1+70+1><210 +1><2><3l0 "1x2x3 10 T1x2 107+ 7(10)"+ 10
= 1+ 70+ 2100 + 35000 + 350000 + 2100000 + 7000000 + 10000000

= 19487171

17
Example 3.56: Find the coefficient of x5 in the expansion of (x + —13j
X

Solution:
17

In the expansion of (x + —13j , the general termis
X

;
17-r (1
Tr+1=17C X (;3)

17— 4r
= 17CX

Let T, + 1 bethe term containing x5
then, 17-4r =5 =71 =3
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S Tr+1=T3+1

= 17Caxt 744 Zggox®

.. coefficient of x5 = 680

210

Example 3.57: Find the constant term in the expansion of (\ﬁ( - —2)
X

Solution:
10

In the expansion of (\/3( - —22)
X

r
-2
Tre1= 100 () (TX j

10—-r r 10-r
-2 r —-2r
= 10Crx 2 KX—Zr)—=1OCr(—2)X 2
10-5r

r
10Cr (-2) x 2
Let T, + 1 bethe constant term
10-5r

Then, > = 0=>r=2
10- 5(2)
. The constant term = 10C2(-2)°x 2
_10x9 0
= Ix2 X 4 x X
= 180

Example 3.58: If ne N, in the expansion of (1 + x)n prove the following :
(i) Sum of the binomial coefficients = "
(ii) Sum of the coefficients of odd terms = Sum of the coefficients of even
terms=2""1
Solution: The coefficients nCg, nCq, nCo, ... , nCy in the expansion of

a+ x)n are called the binomial coefficients, we write them as Cp, C1, Co, ... Cp,
1+%)" = Co+Cix+Cpl+.. +CxX + ... +CpxX"

Itisanidentity inx and so it istruefor all values of x.
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Putting x = 1 we get
n

2 = Cg+CpL+Co+...+Cp
puux = -1
0 = Cp-C1+Co—-Cz+...(-1)"Cp
=Cp+Co+Cg+...= C1+C3+Cg+...
It is enough to prove that
Co+Cp+Ca+... =Ci+Cg+Cs+..=2""1
Let Co+tCo+Cyg+... =C1+C3+Cs+...=k ... (2
From (1), Co+C1+Co+...+Cy =2"
2k =2" From (2)
K =2n—l
From (2), Co+Cp+Ca+... =Ci+C3+Cs+..=2""1
EXERCISE 3.7
(1) Expand the following by using binomial theorem
(i) (3a+ 5b)° (i) (a— 2b)° (iii) (2x - 3)°
_ 1\11 2 6 . 4
) (x+y) ) 08 +2y) (vi) (N5 + W)

(2) Evauatethe following:

() (2+1)° + (N2-1)° (i) (V3+1)° - (\3-1)°

(i) (1+45)° +(1-45)°  (v) (2/a+3)° +(2/a-3)°

7 7
W) (2++/3)" - (2-3)
(3) Using Binomial theorem find the value of (101)° and (99)°.

(4) Using Binomial theorem find the value of (0.998)°.
(5) Find the middle term in the expansion of

2x°\8 16
@) (3x-%2) (ii) ()—E%)

16 17
(i) (3-) -2 W (x . fzj
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(6)

()
©)

9)

(10)

Show that the middle term of

n n
1.357...(2n-1)2 x
(i) (1+xis (n! )

2n
i) (H%() . 135. ..r.“(zn— 1)

o1 (p".1357...2n-1
(i) (X_Q) is o 2

5 1 11
Find the coefficient of X~ in the expansion of (x - Q)

Find the term independent of x (constant term) in the expansion of
12 2 9 17

L2 1 L[4 3 b

) (ZX +§) (||)( 3 —g(j (iii) (gx__zcxj

In the expansion of (1 + x)zo, the coefficient of rth and (r + 1)th terms are
intheratio 1: 6, find thevalue of r.

If the coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n
arein A.P., find n.
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4. SEQUENCE AND SERIES

4.1 Introduction

We hear statements such as “a sequence of events’, “a series of tests before
the board examination”, “a cricket test match series’. In all these statements the
words “sequence” and “series’ are used in the same sense. They are used to
suggest a succession of things or events arranged in some order. In mathematics
these words have special technical meanings. The word ‘ sequence’ isused asin
the common use of the term to convey the idea of a set of thingsin order, but
the word “series’ isused in adifferent sense.

L et us consider the following example.

A rabbit and a frog are jumping on the same direction. When they started
they were one metre apart. The rabbit is jumping on the frog in order to catch it.
At the same time the frog is jumping forward half of the earlier distance to
avoid the catch. The jJumping processis going on. Can the rabbit catch the frog?

z g = 5

: - : Z

= £ ] =

i ] = [T

[—

R a 1 as 1
| F| 2 R:{(—DF_\ 8 Rﬁ
® . o *——e--
: R, L F, % REDF,

Fig. 4.1

Let a1, ap, a3, a4 ... be the distances between the rabbit and the frog at the
first, second, third, fourth instants etc,. The distance between the rabbit and the
frog at the first instant is 1 metre.

R A SO S S
. 1 - ] 2 - ] 3 - - ] - -

2 4752 8 753
Here a;, ap, ag ... form a sequence. There is a pattern behind the

arrangement of a;, ap, ag ... Now a, has the meaning,
(i.e) an isthe distance between the rabbit and the frog at the M instant

Further a, = ﬁ . When a, becomes 0 the rabbit will catch the frog.
on—

Asn— o, an—>0
i.e. the distance between the frog and the rabbit is zero when n — o
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At this stage the rabbit will catch the frog.

This example suggests that for each natural number there is a unique real
number.

i.e 1 2 3 n
A \A \A \
al ap as dn
1 B A A N 1L
27 ol 4 92 on-1
Consider the following list of numbers
(& 8, 15, 22, 29, ...... (b) 6, 18, 54, 162, ......

In the list (a) the first number is 8, the 2" number is 15, the 3 number is
22, and so on. Each number in the list is obtained by adding 7 to the previous
number.

In the list (b) the first number is 6, the 2™ number is 18, the 3 number is
54 etc. Each number in the list is obtained by multiplying the previous number
by 3.

In these examples we observe the following:

(i) A rule by which the elements are written (pattern).

(ii) An ordering among the elements (order).

Thus a sequence means an arrangement of numbers in a definite order
according to somerule.

4.2 Sequence

A sequence is a function from the set of natural numbers to the set of red
numbers.

If the sequence is denoted by the letter a, then the image of n € N under
the sequence aisa(n) = ap.

Since the domain for every sequence is the set of natural numbers, the
images of 1, 2, 3, ... n ... under the sequence a are denoted by aj, a, a3 ... ap,
... respectively. Hereay, ap, a3 ... ap, ... form the sequence.

“A sequenceis represented by itsrange’.

Recursive formula

A sequence may be described by specifying its first few terms and a
formula to determine the other terms of the sequence in terms of its preceding
terms. Such aformulais called as recursive formula.
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For example, 1, 4,5, 9, 14, ..., is a sequence because each term (except the
first two) is obtained by taking the sum of preceding two terms. The
corresponding recursive formulaisan+2=an+an+1,Nn>1 herea;=1, ay=4
Terms of a sequence:

The various numbers occurring in a sequence are caled its terms. We
denote the terms of a sequence by aj, a», as, ... , an, ... , the subscript denote
the position of the term. The n" term is called the general term of the sequence.
For example, inthesequencel, 3, 5, 7, ... 2n-1, ...

the 1% termiis 1, 2 term is 3 ... .. and "M termis2n— 1

Consider the following electrical circuit in which the resistors are indicated
with saw-toothed lines.

VC) ? ?|3 %5 §2 |3

If al the resistors in the circuit are 1 ohm with a current of 1 ampere then
thevoltage acrosstheresistorsare 1, 1, 2, 3, 5, 8, 13, 21, ...

In this sequence there is no fixed pattern. But we can generate the terms of
the sequence recursively using a relation. Every number after the second is
obtained by the sum of the previous two terms.

i.e. Vi=1
V2:l
V3 =Vo+V;
V4 =V3+V>
V5 =Vy+V3

Vhn=Vp_1+Vp_2

116



Thus the above sequence is given by the rule:
Vi=1
v2=1
Vn=Vn-1+Vn-2 ; n>3
This sequence is called Fibonacci sequence. The numbers occurring in this

sequence are called Fibonacci numbers named after the Italian Mathematician
Leonardo Fibonacci.

Example 4.1:

' . n+1
Find the 7'" term of the sequence whose n'" term is (- 1) *1 (—)

n
Solution:

. +1
Given an = (- 1)”+1(—nn )

substituting n=7, weget
8 8
ar= (17" (5) =5

4.3 Series

For a finite sequence 1, 3, 5, 7, 9 the familiar operation of addition gives
the symbol 1 + 3 + 5+ 7 + 9 which has the value 25.

If we consider the infinite sequence 1, 3, 5, 7, ... then the symbol
1+3+5+7+ ... has no definite value, because when we add more and more
terms the value steadily increases. 1 + 3+ 5+ 7 + 9 + ... is caled an infinite
series. Thus a seriesis abtained by adding the terms of a sequence.

If a, ap, ag, ... an ... isaninfinitesequencethena; +ax + ... +ap + ... is

0
called aninfinite series. Itisaso denoted by Y ax
k=1
If Sh=a;+ax+ ... + aythen S, iscaled the nth partial sum of the series

e 0]
P
k=1
h < 1
Example 4.2 Find the n' partial sum of the series >’ E
n=1
Solution:
1 1 1
==+ 5 +...+5
RPTP 2"
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1 1 1 1
andSleg +? +...+ 4 +2n+1

1
Sn+1=Sn+W (D

Also we canwrite S, + 1 as

7
il

1
21
;[l+;+;+ *ﬂ
2 2 22 e 2n
1
2
1

Si+1=7 [1+8] e

From (1) and (2) Sn+ 3 =3 [1+ 4

1
28(]+? =1+,

1
LS = 1—?
Note: This can be obtained by using the idea of geometric series also. We know

a(l-—r"
(1-r1)

that the sum to n terms of a geometric seriesis S, =

1 1
Here =5, n=n, r=§(<1)

EXERCISE 4.1
(1) Writethefirst 5 terms of each of the following sequences:

2
()an=(-1" 15"+t (ii)an:M (iii) an = — 11n + 10

4
. n+1 1-(n"
V) an=p13 Wa=""5r  (an=5;

118



(2) Find theindicated terms of the following sequences whose nM term is

. 1 . nm
(an=2+y ; a5, a7 (")an:COS(?) &, as
2
(n+1) . _
(iian=""7"" a7, a0 ([Va=(-1)""12""" a5, ag

(3) Findthefirst 6 terms of the sequence whose general termis
n’~1 if nisodd

an= n?+1 e
2 if niseven

(4) Writethefirst five terms of the sequence given by
lap=ax=2, an=an_1—-1, n>2
(iDa;=1, ax=2,ap=an_1+an_2,n>2
(iia;=1, ah=nap_1,n=2
(iVyag=ap=1, an=2ap-1+3ap-2,n>2

e 0]

(5) Findthen partial sum of the series ¥ ==
n=1

o0
(6) Find the sum of first ntermsof the series Y. 5"
n=1
1

o0
(7) Find the sum of 101" terms to 200" term of the series > ?

n=1
4.4 Some special types of sequences and their series
(1) Arithmetic progression:
An arithmetic progression (abbreviated as A.P) is a sequence of humbersin
which each term, except the first, is obtained by adding a fixed number to the

immediately preceding term. This fixed number is called the common
difference, which is generally denoted by d.

For example, 1, 3,5, 7, ... isan A.P with common difference 2.
(2) Arithmetic series:

The serieswhose terms arein A.Pis called an arithmetic series.

For example, 1+ 3+ 5+ 7+ ... isan arithmetic series.
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(3) Geometric progression

A geometric progression (abbreviated as G.P.) is a sequence of numbersin
which the first term is non-zero and each term, except the first is obtained by
multiplying the term immediately preceeding it by a fixed non-zero number.

Thisfixed number is called the common ratio and it is denoted by the letter ‘r’.
2

Thegeneral formof aG.P. is a, ar,ar, ..., witha=0andr =0, the
firsttermis‘a’
(4) Geometric series:
2 n-1

The seriesa+ ar + ar“ + ... + ar + ... is called a geometric series
because the terms of the series are in G.P. Note that the geometric seriesisfinite
or infinite according as the corresponding G.P. consists of finite (or) infinite
number of terms.

(5) Harmonic progression:

A sequence of non-zero numbers is said to be in harmonic progression
(abbreviated as H.P.) if their reciprocalsarein A.P.

1 1

The general form of H.P is 1

a' at+d’ a+2d -+ wherea=0.
th . 1
n termofH.P.|sTn=m
111 . . . .
For example the sequences 1,§,§,§, ...isaH.P., sincetheir reciprocals

1,59 13, ... arein A.P.

Note: Thereis no general formula for the sum to n terms of a H.P. as we have
for A.P. and G.P.

Example 4.3 If the 5™ and 12" terms of a H.P. are 12 and 5 respectively, find
the 15" term.

Solution:
1
T”_a+(n—1)d

. 1 1
Given T5=12:m=12:>m=12
(':1+4d=:|_—:|'2 .. (D
d Ti1p=5 — L 5 —1_ =5
an 1259= Sy 2-nd - ° = a+iid
= a+11d=% ...(2
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7 1
) - (1) =55 = d=g;
1 1
1 = a+4 &)) =1
LA 1 1 4
ats0 " 12 2712 T80
_1
=750
R 1 ~ 1
S5 = _ =
a+ (15 - 1)d %*1“6_10
_1 _60
=15 ~ 15
60
T15:4

4.5 M eans of Progressions
4.5.1 Arithmetic mean

A is called the arithmetic mean of the numbers a and b if and only if
a, A, barein A.P. If A isthe A.M betweenaand bthena, A, barein A.P

= A-a=b-A
= 2A =a+b
a+b
= A= 2
A1, Ay, ..., Ap are caled n arithmetic means between two given numbers

aandbif andonly if a, A1, Ao, ... Ap, barein A.P.
Example 4.4 : Find the n arithmetic means between a and b and find their sum.
Solution:
Let Aq, Ao, ..., Anp bethen A.Ms between a and b. Then by the definition
of AMs a,Aq, Ay, ..., An,bareinA.P
Let the common difference be d.
S Ai=a+d, Ap=a+2d,Az3=a+3d,..., Ap=a+ndandb=a+ (n+ 1)d
= (h+ld=b-a

b-a
nd=1T
. _ b-a _ 2(b—2a) __ nb-3a)
..Al—a+n+1,A2—a+ n+1 ...An—a+ n+1
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Sum of n A.Msbetweenaand bis

Ap+Az+ ..+ A, =[a+b_ﬂ +[a+gb;a)J +.. +[a+MJ

n+1 n+1 n+1
b-—a
:na+§ml[1+2+...+n]
_ (b—a) n(n+1) _ n(b —a)
-na+(n+1). 2 = na+—

_2natnb—-na _nat+nb _ (a+b)
= 2 -T2 Th2

Example 4.5: Prove that the sum of n arithmetic means between two numbersis
n timesthe single A.M between them

Solution:
Let Aq, Ay, ..., Apbethen A.Msbetween aand b.

From the example (4.4)

+
Aj+Ar+Ag+ .. +A, = n(aTb) = n x (A.M between a and b)

= n (single A.M between a and b)

Example 4.6: Insert four A.Ms between — 1 and 14.
Solution:

Let A1, Ap, Az, Az bethefour A.Ms between — 1 and 14.

By the definition — 1, A1, Ao, Az, A4, 14 arein A.P. Let d be the common
difference.
SLAp=E-1+d,;A2=—1+2d;A3=-1+3d,; A4=-1+4d; 14 = -1+5d

.d=3

LApE-1+3=2;A=—-1+2x3=5;A3=-1+3x3=8;A4=-1+12=11

.. Thefour AMsare2, 5, 8and 11.
4.5.2 Geometric Mean

G is caled the geometric mean of the numbers a and b if and only if
a, G, barein G.P.

G _b_
= 2 =G =
= G®=ab

G = ++/ab
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Note:
(1) If aandbarepositivethen G = ++/ab
(2) If aand b are negativethen G = —+[ab

() If a and b are opposite sign then their G.M is not real and it is
discarded since we are dealing with real sequences.

i.e. If aand b are opposite in signs, then G.M between them does not exist.

Example 4.7: Find n geometric means between two given numbers a and b and
find their product.

Solution:
Let Gy, Gy, ..., G be n geometric means between a and b.

By definition a, Gy, Go, ..., G, barein G.P. Let r be the common ratio.

ThenGy=ar, Gy=ar? ...,Gp=ar"andb=ar"*?1

b 1
n+l1_ B . _(_b n+1
r T a Sr= a)
_n_

1 2
- e T el el

The product is

1 2 _n_
G1.Gp.G3.Gy = a(g)n+1 .a(g)n+1 ...a(g)m'l

1+2+...+n
- |
[b ngn+1)} n
_ | M2n+1)| _ n@)z
= |2 = (2
n
= (a)?
Example 4.8: Find 5 geometric means between 576 and 9.

Solution:
Let G, Gy, G3, Gy, G be5 G.Mshetweena=576andb=9

Let the common ratio ber
Gy = 5761, Gp = 57612, G3 = 576r° , G4 = 576r*, Ggs=576r°, 9=576r°
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1 1
6_ _9 (96 i)é
= = 576 = r_(576) (64
_ 1
r=1s

Gy = 576r :576><% =288 G

576r2 = 576 x %1 =144

576r* = 576 x 1—16 =36

1
Gg=576r°=576x5 =72 G4

1
Gs = 576r° =576 x 35 =18

Hence 288, 144, 72, 36, 18 are the required G.Ms between 576 and 9.
Example 4.9: If b isthe AM of aand c (a = ¢) and (b — a) is the G.M of
aand c—a, showthata:b: c=1:3:5
Solution:

Givenbisthe A.M of aand c

.. a,b,carein A.P. Letthecommon differencebed

S~ b=a+d .. (Y

cza+2d ...(@
Given (b—a) isthe G.M of aand (c- a)
- (b-a)°=ac-a)

d? = a(2d) From (1) and (2)
. d=2a [~d=0]
~ b=a+d c=a+2d
b=a+2a c=a+2(2a)
[b=3a] [c = 5al

s.a:b:c=a:3a:5a
=1:3:5
4.5.3 Harmonic mean
H is called the harmonic mean betweenaand b if a, H, barein H.P

. 1 1 1 )
If a, H, barein H.Pthen 2 H'b arein A.P

(ORI
Tl

1_a'h 2 _
= H™ 2 ' H~

+

Q|
ol
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2ab
a+b

H=

ThisH issingle H.M betweenaand b
Definition:
H4, Hop, ... Hp are called n harmonic means between a and b if a, Hq, Ho,
..Hp, bareinH.P.
Relation between A.M., G.M. and H.M.
Example 4.10: If a, b are two different positive numbers then prove that
iH)AM.,GM,HM.aeinG.P. (ii)AM>GM>HM
Pr oof:

am =222 oM =y ;oMM = 22
. GM iJab  2/ab
(i) AM “a+b ~ a+b - (D)
2
2ab
HM a+b _2Jab
GM = Jab ~ a+b - ()
From (1) and (2)
GM _HM
AM “GM

AM, G.M, HMarelnGP

(ll)AM GM__ \/_b M

—4/b
:M >0 ~a>0;b>0;axb
AM > GM .. (1)
2ab
GM-HM =+fab -
_~/ab(a+b) - 2ab \/_b[a+b 2\Jab]
a+b a+b
b (fa-B)°
a+b
GM >HM .. (2
From (1) and (2) AM.>GM>HM
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(8)

9)

(10)

EXERCISE 4.2
(i) Find five arithmetic means between 1 and 19
(ii) Find six arithmetic means between 3 and 17
Find the single A.M between
(i) 7and 13 (iif)5and -3 (i) (p+q) and(p—Qq)
If bisthe G.M of aand cand xisthe A.M of aand band y isthe A.M

of band c, provethat%1 +§ =2

The first and second terms of a H.P are% and% respectively, find the

9" term.

b+a N b+c _ 5

b-a b-c~

The difference between two positive numbers is 18, and 4 times their
G.M isequal to 5 times their H.M. Find the numbers.

If the A.M between two numbersis 1, prove that their H.M isthe square
of their G.M.

If a, b, carein H.P,, provethat

If a, b, carein A.P. and a, mb, c are in G.P then prove that a, nPb, c are
inH.P

If the p and ¢ terms of a H.P are q and p respectively, show that
(pq)th termis 1.

Three numbers form a H.P. The sum of the numbersis 11 and the sum
of thereciprocalsis one. Find the numbers.

4.6 Some special typesof series
4.6.1 Binomial series

Binomial Theorem for a Rational | ndex:

In the previous chapter we have already seen the Binomial expansion for a
positive integral index n. (power is a positive integer)

(x+a)"=x"+nCyx

N=lalincox" 222+, +nCx""a + ... +nCyd"

A particular formis

(1+X)"=1+mx+— 5

n

(n-1) (n-1) (-2
nn X2+nn 3!n X3+.

.t X
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When n is a positive integer the number of terms in the expansion is (n+1)
and so the seriesis afinite series. But when it is not a positive integer, the series
does not terminate and it is an infinite series.

Theorem (without proof)
For any rational number n other than positive integer

nn-1) > nh-1)(n-2) 3
12 X+ 123 X+ .

L+x"=1+nx+

provided | x| <.
Here we require the condition that | x | should be less than 1.
To seethis, put x = 1 and n = — 1 in the above formulafor (1 + x)"

The l€ft side of the formula = (1 + 1)—1=% ,
whiletherightside =1+ (-1) (1) +£_—1)%_—2) 12+ .
=1-1+1-1+ ...
Thus the two sides are not equal. Thisis because, x = 1 doesn’t satisfy | x | < 1.

This extra condition | X | < 1 isunnecessary, if nisapositive integer.

Differences between the Binomial theorem for a positive integral index and
for arational index:

1. If n e N, then (1 + X)" is defined for all values of x and if n is a
rational number other than the natural number, then (1 + x)" is defined
only when | x| <.

2. If n e N, then the expansion of (1 + X)" contains only n + 1 terms. If
nis arational number other than natural number, then the expansion
of (1 + x)" contains infinitely many terms.

Some particular expansions
We know that , when nisarational index,

(1+x)”=1+nx+n(nZT 1) X2+n(n—13)ﬂ(n—2) o ()
Replacing x by — x, we get

(1—x)n=1—nx+n(n2!_ Do _ n(n—l%!(n—Z) .. (2
Replacing n by — n in (1) we get

@A+ M=1-nx+ n(an!r Do nn+ 1%!(n *2) By (3)
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Replacing x by — xin (3), we get
n(nz-;- 1) 2+ n(n + 1§!(n +2) 3

1-X"=1+nx+

(4)
Note:
(1) If the exponent is negative then the value of the factors in the
numerators are increasing uniformly by 1
(2) If the exponent is positive then the value of the factors in the
numerators are decreasing uniformly by 1
(3) If thesigns of x and n are same then all the terms in the expansion are
positive.
(4) If thesignsof x and n are different, then the terms aternate in sign
Special cases
1 (1+x)’1 =1-x+X X+ ...
2. (1—x)_1 =1 +X+HXHXCH
3. (1+%) 2=1-2+3-4C+ ...
4, (1—x)_2 = 14+2x+3C+4C+ ..
General term:
For a rational number nand | x| <1, we have

nn-1) nn-1) (n-2)
15 X+ 12.3 X

1+x"= 1+nx+

In this expansion
First teemTq = Tg+1=1

SecondtermTQ:TlJrl:nx:% Xt
. -1
Thirdterm T3 = To 41 = ﬂ(q_zl X
_nn-1)(n-2) 3

Fourthterm T4 =T34+ = 123 X" etc.
-Dh-2)...(n—(r-1
(r + l)th term : Tr +1 - n(n ) (nl 2‘)?’ (rn (r )) XI’

The genera termis

nn-H(n-2)..rfactors , nn-1H)(n-2)...(n-r+1) ,
Tre1= r X = rl X

Example 4.11: Write the first four termsin the expansions of

(i) (1 +4x)~° where|x|<%1 (i) (1-x) "% where|x|<|
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Solution: (i) |4X|:4|X|<4G1):1 S 4x<1

S (A+H4A) 5 can be expanded by Binomial theorem.

(1+4x)°=1-(5) (4><)+§§)if’2Lll (4x)° - @ME’%%@ @3+ ...

= 1 - 20x + 15(16%%) — 35(64x°) + ...
= 1— 20X + 240x° — 22405 + ...

(i) (- xz)_4 can be expanded by Binomial theorem since | X | <1

S 1+ @R AU (7, AEXDErY) (o3,

=1+43+ 10 +20:8 + .

Example 4.12: Find the expansion of 2 +1x)4 where |x| < 2 upto the fourth term.
Solution:

—(2+x)‘4—2_4 <1+Z)_4 [X|<2 = ‘5{ <1
@+x* - 2 2

1 [1 4@ (4)(4+1)(5)2 (4)(4+1)(4+2)(5)3 }

=16 |1-@\3)* 12 3 - 123 )t

_a w@@ (4 (5) (6) X ]

=16 [1‘2“ 2 \4)" 123 87

1 x 5 5 3

=16 _8+32X2_32X +

_ + —x\2
Example 4.13: Show that (1+x)" = 2" [1 -n G " @ +n (nz! 1) G " Q + }

- _1-x
Solution: Lety =7+
+
RHS-2”[1—ny+ﬂ(nley2+ J—Z"[l+y] n
1-—x|—nN 1+x+1—x[N
— oN — n
=2 [1+l+x} _2[ 1+x J
_n2_n_n1+xn_ n_
=2 [1+XJ =2 [ 2} =(1+x" = LHS.
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Approximation by using Binomial series

Example 4.14: Find the value of 3\/126 correct to two decimal places.
Solution:
1 1

3’/1_% = (126)§ = (125 + 1)§

= [125 (1 +§15)J%= (125)%” (1 +1—;5) 3

1 1 1
=5[1+§.1—25+...} '.'1—25<1
=5 [1 + % (0.008)} by neglecting other terms
= 5[1 + 0.002666]

= 5.01 (correct to 2 decimal places)

3 3
Example 4.15: If xislarge and positive show that XoH 6 x3+3% (app.)

Solution: Sincexislarge,% issmallandhence})—l(} <1

6 s =(X3+6)%—(X3+3)% = X(“%)% _X(“%)

16 13
=x|1+3.3 + -x|1+3.3+...
[ 373 } [ 373 }
—[x+£+ }—[x+i+ }—2 —i +
X N N %
:% (approximately)

1
Example 4.16: Inthe expansion (1 — 2x) 2 find the coefficient of xC.
Solution: We know that

n(nZJ!r 1) 2,n(n+ l%!(n +2 5, ,N0+1) “f!(n +r-1)

(1) "=1+nx+

+1)...(n+r-1
General term Tr+1:n(n )rl(nr )xr

NI

Take n =7 andreplacex by 2x.
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193 &3 (20 =138 =) o

1= r! 2
. 135...(2r-1
. coefficient of X' = o r
putr =8
. 1.3.5.7.9.11.13.15
. coefficient of x& = al

4.6.2. Exponential series
Exponential theorem (without proof)

For all real values of x,
3

1.1 1 Y x ¥ X
I+ttt ) =leq 4t o
1 1 1
Bute:l+ﬂ+z+§+...
2 3

. For dl real values of X, eX=1+% +% +% + ...

Thus we have the following results:

2 3
_ X X
€ =1-9y +57 —3 * -
g+e* ¥ X
T leggt
N SIS
2 “ X3ty t
etel 1 1
2 “ltoityt

4.6.3 Logarithmic Series:

X3 4

If —1<x<1lthenlog(l+X)=X-% +73 _XZ + ...

This seriesis called the logarithmic series.
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The other forms of logarithmic series are as follows:

2 3
log(1-x) = —x—X? —X§ - ...
2 3
—log(l-x) = x+X§ +X§ + ...
XX
log(1 + x) — log(1 —x) :2(x+§+g+...)
Ligltx X 0
2 log7— =x+3 +5 +..
EXERCISE 4.3
Write the first four termsin the expansions of the following:

where|x | > 2 (if) —=

4
2+ 3\/6 - 3X

Evaluate the following:

(i)

where|x|< 2

(i) 3\/1003 correct to 2 places of decimals
(i) —
3\/128

fxi | N <
If x is so small show that 1ix —1-x+7% (app.)

If X isso large prove that \/x2+25 —\X+9 :)% nearly.

correct to 2 places of decimals

1
Find the 51 term in the expansion of (1 — 2x3) 2

Find the (r + 1)th term in the expansion of (1 — x)_4

+ 2
Showthatx”=1+n(l—)—l() +mnl_—212 (1—)—1() +
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5. ANALYTICAL GEOMETRY

I ntroduction

‘Geometry’ is the study of points, lines, curves, surfaces etc and their
properties. Geometry is based upon axioms and it was laid by the famous Greek

Mathematician Euclid about 300 B.C. In the 171" century A.D., the methods of
Algebra were applied in the study of Geometry and thereby ‘Analytica
Geometry’ emerged out. The renowned French philosopher and Mathematician
Rene Descartes (1596 — 1650) showed how the methods of Algebra could be
applied to the study of Geometry. He thus became the founder of Analytical
Geometry (also called as Cartesian Geometry, from the latinized form of his
name Cartesius). To bring a relationship between Algebra and Geometry,
Descartes introduces basic algebraic entity ‘number’ to the basic geometric
concept of ‘point’. Thisrelationship is called ‘ system of coordinates' . Descartes
relates the position of a point with its distance from fixed lines and its direction.
This chapter is a continuation of the study of the concepts of Analytica
Geometry to which the students had been introduced in earlier classes.

5.1 Locus P (x1, 1)
The path traced by a point when it moves
according to specified geometrical conditions is
called the locus of the point. For example, the
locus of a point P(x;, y;) whose distance from a
fixed point C (h, K) is constant ‘a’, is a circle -
(fig. 5.1). The fixed point ‘C’ is called the centre Fig.5. 1
and the fixed distance ‘@’ is called the radius of the circle.
Example 5.1: A point in the plane moves so that its distance from (0, 1) istwice
its distance from the x-axis. Find its locus.
Solution: Y
Let A(O, 1) be the given point. Let P (x1, y1)
P(x;, y;) beany point on the locus. Let B be
the foot of the perpendicular from P(x,,y,) to  A0. 1)
the x-axis. ThusPB = y,. 0 ,
Given that PA = 2PB B X
. PA? = 4pB?
e (x -0 2+ (y,~ 1% = 4y,

Fig. 5. 2

133



i.e X12 + yl2 -2y, +1= 4y12

i.e x12—3y12—2yl+l =0
. Thelocus of (x, y;) is x2—3y2—2y+1 =0
Example 5.2: Find the locus of the point which is equidistant from (- 1, 1) and
4,-2).
Solution:

Let A(— 1, 1) and B(4, — 2) be the given points.
Let P(x,,y,) be any point on the locus. Given that PA = PB
" PA? = pB?

ie (% + 1) 2+ (v~ 1)% = (x, — 42 + (y, + 2)
e X2+ +Ll+y P2y +1=x2—8x +16+y, 2+ Ay, +4
ie 10x, -6y, -18=0 i.e 5x;-3y;-9=0

- Thelocus of the point (X, y;) is5x -3y -9=0

Example 5.3: If A and B are the two points (- 2, 3) and (4, — 5), find the

equation of the locus of a point such that PAZ - PB? = 20.
Solution:

A(- 2, 3) and B(4, - 5) are the two given points. Let P(x;, y;) be any point
on the locus. Given that PAZ — PB? = 20.
(% + 27+ (y; - 39— [(xa- 47+ (y1+5)°] =20
X2+ Ax) + 4+y, 2~ By, +9—[x %~ 8x, + 16 +y,? + 10y, + 25] = 20
12x, - 16y, -48 =0
e 33X -4y,-12=0
Thelocusof (x,y;) is3x—4y—-12 =0
Example 5.4: Find a point on x-axis which is equidistant from the points
(7,—6)and (3,4) .
Solution:
Let P(x,, y;) be the required point. Since P lies on x-axis, y; = 0.
Given that A(7, — 6) and B(3, 4) are equidistant from P.
ie PA =PB = PA%=PB?
= (%~ 7%+ (0+6)% = (x, — 3)? + (0 4)°
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2 _v2
= Xq —14x1+49+36—xl —6xl+9+16
= 8x; =60 .. x1:15/2

T

D
)
©)
(4)
)

(6)
(7)

hus the required point is (% ,0)

EXERCISE 5.1
A point moves so that it is always at a distance of 6 units from the point
(1, — 4). Find itslocus.
Find the equation of the locus of the point which are equidistant from
(1, 4) and (- 2, 3).
If the point P(5t — 4,t + 1) liesontheline 7x — 4y + 1 = 0, find
(i) thevalue of t (ii) the co-ordinates of P.
The distance of a point from the origin is five times its distance from
the y-axis. Find the equation of the locus.
Show that the equation of the locus of a point which moves such that its
distance from the points (1, 2) and (0, — 1) areintheratio2: 1is 3 +
3y? + 2x + 12y-1=0.
A point P moves such that P and the points (2, 3), (1, 5) are dways
collinear. Show that the equation of the locusof Pis2x+y—7=0.
A and B are two points (1, 0) and (- 2, 3). Find the equation of the
locus of a point such that (i) PA + PB?=10 (if) PA = 4PB.

5.2 Straight lines
521

Introduction

A straight line is the simplest geometrical curve. Every straight line is

associated with an equation. To determine the equation of a straight line, two
conditions are required. We have derived the equation of a straight line in
different formsin the earlier classes. They are

(1) Slope-intercept form:

i.e. y=nmx+ cwhere'm isthe slope of the straight line and ‘¢’ is the

y intercept.
(2) Point-slope form:

i.e.y—Yy; =m(x—x;) where ‘'m’ isthe slope and (x;, y,) is the given point.

(3) Two point form:

Ie)/—)ll _ X—=X1
TYo-Y1 Xo—X1

where (x;, y;) and (x,, y,) are the two given points.
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(4) Intercept form:

i.eél + )é =1 where‘a’ and ‘b’ are x and y intercepts respectively.

In this section we shall derive and discuss other forms of equation of a
straight line.
5.2.2 Normal form:

Equation of a straight line in terms of the length of the per pendicular

p from the origin to the line and the angle a which the perpendicular
makes with x-axis.

Let R and N be the points where the Y
straight line cuts the x and y axes L N
respectively.

Draw the perpendicular OL to RN. L

LetOL =pand|XOL =a. YNR

Now OR and ON are the x and y O \ X
intercepts respectively.

Fig.5.3

The equation of the straight line is & +6% =1 ..(0

From the right angled triangle OLR, semxz% .. OR=pseca

From the right angled triangle OLN, cosec o = sec (90 — a) = %

.. ON = p coseca
Substituting the values of OR and ON in equation (1),
we get, X - =1 je XER% ,YSna
pseCo P COSeC a p p
i.e.xcosa +Yysina = pistherequired equation of the straight line.
5.2.3 Parametric form
Definition: If two variables, say x and y, are functions of athird variable,
say ‘0’, then the functions expressing x and y in terms of 6 are caled the

parametric representations of x andy. The variable 0 is called the parameter of
the function.

Equation of a straight line passing through the point (x;, y;) and
making an angle 6 with x-axis. (parametric form)

=1
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Let Q (X;, y;) be the given point and P(x, y) be

any point on the required straight line. Assume Y 1 P/
that PQ=r. A
It isgiven that /Q M
PTR =6.But|POM =|[PTR /
6l nh N~
- |PQM =0 ST o] N R X
In the right angled triangle PQM, Fig. 5. 4
... (D
_QM _NR _OR-ON _X-X
COV=p5="r =~ r =t
. X—X1 _
cosH '
Similarly sin = gy = Thpn =t
Y-y _
©gmo T ... (2
X=X1 Y-y

From (1) and (2), =r which is the required equation.

cos® ~ sind
Any point on thisline can betaken as (x; + r cos 0, y1 +r sin 0) wherer is
the algebraic distance. Herer isthe parameter.

5.2.4 General form
Theequation ax + by + ¢ = 0 will alwaysrepresent a straight line.
Let (X4, Yq), (X Yo) @nd (X5, Y5) be any three points on the locus

represented by the equation ax + by + ¢c=0. Then

ax;+hby;+c= 0 .. (D
ax,+hy,+c= 0 .. (2
axg+by;+c= 0 .. (3

(D) x (Yo —¥3) + (2) x (Y3—Yq) + (3) x (Y1 —¥,) gives
afxi(y2—ya) +x2(y3—yn) +x3(y1-y2)] =0
Sincea#0, X, (Y,—Yg) +% (Y3—Yy) +X3 (¥, —¥,) =0
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That is (x4, ¥;), (X5, ¥,) and (X5, Y5) are collinear and hence they lie on a
straight line.
Thus the equation ax + by + ¢ = 0 represents a straight line.
5.2.5. Perpendicular distance from a point to a straight line
Thelength of the perpendicular from the point (x,, y;) to theline
axy + by +c

ax+by+c=0is

Let thegivenline ax+by+c=0 ... (1) x
be represented by AB. A
Let P(xy, y;) be the given point. \ D
Draw PD perpendicular to AB. Note that NTS T

PDis o B
the required distance. X 0 R \X
Draw OM parallel toPD. LetOM =p
Assumethat |[MOB = a. Y

Fig.5.5

From 5.2.2, the equation of the straight line AB is
xcoso+ysina—p=0 ...(2
Now equations (1) and (2) are representing the same straight line. Hence
their corresponding coefficients are proportional.
coso _Siha _—p

a b c
_a __ _ pb
cosa = -1, Sina=-"_
We know that sina +cos?o = 1
2,2 2.2
b a .
p_2 +JO—2 =1 e plal+pih®=c?
c C
2,2, 1.2 2 2 c?
a“+b%)=c i.e =
p( ) =22

[

p=t—F/5—7

\/a2+b2

Hence cosa = * —2_ sino =¥ b
=¥ , =¥

J¥+§ J¥+§
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Suppose OL = p’, the equation of the straight line NR is
xcosa+ysina—p' =0
since P(x;, y;) isapoint on NR
X, cosa +y;sina—p' =0
i.e. OL=p' =x;cosa+y,Sna
From the figure, the required distance

PD =LM =OM-OL=p-p'

= p—XyCosa -y, Sna

oy c . X1.a N y1.b :iaxl+by1+c
\Ja2+b? \Ja2+b?  \Ja2+b? a2+ b?
The required disance = | 2L1YL* €
erequir IStance ‘ \/aszz
Corollary:
The length of the perpendicular from the origin to ax + by + ¢ = 0 is

__Cc

Note: The general equation of the straight lineisax+by+c=0i.e.y= —%x —g

Thisisof theformy=mx + c.
co-efficient of x
~ co-efficient of y
Example 5.5: Determine the equation of the straight line whose slope is 2 and
y-intercept is 7.
Solution:
The dope—intercept formisy=mx+c¢ Heem=2,¢c=7
.. Therequired equation of the straight lineisy =2x+ 7
Example 5.6; Determine the equation of the straight line passing through

" m:—% i.e. slope=

(-1, 2) and having slope %

Solution:
The point-slope formisy —y; = m(x - x).

Here (x,yy) = (-1, 2) and m=%
y—2=%(x+l) e 7y—-14=2x+2
2x— 7y + 16 = 0 isthe equation of the straight line.
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Example5.7:

Determine the equation of the straight line passing through the points
(1, 2) and (3, — 4).
Solution:
y-¥1 _X-X1
Yi—Y2 X1-X2

The equation of a straight line passing through two pointsis
Here (x4, y;) = (1, 2) and (X,, ¥,) = (3, — 4).

Substituting the above, the required lineis 2%3 x=1

1-3
y=-2 _x-1 y-2 _x-1
= 5 - _o = "3 T,
= y-2=-3(x-1) =>y-2=-3x+3
= 3x +y = 5istherequired equation of the straight line.

Example 5.8: Find the equation of the straight line passing through the point (1,
2) and making intercepts on the co-ordinate axeswhich areintheratio 2 : 3.

Solution:

Theintercept formis g +% =1 .. (D

Theinterceptsareintheratio2:3 .. a=2k, b=3k
(1) becomes %( +%( =1 i.e 3x+2y = 6k

Since (1, 2) lieson the above straight line, 3+4=6k i.e. 6k = 7
Hence the required equation of the straight lineis3x + 2y =7
Example 5.9: Find the length of the perpendicular from (2, — 3) to the line
2X-y+9=0
Solution:
The perpendicular distance from (x,, y,) to the straight line ax + by + c=0
is qiven by |2 by; +c¢
isgiven by \/aZTbZ

.. The length of the perpendicular from (2, —3) to the straight line
22 -C3)+9 18 e
=5 :

V(@2 + (-2
Example 5.10: Find the co-ordinates of the points on the straight liney = x + 1
which are at a distance of 5 units from the straight line4x— 3y + 20=0

2Xx—y+9=0is
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Solution: Let (x5, y,) beapointony=x+1
LYy =%+l .. (D
Thelength of the perpendicular from (x;, y,) to the straight line
4x1—3y1 +20| N (4X1 -3y1 + 20)

But the length of the perpendicular isgiven asb.
4xy — 3y + 20
. i(%) g

I4x—-3y+20=0is

= =
4x, -3y, +20 =125
Considering the positive sign, 4x; -3y, +20=25
= 4x, - 3y; =5 ...(2
Considering the negative sign, 4x; -3y, +20=-25
= 4x, - 3y; = —45 ... (3
Solving (1) and (2), weget x; =8 y;=9
Solving (1) and (3), weget x; =-42, y,=-41

.. The co-ordinates of the required points are (8, 9) and (- 42, — 41).
Example 5.11: Find the equation of the straight line, if the perpendicular from
the origin makes an angle of 120° with x-axis and the length of the
perpendicular from the origin is 6 units.

Solution:
The normal form of astraight lineis x cosa +y sina =p
Herea =120° p=6 .. xc0s120° +ysin120° =6

1 3
= X(_E) +y(32£) =6 = —x++/3y=12
= x—+/3y+12=0

. The required equation of the straight lineisx —+/3y+12=0
Example 5.12: Find the points on y-axis whose perpendicular distance from the
straight line4x — 3y —12=0is3.
Solution:

Any point on y-axiswill have x co-ordinate as 0.

Let the point on y-axis be P(0, y,).
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The given straight lineis4x—3y—-12=0 ... (D
The perpendicular distance from the point P to the given straight line is

-3y1—12

\42 + (- 3)?

B |3y1+12‘
- 5

But the perpendicular distanceis 3.

. 3yp1+12
e }T‘ = 3 = 3y, +12= +15
Jy,+12= 15 or 3y, +12=-15
3y, = 3 or 3y, =-27
y;= 1 or y1=-9

Thus the required points are (0, 1) and (0, — 9).

D
)
©)
(4)
(%)
(6)

(7)
(8)
9

(10)

EXERCISE 5.2
Determine the equation of the straight line passing through the point

(- 1, - 2) and having slope %1

Determine the equation of the line with slope 3 and y-intercept 4.

A straight line makes an angle of 45° with x-axis and passes through the
point (3, — 3). Find its equation.

Find the eguation of the straight line joining the points (3, 6) and
(2,-5).

Find the equation of the straight line passing through the point (2, 2)
and having intercepts whose sumis 9.

Find the equation of the straight line whose intercept on the x-axis is
3 times its intercept on the y-axis and which passes through the point
(-1,3).

Find the equations of the medians of the triangle formed by the points
(2, 4), (4, 6) and (— 6, — 10).

Find the length of the perpendicular from (3, 2) to the straight line
3x+ 2y +1=0.

The portion of a straight line between the axes is bisected at the point
(-3, 2). Find its equation.

Find the equation of the diagonals of a quadrilateral whose vertices are
(1,2), (-2,-1),(3,6) and (6, 8).
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(11) Find the equation of the straight line, which cut off intercepts on the
axes whose sum and product are 1 and — 6 respectively.

(12) Find the intercepts made by the line 7x + 3y — 6 = 0 on the co-ordinate
axis.

(13) What are the points on x-axis whose perpendicular distance from the
straight Iine)—:,f +¥1 =1lis4?

(14) Find the distance of the line 4x — y = 0 from the point (4, 1) measured
aong the straight line making an angle of 135° with the positive
direction of the x-axis.

5.3. Family of straight lines

In the previous section, we studied about a single straight line. In this
section we will discuss the profile about more than one straight line, which lie
on aplane.

5.3.1 Angle between two straight lines
Letl; :y=mx+c; and Y
l, 'y = mx + c, be the two
intersecting lines and assume that P be

the point of intersection of the two
straight lines which makes angle 0, and

0, with the positive direction of x-axis. 0
Then m; = tan0; and m, = tanb,. Let 6

be the angle between the two straight

lines.

Fromthefigure (5.6), 0,=0+0,
.'. 6 = 91— 92

_ ftanBp—tanbp M -mp
62) T 1l+tan0ptandy 1+ mpmp

= tand =tan (6, -

m-m - . .
Note that 77 mmy 1S either positive or negative. As convention we

consider the acute angle as the angle between any two straight lines and hence
we consider only the positive val ue (absolute value) of tan6.

mg — My
1+mmp

m -y
1+mm

1

Hence tand = 0 = tan
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Corollary (1) : If thetwo straight lines are parallel, then their slopes are equal.
Pr oof:

Since the two straight lines are paralld, 6=0. .. tan6=0
M- _ _
= T+mm -0 =>mM-m=0
i.e m =m,

.. If the straight lines are parallel, then the slopes are equal.
Note: If the slopes are equal, then the straight lines are parallel.
Corollary (2): If the two straight lines are perpendicular then the product of
their slopesis—1.
Proof:
Since the two straight lines are perpendicular, 6 = 90°.
m — My
= T 1l+mm
Thisis possible only if the denominator is zero.
ie. 1+mm,=0 e mm, =-1

. tan® = tan90° o0

. If the two straight lines are perpendicular then the product of their
slopesis— 1.
Note (1): If the product of the dopes is — 1, then the straight lines are
perpendicular.

(2): Corollary (2) is applicable only if both the slopes m; and m, are
finite. It fails when the straight lines are co-ordinate axes or parallel
to axes.

Corollary (3): If the straight lines are parallel, then the coefficients of x and y
are proportional in their equations. In particular, the equations of two paralel
straight lines differ only by the constant term.
Pr oof:

Let the straight lines a;x + byy + ¢; = 0 and a)x + b,y + ¢, = 0 be parallél.

a
Slope of a1x+b1y+c1=0ism1=—b—i ; Slope of a,x+ b,y +c,=0is

s
M= b,
Since the straight lines are parallel, m; = m,,.
. a a aa b
e -5 " b, @ @ " b
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i.e. coefficients of x and y are proportional
a b2
Let - b - A (say)
= A by=b A
The second equation a,x + by + ¢, = 0 can be written as
A x+Arby+c,=0

. C2 . C2
i.e a1x+b1y+7 =0 ie ax+by+k =0 where k=7

i.e. If ayx + by + ¢, = 0isasdtraight line then a line paralel to it is
ax+by+k=0

.. Equations of parallel straight lines differ by the constant term.

Note (1): In the previous section, we established a formula to find the

—c
We can find out the distance between two parallel straight lines
. |c1—-Co|
ax+by+c;=0and ax+ by + c, = 0 by using the formula d_\/aszZ'
This is obtained by using the above result. Note that, we took | ¢; — ¢, | since
C,>C,0rc;>c,

distance between the origin and the straight line. i.e. distance =

Note (2): To apply the above formula, write the equations of the parallel
straight lines in the standard form ax + by + ¢; =0 and ax + by + ¢, = 0.

Corallary (4): The equation of the straight line perpendicular to the straight
line ax+ by + c=0isof theform bx-—ay + k=0for somek.
Pr oof:

Let the straight lines ax + by + ¢ = 0 and a;x + by + ¢, = 0 be

perpendicular.
Slopeof ax+ by +c=0is mlz—g

a
Slopeax+byy+c,=0is m, :—b—i

Since the straight lines are perpendicular, mym, = -1

a
i.e (—b—i) (—%) =-1 e aa = —bb1
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: a by
i.e. b -3 ~Msy) a=bhandby=-ar

The second equation a;x + b,y + ¢; =0 can bewrittenasbAx—-aly+c; =0

i b 4 =0
ie X—ay+-" =

c
ie bx—ay+k =0 wherekle
A straight line perpendicular to ax + by + c=0isgivenby bx—ay + k=0
for some k.

Note: To find the point of intersection of two straight lines, solve the
simultaneous equations of the straight lines.

5.3.3 The condition for thethree straight linesto be concurrent
L et the three straight lines be given by

ax+byy+c, = 0 .
ax+hby+c, = 0 ... (2
agx+hby+c; = 0 ...(3

If the three straight lines are concurrent, then the point of intersection of
any two straight lines lies on the third straight line.

Solving the equation (1) and (2), the coordinates of the point of
intersection is

by €2 — by Cl1a2 —C2 &y
X=aiby—aghy Y T arby - aghy
substituting the values of x and y in the equation (3)
b1 c2 — boCy Cilag—C2
% (albz - a2b1j + b [albz - a2b1j te3=0
i.e. a5 (b, — bocy) +hs(cia, — cay) + c5(ayb, —a,by) =0

i.e. a;(b,C5 — bsCy) — by(aycy — agcy) + ¢y(abg —agh,) =0
ar b]_ C1

i.e. | @ b2 c2| =0isthe condition for the three straight lines to be
ag bz c3
concurrent.
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5.3.4 Equation of a straight line passing through the
inter section of thetwo given straight lines

Let ax+by+c, = 0 (D)
ax+hby+c, = 0 ...(2

be the equations of the two given straight lines.

Consider the equation a;x + byy + ¢; + A (ax+ by +¢,) =0 ...(3

where A is a constant

Equation (3) is of degree one in x and y and therefore (refer 5.2.4) it
represents astraight line. Let (X;, y;) be the point of intersection of (1) and (2)

soagXg by, + ¢, =0andayx, + by, +¢,=0

SoagXg gy e A (X +hyy, +¢,) =0

- Value of (xy, y,) satisfies equation (3) also.

Hence a;x + byy + ¢, + A (X + by + ¢,) = O represents a straight line
passing through the intersection of the straight lines a;x + by + ¢, = 0 and
ax+hby+c,=0

Example 5.13: Find the angle between the straight lines 3x — 2y + 9 = 0 and
2X+y—-9=0.
Solution:

Slope of the straight line 3x — 2y + 9 =0ism; =% [v:yzgx +%}
Slope of the straight line2x +y - 9=0ism,=-2[ = y=-2x+9]
Suppose ‘6’ is the angle between the given lines, then

0=tanl |2
- +m; My
3.0 7
=tan ! 23 —tan ! | =
2-6
1+5(-2) ==

I Y 4 I
et |2 i)

Example 5.14: Show that the straight lines2x+y-9=0and 2x+y—-10=0
are paralel.
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Solution:
Slope of the straight line2x+y - 9=0ism; = -2
Slopeof the straight line2x+y—-10=0ism,=-2 . m=m,
.. The given straight lines are paralldl.

Example 5.15: Show that the two straight lines whose equations are
X+2y+5=0and2x+4y—-5=0arepardld.

Solution:
The two given egquations are
Xx+2y+5 = 0 . (D
2X+4y-5 = 0 .. (2

The coefficients of x and y are proportional since% = % and therefore they

are paralel.
Note: This can aso be done by writing the equation(2) asx+ 2y —5/2=0
Now the two equations differ by constant alone. .. They are paralld.

Example 5.16: Find the distance between the parallel lines 2x + 3y — 6=0 and
2x+3y+7=0.
Solution:

C1—-C

The distance between the parallel linesis

Herecl:—6,02:7,a:2,b:3
-6-7
\/ +32

Example 5.17: Show that the straight lines2x+ 3y —9=0and 3x -2y + 10=0
are at right angles.

\/—3‘ =+/13 units.

Therequired distance is

Solution:
Slope of the straight line 2x+3y-9=0ism = —%
Slope of the straight line  3x—-2y +10 = Oismzzg
2 3

mm,=-3.5=-1
.. Thetwo straight lines are at right angles.
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Example 5.18: Find the equation of the straight line parallel to 3x + 2y = 9 and
which passes through the point (3, — 3).
Solution:
The straight line parallel to 3x + 2y — 9 = 0 isof theform
X+2y+k =0 ... (1
The point (3, — 3) satisfies the equation (1)
Hence 9-6+k =0 ie k=-3
.. 3x+ 2y — 3=0isthe equation of the required straight line.
Example 5. 19: Find the equation of the straight line perpendicular to the
straight line 3x + 4y + 28 = 0 and passing through the point (- 1, 4).
Solution:
The equation of any straight line perpendicular to 3x + 4y + 28 = 0 is of the
form
4x-3y+k=0
The point (- 1, 4) lies on the straight line 4x-3y+k=0
.o —4-12+k=0 = k=16
.. The equation of the required straight lineis4x— 3y + 16 =0
Example 5. 20: Show that the triangle formed by straight lines
4x—-3y-18=0,3x—-4y+16=0and x+y—-2=0isisosceles.
Solution:

Slope of the straight line 4x — 3y — 18 =0ism, =

Al wibd

Slope of the straight line 3x — 4y + 16 =0ism, =
Slope of the straight linex+y-2=0ism;=-1

Let ‘o’ be the angle between the straight lines 4x — 3y — 18 = 0 and
3X-4y+16=0

. | M-y
Using the formula, 6 = tan ‘—1+m1mg we get
4 3 16-9
11 3 4 1] 12
1+32

L || (L
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Let ‘B’ be the angle between the straight lines 3x —4y+16 =0and x+y—-2=0

3.4
Cpmant ||t |14
1+(1)
= tan 1 (7)
Let‘y" bethe angle between the straight linesx+y —2=0and 4x— 3y — 18=0
4 7
|13 1”3
Ly=tan T || =tan |
1+1)(3) 1
13 -3
= tan 1 (7)

Therefore B =y .. Thetriangleisisosceles.
Example 5.21:Find the point of intersection of the straight lines
5x+4y—-13=0and 3x+y-5=0
Solution:
To find the point of intersection, solve the given equations.
Let (x4, ;) be the point of intersection. Then (xg, y1) lies on both the

straight lines.

5x; +4y; =13 .. (D
3X;+y; =5 ... (@
Qx4 = 12x, +4y, = 20 ... (3)
@D-B = =X ==7 ox=1
Substituting x; = 1 in equation (1), we get 5+ 4y, = 13
dy, =8 Sy =2

The point of intersection is (1, 2).
Example 5.22: Find the equation of the straight line passing through the
intersection of the straight lines 2x + y = 8 and 3x — y = 2 and through the point
(2,-3)
Solution:

The equation of the straight line passing through the intersection of the
givenlinesis

2X+y-8+A(3x-y-2)=0 .. (D)

(2,-3) lieson the equation (1) and hence 4-3-8+A(6+3-2)=0
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r=1
@O = 2X+y—-8+3x-y-2=0 = b5x-10=0
x = 2 isthe equation of the required straight line.

Example 5.23: Find the equation of the straight line passing through the
intersection of the straight lines2x + y =8 and 3x — 2y + 7 = 0 and parallel to 4x

+y-11=0
Solution:
Let (x4, y;) be the point of intersection of the given straight lines
2%, +y; =8 ..
X =2y, =7 ... (2
Dx2 = 4x; + 2y, = 16 ...(3
9 38 9 38
@+@ = 2u=7 u=2 L ew=3.9

The straight line parallel to 4x + y— 11 = 0isof theform4x+y+ k=0
But it passes through (% %}
36 38 74
w7+ +k=0 - k=-=
4x+y—774 =0

28x + 7y — 74 = 0 isthe equation of the required straight line.
Example 5.24:

Find the equation of the straight line which passes through the intersection
of the straight lines 5x — 6y = 1 and 3x + 2y + 5 = 0 and is perpendicular to the
straight line3x—5y+11=0

Solution:
The straight line passing through the intersection of the given straight linesis
5x-6y—-1+A(3x+2y+5)=0 ... (1

B5+3)x+(-6+20)y+(-1+51)=0
Thisstraight line is perpendicular to 3x—5y+11=0
Product of the slopes of the perpendicular straight linesis-1i.e. m; my= -1

(5+3x)(§) _
= ~Ze+2) B T ~

15+ 9 -30+10n .. A=45
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(1) = 5x-6y—-1+453x+2y+5 =0 ie 140x+84y+224=0
i.e. 5x + 3y + 8 = 0istheequation of the required straight line.

Example 5.25: Show that the straight lines 3x + 4y = 13; 2x — 7y + 1 = 0 and
5x —y = 14 are concurrent.

Solution:
Let (x4, y,) be the point of intersection of the first two straight lines

X, +4y; = 13 . (D)
-7y, = -1 .. (2

Q) x7 = 21x;+28y; = 91 ...(3

2 x4 = 8x,—28y; = -4 ... (4

®+@ = 9% = 87 = x =3

(D) = 9+4y;, = 13 = vy, =1

The point of intersection of the first two straight linesis (3, 1).
Substitute thisvalue in the equation 5x-y = 14
LHS =5x-y
=15-1=14=RH.S.
i.e. The point (3, 1) satisfies the third equation.
Hence the three straight lines are concurrent.

Example 5.26: Find the co-ordinates of orthocentre of the triangle formed by
the straight lines

X—-y-5=0, 2x-y-8=0and3x-y-9=0
Solution:
Let the equations of sides AB, BC
and CA of aAABC be represented by

Xx-y-5=0 .. (1)
2Xx-y—-8=0 ...(2
xX-y-9=0 ... (3
Solving (1) and (3), we get A as (2, — 3) B D 2y y—8=0 C

Fig.5.7

The equation of the straight line BC is 2x — y — 8 = 0. The straight line
perpendicular to it is of the form

x+2y+k = 0 )]
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A(2, - 3) satisfies the equation (4) L 2-6+tk=0 = k=4
The equation of AD is X+2y=-4 ... (5
Solving the equations (1) and (2), we get B as (3, — 2)

The straight line perpendicular to 3xX—y—9 =0isof theform

Xx+3y+k=0
But B(3, — 2) lieson this straight line 5 3-6+k=0 = k=3
.. The equation of BE is X+3y=-3 ... (6)

Solving (5) and (6), we get the orthocentre O as (- 6, 1).
Example 5.27: For what values of ‘a’, the three straight lines3x + y + 2 = 0,
2x—y+3=0andx + ay— 3 =0 are concurrent?

Solution:
Let (x4, y;) be the point of concurrency. This point satisfies the first two
equations.
X +y;+2=0 .. (D
2x,-y;+3=0 ...(2

Solving (1) and (2) we get (— 1, 1) as the point of intersection. Sinceitisa
point of concurrency, itliesonx+ay -3 =0.

D
)
©)
(4)
©)
(6)
(7)

(8)

-1+a-3=0
i.e a=4
EXERCISE 5.3
Find the angle between the straight lines2x+y=4and x+ 3y =5
Show that the straight lines 2x + y =5 and x — 2y = 4 are at right angles.

Find the equation of the straight line passing through the point (1, — 2)
and paradlel tothe straight line3x+2y—7=0

Find the equation of the straight line passing through the point (2, 1)
and perpendicular to the straight linex+y =9

Find the point of intersection of the straight lines5x + 4y — 13 =0
and3x+y-5=0

If the two straight lines2x — 3y + 9 =0, 6x + ky + 4 = 0 are parald,
find k

Find the distance between the parallel lines
2Xx+y—-9=0and4x+2y+7=0

Find the values of p for which the straight lines8px + (2—3p)y+1=0
and px + 8y — 7 = 0 are perpendicul ar to each other.
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9)

(10)

(11)

(12)

(13)
(14)
(15
(16)
(17)
(18)
(19)
(20)
(21)

(22)

Find the equation of the straight line which passes through the
intersection of the straight lines2x +y=8and 3x — 2y + 7 =0and is
pardlel to the straight line4x+y—-11=0

Find the equation of the straight line passing through intersection of the
straight lines 5x — 6y = 1 and 3x + 2y + 5 = 0 and perpendicular to the
straight line3x— 5y +11=0

Find the equation of the straight line joining (4, — 3) and the
intersection of the straight lines2x—-y+7=0andx+y-1=0

Find the equation of the straight line joining the point of the intersection
of the straight lines 3x + 2y + 1 = 0 and x + y = 3 to the point of
intersection of the straight linesy—x=1and 2x+y+2=0

Show that the angle between 3x + 2y = 0 and 4x — y = O is equal to the
angle between 2x + y=0and 9x + 32y =41

Show that the triangle whose sidesarey = 2x + 7, x - 3y - 6 = 0 and
X + 2y = 8isright angled. Find its other angles.

Show that the straight lines 3x +y +4 =0, 3x + 4y — 15 =0 and
24x — 7y — 3 =0form anisoscelestriangle.

Show that the straight lines 3x + 4y=13; 2x — 7y + 1=0and 5x -y = 14
are concurrent.

Find ‘a’ so that the straight linesx — 6y + a=0, 2x + 3y + 4 = 0 and
X + 4y + 1 = 0 may be concurrent.

Find the value of ‘a’ for which the straight lines
Xx+y—4=0,3x+2=0and x -y + 3a=0 are concurrent.

Find the co-ordinates of the orthocentre of the triangle whose vertices
arethepoints (- 2, — 1), (6, — 1) and (2, 5)
Ifax+by+c=0,bx+cy+a=0andcx+ay+b=0 are concurrent,
show that a + b + ¢3 = 3abc

Find the co-ordinates of the orthocentre of the triangle formed by the
straight lines x+y—-1=0, X+2y—-4=0 andx+3y-9=0

The equation of the sides of atrianglearex + 2y = 0, 4x + 3y = 5 and
3x +y = 0. Find the co-ordinates of the orthocentre of the triangle.

5.4 Pair of straight lines
5.4.1 Combined equation of the pair of straight lines

We know that any equation of first degreein x and y represents a straight line.
Letl,;x+my+n; =0andlx+ my +n, =0 betheindividua equations of any

two straight lines. Then their combined equation is
(Ix+my+n)) (IL,x+my+ny) =0
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1! 2x2 + (Imy + 1,my) xy + mlmzy2+(l 1Ny + L)X+ (Myn, + myn )y +nyn, = 0
Hence the equation of apair of straight lines may be taken in the form
ax® + 2hxy + by2 +2gx + 2fy + ¢ =0, where a, b, ¢, f, g, h are constants.

5.4.2 Pair of straight lines passing through the origin
The homogeneous equation ax> + 2hxy + by? = 0 of second degree in
x and y represents a pair of straight lines passing through the origin.
Considering ax’ + 2hxy + by2 =0 asaquadratic equation in x, we get

X = -2hy 4 \ 4h2y2 - 4aby2

7a
B [—Zhi hz—ab} _—hz\/h’-ab
= 2a y= a y
« ax=(-hs\/n2-ab)y
e ax+ (h+\/h2—ab) y=0 and ax+ (h—\/hz—ab) y = 0 are the
two straight lines, each passing through the origin. Hence ax + 2hxy + by2 =0
represents apair of straight lines intersecting at the origin.
Note: Thestraight linesare (1) real and distinct if h?> ab
(2) coincident if h? = ab
(3) imaginary if h® < ab
Sum and product of the slopes of pair of straight lines
The homogeneous equation ax + 2hxy + by2 = 0 of second degree in x and

y represents a pair of straight lines passing through the origin.
Let y = mx and y = my be the two straight lines passing through the

origin. Therefore the combined equation is (y — m;x) (y - myx) =0

= m1n12x2—(m1+ m,) xy+y2:0
This equation also represents a pair of straight lines passing through the
origin.
Equating the co-efficients of like termsin the above equations, we get
mmp  (m+nmp) 1
a -~ 2h b

ol

Lompm, = % ; i.e. Product of the slopes =

m+m, = —2—bh i.e. Sum of the Slopes = _Z—t?
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5.4.3 Angle between pair of straight lines passing through the
origin
The equation of the pair of straight lines passing through the origin is
ax2+2hxy+by2=0 .. (1

__ 2 _a
m+m,=- and mm, =g
Let ‘0’ be the angle between the pair of straight lines.

tand = M-Mp
A= 1Temmy
A+ mp)? - 4my my
tane—Hi T+mm
4_hz_4_a 4h? _ Aab
i 2 b || b2
= + 1+§ = + a+b
b b
+2\Jh?—ab
tane“[ a+b H
o2 2
o= tant | [£RA=) | - gyt 2

It is conventional to take 0 to be acute.

Corollary (2):
If ‘0’ isthe angle between the pair of straight lines

ax® + 2hxy + by? + 2gx + 2fy + ¢ =0

24/h? - ab

a+b
It is same as the angle between the pair of straight lines
ax’ + 2hxy + by2 = 0 passing through the origin.

Corollary (2): If the straight lines are parallel, then h’=ab
[since 6 = 0°, tanb = Q]

then 0 = tan *

Corollary (3): If the straight lines are perpendicular then

coeff. of x° + coeff. of y2 =0 [since 6 = 90°, tan® = ]
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The condition for a general second degr ee equation

ax® + 2hxy + by2 + 2gx + 2fy + c = 0torepresent a pair of straight lines
is abc + 2fgh — af® — bg® — ch®>=0

Assume that ax? + 2hxy + by? + 2gx + 2fy + c= 0 ..

represents a pair of stra| ght lines. Treating this equation as a quadratic in X,
this can be written as  ax® + 2(hy + g)x + (by2 +2fy+¢)=0

By solving for x,we get

:—(hy+g)i\/(hy+g)2—a(by2+2fy+c)
a

SN ax+hy+g = =\/(hy +g) 2— a(by? + 20y + 0)

= + \/(n? - ab)y? + 2(gh - af)y + (¢ - ac)

Now in order that each of these equations may be of the first degree in
x and y, the expression in the R.H.S should be a perfect square. Thisis possible
only if the discriminant of this quadratic in 'y’ under the radical or within the
root is zero.

- (h? - ab) (g - ac) = (gh — af) 2

Simplifying this we get abc + 2fgh — af® — b92 — ch® = 0 which is the
reguired condition.
Example 5.28: Find the angle between the straight lines X2+ Axy + 3y2 =0
Solution:

Herea=1,2h=4,b=3

If ‘6’ isthe angle between the given straight lines, then

2] | et |25 e

a+b 4 =tan (3
Example 5.29: The slope of one of the straight lines of ax + 2hxy + by2 =0is
thrice that of the other, show that 3n? = 4ab

Solution:
Let‘'m;’ and ‘m,’ be the slopes of pair of straight lines.

__2h _a
Thenm +my=—"" . mm,=}

Itisgiven that m, = 3m;

0 =tan! =tan

.'.m1+3m1= -5 = M =-3
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_a 2_a -hy? _a

But m1.3m1— b 33m1 —b :3(2b) —b
3 _ a

= a2~ b

= 30 = 4ab

Example 5.30: Show that X2 — y2 +x— 3y — 2 =0 represents a pair of straight
lines. Also find the angle between them.
Solution:

The given equation is

x2—y2+x—3y—2=0 .. (D

Comparing this with ax® + 2hxy + by2 +2gx+2fy+c=0wegeta=1,
h=0,b=-109 =%, f= —% , € = — 2. Condition for the given equation to
represent a pair of straight linesis abc+2fgh—af2—bgz—ch2 =0

abc+2fgh-af’~bg?—ch? = (1) (—1)(_2)+2(_ %) @ 0)-(1) @ —-1) @—(2) (0)
_, 9,1 _8-9+1
4 "4 4
=0
Hence the given equation represents a pair of straight lines.
Sincea+b=1-1=0, the angle between the straight lines is 90°.
Example 5.31: Show that the equation 3x° + 7xy + 2y° + 5x + 5y + 2 = 0

represents a pair of straight lines and also find the separate equation of the
straight lines.

Solution:

Comparing the given equation with ax® + 2hxy + by2 +2g9x + 2fy + ¢ = 0,
we get

a=3,b=2h= %,g:g,f:g , € = 2. The condition for the given

equation to represent a pair of straight linesis abc + 2fgh — af® - bg2 —ch?’=0

abe+2fgh-af?-bg?-ch? = (3) (2) (2) + 2@ @ @ —3(2745) 2 @ -2(%

175 75 50 98

L2743 — 4 70
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Hence the given equation represents a pair of straight lines.
Now, factorising the second degree terms

we get 3+ >y + 2y2= (x+2y) (3x+Yy)

Let 3x2+7xy+2y2+5x+5y+2 = (x+2y+I1)(Bx+y+m)
Comparing the coefficient of X, 3l+m=5;

Comparing the coefficientof y, | +2m=5

Solving these two equations, weget| =1, m=2

.. The separate equationsarex + 2y + 1=0and 3x+y+2=0

Example 5.32: Show that the equation 4x> + 4xy + y> — 6Xx — 3y — 4 = 0
represents a pair of paralel lines and find the distance between them.

Solution:
The given equationis4x2+4xy+y2—6x—3y—4=0
Herea=4,h=2 b=1; ab-h’=4(1)-2°=4-4=0
.. The given equation represents a pair of parallel straight lines.
Now 4x2 + 4xy + Y2 = (2x + ) 2
A2 + Axy +y? — 6x— By — 4= (2x+y + 1) (2X+y + m)
Comparing the coefficient of x, 2l + 2m=-6 i.e.l+m=-3 ... (D
Comparing the constant term, Im=-4 ... (@

_4
|+(T) =_3 =12+31-4=0

iee (1+49(0-1)=0 =1=-4,1
Now Im=-4 = m=1, -4
Theseparateequationsare2x+y 4=0 and2x+y+1=0

The distance between them is & ) —4-1 =~/5 units
\/a b2 |22 +122
Example 5.33: Find the combined equation of the straight lines whose separate
equationsare x+2y-3=0and3x-y+4=0
Solution:
The combined equation of the given straight linesis
x+2y-3)(Bx-y+4)=0
e 3x°+6xy—OX—xy—2y°+3y+4x+8y—12=0
ie 3+ Bxy — 2y2 — bx + 11y — 12 = 0 is the required combined
equation.
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D

)

©)

(4)

(®)

(6)

(7)

(8)

9)

(10)

(11)

EXERCISE 5.4

If the equation ax + 3xy — 2y2 — 5x + by + ¢ = O represents a pair of
perpendicular straight lines, find a and c.

Find the angle between the pair of straight lines given by
(% - 307) X% + 8ab xy + (b?— 3a9)y? =0

Show that if one of the angles between pair of straight lines
ax® + 2hxy + by? =0 is 60° then (a + 3b) (3a + b) = 4h?

Show that 9x° + 24xy + l6y2 + 21x + 28y + 6 = 0 represents a pair of
paralel straight lines and find the distance between them.

The slope of one of the straight lines ad + 2hxy + by2 = 0 istwice that
of the other, show that 8h = 9ab.

Find the combined equation of the straight lines through the origin, one
of which is parallel to and the other is perpendicular to the straight line
2X+y+1=0

Find the combined equation of the straight lines whose separate
equationsarex+2y—3=0and 3x+y+5=0

Find k such that the equation 125 + >y — 12y2 -Xx+7y+k=0
represents a pair of straight lines. Find the separate equations of the
straight lines and also the angle between them.

If the equation 125 — 10xy + 2y2 + 14x — By + ¢ = O represents a pair of
straight lines, find the value of c. Find the separate equations of the
straight lines and also the angle between them.

For what value of k does 12x° + >y + ky2 + 13x—y+ 3 =0represents a
pair of straight lines? Also write the separate equations.

Show that 3x° + 10xy + 8y2 + 14x + 22y + 15 = O represents a pair of
. . . 1(2
straight lines and the angle between them istan 11

55 Circle

Definition: A circle is the locus of a point which moves in such away that
its distance from a fixed point is always constant. The fixed point is called the
centre of the circle and the constant distance is called the radius of the circle.
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5.5.1 The equation of a circle when the centreand radius are given
Let C(h, k) be the centre and r be the Y
radius of the circle. Let P(x, y) be any point P (x, y)
on thecircle
CP=r= CP?=r’= (x-h)®+ (y-K)> =r?
isthe required equation of the circle. X
Note: O X
If the centre of the circleis at the origin,
i.e. (h, k) = (0, 0) then the equation of the Fig.5.8
circleisx? + y2 =r
5.5.2 The equation of a circle if the end points of a diameter are
given

Let A(x;, y;) and B(x,, Y,) be the end +Y Pt y)
X, ¥V
points of a diameter. Let P(x, y) be any point ’ © )
onthecircle. (/\A ‘\ B
The anglein asemi circleisaright angle. "("3' y2)
.. PA isperpendicular to PB , 5 >
.. (Slope of PA) (Slopeof PB) =— 1 X

yoyi) (y=¥2) _ Y
X—X1) \X=%2) = Fig. 5.9.

Y =Y) (Y= ¥o) == (X=Xg) (X=X
S (X = %g) (X=X%5) + (Y —Y,) (Y- Y,) =0 isthe required equation of the
circle.
5.5.3 The general equation of thecircleisx?+y? + 2gx + 2fy + ¢ =0
Consider the equation X2+ y2 +2gx+ 2fy + c=0
Thiscan bewrittenas X% + 2gx + g2+ y2 + 2fy+f2 = 92 +2-c

x+92+(y+h2 = (N2 +12-c)’
x- (gl +Iy- (- H2 = (N +12-c)’

Thisis of the form (x—h)?+ (y—K? =12
.. The considered equation represents a circle with centre (- g, — f) and

ra\dius\/g2 +f%-¢

*. The genera equation of thecircleisx® + y2 +2g9x+2fy+c=0
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Note: The general second degree equation ax2+by2 + 2hxy + 2gx + 2fy +¢c=0
representsacircleif (1) a=b i.e. coefficient of x = coefficient of y2

(20 h=0 i.e. noxyterm
5.5.4 Parametric form

Consider a circle with radius r and Y
centre at the origin. Let P(x, y) be any point
on the circle. Assume that OP makes an angle
0 with the positive direction of x-axis. Draw

the perpendicular PM to the x-axis. Qy X

From the figure (5.10), )F( = cosb, ¥ =sinb.

Fig. 5.10

Here x and y are the co-ordinates of any point on the circle. Note that
these two co-ordinates depend on 6.

The value of r is fixed. The equations x =r cosh, y = r sind are caled

the parametric equations of the circle X2+ y2 = 1%, Here ‘0’ is caled the
parameter and 0<6 <2n

Another parametric form:

2tan% 1—tan2%
Weknow that sin 0 =—2 ; cose=—29
1+tan 5 1+tan 5
0
Lett—tan2

IfO0<0<2rn then—-oo<t<oo

r(l- tz) ] 2rt

; y=rsing = y=

X=rcoso = X=

1+t 1+t

(1-19 2rt . .
Thus x = - > ., Y= rz,—oo<t<oo|sanotherparametr|c

1+t 1+t

equation of the cirdlex? + y2 =2
I’(l—tz) 2rt . . 2 2
= = + =

Clearly x 1+ Y 1+ 0 satisfy the equation x y2 r

Example 5.34: Find the equation of the circle if the centre and radius are
(2, — 3) and 4 respectively.
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Solution:
The equation of the circleis (x— h)? + (y — k)2 = r?
Here(h, k) =(2,-3)andr=4 .. (x—2)+(y+3)?=4?
i.e x2+y2—4x+6y—3=Oistherequiredequationofthecircle.

Example 5.35: Find the equation of the circle if (2, — 3) and (3, 1) are the
extremities of a diameter.

Solution:

The equation of thecircleis (X —X;) (X=X,) +(Y=Y;) (Y= ¥,) =0

Here (x1, y;) = (2, - 3) and (x,, ¥,) = (3, 1)

L (X=2)(x=3)+(y+3)(y-1)=0

X2 —Bx+6+y>+2y—3=0

.. The required equation isX2 + yz— 5x+2y+3=0
Example 5.36: Find the centre and radius of the ci rcle x? + y2 +2x-4y+3=0
Solution:

The genera equation of the circleisx? + y2 +2gx+2fy+c=0
Here2g=2,2f=-4,c=3
- centreis  (—g,-f) =(-1,2)

radiusis \/g?+f%—c =+[1+4-3 =+/2 units.

Example 5.37: Find the centre and radius of the circle 3x2+3y2—2x+6y -6=0
Solution:

The given equationi33x2+3y2—2x+6y—6:0
Rewritingtheabove,x2+y2—% X+2y-2=0
Comparing this with the general equation X2+ y2 +2gx+2fy+c=0
We get 29=—§ ,2=2,c=-2

centreis (- g,—f)=(%,—1)

radiusis \Jg®+f2-c =1 /%+1+2 =%E units.

Example 5.38: If (4, 1) isone extremity of adiameter of the circle
X2+ y2 — 2x+ 6y — 15 = 0, find the other extremity.
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Solution:
Comparing X2 + y2 —2x+6y—-15=0 with

the general equation of the circle, A, 1) B(xy, y1)

weget 2g=-2 2f=6

- centreisC(-g,-)=(1,-3) Fig.5.11
Let B(xy, y;) be the other extremity and

Abe(4,1)
C isthe mid point of AB
X1+4 y1+1
> = 1 75 =-3= x=-2, y,=-7

.. The other extremity is(— 2, - 7)
Example 5.39: Find the eguation the circle passing through the points
(0,2), (2,3) and (-2, 5).
Solution:

The genera equation of the circleis X2+ y2 +2gx+2fy+c=0

The points (0, 1), (2, 3) and (- 2, 5) lieon the circle

- 2f+c = -1 .. (D
4g+6f+c = —-13 ...(2
-4g+10f+c = -29 ...(3
@D-© = —4g-4f = 12
g+f = -3 (4)
2 -3 = 8g-4f = 16
29-f = 4 .. (5)
4) +(5) = 39 = 1 39:%
@ = f=-3-3=-3
17
(1) = ¢ =73

x2+y2+2(%)x+2(—1§0)y+% =

53+ 3y2 + 2x— 20y + 17 = O is the required equation.
Example 5.40: Find the equation of the circle passing through the points
(0, 1), (2, 3) and having the centreon thelinex— 2y + 3=0
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Solution:
The general equation of thecircleis

X2+ Y2 +2gx+2fy+Cc =0

(0, 1) liesonthecircle.. 2f + ¢ =1 .. (1)
(2, 3) liesonthecircle.. 49+ 6f + ¢ =13 ...(2
Thecentre(—g,—f) liesonx—-2y+3=0;

L-g+2f=-3 .. (3
D-©? = —4g-4f =12

iee g+f=-3 ... (®
3 +® = fF=-6 . f==2
3 = g=-1
D = c=3

.. The required equationisx2+y2—2x—4y+3:0

Example 5.41:

Find the values of a and b if the equation

(a- 4)x2 + by2 +(b-3)xy +4x+ 4y — 1 =0 representsacircle.
Solution:

The given equation is (a — 4)x° + by? + (b — 3)xy + 4x+ 4y —1=0

(i) coefficientof xy=0=b-3=0 .. b=3

(i) coefficient of x° = co-efficient of Y’ = a—-4=b

La=7
Thusa=7, b=3

Example 5.42: Find the equation of the circle with centre (2, — 3) and radius 3.
Show that it passes through the point (2, 0).
Solution:

If the centre is (h, K) and radius is r, then the equation of the circle is
Oh)? + (y—k)2 =12,

Here(h,k) = (2,—3)andr = 3.

(x=2%+(y+3* =3
(x- 2)2 +(y+ 3)2 = 9 istherequired equation of the circle.

Putting (2, 0) in the equation of the circle, we get

LHS =(2-2%+(0+32%=0+9 = 9 = RH.S.

Hence the circle passes through (2, 0)
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Example 5.43:

Find the equation of the circle with centre (1, — 2) and passing through the
point (4, 1)
Solution:

LetCbe(1,-2)andPbe(4, 1)
. 2 2 P4, 1)
Radius r:CP:\/(1—4) +(-2-1)° = \9+ :\/1_8

Thusthe equation of the circleis (x — h)*+(yK)’= r’=r
us the equation of thecircleis (x — h)“+(y-k)=r=r Fig. 5.12

= (-1 (y+2? =T’

ie X2+ y2 —2x+ 4y - 13 =0 istherequired equation.
Example 5.44: Find the parametric equations of the circle X% + y° = 16
Solution:

Heer? =16 = r =4 . The parametric equations of the circle
x2+y2=r2inparameter6are X=rcosh, y=rsno

.. The parametric equations of the given ci rcle x? + y2 =16 are

Xx=4cosO, y=4sn6, 0<6 <2r

Example 5.45: Find the cartesian equation of the circle whose parametric
equations are

Xx=2cos0,y=2sn6, 0<6<2xn
Solution:

To find the caretsian equation of the circle, eliminate the parameter ‘6’

from the given equations, cos6 =§ ; Sino =%

2 2
c0526+sin29:1:>@) +(%) =1

R y2 = 4 istherequired cartesian equation of the circle.

EXERCISE 5.5
(1) Find the centre and radius of the following circles:
()x°+y°=1 (i) xX°+y?—4x-6y-9=0
(iii) X° + y? — 8x— By — 24 =0 (iv) 3% + 3% + 4x — 4y — 4=0

(V) (x=3) (x=5) +(y-7)(y-1)=0

(2) For what values of a and b does the equation
(a- 2)x2 + by2 + (b— 2)xy + 4x + 4y — 1 = O represents a circle? Write
down the resulting equation of the circle.

(3) Find the equation of the circle passing through the point (1, 2) and
having its centre at (2, 3).
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(4)
()
(6)

(7)
(8)

9
(10)
(11)
(12)
(13)

(14

(15

X+ 2y =7,2x+y =8 are two diameters of a circle with radius 5 units.
Find the equation of the circle.

The area of a circle is 16 square units. If the centre of the circle is
(7, - 3), find the equation of the circle.

Find the equation of the circle whose centre is (- 4, 5 and
circumference is 8z units.

Find the circumference and area of the circle x° + y2 —-6x—-8y+15=0
Find the equation of the circle which passes through (2, 3) and whose
centreison x-axisand radiusis 5 units.

Find the equation of the circle described on the line joining the points
(1, 2) and (2, 4) asitsdiameter.

Find the equation of the circle passing through the points (1, 0), (0, — 1)
and (0, 1).

Find the equation of the circle passing through the points (1, 1), (2, -1)
and (3, 2).

Find the equation of the circle that passes through the points (4, 1) and
(6, 5) and hasits centre on theline 4x + y = 16.

Find the equation of the circle whose centre is on the line x = 2y and
which passes through the points (- 1, 2) and (3, — 2).

Find the cartesian equation of the circle whose parametric equations are

x:% cose,y:%f sndand0<0<2x

Find the parametric equation of the circle 4% + 4y2 =9

5.6. Tangent
5.6.1 Introduction
Let us consider a circle with centre at C and a straight line AB. This

straight line can be related to the circle in 3 different positions as shown in the
following figures.

(a)

(b) (c)
Fig. 5.13

167



Infigure (5.13 a), the straight line AB does not touch or intersect the circle.

In figure (5.13 b), the straight line AB intersects the circle in two points
anditis called a secant.

In figure (5.13 c), the straight line AB touches the circle at exactly one
point, and it is called a tangent. In otherwords, the limiting form of a secant is
called atangent (Fig. 5.13d)

Definition : A tangent to a circle is a straight line which intersects
(touches) the circle in exactly one point.

5.6.2 Equation of thetangent to acircleat a point (x,, y,)
L et the equation of the circle be
2+ 2+ 2gx+ 2fy +c=0 () (-8 )

Let P(x,, y;) beagiven point oniit. I
2 2
+y, S+ 2gx, +2fy. +¢c=0 ... (2 4
X1 ™ gx, +2fy; +¢ (2 PXpy Y1) T
Let PT be the tangent at P. Fig. 5.14
The centre of the circleis C(- g, — f). g->
n+f
Slope of the CP = Xt g
. . , X1+g
Since CPis perpendicular to PT, dope of PT = — Vitf
.. Equation of the tangent PT is Y=Yy = MX=X,)

X1+9
Y-¥1=- v+ 1 (x=x)
(y—yl)(y1+f)=—(x—x1) (X1+g)
-y (g +H+(x=%x) (X, +9) =0
= yyl_y12+fy_fy1+ [xxl—x12+gx—gx1]=0
= XXy + Yy, Iy +ox = x 2y 2+ gxg +Tyy
Add gx; +fy, +con both sides

xx1+yy1+gx+gx1+fy+fy1+c = x12+y12+29x1+2fy1+c
XX + Yy, +g(x+xy) +f(y +y,) +c=0 istherequired equation of the
tangent at (xy, Y;)
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Corollary:

The equation of the tangent at (x5, y;) to the circle 2+ y2 = a’is
XXy + Yy = a.
Note: To get the equation of the tangent at (xj, y,), replace X2 as XXy,

X+X1 y+tyr . . .
yzasyyl,xasT andyas > in the equation of the circle.

5.6.3 Length of the tangent to the circle from a point (x;, y;)
L et the equation of the circle be T

X2+ Y2+ 2gx+2fy+¢c=0 "‘_

Let PT be the tangent to the circle from P(x}. ¥)
P(x;, y;) outsde it. We know that the

co-ordinate of the centre Cis (- g, — f) and Fig. 5.15

radiusr :CT:\/gz+f2—c

From the right angled triangle PCT,
PT2 = PC? - CT?
=+ 97+ + 2 (¢ +12-0)
= x12+2gx1+gz+y12+2fy1+f2—gz—f2+c

= x,2 +y, %+ 2gx, + 2fy; + ¢

s PT = \/xl2 +y12 + 2gx1 + 2fy1 + ¢, whichiis
the length of the tangent from the point (x;, y;)
to thecircle x® + y2 +2gx+2fy+c=0
Note: (1) If the point Pis on the circle then PT?2=0 (PT is zero).
(2) If the point Pis outside the circle then PT2>0 (PT isred)
(3) If the point Pisinside the circle then PT?<0 (PT isimaginary)

Corollary:
The constant ¢ will be positive if the origin is outside the circle, zero if it is

on the circle and negative if it isinside the circle.
5.6.4 The condition for theliney = mx + c to be a tangent to the

circlex?+y?=a?
Let theliney = mx + ¢ be atangent to the circle X2 + y? = a at (xq, Y1)
But the equation of the tangent at (x,, y,;) tothecircle

2 _ a2 _ 2
X2 +y?=a iSXX; +Yy; = @&
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Thus the equations y = mx + ¢ and xx; + yy; = a° are representing the same

straight line and hence their coefficients are proportional.

1 _ m_c
YL ToXxe T g2
2 2

. _—am _a
X =T ¢ WNT¢

Bt (x,, ) isapoint on the circle x* + y? = a2

At
2,,2_.2 a a 2
X —a" = += =a
1Y 2 T2
= aml+a’=c® = a(mP+1) = ¢?
i.e ?=a’ a+ m2) isthe required condition.

Note: (1) The point of contact of the tangent y = mx + c to the circle x2+y2= a’is
—am a
[\/ 1+n?’ \/ 1+ mz}
(2) The equation of any tangent to acircleis of the form

y=me_ra\/1+m2

5.6.5 Two tangents can be drawn from a point to acircle

Let (x5, y;) be the given point. We know that y = mx + a\/l +n? isthe
equation of any tangent. It passesthrough (X;, y;)-

Sy = mle_ra\/1+m2
yq — Xy =J_ra\/1+m2

(v, — Mxy)? = & (1 + )
yl2 + P X12 - 2mx,y, — a’-a’m’=0

u Uy

= m? (x,% - a%) - 2mxyy; + (y,> - a%) =0

Thisisaquadratic equation in ‘m’. Thus‘m’ has two values. But ‘m'’ isthe
slope of the tangent. Thus two tangents can be drawn from a point to acircle.

Note: (1) If (X;,Y,) isan exterior point (lies outside) then both the tangents
arereal and visible
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(2) 1f (x4, yy) isaninterior point (lies inside) the circle then both the
tangents are imaginary and hence not visible.
(3) If (X4, y;) is a boundary point (lies on) then both the tangents
coincide and appears to be one.
5.6.6. Equation of the chord of contact of tangents from a point
tothecircle
The genera equation of the circleis
x2+y2+29x+2fy+c:0 .. (D
Let P(x,, y;) be a point outside the circle.
Let the tangents from P(x;, y,;) touch the

Q(x5. ¥7)

P(xy. vy)

circleat Q(x;, ) and R(x3, V) Fig. 5.16
The equation of the tangent PQ at Q (x,, ) is
XXy + Yy, + g(X+ X)) +f(y +y,) +¢c=0 (2
The equation of the tangent PR at R(x3, Y5) is
XX3 + Yy + g(X+xg) +f(y +yg) +¢c=0 ...(3
But (x,, y;) satisfy the equations (2) and (3)
SXXo FYY, +O(Xg + %) +f(y; +Y,) +c=0and ... (4
XpXg +YaYa + 0%y + Xg) +1(yy +y5) + €= 0 - (5)

But equations (4) and (5) show that (X,, Y,) and (X3, y5) lie on the I|ne

XX+ Yy, HOX+ %) +fy+y) +c=0

Hence the straight line xx; + yy; + g(Xx + %) + f(y +y;) + ¢ = O represents
the equation of QR, chord of contact of tangents from (X, y;).
Example 5.46: Find the length of the tangent from (2, 3) to the circle
X2 + y2—4x—3y +12=0.
Solution:

The length of the tangent to the circle X2 + y2 + 2gx + 2fy + ¢ = 0 from the

point (x;, yy) is \[xa2 +y12 + 2gx; + 2fyy + ¢
.. Length of the tangent to the given circle iS\/ x12 + yl2 —4x1 -3y +12
=22 +3%-42-33+12
=\4+9-8-9+12

=+/8 = 21/2 units
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Example 5.47: Show that the point (2, 3) liesinside the circle
X2 +y2 —6x—8y+12=0.
Solution:
The length of the tangent PT from P(x;, y,) to the circle

X2+ Y2+ 2gx+2fy + c=0is

PT = \/X12+Y12+ 2gxq + 2fyr + ¢
PT2=2%2+3%-62-83+12=4+9-12-24+12
=-11<0
The point (2, 3) liesinside the circle
Example 5.48: Find the equation of the tangent to the circle x2+y2:25 a (4, 3).
Solution:
The equation of the circle isx? + y2 =25.
The equation of the tangent at (xy, ;) isXx; + Yy, =25. Here (x;, y;) = (4, 3).
.. The equation of the tangent at (4, 3) is4x + 3y = 25
Example 5.49: If y=3x+c isatangent to the circle x2+y2:9, find the value of c.
Solution:
The condition for the liney = mx + ¢ to be atangent to

x2+y2:a2isc :ia\/1+m2

Here a=3m=3
s c=+34/10
Example 5.50: Find the equation of the tangent to
X2+ yP—Ax+4y—-8=0 at (- 2,— 2)
Solution:
The equation of the tangent at (X1, y1) to the given circleis

X+ X1 y+Vy1
xx1+yy1—4( > )+4( > )—8:0

XX +yy; —2(x+X) +2(y+y,;)-8=0

At (- 2, — 2), the equation of the tangent is
-2X-2y-2(Xx-2)+2(y-2)-8=0
= -4x-8=0
= X + 2 = 0 istherequired equation of the tangent.
Example 5.51: Find the length of the chord intercepted by the circle

x2+y2—2x—y+1:0andthelinex—2y:l.
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Solution:
To find the end points of the chord, solve the equations of the circle and
the line. Substitute x = 2y + 1 in the equation of the circle.
(y+ 12 +y?-22y+1)-y+1=0
AP +Ay+1+yP—dy—2-y+1=0

5y2—y:0 ~yby-1)=0
1
y=0 Y=g
= x=1 :%

.. Thetwo end points are (1, 0) and g , %)

. Length of the chord = (12)2 (01)2— S +3E === uni
. Length of the chord = -5 + -5/ = 25+25—\/§un|ts

Example 5.52: Find the value of p if the line 3x + 4y — p = 0 is atangent to the
circlex? + y2 =16.
Solution:

The condition for the tangency isc?=a° a+ m2) .

Here a2 =16, m=-— % C=y4

Example 5.53: Find the equation of the ci rcle WhICh has its centre at (2, 3) and
touches the x-axis.
Solution:

Let P be apoint on x-axis where it touches the circle. Y

Given that thecentre Cis (2, 3) and Pis (2, 0)
r=cP=1/(2-2)2+(3-0)2 =3

The equation of thecircleis (x — h)? + (y — K) 2= r? Ol P2,0) X

Fig. 5.17
(x-2)%+(y-3?%=3
C+y—Ax—6y+4=0
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EXERCISE 5.6
Find the length of the tangent from (1, 2) to the circle
x2+y2—2x+4y+9:0
Prove that the tangents from (0, 5) to the circles
x2+y2+2x—4:0and
x2+y2—y+1=0areequal.
Find the equation of the tangent to the circlex? + y2 —-4x+8y—-5=0at
(2,1).
Isthe point (7, — 11) lieinside or outside the circlex? + y2 —-10x=07?
Determine whether the points (- 2, 1), (0, 0) and (4, — 3) lie outside, on
or inside the circle X% + y2— Bx+2y-5=0
Find the co-ordinates of the point of intersection of the linex +y =2
withthe circlex? +y? = 4
Find the eguation of the tangent lines to the circle X2 + y2 =9 which are
paralel to2x+y-3=0
Find the length of the chord intercepted by the circle
2 +y?— 14x+ 4y + 28 =0 and the linex — 7y + 4= 0
Find the equation of the circle which hasits centre at (5, 6) and touches
(i) x-axis (ii) y-axis
Find the equation of the tangent to X+ y2 -2X-10y+1=0a(-3,2)
Find the equation of the tangent to the circle X2+ y2 = 16 which are
(i) perpendicular and (ii) parallel tothelinex+y=8
Find the equation of the tangent to the circle X2 + y2 —4dx+2y-21=0
a (1, 4).
Firgd th)evalueof p so that the line 3x + 4y — p = 0 isatangent to
X +y?—64=0
Find the co-ordinates of the middle point of the chord which the circle
2 +y? + 2x+y— 3 =0 cutsoff by theliney = x — 1.

5.7. Family of circles
Concentric circles:
Two or more circles having the same centre are called concentric circles.

Circlestouching each other:
Two circles may touch each other either internally or externaly. Let C,,
C, be the centers of the circle and r,, r, be their radii and P the point of

contact.
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Case (2): Case (2) The two circles touch
Thetwo circlestouch externally. | internally:

The distance between their centres Th? distance betwe_en their
is equal to the sum of their radii. centres is equal to the difference
(ile) C,C, =1 +r, of their radii.

e@ C,C,=C,P-C,P=r1,-T,
Fig. 5.18 F

Fig. 5.19

Orthogonal circles:
Definition: Two circles are said to be orthogonal if the tangent at their
point of intersection are at right angles.

Condition for two circles cut orthogonally
Let thetwo circles be

x2 +y? +2g,x + 2f,y + ¢, = 0 and
x2+y2+292x+2f2y+02:0andcut each
other orthogonally.

Fig. 5.20

Let A and B be the centres of the two circles

L Ads(-gy, - f)adBis(-g, - f,)r, =gl+h2-¢; and
1=\ +fo’- ¢

In the right angled triangle APB, ABZ=AP? + PB?

e Cotg) 2+ (ht)2=gl vy’ o rgl +h g
= gl +92 —291g2+f1 +f2 —Zflfz—gl +f1 —Cl+gz +f2 _CZ
= —20, 9 Af,=-¢-¢,

e, 20+ 2 f=¢+G

is the required condition for orthogonality.
Example 5.54: Show that the circles X+ y2 —4x+6y+8=0and
X2+ y2 — 10x — 6y + 14 = 0 touch each other.
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Solution:
The given circles are

x2+y2—4x+6y+8=0 .(D
and X +y?—10x—6y+14 =0 . (2
(1) = g,=-2 f;=3, ¢;=8 CentreisA(2,-3)

radiusr, = \[gi?+f12—c; =\/4+9-8 =4[5
@ = g,=-5f,=-3, c,=14. CentreisB(5, 3)
radiusr, = /25 +9- 14 =+/20 =2,/5
Distance between A and B = \/(2 - 5)2+ (- 3— 3)?

=873 = V@ =345

:r1+r2

.. The circles touch each other.

Example 5.55: Find the equation of the circle, which is concentric with the
circle

X2+ y2 — 4x — 6y — 9 = 0 and passing through the point (- 4, — 5).
Solution:
Thegiven circleisx? +y? — 4x— 6y —9=0
Centre (- g,—f)is(2,3)
The circle passes through the point (— 4, — 5).
- radius=\/(2 + 4)2 + (3+ 5)2 =~/36 + 64 =~/100 =10
The equation of the circleis (x - h)2 +(y- k)2 =2
Here (h,k) = (2,3), r = 10
s (x=22%+(y-3)2% =10°
X2+ y2 —4x— 6y — 87 = 0 istherequired equation of the circle.
Example 5.56: Prove that the circles X% + y° — 8x + 6y — 23 =0 and
x2+y2— 2x— 5y + 16 = 0 are orthogonal.

Solution:
The equations of the circle are
X2 +yP—8x+6y—23=0 .. (1)
x2+y2—2x—5y+16:0 ... (2
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1) =g,=-4 =3 ¢=-23

5
(2) :)gZ:_l, f2=_5102:16

Condition for orthogonality is 2g,9, + 2ff, =¢; + ¢,

29192+2f1f2 = 2(—4) (—1)+2(3) (—% =8-15=-7

C+C=—-23+16=-7

29192 + 21‘1 f2 =C;+Cy

.. The two circles cut orthogonally and hence they are orthogonal circles.

Example 5.57:

Find the equation of the circle which passes through the point (1, 2) and

cuts orthogonally each of the circlesx + y2 =9and x° + y2 -2Xx+8y-7=0

Solution:

Let the required eguation of the circle be X+ y2 +2gx+2fy+c=0

The point (1, 2) lies on thecircle
: 1+4+29+4f+c=0
2g+4f+c=-5
Thecircle (1) cutstheci rcle x? + y2 = 9 orthogonally.
29,9, + 2fif, = ¢, + ¢y
= 29(0) + 2f(0) = c-9
~c=9
Againthecircle (1) cuts X2 + y2 — 2x+ 8y — 7 =0 orthogonally.
s 29(-1) +2f(4) =c-7

= -2g+8f=9-7=2
= —g+4f=1
(2) becomes 29+ 4f = - 14
Log+2f=-7
@+ = 6f=-6 = f=-1
5 = g-2=-7 => g=-5

.. The required equation of the circleisx? + y2— 10x—-2y+9=0
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EXERCISE 5.7

(1) Show that the circles x® +y? — 2x+ 6y + 6 =0
andx2+y2—5x+6y+ 15 = 0 touch each other.

(2) Show that each of the circlesx® +y2 + 4y —1=0, X%+ + 6x +y+8=0
and X% + y2 — 4x — 4y — 37 = 0 touches the other two.

(3) Find the equation of the circle concentric with the circle
x2+y2—2x—6y+4:0and having radius 7.

(4) Find the equation of the circle which is concentric with the circle
X+ y2— 8x + 12y + 15 = 0 and passes through the point (5, 4)

(5) Show that the circle X2 + y2 — 8Xx — 6y + 21 = 0 is orthogonal to the
circlex2+y2—2y— 15=0

(6) Find the circles which cuts orthogonally each of the following circles
() X2+ Y2 +2x+ Ay +1=0, x4y - 4x+3=0and x> + y* + 6y + 5=0
(i) 32+ Y+ 2x+ 17y +4=0,5C +y? + Tx+ 6y + 11=0

and X% + y>—x + 22y +3=0

(7) Find the equation of the circle which passes through (1, — 1) and cuts
orthogonally each of the circlesx? + y2 +5x-5y+9=0and
X+ yP—2x+3y—7=0

(8 Find the equation of the circle which passes through (1, 1) and cuts
orthogonally each of the circles X2+ y2 —-8x-2y+16=0
and 2 +y? —4x—4y—1=0

178



6. TRIGONOMETRY

6.1 Introduction:

Trigonometry is one of the oldest branch of Mathematics. The word
trigonometry means “triangle measurement”. In olden days trigonometry was
mainly used as a tool for use in astronomy. The early Babylonians divided the
circleinto 360 equal parts, giving us degrees, perhaps because they thought that
there were 360 daysin ayear.

The sine function was invented in India, perhaps around 300 to 400 A.D.
By the end of ninth century, all six trigometric functions and identities relating
them were known to the Arabs.

In its earlier stages trigonometry was mainly concerned with establishing
relations between the sides and angles of a triangle, but now it finds its
application in various branches of science such as surveying, engineering,
navigation etc. For every branch of higher Mathematics a knowledge of
trigonometry is essential.

6.1.1 Angles:
An angle is defined as the amount of A Y
rotation of arevolving line from theinitial positive angle
position to the terminal position. o (anti clockwise)

Counter—clockwise rotations will be

i . i oL

called positive and the clockwise will be ‘_{cg?lti\-'c angle

called negative. (clockwise)
Consider a rotating ray OA with its A Y

end point at the origin O. Fig. 6.1

The rotating ray OA is often called the terminal side of the angle and the
positive half of the x-axis (OX) is called the initial side.

The positive angle 6 is|XOA  (counter-clockwise rotation)

The negative angle 6 is M (clockwise rotation)
Note: 1. onecomplete rotation (counter —clockwise) = 360° = 360 degree
2. If there is no rotation the measure of the angleis 0°.
6.1.2 M easurement of angles:

: i . .. (1)\th
If arotation from the initial position to the terminal position |S(@) of

the revolution, the angle is said to have a measure of one degree and written as
1°. A degreeisdivided into minutes, and minute is divided into seconds.
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i.e. 1degree(1°) = 60 minutes (60")
1 minute (1') = 60 seconds (60'")
In theoretical work another system of measurement of anglesis used which
isknown as circular measure. A radian is taken as the unit of measurement.

6.1.3 Radian measure:
Definition:

One radian, written as 1€ is the measure of an angle
subtended at the centre O of acircle of radiusr by an arc
of lengthr.

Note: 1. To express the measure of an angle as areal
number, we use radian measure.
2. Theword “radians’ is optional and often omitted. Thus if no unit
isgiven for arotation, it isunderstood to bein radians.

3. ‘¢’ in 1% indicates the circular measure.

Fig. 6. 2

6.1.4 Relation between Degrees and Radians
Since acircle of radius r has a circumference of 2xr, a b
circle of radius 1 unit (which isreferred to as an unit circle) >
has circumference 2r. When 6 is a complete rotation, P
travels the circumference of an unit circle completely.
Fig.6.3
If 6 is a complete rotation (counter-clockwise) then 6 = 2r radian. On the
other hand we already know that one complete rotation (counter-clockwise) is
360°, consequently, 360° = 2x radians or 180° = & radian. It follows that

1?? = 1 radian. Therefore 1° = 0.01746 radian (app.) and

1° =% radian and

1 radian = 180° x 2—72 =57° 16’ (app.).

Conversion for some special angles:
degrees 30° | 45° | 60° | 90° | 180° | 270° | 360°

Radians T T T T T 3n 2n
6 4 3 2 2
(Table6.1)

Example 6.1: Convert

(i) 150° into radians (ii) %n into degrees (iii)%,r radians into degrees.
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Solution:

() 150° = 150 x 7gg radians :g n
(i) %n radians = 37: x% =135°
1 .. 1 180 _1 A
(iii) 7 radians = 7 x - =1 x 180x55 =14° 19' 5
6.1.5 Quadrants
Let X'OX and YOY' be two lines at right angles Y
to each other as in the fig. (6.4) we call X’OX and , Il
YOY' asx-axisand y-axis respectively. X
Clearly these axes divide the entire plane into four Y
equal parts, called quadrants. Fig. 6.4

The parts XOY, YOX’, X'OY’ and Y'OX are known as the first, the

second, the third and the fourth quadrant respectively.
Anglein standard position:

If the vertex of an angleisat O and itsinitial side lies along x-axis, then the

angleis said to be in standard position.
Anglein a Quadrant:

An angle is said to be in a particular quadrant, if the terminal side of the

anglein standard position liesin that quadrant.

Example 6.2; Find the quadrants in which the termina sides of the following

angleslie.
(i) — 60°
Y

Fig.6.5a
From Fig (6.5a)
the terminal side of
—60° liesin IV
quadrant.

(ii) - 300°

y P
) 30°

Y
Fig.6.5b
From Fig (6.5b) the
terminal side of — 300°
liesin| quadrant.
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Y

Fig.6.5¢
From Fig (6.5¢c)
1295° = 3x360°+180° + 35°
Theterminal sideliesin 1|
guadrant.



EXERCISE 6.1
(1) Convert the following degree measure into radian measure.
(i) 30° (if) 100° (iii) 200° (iv) — 320°
(v) —85° (vi) 7° 30
(2) Find the degree measure corresponding to the following radian measure

(i) (%) (i) (&;) (iii)—3 (iv) (%)

(3) Determine the quadrants in which the following degreeslie.
(i) 380° (ii) —140° (iii) 1100°
6.2. Trigonometrical ratiosand I dentities
6.2.1 Trigonometrical ratios:

In the co-ordinate plane, consider a point A 1Y Py
on the positive side of x-axis. Let this point -0
revolve about the origin in the anti clockwise [
direction through an angle 6 and reach the point P. 0 L A
Now | XOP = 0. Let the point P be (x, y). Draw
PL perpendicular to OX.

Thetriangle OLP isaright angled triangle, in
which 0 is in standard position. Also, from the
AOLP, we have

OL =x = Adjacent side ; PL =y = opposite side ;

OP= \lx2 + y2 = Hypotenuse (=r > 0)

The trigonometrical ratios (circular functions) are defined as follows :

Thesineoftheangleeisdefinedastheratio¥ it is denoted by sin6.
i.e sind = ¥;cosecantvalueate:)£/:cosece ;y=0
and cos0 = )F(;secantvalueat6=)£(=sece;x¢0
y . X .
tan® = 3 ; cotangentvalueate=9=cote,y¢0

Note: 1. From the definition, observe that tan 6 and sec 0 are not defined
if x=0, while cot 6 and cosec 6 are not defined if y = 0.

2. cosec 0, sec 6 and cotd are the reciprocals of sind, cos 6 and tand
respectively.
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Example 6.3: If (2, 3) is a point on the termina side of 6, find al the six
trigonometrical ratios.

Solution:
P(x,y) is(2, 3) and it liesin the first quadrant.

x=2, y=3;r=\C+y’ =\4+9 =13

_y__3 . _X__2 _y_3
:sme—r—\/ﬁ,cose—r = 13,tane—x-2 Fi.6.7
cosece:% ;secezl% ,cot9—§

Note: 1. From example (6.3), we see that al the trigonometrical ratios are
positive when the terminal side of angle 6 liesin first quadrant.

Now, let us observe the sign of trigonometrical ratios if the point on the
terminal side of 6 liesin the other quadrants. (other than the first quadrant).

Example 6.4: If (- 2, — 3) is a point on the termina side of 6. Find all the six
trigonometrical ratios.
Solution:
P(x, y) is (- 2, — 3) and it lies in the third
quadrant

LX==2,y=-3;
=Ny =\FT0 =
sme—y————ve cosf=-=—F==-ve;tanod 3
Tr 74137 : r~4/13 ' 2
_r N8 ..r A18_ . -2 _2_
cosec 0 —y—_3——ve,sece—x—_2 ——ve,cote—_3 =3 =tve

As example illustrates, trigonometric functions may be negative. For

. . . . . r
instance, since r is always positive, sin 6 = ¥ and cosec 0 :)—/ have the same

sign asy. Thus sin 6 and cosec 6 are positive when 6 is in the first or second
guadrants, and negative when 6 is in the third or fourth quadrants. The signs of
the other trigonometric functions can be found similarly. The following table
indicates the signs depending on where 6 lies.
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Quadrants | I m | v

Functions Il '
Si n + + _ _ S n A”
Cos + - - + cosec
Tan + - - - —
Cosc I e m | v
o " " tan | cos
ot " - . - cot | sec

Table (6.2)

6.2.2 Trigonometrical ratios of particular angles:
Let X’OX and YOY' be the co-ordinate axes.
With O as centre and unit radius draw a circle BL Pxy)
cutting the co-ordinate axes at A, B, A’ and B’ as A
shown in the figure. ~\ 0 ?X
Suppose that a moving point starts from A and
move along the circumference of the circle. Let it \-E/
cover an arc length. 6 and take the final position P.
Let the co-ordinates of this point be P(x, y). Then
by definition, X = cosd and y = sin®.

We consider the arc length 6 to be positive or negative according as the
variable point movesin the anti clockwise or clockwise direction respectively.
Range of cos6 and sino :

Since for every point (x, y) on the unit circle, we have

—1<x<1 and-1<y<1 therefore —1<cosf6<land-1<snf<1

Fig. 6.9

Values of cosd and sin0 for 0 :O,g , T, 37“ and 2x.

We know that the circumference of a circle of unit radius is 2x. If the
moving point starts from A and moves in the anti clockwise direction then at the

. 3
points A, B, A’, B’ and A the arc lengths covered are 6 :O,g , T 7“ and 2n

respectively.
Also, the co-ordinates of these points areA(1, 0), B(O, 1), A'(-1, 0),
B'(0,— 1) and A(1, 0)
At the point:
A(L, 0), 6=0 = cos0 =1 and sn0=0
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B (0, 1), G:g = cos% =0 and sin% =
A'(-1,0, 6=n = cost = -1 and snn=0

(Y 1Y . 1
B"(0,-1), 6=35 = cos3; =0 and sin33; =-1

A (4, 0), 0=2r = cos2r =1 and sin2r=0

6.2.3 Trigonometrical ratios of 30°, 45° and 60° :

Consider an isosceles right-angled triangle
whose equal sides are 1. Its hypotenuse is b

\/12 +1? =+/2 . Itsbase angleis 45°.

. 1 1
sm45°:@ ; cos45°:ﬁ ‘tand5° =1 D, 1
cosec 45° =+[2 ; sec45° =4/2 ; cot45°=1 Fig. 6. 10

Oppositeside=1

adjacent side=1

hypotenuse =+/2
Consider an equilateral triangle ABC of side 2 units. Each of its angle is
60°. Let CD be the bisector of angle C. Then angle ACD is 30°. Also AD =1

and CD =12 - 12 =+[3.. Now in the right angled triangle ACD

For 30° For 60°
oppositeside = 1 opposite side = /3
adjacent side = /3 C adjacent side = 1

hypotenuse = 2 ‘ hypotenuse = 2
. 2
sm30°:§ sin600:325
cos 30° = 32E A 1 D1 B cos 60° = %
tan3°=% Fig. 6. 11 tan 60° = /3
3
.. C0sec 60° = 2
cosec 30° = 2 3
sec 30° = 2= sec60° = 2
3
\3 .. cot 60° = 1
. cot30° =+/3 NE
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0 0 T T T T T 3n 2n

6 4 3 2 2

sind 0 1 1 /3 1 0 -1 0
2 A2 2

cos0 1 \[3 1 1 0 -1 0 1
2 A2 2

tan 0 0 1 1 \/.'__3 o 0 — o 0
NE

Table 6.3

Important results:

For all valuesof 6, cos(-6)=cosband sin(-0)=-sno
Proof:

Let X’OX and YOY' be the co-ordinate axes. With O as centre and unit
radius draw a circle meeting OX at A. Now let a moving point start from A and
move in anti clockwise direction and take the final position P(x, y) so that arc
AP=6.

On the other hand, if the point starts from A and moves in the clockwise

direction through the arc length AP’ equal to arc length AP. Then arc AP'=— 0.
YT Y

/— 2N Py)

0 ,&'9 A ﬂ)- Q\A .

N NS
‘ P(x.-y) P(x,-y)

Fig. 6. 12
Thus|AOP =0 andAOP =-0

From the co-ordinate geometry, we know that the co-ordinates of P are
X =)

Clearly, cosb and cos(—6) are respectively the distances of points P and
P’ fromy axis and clearly each one of them is equal to x.

.. cos(—08)=cosH

Clearly, sin 6 and sin(— 0) are respectively the distances of points P and
P from x-axis. Assind =yand sin (-6) =—y, wehave sin(-0) =-sin®
Deductions cosec (—0) = —cosec 6 ; sec(-6) =secO

tan(-0) = —tan©6 ; cot(-0)=-cot6
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6.2.4 T-ratios of (90° + 0), (180° + 6), (270° + 6) and (360° + 6):
It is evident that, when 0 is a smal angle (0 < 6 < 90°), then
90° — 0, 90° + 6 etc., are in the quadrants as given below:

Angle Quadrant
90° -0 Q1 (first quadrant)
90° + 0 Q2
180° - 0 Q2
180° + 0 Q3
270° -0 Qs
270° + 0 Qs
360° - 0 ; alsoequa to“—6” Qa
360° + 0 Q1
Table 6.4:
Let P(a, B) be apoint in the first quadrant. Let [ XOP = 6°.
.'.sjnG:be, ; cose=6ip; tanezg B%_e QB
cosec 0 = csc0=L. o2 Pep
p a p 0
T-ratios of (90° — 6) 0
Let Q be a point in the first quadrant such 0 A X
thet Fig. 6. 13
|XOQ =90°-6and OQ = OP.
Let PA and QB be perpendicular to OX and OY respectively.
Then AOAP=AOBQ and Qis (B, o). Hence
sin(90°-0) = Y co—ordolgate ofQ = %, = cos9
cos (90° - 0) = % co—or%l)nQate orQ _ -ﬁl—;, = sino

O
tan (90° — 6) = y co-ordinate of Q %

~ xcoordinate of Q
Similarly, cosec (90°-6) = sec 6

sec (90° — 0) = cosec 6

cot (90°—0) =tan©
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T-ratios of (90° + 6) Y
Let R be a point in the second quadrant such Ry
that | XOR =90° + 6 and OR = OP

Let RC be perpendicular to x axis. C 0 oA g
Then AOAP=ARCO and Ris (- B, o), Hence

Fig. 6. 14
sin (90° + ) = yco-or%gde R (%P - 00s0
cos (90° + 9) = Xco-orcgll?ate o - _BE = -snd

] _yco-ordinatleof R o
tan (90° + 6) =\ "coordinate of R T-B ~cotd

Similarly, cosec (90° +6) = sec 6
sec (90° +60) = — cosec 6
cot (90°+6) =—tan6
T-ratios of (180° - 0) Y
Let S be apoint in the second quadrant such that  s(c.p)

P(o.p)
XOS =180° -6 and OS =OP
Draw SD perpendicular to x-axis ) 0 o) 8 %
ThusA OAP=A ODSand Sis (- a, ). Hence
Fig. 6. 15
. o y co-ordinate of S .
sin (180° - 6) = 0S :bﬁl_D =sno
xco-ordinateof S -«
cos (180° —0) = 0S =0op = —cos6
R _yco-ordinateof S _ B
tan (180° - 6) = xcoordinateof S T — ¢ —ten®
Similarly, cosec (180° —6) = cosec 0
sec (180°-6) = —secH
cot (180°—-0) = —cot®
T-ratios of (180° + 0) Y
Let T be a point in the third quadrant such that Po.p
XOT =180°+6 and OT =OP E 6
Draw TE perpendicular to x-axis TI/evlo A X
Then AOAP = AOET and T is (- a, — B). Co-P)
Hence Fig. 6. 16
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sin (180° +6) =
cos (180° + 0) =

tan (180° + 0) =

Similarly, cosec (180° +6) =
sec (180° +6) =
cot (180° +6) =

y co-ordinateof T

oT =op =—sind
xco-ordinateof T -«

ot =op = ~cosd
yco-ordinateof T -8 — tan o

xcoordinateof T ~
— cosec 6

—seco

cot 6

Remark: To determine the trigonometric ratios of any angle, follow the

procedure given below

(i) Writethe anglein theform k% +0;keZ
(ii) Determine the quadrant in which the terminal side of the anglelies.
(iii) Detrmine the sign of the given trigonometric function in that
. .S A
particular quadrant, using TC rule.
(iv) If k is even, trigonometric function of allied angle equals the same
function of 0.
(v) If kisodd, then adopt the following changes:
sine<>cos ; tan<>cot ; Sec<«> CoseC
Trigonometrical ratiosfor related angles
ngle -0 | 90-6| 9+6 | 180-0 | 180+0 | 270-0 | 270+0 | 360-0
\ or
function -0
sin —sind cos 0 cos 0 sin 0 -sin® —Ccos0O | —cosO | —sin6
cos cos 0 sin -sino —Cos 0 —Cos 0 -sin O sin 0 cos 0
tan —tan 6 cot 0 —cot 6 —tan 6 tan 0 cot 6 —cot 0 —tan 6
Cosec | —cosecd | secH sec 6 cosecH | —cosecO | —secH -sec O | —coseco
Sec sec 6 cosec O | —cosecH | —secO —secO | —cosecH | cosec O sec 6
cot —cot 6 tan 6 —tan 0 —cot 6 cot 6 tan 6 —tan® | —cot 6
Table6.5
Note : Since 360° corresponds to one full revolution, sine of the angles

360°+45°;720°+45°;1080°+45° are equal to sine of 45°. Thisis so for the other
trigonemetrical ratios. That is, when an angle exceeds 360°, it can be reduced to
an angle between 0° and 360° by wiping out integral multiples of 360°.
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Example 6.5:
Simplify : (i) tan 735° (ii) cos980°  (iii) sin 2460°  (iv) cos (-870°)
(V) sin (=780°) (vi) cot (—855°) (vii) cosec 2040° (viii)sec (— 1305°)
Solution:
0] tan (735°) = tan (2 x 360° + 15°) = tan 15°
(i) €0s 980° = cos (2 x 360° + 260°) = cos 260°
= cos (270° - 10°) = —sin 10°
(iii)  sin(2460°) = sin (6 x 360° + 300°) = sin (300°)
= sin (360° — 60°)
= —sin60°
__\B
-T2
(iv)  cos (- 870°) = cos(870°) = cos (2 x 360° + 150°)
= c0s 150 = cos (180° - 30°)

= —-cos30° = —325
(V) sin (— 780°) = —sin 780°

= —sin (2 x 360° + 60°)

= -sn60° = —325

(vi) cot (— 855°) = — cot (855°) = — cot (2 x 360° + 135°)
= — cot (135°) = — cot (180° - 45°)
=cot45° =1

(vii) cosec (2040°) = cosec (5 x 360° + 240°) = cosec (240°)
= cosec (180° + 60°) = — cosec (60°)

_ 2
IRVE
(viii) sec (- 1305°) = sec (1305°) = sec (3 x 360° + 225°)
= sec (225°) = sec (270° — 45°)
= —cosec 45° = —4[2

cot (90° —6) sin(180° +6) sec (360° — 6)
tan (180° + 6) sec (- 0) cos(90° + 0)

Example 6.6: Simplify :
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tan 0 (— sin 0) (sec 0)
tan 6 (sec 0) (—sin 0)
=1

Solution: The given expression =

Example 6.7:

NI

Without using the tables, prove that sin 780° sin 480° + cos 120° cos60° =
Solution: sin 780° = sin (2 x 360° + 60°) = sin 6O°:3§
sin 480° = sin (360° + 120°)

= s§in 120° = sin (180° — 60°) = sin 60° =32B

cos 120° = cos (180° — 60°) = — cos 60° = —% ; C0s60° :%
_AB B 11
L.H.S. - 2 . 2 - 2 . 2

6.2.5 Special propertiesof Trigonometrical functions:
Periodic function:

A function f(x) is said to be a periodic function with period o if
f(x + a)= f(x). The least positive value of o is called the fundamental period of
the function.

All the circular functions (trigonometrical functions) are periodic
functions.

For example,
sin(Xx+2n)=sinx ; sin(x+4x) =sinx ; sin(x+ 6m) =sinx
sin(x+2nt) =sinx,ne Z

Herea = ...... — 6m, — 4n, — 2x, 0, 2x, 4w, ... . But the fundamental period
must be the least positive quantity. Therefore a. = 2 is the fundamental period.

Thus sine function is a periodic function with fundamental period 2rx.
Similarly one can prove that the functions cos X, cosec x and sec X are aso
periodic functions with fundamental period 2rn while tan x and cot x are
periodic with fundamental period 7.
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6.2.6 Odd and even functions:

We know that, if f(xX) = f(- X), then the function is an even function and if
f(— X) = — f(x) then the function is an odd function.

Consider f(x) =sinx; f(—=x)=sin(—x) =—sinx=-f(x) i.e. f{(X) = - f(— X)
. sin xisan odd function. Similarly we can prove that cosec x, tan x and cot X
are odd functions.

Consider f(X) = cos x ; f(— X) = cos (- X) = cos x = f(X). .. cosxisan even
function. Similarly we can prove sec x is an even function.

Note : We can read more about odd and even function in Chapter 7.

EXERCISE 6.2
Q) Ifsine:% , find the value of

sec (360° — 0) . tan (180° — 0) + cot (90° + 0) sin (270° + 0)
(2) Expressthe following as functions of positive acute angles:-
(i) sin (— 840°) (ii) cos(1220°)  (iii) cot (— 640°) (iv) tan (300°)
(V) cosec (420°) (vi) sin (- 1110°) (vii) cos (- 1050°)
sin300° . tan 330°. sec420° \[2

(3) Provetha cot 135° . cos210° . cosec 315° ~  \/3

(4) Provethat {l+cot o — Sec ((x + %)} {1 + cot o + sec (oc + g)} =2 cot a

(5) Expressthefollowing asfunctionsof A :
(i)sec(A—g—Zn) (ii) CO%C(A—%) (iii)tan(A—%“)
(iv) cos (720° + A) (v) tan (A + n)

sin (180°+A) . cos (90°-A) . tan (270°-A) .
sec (5400 _A) cos (3600+A) COSEC (270°+A) =-snA COSZA

(6) Provethat

@) Provethatsine.cose{sin(g— ).cosece+cos(%—e>sec6} =1

(8) Find thevauesof :-
(i) cos(135°) (ii) sin (240°) (iii) sec (225°)  (iv) cos (- 150°)

(v) cot (315°) (vi) cosec (— 300°) (vii) cot 574“ (viii) tan (— %n)

(9) IfA,B,C,Dareanglesof acyclic quadrilateral prove that
CosA + cosB + cosC + cosD =0.
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(10) Find the values of the following expressions :

() tan?30° + tan®45° + tan60° (i) SNZ .COSZ +COS = .Sn=
6 3 6 3
(iii) cos% . cos% - sin% . sin% (iv) cos 45°.cos60°—sin 45°.sin 60°
(v) tan? 60° + 2 tan® 45° (vi) tan? 45° + 4 cos® 60°
(vii) cot 60° . tan30° + sec? 45° . sin 90°
(viii) tan? 60° + 4 cot® 45° + 3 sec® 30° + cos?90°
(iX) tan®30° + 2 sin 60° + tan 45° — tan 60° + cos” 30°
(x) 3 SN?60° —5 sec 60° tan? 30° + 5 SN2 45° . tan? 60°

5tan0+4sn6
\[3cos0-3sin0 ~

(1) 1If cose:—% and tan 6 > 0 show that

6.2.7 Trigonometrical identities:

As in variables, sin 0 . sin 6 = (sin 0) . This will be written as sin%0.
Similarly

tan 0  tan’0 = tan°0 etc. We can derive some fundamental trigonometric
identities as follows:

Consider the unit circle with centre at the origin O. Let Y
P(x, y) be any point on the circle with [ XOP = 6. /mm
Draw PL perpendicular to OX. Now, triangle OLP is a

right angled triangle in which (hypotenuse) OP =r = 1
unit, and x and y are adjacent and opposite sides

respectively.
_X_ n_Y_.. _Y :
Now wehavecosf =7 =xandsin6=7=y; tan6 =5 Fig. 6. 17
andr? =2 + y2 1
From AOLP, we have X2 + y2 =rl=1
i.e x2+y2 = cos?0 +sin%0=1
2
1+tan29-1+£2—xz—+2\£ G) (—) = 5%
X X cos 0
2 2
1+cot26=1+x— +X2=6)2=(.i> = cosec?0
vy sin 0

Thus we have the identities
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sin%0 +cos?0 = 1
1+ tan®0 = sec?0
1 + cot’0 = cosec’®
.. From these we also have
sec?0 — tan0 = 1
cosec?d — cot?0 = 1
Example 6.8: Show that cos’A — sin*A =1 -2 §nA

Solution: cos*A —sin®A = (coszA + sinzA) (coszA —-d nZA)
= cos?A — sin’A = 1 —sin?A — sin®A
= 1-2sin’A
Example 6.9: Prove that sec?A + cosec’A = sec?A . cosec’A
Solution: sec?A + Cosec’A = 1 + %
cos’A SIN“A
_ sin?A + cos?A 1

" cos’A . SinA  cos?A . sinPA
= sec?A . cosec’A
Example 6.10: Show that cosA \/ 1+cot?A = \/ cosec’A — 1

Solution: COSA \/1 +COt°A = CoSA \/coseczA = COSA . CosecA
_COsA _ _f 2
= SnA = COtA ="\/cosec“A - 1

Example6.11; If asin®® + b cos?0 = ¢, show that tan’0 = ;:2

Solution: asin’d + b cos?0 = c.
Dividing both sides by cos0, we get atan®0 + b = c sec®0
atan®0+b =c 1+ tanze)
tan®0 (a-c)=c-Db
c-b

) 2, _C=D0
..tane—a_C

[1-cosA
Example6.12: that 1+ coshA - COSeCA —cCotA

1-cosA 1-cosA 1-cosA
1+cosA ~ 1+cosA *1— cosA

Solution:  consider,
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_ (1—cosA)® (1 — cosA)2
1- cos’A SinA

) 1-cosA 1-cosA 1 COSA
- 1+cosA = sSnA T SnA "~ SnA

= cosec A — cotA

Example 6.13:
If x=acosH+hbsnb and y=asin6-bcoso, showthatx2+y2=a2+b2
Solution: x2+y2 = (acose+bsine)2+(asine—bcose)2
= acos?0 + b? sin®0 + 2ab cos O sind
+a’ sin®0 + b? cos?0 — 2ab sind cosd
= a° (cosze + sinze) + bz(si n%o + cosze)
= a2 + b2
Example 6.14: Show that Sin?A.tanA+cos?A . COtA+2 sinA . cosA=tanA + cotA
Solution: L.H.S. = sin’A .% + Cos’A .% + 2sinA cosA
sn’A  cos’A
= cosA T snA
_ sin®A + cos’A + 2sinA . cos?A
- SinA . cosA
_ (s n?A + cos?A) 2 _ 1
~  sinA.cosA T SIiNA . cosA

i 2
A + A '
= % ['.'SmZA + COA = 1]

+ 2sinA . cosA

_ sin’A cos?A
= SnA cosA *SnA cosA

SinA  COsA
Hence the result oA TSnA tanA + cotA = R.H.S.

Example 6.15: Show that 3(s nx—cosx)4+6(si nx + cosx)2+4 (s n6x+c056x) =13

2
Solution: (Sinx — cosx) 4= [(sinx— cosx)z] = [sinzx + cos?X — 2sinX cosx] 2
= [1-2sin x cosX] 2

=1-4sinx cosx + 4§n°x cosX ... 0
(sinx + cosx) 2 = §in®x + cosx+ 2siNX . COSX
=1+2sinxcosx .. (i)
sin®x + cos®x = (s n2x)3 + (coszx)3
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= (s’ + cosX) 3 - 3sin’x . cos’x (Sin’x + cos’X)
=1-3sn’x cos™x ... (iii)
Using (i), (ii) and (iii)L.H.S.
= 3(1 —4sin x cosx + 4si nx. coszx)
+6(1+2sinx cox) +4(1-3 sin’x coszx)
=3+6+4
= 13=R.H.S
tan +sec6—1 _ 1+sinf
tand —secO+1 =  cosd
tand + secH — (sec29 - tanze)
tand — seco + 1
tanO + secO — (sech + tanB) (sechb — tanb)
tan® —secO + 1
(tan® + sech) (1 — sech + tanod)

Example 6.16: Prove that

Solution: LHS =

= (tand — secO + 1) = tand + sech
sind 1 sinb+1
= co® Tco® - coH RH.S
EXERCISE 6.3
(1) Provethefollowing:
(i) sin®A — cos®A = 1 - 2cos’A
(i) Sin°A — cos®A = (SinA — cosA) (1 +SinA cosA)
(iii) (SN + cos0)? + (sind — cos)? = 2
(iv) (tano + cote)2 = sec?0 + cosec®0
1 1 5 | SECX +tanx 2
M3 sno T 1—sinp - 20 (vi) Secx —tanx (seox + tanx)
... _CosecH 1 _
(vii) ol0 + tand cosd (viii) oma—— secH — tand
. 1 _1+cosB
(i) cosecO —cotd ~  sind

(X) (sech + cosb) (sech — cosb) = tan?0 + sin%0

(2) If tanb + secO = x, showthatZtanG:x—)%, ZSece:x+)—1(

. ¥ -1
Hence show that sin6 ==
X +1
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©)
(4)

©®)
(6)

()
©)

I tand + sind = p, tand — sind = q and p > q then show that p? — ¢° = 4\/pq
SsecA B CosecA
cosec’A  sec?A

Provethat (1 + cotA + tanA) (SinA — cosA) =

COSA SinA .
Prove that =SinA + cosA

1—tanA T 1-cotA

Prove the following :

. /1+sinA . [1+cosA

(i) 1_SnA = secA +tanA (i) 1— cosA = COSeCcA + COotA
(sinA = 1) (cosA = 1)

1-sinf _

(iii) 1+sn0 = secH — tand

If cosd + sind =~[2 cosd, show that cosd — sinf =+/2 sind
Provethat (1 + tanA + secA) (1 + cotA — cosecA) =2

6.3 Compound Angles
6.3.1 Compound AnglesA +Band A - B

such

In the previous chapter we have found the trigonometrical ratios of angles
as 90°+ 0, 180° + 6, ... which involves single angle only. In this chapter
we shall express the trigonometrical ratios of compound angles such as A + B,

A — B, ... interms of trigonometrical ratiosof A, B, ....

It isimportant to note that the relation f(x +y) = f(x) + f(y) is not true for all
functions of area variable. As an example al the six trigonometrical ratios do

not satisfy the above relation.

cos (A + B) isnot equal to cosA + cosB.
Let us develop the identity
cos(A - B) =cosA cosB + sinA sinB
Y

S
N
K

Iy
=5

N Y
mN‘“h Q(cosB,sinB) p
v Al :
A-E Q1.0
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Let P and Q be any two points on the unit circle such that [ XOP = A and

|XOQ = B. Then the coordinates of P and Q are (cos A, sinA) and
(cosB, sinB) respectively.
PQ2 = (COsA - cosB)2 + (SinA — :sinB)2

= (coszA — 2c0sA cosB + coszB) + (s n°A — 2sinA sinB + sinZB)

= (coszA + sinZA) + (cosZB + sinZB) — 2C0sA cosB - 2sinAcosB

= 1+1 -2 cos A cosB — 2 sinA sinB=2 — 2 (cosA cosB+sinA sinB) ... (1)

Now imagine that the unit circle above is rotated so that the point Q is at
(1, 0). The length PQ has not changed.

PQ?= [cos (A - B) — 1]% +[sin (A — B) - 0]

= [cos’(A - B) — 2cos(A — B) + 1] +sin? (A - B)

= [cos’(A - B) + sin¥A - B)] +1-2cos(A -B) =1+ 1 - 2cos(A — B)

= 2-2cos (A -B) ...(2
From (1) and (2), 2-—2cos(A —B) =2-2 (cosAcosB + sinA sinB)
=  Ccos(A — B) = cosA cosB + sinA sinB

Next let us consider cos(A + B). Thisis equal to cos [A - (- B)] and by

cosine of a difference identity, we have the following:
cos(A + B) = cosA cos(— B) + sinA . sin (- B)
But cos(—B) = cosB and sin(-B) =-snB
. COS(A + B) = cosA cosB — sinA sinB.
To develop an identity for sin(A + B), we recall the following:
sing = cos(%— 9)
In thisidentity we shall substitute A + B for 6

Sn(A +B) = cos[%— (A + B)J = cos[(g—A) - B}
We can now use the identity for the cosine of a difference.
= cos(%—A) .cosB+sin(g—A) .sinB
= sinA . cosB + cosA . sinB
Thus, sin (A +B) = sinA . cosB + cosA sinB
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To find an identity for the sine of a difference, we can use the identity just
derived, substituting — B for B
sin(A -B) =sin[A + (- B)]
= sinA cos(— B) + cosA . sin(— B)
sin(A — B) = sinA cosB — cosA sinB
An identity for the tangent of a sum can be derived using identities already

established.
sin (A + B)
tan (A +B) = GoqA + B)
_ SinA . cosB + cosA sinB
~ cosA cosB — sinA sinB

Divide both Numerator and Denominator by cosA cosB
sinA cosB  cosA sinB
_ CosA cosB *+ CosA cosB
~ cosA cosB SinA sinB
COSA cosB ~ cosA cosB

tanA + tanB
@ (A+B) =T (A . tanB
Similarly, an identity for the tangent of a difference can be established.
. tanA—-tanB
It isgiven by tan(A_B)_lHanA.tanB
(D] sin (A + B) = sinA cosB + cosA sinB
(2 sin (A — B) = sinA cosB — cosA sinB
3 cos (A +B) = cosA cosB — sinA sinB
4 cos (A — B) = cosA cosB + sinA sinB
tanA + tanB
®) e (A+B) =7 (A tanB
tanA — tanB
(6) tan(A - B) = T3 tanA . tanB

Example 6.17:Find the values of (i)cos 15° (ii)cos 105° (iii)sin 75° (iv)tan 15°
Solution:
() c0s15° = cos(45° — 30°) = cos45° cos30° + sin45° sin30°

_ L3, 11 B+1 341 N2 _\f6+\2
N2 27227 22 T 22 T2 4

(ii) cosl05° = cos(60° + 45°) = cosb0° cosA5° — sin60° sind5°

199



11 B 1 _1-+3_+2-+6
T2\2 2 27 22~ 4
(iii) sin75° = sin(45° + 30°) = sin45° cos30° + cos45° sin30°

_ 1 3.1 1 _3+1 A6+

‘\/§'2+\/"2‘2\/§ 7

1
1-—F=
. . ooy tand5° —tan30° \3
(|V) tan15° = tan(45 O) 1 + tan45° tan30° - 141 i
\3
_3-13 _
T 3+4/3 =2-13
. 3 12
Example 6.18: If A, B are acute angles, sSinA =gicosB=73 , find cos(A + B)
Solution: CoS (A +B) = cosA cosB — sinA sinB
_ A 27—~ | _4
1-sin 1- 2 =5
sinB-\/ — cos’B =1 [1- :%

4 12 3 5 33
...COS(A+B)—5.13_5.13—65

Example 6.19: Show that (i) sin(A + B) sin(A — B) = sinA — sin’B
(ii) cos(A + B) cos(A — B) = cos’A — sin’B
sin(A +B) sin(A — B) = (sin A cosB + cosA sinB) (sinA cosB — cosA sinB)
= sinA cos’B — cos?A sin’B
= sin?A (1-sin’B) — (1 - sin?A) sin’B
= sin’A - sin’B
cos(A + B) cos(A — B) = (cosA cosB — sinA sinB) (cosA cosB + sinA sinB)
= cos?A cos’B — sin?A sin’B
= cos’A 1- sinzB) -(1- cosZA) sin’B
= cos’A — sSin’B
Example 6.20: If A + B = 45°, show that (1 + tanA) (1 + tanB) = 2 and hence
deduce the value of tan 22 %

Solution: Given A+B =45° = tan(A +B) = tand5°
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tanA + tanB

1_tanA .tanB
i.e tanA +tanB = 1 —tanA . tanB
i.e l+tanA +tanB = 2-tanA tanB  (add 1 on both sides)
1+tanA +tanB + tanA tanB = 2
i.e (1+tanA)(1+tanB) = 2
Take A =Bthen 2A = 45° = A:ZZ% =B

1\2 1
.'.<1+tan22§) =2 = 1+tan225 =+2

1
L tan225 =442 -1

. 1. 1. " 1
Since 225 isacute, tan 225 is positive and therefore tan 225 =42 -1

Example 6.21.

. tan69° + tan66° tan (A — B) +tanB
0] Provethatlan an = an ( ) * tan

—tan69 tan66 -+ DT _tan(A-B) B - A

.... c0s17° +snl7°
(1) “cos17° — simi7e
Solution:

. tan69° + tan66°
) T a6 tan66°

= tan62°

= tan (69° + 66°)

= tan (135°) =tan (90° + 45°) = —cot45° =—-1
. tan (A — B) + tanB
(i1 1-tan(A - B) tanB

=tan[(A - B) + B] =tanA
Cc0s17° +sinl7°

cosl7° —sinl7°

Divide both Numerator and Denominator by cos17°
1+tanl7°  tan 45° + tanl7°
1-tanl7° 1-tand5° tanl7°
= tan (45° + 17°) = tan62° = R.H.S.

(iii) LH.S =

LH.S. = (- tand5° = 1)

Example 6.22: Provethat (i) tan G + e) tan (ﬁ - 9) =1

ENE

(i) If tanA = 3 and tanB :l, provethat A - B =
2
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Solution:

: _ n n
0] L.H.S.—tan(4+9) tan(4—9)
1+tand) (1 - tand T
_(1—tan9) (1+tane) =1 ( tan4‘1)
;.1 5
. tanA — tanB 2 2 T
(i) @n(A-B) =7 aA taB 1-5 =1=tany
1+3.§ D)

tan(A-B) =tany = A-B =

N

Example 6.23: If cos(a + B =g and sin (o — B) = % where (a0 + ) and

(o - B) are acute, find tan 2a.
Solution:

cos(oc+[3)=%1 :>tan(oc+B)=§1

Sin((x—ﬁ)=% :>tan(oc—[3)=%

20. = (o + B) + (o — )
- tan2o = tan [(a + B) + (o - B)]

3,5 14

_ tan(a+p)+tan(a—-pB) __4 12 12 56

" 1-tan(a + B) . tan(o — -, 3 5 711 T 33
P1-9x35 15

Example 6.24: Prove that tan3A — tan2A — tanA =tanA tan2A tan3A
Solution:

tanA + tan2A
tan3A = tan(A + 2A) = 1— tanA tanoA
i.e tan 3A (1 - tanA tan2A) = tanA + tan2A
i.e tan3A — tanA tan2A tan3A = tanA + tan2A
tan3A —tan2A —tanA = tanA tan2A tan3A
EXERCISE 6.4

(1) Findthevauesof (i)sin15° (ii) cos 75° (iii) tan 75° (iv) sin 105°
(2) Provethat

(i) sin (45°+A) =\/—1—2 (snA+cosA) (ii) cos(A+45°) =% (cosA-sinA)
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©)

(4)

(®)
(6)

(7)

(8)
9)

(10)

(11)

(12)

(13)

(14
(15

Prove that
(i) sin (45° + A) — cos(45° + A) =+/2 sinA
(ii) sin(30° + A) +sin(30° — A) = cosA
Provethat (i) cos(A +B) cos(A - B) = cos’B — sinA
(i) Sn(A + B) sin(A — B) = cos’B — cos?A
Provethat cos?15° + cos?45° + cos’75° = %
Prove that (i) sinA +sin(120° + A) +sin(240°+ A) =0
(ii) cosA +cos(120° + A) + cos(120° - A) =0
Show that

(i) cosl5°—sinl5°= > (ii) tan15°+cot15°=4 (iii) cot 75°+tan75° = 4

(i) Find sin45° + sin30° and compare with sin 75°
(i) Find cos45° — c0s30° and compare with cos15°.
Show that

(i) tan70° = 2 tan50° + tan 20°

(i) tan72° = tan18° + 2tan54° (Hint : tanA tanB = 1if A + B = 90°)
..., cosl1® +sinll° .. C0s29° + sin29°
(i) cosl1® —sin11° tan6® (V) €0s29° — sin29°
sn(A-B) sn(B-C) sn(C-A)
SnA snB " snBsnC T SnCsinA

=tan 74°

Prove that =0

(1) IftanA=% , tanB=1—11 show that A + B = 45°

(i) I tan 0. == and tan B == , show that o+ p = &
2 3 4
If A +B =45°, show that (cotA-1) (cotB — 1) = 2 and deduce the value

[e]

1
of cot 22 >

If A+B+C=mn, provethat
(i) tanA + tanB + tanC = tanA tanB tanC
(i) tan2A + tan2B + tan2C = tan2A tan2B tan2C

. 1 . 1., .
If sin =3,snB=7 find sin (A + B), where A and B are acute.

Prove that (i) sin (A + 60°) + sin(A — 60°) = sinA
(ii) tandA tan3A tanA +tan3A +tanA —tandA =0

203



6.3.2 Multiple angle identities:

Identities involving sin2A, cos2A, tan3A etc. are called multiple angle
identities. To develop these identities we shall use sum identities from the
preceding lesson.

Wefirst develop an identity for sin2A.
Consider  sin(A +B) = sinA cosB + cosA sinB and put B = A
sin2A = sin (A + A) =sinA cosA + CosA sinA
= 2sinA cosA
Thus we have the identity [ Sin2A = 2sinA . cosA |

Identities involving cos2A and tan2A can be derived in much the same
way as the identity above

COs2A = cos(A + A) = CosA cosA — sinA sinA
COs2A = cos’A — sin’A

Thus we have the identity |0052A = cos’A — sin°A

2tanA

Similarly we can derive [tan2A =— 5 -
1-tan"A

The other useful identities for cos2A can easily be derived as follows:
Cos2A = cos?A — Sin°A = 1- sinZA) —sin’A

= 1-2sin°A
Cos2A = cos?A — SinA = cos?A — 1- coszA)
= 2c0°A — 1
From COS2A =1- ZsinZA, also we have
SMA = 1- 02032A
Also, CO2A = 2c082A — 1
+
cos?A = %
2. _ 1-cos2A
Hence tan“A = 1+ COSOA
Sin2A = 2sinA cosA
_2snA S2A_2tanA_ 2tanA
~cosA ST 20 T r A
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Si nzAj
cos?A

Cos2A = cos?A — SinA = cos?A (1
= cos’A a- tanzA)
_1-tan’A _1-tan’A
T osec?A T 1+tan’A

Thuswehave sin2A = 2sinA . cosA

cos2A = cos?A — sinA

cos2A = 1-2sin’A

cos2A = 2 cos’A — 1

tanoA = —22_
1 - tan®A
. 2tanA
singa = —2EA_
1+ tan“A
1-tan’A
0052A=;an2
1+ tan“A

6.3.3: Trigonometrical ratios of A in terms of trigonometrical

t I

Coin oA
= S|n2.C032

_ A\ _ A L 2A
cosA—cos(sz)—cos:Z2 —-sin®5
A
—2c0522 -1
_ .2 A
=1-2sn 2

tan A =tan(2><%)

A
2tan2

2A
1-tan 2
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Similarly, we can prove the following identities

A

SinA = 2tan2
1+tan2%

A
1—tan2§
COSA = —«
1+tan2%

. 2A 1-cosA

sin“% =75

+

cot sy = LA

2A 1-cosA

"5 = 13 cosA

| H A__snA A _1-cosA
Also note that tan2'1+cosA an tanz- SnA
3

Example 6.25: If sind =4 and 6 is acute, find sin20 ?

i ' 3 A/ ) [ 9 55
Solution: smezg : cosO =\1-sn0 = 1_6_4 :385

sSin20 = 2sinf cosH = 2% 3855 3 255
Example 6.26: Find (i) sin15° (ii) tanl5°

i i . . 30° 1 — cos30°
Solution: (i)  sin15° = sin—5~ ="\ /% -

" o _...30° 1-cos30° _
(ii) tan15° = tan 2 = gm0 -

6.3.4 Trigonometrical ratios involving 3A
Sin3A = sin (2A + A) =sin2A . cosA + Cos2A . SihA
= 2.5inA cos?A + (1 - 25in°A) sinA
= 25nA (1 -sin®A) + (1 - 2sin?A) sinA
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= 3sinA — 4sin°A
Similarly, cos3A =4 cos’A — 3cosA

tan2A + tanA
tan3A =tan (A + A) = 1_ta2A tanA
2tanA
(—tan > ) + tanA
_ \1-tan"A
1-tana —208
1-tan“A
_ 3tanA - tan°A
1-3tan’A
Example 6.27: Prove that cos*A — sin®A = cos2A
Solution:
L.H.S. = (cos?A + sin?A) (cos?A — sin?A)
=1.cos2A = cos?2A = R.H.S.
Example 6.28:

3 J—
Show that cot3A = COUA — ScotA

3cot?A — 1
Solution:
1 3
RH.S = co’A—3cotA _tanPA A1 3an?A
ST BeotPA-1 0 3 7 3tanA—tan’A
tan’A
1
“ @A - cot3A =L.H.S.
Example 6.29:
1-
If tanA =5 g~ . prove that tan2A = tanB, where A and B are acute
angles.
B B
2§n’ > sins
. _1-cosB _ 2 _ 2 . B
Solution: R.H.S = SnB —2. B B~ B ~ tan
sins.cos5 oS5
B
tans = tanA
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:A:% = B=2A

Therefore tan2A = tanB
Example 6.30: Show that 4 sinA sin (60° + A) . sin (60° — A) =sin3A
Solution: L.H.S. =4snA sin(60° + A) . sin (60° — A)

= 4snA { sin (60° + A) . sin (60° — A)}
= 4sinA {sin60 — sin®A}
= 4sinA {%— sinzA} = 3sinA — 4sin°A = sin3A
= RH.S
Example 6.31: Provethat cos20° cos40° cos80° =%

L.H.S. = c0s20° cos40° cos80°
= c0s20° { cos (60° — 20°) cos(60° + 20°)}
= cos20° [cos?60° — sin?20°]

= 00s20° [%1 _s n220°]

= %1 c0s20° { 1 - 4(1 - cos?20°)}

l 3 ] O 1 O
=2 {4c0s°20° - 3 cos20°} = 7 [cos3 x 20°]
= %1 x €0s60° :% =RH.S

Example 6.32: Find the values of:

(i) sin18°  (ii) cos18°  (iii) cos36° (iv) sin36° (V) sin54° (vi) cosb4°
Solution:

(i) Let6=18°then 50=90°= 20=90°-30

= sin20 = sin(90° — 36) = cos30

2sin0 cosd = 4c0s°0 — 3cosd
2s5in0 = 4cos’0 — 3 (~-cos6 = 0)
25in0 = 1 — 4sin9
4sin%9 +2sind —1=0

U v il
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—2++/4+16 —1++/5
8 !

= sno =
: . . - . —1+4/5
since sin 18° is positive, Sin18° = )

(i) cos18° =+/1-sin’18 =\/1— (\/54_ 1)2 =\/102 25

. +1
(i) cos36°=1- 2s5in’18° :L

4

(iv) sin36° =1 cos?36° = @

5+1

(v) sin54° =sin (90° - 36°) = cos36° =~ 4
(vi) cos54° = cos (90° — 36°) = sin36° = 10-2/5

D

)
©)

(4)
()

(6)

4
EXERCISE 6.5
Prove the following:

A 1 oy 1
(i) 2sin15° cosl5® =5 (i)sing cosg = i
ey 10+ 24/5 . 5-1
(iii) sin72° = q (iv) cosr2° = 54L
2tan22;O
(v)1—zgn2221°—i (vi)—2 =1
2 \/—2 1—tan222%°

Show that 800338 —6005% =1

If tan% = (2-+/3) find the value of sind

1+sn6-cos _

Prove that 1+sin6+cos®

0
tan 2

Prove that

(i) cos? (% - e) —s§n? (ﬁ - e) =sn20 (i) sec20+tan20 = tan (ﬁ + e)

(i) If tand = 3 find tan30 (i) |fsjnA=§ find sin3A
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7) Iftana:% andtansz% show that 200+ B =7
1 1(, 1
(8) If 2cosH =x+ 7 then prove that cos20 =75 | X +;

6.3.5 Transfor mation of a product into a sum or difference
We know that

sSin(A +B) =sinA cosB +cosA sinB ... (1)
and SiN(A —B) = sinA cosB —cosAsnB ... (2
Adding (1) and (2), we get
sin(A +B) +sin (A — B) = 2sinA cosB ()
Subtracting (2) from (1)
sin(A + B) —sin(A — B) = 2 cosA sinB ..(1
Again
cos(A + B) = cosA cosB-sinAsinB ... (3)
coS(A —B) = cosA cosB +sinAsnB ... (4)
(3)+(4) = cos(A +B)+cos(A —B) = 2cosA cosB (1))
@ -3 CoS(A + B) — cos(A —B) = — 2sinA sinB .. (V)
Now, let A+B =CandA -B=Dthen

+ —
2A=C+D(OR)A=C—2D and 2B =C-D (OR) B=C—2D
Putting these values of A and B in the above
four formulael, I1, 11l and 1V, we get

1) sinC+sinD:23inC;D .cosc;zD

+ a—
2) sinC—sinD=2cosC2D .sinczD

+D -D
3) cosC+cosD:ZCosC2 .cos,c2

+ pa—
4) cosD—CosC:ZSinCZD .sinczD

Example 6.33: Express as sum or difference of following expressions.
(i) 2sin20 . cosb  (ii) 2 cos26 cosH (iii) 2sin 3A . sinA

(iv) cos76.cos50 (v)cos% .cos% (vi) cos360.sin26 (vii) 2c0s3A . sSin5A
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Solution:
(i) 2sin20.cos0 =sin(20+0)+sn(20-0)=sn30 +sind
(i) 2co0s20 . cosH = cos(20 + 0) + cos (20 — 6) = cos36 + cosb
(iii) 2sin3A .sinA = cos(3A — A) — cos(3A + A) = CoS2A — CoAA

. 1 1
(iv)  cos7B.cos50 =5 [cos(78 + 56) + cos(76 - 56)] =5 [cos126 + cos26]
3A 5A 1 [ (3A SA) (SA SA)}
(V) cos—5 .cos5 =75 |CoS| 5 +—5 |+cos(5 — 5
1 1
=5 [cosA4A + cos(-A)] =5 [COSAA + COsA]

(vi)  cos36.sin20 =% [ sin (36 + 20) —sin(36 — 20)] =% [sn50 —sin 0]
(vii) 2 cos3A . sin5A = sin(3A + 5A) — sin(3A — 5A) = sin8A — sin(—2A)

= sin8A + sin2A
Example 6.34: Express the following in the form of a product:
(i) sindA + sin2A (ii) sSin5A — sin3A (iii) cos3A + cos7A
(iv) cos2A — cosAA (V) cos60° — cos20° (vi) cosb5° + sin55°

Solution:

. . . . (4A +2A 4A — 2A .
(i) sm4A+sm2A=25m( 2 )cos( 2 )=25|n3A COsA

+ pa—
(i) sin5A —sin3A = Zcos(w) sin(%) =2 Cco4A sinA

+ -
(iii) cos3A + cos’A = 2 cos (B’AT?A) cos (?’AT?A)

= 2c0s5A c0s (—2A)=2c0s5A COs2A

(iv) COs2A — cos4A = — 2sin (ZA ;4A) sin (ZA _4A)

2
= -2sn3A sin(-A)=2sin3A sinA
(60° +20°) . (60O - 200)
sin

(v) cos60° —cos20° = —2sin > > = — 2sin40° sin20°

(Vi) cosb5° + sin55°=c0sh5° + cos(90°-55°) = cosh5° + cos35°

55° + 35° 55° — 35°
= 2 cos 2 cos 2 = 2cos45° cosl10°

1 O — 1o}
= 2\/—2 c0s10° =+/2 cosl0
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Example 6.35: Show that sin 20° sin40° sin80° = lSE
Solution:
L.H.S. =sin20 sind40° sin80°= sin20° Z_2L {cos40° — cos120°}

sin20° {00540O + %}

1l
NI~

sin20° cosAQ° + % sin20°

I
NI~

Nl

(sin60° — sin20°) + % sin20° = %1 sin60°

fZ
o
T
n

Example 6.36: Prove that 4(cos6® + sin24°) =~[3 +/15
Solution:
4(cos6® + sin24°) = 4 (sin84° + sin24°) [ cos6°® = cos(90°-84) = sin84°]

=4.2§n(—84 ;24) cos(—S4 524)
= 89n54°.cos30°:8(@).(32@)

=I5 ++3
Example 6.37:
Provethat (i) cos20°+cos100° + cos140° =0 (ii) sin50°-sin70°+sin10°= 0
Solution:
() L.H.S. = cos20° + (cos100° + cos140°)
= €0s20° + 2cos (M) . COS (M)

= c0s20° + 2c0s120° cos(— 20°) = cos20° + 2(— %) c0s20°

= c0s20° — cos20° =0=R.H.S.
(i) L.H.S. = sin50° — sin70° + sin10°

50 + 70° . (50— 70° .
=2003(T).sm( 2 )+sm10°
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= 2c0s60° . sin(— 10°) + sin10° =2 x% (- sin10°) + sin10°
= —sinl0° +sin10°=0=R.H.S.

6.3.6 Conditional Identities
Example 6.38:
If A + B + C=m, prove that sin2A + sin2B + sin2C = 4sinA sinB sinC
Solution:
L.H.S. = sin2A +sin2B + sin2C = (sin2A + sin2B) + sin2C
= 2sin(A + B) cos(A — B) + sin2C
= 2sn(r — C) cos(A — B) +sin2C
= 2sinC cos(A — B) + 2sinC cosC
= 2sinC { cos(A — B) + cosC}

=2snC {cos(A— B) +cos(180—A_ :L_B)}
= 2snC {cos(A — B) — cos(A + B)} =2sinC {2sinA sinB}
=4snA snBsnC=R.H.S

Example 6.39:
If A +B + C=180° Prove that cos2A + cos2B—cos2C = 1-4sinA sinB cosC
Solution:
L.H.S. = cos2A + (cos2B — cos2C)

1-2sin°A +{-2sin(B + C) sin(B - C)}

= 1-2sin’A — 2sin(180° — A) sin(B - C)

= 1-2sin’A — 2sinA sin(B - C)

=1-2sinA [sinA +sin (B - C)]

=1-2sinA [sin(B+C) +sin(B-C)] ,[~ A =180°— (B + C)]
= 1-2sinA [2sinB cosC]

1-4sinA sinB cosC = RH.S,

Example 6.40:

If A+B+C = &, prove that cos?A + cos’B — cos’C = 1 — 2sinA sinB cosC
Solution:
L.H.S. = cos?A + cos’B — cos’C = 1- sinZA) + cos’B — cos’C
1+ (cosZB -9 nZA) — cos’C
=1+ cos(A +B).cos(A -B) - cos’C
=1+ cos(n — C) cos(A — B) — cos’C

= 1 - cosC. cos(A - B) — cos’C
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)

)

®3)

(4)
(®)
(6)

(7)

(8)
9)

(10)
(11)

(12)

= 1-cosC [cos(A - B) + cosC]
= 1-cosC [cos(A —B) —cos (A + B)] =1 - cosC [2sin A sinB]
=1-2sinAsinB cosC = RH.S.

EXERCISE 6.6
Expressin the form of a sum or difference:
(i) 2sin46 cos20 (ii) 2cos80 cos6o (iii) 2cos76 sin30
(iv) 2sin3A sinA (V) 2c0s6A  sin3A (vi) cos406 sin9o

. 3A . A . TA 5A . 50 40
(vii)cos—5~ sin% (viii) s~ cos™; (ix) cos73" cos3

Expressin the form of a product:

(i) Sin13A + sinSA (i) Sin13A — sin5A (iii) cos13A + cosbA
(iv) cos13A — cosbA (V) sinb2° — sin32° (vi) cos 51° + cos23°
(vii) Sin80° — cos70°  (viii) SiN50° + cos80°  (ix) sin20° + cosb0°
(x) cos35° + sin72°

Prove that sin20° sin40° sin60° sin80° = 1%

Prove that cos20° cos40° cos60° cos80° :%

Prove that sin50° — sin70° + cos80° = 0
+
Prove that (coso + cos[3)2 + (sina — sinB)2 = 4cos (a_zﬁj

SIN3A —sSinA  _ oA (i COs2A — cos3A _t A
cosA — cos3A 0 (1) 'Sn2A +sn3A =3
A + B + C=mn, provethat sin2A —sin2B + sin2C = 4 cosA sinB cosC
If A+B+C=180°,

prove that Sin?A + sin?B + sin’C = 2 + 2c0sA cosB cosC

Provethat (i)

A B B C C A
If A+B+C = m, provethat tan> tans +ans tans +tan tan5 =1

R Sin2A +sin2B +sn2C _
IfA+B+C=90 ’ShOWthaIsin2A+sinZB—sinZC =cotA cotB

. 2A . oB . oC
Provethat A+ B + C=m, provethatsm2 > +sm2§ +sm2§

A . B . C
—1—29n§ sins sn3
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6.4 Trigonometrical Equations

An equation involving trigonometrical function is called a trigonometrical
equation.

1 . 1
cosH = 5, tanb = 0, cos’0 — 2sind = 5 are some examples for

trigonometrical equations. To solve these equations we find al replacements for
the variable 0 that make the equations true.

A solution of atrigonometrical equation is the value of the unknown angle
that satisfies the equation. A trigonometrical equation may have infinite number
of solutions. The solution in which the absolute value of the angle isthe least is
caled principal solution. Note that trigonometrical equations are different
from trigonometrical identities. It is possible that some equations may not have
solution. For example cosd = 4 has no solution. The expression involving
integer ‘n’ which gives all solutions of a trigonometrical equation is called the
general solution.

6.4.1 General solutionsof sin®=0; cosH=0 ; tan0=0

Consider the unit circle with centre at O(0, 0)

Let a revolving line OP, starting from OX, trace | XOP =6 Draw PM
perpendicular to OX

(1) sn6=0 Y
In the right angled triangle OMP we have OP = 1 P
unit, b -

oM

sinb ='\C/)I—E = sno =MP

If Sin@ = 0, then MP = 0, i.e. OP coincides with Y
OX or OX! Fig. 6.20
S IXOP =6=0,n, 2x, 3, ...[inthe anti clockwise direction]

oro=-m, -2, —3m, ...... [in the clockwise direction]
i.e.0 =0or any +veor — veintegral multiple of =.
Hence the general solution of sin6 =0isgivenby 6 =nm, ne Z,
where Z isthe set of all integers.
(2) cosb =0

oM

In the right angled triangle OMP we have cost = op ~OM (~OP =1 unit)
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If cosd =0, then OM =0
i.e. OP coincides with QY or OY’

i.e.6=g , 3—2n , 5% Y e e [in anticlockwise direction)

ore=-5, -5, _775 ...... [in clockwise direction]

Nla

e 6=+ (odd multiple of %)

Hence the general value of 6 is given by e:(2n+1)% ,neZ
(3) tan6=0
. . . MP
In the right angled triangle OMP, |ftan9=0thenm =0orMP=0
Proceeding asin (1), weget0 =nr,n e Z
Thus, (Q)Ifsn6=0,0=nx, neZ
@1fco0=0,0=(n+1)75, neZ

(3 Iftan6=0,0=nm, neZ
When a trigonometrical equation is solved, among al solutions the
solution which isin[_—zn, %} for sing, in (— % %) for tangent and in [0, n] for

cosing, are the principal values of those functions.
Example 6.41.
Find the principal value of the following :

0) cosx=32E (ii) cosez—lzB (i) cosecez_%

(iv)cotd =—1 (v) tand =+/3

232@ >0

. X lies in the first or fourth quadrant. Principal value of x must be in
[0, ]. Since cosx is positive the principal value is in the first quadrant
A3 _
2

T T
COSX = =cosg andg € [0, ]

Solution: (i) cosx

.. The principal value of xis % .
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(i) (:ose=—52B <0

Since cos 0 is negative, 0 lies in the second or third quadrant. But the
principal value must be in [0, 7] i.e. in first or second quadrant. The principal
valueisin the second quadrant.

.. cosh =— 32E = cos (180° — 30°) = cos150°.
- . 5n
The principal valueis 6 = 150° =5 -

.. 0 lies in the third or fourth quadrant. But principal value must be in

33

i.e.infirst or fourth quadrant. .. 6 =—

(iii) coseco =—% = sinb =—

wla

(iv) cotb=—1 .. tan0=-1<0
.. B isinthe second or fourth quadrant. Principal value of 6 isin (— g g)

.. the solution isin the fourth quadrant.
1 T T T
Cot(—zj=—1:>9=—;1r E(_E’ E)

6.4.2 General solutionsof sSn®=sino ; cos®=coso ; tan 6 =tan a
(1) sno=sine -3 <a<y ie a e[—%, %}

= sin0-sina=0

0+a) . (B-a) _

= Zcos( 2 ).sn( 2 )—0

0+ a . (06—
cos( 2 )—O orsm( > )—0

=
0+a T -
= 5 =(@n+1)5,0r —5 =mm, neZ
= 0+ o =oddmultipleof = or 6 — o = even multiple of
= 0= (odd multiple of ) — .. (D
or 6 = (even multiple of ©) + a ...(2
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Combining (1) and (2), we have
0 = nu+(-1)"a, wherenez
(2) cosb = cosa O<a<n i.eac[0mn]
= cosB —cosa =0

= —ZSin(e;a) .sin(ega)=0
. (06+a . (60—
= sm( > )—Oorsm( 2 )—0

+ —
= eza:nn;nez oreza:nn;nez

= 0=2nt—a oOor0=2nt+a
Henceb=2nn+toa‘neZ.
(3) tand =tana —g<a<g i.e.ae(—g, g)
_Sno _sina
COs®  cosu
=sinb coso. — cosh sina. = 0
=sn®-a)=0
=>0-a=nt,ne”Z
=0=nt+ao,ne’
Thus, wehavesn®=sino. =0=nt+(-1)"a;neZ
cosfO=cosa = 06=2nm+ta; ne”Z
tan6=tana = O6=nn+a;ne”Z
Example 6.42: Find the general solution of the following :

(i)sin6=% (ii) sech = —~/2 (iii)coszez%1 (iv) cot?0 = 3 (v)sec26=%

. . 1
Solution: (i) sin® =5

ola

sinez% = sin% which is of theform sind =sina.  wherea =
. The general solutionis® = nx + (— 1)" % ‘neZ

. _ 1
(i) secd = -2 = cose——\/é <0

Principal value of 6 liesin [0, «t]
Ascos 0 is negative, the principal value of 6 liesin second quadrant.
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3n _ ( E)_ L
COS4 = COs 7t—4 ——COS4——\/—2

S0 =2nw i% ineZ
(iii) Weknowthat cos26 = 2c0s%0 — 1

_ (1) N T o_ 2n
=2\37 —1—2—1——2——0053 = cosT3

. cosec®® = 4 or sin%0 :%1
1

. 1
cos20 = 1—2sin%0 = —Z(Z) =3 =cos%
T
", 26=2nni§ ‘neZ
G:nni% ‘ne”Z
2 2 4 1
(V) We know that tan"d = sec’0-1=3 -1=3
L 12
1 — tan’0 -3 3 1
020 = o T .1 42
1+§ 3
1 b4
00329—2 = Cc0s3
T
26:2nni§; neZ
G:nni% i neZ
Note: Solve: sind :325
. ) . T 4r
There are two solutionsin0< 0 < 2x |.e.e=—§ andg
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The general solutionis
e=nn+(—1)”(—§) nez .

Even if we take G:nn+(—1)”(4§n) ‘neZ .. (2

The solution will be the same although these two structures are different.
Here the solution sets of (1) and (2) are same. But the order in which they
occur are different.

. 4
For example Putn = 1|n(1),weget,6=§n

Putn =0in(2), we g«t, =4§n

It isaconvention to take that value of 6 whose absolute valueisleast as a

(principal value) to define the general solution.
Example 6.43: Solve: 2c0s?0 +3sin0 = 0
Solution:

2c0s°0 + 3sind =0 2(1-sin’0) +3sn0=0
2sin%0 —3sin—2=0
(2sn6+1)(ssn6-2)=0

u 4yl

sin =_—21 (- sin® = 2 isnot possible)

U

. . T
sme——sm6

S T
= sm@—sm(—es)
T

= 9——6

= e:nn+(—1)".(—§) ‘nez

Example 6.44: Solve: 2tano — cotd = — 1
Solution:
2tan6—cotd = -1

Ztme—% =-1

—2tan’0 +tand - 1=0
(2tand — 1)(tan6 + 1) =0
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2tan6-1=0 ortan0+1=0
tanO:% ortan6 = -1

When tane=—1=—tanLE1

T
tand = tan (— 4)

:>9=nn+(—%)

:nn—% ihe Z

When tan 6 :% = tanp (say)
L O=nn+p
_ —1(1)
= nr + tan 2
Hence e:nn—% ore:nn+tan‘l(%);nez

Example 6.45; Solve: sin2x + sin6x + sindx =0
Solution:
Sin2x + sinbx + sindx = 0 or (Sinbx + sin2x) + sindx =0
or 2sindx . cos2x + sindx =0
sindx (2cos2x+1) =0

whensndx = 0 = 4x=nn orx=%n ihe Z

-1 2
When 2 cos2x + 1 = 0:>cost=7 =—cos% =cos(n—%) =cos?n

2x:2n7ci2§7T or x:nni%
HenCGX=an or x=nni% ine Z
Example 6.46. Solve: 2si n°x + sin’2x = 2
Solution: 2sn’x+sn2x = 2
L s§in?2x = 2-2s§nk
= 2(1-sn’)
sn’2x = 2cosx
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4sin®x cosx — 2 cos?x =0

=
= 2(1- coszx) cos’X — Cos?X = 0
= 2c0s™X — cos’x = 0
= cos’x (2 coszx—1)=0
1 [(1)2
= cosX=0 coszx—z— \/—2)
= cos’x= coszg cosx = coszﬁ
= X=nx ig,nez x:an_r%, meZ
Example 6.47: Solve: tan?0 + (1—-+/3) tand —~/3 =0
= tan’0 +tand —/3 tand —~/3 =0
= tand (tand + 1) —~/3 (tand + 1) =0
= (tand + 1) (tand —~/3 ) =0
= tand=-1 tand =+/3
T T
= tane—tan(— 4) tane—tan3
:G:nn—%, neZ mn+%, meZ
2

6.4.3 Solving equation of the form acosd + b sind =c. wherec®<a® + b?
acosO+bsnd = c .. (D

Divide each term by\/a2+b2 ,

__a b . __C

\/m cosh + \/aszZ sno = \/aszz
Chooseco&x:L ;sinoc:L andcosB:;

.. (1) becomes cosO coso + SiNB sina = cosP
= co0s (0 —a) = cosp
= 0-a=2nmtp
= 0=2m+axP,ne”Z
Example 6.48. Solve: \/§ Sin X+ cosx =2
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Solution: This isof theform acosx+ bsinx=c, where ¢? < a2 + b2

So dividing the equation by A/ (v/3)? + 1 or 2

3 . 1 . .
WegetlzE snx+3 cox=1 = sm% .smx+cos% .cosx=1

i.e. cos (x—%) =1
cos(x—%) = cos0
x—% = 2ntx0
e x = 2nn+%, neZz
EXERCISE 6.7

(1) Find the principal vaue of the following equations:

(i)sine:\/—l—2 (i)2cosH-1=0 (iii)+/3 coto =1

(iv)~/3 seco =2 (v)sjnx:-lzE (vi)tan9=—%3
(vii) secx=2
(2) Find the general solution of the following equation:
(i)sinzez:—zl (i) tand = —~/3 (i) cosSOz_T;
(3) Solvethefollowing:
(i) sin3x=sinx  (ii)sindx+sin2x=0  (iii) tan2x = tanx
(4) Solvethefollowing:
2

(i)sin29—20039 +%1 =0 (i) cosX + SinPX + cosx = 0

(iii) cosx + cos2x + cos3x = 0 (iv) Sin2x + sindx = 2sin3x
(5) Solve thefallowing:

(i) Sin® + cosd =+/2 (i) SinO — cosH = —~/2

(iii)A/2 secO +tanf = 1 (iv) cosecO — cotd =+/3
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6.5 Properties of Triangles
Consider atriangle ABC. .
It hasthree angles A, B and C.
The sides opposite to the angles A, B, C are denoted
by the corresponding small letters a, b, ¢ respectively.
Thusa=BC,b=CA, c=AB. g - C
Fig. 6.21
We can establish number of formulae connecting these three angles and sides.
I. Sineformula:

c b

In any triangle ABC, siﬁA = sir?B = siﬁC = 2R. Where R is the radius

of the circum circle of the triangle ABC.
In fig(6.22) O is the circumcentre of the triangle
ABC. R is the radius of the circumcircle. Draw OD

perpendicular to BC. Now BC = a, BD :g

Clearly ABOC isan isoscelestriangle.
We know that |BOC =2|BAC =2A

.. |BOD =A
From the right angled triangle BOD,
A - BD _a2 _a
SV R TR TR
; - _a_  _
S 2RSNA = a or SnA = 2R
- b C
Similarly, we can prove SnB - snc - 2R
a b c
- SnA ~ snB ~snc - R
I1. Napier’sformulae
In any triangle ABC
A-B a-b C
(@H)] tan=>— = Z3p ot 5
2 S-S - g;g cot%
C-A c-a B
3 tan—5 — =, cot 5 aretrue

These are called Napier’ s formulae
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Result (1): tan% = :;E cot %

Proof: From sineformulae
a-b C _ 2RSnA-2RsnB __ C
a+b 2 = DRsnA +2RsnB Ot 2
SinA —sinB C
= SnA+snB 72
popsArB A-B
_ COS 2 sin 2 9
T g At A_B %72
Sn 2 COS 2

_ (A + B) A-B C
= cot > tan 2 cot 2

C A-B C
= cot (90— 2) tan > cot 2

_ c _A-B C_A-B
= tan3 tan cot 5 =tan—

_A-B _a-b _C
cLotan 2 a+b C0t2

Similarly, we can prove other two results (2) and (3)
I11. Cosineformulae
In any triangle ABC, the following results are true with usual notation.
Results:
@D a® = b? + ¢ — 2bc cosA 2 b% = ¢+ a® — 2ca cosB
(3) ¢ =a + b? - 2ab cosC
These are called cosine formulae
Result (1): a® = b? + ¢ - 2bc cosA
Pr oof: ¢
Draw CD perpendicular to AB.

Now a? = BC? = CD? + BD? b a
= (AC’~ AD? + (AB — AD) 2
= AC°~ AD°+AB°+AD°—2ABxAD A , B
= AC*+ AB - 2AB x (AC cosA) Fig. 6.23
a2 = b2 + c2 — 2bc cosA
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Similarly we can prove the other results (2) and (3)

We can rewrite the formulae in different formats.

2 2 2 2 2 .2 2 2 2
b +c -a c +a -b a+b -c

COSA = —ppc  ;C0B=""7pcg  ;C0C="7ap
V. Projection formulae
In any triangle ABC
(1) a=bcosC+ccosB (2)b=ccosA +acosC (3) c=acosB + b cosA
are true with usual notations and these are called projection formulae.
Result (1): a= b cosC + c cosB A
Pr oof:
In triangle ABC, draw AD perpendicular to BC. / 4
From the right angled triangles ABD and ADC,

BD B a C
cosB:E — BD = AB x cosB Fig. 6.24
DC
cosC:E = DC=AC x cosC
But BC = BD+DC = AB cosB + AC cosC
a= ccosB+bcosC
or a= bcosC+ccosB

Similarly, we can prove the other formulae (2) and (3)
V. Sub-multiple (half) angle formulae
In any triangle ABC, the following results are true.

(1)sm2— /sbsc (2)sm—— /scsa

(3) sin 5: /s aabs b (4)00%: Sbca
(5)co%=’\lgs—b2 (6)co%=’\/ Se-0)

A (s—b)(s—c¢) B (s—0(s—a)
(Nten7 = \/ - 2) (8 tan §=\/ Ss-b)

C (s—a)(s—b)
(9)tan7 = \| s(s-0©

at+bh+c
where s = 2

The above results are called sub-multiple angles (or half angle) formulae.
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Result (1): s‘n%: ﬁs;bbucs;cl

Proof : We know that cos2A = 1 — 2sin?A
2sin?A = 1— cos2A

. A . oA
Replacing A byE, 23|n2§:1—cosA

b’ +c?— & _ 2bc — b? - 2+ a?

=1- 2bc - 2bc
_a®-(b-0? (atb-c(a-b+0
- 2bc B 2bc
_(at+b+c-2c)(a+b+c—2h)
- 2bc
:(ZS—ZCZ)b(Czs—Zb) -a+b+c=2s
oA _2(s-Q) 2s—b)
2sin 2 = 2bc
. 2A _(s-b)(s-¢0)
sn E = bC
A s—b)(s—c
Sny ==* bc

. A . A .
Since” isacute, sin% isaways positive.

Thus sin% =,\,§_u_)s—bbcs—c

Similarly we can prove the other two sine related formulae (2) and (3)

A —
Result (4): Cos% ="\ /g%

Proof : We know that cos2A = 2c0s?A — 1
2005°A = 1+ CO2A

Replacing A by%, 20032% = 1+cosA

b%+c?—a? _ 2bc +b%+c? - a®

=1+ = 2bc
_(b+c®-a°> (b+tc+a)(b+tc-a)
- 2bc - 2bc
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(b+c+a) (b+c+a-2a) 23(23—2a)

2bc 2bc
2CSZA _ s><22b§i a)
ol _M
A s—a
cos, = be

Similarly we can prove other two cosine related formulae (5) and (6)

Result (7): tan% =\ /KS;S(ZMZ);C)_
S— b s C
A sm2
Pr oof: tang
0052 A /g_l
bc

S(s—a)
Similarly we can prove other two tangent related formulae (8) and (9)
V1. Areaformulae (A denotesarea of atriangle)
In any triangle ABC

@D =1absinC ()] =:—2LbcsinA 3 casmB

@®HA= it;: B A= 2R? sinA sinB sinC (6) A :\/s(s— a) (s—b)(s-¢)

are true with the usual notations and these are called Area formulae.

Result (1): A-:—L absinC

Proof : A
Draw AD perpendicular to BC
A = Areaof triangle ABC Y b
:% ><BC><AD:l x BCx AC x sinC
B a C
AD
2 absinC [~sinC=%~ = AD=ACxsinC] Fig. 6.25

Similarly we can prove the results (2) and (3)
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Result (4): A =%

Pr oof:
We know that A= :_2L absinC
1 c C
= 2 AR v @nc = 2R
_ abe
~ 4R
Result (5): A = 2R? sinA sinB sinC
Pr oof:
We know that A= :_2L absinC
=3 2R sinA 2R sinB sinC a=2RsinA
= 2R? sinA sinB sinC b=2R snB
Result (6) Provethat A =+/s(s—a) (s—b) (s—©)
Proof:
We know that A= % absinC
1 .
=5 ab 25|n§ coss

=/s(s—a) (s—b) (s-©)
Example 6.49: In atriangle ABC prove that asinA — b sinB =csin(A — B)
Solution:
By sine formulae we have
a b ¢
snA ~snB T sinC
s.a=2RsnA, b=2RsnB, c=2RsnC
asinA —bsinB = 2RsinA sinA — 2R sinB sinB
= 2R (sin’A - sin’B)
= 2R sin(A + B) sin(A — B)
= 2R sin(180 - C) sin (A — B)

=2R
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= 2R sinCsin(A - B)

=csin(A-B)
sn(A-B) a’-b?
snA+B) = 2

Example 6.50: Prove that

Solution:

b C
~snB T sinC =2R
a’—b®> _ (2RsinA)?- (2RsinB)?

. a
By sineformula SPA

c? (2R sinC)?
_4R?sin’A —4R?sin’B _ sin’A —sin’B
- 4R? sin’C ~s§n’C
- Sn(A + B) Sin(A — B) [SinC = sin(A+ B)]
sin“C
_sinfA+B)sin(A-B) sin(A -B)
~ sn’(A+B)  Sn(A+B)
Example 6.51: Provethat > asn(B—-C) =0

Solution:
2.asn(B-C) =asin(B-C)+bsin(C-—A)+csin(A-B)
= 2R snA sin(B-C) + 2R sinB sin(C — A) + 2R sinC sin(A — B)
sinA =sin(B + C), sinB=sin(C+ A) ; sinC=sin(A +B)
= 2Rsin(B + C)sin(B-C) + 2Rsin(C + A) sin(C - A)
+ 2R sin(A +B) sin(A — B)
= 2R [sin?B — Sin’C + sin’C — sin®A + sin®A — sin“B]

=0
B - + . A
Example 6.52: Prove that cos ) < :ch siny
Solution: b+c . A 2RsnB+2RsnC . A
ution: a Siny = SRSDA sins
_snB+snC . A
- sinA sin3
oq B+C B-C
SnNT ST a
= siny

DB oA
sm2 COSZ
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. B+C B-C
sin—%— cos~—5

A
cos
. (180—A) B-C
ST Jees™5
- A
cos5
. A B-C
) sm(QO— 2) cos— >
B A
cos
= cos 5 -+ §in (90—%) = cos%

Example 6.53: In any triangle ABC prove that
a’sin (B - C) .\ b’sin(C—A) c?sn(A-B) _

SnA SnB snc__ -0
Solution:
a’sin(B-C) _ (2RsinA)’sin(B-C) _4R*sinA sin(B-C)
SinA - SinA - SinA

= 4R? sinA sin(B — C) = 4R? sin(B + C) sin(B — C)
= 4R? (sin’B — sin’C) = 4R? sin’B — 4R? sin’C
—p2_c2
. bZSin C-A) o 2
SmllarlyASinB—)—c - a
CZSin!A—B! _ .2 bz
sinC -a -
~a’sin(B-C) b?sin(C—A) . c?sin(A —B)
: SinA + sinB + sinC

R Pr PRt

=0
EXERCISE 6.8
In any triangle ABC prove that

1) a2:(b+c)25in2% +(b-c)? 0052%
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)
©)
(4)
(%)
(6)

(7)

(8)
9)

> a(b2 + c2) cosA = 3abc

2 a(sinB-sinC) =0

2(b+c)cosA=a+b+c
a’sin(B-C)+b%sn(C-A)+c3sin(A -B) =0
a(b cosC — ccosB) = b% - ¢?

cosA cosB cosC_a2+b2+c2

a T b tTc T 2abc
tanA _cZ+aZ—b2

tanB = 2+ 2_ g2

If acosA =b cosB then show that the triangle is either an isosceles
triangle or right angled triangle?

6.6. Solution of triangles

We know that a triangle has six parts (or elements). Consider a triangle
ABC. With usual symbols, the sides a, b, ¢ and the angles A, B, C are parts of
the triangle ABC.

The process of finding the unknown parts of a N

triangle is called the solution of triangle. If three parts of

atriangle (atleast one of which is a side) are given then ¢ b

the other parts can be found. Here, we shall discuss the
following three types. B

1) Any three sides (SSS) are given.

2) Any one side and two angles (SAA) are given.
3) Any two sides and the included angle (SAS) are given.

Typel:

Given three sides (SSS)

To solve thistype, we can use any one of the following formulae.
(@) Cosineformula (b) Sineformula (c) Half angle formula.

It is better to use cosine formula if the sides are small, while use half angle
formulaif the sides are large.

Example 6.54: Givena =8, b=9,c =10, find al the angles.
Solution: Tofind A, use the formula

a2 = b?+c?— 2bc cosA

A - b’+c®—a®> 81+100-64 117
COSA = 2bc - 180 =180

A = 49°28
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Similarly

But A+B+C=

Thus

Note: In the above example the numbers are smaller and hence we used cosine

formula

c®+a’-b® 100+64-81 83

2ca 160 =160
58° 51’
180°
180° — (49° 28' + 58° 51')
71° 41’

49° 28, B =58°51',C = 71°4Y

Example 6.55: Givena =31, b =42, c =57, find al the angles.
Solution: Since the sides are larger quantities, use half angle formulae

S=

s
= log [tani
A

= 2
B

tan§

B

= Iog[tang}

a+b+c
> =65

1
(s—b)(s—c¢) _(23x8)§
s(s—a)  \65x34

% [log23 + log8 — 10g65 — 10g34]

[1.3617 + 0. 9031 — 1.8129 — 1.5315]

[~ 1.0796] = % [-2 + 0.9204]

[? + 0.9204] = 1.4602

NI NIk NI

16°6' = A =32° 12

1
(s—c)(s—a) _(8><34)§
fs—b) ~\65x23

[log8 + 1og34 — 10g65 — 10g23]

[-0.7400] = % [-2 + 1.2600]

NIl NI NI

[7 + 1.2600] = 1.6300
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= 236 =B=46°12

C= 180- (A +B)=101° 3¢
Thus A= 32012 B=46°12 C=101°36

Typell: Given one side and any two angles (SAA)

To solve this type, draw a sketch of the triangle roughly, for better
understanding and use sine formula.
Example 6.56: In atriangle ABC, A = 35° 17", C=45° 13, b = 42.1. Solve the
triangle.

Solution:
The unknown partsare B, a, ¢
B =180- (A +C)=180-(35° 17’ + 45° 13))
=99° 30
To find the sides, use sine formula

N|m

a _ b c
sSnA  ~ snB ~ sinC
bsinA 421 xsn35° 17
= & 7 "snB T sin99° 30
loga = log42.1+logsin35° 17 —log sin99° 30’

= 16243+ 1.7616 — 1.9940

= 1.3859— 1.9940
= 13859 [ 1+0.9940] = 1.3919

= a = 2465
Adai _ bsinC _42.1 x sin45° 13’
gan ¢ = "gnB T s§n99 30
logc = log42.1+logsind5° 13’ —log sin99° 30’

= 1.6243+ 1.8511 — 1.9940

= 1.4754- 1.9940
= 14754 - [~ 1+ 0.9940] = 1.4814
= c = 303
Thus B = 99°30, a=2465 c=303
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Typelll: Given two sides and theincluded angle (SAS)

Since two sides and the included angle are given, the third side can be
found by using the proper cosine formula. Then one can apply the sine formula
to calculate the other elements.

Example 6.57: Solvethetriangle ABCif a=5,b=4and C = 68°.
Solution: Tofind ¢, use c=a?+b% - 2abcosC

> = 25+16-2x5x4cos68°
41 - 40 x 0.3746 = 26.016

c 51
To find the other two angles, use sine formula.
. bsnC 4 xsin68°
= snB = c - 51

log 4 +log sin68° —log 5.1

log sinB

= 06021+ 1.9672 — .7075
0.5693 — 0.7075 = — 0.1382

= 1.8618
B = 46°40
= A = 180- (B +C)=180- (114° 40)
65° 20/
Thus B = 46°40, A=65°20, c=5.1
Note: To find the angles A and B one can also use the tangent formula
A-B a-b C
tan—> = atp Cot%

6.7 Inverse Trigonometrical functions (Inversecircular functions)
The quantities snix, cosx, tanlx, ... are caled inverse circular

functions. sin"x is an angle 6, whose sine is x. Similarly cos x denotes an
angle whose cosine is x and so on. The principa value of an inverse function is
that value of the general value which is numerically the least. It may be positive
or negative. When there are two values, one is positive and the other is negative
such that they are numerically equal, then the principal value is the positive one.

For example the principal values of cost (%) is% and not —% though

(z) _1
COoS -3)~5
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1

X is different from (sinx) 1 gnt

Note : sin” in sin 1x denotes the inverse of

. . 1. _ !
the circular function. But (Sinx) Listhe reci procal of sinxi.e. Srx-
The Domain and Range of Inverse Trigonometrical functions are
given below:

Function Domain Range (Principal Value)
L =sint -1l<x<1 T .

=sin X n T

Y -5 Sy<5
2 |y=cosx -1l<x<1 0<y<m
3. ] R

=tan "X E E

y ) <y<2
4. = -1 > <_

y=cosec 1x |X=lorx<-1 —%Syﬁg,y;to
5. — el _

y=Sec ~ X x>lorx<-1 O<y<n: y;tg
6. Jy=cottx |R O<y<n

Table 6.6

Example 6.58: Find the principal values of:
(i) sint %) (ii) sec? (%) (iii) tan > (— %) (iv) sint (- 1)

(v) cost (— %) (vi) cosec ™t (-2

Solution:
. . 1(1 - 1o
(i) Let sin 1(5) =y, WhereT AR
h - _1(1) - inv=t —gnt y=X
en sin*(3)] = y=sdny=5=sng =>y=g
L 1. ¢
.. The principal value of sin (E) isg
. 1(2) _ i
(i) Let sec (\/é) = Y,Where0<y<75, then,

(2N _ _2 _ __n _n
sec \/§ —y:>%cy—\/§—sec6:>y—(3

.. The principal value of sect (%) is%
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(1) T T
(iii) Let tan (_\/5,) = y,where—2<y<2

1Yy _ 1 _ T _-T
Then tan (_\/é) = y:tany——\/é—tan(—G) = Y=g

. The principal values of tan* (— %) is%

3
(iv) Letsint(-1) = vy, where—~ <x< %
Then, sin* (-1 = y=sny=-1
-1 = sm(—%) =>Y=-35

.. The principal vaue of snt (-1)is —%
()] Let cost (— %) = y,where0<y<mr, then
- 1
cos (— 2)
T T 2n
Cosy = —C0S3 = COSYy= cos(n —5) =>y= (g)

.. The principal value of cost (— %) is %ﬁ

1
y=cosy=-5

(vi) Let cosec * -2) =y, Where—% <y<0

cosec 1 (- 2) = y:>cosecy=—2=cosec(?ﬂ) :y=%

. The principal value of cosec™* (-2) is_—67T

Example 6.59:
. 1 (1 . . .1 (1 1
(i) If cot 7) =6, find the value of cost (ii) If sin 5) =tan 7,
find the value of x
Solution:
() cot ! G) =0 = cotez% s tanb =7

= secO=\1+tan’0 =[1+49
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. _ . 1(1

(i) tan x=dn 1(5) =% cotan
X =tan - L x—i
- = 6 —\/:—3 - —\/:—3

Properties of principal inverse Trigonometric functions:
Property (1):

() sinisn) =x (i) cos ™ (cosx) = x (iii) tan™* (tanx) = x

(iv) cot ™t (cotx) =x (V) sect (secx) =x (vi) cosect (cosec x) = x
Proof:

(i) Letsinx=y, thenx=sin"(y) (D

- x=snt(sinx) by (1)
Similarly, the other results may be proved.

Property (2):
0 sn?t @) = cosec x (i) cost %) = sec x
(iii) tan~t ()—1() = cot x (iv) cosect ()—1() =sn x
(V) sect @) = cos Ix (vi) cott @) = tan x
Proof:
0) Let s‘n—l()—l() =0 = s'ne=%
= €0sech = X
= 0= cosec‘l(x)
- (1) _ -1
= sin 5| =cosec X
Similarly the other results can be proved.
Property (3):
() snt(-x)=-snx (i) cos™* (= x) = — cos x
(i) tan (- X) = — tan X (iv) cosec ! (- x) = — cosec Ix
(v) sect =) ==n- sec 1x (vi) cot™* (-x)=- cot 1x
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Pr oof:

() Letsinl(-x)=06 .. -x=snd

= X=-gno

x=sin(-0)

= -—0=sin!x

= 0=-sinx

= sin_l(— x):—sin‘lx
(i) Let cos‘l(—x)=9 = —X=cosb

= X=-cosh =cos(n—0)

= n-0=cos x

= 0=n-cosx

= cos‘l(— X) =7 — cos x

Similarly the other results may be proved.

Property (4):
(i) sinx+ cos™x =7 (ii) tan x+ cotx=7% (i) sec”x + cosecx = 5
Pr oof:
(i) Let snix=0 = x=sin6=cos(g—9)
= cos Xx :% -0
= cos x =g —sinx
= sinXx+cosx= %
Similarly (ii) and (iii) can be proved.
Property (5):
If xy <1, then tan 1x + tan‘ly =tan (1)(—_4-):@

Proof: Lettan x= 61 and tan’ly: 02 then tanb1 = xand tanf, =y
tand1 + tanb2 _X+y
1-tanf1 .tand2 1 - xy

= tan (61 + 62)
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+
= 01+6> tant (X_y_)

1-xy

tan * (_\LX+ )
1-xy

(o)
Property (6): sin_1x+sin_ly=sin_l[x\/l—y2+y\/1—x2]
Proof: Let 61=sin_1x and 92=sin_lythen sin; =xand sinfy =y
= sin(01 + 62) = sinb1 cosH, + cos, Sinbo
= (sino1/1 - sin?02 +[1 - sin®e1 sino2)
= [X\/l—y2+y\/1—x2]
= 0;+0; = snt [x\1- 2 +y\1- ]
= sin‘1x+sin‘1y: snt [x\/l—y2+y\/1—x2]

Example 6.60:

= tan X+ tan ly

Note: Similarly, tan 1x — tan‘ly

. 1(1 1/1 12 ... 14 13 127
Provethat (i) tan 1(7)+tan l(ﬁ) =tan 15 (ii)cos 1§+tan 1§=tan 1ﬁ

Solution:
. _1(1 _1(1 _
(i) tan 1(7) +tan 1(@) = tan!

.. 14
(ii) Letcos 15 =0 then cosd =
14 _ 13
cos g =tan g4

14 13 _ .13 13 _ -
S COSTE Htan g Stan Ty +tan Tz =tan

. _ _ 1 _ +v+z7—
Example 6.61: Show that tan 14 tan 1y +tan Lz=tan ! (_uﬂlx Z )
—YZ-ZX- XY

. . . . [ x+ .
Solution: tan ‘x+tan ly+tan 'z =tan 1[1—_%/} +tan 'z
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x+¥+Z X+y+z-—Xxyz
1 1-xy 1 1-xy
= tan * tan
1_!X+Y!Z 1_&{_)(2_22
1-xy 1-xy
e
= tan 1-xy-yz—z
_E

Example 6.62: Solve tan 2x + tan 13x

an L
1-6x° @

522:1:1 6x2=5x .. 62 +5x-1=0

iee (x+1)(6x-1) =0 = x=—1or%

+
tan 12x + tan 13x = % = tan 1 [ZX 3)1 =

. . L . 1
The negative value of x isrejected sinceit makes R.H.S. negative. .. x= 6
Example 6.63:

Evauate: (i) sin(cos_1 @D (i) cos (tan_1 %) (iii) sin (% cos L g)
Solution: (i) Let cos™ g 6. Then, cos6 = g

sin(cos_]%) :sine:'\,]__cosze — A [1_225 =‘§1

(ii) Lettan‘lo 0 then, tan® =%
1 1 4
. COS (tan 4) coso = 5

sec o \/1+tan29 i

14 4
(iii) Let cos 15 =6;thencos€)=§

[1 J o __ [1- cose _ 1
sin|5cos "g| =siny =\ [T5 =10
Example 6.64: Evaluate: cos [ —+S|n 153J

. 3 4
Solution: Letsin® g =A smA:g :>cosA:§

19 o oD _12
Let sin 13 =B ..smB—13 :cosB—13
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(D

)

©)

(4)

®)
(6)
(7)
(8)

9)
(10)

.13 5
" cos[sm 15+sm 113} = cos (A + B) = cosA cosB — sinA sinB

IR AN

=\5'1375'13) 65
EXERCISE 6.9
Find the principa value of
(i) sint 52B (ii) cos—l@ (iii) cosec ™ (- 1)
(iv) sect (-4[2) (v) tan* (+/3) (vi) cost (— \%}
Provethat (i) 2tan? @ = tan_l% (i) 2tan Lx = sin - erx v

(iii) tan™? @ —tan’? @) =7
Evaluate:

(i) cos(sn 1153) (ii)cos[sin’l(—%ﬂ (i) tan (Cos‘l%) (iv)gn[cos—lﬂ

Prove the following:

o\ [T

(iii) tan ™ [3" ‘3’(23} =3anix  (iv)snt(2x\1-x2) =2snx
- (5)

(m ) -

+
+
+

g (i) cost (2x2 -1)= 2cos x

Provethat 2tan

§
Prove that tan * )

2) v

_1(_2X _1(1-=
Solve tan 1(1 X2)+cot 1( 2XX3 =%,Wherex>0

_T

~4

P _T
Solve: tan ( =2

Solve: tan™t (x+1)+ tan~t x-1= tan_1‘71

Prove the following:

(i) cos x + cos_1y= cost [xy—\/:2 \/:2]
(i) snix-snmly=snt[xy1-y2-yy1- ]
(iii) cos Ix— cos‘ly =cost [xy + \/1fx2 . \/Ez]
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OBJECTIVE TYPE QUESTIONS

Choose the correct or most suitable answer

)

)

©)

(4)

©®)

(6)

()

©)
9)

Theorder of matrixB=[1 2 5 7] is

D1x4 24 x1 3 2x1 4 1x1
Number of elementsin amatrix of order 2 x 3is
D5 22 33 (4)6

IfA—[Zlﬂ dX +A=0th ix Xi
=|_3 o q| @AX+A= then matrix X is

1[214} 2[—2—1—4]
()—321 ()3—2—1
-2 -1 -4 2 1 4}

(3)[ 3 2 1} (4)[3 -2 -1

7
The product of thematrices[7 5 3]| 3| isequa to

2
(D [70] () [49] (3 [19] (470

N2 0 0
Thetypeof thematrix| 0 /3 0] is
0 043
(1) ascalar matrix (2) adiagonal matrix
(3) aunit matrix (4) diagonal and scalar
0
If[2 x —1] [X} =[13] thenthevaueof xis
3
@5 22 3)+3 4)+4
Matrix A isof order 2 x 3 and B isof order 3 x 2 then order of matrix BA
is

(1)3x3 22x3 (32x2 (43x2
If[3 -1 2]B=[5 6] theorder of matrix B is
(H3x1 (2)1x3 (3 3x2 @1x1

The true statements of the following are

(i) Every unit matrix is a scalar matrix but a scalar matrix need not be a
unit matrix.

(ii) Every scalar matrix is a diagonal matrix but a diagonal matrix need
not be a scalar matrix.
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(10)

(11)

(12)

(13)

(14)

(15

(16)

17

(iii) Every diagonal matrix is a square matrix but a square matrix need
not be a diagonal matrix.

@ @), Gi), (i) (@ () and (i) (3) (i) and (ii)  (4) (i) and (i)

8 5
Thematrix|0 6 4| is

00
(1) the upper triangular (2) lower triangular
(3) square matrix (4) null matrix

. .12 =3,
Themlnorof2|n|6 O‘IS

1o 21 (32 4 -3
2 -3 5
Thecofactorof —7in |6 0 4| is
1 5 -7
(1) -18 (2) 18 3-7 @7
a by ¢
IfA=|a by C| and|A|=2then|3A |is
ag by c3
(1) >4 (2)6 (3) 27 (4)-54

In a third order determinant the cofactor of ay3 is equal to the minor of
ay3 then the value of the minor is

1)1 ) A (3)-A 4)0

The soluti f‘zx 3‘ =0i
esolutionof | , 5| =0is

Dx=1 @) x=2 B x=3 4 x=0
1 1 1
Thevaueof |2X 2y 2z| is
3x 3y 3z
@1 (2) xyz @B)x+y+z @O0
1 2 3 312
IfA=(3 1 2| then|1 2 3| ieequa to
2 31 2 31
@A 2-A (3) 3A (4)-3A
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(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25

(26)

1 2 3
Thevalue of thedeterminant |7 6 5| is
1 2 3
(1)0 25 (3) 10 (4)-10
If A isasquare matrix of order 3then | kA |is
(D KA| @ -kIA| B KA @-1CIA|
1 4 3 2 8 6
fA=|-1 1 5| adA;=(-2 2 10| then
3 2 -1 6 4 -2
(1) A =2A (2) Ay = 4A (3) Ay =8A (4) A=8A;
7 6 1 7 6 1
IfA;=1|5 3 8| andA,=|8 2 4| then
8 2 4 10 6 16

DA=-20,  (DA=-27 (A A1=24,  (DA=-2A

Two rows of adeterminant A are identical when x = — a then the factor of
Ais
(D) x+a @x-a (3) (x+a)? @) (x-a)?
X -6 -1
Thefactor of thedeterminant | 2 —-3x X-3| is
-3 2X x+2
Dx+2 (2)x-3 3 2x+1 4Hx+3
If al the three rows are identical in a determinant A on putting x = a then
the factor of A is
(1)x-a (2 x+a @ x-a* @ x+a)’
Xx+a b C
Thefactor of thedeterminant | a Xx+b ¢ |is
a b x+c
(1) x (2)x+b (B x+c (Hx-—a+b+c
a 0 02
The value of the determinant [0 b 0| is
0 0 c
(1) abc ()0 (3) a’b’c? (4) - abc
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(27)

(28)

(29)

(30)

(31)

(32)

(33

The value of th d ‘ 12 2 0

evaueof theproduct | 5 | x|, _,|is

(1) 56 (2) - 56 (3)-1 (4) - 63
a; by ¢

IfA=|3 by CandA;, By, Cy...... are the cofactors of a;, by, ¢;
ag by ¢3

...... then a;A, + bB, + ¢,C,isequd to

(1) A (20 (3)-A (4) A®

Given that the value of a third order determinant is 11 then the value of
the determinant formed by the respective co-factors as its e ements will
be

(1) 11 (2) 121 (3) 1331 (4)0
1+a)® (L+ay)® (1+a2?

A factor of the determinant | (1 + bx)2 @a+ by)2 a+ bz)2 is
1+c0? (L+oy)? (1+cd)?

D x+y (2a+b B)x-y dHa+b+c
. A A Gl g e A
Thepositionvector of Ais2i +3j +4k, AB =51 +7] +6Kk
then position vector of B is
- - - - - -
(D7i +10j +10k 27i -10j +10k
- - - - — -
37i +10j -10k 4 -7i +10j] -10k
- _ ( —>‘ _
If a isanon zero vector and kisascalar such that [ka | = 1thenkis
equal to
ol2l o @ @+t
2| I3
a a
- - —_— —
Let a, b bethevectors AB , BC determined by two adjacent sides

—
of regular hexagon ABCDEF. The vector represented by EF is

- > - > - —
MW a-b 2 a +b (3)2a @- b
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(34)

(35

(36)

(37)

(39)

(39)

(40)

—> —>
If AB =k AC wherekisascaar then

(D A, B, Carecollinear (2) A, B, C are coplanar
H H . . .
(3 AB , AC havethe same magnitude (4 A, B, C are coincident

- -
The position vectorsof A and B are a and b . Pdivides AB intheratio
3: 1. Qisthe mid point of AP. The position vector of Q is

5a +3b 3a+5b 5a +3b 3a+b
a+ a+ a+ a+
s 2= 37 G —

If G isthe centriod of atriangle ABC and O is any other point then

OA + OB + OC isequa to

1) o (2) OG (3)3 OG (44 OG

If Gisthe centriod of atriangle ABCthen GA + GB + GC isequa

to
SR N > 5> -
(1)3(a+b+c) (2 oG (30 (4) a+g+c

If G isthe centriod of atriangle ABC and G’ is the centroid of triangle

A'B’ C'then AA” + BB’ +CC’ =
—> —> —> —>
1) GG (2) 3GG' (3) 2GG' (4) 4GG'

- -
If the initial point of vector —2i —3j is(-1, 5, 8) then the terminal
pointis

- 5> > e
1)3i +2j +8k (2 -3i +2j +8k

> o> > e
(3-3i -2j -8k 4 3i +2) -8k
Which of the following vectors has the same direction as the vector
- >
i —2]

- > > > > > > >
M- +2] (221 +4] @)-3i +6]j 4H3i -6]j
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> oS o - - - e -
@4) fa=1 +j) -2k,b =-1i +2) +k, ¢c =i -2) +
— - o> o
2k ,thenaunit vector parallelto a + b + ¢ is
g 2—.> T(’ - 2 _k> 2—.> - _k> - _k)
i -2+ i -+ i+ + i+ +
(1) J6 (2 NE (©) 6 (4) NG
- - - - - .
(42) If a =21 +j -8k andb =i +3j —4k thenthe magnitude
> o
ofa +b =
(1) 13 (2) 13/3 (3) 3/13 (4) 4/13

(43) If the position vectors of Pand Q are

- - - 2 - N . —
2i +3j -7k ,4i —3j +4k ,thenthedirection cosinesof PQ

are

1) 2 -6 11 @ -2 -6 -1

3)2,-6,11 4123

ax 2 3

(44 T v 2) (2x—3) “x+2 T2x_3 hena=

D4 25 7 (48
(45) If nPr =720 nCr, then thevalueof r is

16 25 (34 @7
(46) How many different arrangements can be made out of letters of words

ENGINEERING

| | |
(1 11 (2)@ @55 @5

(47) The number of 4 digit numbers, that can be formed by the digits
3,4,5,6,7,8,0and no digit isbeing repeated, is

(1) 720 (2) 840 (3) 280 (4) 560
(48) The number of diagonals that can be drawn by joining the vertices of an
octagon is
(2) 28 (2) 48 (3) 20 (4) 24
(49) A polygon has 44 diagonals then the number of itssidesis
()11 27 (3)8 (4) 12
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(50)

(51)

(52)

(53)

(54)

(55

(56)

67

(58)

(59)

(60)

(61)

(62)

(63)

20 persons are invited for a party. The number of ways in which they and
the host can be seated at a circular table if two particular persons be
seated on either side of the host is equal to

(1) 18! 2! (2) 18! 3! (3) 19! 2! (4) 20! 2!

If nis a positive integer then the number of terms in the expansion of
(x+a)"is

Dn 2n-1 B3)n+1 PHn+2
Thevaluesof NCO—nC1+nC2-nC3+ ... (-1)".nCnis

2"+t ) n (3) 2" (4)0

The sum of the coefficients in the expansion of (1 — x)1o is

(1)0 )1 (3) 10° (4) 1024
The largest coefficient in the expansion of (1 + x)24 is

(1) 24C24 (2) 24C13 (3) 24C12 (4) 24C11
Thetotal number of termsin the expansion of [(a + b)Z] Bis

@1 (2) 36 (3) 37 (4) 35
Sum of the binomial coefficientsis

(1) 2n ) n’ 3) 2" @) n+17
The last term in the expansion of (2 + \/§)8 is

(1) 81 (2) 27 (3)/3 43

If a, b, carein A.P., then 32 3° 3% arein

(D) AP (2) G.P. (3) H.P. (4) A.P. and G.P.
If the n'" term of an A.P. is (2n — 1), then the sum of n termsis
MHn?-1 2 (2n-1) (3) n? @n2+1
The sum of n terms of an A.P. isn?. Then its common differenceiis
12 2-2 3)+2 41

The sumto thefirst 25 termsof the series1+2+3 ... ... ... is

(1) 305 (2) 325 (3) 315 (4) 335
The n™ term of the series3+ 7+ 13+ 21+ 31+ ... ... ... is

(1) 4n-1 (2 n® +2n @B +n+1) @) (n>+2)

What number must be added to 5, 13 and 29 so that sum may form a
G.P?

(D2 ()3 (3) 4 (4)5
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(64)

(65)

(66)

(67)

Thethird term of a G.P. is 5, the product of itsfirst fivetermsis

(1) 25 (2) 625 (3) 3125 (4) 625 x 25
The first term of a G.P. is 1. The sum of third and fifth termsis 90. Find
the common ratio of the G.P.

(1) +2 (2410 (3 +3 4 -3

When the terms of a G.P. are written in reverse order the progression
formed is

1) AP (2) G.P. (3) H.P. (4) A.P.and H.P.
If A, G, H are respectively arithmetic mean, geometric mean and
harmonic mean then

(DA>G>H (2JA<G>H (3)A<G<H 4 A>G<H

(68) The A.M. between two numbers is 5 and the G.M. is 4. Then H.M.
between them is
1 1
(1) 3% 21 (3)9 413
(69) If a, b, carein A.P. aswell asin G.P. then
(Da=b=c (2azb=c (A azxb=c (Ha=b=c
(70) The A.M., G.M. and H.M. between two positive numbers a and b are
equal then
(D a=b (2ab=1 (da>b (4 a<b
X 3 .
(7)) & =1+x+5 +57 + ... ... isvalid for
1) -1<x<1 (2 -1<x<1 (3) al real x (4 x>0
(72) €°%isequa to
D x 21 Qe (4) log ex
(73) The equation of x-axisis
(D x=0 (2)x=0,y=0 B y=0 Hx=4
(74) Thedopeof thestraight line2x—3y+1=0is
-2 -3 2 3
13 25 )3 43
(75) They—intercept of the straight line3x+2y—-1=0is
1 1
(1) 2 )3 35 -5
(76) Which of the following has the greatest y-intercept in magnitude?

(D) 2x+3y=4 (2Jx+2y=3 (3 3x+4y=5 (4) 4x+5y=6
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(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85

If the equation of the straight lineisy =~/3 x + 4, then the angle made by
the straight line with the positive direction of x-axis is

(2) 45° (2) 30° (3) 60° (4) 90°
If the straight lines a;x + b;y + ¢; = 0 and ax + by + ¢, = 0 are
perpendicular, then

a_ b a_b _ a_bh_a
() a, b, (2 a, ~ b, (3)a,a,=-Db;b, (4) a, “by, " ¢c,
Which of the following isaparallel lineto 3x + 4y + 5= 0?
(D) 4x+3y+6=0 (2)3x—4y+6=0
(3 4x-3y+9=0 (4 3x+4y+6=0

Which of the following is the equation of a straight line that is neither
parallel nor perpendicular to the straight line givenby x+y=0

D y=x 2Qy-x+2=0 @B)2y=4x+1 @y+x+2=0

The equation of the straight line containing the point (- 2, 1) and parall€l
to 4x-2y=3is
Dy=2x+5 (2QQy=2x-1 By=x-2 (4)y=%x
Equation of two paralel straight lines differ by
(1) xterm (2) yterm (3) constant term  (4) xy term
If the dlope of a straight line is% , then the slope of the line perpendicular
toit, is

2 2 3 3
1 3 -3 33 4-3
Thegraphof xy=0is
(1) apoint (2) aline
(3) apair of intersecting lines (4) apair of paralel lines
If the pair of straight lines given by ax® + 2hxy + by2 =0 ae

perpendicular then
(1) ab=0 (2a+b=0 (3)a-b=0 4a=0
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(86)

(87)

(89)

(89)

(90)

(91)

(92)

(93)

(94)

When h? = ab the angle between pair of straight lines
ax® + 2hxy + by’ = 0is

T T T
6% @35 (33 (4) 0°
If 2x° + 3yx — cy2 = 0 represents apair of perpendicular linesthen c =
1 1
1-2 @ -3 (3)2 @5

If 2x° + kxy + 4y2= 0 represents a pair of parallel linesthenk =
(1) +32 (2) £24/2 (3) £ 442 (4)+8

The condition for ax? + 2hxy + by2 + 2gx + 2fy + ¢ = 0 to represent a pair
of straight linesis

(1) abc + 2fgh — bf? —ag? —ch®=0 (2) abc — 2fgh — ag® - bf> — ch’=0
(3) abc + 2fgh — ah? —bg? — ¢ =0 (4) abc + 2fgh — af’ — bg® — ch’=0

The length of the diameter of a circle with centre (2, 1) and passing
through the point (— 2, 1) is

14 28 (3) 4+/5 42

Given that (1, — 1) isthe centre of the circle X2 + y2 +ax+by-9=0.Its
radiusis

(13 (242 (311 (411
The equation of a circle with centre (0, 0) and passing through the point
(5,0)is

(D)X +y?-10x=0 (2 xX°+y°=25

(3) X%+ y? +10x=0 (4) X% +y?>—10y=0
Theradius of the circlex? +y2 — 2x + dy — 4= 0is
1 (22 (33 (4) 4

The centre of the circle x> + y2 +2x-4y-4=0is
D@4 212 12 @ (2-49
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(95) If 2x + 3y = 0 and 3x — 2y = 0 are the equations of two diameters of a
circle, thenitscentreis

H@-2 ) (2.3 (3) (0, 0) 4 (=372

(96) If theliney = 2x — c is atangent to the cirdle X% + y2 =5, then the value
of cis

D+5@+\V5  (*5/5 (4) £5\2
(97) Thelength of the tangent from (4, 5) to the circle X + y? = 25 is
15 2) 4 3) 25 (4) 16

(98) If the circle has both x and y axes as tangents and has radius 1 unit then
the equation of thecircleis

WX+ y-12%=1 @ X +y’=1
B (-1 +(y-1°=1 (4 (x-1° +y’=1
(99) Which of the following point liesinside the circle X% + y? — 4x+2y — 5=0
(D (5,10 @ 57) (3 (9,0) 4 (1,1
(100) The number of tangents that can be drawn from a point to the circleis
M1 (22 33 (4) 4
(1012) If two circles touch each other externaly then the distance between their
centresis
M 2
Qry-r1, (2)6 (S)r—1 @ry+r,
(102) The number of pointsin which two circles touch each other internaly is
M1 22 30 43
(103) Oneradian isequal to (interms of degree)
180° T 180 11
(1) 11 (2) 180° (3) T (4) 180°

(104) An angle between 0° and — 90° hasitsterminal sidein
(D I quadrant  (2) 11l quadrant ~ (3) IV quadrant (4) Il quadrant
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(105) 3—20 of acomplete rotation clockwiseis

1) -1° (2) - 360° (3) - 90°

(4) 1°

(106) If the termina sideis collinear with the initial side in the opposite

direction then the angle included is
(1) o (2) 90° (3) 180°
(107) Areaof triangle ABCis

D :_2L ab cosC ()] % absinC 3 % ab cosC
(108) The product s(s—a) (s—b) (s—c) isequal to
1A (2) A% 3) 2A

(109) Inany triangle ABC, Ais

abc abc
(1) abc @ 2r Oy
(110) Intriangle ABC, thevaueof sinA sinB sinCis
A A A
Do 2) 6 <) Iy
D 2R ( )4R ( )2R2
(111) cosB is equal to
2.2 12 2,12 A2 2,102 2
cc+a"—-b c“+b -2 a“+h"—c
@) 2ca 2 2bc ) 2ab
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(4) 2ab



ANSWERS

EXERCISE 1.1
2 3 4 12 3
@ @) [3 4 5} (ii)[Z 4 6]
4 5 6 3609
(2 x=0,y=7, z=3 (3) x _% - _ _%

ol 2] o 4] wf el
MR AR

2 2 -1 -2 -5 -1
6) X=[-23-3|,vy=|-1 1 3 @ k=1
-2 1 -3 0 -7 2

19 3
(10) x=1,-3 (1) x=2,-5 (13)5{_6 7} (4 x=1y=4
EXERCISE 1.2
()0 (2 (i) non-singular (ii) singular (©)] (i)x=% (i) x=9

@ ()0 ()0 (6)a°+3a°

EXERCISE 1.3
(3 x=0,0,—-(a+b+c) (@) (a-b)(b-c)(c—a)(ab+bc+ca)
EXERCISE 2.1
— —>
M) AC=a+b ,BD =b -a
EXERCISE 2.2
() 57 +5] +5K , 543 (2)/185
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©)

©®)

8)

(13)

(16)

D

©)

(4)

©)

(6)

()

®)

9)

—> —>
AB =-37 -] -5K : BC =41 -7} +7K :
—> %
CA =-1i +8) -2k

AB=+[35 ,BC=+/114 , CA =+/69
m=9 (6)_i>+3[3_'>| (7)+3_i)—7_'>| +6_k>

= > + J9

- > —

177 -3j -10K > o o
=2 P (A -5 11

PQ =4 —5] +11K ,(9\/5,9\/2,9\/2)
non-coplanar vectors.

EXERCISE 3.1

1 1 > 20 13
2(x-1)  2(x+1) @323 " x-2

3 7, 13
2(x-1)  x-2 ~ 2(x-3)

1 1 1
9(x+1) ~ 9x+2) 3(X+2)2

-4 + 4 1
Ax+2) "9(x-1)  3(x-1)2

2 + 3 2
25(x—2) " 5(x—2)2 25(x+3)
7,1, _9
2X 2 2(x+2)

2 + 3 B 9
x-2)  (x-2? (x-2°

1 N I1x—8
5(x +2) 5(X2 +1)
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1 (x=3)

(10) 2x+1) T 20l +1)

(11) XZi( ;XS_ 1t 3x4— 2
(12) 1-337 +(X+—11)2
EXERCISE 3.2
(1) 378 (2)42 (3) 600 (4) 1320  (5) 42840
(6) 512 (7)153  (8) (i) 27216 (i) 90000  (9)5x5!  (10) 21
(11) 2°  (12)9000 (13) (i) 125 (ii) 60 (14) 2°
EXERCISE 3.3

)

)
(4)

(12)

)
®)

)
(6)

)

(i) 60 (i) 2730 (iii) 120 (iv)% (v) 15120

23 (3)4
41 (7) 172800 (8)5040  (9) 60  (10) 93324 (11) 34650
(i) 840 (ii)20 (13)9000 (14)4° (15) (i) 8' (ii) 7! (16)%
EXERCISE 3.4
(i) 45 (i) 4950 (i)l  (2)23 3) 3 (4) 45
(i) 12 (i) 8 (6) 19 N7
EXERCISE 3.5

66 (2)200 (3)210 (4)425 (5) (i) 15C11 (i) 14C10 (iii) 214C11
780 (7) (i) 40 (i) 116 (8)1540  (9) 817190
EXERCISE 3.7
(i) 243a° + 2025a%0 + 6750a%b? + 11250a°b° + 9375ab* + 3125 b°
(i) > — 10a*b + 40a°p® — 80a’b° + 80ab” - 320°
(iii) 32x° — 240x° + 720x” — 1080x + 810x° — 243x*°
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oo 1119 sex® 165X 330x’ 4628 462X 330x*
(iv) x—+ y + y2 + y3 +— 2+ y5 +—6 t+t7 7
y y y

165x° 55x% 11x 1

T Ty Ty
(v) X2 + 12203 + 60x8y® + 160x8y° + 240x*y1? + 192x%y™ + 64y*®
(Vi) X4 + 4X7/2 y3/2 + 6X3y3 + 4X5/2y7/2 + X2 y4
(2 ()58+2 (i) 152 (iii) 352

(iv) 128a° + 4320a% + 9720a + 1458 (v) 5822+/3

(3) (i) 1030301 (i) 970299 (4) 0.9940
8
(5) (i) 8C42*%*2 (if) 16Cs (i) 16():; a

(iv) 13Cg.25%"y? and — 13¢5 . 2x8y’

1 1
v) 1708.287 and 1709.29@

4
(7) — 165 (8) (i) 7920 (i) 2268 (iii) 1204@ 98
© r=3 (10) 7,14
EXERCISE 4.1
(1) ()25,- 125,625~ 3125and 15625 (i) 5 , 3, = , 21, =
(i)-1,-12,-23,-34,-45 W5, 5, 2,2, 3
2 2 2 1 4 1 16 25
M3. 03,03 M)3.9 3 81 243

@02 . 2 @ro @ Z e -5

5 17 37
(3) O! zl 8! 71 241 7
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(4)

®)

D
4)

D)

)

(6)

)
©)
()

D
(4)

()
9)
(11)

(13)

()2 2 1,0 -1  (i)1,235,8
(ii)1,2,6,24,120 (i) 1,1, 5,13, 41

1 1 5 1
e @5 15"~ 1 () 20 -1
EXERCISE 4.2
(i) 4,7,10,13,16 (i) 5,7, 9,11, 13, 15 (2) () 10 (i) 1 (iii)p
1—19 (6) 6, 24 (10)2,3,6 (or) 6,3, 2
EXERCISE 4.3
L1 40 160 1 X XX e
(|);[x -8+ - 7+] (||)3— [l+é+ﬁ+@+...]
/6
(i) 10.01 (i) 0.2 (5)% x*?
r+1) (r+2) (r+3) .
123 X
EXERCISE 5.1
X2 +y? - 2x+8y—-19=0 (2) 3x+y=2
() t=1 (i) P(, 2) (4 y?-24x°=0
(i) X°+y?+x—3y+2=0 (i) 15x° + 15y° + 66x — 96y + 207 = 0
EXERCISE 5.2
Ix-T7y—-10=0 (Qy=3x+4 B)x-y=6
1Ix-y=27 (5)2x+y=6;x+2y=6 (6)x+3y=8
14
3X—2y=0;2x—y=0and5x-3y=0 (8)\/1—3 units
2x-3y+12=0 (10)9x—-8y+10=0;2x-y=0
2Xx—-3y=6; IXx-2y=6 (12)xintercept$ ; y intercept 2
(8,0) and (- 2, 0) (14) 3+/2 units
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)

(6)

(10)

17

)
()
8)

)
(10)

)
(iv)
)
©)
(4)
©®)
(6)
()
©)
)

EXERCISE 5.3

I (3)3x+2y+1=0 (H)x-y-1=0 (5 (L2
k=-9 (7)%5 units @B p=1;p=2 (9)28x+7y—-74=0
Bx+3y+8=0 (l)x+y=1 (12)5x+3y+5=0 (14)7 iy

a=5 (18)a:136 (19) (2@ (1) (1,12)  (22)(-4,-3)
EXERCISE 5.4

a=2:c=-3 (2) n/3 41 (6) 2% —3xy—2y° =0

I+ Ty + 2P —Ax+Ty-15=0

k=—-1;4x-3y+1=0and 3x + 4y — 1=0 ; /2

C=2; 6x—2y+1=0and2x—y+2=0;tan - (U7)

k=-10; 3x—-2y+1=0and4x+5y+3=0
EXERCISE 5.5

(1)(0,0);1 (ii) (2, 3) ;122 (i) (4,3); 7

(292 wuaD

a=4;b=2;2¢+2% +4x+4y-1=0

X2 +y?—4x—6y+11=0

Py —Bx—4dy—12=0

X2 +yP—14x+ 6y +42=0

X2 +y2 +8x— 10y +25=0

2\/10 = unit; 10r square units

X +yP—12x+11=0;x° +y? +4x—-21=0

X2 +y?—3x—-6y+10=0
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(10)
(11)
(12)
(13)
(14)

(15

)
©)
(6)
9)
(10)

(12)

©)
(6)
()

)
)
©)

)

x2+y2:1
X2 +y? —Bx—y+4=0

X2 +y?—6x—8y+15=0
Xy —4x—2y—-5=0
16x° + 16y° = 1
x:g cose;y:g sin 6
EXERCISE 5.6
2[5 units dy-1=0 (4) outside
(0, 0) and (4, — 3) liesinside; (-2, 1) liesoutside
(0,2); (2,0 (7) 2x+y=+3/5 (8) 5\/2 units
() x°+y?—10x - 12y + 25=0 (i) x* +y> - 10x— 12y + 36 =0
4X+3y+6=0 (A1) (i) x+y=%44/2 (i)x-y=+4&/2
X—-5y+19=0 (13) + 40 (l4)(—%,—%
EXERCISE 5.7
X2 +y?—2x— 6y —39=0 (4) % +y?>—8x+ 12y - 49=0
() P +y?—2x+2y+1=0 (ii)x°+y*—6x—dy—44=0
X2 +y° —16x— 18y — 4 =0 (8) 3x% + 3y° — 14x + 23y - 15=0
EXERCISE 6.1

OF ()F (i)Tg W) W2 )

(i) 22° 30" (i) 648° (iii) — 171°48 (app.) (iv) 105°
(i) Q1 (ii) Qs (iii) Q1
EXERCISE 6.2

—21321 (2) (i) - Ssin60° (i) — cos40° (iii) tan10° (iv) — tan60°

(v) cosec 60° (vi) —sin30° (vii) cos 30°
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©®)
©)

(10)

D
©)

(12)

©)

)

)

D

(i) —cosec A (ii)—sec A (iii) —cotA (iv)cosA (V)tanA

0-75 -8 iz () -
V)—1 (vi)\% (vii) 1 (viii)%
(i)l—g:g ()1 (i) 0 (iv)l%@ V)5 (vi)2 (vii)%
(viii) 11 (ix)% (x)%g
EXERCISE 6.4
(i)MZ 2 (ii)Mj1 2 i)2+3 (iv)MZ 2
A2+1 \J6+42  \2-43 +[6+42
02— .72 =2 .73
A2 +1 (14) u151+22 2
EXERCISE 6.5
z ©) ()15 ()T
EXERCISE 6.6
(i) sin66 + sin26 (ii) cos 146 + cos20 (iii) sin106 — sin46

(iv) cos2A — coA A (v) Sin9A — sin3A (vi) :_2L [sin136 + sin50]

(vii) % [SN2A —sinA] (viii)% [Sn6A +sinA] (ix) % [cos36+cos 6/3]
(i) 2siN9A cosAA (i) 2 cos9A sindA (iii) 2c0s9A cosAA
(iv) — 2sin 9A sindA (V) 2 cos42° sinl0° (vi) 2 cos37° cosl4°
(vii) 2 cosb0° sin30°  (viii) 2sin30° cos20°  (ix) 2 sin30° cos10°
53° 17°
(x) 2 cos 5> C0s™5

EXERCISE 6.7

M7z @)3 (i Mg V) -3 M)-g Vi3
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)

©)

(4)

©)

)

©)

®)

OF+ 'S Gnm-E i3t +

ENE

T

()nmty nm (ii)%n @n+1)5 (i)

M2m=3 (D2m=n (i) 2nni%“ L@n+Dg (V) ”—3“ , 2nm

()2nm+7 (o) mu+(-1)"5 7%

(if) 2nm — (iii) 2nm — 7 (iv) 2, 2nn+%7T

EXERCISE 6.9
05 @5 -3 WmF W5 wy
\3

(i)% (ii)%1 (iii)% (iv)—5 (7)x=ir%

2-4/3 (9)x:%
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Objective Type Questions— Answers (Key)

D1 (24 (32 41 (52 (6) 4
M1 ©®3 9 1 (10) 1 (11) 1 (12) 2
(13)1 (14) 4 (15) 1 (16) 4 (17) 2 (18) 1
(19) 3 (20) 3 (21) 2 22)1 (23) 4 (24) 3
(25) 1 (26) 3 (27) 2 (28) 2 (29) 2 (30) 3
(31) 1 (32) 4 (33) 4 (34)1 (35) 1 (36) 3
(37) 3 (38) 2 (39) 2 (40) 4 (41) 4 (42) 1
43)1 (44) 3 (45) 1 (46) 2 471 (48) 3
(49) 1 (50) 1 (51) 3 (52) 4 (53) 1 (54) 3
(55) 3 (56) 3 (57)1 (58) 2 (59) 3 (60) 1
(61) 2 (62) 3 (63) 2 (64) 3 (65) 3 (66) 2
67) 1 (69) 1 (69) 4 (7001 |(71)3 (72) 1
(73) 3 (74) 3 (75) 3 (76) 2 (77) 3 (78) 3
(79) 4 (80) 3 ®1) 1 (82) 3 (83) 4 (84) 3
(85) 2 (86) 4 (87) 3 (88) 3 (89) 4 (90) 2
(91) 3 (92) 1 (93) 3 (94) 3 (95) 3 (96) 1
(97) 2 (99) 3 (99) 4 (10002 [(101)4  |(102) 1
(103)3  |(1044  |(105)1 |(106)3  |(107)2  |(108)2
1092 (11003 |(111)1
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