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PREFACE TO THE SIXTH EDITION,

IN preparing a new edition of this work I have kept the

‘same object in view as I bad in the former editions,—namely,
to include in it such portions of Theoretical Mechanics as
can be conveniently investigated without the use of the
Differential Calculus, and so render it suitable as a manual]
for the Junior Classes in the University and the Higher
Classes in Schools. With one or two short exceptions, the
Student is not presumed to require a kuowledge of any
branches of Mathematics beyond the elements of Algebra,
Geometry and Trigonometry.

Motion on a Curve, which is treated of in the last
Chapter of the Dynamics, does not seem to admit of any
complete discussion without the aid of the Differential Cal-
culus; but in cousequence of the present requirements of
the Senate-House Examinations, I have put together those
theorems respecting cycloidal oscillatious and curvilinear
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motion which admit of a tolerably simple Geometrical ex-
position.

Several additional propositions have been incorporated in
the work for the purpose of rendering it more complete :—
a few articles on Work and Energy have been added.—
pp- 227—232 :—aud the collection of Examples aud Prob-
lems has been largely increased :—to most of them 1 have
annexed results, which I hope will render the eollection more

useful both to tutor and pupil

St. Jonun’s CoLLEGE,
May, 1881



Def.

Def.

CONTENTS,

STATICS.
CHAPTEL 1.

raak
Introduction . . . . 1

of the terms particle, rigid, Art. 1; motion, absolute and relative,
2; def. of force, line’ of action, equilibrium, Statics, Dynamics,
Kinematics, Kinetics, 3; pressure, tension, 4; masy, 7, mode of
comparing forces, standard of weight, 8—11; principle of the trans-
mission of force, 12--14.

CHAPTER 1L

Of forces acting in one plane ;7

of componcul,\"ekultant, 15; parallelogram of forcesy18--21; triangle
of forces, 22 ; Lami’s theorem, 23 ; polygon of forees, 25 ; Leibnitz's
theorem, 26; converse of parallelogram of forces, 27; resultant of any
system of forces in one plane, 28; of two parallel forees, 29, 30;
mgnent of (l.-force, 31; moment of two or more forces cqunl to that
of their resultant, 32— 34; def. of a fulcrum, a lever, 355 principle
of the lever, 36; condition of equilibrium of u system of forces in
one planc, 38—40; remurks on the mutual action of smooth and
rough surfaces, 41, 42; lension of strings, 43 conditions of equili-
brium of three forees, 4z ; problems, 46—51.

CHAPTLR 1IL

Friction . . .

Explanation of the action of friction, 52, 53; laws of friction, 54; roll-

ing friction, &ec. 55; practical method of finding the coefficient of
trictiou, 57.

12

n
w



vi CONTENTS.

CHAPTER IV.

PAGE

QOf forces, the directions of which meet in a point ;—tension of
strings on smooth and rough surfaces . . 61

Parallclopiped of Jorces, Go; resultant of any system of forces acting
at a point, 62 ;Yconditions of equilibrium, 63 ; tension of a string
passing over a smooth surface, 65; ... over » rough surface, 66
the funiculur polygon and catenary, 67, 68.

CIIAPTLEL V.
Of the centre of gravity . . . 74

Dof. of wvertical, horizontul, centre of gravity, 6g; there is one and only
one ocoutre of gravity for any system, 7o0; centre of parallel forces,/
70, Cor. 3; centre of gravity of a right line, a parallelogram, a
triangle, perimeter of a triangle, 72, 73; ocntre of gravity of a
system of particles in « line, in a plane, arranged in any manner, 74;
def. of moment of a jorce with respect to a plane, centre of mean
position, centre of figure, 755 general remarks, 77, 78; centre of
gravity of & pyramid, 79; stqlle and wnstable equilibrium, 8o—84 ;
ceutre of gravity of a circular are, sector and segment, B8z, 80;
Leibnitz's Theovem, §7.

CHAPIER VI.

Mechanical powers . . 107

The lever discussed, 88—g3; the common steel-yard, g4; Danish steel-
yard, g5; common balance, g6—98; Balance of Quintenz, ¢g;
wheel and axle, 100, 101 ; single pully, 102, 103; systems of pullies,
104100 ; Spanish Barton, 107 ; inclined plane, smooth and rough,
108—110; screw, 111—114; wedge, 115; explanation of the prin-
ciple of virtual velocities, 116—118; the principle applied to the
several mochanical powers, 119—128; mechanical advantage and
eficiency, 139; labouring jorce, foot-pound, Joot-ton, horse-power,
energy, what is gained in power is lost in velocity, 131, 133;
differential axle, 133; Hunter's Screw, 134 ; proof of the principle
of virtual velocities for forces in one plane, 13s.



CONTENTS. vil

DYNAMICS.
CHAPTER L
PAGE
I'ntroduction . . . . I54

bef. and measure of velocity, Art. 2; formula for uniform motion, 4:
mensure of acceleration, 5, 65 mass, 8115 momentum, 125 moving
force, stress, strain, poundal, metric system, dyne, erg, English stand-
ards, 15; impulsive force, 17, 18 ; geometrical resolution and com-
position of velocitics, and accelerations, 19, 20; parallelogram of
velocities and accelerations, 21—253 first law of motion, 27, 28;
second law'of motion, 29g—33; dynumical parallelogram of velocities,
35; relative motion, 40; third law of motion, 42-—45; action and
reaction, 40, 47 ; remarks on the laws of motion, 48*.

CHAPTER II.
Of uniform motion and collision . . Ig0

Nelative motion of two poinis or balls, 5o, 51; def. of elasticity, jora;
of restitution, modulus of elasticity, 52 line of impact, 53; impast
is a prossure of short duration, 54; collision of two balls direct and
oblique, 55—59 ; impact on a plane, 6o; motion of the centre of
gravity of two balls, 61, 62; problems, 63—0606.

CHAPTER III
Of uniformly accelerated motion . .211

Velocity aocquired and space described under a uniform force, 67, 68;
geometrical illustration, 69, 71; formule, 73; motion of two bodies
connected by a string over a pully or on an inclined plane, 75—77;
motion up and down an inclined plane, 78, 79; lines of quickest
descent, 80 ; Atwood's machine, 82 ; Work and Energy, 83 ; measuse
of Energy,83a; kinetic Energy, potential Energy, Energy of Position,
838; kinetic Energy expressed in fool-pounds, 835; comparison of
Energies of bodies having equal momentum, 83¢; Heat s form of
Energy, Joule's equivalent for Heat, 83{.



viil CONTENTS.

CHAPTER IV.
PAC

Of the motion of projectiles . .23

Path of a projectile, 85; range, time of flight, elevation, 85, 86; on an
inclined plane, 87; path referred to rectangular co-ordinates, 88;
motion on a smooth inclined plane, 89 ; problems, and remarks on
the imperfection of the theory, go—g4.

CHAPTER V.
Motion on a curve . . - 24

Velocity acquired down a curve, g6, ¢7; on a circle, ¢7; kinetic and
potential energy of the body moving on & curve, Cor. 2. ¢7; pro-
perties of the cycloid, go—ior1; time of falling down an arc of a
eycloid, 102; oscillation in & eycloid, 102, Cor. ; kinetic and potential
energy of pendulum, Cor. 3. 102; length of seconds pendulum, 103;
problem, 104; normal accelcration of a particle moving in a curve,
uniform motion in a cirele, 105; centrifugal force, 106; pressure on
a curve, 107; problems, 108, 109 ; Newton’s method of determining
the elusticity of balls, 110.

Problems and Examples . . . . . . . 271—4n

Note. The standards of weight and measure now in use in England
are referred to in the small-type paragraph on p. 164,~—which ought to
be substituted for the small-type paragraph on p. 7.



STAYICS.

CHAPTER L
INTRODUCTION.

¥ 1. MECHANICS is the science which treats of the laws of
rest and motion of matter.

A general notion of the meaning of the term matter is
acquired in the daily experience of life, since matter in
‘various forms and under various circumstances is perpetually
affecting our senses: we shall therefore assume that the
notion of it is familiar to the student.

A particle or material point is a portion of matter inde-
finitely small in all its dimensions; so that its length, breadth,
and *thickness are less than any assignable linear magnitude.
A body of finite size may be regarded as an aggregation of
an indefinitely great number of particles; and the dimensions
of any given body being limited in every direction, it will
consequently have a determinate form and volume.

A body or system of bodies all the points of which are
held together in an invariable position with respect to one
another, is said to be rigid.

2. When a body or particle constantly occupies the same
position in space, it is said to be at rest; and when its position
in space chamges continuously in any manner whatever, it is
said to -be 4n motion. All matter is capable of motion, but
e can only judge of the state of rest or motion of a particle

P. M. 1
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by comparing it with other particles; for this reason all the
motions which we can observe are necessarily relative mo-
tions.

When a great number of objects maintain the same rela-
tive position, our first impression is to consider them as at
rest; and if one of them changes its position relatively to the
others, it is to it that we aseribe the motion. Thus, for in-
stance, the earth was for a long time considered to be fixed in
space, notwithstanding the motions of the sun, moon and stars
relatively to objects on the earth’s surface with which the
observer compared them. The motion was ascribed to them
whilst the earth was assumed to be fixed. A careful study of
natural phenomena may modify this first impression, though
we may never arrive at absolute certainty in this respect;
and the conclusions respecting absolute motions, to which we
are led by the observation of relative motions, can only be
regarded as inductions which may have indeed a high degree
of probability, but which have always need of being verified
by the accordance bétween the logical consequences to which
they lead, and the phenomena directly observed.

3. The following principle we assume as being in accord-
ance with experiment and observation, viz. a particle which

. 18 absolutely at rest will continue so, until some cause, extra-
. neous to. itself, begins to operate so as to put it in motion.

This principle asserts that matter at rest has no tendency to
put itself in motion, and that any motion or tendency to
motion which it may possess, must arise entirely from some
external cause. Fo such causes we give the name of jforces,
and we give the following definition :—

Any cause which excites motion in & partlcle or which
only tends to excite it when its effect is prevented or modified
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by any other cause (or which tends to modify existing mo-
tion), is called force.

v And the line of action of the force is the line in which the

particle would begin to move in consequence of the action of
the force, if the particle were at rest and perfectly free.

v When several forces act simultaneously on a free particle
or on a system of eonnected particles, the forces will modify
cach other's effects : if they are so related that no motion of
the particle or system takes place, the forces are said to be in
equilibrium. .

v That part of Mechanics which treats of the conditions of
equilibrium of forces {applied to matter) is called Statics: the
other part which treats of the conditions of motion is called
Dynamics. The two combined constitute the whole subject.

The term kirematics is frequently used in treating of the
movements of particles and bodies in their geometrical rela-
tions, apart from any consideration of the forces producing
such movements—the term /Kinefics, in treating of such
movements in connection with and as consequences of the
action of the forces acting upon the particles and bodies.

4. Forces are brought into action by various causes, and
different terms are applied to them in different cases. Thus,
for example, if one body press against another, each body is
subjected to a force acting at the point of contact,—such force
is frequently called pressure; again, when a body is pulled by
means of a string, or pushed by a rod, the force exerted by the
string or rod is called {gnsian ; again, experience teaches us
that if a body be let free from the hand it will fall to the sur-
face of the earth in a certain definite direction,—however often
the experiment be #ried the result is the same, the body strikes
the same spot on the ground in each trial, provided the place
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from which it is dropped remain the same :—this unvarying
effect must result from some cause equally unvarying.

This cause is assumed to be an affinity which all bodies
have for the earth, and is termed the force of gttrgction. It
is found to prevail at all parts of the earth; and is, in fact,
included in the general law of gravitation established by
Newton, viz. that every particle of matter attracts every other
particle of matter according to a certain law. The name
werght is given to the force which the earth’s attraction causes
a bpdy at rest to exert downwards. The term gravity is fre-
quently used in the same sense statically.

5. We have a simple example of the simultancous action
of two equal forces when a body rests on a horizontal table, or
is supported by the hand. The pressure of the table in the
former case, or of the hand in the latter, exactly counter-
balances the weight of the body, and is equal to it.

If a body be suspended freely by a string, the tension of
the string, which is the force it exerts on the body, is exa\.tly
equal and opposite to the weight of the body.

6. The question may suggest itself to the student whether
the weight of a body remains the same at different times.
The answer to this must necessarily depend upon experiment,
since we have no means of determining, @ priori, whether the
attraction of the earth remains the same : but if we can ascer-
tain that the mechanical effect of the weight of the body is
unvarying (for instance, if it deflect a spring through the same
space under precisely similar circumstances), the answer would
be in the affirmative. But it would be very difficult to ascer-
tain whether the spring were under exactly similar conditions
at the different times, and so no reliance could be placed on
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the result of the experiment. We are able, however, to assert
from dynamical considerations that the weight of the same
body at the same place of the earth’s surface is invariable.
We may also here state, as a result of experiment, that the
weight of a body is not altered by altering its figure. It
depends solely upon the volume and material. Thus, for
example, a cubic inch of iron requires the same effort to
support it, whatever be its form,

This of coursc we could not know except from experiment;
for we could easily conceive it to have been otherwise, as, for
instance, if the attraction of the earth had been of a kind
similar to magnetic attractions which do not influence all
substances, and which besides do not exert equal influence
over those which arc subject to them.

7. Mass. Common expericnce makes us acquainted with
the fact, that the censtitution of all material bodies is not the
same, Equal volumes of different substances are differently
affécted by equal forces applied to them. A cubic inch of
wood and a cubic inch of lead require different efforts to
support them in the hand, Equal weights of different sub-
stances occupy different volumes. We are thus led to con-
sider a quality of matter to which the term mass has been
given. So long as the volume and .constitution of a given
portion of matter remain the same, this quality mass remains
the same. The mass of a body has been sometimes defined
as the quantity of matter in it : but this vague definition does
not assist us in forming a distinct conception of it. The
notion of mass is one as completely sui generis as those of
space, time, weight are 8o :—and as in these cases, so in that
of mass, our principal business must be to establish some

mode of measuring qf comparing different masses.
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Our only mecans of measuring mass are derived from
dynamical considerations, and we shall have occasion hereafter
{in Dynamics) to consider this subject again. For the present,
if necessary, the student may assume that the masses of bodies
are proportional to their weights at the same place on the
earth’s surface.

8. Method of estimating and comparing forces.

When a force acts on a material point, there are three
things necessary to be known in order to render the force
perfectly determinate, viz. the snfensity of the force, theﬂl direc-
_tion in which it acts, and the position of the point where it is
applied, in other words, its point of application. Thesc three
things may be called the elements of the force: and when
the two latter are assigned, i.e. the point of application and
the direction, the line of action becomes determinate,—that is,
the line in which the particle would begin to move by the
action of this force only, if the particle were perfectly free.

If two forces be applied in opposite directions to a pdint
which is free and at rest, and constitute an equilibrium, they
are said to be equal forces. The notion of the equality of
two forces will readily lead to the conception of forces having
any proposed ratio to one another: thus if two equal forces
be applied in the same direction to the same point, we shall
have a double force; if in the same way we combine three
equal forces there results a triple force, and so on; so that, in
general, to measure forces we have only to adopt the same
method as when we measure or compare any homogeneous
quantities: i.e. we must e some known force as unit, and
then express in numbers the relation which the other forces
bear to this unit.

For example, if F represent the unit of force (the weight



REPRESENTATION OF FORCES. 7

-of a given body for instance), PF will represent a force the
intensity of which is P times that of the unit: or we may
speak of a force P simply, in the same sense,—the unit of force
being understood.

9. We have seen that the gravitation of bodies to the
earth is unceasing, and, as has been observed, the gravity
or weight of the same body is invariable; so that weight
affords a very useful means of estimating all statical forces.
The tension of a string may be measured by the weight (the
number of pounds if we please) which it will sustain; the
force exerted by a string under constraint may be measured
by the weight which will just hold it in its coustrained posi-
tion; the force of attraction of a magnet may be measured by
the weight it would support:—and se of all statical forces.

The standard of weight in England is the pound Troy, consisting of 5760
grains; and it is stated thas s cubic inch of distilled water weighed in air by
brass weights at 62° Fahrenheit, the barometer being at 80 inches, weighs

. 252 458 such grains ;—the pound Avoirdupois contains 7000 such grains.
§° Gror. IV. c. 74.

10. We proceed to explain how forces may be repre-
sented geometrically and algebraically.

The three things necessary to render a force perfectly
determinate are (as we have said) its point of application, the
direction in which it acts, and its magnitude or intensity.
Now if there be two forces, P, Q

acting at the points A4, C in the

directions 4B, CD respectively, we

hay take the lengths of the lines q//p/_,,o

AB, CD such that ‘
AB:CD=P:Q.

Or if we take @ for our unit of force and CD for our unit
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of length, then the force P will be represented geometrically
by the line AB; for this line is drawn in the direction of the
force AP, from the point of application 4,and also represents
the force in magnitude: the convention in this respect being
understood to be that the line contains as many units of
length as the force contains units of force.

The student must be careful to observe the erder of the
letters which indicate the line; thus AB expresses that the
force acts in direction of the arrew from A towards B; a
force represented by BA weuld indicate a force of equal
magnitude, but acting in the opposite direction, i.e. from B
towards 4.

The force P would be represented algebraically by ex-
pressing in algebraic symbols the magnitude and position of
the line AB which represents the

force geometrically: thus its direc- o
tion would be assigned by assigning v

the angle 6 at which it is inclined /

to & known fixed line Oz in the A

same plane with 4 B: its magnitude o7 N x
will be assigned by assigning the

numerical value of P, the number

of units of length; and the point of application 4 will be
assigned by assigning the position of A with respect to the
fixed lines Oz, Oy in the same plane with 4B.

11. This mode of representing forces by lines is of great
utility, as we shall see more particularly in the next chapter.
We may illustrate it here by )
supposing several forces as P, -4 Br 5. Dj 2o
@ R to act simultaneously at re
the point 4 in the same direction: if they would be separately
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represented by AB, AC, AD, they will when acting simul-
taneously be together represented by a line A D', the length
of which is equal to the sum of 4B+ AC+ 4 D.

If one of the forces as R, acts in a direction opposite to
that of the others P, @, we )
shall have to subtract the line «2—2 B ¢ 2,
AD from the sum of the others
AB, AC, and the three would be represented by a line A
equal in length to AB+ AC— AD. This is still the algebraic
sum of the lines 4B, AC, AD, if lines in one direction from
A be considered positive, and lines in the opposite direction
negative; and generally if any number of forces act simul-
taneously at a point and be affected with the sign + or — as
they act in a given direction or the opposite, they will be

+ equivalent to a single force represented by the algebraic sum
of the several forces; and if this sum be affected with a
positive sign, the cquivalent force will act in the direction
which has been considered positive; and if it be affected with
a negative sign, it will act in the opposite direction.

12. From the definition which has been given of equal
Jorces (in Art. 8), it is obvious that two equal forces applied
at a point in opposite directions will be in equilibrium.
Further, it will readily be granted
that two equal and opposite forces 4 c
P, Q applied at the extremities of a ¥
straight rigid rod AB and acting —3%
in direction of the rod will be in
equilibrium ;—for there is no reason that the rod should
move in one direction rather than in another;—and this
result will be true whatever be the length of the rod: from
hence we infer that P will balance @ at whatever point of

4 4

[ ]
ol
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the rod @ be applied: in other words, the effect of @ is the
same at whatever point of the rod B, C,... it be applied, the
direction remaining the same.

These considerations lead us to the following principle,
called the principle of the transmission of force, which we
shall hereafter find to be of great utility.

The effect of a force on a partiole to which it 1s applied will
be the same, 1f we suppose the force applied at any point we
please in the line of action, provided the point be rigidly con-
nected with the original particle.

This principle—which is a fundamental one of the
science of Statics—will hold whether we consider the particle
as isolated, or as a constituent element of a body of finite size;
and we shall find it of great use when we wish to transfer
the point of application of a force from one point to another
for convenience of calculation. We shall not think it neces-
sary in every case where the supposition is required, to state
that the system is supposed to be rigidly connected, but in
any instance where this is not done the student will under-
stand it to be so.

13. As an illustration of the above principle we may
give the following. If a weight be supported by
the hand by mecans of a string, the effort which the 4
hand must exert will be the same whatever be the
length of the string (the weight of the string being "
neglected), i.e. whether the force, which the hand
exerts, be applied at 4, or B, or C, or any point in
the line of action of the force.

Obs. In this example the student will observe
that the connection between the points 4, B and the
weight is not a rigid one, and in general when tho
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force Q (fig. Art. 12), which we transfer from the point C to B,
acts as in the upper figure, i.e. tends to draw C towards B,
the connection between C and B need not be essentially rigid ;
but the two points may be otherwise connected, as, for instance,
by a fine inextensible thread; when however (as in the lower
figure) the force tends to thrust B towards C, the connection
must be & rigid one.

14. We have called the example above an tllustration,
and not a proof of the principle of Art. (12), for as this prin-
ciple has been enunciated with reference to a particle, and
since particles as syck cannot be subjected to experiment, it
would be vain to look for or expect a direct proof of this, or
in fact of any otlier physical law. The student must be pre-
pared to admit its truth as established by evidence similar to
that by which other physical laws are established.



CHAPTER II
OF FORCES ACTING IN ONE PLANE.

15. WHEN a system of forces acting on a particle at rest
is not in equilibrium, the particle will begin to move in some
definite direction, but a single force might be found of proper
intensity which when applied independently to the particle
and acting in the same direction would cause the particle to
move in cxactly the same manner; such a force is called the
gesultgnt of the system of forces; and the constituent forces
of the system, with reference to this resultant, are called
compmwnts

In other words, the single force which is capable of pro- -
ducing the same cffect on a particle or system of particles as
would result from the combined action of several other forces,
is called their resultant.

We do not enter into the question what the dynamlcal
effect might be if the system of forces were not in equi-

librium—but whatever it may be, the resultant is equivalent to
the components.

When a system of forces acting on a particle or body is
in equilibrium, the particle has
no tendency to motion, and the &
resultant is consequently nil.
Hence when a system of forces
(as P, Q, R,...)is in equilibrium, B
one of them (as P) may be regarded as counterbalancing the
combined action of all the rest, Q, R,S. It appears then that
the remainiug forces (Q, R, S) produce the same effect on the
particle as would result from a single force equal and oppOSité

P
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to P. We infer then, that when a system of forces acting on
a body is in equilibrium, any one of the forces is equal and
opposite to the resultant of all the rest.

Again, since the resultant of a system of forces in equi-
librium is nil, such a system of forces has no tendency to
excite or prevent motion; we may therefore (in any case
where we find it convenient) suppose such a system of forces
to be annihilated without altering the state of rest or motion
of the body upon which they act; or stating this principle
more generally, any system of equilibrated forces may be
applied to or withdrawn from a body without affecting its
state of rest or motion. The student, however, must bear
in mind the observation of Art. (18) whenever this principle
is employed in dealing with a system of bodies not in rigid
connection.

16. We now proceed to deduce the rules for the com-
position of forces, that is, to find the resultant of two or more
forces acting simultaneously; and it will then be easy to
agcertain the conditions of equilibrium of a system of forces,

‘We shall confine ourselves in the present chapter to the
discussion of forces acting in one plane. -

The case of forces acting in the same straight line has
been alréady considered in Art. 11.

When two forces P and @ are applied at the same point
A indirections inclinedto each other
at any angle whatever, it is easy to
see that some third force B properly
applied at the point 4 would con-
stitute an equilibrium with P and
@: for by virtue of the "combined o
action of P and ¢ the point 4
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tends to leave the position in which it is; but since it could
move in one direction only, it follows that if we apply a
proper force R in a direction contrary to this in which it would
move, the point could not move at all, i.e. would be at rest.
The three forces I, @, R acting on the point 4 would be in
equilibrium, and the force R is equal and opposite to the
resultant of the other two. Two forces then, whose lines of
action meet, have a resultant.

Again, it is obvious that this resultant must lie in the
plane which passes through the direc-
tions of the two components AP, 4Q; B, D
for no reason can be assigned in favour N
of this resultant lying in any propesed
position above the plane PAQ, which
would not bold with equal validity in
favour of the resultant being in a per-
fectly symmetrical position below the
same plane. :

Further, the resultant must lie within the interior angle
PAQ (<180° contained by the directions of the two forces,
for it is clear that the point 4 could not by the action of the
forces I, ¢) move in the plane PA@, on the side of AQ remote
from P and towards D; and similarly, it could not move on’
the side of AP remote from @ and towards B : consequently
1t could only move-within she angle PAQ, the direetion there-
fore of the resultant R must lie within this angle.

R

17.  There is one case in which we can see & priors what
will be the direction of the resultant: viz. when the two
forces P, @ are equal; it is clear in that case that the direc-
tion of the resultant bisects the angle between the direction
of the two component forces P, Q: for there is no reason



OF FORCES ACTING IN ONE PLANE, 15

why the resultant should make with one of the component
forces an angle different from that which it makes with the
other. ’

Obs. The student may remark that the conclusion of the
preceding article is based on reasoning ex absurdo: instances
will have come under his notice, in which the elementary
theorems of a.subject do not admit of a direct demonstration,
but he will regard the proof as equally valid though the
demonstration is indirect, The general principle involving
all such proofs is this: If under assigned circumstances, one
issue or conclusion and one only can result, and the arguments
in favour of two hypothetical issues or conclusions 4 and B
arc of cqual value, then that hypothetical issue must be the
true one in which the two hypotheses 4 and B coalesce.

18. We proceed to establish an important theorem which
enables us to determine the resultant of any two forces acting
at a point: the theorem is called the parallelogram of forces,
and'may be thus enunciated,

If two forces acting at a point be represented in magnitude
and direction by two straight lines drawn from that point, and
if a parallelogram be constructed having these two lines for
adjacent sides, then that diagonal of the parallelogram which
passes through the point of application of the forces will repre-
sent thew resultent in magnitude and direction.

That is, if the two forces P, Q-be
represented by AB, AC, and the
parallelogram BC be completed,
their resultant R wilk be represented .
by the diagonal AD. The same is
true if P, Q act at points E, F,
provided their directions meet in
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some point 4. We shall divide the proof of this proposition
into two parts; and

(i) To prove that the resultant acts in direction of the
diagonal, the forces being commensurable.

We have seen (Art. 17) that when the forces are equal
(AB=AC), their resultant bisects the angle between the
directions of the forces, and therefore acts along the diagonal
AD; that is, this first part of the proposition is true for
two equal forces.

Let us assume (a) for the present that it is also true for
two sets of forces P and @, P and
R—equal or unequal ;—we can then
prove that it is true for the forces
Pand Q+ R

Let P act at 4 in direction 4.5,
Q and R in direction 4 CE, and let
AB, AC represent P, @ in magnitude ; and since R may be
supposed to act at any point in the line ACEK which is
rigidly connected with 4, let R act at C, and let CE repre-
sent R. Complete the parallelograms BC, DE.

Then since by the hypothesis (a) the resultant T of P, Q
acts along AD, let them be replaced by their resultant, and
let this resultant be applied at D—which may be done with-
out altering its effect (Art. 12).

Now this resultant T acting at D may be decomposed into
two forces P, @, (equal respectively to £, @) acting at .D in
directions CD, D@ which are parallel to 4B, AC.

Let T be replaced by P, Q,, and let the point of appli-
cation of P, be removed to C and that of @, to G.

Again, P, and R acting at C' have a resultant acting in
direction CG; let them be replaced by this resultant, and let
its point of application be transferred to G

2 r
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{The student may suppose all the points 4, C, D, G,
rigidly connected together, Art. (12).}

‘We have thus shewn (on the hypothesis a) that the forces
P, Q, R which are applied at 4, may be supposed to be ap-
plied at G without altering their combined effect,—that is,
AG must be the direction of the resultant of P and @ + R in
any case in which the hypothesis () holds true.

But this hypotbesis is true when P, Q, R are each equal
to any the same force f,—therefore the conclusion is true for
two forces f and 2f, and again, (making Q=2f, R=f, P=f),
it is true for £ and 3f,—and so by induction it is true for ¥
and mf. Again, putting P =mf, Q = R=f, our conclusion is
true for two forces mf, and 2f, and again for mf, and 3/, and
generally for mf and nf:—if m, n be any integers whatever.

Now any two commensurable forces may, by assigning a
proper value to f, be expressed by mf, nf.

Hence proposition (i) is proved.

" 19. (it) To prove that the resultant acts in direction
of the diagonal, if the forces are incommensurable.

Let AB, AC represent two such forces. Complete the
parallelogram BC, and if 4D be not
the direction of the resultant, let it %
be some other line, (4V suppese).
Let A be divided into an integral ,
number of equal parts each less 7% —%
than DV,—which is always pos-
sible; and mark off from C'D portions equal to these,—the
last division £ clearly falling between D and V. Complete
the parallelogram CF,—then the resultant of AC, AF will
be in direction AZ, and we may suppese this resultant to
be substituted for them,
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The resultant .then of AC and AB is equivalent to the
resultant of some force in direction AE, together with FB
which acts along AB: and this resultant must lie within the
angle BAE. But by hypothesis it acts in direction AV,
wnthout the same angle,—which is absurd.

In like manner it may be shewn that no direction but A.D
can be that of the resultant of the forces AB, AC. The
theorem is therefore completely proved so far as the direction
of the resultant is concerned:

It will be easy now to prove that

20. (i) The diagonal represents the magnitude of the
resultant.

Let AB, AC be the directions of the given forces, AD
that of their resultant: in DA pro-
duced take AE of such a length as to
represent the magnitude of the result-
ant, Then the forces represented by
AB, AC, AFE balance each other.
Complete the parallelograms BE, BC':
then AF will be the direction of the
resultant of AB, AE, and therefore
since each of the three forces AB, AC,
AE is equal and opposite to the re-
sultant of the other two,~—AC, AF are in one straight line.
Hence FD is a parallelogram, and .. AE=FB=AD; ie.
the resultant of 4B, AC is represented in magnitude as well
a8 in direction by AD the diagonal of the parallelogram. '

21. The theorem which we have just préve;i is of so -
much importance that it may fairly be considered the fun-
damental proposition of Statics. It was enunciated in its
present form by Sir Isaac Newton, and Varignon the celebrated
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mathematician, in the year 1687,—probably independently
of each other: since that time various proofs of it have been
given by different mathematicians, several of which have
been reviewed by Jacobi.

The proof given above is due to M. Duchayla.

Several very interesting theorems can be readily deduced
from the parallelogram of forces: the first we shall give,
called the triangle of forces, was announced in the year 1586
by Stevinus of Bruges, without any strict proof of it.

22. The Tmangle of Forces. If three forces acting at a
potnt be represented in magnitude and direction by the mdes{
of a triangle tuken in order, they will be in equilibrium. {

Let A BC be the triangle whose sides taken in order re-
present in direction and magnitude
three forces applied at any point, \
(4 supypose).

* Gomplete the parallelogram BD. \,___

Then the forces 4B, BC applied 2
at A are expressed by AB, AD—(since AD is equal and
parallel to BC).

But the resultant of AB, AD is a force represented
by AC.

Therefore the three forces represented by AB, BC, CA,
all applied at 4, are equivalent to 4C, CA, which will
clearly balance one another.

Therefore: thé three forces represented by 4B, BC, CA4,
applied at any point 4, will be in equilibrium.

The converse of this is also true, viz. If three forces acting
at a point balance one anotber, and any triangle be constructed

(5] [~}

B

¢



20 OF FORCES ACTING IN ONE PLANE.

having its sides parallel to the directions of the forces, the
sides of the triangle will be proportional to the forces,

Let P, Q, R be three such forces
acting at any point 4, and let 4B,
AD, represent P, ¢, then will the
diagonal U4 of the parallelogram
DD represent R.

And if A’'B'(C be any triangle
whose sides arc parallel to the sides
of ABC, we shall have by similar
triangles:

AB :BC :CA'=AB:BC:04
=P:Q:R

23. From the parallelogram of forces we can easily de-
duce the following theorem first stated by Lami, in 1687.

If three forces acting at a point are in equilibrium, each
Sorce is proportional to the sine of the angle contained between
the directions of the remaining two.

For referring to the fig. of Art. (20), if P, @, R, the three
forces, be represented by A B, AC, AE, and the parallelogram
BC be completed, since AE=AD, we have

P:Q:R=AB:AC:AD=CD:AC:DA
=sin DAC : sin ADC :sin ACD.

But sin DAC=sin QAR,

sin ADC =sin DAB=sin PAR,
sin ACD=sin DCQ =sin PAQ;

S P:Q: R=sin QAR : sin PAR :sin PAQ......(a);

or, we may express these relations in the form
P Q@ ' R
(sin @, B) sin (R, P) &n(P, Q)
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(@, R) meaning the angle (<180°) included between the
directions of @ and R,—and so of (R, P), (P, Q).

We can readily obtain the equivalent formule
P=@Q+ R +2QRcos (@, R)
Q=R+ P*+2RP cos (R, P)
R'=P'+ ¢ +2PQcos (P, Q),

by which any one-of the three forces P, @, R is expressed in
terms of the other two and the angle between them.

24. The student will observe that this result is still true
if the direction of any one of the forces be exactly reversed;
for example, it would hold if we took a force R’ (= R) repre-
sented by A1) instead of A E, for we should then have

P:Q:R=sinRAQ :sin PAR :s8in PAQ,
but the three forces P, @, R, would not be in equilibrium;

in fact, the resultant of P, @, being R, the resultant of the
thrge would be 2R’.

Hence the converse of the theorem of this Article is not
true without some additional condition,—such as that each
force lies without the angle (<) formed by the other two.

The student however will have no difficulty in proving
the following:

If"each of three forces acting at a point be proportional
to the sine of the angle between the directions of the other
two, either the three forces are in equilibrium, or they have
a resultant double of some one of the forces.

25. We may now give a theorem which is an extension
of that contained in Art. 22, and is called the Polygon of
Forces. '



22 OF FORCES ACTING IN ONE PLANE.

. Polygon of Forces. If any number of forces acting at a
point be represented in magnitude and direction by the sides
of a polygon taken in order, they will be in equilibrium.

If the forces be represented in magnitude and direction
by the sides of the polygon 4 BCDE,
joining AC, AD we see that forces
represented by 4B, BC acting at 4
are equivalent to a force AC, which
may therefore replace them. Again,
AC, CD acting at A are equivalent
to AD; ie AD is equivalent to
forces AB, BC, CD all acting at 4. Again, AD, DE are
equivalent to AE; and therefore AD, DE, EA will balance.
(Art. 22))

Hence the forces represented by AB, BC, CD, DE, EA
will be in equilibrium. Q.E.D.

The same mode of proof will hold whatever be the num-
ber of the forces, and the student will observe that there is
no necessity for all the forces to be in the same plane:—the
polygon whose sides represent the forces may have re-enter-
ing angles, or some of its sides may intersect each other.
The only condition is that the polygon must be a closed one.

By drawing a line parallel to one of the sides of the
polygon, as BC, we might form a new polygon whose sides
are parallel to those of the former, but the sides of the two
polygons are not in the same proportion.

Hence the converse of the proposition of this Amcle is
not necessarily true.

26. Cor. From the proposition of the previous Article
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we can obtain at once a theorem given by Leibnitz for de-
termining geometrically the resultant of any number of forces
acting at a point.

From any point 4 draw a straight line AB to represent
one of the forces in magnitude and direction; from the ex-
tremity B draw BC to represent the next force; from C
draw CD to represent the third force, and 8o on; and let B
be the extremity of the line representing the last force.

Then if E coincide with 4 the resultant is n:l, and the
forces are in equilibrium; but if not, 4E will represent the
resultant in magnitude and direction. The student will
easily deduce this from the preceding Article.

27. We have seen in Article (18), that if BC be a paral-
lelogram, the two forces 4B, AC acting
at a point 4 are equivalent to a single force £ ?
AD acting at the same point ; which single Z
force might be substituted for the two
component forces: vice versd if a line 4D
represent a force, and any parallelogram as BC be con-
structed having AD for a diagonal, the single force AD may
be replaced by two forces represented by 4B, AC, i.e. AD
may be resolved into two forces AB, AC.

Also, since the number of parallélograms which can be
constructed with 4D as diagonal is unlimited, it follows that
a single force can be resolved into two others equivalent to
1t in an unlimited number of ways.

Further, each of the forces AB, A C, may be resolved into
two others, in a way similar to that by which 4D was re-
solved into two, and so on to any extent; so that we arrive
at the conclusion that a single force may be resolved into any

4 B
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pumber of forces we plps
aivlgyigabo ot
e sides of the triangle ADB in which

BD = A(C we readily obtain

sin CAD
AB=AD - sin BAC’

sin BAD
AC=BD= AD SBACS

or if AD represents a force R, we conclude that a force R
acting in a direction 4D is equivalent to the two forces

sin CAD .
R sin BAT in direction 4B, = P (suppose),
sin BAD
R S BAC AC=Q
Hence if we put BAC=a, BAD =8, CAD =1, we have
p=RURY g,
“Vsina’ T “sina’

and R*=P*+ Q"+ 2PQcos @,

formulas which enable us to find the resultant of two forces,
or to resolve a single force into two others.

N.B. We shall hereafter meet with instances of the
resolution of one force into two others equivalent to it ; per-
haps the most frequent case which occurs, is when the angle
CAB=90", or the parallelogram becomes a rectangle: in
this case a force P acting in direction 4D is equivalent to
the two forces :

P cos DAB in direction 4
and Pcos DAC............... Ag’} )
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28. We may now proceed

To find the resultant of any number of forces acting in one
plane at a point.

We may proceed geometrically thus,

Let 4B, AC, AD,... represent the forces P, P, P’...
Take any two forces AB, AC,
complete the parallelogram BC;
and AQ, the resultant of P, P,
nmay be substituted for them.

Find the resultant of 4 @ and
AD (or P”) in a similar way;
then the three forces P, P, P”,
are equivalent to AR, and so on,
till the resultant of all the forces is obtained.

Or we may proceed thus by the
aid of trigonometry.

Through the point drawtwo lines

Aa, Ay at right angles to each other '
in the plane of the forces, and let /

the directions of P, P,... make an- P
gles a, o,... with Az v

Then since P, P,... are equiva- 4 <
lent to

Pcosa in direction of Az, and Psina in direction of Ay,

all the forces P, P,... are equivalent to
Pcosa+ P cosa’ +... in direction of Az,
Psina+Psina + .. ceevvniiininnnnnns Ay,
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Or as we may write it 2 (P cosa) in direction of Ax,
S (PSina) coovevrniinninnenn. Ay.
If then R be the resultant making an angle 6 with Az,
we must have Reos =3 (P cos a),
R sin 8 =3 (P sin a).
Whence B*= {3 (Pcosa)l* + {Z (P sina)}’...... @),

2 (Psina) -~
2 (P CO’S a) ............... (u) H

the results (1) and (ii) determine the magnitude and direction
of the resultant.

tan 8 =

Cor. 1. If the separate forces P, ... be resolved in
direction of their resultant R and perpendicular to it, the
algebraic sum of the former resolved parts will be = R, and of
the latter will be =

Cor. 2. If such a system of forces as is considered in this
Article is in equilibrium, the resultant must be zero; i.e. B=0;
and therefore {Z (Pcos a)}* + {% (P sin a)}* =0,

which requires that
2 (Pcosa)=0, and X (Psina) =0,

that is, the sum of the forces resolved in any two directions at
right angles to each other must be severa.lly zero.

29. To find the resultant of two forces whose directions
are parallel.

Let 4, B be any two points in the lings of mction of the two
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forces P, @, which act in the pa-
rallel directions AP, B Q.

At A apply any force 8 in di-
rection BAS, and at B apply an
equal force S’ in the direction
ABS’, — this will not modify
the combined action of the other
furces,

Now S, P acting at 4, are equivalent to a single force R,
acting in some direction AR,

And §', @ acting at B, are equivalent to a single force R,
acting in some direction BR,.

Let these two pairs of forces be replaced by R, R, whose
directions will meet in some point O; let the points of appli-
cation of B, R, be transferred to O.

Draw OCR parallel to AP or BQ, and SOS’ parallel to AB

Now let R, acting at O be resolved into two components
ix directions OS and OC, which will clearly be S and P, and
let B, acting at O be resolved into two components in direc-
tions OS’ and OC, which will be §" and Q. .

Then S and 8’ being equal in magnitude and opposite in
direction, will balance each other, and may therefore be
rewoved, and there remain P and Q acting at O in the
line OCR.

Hence, if R be the resultant of Pand Q,

Again, in the triangle ACO, the sides are proportional to
S, P, R, and in the triangle BCO the sides are proportional
to 8, Q, R,. Hence
P_0C S’ _BC

3=do g =00
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therefore multiplying together, and remembering that §=S",
we get
P _BC .
-Q~ = Z—C ..................... (ll).
Hence the point C in the line 4B, through which the re-
sultant acts parallel to each of the forces, divides the line A B
into segments which are inversely proportional to the forces.

(1) and (i) determine the resultant completely.

v/ 80. Ifthe two forces act in opposite directions the method
is very similar: the point C lies

-outside AB;

and R=P - @ ......... (iis),
P_BC .
Qg Ao (iv).

It will be observed that (ili)
and (iv) are the same as (i) and
(i1), if the sign of @ be changed,
80 that algebraically (i) and (ii) comprise both cases.

Note. When P and @ act in opposite directions, the
resultant R will act in the direction of the greater of the two
forces. The figure is drawn representing @ > P, so that R
is algebraically negative.

Cor. 1. The position of the point C does not depend
upon the direction of the forces. Hence if the directions of
the forces be turned through any the same angles in the same
direction about the points A, B, the position of C will not be
changed. :

Coz. 2. In the case of Art. 30, we bave from (iv),

P _ BO AB

=1-%2

QT 4v 4c’
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480, or 4C=c0, and R=0.

A system of two equal forces acting in opposite directions
and not at the same point is called a couple;—and the
results =0, and AC= o with reference to such a system
indicate that a couple cannot be replaced by any single finite
furce acting at a finite distance.

If now P=¢@, we get“1

31, Moment of a Force.

The product of a force into the perpendicular distance of
its line of action from a fiven point is called the moment of the
Jorce with respect to the point, or the moment of the force about
the point.

If an awis be drawn through the point at right angles to
the plane which contains the point and the direction of the
force, this product is called the moment of the force about
t{w azs.

Further, The moment of a force about any line is defined to
be the product of the resolved part of the force perpendicular
to the line into the perpendicular distance between the line
and the line of action of the force.—This perpendicular dis-
tance is the shortest distance between the two lines.

The’student will be careful to observe that the force and
distance here spoken of are ex-
pressed numerically in terms of
their respective umits; and the
moment consequently is the pro-
duct of two numerical quantities.
Thus if 4B represent a force P,
and O be any given point,—
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Op perpendicular to AB, and if m, n be the number of linear
units in 4 B, Op respectively, then will mn be the moment of P
about 0, or about an axis through O perpendicular to the plane
ABO, Also since the area of the triangle ABO=% AB. Op,
it is obvious that mn=twice the number of units of area in
the triangle ABO. We may then represent moments geo-
metrically by areas, and the moment of P about O would thus
be represented by twice the triangle ABO : the unit of moment
(i.e. the product of a unit of force into a unit of distance)
being represented geometrically by a unit of area,

Further, the force P would tend to twist the body on
which it acts in one direction or the reverse, according as O
is on one side of 4B or the other. We shall for convenience
consider the moment of a force negative or positive, according
a8 it tends to twist the body in the same direction as the
hands of a watch revolve, or the contrary.

If P, Q be two equal forces acting in parallel but oppo-
site directions—constituting a couple—if € be any point in
the plane of the forces, and CB4 be perpendicular to their
lines of action (fig. Art. 30), we have the moment of the
two forces about C=P. AC — @. BC=P. AB=a constant
quantity, 1. e. the moment of a couple is the same about any
point in the plane of the couple.

32. The following proposition is important.

The algebraic sum of the moments of two forces acting in
one plane about any point in the plane is equal to the moment
of their resultant.

When the forces are not parallel it admits of a simple
geometrical proof.
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Let 4B, AC represent the
two forces P, ), and complete the
parallelogram BC, and through [ %
the point O draw rOs parallel to
AC; then taking those moments

to be positive which tend to twist % § S
a body in a direction opposite
to that of the hands of a watch,

sum of moments of P and Q about O.
=2A40C—-2AAB0O
= parallelogram Cr-—2A4 B0
= parallelogram BC — parallelogram rD — 2A4 BO
=2 (AABD —~ ABOD—-AABO)
=2AA4A0D
=moment of R, the resultant of P and Q.

The above construction will apply if the point O lie within
the angle BAC, or the vertically o
opposite angle. If O lie within
either of the supplemental angles of . > \\ B
BAC, a8 in fig. 2, draw Ors paral- :
lel to AC, then

sum of moments of P, Q about 0 ¢ D'
=2040C+2040B A N
= parallelogram Cr+2AA40B
= pardllelogram CB — parallelogram Bs + 2AA0B
=2(AABD+AAO0B—ABOD)=2AA4A0D
=moment of R, the resultant of P and Q.

33, It remains to prove the proposition for two parallel
forces.



s

32 * OF FORCES ACTING IN ONE PLANE.

Let A, B be two points through

which the forces P, @ act, C a

point in the line AB through which
the resultant I passes.

Take any point O and through
it draw Obca at right angles to
the directions of the forces; then
since the ;resultant of P, @ passcs

through C,
P.AC=Q.BC,
and .". P.ac=Q. bc; ¢ 4

when the forces P, @ act in the Jp
same directions (fig. 1), we have
sum of the moments of P, @ about the point O
=Q.0b+P.0a
=Q (Oc—be) + P (Oc + ac)
=(Q+P)0c ‘. Q.be=P.ac
=R. Oc )
=moment of the resultant about 0. QE.D.
* If the forces act in opposite directions (fig. 2), the student
will have little difficulty in proving that
Q. Oc—P. Oa=(Q~P). Ob,
which expresses the same proposition in this case,
Obs. The point O has been taken in such a position that

the moment of the resultant is in each case positive. The
proposition is readily proved for any other position of O,

Cor. 1. If the point O be taken anywhere in the line of
action of the resultant R, the moment of R vanishes, and
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we conclude that

The moments of two forces about any point in the line
of action of their resultant are equal in magnitude and op-
postte in direction.

This result which is required in discussing the equilibrium
of a lever (Art. 89, sce also Art. 36) is an important one: it
can be very readily proved directly from the parallelogram
of forces—thus .

If AP, AQ be the directions 4 »
of two forces, AR that of their ™
resultant: D any point in AL,
If the parallelogram ApDg be
completed, it is clear that Ap,
Aq are proportional to P, Q.
And the moments of P and @ about D (tendznq in opposite
directions) are measured by the doubles of the triangles ApD,
AgD which are obviously equal to each other.

\ If the directions of P and Q are parallel the same result
follows from Arts. (29, 30).

Cor. 2. We can readily extend the proposition of
Art. (32) to any number of forces in one plane. For since the
sum of the moments of two forces is equal to the moment of
their resultant, we may substitute the resultant for the two
forces; we may now combine this resultant with a third, and
suppose them replaced by their resultant, and so on whatever
be the number of forces. Hence

The moment of the resultant of any number of forces in one
plane, taken with respect to any point in that plane, is equal
to the algebraic sum of the moments of the several forces with
respect to the sume point. '

P M 3
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When the moment of the resultant vanishes, we conclude
cither that the resultant is nil, or that the resultant passes
through the point with respect to which the moments are
taken.

34.  The sum of the moments of two parallel forces about
any line at right angles to their direction, is equal to the moment
of their resultant about the same line.

Let Opgq be any line in the plane of the paper—and let
R be the resultant of two

parallel forces 2°, Q, acting Q
perpendicular to this plane, p/T'L/
—their directions meeting e
it in the points B, P, Q. =i,

Draw Pp, Br, Qg per-
pendicular to Opg—then if the line Opg is parallel to PQ,
these perpendiculars are equal, and—since R = P 4+ @—the
moment of K about pg is equal to the sum of the moments
of P and Q.

But if Opgq is not parallel to PQ, let them meet in O—
then taking moments about O,

R.OR=P.0P+Q.0Q;
but by similar triangles,
B _Pp_Qq
OR™ 0P 0Q’

whence we get

R.Br=P.Pp+@Q.Qq,
which proves the proposition.

Obs, The proposition may easily be extended to any
number of parallel forces,
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35. Let two forces P, @ act in one plane at points
A, B of a rigid body, and let @ be a fixed point of the body
about which it might turn freely;
if the two forces P, Q balance about
0, the force arising from the re-
action of the fixed point (which of
course passes through the point)
must with P, @ constitute a system
of forces at equilibrium: in other
words, the reaction of the fixed point
is equal and opposite to the resultant of P’ and @.

If p, ¢ be the perpendiculars from O on the lines of action
of P and ¢, we have, since the moments of P, Q about O
must be equal and of opposite tendency, P.p=Q.q.
And the pressure on the fixed point O
= (P + @ + 2P Qcos PCQ).
Such a fized point as O is commonly called a fulerum;
tAe #igid body, whatever be its form, is called a lever.

Cor. If more than two forces act on the body in one
plane, and balance about a fixed point or fulcrum O, the
resultant of the forces must pass through O, and the algebraic
sum of the moments of the forces about O must be zero; or in
other words the sum of the moments of the forces which tend
to turn the body in one direction about 0, must be equal to
the sum,of the moments which tend to turn the body in the
contrary direction.

36. Further, any point of a body at rest under the action
of any forces may be regarded hypothetically as a fulerum:
for since the body is at rest, no point of it has a tendency to
move; we shall not therefore disturb its equilibrium or the

3—2
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relations between the forces by supposing any point we please
to be incapable of moving, i.e. by supposing it to be a fixed
fulerum.—Hence the sum of the moments of the forces about any
point whatever must be zero,—1f the forces be in equilibrium.

The principle of this article when applied to a rigid body
in equilibrium is frequently referred to as the principle of the
lever.

37. The theorem stated in Article (32) admits of the fol-
lowing simple analytical proof,—in the case of forces which
are not parallel,

Let AP, AQ be the directions of two forces P, @ whose
resultant R acts in direction A K. Let ©
0 be any point in the plane PAQ,
Join A0 and draw Op, Oq, Or per-
pendiculars to AP, 4Q, AR. If the 7
forces P, @ be resolved in direction of
AQ and at right angles to A0, the
sum of the parts resolved in the latter direction will

=P .sin PAO + §.sin QA40,

and R.sin RAO is the resolved part of B in the same direc-
tion ; hence from the nature of a resultant

P .sin PAO + Q.sin QA0 =R.sin RA40.
Multiply each term of this equation by 40, then
P.AOsin PAO+Q.A0sin QAO=R. AOsin RAO,
or P.Op+Q.0g=1R.0r;

a result which expresses that the sum of the moments of two
Jorces about any point in the plane in which they act s equal
to the moment of their resultant about the same point.

A J3 _'P 3
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38. 'We are now in a position

To find the conditions of equilibrium of a system of forces
acting in one plane,

We have seen (Art. 32) that the sum of the moments of
a system of forces in one plane about any point is equal to
the moment of their resultant. Hence if the sum of the
moments of the forces about any proposed point 4 be zero,
either the resultant is zero or the direction of it passes through
A. Again, if the sum of the moments about another point B
be zero, the resultant, if there be any, must pass throngh B;
i.e. it must act in the line AB. If, further, the sum of the
moments of the forces about a third point €' (not lying in the
linc AB) be also zero, it would follow that the resultant, if
any, would act in cach of the lines AC and BC, which is
absurd. Hence the resultant must be zero, and consequently
the system of forces in equilibrium. The conditions of equi-
librium then of a system of forces acting in one plane on a
vigid body or system are these three: “ The sums of the moments
8f the forces taken with respect to three points in the plane (but
not lying in one straight line) must be severally zero.”

Obs. There are then three and only three mechanical
conditions for the equilibrium of a system of forces acting
in one plane.

39. The conditions of equilibrium obtained in the pre-

ceding Article may beex- (¥ YW e
pressedanalytically some-

what differently as fol- OT:Lﬁ
lows: ;

Let the system of :
forces be referred to two | : Co x
lines Az, Ay, at right
angles to one another in the plane of the forces,
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Let O be the point of application of any one of the forces
P, and let P be resolved into two components X, Y, in
directions parallel to Az, 4y respectively.

If x, y be co-ordinates of O, and a, b of any point B, the
moment of P about B

=@—a)Y—(y—0b)X.

And if similar expressions be taken for each of the
forces of the system,
the sum of the moments about B

=2 {x—a) Y —(y=b)X}.ccerrnnnns (i).

Similarly, if @', J" be co-ordinates of €, another point

sum of moments about ¢/

=2{z-a)Y-(y=-0)X}......... (i1),
and sum of moments about A
=3@Y —yX)iriiiiiii (iii).

Now if A, B, € be threc points not in a straight line,
the conditions of equilibrium are that (i), (it), (iii), must be

severally zero;
S5 @Y—yX)=0...... (iv),

S{e=a) Y= (g =B)X} =0 ... (¥),

S (@—d) ¥ = ()X} =0...... (vi),
(iv) and (v) combined, give a2} — 33X =0,
(iv) and (vi).eeooieinninnnnn. a2V - b3X =0,

from these latter two we get (since > is not = I_?’ ,—the
o
points 4, B, C not being in one line),
3 X=0,3Y= 0,
which with (a),
(@Y —-yX)=0,
are the conditions of equilibrium;
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or we may interpret (z) as follows:

In order that the forces may be in equilibrium, the sums
of the resolved parts of the forces in two directions ai right
angles to each other must severally be zero, and the sum of the
moments about some one pornt must be zero also.

40. The conditions (a) of the preceding article, might
have been obtained directly from (i) by the consideration that
if the system is in equilibrium, the resultant is zero, and
therefore the sum of the moments about any and every point
must =0, i.e, the expression

2{(—a) Y= (y-b) X}
must = 0 for any and every value of a, b—which can only
be satisfied by having each of the conditions of (a) satisfied.

Cor. 1. 'We may further interpret the equations of con-
dition (a) thus,—2X =0, 3Y =0, indicate that the body
must have no tendency to move parallel to itself, (i.e. without
fotation) in direction of Az or Ay respectively, and the con-
dition 3 (¥ — yX) = 0 indicates that it must have no tend-
ency to twist about the point A. That is, there must be no
tendency to any motion of translation or rotation. ‘

Cor. 2. If the system of forces be not in equilibrium,
and a, b be co-ordinates of any point in the line of action of
the resultant R, we must have

’ S{@—a)Y—~(y—0) X} =0;
and regarding a, b as current co-ordinates, this will be the
equation to the line of action of R, or if we use ', 3 instead
of a, b in accordance with the usual notation, we may arrange
the equation (i) in the form
ZZY —y3X =3 (2¥Y — yX).
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If ¢ be the angle which R makes with Az, we should
easily gt =~ Rcos¢p=3(X), Rsing=23 (),
and therefore B* = (2X)*+ (1)

41. General Remarks.

Before closing this chapter, we may make a few remarks
which may be some guide to the student in applying the
principles and results of this chapter to the solution of
problems.

The forces which affect a body's state of equilibrium
must arise from some agent external to the body, such as
(1) the tension of a string attached to a particular point of
the body; (ii) the action of a rod in contact with the body,
and which may be a pulling or a thrusting action; (iii) the
pressurc arising from some other body in contact with it
cither at a point or over a finite surface; (iv) the attractive
or repulsive force exercised by some external agent, and
which may be conceived as acting like the tension of a string
or the thrusting of a rod. '

42. L Mutual Pressure of smooth and rough Surfaces.

If two bodies be in free contact at one point C, there is a
mutual action between them, the direction
of which passes through that point. Draw
- the common tangent plane at C.

Then, (i) if the surfaces be smooth, they
can exercise né tangential action on each
other; the mutual force between them must
therefore in this case be in the common
normal, and the pressure on each body wili
tend within the body; for instance, the body
A will exert a force on B in direction CB and wice versd.

i
i
ir
P
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(ii) If the surfaces be rough, the mutual pressure between
the surfaces may be resolved into two, P and F, one in the
direction of the normal, and the other in the tangent plane;
the latter is counteracted by the tangential force brought into
play by the roughness of the surfaces; each of these com-
ponent forces (normal and tangential) which act on one body
are severally equal and opposite to the corresponding forces
acting on the other body.

If the full amount of friction which the roughness of the
surfaces can give rise to is brought into exercise, then, as
will be seen in Chap. I1L. (to which the student is referred),
F=ul’,— u being some quantity found by experiment; and
the direction in which the friction acts in the tangent plane is
exactly opposite to the direction in which the point C would
tend to slide if the surfaces were for an instant supposed
smooth ; of course the full amount of force which the rough-
ness of the surfaces is capable of exercising will not in every
case be brought into action ; no more, in fact, will be exercised
than®is necessary to prevent a tangential sliding motion.

II. The same principles apply
in the case of a rod in free contact

with a smooth or rough surface. 4

If a rod be connected by a free F F
compass-joint or hinge with another
rod (or with a body), there will be a P

force exércised on each rod equal in
magnitude and opposite in direction.

If we wish to find the magnitude
and direction of this mutual reaction,
we must assume some unknown force
R acting in an unknown direction,
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and obtain equations for determining them by taking the
conditions of equilibrium of each rod. It will not unfre-
quently be the case, however, that the symmetry of the parts
of the system will enable us to assign at once the direction
or magnitude of R, or both.

43. IIL Tension of Strings.

If we consider a string as a line of consecutive particles,
the force which binds successive particles of the string toge-
ther is called the tension, and since each particle of the string
is urged in opposite directions by the forces which the con-
secutive particles on either side of it exercise upon it, these
forces must be equal and opposite; t.e. on each element of
the string there are two temsions, equal and opposite. If
we negleet the weight of the string, the tension at all points
of the same rectilinear portion is the
same: for if 4, B be any two points 4 By
of the string AB, it is obvious that
the tensions at 4 and B must be equal, otherwise the strmg
" would move.

(i) Also the tension of the string is not altered if it pass
over a smooth surface ; for let pq be
a small element of the string on
the smooth surface,—pq may be re-
garded as a small arc of the circle
of curvature at the middle point of
pq, and we may consider pg as &
rigid body kept in equilibrium by 7 ’
the tensions ¢, t' at p, ¢ acting along
the tangents pt, gt, and by the reaction of the surface R,
which acts along the line OR bisecting the angle pQg,—since
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the arc pq is symmetrical with respect to OR, and the re-
sultant pressure of the surface will therefore act along OR.

Since then ¢, ¢/, R are three forces in equilibrium, we get
by resolving them perpendicular to OR

tcospOR=¢ cos qOR; butqOR=pOR, ..t=t;
i.e. the tension at successive elementary distances is the.
same, and therefore it is so at finite distances. Hence if
the string be pulled by forces T, 7" at its two ends, we must
have T = T" = tension at any intermediate point.

A stricter proof of this result will be given hereafter,
Arts. (65, 66). .

(i) If a string pass over a rough surface, the tension at
successive points will not be the same.

If P, @ be the tensions at the extremities of a string which
passes in one plane over a rough curve or surface, and the
string be on the point of motion in the direction in which
P acts, then P = (Qe*¢: where p =coefficient of friction (see
chapter on Friction) and ¢ is the circular measure of the
angle included between the normals to the curve at the points
where the string quits the curve. Art. (66).

(i) Mlastic strings. If an elastic string whose natural
or unstretched length is ! be stretched to a length ' by the
action of a tension ¢ which is uniform throughout the length
of the string, it is found by experiment that the extension
' -1 is proportional to the natural length /, and also to the
tension £, 80 that

I -lx lt=?; say
. ]
or I'=1(1+ Y,
€

where e—which is called the modwlus of elasticity of the
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string—is some quantity depending upon the nature of each
particular string. If ¢=s¢, then I'=2, i.c. if the string be
subject to a tension equal to the modulus of elasticity, it will
be stretched to twice its natural length.

N.B. In all the above cases the weight of the string is
neglected.

44. When a system of bodies is at equilibrium under the
action of any forces, no part of the system has any tendency
to move; and we shall not affect the statical condition of the
system, if we suppose any part or parts of the system to be
deprived of the power of motion; as, for example, by sup-
posing a body in contact with others to be rigidly attached
to them. In accordance with this principle, which is of
frequent and useful application, when we are considering the
equilibrium of any system, or part of a system of bodies, we
may suppose the portion under consideration to be rigid;
which supposition will enable us to lay out of account all
mutual forces within the system. As an illustration of the
application of this principle, sup- .
pose a system of bodies 4, B, C, D
kept at rest under the operation of
a known system of forces; in con-
sidering the equilibrium of the
body ¢ (for example) we may re-
gard the rest A4, B, D as rigidly
connected together, go that we thus avoid the introduction of
the mutual pressures between 4 and D, and B and D.

Again, if a string passes round a surface B, quitting it at
the points V, 7', we may suppose the string to be attached to
the body B at the points ¥, T, which is equivalent to sup-
posing that the portion of the string in contact with the body
is rigid and rigidly atiached to the body.




EQUILIBRIUM OF THREE FORCES. 45

45. The case of a body kept in equilibrium by three
forces acting in one plane is of so frequent occurrence as to
deserve special notice,

The conditions of equilibrium of a body kept at rest by
three forces P, @, R in one plane may be stated thus:

1. If their directions are paralleli—

(i) Their algebraic sum must be zero, or

BR=P+Q, Art. (29).

. y;

(i) The moments of any two e T{' la
of the forces about a point in the = :
line of action of the third must be o Y

equal and of opposite tendency, or
P.AC=Q.BC, or P.AB=R.BC, or R.AC=Q.AB,
which are all equivalent to one another, Art. 83, Cor. 1.

II.  If their directions are not parallel :—
(i} Their lines of action must meet in a point, Art. (22).
(i1) ZXach force is proportional to
the sine of the angle between the other
two, the direction of each force lying
without the angle formed by the other c
two, Art, (23).
For this latter condition we may
substitute the following ; viz. each force
is equal #nd opposite to the resultant 2 0
of the other two,

{for example R =4/ (P + Q"+ 2PQ cos PCQ)}.
Cor. In each case I. and II. we have three, and only three

conditions from mechanical considerations., In I. the forces
are parallel, which with (i) and (ii) constitute the three con-
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ditions. 1In case II, (i) gives one condition, and (ii) two in-
dependent conditions; three in all. If in any problem more
than three quantities have to be determined, the subsidiary
equations of condition must be sought for from geometrical
considerations ; and whenever the weight of a body is one of
the forces to be taken into account it must always be sup-
posed to act in a vertical line passing through the centre of
gravity of the body. (See Chap. V.)

If more than three forces act on the body in one plane,
the conditions of equilibrium given in Art. (38) or the
equivalent forins given in Art. (39), will furnish all the re-
quisitc mechanical equations. Geometrical relations as stated
above must furnish any additional data reguired.

These considerations would equally apply in the case of
the preceding Article when only three forces act, and may be
used by the student instead of them, at his discretion.

The following problems are worked out as examples :

14

46. I. To find the condition of equilibrium of a uniform
heavy rod, which is suspended by two strings attached to ts
ends, the strings being of given length and attached to the same

Jied pownt.

If AB be the rod, @ its middle point, AC, BC the two
strings attached to a fixed point C,
we have the rod kept in equilibrium
by three forces, viz. the tensions
(T, T') of the two strings and the
.weight of the rod which acts through
@ in a vertical line,

Since the two tensions act through
C, the third force must also pass through C, and therefore
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CG must be vertical; this determines geometrically the
position of the rod, and if we draw Gp parallel to AC, the
sides of the triangle CGp taken in order, are in the directions
of the three forces.

Hence, T:17":W=Gp :Cp: (4...... (2).

Since the triangle CGp is geometrically determinate, the
proportions (a) determine T, 1".

We may express T, T thus analytically,

Let ACG=a, BUCG =48, then a, 8 arec known quantities
since all the lines of the figure are of known length.

Then, T:7 :W=sinf :sina :sin (2 + B);

L sin 8 , sin a

TN My iy

47. II. Two spheres are supported by strings attached
to a given point, and rest against each other : find the tensions
of the strings.

Let 4, B be the two spheres, 7, 7" the tensions of the two
strings, W, W’ the weights of the spheres
which may be supposed to act through
their centres.

Then 'in considering the equilibrium
of 4, there are three forces acting on it,
viz. the tension of the string 7', the weight
W and the pressure at the point of contact
O: now the directions of the two latter
forces pass through A, hence the third
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does 80 also ; i.e. the direction of the string passes through
A, or CT4 is a straight line.

Similarly, C7"DB is a straight line.

Further, in counsidering the equilibrium of the whole, we
may regard A and B as forming one rigid body, Art. (44);
let (7 be the centre of gravity of the two spheres.

Hence, since the forces which keep the united mass of 4
and B at restare T, 7" and W+ W, of which the two former
pass through C, and the latter acts in a vertical line through
G, this vertical line must pass through C also, or CG must
be vertical, )

This determines the position of equilibrium geometrically,
and the tensions T and 7" might be found as in the last
problem : the only difference being that G is not neccssarily
the middle point of 4B.

If it be required to find the mutual pressure (P) between
the two spheres, we have by considering the equiljbrium’of
the three forces which pass through 4,

P:W=sinTAW :sin TAB
=sin ACG :sin TAB;

a known ratio, since ACG, TAB, are known or easily found.
Hence P is determined.

48. 1ILI. A heavy particle (weight W) is attached to the
nuddle point of a rod AB without weight, the ends of which rest
against two inclined planes at right angles to one another : the
vertical plane which passes through the rod being at right angles
to the line of intersection of the two planes. Find the position
of equilibrium of the rod, and the pressure on each plane.
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Let R, R’ be the pressures which the planes exert on the
rod at its ends A, B,
then the only forces
which act on the rod are
R, R and W, and there-
fore when the rod is in
a position of equilibrium '
these forces must satisfy
the conditions of equi-
librium of three forces in one plane. Art. (45), Case IL

Let the normals to the planes at 4, B meet in C, then
the vertical line through € must pass through W; and
therefore the diagomal CWO of the rectangle CO must be
vertical,

Hence a=8=<:TBO=<:WOB=7 —aq,

* Also,
R:R s W=sin RCW :sin RCW : sin RCR

=sina: cosa : 1.
Since ECW=m —aq, RCW=g+a, R’CR=22Z;

whenoce R= Wsina, B = Weosad...ccocoruvnnnsnnn (i1).
(i) and (ii) express the complete solution.

Ifa {g , i.e. if OB be that plane which is least inclined

to the horizon, @ assumes a negative value, which indicates

that the rod is inclined in the other direction to the horizon.

49. IV. A4 rectangular picture-frame is suspended by a

string attached to the ends of one side of the frame, the string

‘passing over & smooth peg; determine the position of equilibrium.
P M. 4
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Let C be the peg over which the string ACB passes
freely ; we may suppose the weight,
of the frame to act at @, the point
where the diagonals intersect, and
which is the centre of gravity of the
frame. Then the forces which must
be in equilibrium are the weight W
which acts in thevertical line through
G, and the tensions which act on the
frame at 4, B in directions AC, BC,
hence the vertical line through ¢ must pass through C;
i.e, CG must be vertical.  Also, since the peg is smooth, the
tension of the string is the same throughout its length.

Since then of the three forces in equilibrium whose diree-
tions pass through C, two of them, viz. the tensions at 4, B,
are equal in magnitude, the direction of the third CG must
bisect the angle ACB. The problem then is reduced to the
following geometrical one. Y

To determine the position of the string ACH of given
length in order that the line C@,
passing through G a given point in
the frame, may bisect the angle
ACB. We may construct it geo-
metrically thus,—with A4, B as foci
describe an ellipse whose major axis
equals ACB; also describe a circle
round the triangle ABG. The
points of intersection of this ellipse
and circle (C and C') will determine
the point C of the string, which b
must coincide with the peg; for the arcs 4@, BG being
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equal, it is obvious that C@, C'G bisect the angles ACB,
AC'B, respectively.—There is a third position of equilibrium,
viz. when the string is in the position A C”B, C” being the
extremity of the minor axis of the ellipse,—for in this case
also C” @ bisects the angle AC"'B.

It appears then, that if the circle and ellipse intersect,
there are three positions of equilibrium. But if they do not
intersect, O, C" have no existence, and there is only one
position of equilibrium. The condition that there may be
three positions of equilibrium is that the two curves may
intersect ; i.e. the length of string must be <2 chord AT.
If AB=a, AD=c, the condition becomes

l<a V(@) .
4

50. V. The determination of the action of a hinge or
joint is well illustrated in the following problem.

Three rods, forming a triangle, are connected by free joints
or hinges at thevr extrematies, and the system is at equilibrium
when certain forces are applied perpendicularly to the rods at
their middle points—shew that

(i) the force applied to any rod is proportional to the
length of the rod ;

(i) *the strain at each angular point 8 the same, and
acts in the direction of a tangent to the circle circumscribing
the triangle ;

(iii) the strain is proportional to the radius of the circle.

(i) Since the mutual action at any one of the hinges
42
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will be equal in magnitude
and opposite in direction
upon the two rods which
meet at that hinge—the
strains of the hinges may
be left out of considera-
tion when we are consi- .
dering the conditions of /"_.-'
equilibrium of the three 4
rods as one system.

Now the directions of the forces P, @, B meet in O the
centre of the circumseribing cirele ;—and sinee P, @, B are
in equilibrium we must have

: Q: R=sinQOR : sin ROP : sin PO

=smAd:simB:sinC=a:b:c

which proves the first part of the problem.

(ii) Let us consider the couditions of equilibrium of gne
rod AD, and let S, T be the straing which the hinges at 4, I3
exert upon the rod 4B in directions making angles oy’ say,
with 4B respectively.

Since 4B is in equilibrium under the action of the three
forces 8, T, R, the dircctions of these forces must meet in a
point C’ suppose—and since I bisects 4 B at right angles we
easily infer that y= C'AB=(C'BA=+/, and 8§=T. Simi-
larly the strain at C is equal to 8 or 7—therefore the strain
at each angular point is the same.

Also the strains at 4, B make equal angles y with 4B,
similarly the strains at 4, C upon the rod AC make equal
angles—f say—with 4C; and the strains at B, C' equal
angles—a say—with BC.
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From the geometry we readily see that

a+B+C=m,
B+y+A=mand 4 + B+ C=m,
y+a+B=m,

Le+B+y=m,

and a=4, B=B, y=C;
and it follows that the direction of the strain at any hinge is
a tangent to the circumseribing circle. Hence the second
part. of the proposition is proved.
(iii) Since S at 4, and 8 at B balance R, we have
28siny =R or 28sin C=R,
but if » be the radius of the circumseribing circle

2r sin C=c¢;

Hence the strain at any hinge bears to any of the forces
P, Q, R the same ratio which the radius of the circumscrib-
ing circle bears to the side to which the force is applied—
which is the third part of the problem to be proved.

51. The following is an exercise on the parallelogram of
forces.

VI. Assuming the truth of the parallelogram of forces
(Art. 18) for the magnitude of the resultant, prove it also
for the direction of the resultant.

Let three forces P, Q, R acting in one plane at a point
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A be in equilibrium, and let them be
represented by AB, AC, AE respec-
tively.

Complete the parallelogram BC;
then by the assumption the diagonal
AD represents the resultant of P, ¢
in megnitude:—and since any one of
the three forces P, ), R is equal in
magnitude to the resultant of the other
two, it follows that AE = AD.

Complete the parallelogram BE; then AF represents the
resultant of P, I? in magnitude, and therefore AF = AC.

Hence BF, AD are equal, since they are each equal
to AE,

and AF, BD are equal, since they are each equal
to AC,

that is, the opposite sides of the quadrilateral AFBI} are
respectively equal to each other, and therefore AFBD is a
parallelogram.

Hence 4D, AE being each parallel to BF are in the
same straight line;—which proves the parallelogram of
forces for the direction of the resultant.



CHAPTER IIIL
OF FRICTION.

52. WHEN a heavy body rests on a plane horizontal
surface, on a table for example, and we wish to make it slide
along the surface, we encounter a resistance to this motion;
there exists between the particles of the body and the table
an adhesion which resists their separation, and this adhesion
is only overcome by applying to the body a force of traction
sufficiently great. This adhesive force is called friction, and
the magnitude of the force which is necessary to overcome
the resistance to motion will be a measure of the friction,

More generally, when one surface presses against another,
if the direction of this pressure be not normal to the surfaces
in contact, there will be a tendency of one surface to rub or
sltide over the other; and no sliding motion will ensue, unless
the resolved part of the pressure along the surface be sufficient
to overcome the friction. When a body is just on the point
of sliding, it is said to be in a state bordering on motion, and
the greatest amount of friction which the surfaces can exert
is then in operation. In other cases no more friction is called
into action than is just sufficient to balance the part of the
pressure resolved along the surface in contact.

In this point of view, friction may be called a self-ad-
justing force, since it adapts itself to the requirements of each
particular case; no more being called into operation than is
just necessary to prevent motion.
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53. If R be the normal pressure between two surfaces in
contact, F' the friction when the bodies are just on the point
of sliding over each other, i.e. the maximum friction which
2 is called the coeffi-
cient of friction, and is commonly designated by g :

80 that F=pul2.

the substances can exercise, the ratio

If in any particular case the full amount of friction which
the substances can excert is not called into action, the amount
of friction which is actually in operation is one of the unknown
forces which it is the object of the problem to determine.

54. The results of careful experimepts made with the
object of determining the laws of friction are thus given by
Coulomb, and M. Morin: viz.

(1)  When the substances in contact remain the same, the
Jriction varies as the pressure; i.e. p is the same for the
same substances, but will vary for different substaficés.
When the pressure is very great, it is found that the friction
is a little less than this law would give.

(i) So long as the mormal pressure between the surfuces
tn contact remains the same, the whole amount of friction is
independent of the extent of surface +n contact.

These two laws are true when the body is in a state bor-
dering on motion, and also when actually in motion; only
it is to be remarked that in the latter case the magnitude of
the friction is much less than in the former. If we call the
friction in the former case statical, and that in the latter
dynamical, we may express the above by saying that the coeffi-
ctents of dynamical and statical friction are severally constant
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for the same substances, but that the dynamical is less than
the statical.

It is also found:

(iii) That the friction is independent of the velocity when
the body s in motion.

This law belds goed only within moderate limits of ve-
locity—for very high velocities the friction is much less than
at ordinary velocities—and when the velocity is very small
the friction is sensibly diminished.

55. The friction betweerr two bodies will generally be
diminished by smearing them with some unctuous substance,
as oil, &c., and the friction when they are on the point of
moving, or what we may call the friction at starting, is pretty
nearly the same as during motion when the bodies are made
of hard material, like stone or metal. But in the case of com-
prgssible substances like wood, the friction at starting is very
(‘onmderablv greater than during motion. When two bodies
arc placed one upon the other, one of them at least being
compressible, the amount of friction at starting will partly
depend upon the length of time they have been in contact.
For wood sliding upon wood, the maximum friction is attained
after a contact of a few minutes; but for wood upon metal it
requires a much longer time, frequently several days for the
friction, to attain its maximum: but when it has attained
this, the friction at starting is not altered by any continued
duration of contact,

Further, it is found that rolling friction is much less than
sliding friction: for example, when a cylinder rolls on a plane,
or a cylindrical axis turns within a hollow socket (when there
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is simply a line in contact and not a finite area), the amount
of friction is much less than would be given by the above
laws (i) and (ii), for the same amount of pressure.

The fact that rolling friction is much less than sliding
Jriction is taken advantage of in various contrivances for faci-
litating the transport of heavy bodies;——thus for instance,
heavy blocks of stone or other material are often transported
by placing them on a platform beneath which rollers are
placed :—the wheels of carriages are examples of the same
principle,—the most delicate application of.which perhaps is
that of friction wheels, such as those employed in Atwood’s
Muachine (see Dynamics, Art. 82).

56. The values of u for different substances have been
determined by experiment, and arranged in tables; the follow-
ing may be taken as approximate results in many cases for
friction at starting:

wood upon wood {(without oil) u= "5,
..................... (with oil) p= 2 "
wood upon metal (without oil) p= "6,
..................... (with oil) p="12;
leather upon wood (without oil) p="63,
..................... (wetted with water) u=87;
metal upon metal (without oil) p="18,
................. (with oil) p="12.

When a cylinder of wood rolls upon wood so that there
is a single line of contact only, u = ilé;—-when the surface in

contact is a physical point the statical friction is inconsider-
able.
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57. To find the coefficient of friction between two sub-
stances practically.

Let A B be the plane surface of one substance, upon which

is placed a mass M N
of the other sub- e - /\_’\Z,L‘,B/B

stance with its plane 7R =

face in contact with

AB. If the plane

AB be horizontal, 4 = w ] c
no friction will be " T )

called into action, but if it be gradually inclined more and
more to the horizon till the body M is just on the point of
sliding down A4 B, then the full amount of friction between the
two substances is called into action and only just prevents M
from moving down the plane.

The forces which act upon M and balance each other are
W the weight of M, R the pressure of the plane AB upon M
nergal to 4B, and R the friction up the plane AD.

If ¢ be the angle which 4B makes with the horizon,
the conditions of equilibrium give—resolving along the plane
and perpeundicular to it,

Wsin ¢ = uR,

Wecos¢p= R;
whence tan ¢ = . Hence if ¢ be observed, the value of u is
known! The angle ¢ is commonly called the angle of
Sriction.

58. The above can only be regarded as an approximate
method of determining friction. For a complete account of
the refined contrivances which have been employed with this
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object, the student is referred to the memoirs of Coulomb and
M. Morin. An advanced student may also consult Jellett’s
Theory of Friction.

ixperiments have been made on a large scale by Stephen-
son, De Pambour and others for the purpose of determining
the dynamical friction on railroads-—by which the laws stated
in Art. (54) have been substantially confirmed. In some of
the more favorable cases detailed by Mr Nicholas Wood in
his Practical Treatise on Railroads the rolleng friction from
the contact of the wheels with the rails was about +y5th part
of the whole weight of the train,—and the friction at the axles
sbout as much moro—msking the total resistance to the
motion of the train arising frem friction to be about £3th part
of the load.—DBut the results of different experiments differ
considerably.

More recently experiments have been made by Captain
Douglus Gulton and others, to determine the friction on rail-
way carriages moving with high velocities. Some results of
these experiments are given in the Reports of the British
Association for the Advancement of Science for the years
1878 and 1879,
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CHAPTER 1V,

OF FORCES, THE DIRECTIONS OF WHICH MEET IN A
POINT—TENSION OF STRINGS ON SMOOTH AND
ROUGH SURFACES.

59. WE proceed to discuss the resultant and the con-
ditions of equilibrium of a system of forces whose directions
meet in a point, but which do not lie all in one plane.

60. TuroreM. If three forces, X, Y, Z, not in one plane,
be upplied at the same point O
(in space) and be represented by 1Z
the three lines OA, OB, OC, and ¢ przc
the parallelopiped OABCR be
completed, the resultant R of Py
these three forces will be repre- e
sented by the diagonal OR of this ¥y [
parallelopiped.

For the two forces X, ¥, which are represented by 04,
OB two sides of the parallelogram 04 G B, are equivalent to
a resultant P, which is represented by the diagonal OG of
this parallelogram.

And since OC is equal and parallel to GR, the figure
OCE@ is a parallelogram, and consequently the two forces
P and Z represented by OG, OC sides of this parallelogram,
will be equivalent to a resultant R represented by the
diagonal OR.

Hence the resultant of the three forces X, ¥, Z, is repre-
sented by the diagonal OR of the parallelopiped.
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This theorem is sométimes called the parallelopiped of
Jorces. It is an easy extension of the parallelogram of forces.

Cor. 1. By the preceding theorem we see how a given
force R may always be resolved into three others, severally
parallel to three lines given in space: these three lines not
being in one plane, and no two of them parallel.

For if we take OR to represent the given force R in
magnitude and direction and draw through the point O,
lines 04, OB, OC severally parallel to the proposed three
lines, we have three planes X0V, Y0Z, Z0OX,—and if we
draw through the point I three planes severally parallel to
these three, the six planes will form a parallelopiped, three
adjacent edges of which 04, OB, OC will represent the three
components X, Y, Z.

Cor. 2. If the parallelopiped be rectangular, we have in
the rectangle OAGH, 0@ = 04 + 01,
and in the rectangle OCRG, OR?*=0G*+ 0C*;
whence OR*=0A*+ 0B+ OC*; v
and therefore R*=X*+Y*4 2% .............. )
or R=/ (X*+ V*+ 27,
the value of the resultant in terms of the three components.

61. If we wish to express each component in terms of
the resultant, and the angles which they make with it, and if
we denominate by a, B, v the angles which the direction of
R makes with the directions of X, ¥, Z,

1.e. XOR=a, YOR=P8, ZOR=y,
we shall have OC = OR cos y;
and therefore Z= R cosry
similarly, ¥ = Rcos B }
X=Rcosa
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comparing (i) with (i) we get

cos’a + cos’B + cos'y =1,
a well-known relation which holds whenever a, 8, 4 represent
the angles which any given linc makes with three rectangular
axes.

If we multiply the three equations of (ii) successively by
cos vy, cos 3, cos a, we get by virtue of the relation
cos’a + cos’B -+ cos’y = 1;
Xcosa+ YeosB+Zceosy=1............ (ii1),

which expresses that the resultant is equal to the sum of the
resolved parts of the components cstimated in its direction—
a theorem which is true for any system of forces which ad-
- mits of a single resultant: for if each force be resolved into
two parts, one in direction of the resultant and the other at
right angles to it, these latter parts must be in equilibrium
themselves, and there remains the sum of the former parts
equal to the resultant.

62. We can now proceed

To find the resultant of any number of forces whose direc-
tions pass through a point.

Let O be the point through which the directions of all
the forces pass, and through O draw
any three lines O0X, 0Y, 04
mutually at right angles.

Let P be any one of the forces
aeting in direction OP, making
angles a, B, v with 0X, 0Y, 0Z
then P is equivalent to three com-
ponents
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Pcosa, Peos B, Pcosry,

acting in directions OX, OY, OZ, respectively.

Similarly, if 7’ be another force, o, 8/, v the angles its
direction makes with OX, OY, 0Z, it is equivalent to

P'cosa’, P cosf, P cosy,

in direction of the same lines;
and so on whatever be the number of forces.

The system of forces is equivalent then to three com-
ponents X, ¥, Z, which are severally equal to

Pcosa+ P cosda +...in direction of OX or = (P cos )
PcosB+P cosB +i iviviininiianinns 0Y...3 (Lcos B)}...(1).
Pcosy+ P cosy +eeennnrnnrennenennnnn 0Z ...% (P cosvy)

Now these three components (i) are equivalent to a single
resultant K making angles &, u, v with the line OX, 0Y, 0Z,
provided

Rcos A== (P cosa),

Reos u=% (PcosB), Reosv=23 (Pcosy)......... (i1)
and remembering that cos®A + cos’u + cos*v =1,
these give us the magnitude of the resultant, i.e.
R'={Z (Pcosa)}*+{Z (Pcos B)}* + (Z (P cosy)}%

and this being known, the equations of (ii) give A, u, », which
assign the direction of the resultant.

This analytical mode of finding the resultant of a system
of forces applied at a point is of course equivalent to the
geometrical construction of Leibnitz noticed in Art. (26).

63. If the forces be in equilibrium the resultant is nil,
iLe. R=0;
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and . {3 (P cosa)]* + [ (P cos )} + (S (P cos )} =0;
which requires

Z(Pcosa)=0, T(PcosB)=0, I (lcosy)=0,

the three conditions of equilibrium of a system of forces
acting through a point.

That is, the sum of the forces resolved in three directions
mutually at right avgles must be severally zero.

Or we may reason thus:

In considering any system of forces whose directions
pass through a point, if they be in cquilibrium, we may (as
has been observed before) regard any one of the forces as
equal and opposite to the resultant of all the rest. Hence, in
any case in which we are discussing the conditions of cqui-
librium of a body or system of bodies acted on by such a
system of forces, we may resolve all the forces in a particular
direction (any we please)—and perpendicular to the direction
go tBken: the conditions of equilibrium then will be

(1) The algebraic sum of the former resolved parts must
be zero.

(ii) The resolved parts acting in a plane perpendicular
to the direction taken, must be in equilibrium Jnfer se,—
and must satisfy the conditions of equilibrium of forces in
one plame : and we may apply the principles established in
the second chapter in the same way as if these resolved
parts had been the only forces acting.

And it will in general constitute part of the solution of

the problem to shew that these resolved parts are in equi-
librium.
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64. The remaining articles of this chapter contain de-
monstrations of two results relating to the tension of strings
passing over smooth and rough surfaces referred to in
Article (43)—and some properties of a funicular polygon.

They may be omitted by a student whose previous read-
ing has not prepared him for the considcration of small
quantities.

65. The tension of a string which passes tn one plane
over @ smooth curve or surface, ts the same at every point—
the weigh! of the string being neglected.

Let ps be any finite length
of the string in contact with
the curve, the normals to
which at p, s include an £ ¢.

Let ps be divided into =
parts, such that the normals
at the extremitics of consecu-
tive parts include the same
angle —so that nf = ¢.

pq the first of these parts, the normals at p, ¢ meeting
in 0; t,t,...1,,, the tension of the string at p, ¢,...s.

I the measure of the pressure on the curve at p—then
we may regard the resultant pressure of the curve on the
element pg of the string as equal to (R + &) . arc pq, acting
in some direction 7V intermediate to Op, Og, and making
anglw a,, B, say with p0, ¢0,—so that a,+8,=6, and «
is some small quantity which vanishes in the hmlt when 8 is
taken smaller and smaller. ¥
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Considering now the equilibrium of the clement pq of the
string as a rigid body—resolve the forces upon it parallel and
perpendicular to ¥, and we obtain the equations

tsina 4+t sin B =(L+x)pg ... {1),
tecosa —tcosB =0 i {ii},
equation (ii) may be written in the form
. L0 b’
¢, — 2¢ sin® 72‘ —2¢, sin” FEARTIRTPPPRS (1,

and if we write down the corresponding cquation for each
consecutive clement of ps, we shall obtain

t,— 2¢, sin® -"—t—2t banz .................. (2),

..................

2B,

L -
—_9 a8 LY 2 .
=2 sl =10, =2, s TN () 8

adding equations (1), (2) ... (»), we obtain

-

a . .-
S Bl | 20 2“%n
tl_Z(tlsm 9 + ¢, sin gt +¢t, sin 1))

(t sin® =;' + ¢, sin® B“’

=t 3 9

ey

+.ot 2, 80" ) L(iii).

Now if T be the greatest of the quantities ¢, ¢,...1,,,,
we see that :

2 &1 s2%s 20
(asm 2+tzsm 2+ A sin’ 2 ? & nursin’ 9
62 2
<7ZT—Z—<'4~~

Similarly
. B, . B dz’
t,sln -§-+t,im —2-+.-. +f,|ﬂSlD “2‘<
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If now n be increased indefinitely, ¢ remaining unchanged,

and therefore @ being indefinitely diminished—the expression
£

av— vanishes, and equation (iii) becomes
n

Bty e @av),
t.e. the tension of the string is the same at every point.

Further, from equation (i)—suppressing the suffixes—
= ot
t=(R+x). bma +smn g3’
and if p be the radius of curvature at »,

)
p=11

arepy P4 .
dnotsinB a+B p, in the limit,
in which case & vanishes; whence
t=Rp cooiiiiiiiniiiiiinninn (v},

a relation which gives the pressure on the curve at any pomt
in terms of the tension and radius of curvature.

in the limit

Hence in the same curve
R="'u 1 .
PP

Obs. For simplicity we have supposed the string to be
all in one plane—the demonstration might without much
trouble be extended to shew that the tension is the same at
every point in whatever manner the string passes freely
along a smooth surface or tube of any form.

66. A string passes in one plane over a rough curve or
surface, the tensions of the extremities being such that the string
18 on the point of motion—to find the relation between these
tensions, the weight of the string being neglected.
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Let 2, Q be the tensions at the points where the string quits
the curve—and suppose
it to be on the point of
motion in the direction
in which P acts—then
the friction at every
point of the arc will act
tangentially in the op-
posite direction,

Let ps be any finite
length of the string, the normals at p, 8 including an . ¢,
let ps be divided into » parts—the normals at the extremities
of successive parts including the same < 6, so that nf=¢,
pq the first of thesc parts, the normals at p, ¢ meeting in
05 t,¢,...t,, the tension of the string at p, ¢...s

It the measure of the normal pressure on the curve at p,
wR that of the friction along the tangent at p.

n+l

Then we may regard the resultant of the normal pressure
of the curve on the element pg of the string as equal to
(R + x) . arc pg acting in some direction 7V intermediate to
Op, Ogq, and making an .« say with Op,—and the resultant
friction on the arc pg as equal to u (B + &) . arc pg acting in
some direction inclined at an < 8 say to the tangent at p—
a, B being each < 6, and «, " small quantities which vanish
in the limit when 8 is taken smaller and smaller.

Cohsidering now the equilibrium of the element pq of the
string as a rigid body—resolve the forces upon it parallel
and perpendicular to the tangent at p, and we obtain the
equations

t,—t,co80=(R+x)pg.sina+u(R+«)pg.cosB...(>1),
t,sin0=(R+«)pg.cosa—pu(R+«)pg.sinB...(11);
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whence
t=t,cos0 _ (Bx)sina+p(R+«)cos B
t,sind  (R+«k)cosa—p (B+«)sinB’

Now the second member of this equation becomes = u
if 8 and consequently a and 8 be taken indefinitely small,
we may therefore write it = g (1 +2), A being some quantity
which =0 when =0,

or ;’ =cos 0 {1+u (1+2) tan 6}

2

-
=<1—lsm’;2> 1+p{l+r)tan6!

=14 u8(1+N\),
where )\’ is some quantity which =0 when § =0. Hence
logt —~logt,=log {1+ ub (1+N\)}
’ ]' nye
=uf (14+0)— 3 o1+ +...
= uf (1 +r)) say, A, vanishing with 6. -
Similarly,
logt,—logt, = puf (1+2,)
log t,~logt,,, =uf (1+7)
< logt —logt,, =wunf (1 +«k),if £, be the mean value
of A, Al r,
=pp (1+x,).
If now n be increased indefinitely, ¢ remaining unchanged,
and therefore 6 being indefinitely diminished, each of the

quantities A,, A,...\, will vanish, and therefore », will do so
likewise, and our equation becomes

logt. —logt . =ud. or t.=evt ...
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which expresses the relation between the tensions at any two
points of the curve of contact.

If 4 be the angle between the normals where the string
quits the curve, we have

P=Qe¥ ..coonvanns (1),
if p be the radius of curvature at p, we shall obtain from
equation (ii) the result
t=Rp .ooiiiiniiin (iv).

Obs. The results of Arts. (65, 66) arc true whether the
string be elastic or inelastic—if it be clastie, we may remark
that in Art. (66) every element of the string must be sup-
posed to be simultaneously on the point of motion.

67.  The funicular polygon.

If a scries of n weights I, P,... P, be suspended by
knots at given points
of a string (without A
weight), and the string /
be attached to twofixed
points A4, B, it will

when in equilibrium 7
form a polygon in a \\//13
vertical plane, and is P,
called a funicular poly-
gon. ;
To find the conditions of equilibrium in such a system.
Let t,,t,,¢,...t,,, be the tensions of the successive portions
of the string AP, P P, PP, .. P.B, and let a, a,...q,, be
the angles which these successive portions make with the
horizon.

We shall have for the equilibrium of P,, P,, P,... in

succession the following sets of equations,

Y
IEON
~
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~1
[ ]

t,cosa, =t cosa, tsina, —¢,sing,=P,.... (i),
_ e n .

t,cos a, =1, cosa,, t,sina,—t sina,=D,...... (ii),

t cosa,=t,, cosa,,,, t,sina,—¢, sina,, =D, ... (n).

If a, a,...q,,, be the lengths of the successive portions
of the strings AP, P,P,...P B, and ¢, b the horizontal and
vertical distance between 4 and B, we have from the geome-
try of the figure the following equations,

a,cosa, +a,co8a,+...4a,, ,co8a, . =a
a sine +a,8ina,+...a, sing,, = b}

The sets of equations (i), (i1) ... (n+ 1) are sufficient to
determine the 2rn + 2 quantities ¢,, ¢,...¢,, ., a,, 4,,...a,,,, and
contain implicitly a complete solution of the problem,

From the first column of equations in (i), (ii)...(n) it
appears that the tension of each portion of the string resolved
horizontally is of the same magnitude, and if we put this
=c¢, so that e=1¢ cosa,=¢,cosa,=... we obtain from «the
sets of equations (i), (ii)...(n) the following results,

tana, —tana, =-"
c

P
tan a, — tan o, = -E:"

ssseccanrens = e

from which we may obtain the following relations connecting
the angles a,, a,...

A T A A —_— B3 & &,

tana —tana, F tana, —tana, P,
tana, —tane, 1.’ tang, - tana, 2’
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If we simplify the problem by supposing the weights
P, P,... each equal to w, the equations (A) become

W
P =tana —tana,=tana,—tang,=...=tan a —tan a

n4y?

which results shew that the tangents of the angles a, a ...
are in Arithmetical progression.

68. Cor. If ACB be a heavy uniform string or chain sus-
pended from two points 4, B;—C
the lowest point of the string, and ¢
the angle which the tangent to it
at any point P makes with the
lorizon, we may obtain a simple
relation connecting ¢ with the
length of the arc CP (=s).

For we may regard the heavy
string as made up of a scries of
small cqual weights attached at small equal intervals, and so
forming a funicular polygon :—and since the tangent at Cis
horizontal and the tangents of the angles which the succes-
sive elements of the string (taken from C) make with the
horizon are in Arithmetic progression, tan ¢ will for different
positions of P vary as the number of the elements in the
arc CP, i.e tan p o 8.

And further, if ¢, ¢ be the tensions of the string at ' and

P, we shall obtain for the conditions of equilibrium of C/°
(which for this purpose we may regard as a rigid body)

tcosp=c, tsingp=s, and.- tan¢=2,

the weight of a unit of length of the string being here taken
a8 the unit of weight,
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CHAPTER V.
OF THI CENTRE OF GRAVITY,

69. THE attraction of the carth on any body would.
if unopposed, draw it towards the surface of the earth,

The direction in which a particle would fall freely at any
place is called the vertical line at that place. It coincides
with the direction of n plumb-line, or the normal to the
surface of standing water.

A plane perpendicular to this vertical line is said to be
lorizontal.

If we regard the carth as a sphere (which is very nearly
the casc), the vertical lines would all converge to the centre,
and therefore the directions of the forces which the earth
exerts on the different particles composing a body are-not
parallel, strictly speaking. But since the dimension of any
body we shall have to consider is very small compared with
the radius of the earth, we may consider these directions to
be appreciably parallel, and the resultant attraction on the
body or system equal to the sum of the attractions on the
constituent particles; i.e. the weight of the whole equal to
the sum of the weights of the several parts.

The object of the present chapter is to shew that for
every body or systerh of particles there exists a point through
which the resultant attraction of the earth may be supposed
to act; ie. a point at which we may suppose the weight of
the body to be collected,—a point whose position depends
only on the relative arrangement of the particles composing
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the body or system, and on the relative constitution of these
particles. If this point then were in rigid connexion with all
the parts of the system, all positions of the body or system
would be positions of equilibrium, if this point were supported.

Such a point in a body or system is called the centre of
gravity of the body or system, and we give the following
definition.—The point at which the weight of a body or
system may always be supposed to act, whatever be the
position of the body or system with respect to a horizontal
plane, is called the centre of gravity of the body.

70. We shall first shew that such a point exists in any
system of particles.

Prop. Every system of heavy particles has one and only
one centre of gravity.

First let us consider two heavy particles 4, B, whose

weights are P, ¢}, and suppose them »
connected by a rigid rod without i
weight. Now, since P and  act >
through 4 and B in parallcl direc- \\‘f

tions and towards the same parts,

they are equivalent to a single resultant, the magnitude of
which = P+ @, and which acts through a point £ in the line
AB, such that P: @ =BE : AE; and since the position of
E in the line AB does not at all involve the direction of
action of gravity, if this point E were supported, this system
of two particles would balance about £ in any position.
E then is the centre of gravity of 4, B, and the statical
effect of P and @ will be the same as if they were collected
into one particle and placed at E.
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Again, if there are three particles 4, B, C whose weights
are P, ¢, B, we can take £ the centre of gravity of P, ¢ as
before, and suppose P+ @ placed at E instead of A and B,
and we then have two particles at & and C whose weights
are P+ @ and R; thesc then, ‘as before, have a centre of
gravity at a point Fin the line EC, such that

P+(Q :'Q=CF : FL,
and we may suppose P, @, I all collected at ' so far as
their statical effect is concerned.  And so on whatever be the
number of particles, so that every system of heavy particles
Las a centre of gravity,

Also a system of particles can have but onc centre of
gravity. For, if possible, let a system have two such points
G and @7, and let the system be turned about if nceessary
till the line joining @, @' is horizontal. Then we have the
weight of the system acting in a vertical line through &, and
also in another vertical line through G“; which is impossible,
since it cannot act in two different lines at the same time.

We should arrive at the same point G in whatever order
we may take the points 4, B, C...

Cor. 1. Since every continuous body 1s an aggregation
of a great numbér of particles, every body has a centre of
gravity through which the resultant weight of the particles
acts: and we may suppose the weight of the whole body
collected at its centre of gravity.

And we may proceed to find the centre of gravity of a
system of bodies by supposing them to be a series of heavy
particles, the weights of which are equal to the weights of the
bodies, and which are in the position of the centres of gravity
of the several bodies.
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CoR. 2. The determination of the successive points F,
F, &c. in the previous proposition does not require the actual
weights P, (), B, but only their ratios. Hence if the weights
of the several parts of a system be all diminished or all in-
creased in any the same proportion, the position of the centre
of gravity will not be altered.

Cor. 3. Since the weights P, @, R... arc equivalent to
a serics of parallel forces acting at the points 4, B, C..., and
the position of the centre of gravity docs not depend on the
direction in which these forces act, but only on their relative
magnitude and their points of application ; it would therefore
remain in the same position if the directions of these forces
were turned about their points of application in any manner,
still remaining parallel to each other. Henee the point under
consideration is semctimes called the centre of parallel forces.

71. Having given the centre of grawty of a body and
also of a part of the body, to find the centre of gravity of the
remaining part.

Let w,, w, be the weights of the two parts of the body;
(., G, their respective centres of
gravity —then G the centre of
gravity of the whole body must be
a point in the straight line which
joins G, G,, such that

; ‘w,. G4, =w,.G04,.
Hence if ¢ and @, are given
in position, join @, G and produce

it to G, making GG, = -:%’ . G@,, and thus the position of @,
]

the point required is determined.
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72. Before proceeding to give a general method of finding
the centre of gravity of any system of particles, we will give
a few examples of finding the centre of gravity,—premising
that when we speak of a line, or plane, or surface as having
a centre of gravity, we suppose it to be made up of equal
particles of matter uniformly diffused over it: unless some
other supposition is stated.

1. To find the centre of gravity of a right line.

Considering it as a line of equal particles uniformly
arranged, it is clear that the middle point of the line is its
centre of gravity. For we may divide the line into a series
of pairs of equal elements, the particles composing any pair
being cquidistant from the middle point. Hence the centre
of gravity of each pair is at the middle point, and therefore
the centre of gravity of the whole is there also.

11 To find the centre of gravity of a parallelogram.

Let ABCD be a parallelogram regarded as a uniform
lamina of matter, and draw the line “ " B

EF parallel to AD or CD and bisect- ;
/ o Jr
I

ing AD and BC,—and also the line =
HEK parallel to 4D and bisccting 5
AB and CD. The point G in which

HK, EF intersect is the centre of gravity required. For by
drawing lines parallel to BC and at equal distances from each
other, we may divide the parallelogram AC into a number
of equal small parallelograms whose lengths are all equal BC
and breadths as small as we please; and we may take the
breadths so small that each may be regarded as a line of
particles, the centre of gravity of which is at its middle point,

x c
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and which therefore is on the line EF, since EF bisects
every line that is parallel to BC.
Hence the centre of gravity of the whole parallelogram
lies in EF. Similarly it may be shewn to lie in J/K.
Therefore G the point of intersection of EF, HK is the
centre of gravity of the parallelogram.

III.  To find the centre of gravity of a plane triangle.

Let ABC be a plane triangular lamina of matter. From
any two of the angular points B, C,
draw lines BF, CF bisecting the
opposite sides in ¥, £ and cutting
cach other in 6. @ is the centre of
gravity of the triangle.

By drawing a serics of lines par-
allel to one of the sides 4 C at equal
distances, we may divide the triangle into a number of qua-
drilaterals, each of which, when their number is sufficiently
increased, may be regarded as a uniform material line.

Let ac be one such line cutting BF in f; then we have
af : AF = Bf : BF
=c¢f: CF;
by the two pairs of similar triangles afB, AFB and ¢fB, CFB.
Hence of : ¢f = AF : CF; '
+ =1:1 H
~.af =cf; ie. fis the middle point of ac, and is consc-
quently its centre of gravity.
Hence the centre of gravity of each of the lines composing
the triangle is in BF, and therefore the centre of gravity of
the triangle is in BF.
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Sir;i.i]arly the centre of gravity of the triangle may be
shewn to be in CE, whence we infer that G is the centre of
gravity required.

Further, if we join EF,

By similar triangles BGC, FGE;

BG : GF=BC : EF
= BA : AE by similar triangles AEF, ABC
=2:1;
re. BG=2.GF;
. BF=3.GF,;
ie. GFF=1BF, and BG =2DBF.

In words, if a line be drawn from an angular point to the
middle of the opposite side,- the centre of gravity of the
triangle lics on this line at a distance from the angular point
cqual to two-thirds of the length of the line.

Cor. From this result it is easily seen that the centre
of gravity of the triangle coincides in position with that of
three equal particles placed at the angular points.

73. To find the centre of gravity of the perimeter of a
triangle —regarding the sides as material lines of uniform

thickness.

Let A’y B', ¢’ be the middle
points of the sides of the proposed
triangle . ABC—then the centre of
gravity of the perimeter ABC will
be in the same position as that of
three particles placed at 4', B', (',
and whose weights are proportional
to BC, CA, ABrespectively. Draw
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A'a, B'B bisecting the angles A, B of the triangle A'B'(",
then (Euclid v1. 3),
Ba:Ca=AL : A'C'=AB : AC.

Hence a is the centre of gravity of the two sides 4B,
AC, and therefore the centre of gravity of the whole peri-
meter lies in the line A’a—similarly it lies in the line '8,
—the centre of gravity required must therefore be the point of
intersection of these two lines—which is the centre of the
circle inscribed in the triangle 4°B'C.

74 Having shewn that every system of particles has
one and only one centre of gravity, we proceed to shew how
to find it in any casc; )

(i) for a scries of particles lying in a straight line.

(1) oo et in ono planc.

(1) v arranged inany mannerinspace.

L 7o find the centre of gruvity of a series of heavy
particles lying in a straight line.

Let 4, B, C... be the several
particles whose weights-are P, @,
R... and lying in the straight line
Oz. Let O be a fixed point in the line, and let 2, «,, z, ...
be the distances of the particles 4, B, (... from O; then if g,
be thé centre of gravity of 4 and B,

P @Q=2Dg, : Ag,
or P.49,=Q.By,; ie. P(Og,—a)=Q (z,—~0g,);
ie. (P+ @) 0g, =Pz, +Qa,.......... - ();
a result which we might have obtained at once from the

A B [ D
9% % -
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consideration that since the resultant of the forces P and @ at
A and B passcs through g,, the sum of the moments of
P and @ about any point O is equal to the moment of their
resultaut P+ @ about the same point.

Again, considering P and @ as collected at g,, if g, be the
centre of gravity of P+ @ at g, and R at €, we lave as
before

(P+ Q@+ R) 0g,= (P + Q) Og, + R,
=Pz + Qx,+ Lz, by (i)...... (in).
Similarly (P+ Q+R+S)0g,= (P + Q@+ 1) Og,+ Sz,
=Po + Qx, + Lz +Sz,...(i11).
And so on for any number of particles.

Hence if we call & the distance of G the centre of gravity

of the wholc from O,

P, ',*',Q",”u,'*' Rz, +S‘74+ g = (Pa)

L= — . "P+’(2”'+*Jl, +747.. = ‘S (1,) ................ (IV).

The centre of gravity then is in the same line as the
particles, and the distance of it from any assumed point O is
given by (iv).

11. 7o find the centre of gravity of a series of lLeavy
purticles lying in one plane.

Let 4, B, C... be the system of

Y
particles whose weights are I, @, ! Y
R... and let them be referred to two
axes Oz, Oy at right angles to one
another in the plane in which the
particles are. Join 4B and take ° £

g, the centre of gravity of P and @
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at 4 and B so that P : Q= Bg, : 4g,. Join g,C, and take
g, the centre of gravity of P+ @ at g,, and R at € so that
P+@Q:R=0Cy, : 9.9,

and so on till we find G the centre of gravity of the whole, as
in Art. 70. Draw AN, gn,, BN,... parallel to Oy, meeting
Oz in N,, n,,

ON ==« ON =« OV =)
If now we call ! ‘}, 3 “} &e. sy,
A‘Vnz:'/x BA2=."/2 (;V:yj

our object 1s to find &, ¥ which determine the position of @,
in terms of xy,... and P, Q...

Now, considering g, the centre of gravity of A and I, we
have
P Ag = Q. By,..... (1);
and if through 4 and g, we draw two
lines parallel to N &, we should have
two similar triangles; comparing the

sides of which we get
Ag,: By, =gm — AN, : BN, —gmn ............ (1),
whence from (i) and (i1)
P.(gn,—AN)=Q.(BN,—gn,),
or (P+ Qgn,=P.AN +Q.BN,=D.y + Q. y,..(iii);
now introducing a third particle C we have snmlarly
(P+ @+ R)gnn,=(P+Q)gn + £.CN,,
=P.y+@Q.y+R.y, ... (iv),

and so on whatever be the number of particles;

Py +Q.y,+.. ,2(1,’?/)
=QGV= i+ S e e (v).
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By a similar mode of proceeding we shall obtain
' 2 (Px)

TSy
These two results (v) and (vi) determine ihe position of the
centre of gravity of the system of particles, which lics in the

plane of the particles.

TI1. 7o find the centre of gravity of a system of particles

arranged i any manner ¥n space.

Let the system of particles
A, B, C... whose weights arc P, » c
Q, I.... be referred to three lines B, /
Oz, Oy, Oz mutually at right S D
angles ;
let g, be the ¢.¢. of 4 and B,
Gooerrnerrorenins A4,B,and C, &e.
r [2) [M P
Through 4. B C... g,9,... draw
AN, BN,..gmn, gmn, parallel |k
to Oz meeting the plane 2Oy in A % 7
N, N,...n,,n,...and through these

points draw in the plane x0y the lines N M,, NM,...nm,,
ngm,... parallel to Oy meeting Oz in M,, M,...

If now OM, =z,
MN, =y, } and similar quantities for each particle,
NA==z

and if £7 2 be the corresponding quantities for @, the centre
of gravity of the system,—we have, considering 4 and B only
at first,

P Aq.=0.Ba.:
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or if we draw lines through 4,, g, parallel to NN, we have
by similar triangles

Ag, : Bg,=gn,— AN, : BN, —gn,,
whence  P.(gn,—AN)=Q.(BN,—gn);
ie. (P+@Q).gn,=P.AN +Q.DN,
=P+ Q.z,;
similarly introducing another particle C, g, being the centre
of gravity of 4, B, C, and thercfore the centre of gravity of
P+Qatg and Rat C;
(P+Q+D)ygm,=T+ Qgm +R.CN,
=P.z,+Q.z,+ 1.z,
and so on for any number of particles—till we get
P+Q+..)AGV=P.z,+Q.z,+...

] <
o Dmt Qe+ I (P2

S P+Q+... T X(P)
we should similarly have
X (Py) __Z(Px)
=5 and Z= S(P)

These three expressions for # 7% Z determine the position
of the centre of gravity of the system of particles considered.
This includes 1. and 11. as particular cases.

3

75. Obs. In the case IIL of the preceding article it
will in general be convenient to take the lines Oz, Oy, Oz at
right angles, but the student will observe that the course of
the proof does not require that the lines Oz, Oy, Oz should
be inclined at any particular angles: he may then in any



86 OF THE CENTRE OF GRAVITY.

particular case assume three lines (not in one plane) inclined
at any angles which may appear to him most convenient in
the case under his consideration ;~—and a similar remark
applies to case IL.

Drv.  The moment of a force with respect to a plane is the
product of the force into the distance of its point of application
Jrom the plane. If the points of application of two forces
are on opposite sides of a given plane, the moments of the
forces with respect to that plane will have opposite signs.
This must be carefully distinguished from the moment of a
force with respect to a point or an axis. Art. 31,

Con. 1. We see from the results of Art. 74, that the
algebraic sum of the moments of the particles of a system
with respect to any plane is equal to the moment of the
whole (supposed to be collected at the centre of gravity) with
respect to the same plane.

From whence follows the conclusion, that if the algebraic
sum of the moments of a system taken with respect to any
proposed plane be zero, the centre of gravity of the system
lies in that plane ; and vice versd, if the centre of gravity of a
system lie in a given plane, the algebraic sum of the mo-
ments of the particles with respect to that plane is zero,—or,
in other words, the sum of the moments of the particles which
are on one side of the plane is equal to the sum of the
moments of the particles which are on the other side of the
plane.

Cor. 2. If we suppose a system to be divided into any
number n of particles of equal weights we have the distance

of centre of gravity from any plane =%'th the sum of the
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distances of all the particles from the same plane. Viewed
in this manner, the centre of gravity of a body or system is
sometimes called the centre of mean position of the body or
system, or the centre of figure.

Cor. 3. If a system of particles be projected on any
plane, the projection of the centre of gravity of the system
on that plane will be the centre of gravity of a system of
particles in the plane, equal to the former and coincident
with the points of projection of the original system.

This appears at once from the results of Art. (74), for the
values of i& 7 Z depend only on the weights of the particles
and their distances estimated parallel to Oz, Oy, Oz from the
planes y0z, z0z, xOy scverally.

76, Centre of parallel forces.

If in any of the cases of Art. (74), 4, B, C... be the points
of application of a system of parallel forces P, Q, R... the
method pursued in that article will lead to formule for the
co-ordinates of the point of application of the resultant of
such a system of parallel forces, viz.

__ = (Px) 5= I (Py) .
s V=3P

in the most general case.

_X(P2) )
=5 By 1),

&
N

These results are algebraically true whether the forces act
all in the same direction or not—and we may interpret them
as stating that the resultant of a system of parallel forces
is = ¥, (P) acting at a point whose co-ordinates are given by
equations (i).
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If however X (P) =0, and the expressions 2 (Pz), 3, (Py),
= (Pz) do not each =0 also, the system will be equivalent
1o a couple which does not admit of being represented by a
single resultant force, Art. (30).

77. The position of the centre of gravity of a body or
a system of particles depends (as we have scen, Art. 74) only
on two things; (i), the form of the body, or, in other words,
the arrangement of the particles of the system; and (ii), the
relative density of the different parts.

Formulae have been obtained in Art. 74, by which the
centre of gravity of any system of particles whose relative
weights and position are known, may be found ; and we have
seen in Cor. 1, Art. 70, that a body may be cousidered as
o particle placed at the centre of gravity of the body, so
that if the centres of gravity of the several bodies composing
a system be known, we are enabled to find the centre of
gravity of the system, and the problem assumes a general
character.

The determination however of the centre of gravity of a
body (either a continuous solid body, or a surface regarded
as a lamina of matter of indefinitely small thickness) will in
general require the aid of the Integral Calculus.

Obs. Cases will not unfrequently arise in which the
position of the centre of gravity can be assigned from geo-
metrical considerations such as the following, which are
suggested for the consideration of the student.

1°. If in any body or system a plane can be found which
divides the body into two parts which are symmetrical with
respect to the plane on opposite sides of it, the centre of
gravity of the body must lie in that plane.
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For since the body is divided symmetrically inte two
parts, these parts must be equal, aud their centres of gravity
at equal distances from the plane on the opposite sides of it,
Hence the centre of gravity of the whole, which is the middle
point of the line joining the ceutres of gravity of the two
parts, must lie in the plane under consideration,

2°.  Hence it follows readily, that if three planes can be
assigned, each of which divides the body or systemn symme-
trically into two parts, the common point of intersection of
the planes is the centre of gravity of the body,

3% Observation 1° applies to all bodics or systems of
bodies of uniform density; it is also true if the densities are
not uniform, provided the densities of all clements of the
body symmetrically situated on opposite sides of the plane
are severally the same. The same may be said of curved
surfaces.  But in the case of a plane area we nced only con-
sider lines in its plane which divide the area symmotrically,
and we may assert (with a proof similar to that of 1°), that
in any plane area if a line can be found which divides it
into symmetrical parts, the centre of gravity lies in that
line; and further, if two such lines can be found their point
of intersection is the centre of gravity of the area.

The same remarks apply in this case as in that of a body,
if the.density of the area be not uniform.
78. Some conclusions arising from these observations,

1°, 2°, 8°, ake the following.

(1) The centre of gravity of a right line is its middle
point,
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(it} The centre of gravity of a parallelogram is the
intersection of its two diagonals; in other words, the middle
point of one of them.

(iii) The centre of gravity of a solid parallclopiped, or
of the surface of a parallclopiped, is the interscction of its
four diagonals, which is the middle point of any one of them.

(iv) The centre of gravity of a circular arca, or of a
circular ring, is the centre of the circle.

And that of a solid sphere, or a spherical surface, or
spherical shell, is the centre of the sphere.

These results will be of frequent use.

79. To find the centre of gravity of a pyramid on a
triangular base.

Let ABC be the base of the pyramid, and V its vertex.

Take D the middle point of
one of the sides BC, and join 4D,
VD, in which take £ and H such
that AE=34D and VH=3VD
(and HE is thereforc parallel to
AV); then E, H are the centres of
gravity of the triangles ABC, VBC;
if now we join VE, AH, they will /L7
intersect in some point @G, since 4 8
they both lic in the plane 4 VD.

G is the centre of gravity of the pyramid.
For suppose the pyramid to be made up of an indefinite
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number of thin triangular plates all parallel and similar to
ABC, and let abc be any one of these;

if VD meet be in d, and VE meet ad in g, we have by
similar triangles,

ag : AE=Vg : VE=gd : ED;
vag . gd=AE : ED=2 : 1.
Hence since d is the middle point of be, g is the centre of

gravity of the plate abc.

Similarly it may be shewn that the centres of gravity of
all the plates of which the pyramid is composed lie in the
line VE.

And in a similar way by supposing the pyramid made up
of plates parallel to VB, the centre of gravity of the whole
may be shewn to lie in 4

Hence G the point of intersection of VI, A is the centre
of gravity of the pyramid.

Further if we join HE which will be parallel to AV, we
have by similar triangles AV@Q, HGE,

VG AV _AD
GE HE kD

. VE=4GE, or EG=} VE, and ... VG=} VE;

=3; ... VG@=3.CGFK;

i.e. if the vertex be joined with the centre of gravity of the
base, the centre of gravity of the pyramid is a point in this
line at a distance of $ths of it from the vertex, and }th of it
from the base.
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Cor. 1. To find the centre of gravity of any pyramid
whose base is « plane polygon.

Join V the vertex with O the centre of gravity of the
base, and in this line take a point G at
a distance from the base equal to Jth of
the length of the line. (' shall be the
centre of gravity of the pyramid. For
it may be shewn as in the present article,
by supposing the pyramid to be made
up of plates parallel to the base, that
the centre of gravity of the pyramid lies
in this line,

]

And again, by dividing the base into triangles the py-
ramid may be divided into a series of triangular pyramids
having a common vertex : and if we draw a plane through G
parallel to the base, this plane will contain the centres of
gravity of all the triangular pyramids, since it would cut the
line which joins the vertex with the centre of gravity of the
base of any of the triangular pyramids in a point whose
distance from the base is fth of the length of the line.

Since then the centres of gravity of all the triangular
pyramids lie in this plane, and it has been shewn to lie
in the line VO, G must be the ceutre of gravity of the
pyramid. :

Cor. 2. Since a curve may be regarded as the limit of a
polygon, whose sides are indefinitely increased in number
and diminished in magnitude, we may consider a cone on any
base as the limit of a pyramid, and its centre of gravity will
be in the line joining the vertex with the centre of gravity of
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the base, at a distance from the vertex equal to §ths of this
line,

If the cone be a right cone on a circular base, the centre
of gravity is in the axis of the cune, at a distance from the
vertex equal to $ths of its length.

Cor. 3. The centre of gravity of a triangular pyramid
coincides in position with the centre of gravity of four equal
heavy particles placed at its angular points,

For we easily sec by the construction that Fis the centre
of gravity of three equal particles P’ placed at A, B, €, and
(7 will be the centre of gravity of 31 at E, and I at V, since
GV : EV=3: 4

Cor. 4. We ean proceed to find the centre of gravity of
any solid bounded by plane faces. For we may divide the
solid into a serics of pyramids, the centre of gravity of each
of which can be found, and if we suppose at each of thesc
points weights to be placed proportional to the several pyra-
mids, the centre of gravity of these weights will coincide with
the centre of gravity of the solid.

Similarly with any plane area bounded by straight lines,
by dividing it into a series of triangles, and supposing par-
ticles placed at the centre of gravity of each triangle pro-
portional to the areas of the triangles, the centre of gravity
of these particles will be the centre of gravity of the area.

80. Before concluding this chapter we will give a few
general theorems relating to the centre of gravity,

L. If a body be suspended from a point about which it can
swing freely, it will rest with its centre of gravity in the verti-
cal line which passes through the point of suspension.
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Let AC be the body, @ its centre of gravity, and § the
point of suspension. Draw GV ver-
tical, and SV horizontal to meet GV
in V'; then thec only forces which act
on the body arce its weight, which acts
in the vertical line V@, and the rcac-
tion arising {rom the fixed point 8.

These two forces cannot balance
each other (and consequently the
body cannot be at rest) unless they
act in the same line in opposite directions, i.e. unless 1°¢
pass through 8.

1.e. the body cannot be at rest unless the vertical line
through G pass through S; and when this is the case, the
fixed point will exert a force on the body sufficient to balance
the weight of the body and therefore equal and opposite to
that weight.

Or we might reason thus, When a body is at rest
under the action of forces in one plane, the moments of the
forces about any point vanish: but in this case, if we take
the moments about 8, the weight of the body has a moment
about 8 = weight x SV, which is not counterbalanced by any
other moment, and this cannot vanish unless SV =0, i.e.
unless the line joining S and ¢ is vertical. Whence the
same conclusion as before.

Cor. This proposition leads to a mode of determining
the centre of gravity of a body which may sometimes be
practically available, thus,—Let the body be suspended freely
from any points of its surface in 'succession, and let the line
in the body which is vertical and passes through the point
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of suspension be noted 'in each case,—the point of intersec--
tion of two such lines is the centre of gravity sought.

81. In the proposition, G may either be directly above
or below 8 when in a position .
of equilibrium; but the nature of (
the equilibrium is very different in [
the two cases. In fig. 2 if the body )
be slightly displaced by turning it !
about § through a small angle, it ’ \
is evident G would be raised : and
if the body be then left to the action [ } }
of gravity, its first tendency would / \ e i
be to return towards its former S

position of equilibrium.

« \

But in figure 1 if the body were slightly displaced by
being turned a,bout S through a small angle, the tendency of
the body would be to recede further and further from its
position of equilibrium.

The above are simple cases of equilibrium, which are
called stable and unstable respectively ; the meaning of which
the student will understand from the following definition.

Der. When a body is in cquilibrium under the action of
a system of forces, if the body be slightly displaced the action
of the forces on the body in its new position will in general tend
either to make it return towards or recede from its original
position of equilibrium ; in the former case the equilibrium is
said to be stable, or the body to be in a position of stable equi-
librium ; in the latter, the equilibrium is said to be unstable,
or the body is said to be in a position of unstable equilibrium,
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We say in general, because the above is not always the
case, for in certain cases the forces in the new position of the
body may still bave no tendency to make the body move one

ay or the other; a position of this kind is called one of
neutral cquilibrium-—as in the case of a sphere resting on a
horizontal table.

Or again, the forces in the new position may tend to make
the body neither return to its former position nor recede from
it, but to give it a rocking or rolling motion ; as in the case
of an cllipsoid resting on a horizontal plane at the extremity
of its mean axis.

82. II. A body placed on « horizontal plane will stand
or fall over, according as the wvertical line druwn through
the centre of gravity of the body falls within or without the
base.

Lot ACID be the base of the body in contact with the
plane, GE the vertical line drawn
through the centre of gravity of the
body and meeting the base in some
point E within it,

Now the pressure which the
weight of the body exercises on the
plane is equal to a weight W acting
in GE. : |

And if E lies within the base,
the plane will be capable of exercising a vertical pressure
passing through ¥ of sufficient magnitude just to balance W;
and the body will be in equilibrium,
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But if & fall without the base the plane cannot exert a
pressure which shall pass through
£ and balance W: in this case
then the body will not be in equi-
librium, but will begin to fall over
by turning round some tangent line
to the perimeter of the base, and this
will obviously be about the point of
the base which is neurest to X,

Ubs. By the base here is meant
the extreme polygon formed by
joining all the points of contact of the base—or the area
enclosed by a string drawn tightly about the base,

Cor. 1. 1In a similar manner it may be shewn that if a
body be placed on an inclined plane and it be prevented from
sliding along the plane by friction or otherwise, the body
will stand or fall over according as a vertical line drawn
through the centre of gravity of the body falls within or
without the base.

Cor. 2, In figure (1) if an effort were made to make the
body turn about some point 4 in the perimeter of its base,
the moment about 4 of the force employed must be at least
equal to the moment of the weight of the body about 4 ;
which moment is= W. AE. This moment then ineasures
the effort necessary to make the body fall over; and it is
clear that the less AE is, the less effort will be required. If
AE =0, the moment vanishes, and any the slightest effort
would make the body fall over. This accounts for the diffi-
culty of making & body balancc about a point immediately

under the centre of gravity.
- ’ - 4
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Compare with this the remarks on stable and unstable
equilibrium, in the previous article.

83. When a rough body BAC rests upon another PAQ

fixed—the surfaces near 4 the
point of contact being spherical—
the condition of the stability or
tnstability of the equilibrium may
be simply investigated thus,

The common mnormal to the
two surfaces at A will be vertical
and will pass through O, O, the
centres of the spherical surfaces
of BAC, QAR, and also through
G the centre of gravity of BAC,
Let BAC be displaced by rolling
through a small angle so as to

N —

come into the position 5’4’ C'—through P the new point of
contact draw P.JM vertical, mecting 4’0’ in M. Then accord-
ing as A'G"is < or > A'M, the weight of B'A’C" will tend
to make it return towards or recede further from its original
position of equilibrium by turning about the point of con-
tact P—that is, the equilibrium will be stable or unstable

respectively,

Let A0=r, 40,=R, AG=h, :AOP=0=MPO,
A'O'P = ¢, so that r¢ = R, since the arc AP =arc 4'P.

Now oM _OM sin @

sin @ r

=W=ﬁ(€+"$)=sin(R+r 0>=R+r’
~
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oo
OM=yi7
AL r? Rr
AM=r=OM=r- R+r R+v’
and the equilibrium is stable or unstable according as % is
<or>A'M ie h<> Iﬁ
R+
Or, as it may be written,
1 ><) 1 1
RSt w

Obs. If G', M comcule——the displacement  being very

small,—in which case 1 =: + 1_ the equilibrium is said to

h i/
be neutral.

84. Obs. (i) If the sur- 10,
face QAR be concave, we may
change the sign of I, and we

shall have the equilibrium \‘Q {
stable or unstable according as } \\
1
it S
(i) If the surface of BAC be plane—as in the case of
a solid resting with its plane base
upon & curved surface—r = o0, and the -

equilibrium is stable or unstable ac-
cording as

h<or>R. -

(ii) If the surface of QAR be
plane—as in the case of a solid resting
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with its curved surface upon a horizontal plane—R = x,

and the equilibrium will be stable

or unstable according as
h<or>r.

The above particular cascs
(i), (i), (iii) of the general one, ?Q : R\
may be investigated independ-
ently by the student.

85. The following is an example of finding the centre
of gravity which leads to some useful results,

To find the centre of gravity of n equal particles arranged
at equal intervals along a circular arc.

Let O be the centre of the circular arc 4B, along which
the n equal particles 4, P, Q,
R,...I} are arranged ;

¢ AOB =22, A0 =aq,
0=.:40P = POQ=...
so that (n—1) 0=2x...... ().

Then if (z,, y,) (2, v,) ...
be the co-ordinates of the sue- Or--"'"
cessive particles 4, P, @...re-
ferred to Oz, Oy as rectangular axes, we have (Art. 74)
2 (Pz) _1

z.(l))— = ;l {wl + (L'a +.,...+ T"}

T =
=Z{1+cos8+cos20+...+cos (n—1) 6}

n-1,.n
0% T Gsm§ 0 .
== T (by Trigonometry)
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€oS a sin o

n—1

i
ERE]

sin —2
n-—1

by substituting for 8 in terms of @ from (i).

_ S(P
Andy=--~»(—g) =;1;{y,+y,+...+yu}
=i—i {sin @ +sin 20 + ... +sin (n — 18}

.n=1,. n
8in —-— @sin - @
a 2 2

T sin § 0

. . n
sinasin —— @
a n—1

n

sin
n—1

If G be the centre of gravity,

N asinn .
OG =, J&'+¥ = - — (iii),
sin
95— 1
and tanAOG=%=tan a,

gives its distance from 0.

86. Cor. From the preceding investigation we may
deduce some useful results. '
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If the number of particles n be supposed to become in-
definitely great,

nn .
——— becomes = a, and n sin becomes = a

n—1 n—1

in the limit,
sin a
a

and in this casc OG=a

1. Since a uniform material circular arc may be regarded
as u serics of equal particles at small
equal intervals,—if AB be a uniform
circular arc of which O 1s the centre,
and G the centre of gravity, 2a the
circular measure of the < A OB and
AO0=aqa;

then we infer from the above that
O bisccts the « AOD,

and 0G=a""%,
a

IT. Again, since we may regard the circular arc 4B as
the limit of a polygon of a very large
number of sides, we may regard the
circular sector A OB as made up of a
very large number of triangles having
a common vertex at O, and the sides
of this polygon for their bases,—and
if Or be the distance from O of the
centre of gravity of any one of these
triangles Opg, we shall have (when
the « pOq is taken very small)

2 2 . .
Orx==:—5 Op=§a, in the limit,
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and the centre of gravity g of the sector 40B will coincide
with the ceutre of gravity of a uniform circular arc ab whose
radius = '; .a,
o o
i.e. Og bisects the - AOB, and Og = ; ‘e 51: ..

[ . e . .
Ifa= 5 the sector becomes a soemicircle, and in this case

4a
III. The centre of gravity G of n
the sector AOB being known, as well N

as @, that of the triangle AODB—we
can easily (Art. 71) find &, the cen-
tre of gravity of the circudar segment 0 g 1eel’
ABC.
For 4 A OB = d* sin a cos g, N
sector AOB = d«’a, A
segment 4 BC = ¢ (a — sin acos a)

2 sin a
Also OG,=Zacosq, OG— 3% 53
3 a
2 . . 2 sma
a* (a —sinacosa) . OG, =d'a ga-
5y
2 . L
—a'sinacosa.gacosa
2
=40 a® (sin @ — sin a cos' a)
2
da sin’a;
2 sin’ @

" 0G,=2q_ 2

3% "sinacosa’
which determines the c.G. of the segment,
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IV. The centre of gravity @
of a solid hemisphere ABC lies in
the radius O C which is perpendicu-

lar to the base, and OG =g. oc.

Also, the centre of gravity of the
hemispherical surfuce ABC Ulisects
ocC.

These results may be obtained
by processes similar to those employed in this article—but
much more easily by employing the Integral Calculus:—we
have thereforc thought it sufficient to state the results for
the information of the student.

87. We will close this chapter with the following elegant
theorem—due we believe to Leibnitz.

If a system of forces in equilibrium acting at a point A
be represented in magnitude and direction by the lines AP,
AQ, AR...then wnll the point A be the centre of mean position
of the points P, Q, R, ...; (in other words) the point A will
be the centre of gravity of a system of equal particles placed
at the pownts P, Q, R...

Take any line 2’ Az passing through 4 and draw Pp,
Qg...perpendicular to this line;
then will Adp, Agq...represent the
projections on a’dx of the lines
AP, AQ...ie. of the forces P, Q... _ /
But since these forces are at equi- ¥
librium the algebraic sum of their
resolved parts in any assigned
direction must be zero by Art. (39).
Hence since the algebraic sum of the lines 4p, 4q...is zero




LEIBNITZ' THEOREM. 103

the centre of gravity of the points P, Q...must be in tho plane
which passes through A4 at right angles to a'Az, and since
the direction of #’ A« is arbitrary, this centre of gravity must
lie in every planc which can be so drawn, and must therefore
coincide with the point 4, the common point of intersection
of these planes.

Hence, when any number of forces acting on a point aro
in equilibrium, this point is the centre of gravity of a series
of equal particles placed at the extremitics of lines which
represent the forces in magnitude and direction,

And vice versd. 1f we consider a series of equal particles
‘and we draw lines from each to the centre of gravity of the
series, it is clear that a system of forces represented by these
lines will be in equilibrium,

For as before draw the lines AP, AQ...; it is clear that 4
being the centre of gravity, the algebraic sum of the lines Ap,
Agq...is zero; i.e. the sum of the resolved parts of the forces
AP, AQ... taken in any direction &' Az is zero, and therefore
the forces are in equilibrium,

Cor. 1. Wesee from this theorem that if three forces are
in equilibrium about & point, this point is the centre of gravity
of the triangle formed by joining the extremities of lines
representing the forces in magnitude and direction; for the
centre of gravity of a triangle is the same as that of three equal
particles placed at its angular points,

Similarly, if four forces are in equilibrium about a point,
this point is the centre of gravity of the pyramid whose
angular points are the extremities of the straight lines
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representing the forces: for the centre of gravity of a trian-
gular pyramid is in the same position as that of four equal
particles placed at the angular points.

The converse of each of these is also true.

Cor. 2. More generally: If all the equal particles of a
rigid body of any form arc attracted to the same point by
forces proportional to their distances from this point they will
be in equilibrium if the point be the centre of gravity of the
body;—and conversely.



CHAPTER VL
OF TilE MECHANICAL POWERS.

. 88. THE simplest machines employed for supporting
weights, communicating motion to bodies,—or speaking gene-
rally, for making a force which is applied at one point prac-
tically available at some other point, arc called the Mechanical
Powers; and by a combination of them all machines, however
complicated, are constructed.

They are commonly reckoned as six in number:—the
lever, the wheel and axle, the pully, the inclined plune, the
wedge, and the screw.

In explaining and discussing these simple machines we
shall suppose them to be at rest, so that the force applied at
one point is balanced by the force or pressure called into
action at some other point: we shall also suppose the several
parts of them to be without weight and perfectly smooth
except when the contrary is expressly stated.

‘When two forces acting on a machine balance each other,
one of them is for convenience called the power and the other
the weight.

89. The Lever.

"A rigid rod or bar capable of turning about a fixed
point of it is called a lever. The point about which it can
turn is called the jfulcrum, and the parts into which the rod
is divided by the fulcrum are called the arms of the lever.
When the arms are in a straight line, it is called a straight
lever; in all other cases it is & bent lever.
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We have seen in Art. 35, 36, that a body of any form
capable of turning about a fixed
point O may be considered as a
lever, and if two forces P, @ act
upon it in a plane passing through
0, the lever will be in equilibrium
if P.Op=@Q . Oq; ie. if the
moments of > and @ which tend
to turn the lever about O be equal,
and tend in opposite directions.

In order however to render our explanation as simple as
possible, we will for the present consider the arms of the
lever as straight and uniform, or approximately so.

90. Levers are sometimes divided into three classes ac-
cording to the relative position of the points where the power
and the weight are applied with respect to the fulerum.

Thus in levers of the first class, Fig. 1.
the power and the weight are applied ., »
on oppostte sides of the fulerum C, ‘T‘ %
but act in the same direction, as in
fig. 1. )

In levers of the second class, Fig. 2.
the power and weight are applied ”} Rf
on the same side of the fulcrum, B AC'
but act in opposite directions (as w
in fig. 2), the power being applied

at a greater distance from the fulerum than the weight is.
Fig. 8.

In levers of the third class
(fig. 8), the power and the weight 2
act on the same side of the fulcrum

4
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in opposite directions, the power beiug nearer the fulerum
than the weight is.

The second aund third classes it will be observed do not
substantially differ from each other in their character.

When a lever is cmployed practically to transmit foree
applied at one point to some other point,—as, for example,
when a crowbar is employed to raise a block of stone—the
pressure applied by the hand to one end of the bar corre-
sponds to the power P in the above explanation, and the
pressure which the block exerts upon the other end of the
crowbar corresponds to the weight W—the fulerum being
the fixed obstacle against which the crowbar rests, and about
which it can turn if P and W do not balance each other.

We have familiar examples of the first species of lever
in the common steelyard, a poker, the brake of a pump, the
comumon claw-hammer;—a pair of scissors and carpenter's
pincers are double levers of this kind, the joint being the
fulerum.

An oar, a cork-squeezer, a pair of nutcrackers are exam-
ples of the second class. Tu the case of the var, the blade of
the oar in the water is the fulcrum,

The treadle attached to the axle of the wheel of a lathe,a
pair of shears,—arc instances of the third class of levers, and
to this class we may refer the dones of the arm and fingers
when put in motion by muscular action.

91, Conditions of equilibrium of-a lever.

(I)  When the lever i3 o straight one and the power and
werght act perpendicularly to the arms, as in any of the three
cases represented wn figs. 1, 2, 3 (Art. 90).

Let R be the force (orreaction) which the fulcrum exerts
upon the lever, and the lever upon the fulcrum in the opposite
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direction, then the lever ABC' is kept in equilibrium by the
three forces P, W, R acting at A, B, C respectively, and
these forces must satisfy the conditions of equilibrium of
three forces (Art. 43).
Hence, since the directions of P and T are parallel, B
must alse act in a parallel direction, and in
fig. 1. R=P+ 1V,
fig. 2. R=W-P,
fig. 3. R=P -1
Also the moments of any two of the forces P, W, R about a
point in the line of action of the third must be equal in mag-
nitude and of opposite tendency. Hence taking the moments
of P and W about C, we have I>. AC=W.BC (i) in each
of the three cases.
In levers of the first class it is obvious from equation (i)
that P will be > or < W according as AC is < or > BC,
i.e. according as the fulcrum is nearer to P or to W.

3

In levers of the second class, Pis always < W,
In levers of the third class, P is always > W,

(IT) When the lever is of any form, and the power and
weight act in any given directions (fig. Art. 89).

In this case also the three forces P, W, R must act in one
plane (Art. 43), and, taking moments about the fulerum O,
we get P.Op=Q.0q......... (i),

Op, Og being the perpendiculars from the fulerum upon the
lines of action of P and W (@ and W having the same
meaning).

The results (i) and (i} may be stated thus: “the power
and the weight which balance each other on a lever must be
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inversely proportional to the lengths of the perpendiculars
drawn from the fulcrum upon their directions,” or

£ __ perpendicular upon direction of W~
I perpendicular upon direction of 2°

92.  The magnitule and direction of the pressure B which
the fulerum exerts in case (i) may be expressed thus,—sup-
posing for simplicity AOB to be a straight linc;

put CAO0=a, CBO=8, COB=6§, AO0=a, B0=Ir

then resolving the threc forces P,
W, B parallel and perpendicular /f AN

to AB, we get 4/_ ’_.__.__ I:J
Reos8=Pcosa— Weos S, % ___/‘/ N
Rsin@=21sina+ Wsin B, ’ /

whence, squaring and adding,

R=y{P*+ W*~2PWcos(a+B)),

also dividing the latter by the former

Psina+ Wsin B

Pcosa~ WeosB’

which two equations express R and 8 in terms of known
quantities,

tanf =

Obs. We might, in cases (I) and (II), have obtained other
equations of condition by taking moments about some other
point; as, for example, about A, in which case we get

R.AC=W.AB, fig. Art. 90,

or, in fig. Art. 92, if Ar, Aw be perpendiculars drawn from 4
upon the lines of action of R, W,

R Ar=W. 4o,
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which gives It at once independent of P; but conditions so
obtained are not independent of those already obtained, but
might have been deduced from them, as the student will in-
fer by examining this case in particular, or by referring to
the more general case discussed in Art. 43.

93.  If two weights balance each other on a straight lever
tn any position which is not vertical, they will bulance in any
other position of the lever.

Let P, @ be the two weights suspended from the points
4, B of the lever whose fulcrum is ¢ and centre of gravity

(7, W =weight of the lever; draw HC horizontal in the
vertical plane in which the lever can move. Suppose the
lever to be in equilibrium when inclined at an ¢ @ to the
horizon, the points 4, G, C, B being in a straight line,—
then since P, Q, W act in vertical lines, the reaction R of the
fulerum must also be vertical, and we must have

Also taking moments about the fulerum C, we must have
P.AQcosf+ W.C0Gcos8=Q.BC cosd.........(ii),



THE STEELYARD. 113

or since 8 is not = 90°, and .. cos 4 is not = 0, we may divide
out cos 8, and obtain

P.AC+W.CG=Q.BC ... (iii)

as the condition of equilibrium—and this is satisfied if the
lever assume any other position A'G’B inclined at any other
angle to the horizon. Hence the lever will balance in any
other position.

Note. If 6 =90° then cos @ =0, and we should not be just-
ified in deriving equation (iii) from (ii) by dividing out cos 8,
in fact when the lever is vertical it will balance with any
weights suspended at 4, B—It is necessary that 4, B, G and
C—the point where the fulerum acts on the lever—should be
in a straight line.

94. The various kinds of balances which are in use for
determining the weight of substances are constructed on the
principle of the lever. We will here give a description of
the common or Roman steelyard, the Dunish steelyard, and of
the common balance; referring the student for a more com-
plete account to Delaunay’s Cours élémentaire de Mécanique.

The common or Roman steelyard.

This balance consists of a straight
lever 4B suspended by the point C,
and capable of turning about this Z--¢.
point. At a point 4 on the short I
arm is attached a hook (or some- -
times a scale-pan) from which is
suspended the substance whose weight W is required. A
ring D, carrying a weight P of constant magnitude, can
slide along the graduated arm CB till P and W balance

P.M 8
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each other about €, when the lever is horizontal. The
graduation at which I’ rests when this is the case indicates
the weight of the substance.

In graduating the arm BC account must be taken of the
weight of the lever: let @ be the weight of the lever, and
G its centrc of gravity, D the point from which P is sus-
pended when it balances Wat A ; then taking moments about
C, we have

P.CD+Q.GO=1T.CA........ (x).

If on the arm CA4 we take a fixed point O such that

P.CO0=Q. CG, the equation (a) becomes
P.CD+P.CO=W.C4, or . OD=T.04;
W
. OD = }, . CA

We may now graduate OB by taking distances from O
successively equal to C4, 204, 8C4,... and marking them
1,2, 8, ...—if necessary these distances may be subdivided.

Suppose, for cxample, that P rests at the fifth graduation,
then OD=5.C4, and . W=35P, and the weight of I’
being known that of W is known also.

Obs. By increasing CA, or by diminishing P, the sen-
sibility of the steclyard would be increased; i.e. the distance
would be increased between the points from which P must
be suspended in order successively to balance two weights
of given difference.

For suppose I the point of suspension of P when the
weight is W';
‘ then P.OD' = W’'. (A,

and P.OD=W.(C4;
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therefore P.DD'=C4 . (W' - W),

or DI = (IA

(W =W);

i.e. W' =W being given, DD would be increased by an
increase of C4 or by a diminution of I

c4

p 8 a measure of the sensibility of the

steclyard, and this being constant in the same steclyard for
different positions of /), we infer that the same steclyard is
cqually sensible for all pusitions of I

We may regard

The name of this steclyard has often led to a mistaken
idea of its origin— Romman is an eastern word for the pome-
granate, and the formm of the weight P gave rise to the name.

95. The Danish Steelyard.

This steelyard consists of a bar
AB terminating in a ball I which 4 -0
serves as the power, and the sub- &w a Pf}
stance to be weighed is suspended
from the end A ; the fulerum C—which is frequently a loop
at the extremity of a string by which the instrument is
suspended—is moved backward or forward till P and W
balance about it.

o.B

To graduate the Danish Steelyard.

Let P be the weight of the bar and ball of the steclyard,
which we may suppose to act through its centre of gravity G :
and let C be the position of the fulerum when the substance

§—2 -
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whose weight is W balances P about the fulerum. Taking
moments about C, we have

P.CG=W.AC=P.(AG- AC);
>
S AC= 1):*.

by making W successively equal to I, 2P, 3P... the succes-
sive graduations are determined.

Cor. It is obvious from the formula (%) that the distances
of successive graduations from 4 are in harmonic progres-
sion.

96. The common balance.

This balance consists of a lever AB called the beam,
suspended from a fulerum € about
which it can turn freely; the
peint C is a little above the centre
of gravity G of the beam, and
from the extremitics A, I3 of the
arms (A4, GB (which ought to be
similar and equal) are suspended
two scale-pans, in one of which is
placed the substance whose weight
W is required, and weights of
known magnitade are placed in
the other till their sum P just balances W; this being the
case if the beam be exactly horizontal in a position of
rest. In this case if the arms are perfectly equal and
similar and the scale-pans also of equal weight, P will be
exactly equal to W. If these weights differ by ever so little,
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the horizontality of the beam will be disturbed, and after

oscillating for a short time, it will rest in a position inclined

to the horizon, and the greater this inclination is for a given
difference of PP and W the greater is the sensibility of the

balance. A simple way of testing the accuracy of a balance

is by interchanging I* and W in the scales. The balance
ought to retain the same position when this is done.

97.  To determine the position of equilibrium of a balance
when loaded with unequal weights.

Let Pand W be the weights in the scales. AP =2¢a;
h =the distance of C the fulerum from the line joining 4, B,
W’ the weight of the beam and scales, and % the distance
from C (measured along the line k) of the point through which
the resultant of W' acts—/I remains unchanged when the
balance is tilted,—6 the angle which the beam makes with
the horizon when there is equilibrium.

If we take moments about C, the algebraic sum must be
equal to zero.

Now the perpendicular from ¢
on the direction of P=a cosf—hsin b;

.............. veerenn W=ksn8;
we shall have then, taking account of the tendency of the
moments of the several forces,
P(acos@—hsinf)— W(acos® +hsinb) - Wksinf=0;
- - DP=-Wa
w0 = Wk W

This equation determines the position of equilibrium.
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98.  The requisites for a good balance are

(i) The beam ought to be horizontal when loaded with
equal weights in the scales at 4 and B. This will be the
case if the scales are of cqual weight, and if the line drawn
through C at right angles to A B divides the beam into two
similar and equal arms.

(i) The balance ought to he sensible; i.e. the angle 6
which the beam makes with the horizon ought to be easily
perceptible when the weights I2 and W suspended at 4 and
B differ by a very small quantity ; and the greater tan 8 is
for o eiven small difference P — W, the greater is the sensi-

tan 8
P _ jy & & measure of
the sensibility, and hence we see that this requisite will be
securcd by making E+ W W)a}HF” k
thus the smaller 2 and L are made, the greater will be the
sensibility of the balance.

bility of the balance. We may take

as small as possible;

(iii) The balance ought to be stable; i.e. if the equi-
librium be a little disturbed either way, there ought to be a
decided tendency to return to its original position of rest.
This tendency, for any position of the beam, will be measured
by the moment of the forces tending to restore the beam to
its former position of rest. 1f for example P = W, then when
the beam is inclined at < # to the horizon the moment of the
forces which tend to diminish 8, and therefore to restore
the balance to its position of equilibrium, is

{(P+ W) &+ Wk} sin 6.
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Hence this ought to be made as large as possible in order to
sceure the third requisite,

This condition, it will be observed, is to some extent at
variance with the condition for sensibility; but they may be
reconciled by making (P+ W)k + WL considerable and «
large; i.e. by placing the fulerum at some distance above
the centre of gravity of the beam, and by making the arms

long.

.

In a balance of great delicacy the fulerum should be as
thin as possible—it is generally o knife-cdge of hardened steel
working upon agate plates.

The wovvporative importance of these qualities of senst-
bituty and stabelety in a balance will depend upon the service
for which it s intended :—for weighing hoavy goods, stability
is of more iwportance ;—the balauce employed in a chemical
laboratory must possess great sensibility, and such instru-
ments have been constructed to indicate a variation of weight
as small as a million-th part of the whole,—and even less.

99. There are various kinds of compound balances
formed by combinations of levers in use for weighing heavy
articles, as merchandise, baggage, &c.—it will suffice here to
give a brief description of the arrangement of the levers in
the Balance of Quintenz in a simple form,

The figure represents a section of the machine by a plane
dividing it into two symimetrical parts.

The platform A B upon which the weight @ is placed is
supported at one end upon the knife-edge fulcrum E, and at



120 QUINTENZ BALANCE.

the other by a piece DI which is connected with the upright
piece BC by a strong brace CD.

- N
c i
S
A L B L
s
e c
rLAl‘ &

GF is a lever turning about a fulerum F and connected
with the horizontal lever LMN by a vertical rod GL; IIK is
another vertical rod connceting DH with the lever LMN
which turns about the fulerum M, and from the end IV of this
lever the scale-pan I is suspended.

The ratio of FE : F(7 is by construction the same as the
ratio KM : LM,—usually 1 : 5.

The weight @ thus produces pressures at £ and H : the
pressure at £ by means of the lever FG and rod GL trans-
mits a pressure to the lever LMN at L, and the pressure at H
is transmitted to the same lever LMN at K,—and in conse-
quence of the ratios FE : FG and KM : LM being equal, the
pressure at L produces the same effect on the lever LMN
as a pressure equal to that at £ would do if applied at K.

Thus the effect on the lever LMN is the same as if the
whole weight Q were suspended at K, and equilibrium is
. produced by placing suitable weights in the scale-pan P,

The ratio KM : MN is commonly 1 : 10,—so that the
weight of Q is ten times that required to balance it at P.
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100. The Wheel and Aale.

This machine consists of a cylin-
der HH', called the axle, and a wheel
ADB, the two having a common axis
terminating in pivots C, C’, about
which the machine can turn;—the
pivots resting in fixed sockets at
C, C'. A rope, to one end of which
the weight W is attached, passes
round the axle, and has its other
end fixed to the axle. Another rope
passes round the wheel, being at-
tached at omc end to the circum-
ference of the wheel, and at the
other end the power P is applied.
The ropes pass round the wheel and
the axle in opposite directions, and
thus tend to turn the machine in
opposite directions.

Conditions of equilibrium of the wheel and axle.

The efforts which P or W makes to turn the machine
about its axis will be the same in whatever plane they act
perpendicular to the axis,

‘Let fig. 2 represent a section of the machine perpendicular
to its axis O; M and N the points at which the strings quit
the circumferences of the wheel and axle; join OM, ON,
which will be perpendicular to MP, NW respectively.

We may regard MON as a lever kept in equilibrium
about the fulerum O by the forces P, W acting at arms
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MO, ON, and there will be cquilibrium if P. MO = W.XNQ,

P NO . . . ! . -
or =g b e if the power is to the weight as the radius
of the axle is to the radius of the wheel.

101. Obs. 1f the thickness of the ropes cannot be neg-
lected, we must suppose the action of 2> and W to be trans-
mitted along the middle or axis of the ropes, and in this case

OM =radius of wheel + radius of rope,
ON = radius of axle + radius of rope.

Instead of the wheel 4D (fig. 1), the power P is some-
times applied to a rigid rod fixed into the axle at right angles
to it; and in the previous condition of equilibrium we must
take OM =length of the arm at which P is applied. The
capstan is an example of this construction.

Conr. 1. In a combination of wheels and axles, in which
the string passing round one azle also passes round the wheel
of the next machine, and so on, we should readily obtain

P _ product of radii of all the axles
W product of radii of all the wheels”

Combinations of toothed-wheels are substantially examples
of this kind.

Cor. 2. If the power and weight act in parallel directions
on the wheel and axle, and on opposite sides of the axis, the
pressure on the axis= P+ W; but if they act on the same
side of the axis, the pressure on the axis =P~ . (Art. 91.)

102. The Pully.

The pully is a small circular disc or wheel having a
uniform groove cut on its outer edge, and it can turn about
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an axis which passes through its centre.

sockets within the block to which the
pully 1s attached. When the block is
Jixed, the pully is said to be fixed ;
in other cascs it is moveable. A cord
pasges round the pully along the
groove, and at its extremities the
power and weight arc applied.

The pully is very useful for changing
the direction of the tension of a string;
and as we shall here suppose the groove
to be perfeetly smooth, the tension at

123

This axis rests in

all points of the string between the points of application of

Land W will be the same.  (Art. 43,

In the following account of some of the more simple com-
binatious of pullies, we shall neglect the weight of the strings,
and suppose the radius of any pully to be the distance from the
axis to the centre of the string or cord which passes round it.

103.  Conditivns of equilibrium on a single moveuble pully.

(iy When the strings are parallel,

Since the teusion of the string P4 BC which passes round
the pully is the same throughout, the tensions

upwards of the portions AP, BC arc each equal
to P; and since there is equilibrium we may

suppose the strings AP, BC attached to the

pully at 4 and B, the points where they quit

the pully; and the weight W, which is sus-
pended from O, the axis of the pully, is sup- 4
ported by the upward tension of the strings
AP, BC. Hence, considering A OB as a lever kept in equi-

[
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librium about a fulerum O, we have (Art. 90) 2P = W the
condition required.

(i) When the strings are not parallel.

Let the string quit the pully at 4 and B. Then since
the tension along AP is cqual to that
along BC, their resultant will bisect
the angle between them, and this re-
sultant must be equal and opposite to
the weight W suspended from the axis
of the pully, and acting in a vertical
direction. W

Hence AP, BC must be cqually
inclined to the vertical ; let @ be this inclination, then the
resultant of the two tensions, which we may regard as acting
at 4 and B, is=2P cos f, and this must be equal to W;
i.e. 2Pcos § = W,—the condition of equilibrium.

Obs. If the weight of the pully be taken into account,
Jet it be 1w, and we shall obtain

2Pcos@= W +w for the condition of d
equilibrium.

If instead ‘of a weight W hanging 4 -
vertically, a force B be applied to the 7

pully in direction OZ by a string or

otherwise, we may shew as before that

when there is equilibrium AP, BC /&

must be equally inclined to the direc-

tion of R, and we shall have 2P cos 8 = R for the condition of
equilibrium, 26 being the angle which 4P makes with BC.

104. Conditions of equilibrium in a system of pullies.
I Inasystem of pullies in which the string which passes
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round any pully has one extremity fixed
and the other attached to the pully next
above it (as in the figure), the portions not
in contact with any pully being all parallel.
Let ¢, be the tension of the string which
passes round the lowest pully, 1, ¢, ...
that of the string passing round the second,
third...pully, and let w,, w,, w,...be the
weights of the pullies 4, 4,, 4,...

Then for the equilibrium of the pully
<, we shall have the equation of condition
2 =WHw,......... (1) (Art. 91),
and for the equilibrium of A,, the force upon it downwards
i3 equal to the tepsion of string A,4, + 1w, and the force

upwards is 2¢,, hence we get

2, =t F w0, (2),

similarly, 2, =t,+w,............ (3),

and so on for every moveable pully; if there be n moveable
pullies the last equation will be

2 =ty W, e, (n).
Now if we multiply the equations (1), (2), (3)...(n) by
1.2.2%... 2" severally, add the corresponding sides together
and strike out terms which cancel each other on opposite
sides of the resulting equation, we get

2, = W+ w, + 2w, + 2w, +... + 270,

and it is clear that ¢, = P, hence the condition of equilibrium
becomes

PP =W4+w+ 2w+ 2w, +... +27 w0, e ().

Cor. 1, If the weight of the pullies be neglected,
: w,=w,=...=0,
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and the condition (z) becomes
»P=W.

Cor. 2. If the pullies are all equal and the weight of
each = w, the condition (x2) becomes

Ll =W+T+2+... 4 2w,
or 2'P= W+ (2"=1) u,
which may be written

2P —w)y=W—w.

105. II. In a system of pullies where there are two
blocks, and the same string passes round e -
all the pullies (as in the figure), the parts
of the string between successive pullies
being parallel.

Since the tension of the string is the
same throughout, if » be the number of
strings at the lower block, » 7 will be the
resultant upward tension of the strings
upon the lower block, and this must be
equal to W when there is equilibrium,
that is, nP = W is the condition required;
the weight W including the weight of the
lower block.

106, JII. In a system of pullics
where the string which passes round any
pully is attached at one end of it to the
weight, and at the other end to the next
pully (as in the figure), the strings being all parallel.
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Let ¢, t, t,... be the tensions of the
strings which pass round the successive
pullies A4, 4,, 4,..., and let w,, w,, w,...
be the weights of these pullies scverally.
Then for the equilibrivm  of the pullies
A, 4, A,... i succession, we shall have

t=1r 3
t,=2t 4w, |
t, =2t +, B e e (),
tu = i')/n-l + fu'n—l J

n being the number of pullies of which 2 ~1 only are
moveable. '

Also for the equilibrinm of W we shall have W = resultant
of the upward tensions of the strings attached to the bar 4.1,

Le ot +t,+t 4+ o+t =W, il e (B).
Multiplying the n cquations of (2) by 27, 27, 2"% ., 2in
order, and adding, we get

2, = 2w,  + 2w, _,+..+2%w +2"P............... ().

Again, adding equations (a), we get by means of (8)
We=Ptw, +w,+ ... +w,, +2(W—1);
ile. 2 =WH+P+w +w,+ ..ot Wy yoeennnen, OF
Subtracting (8) from (y), we get
W= ~-1)P+@ ' =1w+ 2"~ +...
’ e+ (=N w,_+w,_,

the relation which must hold good between P and W when
the system is.in equilibrium.
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Cor. 1. If the weight of the pullies be neglected,
w=w,=..=0, ’
and the rclation between P and W requisite for equilibrium
becomes
W= ~-1)F
a result which the student may investigate independently.

Obs. 1t is readily seen that the weight of the pullies
ussists the power P in system I1IL, but in the systems 1. and
11 it increases W.

Cor. 2. If the weight W be suspended from a horizontal
bar AD, the point X to which W is attached must be such
that the resultant of the tensions at 4, B3, C...passes through
K, otherwise the bar would not remain horizontal.

For example, suppose there are four pullics of equal
radius «: then the tension at 4=P, at B=2P at C =2'P,
and at D=2"P, the weights of the pullics being neglected
then, taking moments about 4, we must have A such that

(P+2P+2'P+2°P) AK=P.0+2.P.a+2°P.2a + 2°P.3q;
. 2+2°.2+42".3 34
1.€. AK = ‘1—1'2- .‘T?T.;Q—“— .a= 15 a.

107. A very simple and useful combination of pullies i
employed in the Spanish Barton, the principle .
of which will be obvious from the anncxed
figure. C is a fixed pully round which passes
a string attached to the two moveable pullies
A and B. The weight W is attached to B, and
the string which passes round 4 and B is fixed
at one end at D, and the power P acts at the
other end. .

For the conditions of equilibrium we have
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from the equilibrium of the pully A, tension of string
ACB =2P 4+ A =T suppose, and the tension of the string
PABD being the same throughout and equal to P, we have
for the equilibrium of pully B,
B+ W=2P+T=..4P+A4;
S AP=W+B- A
108, The Inclined Plane.

By an inclined plane, as & mechanical power, is mcant a
plane inclined to the horizon, and the inclination is measured
as in Eyclid, Book XL, Definition 6. Or thus: If a vertical
plane be drawn perpendicular to the inclined plane,—which
for simplicity of definition we shall cull o principal plune—
the angle between the lines of interseetion of this vertical
plane with the inclined plane and a horizontal plane is the
tnclination of the proposed plane to the horizon,

Conditions of equilibrium on an inclined plane.

When a body whose weight is W
s supported on an inclined plane by
a force P, the divection of which makes
an angle e with the plane—the plane
being smooth.

I. Let the figure represent a
section of the inclined plane, made
by a vertical plane perpendicular to the inclined plane;
- BAC = a, the inclination of the plane. Then the forces acting
on the body at O are W its weight vertically, I the reaction
of the plane acting at right angles to the plane, and P the
given force. Hence, in order that the body may be in equi-
librium, P must act in the same plane with W and R, i.e. in
the vertical plane perpendicular to the inclined plane (repre-
seénted in the figure).

~
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Let POB =¢. Then resolving the forces which act on 0,
along the plane and at rmght angles to it, we get
Peose—Wsina=0......... (i),
Psine+ R~ Weosa=0......... (ii).
Tiquation (i) gives the relation which must hold between
W and P; and the second gives
RB=Wcosa—~Pgine=W (cos a— ?I;z:g}f) = Weos(e+a) ,

which gives the pressure on the planc in terms of W,

109. II. Let the plane be rough; and first, let P act in
the vertical planc which is perpen-
dicular to the inclined plane—i.c. ina
principal plane—(as in case 1). I,
DI W, a, e the same as in case L,:
&, the coefficient of the friction actu-
ally exerted, down the plane suppose,
so that w R is the friction; then resolving the forces act-
ing on the body, parallel and at right angles to the plane,

we get
Pcose—Wsina—pu R=0,
Psine+ R~ Weosa=0,
whence we get

P=

sin @ + p, s &
Cos € + i, SIn €
cos (a + ¢ .

R= Waé—e » _*(_7:1 ‘sizfé ......... (ii).

Equation (i) gives the relation between P and W; and
(ii) the pressure on the plane.

If the friction acts up the plane, we have only to change
the sign of p, in the preceding investigation.
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Obs. If u be the coefficient of maximum friction between
the substance of which the body is composed and the plane
(which is determined by experiment, and generally given in
tables of the coeflicients of friction), u, cannot be greater than
4 numerically, and may be positive or negative so far as equi-
librium is concerned.

If the body is just on the pont of moving up the plane

& 08
mmwand L= e

If it be on the point of moving down the plane u, = — p and

pP=wimETHCsT
COS € — u silr €

If Phave any value intermediate to these two, the body
will be in equilibriym, and for a given value of I the co-
efficient of the friction actually in operation will be given

" P cos e — ¥ sinz
by (@5 e s =Yy ga Psin e

Secondly. 1f the direction of P does not lie in the vertical
plane which is perpendicular to the
inclined planc.

Let O be the projection of OP
on the inclined planc, A} the sec-
tion of the inclined plane made by
the vertical plane through O per-
pendicular to the inclined plane,
POD=¢, BOD=p3, BAC=a.

Now friction always acts in the direttion opposite to that
in which the body would begin to move, if the friction were
to cease.

The forces acting on O parallel to the plane are P cos e
along 0D, and W sin a along 04.

9—2
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Hence uR the friction must be equal and opposite to the
resultant of these two forces. Let @ be the angle which this
resultant makes with OA4.

Then resolving the forces which act on O (i) perpen-
dicular to the plane; (ii) along O4; and (iii) perpendicular
to OA along the inclined plane, we get successively

Psine+ R~ Wcosa=0......... (1),
Peosecos B+plcos8— Wsina=0......... (i1),
Pcosesin B~ pRsin@=0......... (i1).

From these three equations we get P, R, and €; i.e. the
force P necessary for equilibrium, the pressurc on the plane,
aud the direction in which friction acts.

1f B=0, then =0, and the results of this case colncide
with the preceding.

110. 1If u = tan ¢, the result of the first casc of II. gives
P=W Si" (2 + $)

cos (e — @)’
and if we suppose e and P to vary so as to satisfy this relation,
we seo that P is least when cos (e — ¢) is greatest; i.e. when
e=¢, and the least force which will pull the body up the
plane is = W sin (a + ¢).

Also the result P=W & <1_i_' ¢) compared with that of
cos (¢ F o)

case I. shews that the coundition of equilibrium on a rough
plane is the same as that on a smooth plane whose inclination
to the horizon is increased or diminished by the angle ¢, the
direction of P remaining unchanged—increased or diminished
acoording as the friction acts down or up the plane,
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Cor. If the force P acts horizontally, then e =~ a, aud
the conditions of equnilibrium become

in case 1. P =1Wtana,

. . sin a + p cos
in the first instance of case IL, Py TR
COS @ — w5l %

111.  The Screw.

The screw is a spiral thread running along the surface of
a circular cylinder, which may be imagined to be generated
thus:

Let A G be a rectangle whose base 4 is exactly equal to
the circumference of the cylinder; make - —-
the rectangles BBD, CF, KI... equal in - - T
every respect, and draw the straight lines e
AC, DE, FG ...; then if the rectangle e
DBH be applied to the surfuce of the /
cylinder so that the base AB coincides AT -
with the base of the cylinder, the broken P
lines AC, DE, FG ... will form a con- /
tinuous line on the surface of the cylinder, 2/ "¢
the point € coinciding with D, E with F, -
and so on. 1f we now suppose this line | e
to become a protuberant thread, we obtain *  ©
a screw, in which the distance between any point of one
thread and the one next below it, measured parallel to the
axis of the cylinder, is everywhere the same and equal to
BC :—the angle CAB which the thread at any point makes
with the base of the cylinder is called the pitch of the screw.

The screw formed on the solid cylinder, as above, works
in a hollow cylinder of equal radius, in which a spiral groove
is cut exactly equal and similar to the thread on the solid
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cylinder, and in which groove the thread of the former can
work freely.

A solid and hollow screw related as above are called
comparion screws; and when in action, one of them is fixed
and the other is turned by means of a lever fixed into the
cylinder at right angles to its axis. By turning the lever a
weight is raised, or a pressure produced, at the end of the
screw, which pressure acts in direction of the axis of the
SCrew.

When the solid screw is small, it is somectimes called
a nut.

112. The figure in the margin
will convey some idea of onc mode of / e
applying a screw to produce pressure, P
and in all the various applications
of the screw we may regard a power
P as applied at the cxtremity of an
arm which is at right angles to the
axis of the screw so as to produce
& pressure in direction of the axis,
which we shall call the weight.

The form of the thread of the
screw is not always the same in
different screws; we shall suppose a section of it made by a
plane through the axis of the screw to be rectangular, so that
the surface of the thread will present the same appearance as
the under surface of a circular spiral staircase.

113.  Conditions of equilibrium on the screw.

In investigating the relation between Pand W we shall
for the sake of simplicity suppose the screw to be vertical,
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and the pressure which balances P to be a weight W placed
on the end of the screw, and which the screw supports.

I. When the screw is smooth.

We may suppose the whole weight Mk,v
W to be distributed along the surface /
of the serew which is in contact with %_"L_.
the companion screw. ~ e ?

Let w be a portion of W supported
at O by the pressure r of the companion /
screw and by a forece p acting hori- c
zontally, i.e. perpendicular to the axis
of the screw : a = the pitch of the screw, i p
i.e. the complement of the angle which
the tangent to the thread of the screw at O makes with the
axis of the screw.

Then the conditions of equilibrium of w under the action
of r and p are the same as those of a body resting on an
inclined plane (inclination = a) under the action of a force p
acting horizontally; hence p=wtana. (Art. 110, Cor.)

Similarly, if w', " ... be the portions of the weight sup-
ported at successive points by the forces p’, p” ... we should
haveo

’” "

p =wtana, p’=w"tana......
and .. p+p +p ' +...=(w+w+w' +. . )tana.
"Now w+ w +w” + ... must equal W the whole weight,
and p, ¢/, p” ... acting at the surface of the cylinder perpen-
dicular to its axis produce the same effect to turn the cylinder
round its axis as the power P acting at the arm C4.

Hence the moments of p, p', p” ... about the axis must
together be equal to the moment of P about the same ; i.e. if
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¢ be the radius of the cylinder, a the length of the arm C4
at which P acts, we must have
pe+pe+pict...=Pa;

P
whence we get cg = Wtana

the relation between P and W required.

Since 27c tan a = distance between two threads, measured
parallel to the axis,

and 2ma = circumference of the circle described by 4,
we may write the condition (i) in the form

P _2mctana distance between two threads
w 27wa  circumference of circle, radius C4°

II. If the screw be rough.
In this case supposing W distributed, as in case I, the
forces which act at O are the weight of w vertically, p hori-
zontally, p the normal pressure on the thread of the screw, and
pp the friction along the surface of the thread; hence taking
the conditions of equilibrium on a rough inclined plane as in
(Art. 109), i.e, resolving the forces along the tangent line and
perpendicular to it, we get (supposing the friction to act down
the screw; ie. to oppose P)
pcosa—wsina—pup=0,
psina+wcecosa—p=0;
whence we obtain
sinadpcosa w )
P=Y sa—psina’ P cosa—psina’

4=
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or if we put p = tan ¢, these become
sin (a4 ¢) w cos ¢

P=% o latd)’ P os(a+ )’
whence as before

p+p +p ' +.=(w+w+w +..) tan (2 + ¢),
and Pg: W.tan (2 + ¢); orP= Wztan (2 + ¢),
the relation between Pand W.

114. Obs. If the friction acts up the screw (i.e. assists
P), then we must change the sign of u and therefore of ¢,
aud we get in this case

P= W—Z tan (2 — ¢).

Note. Since the distance between two threads, measured
parallel to the axis, is the same at all points of the screw, but
the length of one revolution of the screw is greater at greater
distances from the axis, it is clear that the pitch « is different
at points on the surface of the thread which are at different
distances from the axis,—being greatcst at points nearest the
axis, But when the screw is smooth, as in case 1., the

relation between P and W, viz.

P distance between two threads

W~ circumference of the circle, radius C4’
depends only on the distance between the threads and the
length C4 ; hence this result will be true whatever be the

breadth of the thread.

115. The Wedge.
The wedge is a solid triangular prism made of hard
material such as iron or steel, and is used for separating two
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bodies, or two parts of the same body, which adhere power-
fully to each other. The edge of the wedge is introduced
between the parts of the substance, and it is then driven
forward by smart blows of a bammer applicd at its back, or
by some cquivalent process. Hatchets, chisels, nails, carpen-
ters’ planes, swords,—are modifications of the wedge.

The action of the wedge is so essentially dynamical that
it would serve no uscful purpose to discuss its statical con-
dition at any great length; we will only obtain the condition
of its equilibrium in a very simple case.

Jondition of equilibrium of a wedge.

Suppose the wedge isosceles, and let
the figure represent the position of the
wedge inserted in the obstacle and in
contact with it at A4 and B; R, R the
pressures perpendicular to the faces of
the wedge at BB, 4 ; pR, R the fricticn
on the wedge at those points; W the
force applied at the middle point of the
back of the wedge, and « the angle between
the faces of the wedge; then resolving
the forces which act on the wedge in
direction of W which bisects the angle g, p
and at right angles to this, we get

W+u(R+R) cos%—(R-}-R’) sing=o,

# (R~ R)sin g+ (R—R)cos 5 =0,

the latter equation gives B = R', and substituting this in the
former, we get
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. a
W=2ER (sm o~ M COS ;> ,
p being the coefficient of friction actually in operation.

It may be remarked that in many cases the wedge is kept
in its place by friction alone,—in such cases W= 0, and

9!

-

. a a . ]
.. SIn g~ H cos , = 0; 1e p=tan

which gives the coefficient of friction actually required for
the equilibrium of the wedge.

116.  Principle of Virtual Velocities.

Def. 1f A be the point of application of a force P, and

this point receive a small
displacement so as to come . T

to A’, the small spacc A4’ T T,
is called the wirtuul velocity I R N
of the point A, and if A'a AT~

be drawn perpendicular to b

AP, the small space Aa is called the wvirtual velocity of the
force P, and is regarded as positive or negative according as a
lies on the side of A4 towards which I’ acts, or the opposite,—
in other words, the wirtual velocity or displacement of the
point of application resolved in direction of the force is the
virtual velocity or displacement of the force :—the direction of
the force A'P in the new position being supposed to remain
parallel to AP, or very nearly so.

If A/da=a=A"AP, we have Aa=A4".cosa; hence
the virtual velocity of a force is equal to the virtual velocity
of its point of application multiplied by the cosine of the
angle, which the direction of the displacement of the point
makes with the direction of the force.
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The product of any force into its virtual velocity is called
the virtual moment of the force.

117. When a machine or system of bodies is in equi-
librium under the action of several forces, if the point at
which any one force is applied be slightly displaced without
breaking the connexion of any of the parts of the system, the
points at which the other forces are applied will, in general,
also be displaced to an extent dependent upon the displace-
ment of the first point; and the following singular relation
exists among the forces and their several displacements or
virtual velocities, viz. The algebraic sum of each force multi-
plied by its virtual velocity s equal to zero, or, in other words,
The algebraicsum of the virtual moments of a system of forces
in equalibrium is zero.

This 1s sometimes called the equation of virtual velocities,
or the principle of virtual velocities.

Since the displacement of the several points would all
take place in the same tine, it is obvious that they would, ¢f
small, be in the ratio of the velocities of the several points;
and further, since a system in equilibrium cannot move of
itself, the displacements above supposed are hypothetical or
virtuul only, and such as would ensue upon the application of
some additional force which is supposed to cease as soon as
the displacement is effected, and the system to be in equi-
librium and at rest in its new position. Hence the term
virtual velocity.

118. The proof of the principle of virtual velocities in
its general form is of too difficult a character to be introduced
into an clementary work. We will here shew that the principle
holds true in the case of the lever, the wheel and axle, the
several systems of pullies, the screw, and the inclined plane;
in other words, when a power and a weight balance each
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other on any one of these machines, if the power be slightly
displaced, the consequent displacement of the weight is such
that P displacement of P =W . displacement of W,

or P.virtual velocity of = W . virtual velocity of W...(1).

In cach of the following cases, the student will observe
that if the displaceient of Pis in direction of I”s action,
that of IV will be in the direction opposite to W's action ;
i.e. the virtual velocities of I and Hare of contrary algebraic
stgn, so that, although for the suke of obtaining more conve-
nient formula: we shall negleet the algebraic signs of the
displacements and regard their actual magnitude alone, the
equation (1) would algebraically be written

I, P's virtual velocity + W. 175 virtual velocity = 0.

119. Cuse I. When P and W balance euch other on a
bent lever.

Let ACB be a bent lever whose fulerum is ¢'; CM, UN
the perpendiculars from C on
the lines of action of P and W.
Let the lever turn abont 7
through a small angle ACA =« -
g0 a8 to come into the position
ACB ; then AA, BB, are small
circular arcs which may approxi- &2
mately be regarded as straight
lines,» and the angles CAA,,

C4,4, CBB,, CB,B as very nearly right angles.

Hence if 4,¢, Bp be drawn perpendicular to AP, BW,
then Aa, Bb will be the displacements or wvirtual velocities of
P and W respectively, and we shall have A4,=a.A4C, and

Aa=A4, .cos84,da=A4A4,.8in CAM
=x2.40.8in CAM=a.CM.

A
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Similarly,
Bb = DBB,.cos B Bb = BB,.sin CBN
=a.CBsin CBN=a.CN.
L )
Whence 31),;: = g,i\{= }4)7 (Art. 89);
and . P.Aa=W . BD,
or P. P's virtual velocity = W. W's virtual velocity.
120. Case I1.  The wheel and axle.
Let the machine be turned about its axis through a small
angle a, so that the line MON comes

into the position mOn; then Mm, Na /\\
—
AN

will represent the lengths of string M/

which have unwrapped from the wheel %
and wrapped upon the axle respec-

tively ; 1e. Mm, Nn will be equal to

Ld
the corresponding displacements of P o \\"/ty
and W,

e

Mm MO.:a MO
No T NO. 2T NO
w.
=
oo P P's vivtual velocity = W. W’s virtual velocity.

121.  Case III.  The single moveable pully
when the strings are parallel.

If the weight be raised through any space
8, it is clear that the parts of the string on the
opposite sides of the pully have to be shortened
each by a length s, in order that the string
may become tight; i.e. P must move through
a space 2s;

And
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. Psvirtual velocity 25 W
" Ws virtual velocity T s © 0 B
o P P's virtual velocity = W . W's virtual velocity.

122, Case IV. The single moveable pully when the strings
are not parallel.

Suppose the string fixed at B and to pass round a small
peg at 4. Let the centre of the pully
be raised from O to O, in a vertical 4
direction, and let @, @, be the points .&
where the string quits the pully in the
two positions; draw 0Q T perpen-

A\
dicular to 4Q and therefore parallel to (;f )
09
&

0Q. The angle @,0,Q, is small and
equal to QAQ, and we may regard
@@, as very nearly equal to the small
arc of the pully intercepted by 0Q, and 0 Q,; thercfore
since : QOC=:Q 0, we shall have QC=Q,QC, aud
AQ, = AT very ncarly.

Hence it is clear that T'Q will very nearly be the differ-
ence of lengths of the strings AQC and 4Q,C,; and by the
raising of the pully BC is shortened just as much as AC;
Le. 27Q is the length of string which passes over 4,—in
other words, 00, and 2TQ are the corresponding displace-
ments of W and P;

. P’svirtual velocity _ 27Q .
““ “Ws virtual velocity 00, ~ "% 70,0
= 2 cos 6,

if 26 be the angle between the strings,

and this is | = —]},f ;

4
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oo P P's virtual velocity = W.W’s virtual velocity.

123. Case V. In the system of pullies described in (Art.
104).

If the pully A, to which W is fixed
be raised through a space s, the next
pully 4, will be raised through 2¢; the
next A4, through 2. 2s, i.e. 2%, and so on—
so that if 2 be the number of moveable
pullies, P will move through 2%;

P's virtual velocity _ 2% _ W,

© Ws virtual velocity s~ £

PO Ps vivtual velocity = W Ws virtual
velocity.

124, Case VL. In the system of pullies described in (Art.
106).
If the weight be raised through a space
s, the pully A4, will be lowered through s;
A, will be lowered through 2¢ in conse-
quence of (, being lowered through s, and
through s besides in consequence of W
being raised through &; ie A4, will be
lowered through (2+ 1) s; similarly 4, will
be lowered through 22+ 1)s+s; ie
through (2* +2 +1)s... and if there be =
pullies P will be lowered through a space
(24274 . +1)s or (2"~ 1)s.

o Eﬁirtu&l velocity (2'—1)s 9" 1= W
’ W’s virtual velocity & =~ P

= P. P's virtual velocity = W . W's virtval velocity.

e e

Henc
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Note. In the last two cascs the weight of the pullies has
been neglected,—we leave it as an exercise for the student to
prove that wheh the weight of the pullies is taken account of
virtual moment of P+ that of W+ that of each pully = 0.

125, Cuse VIL. In the system of pullics deseribed in
‘Art. 105),

- If the weight be raised through a space s, each of the
strings at the lower block will be shortened by a length &,
and conscquently P> will have to move through s in order
that the string may become tight.  Hence

Is virtual velocity  ms i

o = ==
W’s virtual velocity — & ”’

oL Ps virtual velocity = W . Ws virtual velocity.

Cor. In this system of pullies whilst a length s of string
passes round the pully 4, a length 2y will
pass round the next pully B, 3s round the
next pully €, 4s round D), and so on.

If then the radii of the pullies A, B, C...
are in the ratio of consecutive pumbers
1, 2, 3,...the pullies will all revolve
through the same angle, since the arcs of
circles subtending cqual angles at the
centre are proportional to the radii of the
circles.

Instead of supposing the pullies to be
distinct and separate, we may suppose
circular grooves cut in the upper block (in
the figure) with radii in the proportion of
the even numbers 2, 4, G, ... and in the

- -~
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lower block grooves with radii in the proportion of the odd
numbers 1, 3, 5, ... and these grooves will answer the purpose
of so many distinet pullies; and every point of the circum-
ference of cach groove moving just as fast as the part of the
string which is in contact with it, there will be no sliding or
rubbing of the string over any groove.  This is the principle
of White's pully.

126. Cuse VIII.  The Screw (Fig. Art. 113).

1f the power ” make a complete revolution, it is obvious
that the weight 717 will be raised through a space equal to
the distance of two threads measured parallel to the axis of
the screw, and proportionately for any smaller displacement
of . Hence
P’s virtual veloeity  cireumference of circle deseribed by /1
s virtual velocity — distince between two threads

— -"' .
=P
oo P Ps vivtual velocity = W. W's virtual velocity.

127. Case IX.  The inclined plane supposcd smooth.

Let the weight be displaced along
the plane through a small space 00,
the direction of P remaining appre-
ciably the same after us before the
displacement, draw O,p perpendicular
to OP, and On lhorizontal; then Op 1 2
and O are the corresponding dis-
placements of P and W. Hence

P’s virtual velocity  Op _ 00 ,cose cose W

W’s virtual velocitgr " On - 00,smma sina_ P’

oo P.P’s virtual velocity = W . W’s virtual velocity.
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Note. The student will have little difficulty in proving
the equation of virtual velocities to hold good in the case of u
rough inclined planc.

128, Cuse X, Any condination of Machines.

We have seen that the wirtul moment of the power P
applied to any machine is equal to the edtral moment of the
wetght or force which halances P in that machine.  If now
we have any combination of machines A, B, ('... the foree
which balances P on 4 may be regarded as a power applied
to 13, and the forec which balances this on /2 may be regarded
as a power applied to €/, and so on; and from what precedes
we infer that the virtwal moments of cach of these forees are
equal.  1f then I be the power applicd to the first of a train
of machines, and W be the weight or force which balances it
on the last machine of the train, we shall have

P Psvirtual velocity = W . Ws virtual velocity.

Conversely, if this cquation is satisficd In any combina-
tion of machines, we readily infer that P and W balance
cach other.

129, Mechanical advantage and efficiency.
Def. The mechanical advantage of a simple machine is
the number expressing the multiple which the weight or foree

produced is of the power or force producing it,—in other words,
- . W . . .
it s the ratio p Sor instance, in the case of the system of

. i
pullies (Art. 104) the mechanical advantage = Pp= 2",
If for example there be four moveable pullies, then the
mechanical advantage is 16, and a power equivalent to 8 lbs.
would be able to raise a weight of 16 . 8 or 128 lbs.
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The advantage of a combination of machines will be equal
to the product of the advantages of the several machines in
the combination.

130. In the several machines deseribed in this chapter
we have supposed the forees just to balance cach other, so
that no niotion would ensue; and we have also In most cases
negleeted the friction which will in practice exist among the
parts of the machine.  These suppositions, however, are not
quite accurate when any muechanical agent is cmployved to
produce a certain effect by means of & machine; as for tnstance,
when the pressure of the air is employed by means of a wind-
mill to grind corn, or a horse draws a cart along a rongh read
horizontal or inelined, or a locomotive is propelled along a
raitroad by steam pressure. In all such eases it is obvious
that the pressure applied at fiest to put the machine in motion
must exceed the resistance to be overcome ; and so long as
this excess continnes, the rate of working of the machine wiil
be inereasing : when this rate of working has become suffici-
cutly great, if we suppose the excess of the force over the
resistanee to conse, the machine will go on working uniformly,
aud the foree or power applied will just balance the resistance.

181. The amount of work done by a machine is com-
monly measured by the product of the pressure exerted at the
work and the space through which it is exerted, no regard
being had to the rate or speed at which the machine is
working.

Def. This is sometimes called the labouring force or work
done or efficiency,—in other words, we may define the effictency
of a force to be the product of the number of units of force ex-
erted into the number of units of space through which it acts.
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Thus if F be a force operating through a space s,—then
Fs measures the eficiency or work done.

We shall see subsequently (Dynamics, Art, 83)—that this
measure of work done—namely Fs-—1s cquivalent to what is
called the energy of the budy, brought into existence by the
force.

The work performed in raising 11h. vertically through
one foot,at the sea-level in the latitude of Londown, is called a
JSoot-pound—and may be regarded as a wunit of work : s foot-
ton 1s the work performed in raising one ton verticudly through
one foot. Thus a fost-ton is = 2240 foot-pounds,

The standard of efficiency or work done assumed by Wit
and adopted generally by engineers is 33000 lbs. raised
through 1 foot per minute,

the agent working steadily. This
is called a horse-power, and the cficiency of steam-cngines and
other machines is commonly expressed in terms of this unit.
Thus if a machine of 1 horse-power can raise P lbs. through
S feet in t minutes, we shall have these quantities connected

by the relation of 2f= 33000 H . ¢.

132, We have seen in the case of the simple machines,
or any combination of them, that if the system be put in
motion, then

P . P’s displacement = W . W’s displacement.

This result shews us that however the application of a force
be modified or rendered more useful by the intervention of a
machine, yet no efficiency is gained thereby; and further, the
same result put in the form

Pg velocity W

W's velocity ~ P’
shews that in whatever proportion the intensity of a force be
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increased by means of a machine, yet the space through which
the increascd force will operate will be dimenished in the in-
verse proportion as compared with the space through which
the force applied must operate. Thus for the sake of illustra-
tion, suppose a weight of 500 1bs. is supported on a machine
by a power equivalent to 10 Ibs,, then in order that the weight
might be raised through one inch it would be requisite for the
power to move through a space of 50 inches in the same time.
This diminntion of velocity in the inverse proportion of the
inerease of foree is the foundation of the common phrase, ap-
plied to machines, that what is gained in power s lost in
releetty ; and we may regard it as another form of stating the
principle of virtual velocities in this particular case, or the
same as asserting that no efficiency is gained by the intervention
of a machine.

133. Before closing this chapter we will briefly allude
to the principle of the differential axle and Hunter's Screw.
On the wheel and axle we have seen that (Art. 100)

P radius of axle or WP radius of wheel
W radius of wheel’ radius of axle

from which it would appear that by
sufficiently diminishing the radius of

the axle a given power P might be ‘{
made to raise a weight W of any “
magnitude we please. Practically
however there is a limit to the thick-
ness of the axle; for if it be made too
small, the material of which it is made
will not bear the strain upon it, and
it will break.
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This imperfection is obviated in the differential axle, the
mode of action of which will be sufficiently clear from the
figure,—the string from which W is suspended by a pully
passing round the two axles B, €' in opposite directions: if
7 be the tension of this string, a, b, ¢ the ralii of A, 13, €
respectively, we shall have for equilibrium

2T =W,
Pa+Te=Tb;

_ b—c T=h —c W

.. I)

a a 27
. W 2
and the mechanical advantage = P

which may be increased to any extent by making the axles
B and € as ncarly cqual as we please without unduly re-
ducing the strength of the axle.

134.  Again, in the case of the screw, it is obvious from
the expression
W _ circumference of dhrele described by P\ 44,
P distance of two threads
that by diminishing the distance betwecen two threads
sufficiently, we might obtain any 8
mechanical advantage we please ; but
the distance between the threads
must not be less than the thickness
of the threads, otherwise the com- {
panion screws could not work to- |
gether; and further, if the thickness {
|
L

of the threads be wunduly dimi-
nished, they will not be able to a
bear the strain upon them. This
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difficulty is obviated in Hunter's Screw, in which a screw A
works within another screw B; thus if ¢ be the radius of
the circle described by P,—Db, a the distance between two
threads in the screws B, 4 respectively,—then whilst /2
makes one revolution, W will descend through b, in con-
sequence of the screw B descending through b, but it will
also rise through e in consequence of the screw A4 making
one turn within B; i.e. W will descend through b—a.

Whence P. P's displacement = W. W's displacement gives
P 2rc=W.(~-a),
and w_ 2.
P b—a’
and by making b as nearly equal to @ as we please, the me-
chanical advantage may be increased to any extent without
unduly weakening the threads of the screws.

135. It has been stated in Art. 117 that the algebraic sum
of the virtual moments of a system of forces in equilibrium ds
zero:—a result which is known as the principle of wvirtual
veloctties. The following is a simple proof of this principle
for a system of forces acting in one plane on a body,—for
which I am indebted to Mr Besant.

LeMma.  Any small displacement of a rigid body in one
plane can be effected by a rotution about some one point in the
plane.

Let ABCD be a rigid body in one plane, which by a
small displacement in its plane comes into the position
A'BCD :—Pp, @Qq the directions of displacement of any
two points P, ¢ of the body. Draw lines PO, QO at right
angles to Pp, Qg respectively. Then it is easily seen that P
could be displaced in direction Pp only by a rotation about
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some point in I’0,—and @ in direction Qg by rotation about
some point in QO: and if the o
small motions of two points re
—(as P, Q)—of the body wre / el
known, the corresponding 3,7 i e
motion of any other point of 2, B
the body is determined, and AN 4
will arise from a rotation of e
the body about the point 0,
where the lines PO, QU -
Dt ¢ N AL
intersect, 4 A

This point O may be called the nstantaneous centre of
rotation of the body.

Proof of the principle of virtual welocitics for a system of
JSorces in one plane.

Let O be the instantaneous -
centre of rotation of the body, 7 s
P the point of application of . 7
any force F' of the system of S v

- . - VY e /

forces; O’ the displaced posi- | T 1%
tion of OP : » POI” = 8. | \ I

Draw P'n, OY perpendi- ' _. "~ V%
culars on the line of action of ~— e
F. Then by similar triangles

Pn : PP’ :: OY : OP and PI” =0 . OP,
s Pe=6.0Y,
S E(F.Pa)=0.%(F.0Y)=0............ (a)

since the system of forces being in equilibrium, the sum

of the moments of the forces about any point is zero. The
result (2) proves the proposition.

7 _\\‘



DYNAMICS.

CHAPTER 1.

INTRODUCTION.

1. A MATERIAL particle has been defined to be a portion
of matter indefinitely smallin all its dimensions. It has there-
fore no determinate form or volume,—but it has mass, it may
be subject to the action of force, and may cxert pressure on
other particles. This conception of a particle is of course
conventional,—a result of arbitrary definition,—so that calcu-
lations respecting such a body cannot be at once practically
applied, since no bodies of which we have any experience
correspond to this idea. But a particle having no parts, its
motion is one and indivisible, and is therefore of a simpler
kind than that of a body of finite size, diffcrent points of
which might move differently. Hence we arc led to con-
sider the motion of a particle preparatory to that of bodies of
finite size, and which have a real existence. The motion of
such bodies can be reduced to a dependence on that of par-
ticles, by the application of suitable principles, but in the
present treatise we do not propose to consider the motion of
anything but particles or bodies regarded as particles; for
example, a ball or a body of any kind, whenever it may occur
in the following pages, will be considered, so far as its motion
is concerned, as a particle coincident in position with the
centre of gravity of the ball or body.
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2. When the position of a particle relative to ecertain
fixed points is being altered, it is said to be in motion,—-and
its path is the line (straight or curved) along which it moves.
The tangent to the path at any point is the direction of the
particle’s motion at that point.

Def. Velocity is the term employed to express the degree
of swiftness or speed with which a body is moeving, and this
velocity is said to be uniform when equal lengths of path are
passed over in equal intervals of time, however large or small
the intervals be taken; when this is not the ease, the velocity
1s variable.

When the velocity of a body is uniform, it is measured by
the space passed over in a unit of time,—and is the same at
every instant whilst the motion continues uniform.

When the velocity s not wniform, it is measurcd at any
instant by the space which the body would deseribe in a
unit of time, if the body retained during that unit the same
veloeity which it has at the instant when it is under con-
sideration.

3. An illustration may serve to make this mode of mea-
suring variable velocity clearer.  The specd of a railway-train
is in general continually varying, and considering its motion at
any instant we should say that it was travelling at so many
(say 30) miles an hour, without much risk of being misunder-
stood; we should mean, not that it had travelled 30 miles
during the last hour, nor that it would travel 30 miles during
the next hour, but that if it were to travel for an hour with
the speed it possesses at the instant considered, it would pass
over exactly 30 miles.

In fact, the velocity of a body at any given instant must
be regarded as a quality which it then possesses without any
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reference to its anterior or subsequent state, and without any
reference to causes which may have produced or may alter
the veloeity.

This velocity may and will be influenced from time to time
by different agents, but the veloeity at any instant we regard
as a quality which the body then possesses in the same sense
that it possesses mass and position.

When then we represent the velocity of a body by a
symbol, as v, we mcan (certain units of time and of length
being understood) that if the velocity continued of the same
inteusity for a uunit of time, the body would in that unit of
time pass over v units of length.

Aud the magnitude of this numerical representative of the
velocity (v) will depend upon the maguitudes of the units of
time and space, and will vary with them, viz. directly as the
unit of time, and inversely as the unit of space.

Thus a velocity of 360 feet per minute is equivalent to
120 yards per minute, or to 6 feet per second, or to 2 yards
per second. ’ .

Or more generally—1If v, v’ be the numerical values of any
the same velocity referred to units of time and space T,0:7, &
respectively, then v, o' are connected by the relation
, .7
V= e,

.

4. Formula for uniform motion.

Let s be the space described in time ¢ by a body moving
-with uniform velocity v, then since in each successive unit of
time the body passes over v units of length, we shall have
vt for the whole space passed over in ¢ units of time, i.e.
8=1v.t,—a formula which holds true whether ¢ be integral or
fractional.
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~

5. We proceed next to explain bow change of velocity is
meuasured,

When the velocity of a body is continually increasing in
snch a way that it receives equal increments of velocity in
equal successive intervals of time, however large or small
these intervals may be, the body is said to be uniformly
accelerated, or the acceleration is said to be wneform.

When the velocity changes in any other way, the accele-
ration is variable.

Measure of acceleration.

When the acceleration is uniform, it is measured by the
quantity by which the velocity is increased in a unit of time,
and 1s the same at all times during the motion.  When the
acceleration is variable, it is measured at any instant by what
would be the tnerease of velocity in a unit of time, supposing
the rate of increase of velocity to be uniform for that unit,
and of the same intensity ag at the instaut considered.

6. When then we express the acecleration of a body by
a symbol £, we mean (certain units of time and space being
understood) that if the rate of increase of velocity continued
of the same intensity for a unit of time, the velocity would be
increased by fat the end of that unit.

A second is frequently taken as the unit of time, and a
foot of length, but as before in Art. (3), any other units might
be chosen instead, and the numerical value of f for given
units of time and length being given, its numerical value for
any other assigned units of time and length may be found.

Thus, let f feet be the velocity generated in one second,
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the acceleration being uniform, then 60 f will be the velocity
generated in 60 seconds, i.e. in one minute.

This means that the body at the end of one minute woull
have acquired a velocity of 60 f per second.

Remembering then that when we use a minute as the
unit of time we must measure velocities by the spaces which
would be deseribed in one minute, the velocity acquired would
be GO . 60 . f per minute. Hence f feet being the measure of
the acceleration when one second is the unit of time, 60*. f
will be the measure of acceleration when a minute is the unit
of time,

Thus if the unit of time be altered, the numerical value of
the acceleration will vary as the square of the unit of time,
and besides—as in the case of velocity, Art. (3)—if the unit of
space be altered, the numerical value of f will vary inversely
as the unit of length.

These considerations may be expressed in general terms
as follows—1If £, /" be the numerical values of any the same
acceleration referred to units of time and space 7,0 : 7, 0
respectively, then f, £ are connected by the relation

=7, <1f>”f

T

Obs. Retardation may in all eases be regarded as a nega-
tive acceleration.

7. The term force has been applied to any cause which
tends to move a body or to alter the state of its existing
motion. This conception of it renders it unnecessary to con-
sider the manner in which force is produced, whether it be
by the agency of living bodies, or the pressure of inanimate
substances, or by the intrinsic attraction of matter. We shall
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regard force simply with reference to its effects, viz. the pro-
duction of motion in material bodies; and this points directly
to the two particulars to which the student is requested to
give his attention in estimating the effects of force —the
matter or mass moved, and the velocity and change of velocity
produced.

8. We here introduce a new quality, viz. that of mass,
which is perhaps not familiar to the student.  But experience
teaches us that equal efforts are not required to produce the
same motion in different bodies. 1t will probably be admitted
without hesitation that equal volumes of the swme substance
would acquire equal velocitics by the application to them of
equal forees for the same time; bat this would not be the
case with equal volumes of different substances. Iu fact it
will frequently Lappen that when equal forces are applicd
fur the same time to bodies of different substance and of
unequal volume, the velocity acquired by the body of greater
volume will be greater than that of the other, and wvice versi;
so that the consideration of volume is not sufficient for the
comparison of bodies under this aspeet, and it is necessary to
introduce a new idea, viz. that of mass or mussiveness, and
this must be regarded as a quality of matter sui generes, as
much 8o as its weight, form, volume, &e.

9. We give no definition of this new species of quantity,
which is a fundamental one in Dynamical science; for such
definitions as might be given would be as illusory as those
which might be given of time, space, and many other species
of magnitudes.

But it is necessary clearly to define equality between
quantities of this new species, so that in estimating the mass
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of a body it may be rcferred to the like quality of some other
body taken as a standard.

We give then the following definition of equal masses:

Def.  “The masses of two particles are said to be equal
when two equal forees acting on them similarly for the same
time generate in them equal velocitios.”

The notion of equality of mass of two bodies will readily
lead to that of bodies whuse masses have any assigned ratio.
Thus if the masses of two bodies 4 aud B are said to be in
the ratio m : %, it is meant that A4 and B might be divided,
the former into m equal parts and the latter into » equal
parts, any two of which parts are of oqual mass and satisfy
the above definition.

Def. The mass of a unit of volume of any substance is
called its density,—so that if  be the mass of a body whose
volume is V" and density p, we have m= Vp.

10. If the notion of mass is not familiar fo the student,
he will perhaps consider the account of it given above in Arts.
(8, 9) vague and unsatisfactory. The same vagueness attaches
to any specics of quantity or quality till the conception of it
is impressed on the mind by continued experience, and this
holds more especially with such gualities as are not obvious
to the senses. For example, form and volume being qualities
obvious to the eye, the conception of form and volume is
much more readily acquired than that of kardness, which
requires further experience to familiarize the conception of it.
So the conception of the mass or massiveness of matter, not
being obvious to the sight or touch, requires further experi-
ence before it becomes familiar to the mind.

We may regard the massiveness of matter as that quality
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which enables it to act upon other matter isolated from
itself: for instance, in the case of bodies at the earth’s sur-
face it is that quality which subjects them to the influence
of the earth’s attraction and causes in them the quality which
we call weight.

11. The unit of mass may be assumed at our conveni-
ence ; thus we might take the mass of a cubic inch of lead
for our unit if it be convenicnt to do so under any particular
circumstances.

And when we express the mass of a body by a symbol m
we mean that the body has m times the mass of that body
whose mass we have taken for our unit of reference. See
Art. (44),

12. Momentum.

Def. If m and v be the numerical measures of the mass
and velocity of a body, the product mv is called the momen-
tum of the body.

The momentum of a particle must be viewed as a quality
sut generis, and is to be compared only with the same quality
of other particles, and apart from any external agency which
may have been instrument#l in producing it.

Obs. 'The velocity considered in Arts. (2, 3) is sometimes
called absolute velocity, having been defined and measurcd
with reference to points fixed in space: and this is distin-
guished from relative velocity, which is the term applied to the
same quality defined and measured with reference to points
which maintain an invariable position with regard to one
another, but which are not necessarily fixed in space.

M 11
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A similar remark applies to absolute and relative accele-
ration, and to absolute and relative momentum,

13. Supposing then a particle’s geometrical and dyna-
mical state to be defined at any instant by a knowledge of
its mass, position, velocity, acceleration and direction of
motion, we proceed to examine and measure the forces to
which it is subjected.

It is often convenient to consider the transfer of a body
from one position to another without introducing any con-
sideration of the mass of the body, i.e. to treat of the velocity
and acceleration exclusively of the mass,

Def. When we regard a force under this aspect, with
reference that is to the acceleration it can produce, or its
power of accclerating a given body, we speak of it as an
“accelerating force,” and we measure the accelerating force
simply by the acceleration of the body, i.e. by the velocity
which it can generate in the body in a unit of time, if
uniform ; or if variable, by the velocity which it would gene-
rate in a unit of time, if it acted for a unit of time with the
same intensity as at the instant considered.

The terms acceleration or accelerating force may be and
often are used indifferently.

14, Obs. The term acceleration or power of acceleration
would better express that particular effect of a force which is
here considered, but the term accelerating force was for a
long period sanctioned by usage, and the student is here
cautioned that the term is used in the above sense. For
example, the phrase “A body subject to an accelerating
force f, &c.” must be understood to mean “ A body subject
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tq a force which can produce an acceleration f in that body,
&e.”

Thus when we say the accelerating force on a body is f,
or a body is subject to an accelerating force f, we mean that
fis the acceleration of the body at the instant considered,
or, that velocity is being gencrated in the body at that
instant at the rate of f units of space per unit of time ;
and we may take the unit of velocity to be the velocity
gencrated in a unit of time by a unit of acceleration. -

15. Def. A force considered as communicating motion
to matter, 1.e. regarding both the amount of mass moved and
the amount of motion which it can communicate to it, is
called a moving force,; and it is measured by the momentum
which it can gencrate in a unit of time, the intensity of the
force remaining constant for that time,

The terms force and moving force may be and often are
used indifferently.

Thus, if F be the symbol which represents a moving
force, and f represents the accelerating force of F' on a mass
m, l.e. if f represent the velocity which F can gencrate
in m by acting uniformly upon it for & unit of time, we
have ¥ = mf. '

Hence we see that a moving force is expressed by the
product of the number of units of mass in the body, and the
number of units of acceleration which it can produce in the

body.

Obs. This is sometimes given as the definition of moving
force, i.e. moving force has sometimes been defined to be
the product of the mass into the accelerating force.
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The term stress is often used to express the mutual action
of two portions of matter in its most comprehensive aspect :
it is described or spoken of as pressure, tension, attraction,
torsion, &c., according to the different modes of its operation.

When o body has its form altered under a stress—as an
clastic string under tension, a spring under compression,
&e.—it is said to be subject to a strain.

1f m =1and f=1then F = 1,—that is, the unit of moving
Jorce or unit force is the force which acting for a unit of time
on a unit of mass generates 1n it a unit of velocity. We
may take a second as the unit of time, a foot as the unit of
space, and the mass of a standard pound as the unit of mass,
—so that the unit of moving force or unit force will be the
force which acting on a pound weight of matter for a second
of time will generate a velocity of one foot per second, This
unit of force is called a poundal,

In the French metric system a centimetre, a gramme and
a second are the units, and a dyne is the force which operating
for one second on a gramme will generate in it a velocity of
one centimetre per second. The work done by a dyre acting
through a centimetre is the unit of work and is called an
erg: a million crgs is called a megalery.

The system of weights and measures at present in use in
England is regulated by the “ Weights and Measures Act,” 41 and
42 Viet. c. 49, August 8, 1878. The pound Awvoirdupois is the
stundard of weight and a yard is the standard of length. These
are certain smaterial standards defined and specified in the Act.
Schedules are annexed to the Act giving the scales and subdivisions
together with the respective metric equivalents.

A pound dvoirdupors containg 7000 grains, and 5760 such
graing make a pound Troy. '
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16. The definitions above given of mass, momentum,
accelerating force, moving force, must be looked upan as
arbitrary ; but we accept them as convenicnt terms to employ
in expressing the laws of the action of force upon matter and
in deducing from them their legitimate consequences.  For a
knowledge of these laws we must have recourse to cxperi-
ment, for we can have no & privri knowledge of the constitu-
tion of matter, or of the principles which regulate and modify
its dynamical state or condition.

17.  Impulsive Force.

The effect of a force to which our attention is to be
directed is the motion produced in a given mass; and this
cffect we regard as produced gradually in all cases. In other
words, we consider that some time is necessary during which
a force produces its effect.  This time ray be finite and
appreciable, as when a body is pulled along a plane, or when
a body falls to the earth under the action of gravity, or when
a railway-train gets up its speed from a state of rest by the
action of steam-pressure. But cases frequently occur in which
the time required for the effect of a force to manifest itself
is very small and, so to speak, tnappreciable; as for example,
when a body is put in motion by a blow, alnost instanta-
neously.

“When a force requires a finite and appreciable time in
order to produce an appreciable motion, it is not uunfre-
quently called a finite force, as in the cases first mentioned.
But when motion is produced by a blow or impulse, as in
the latter case, in an indefinitely small time, the force is
generally called tmpulsive; but still we regard the effect as
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produced by the action of a force operating for a very short
time.

In such cases the impulsive force, or the jforce of the
blow, is measured by the momentum generated in the body
by the impulsc.

18, To illustrate this, we may suppose a ball I? at rest
to be suddenly put in motion by a ball 4 striking it. Theo
balls will be in contact for a short time (v suppose), and
during this interval A will press I3 with a force varying in
intensity from the beginning to the cud of the interval r.
The moving force which acts on B will thus be varying, but
we may practically consider it to have a mean intensity and
to remain uniform during the time of contact. If we call
this moving force F, and f the acceleration which F can
produce in the ball B (the mass of which we will call m),
and v the velocity acquired by B at the end of the time 7, we
shall have, Arts. (6, 15),

v=jr, and F=nyf,
consequently Fr=mfr =mu.

Now v the velocity acquired by B is finite, and therefore
the momentum mv is finite, so that although 7 is in general
so small as to be inappreciable, yet F'is so large as to render
the product Fr finite, and we take this finite product to be
the measure of the vmpulsive force,—in other words, if I’ be
an impulsive force which produces a velocity » in a mass m,
then P = mv,

19. Before stating the laws of motion, we proceed to
give some explanation of the geomefrical representation of
the position and motion of a particle ; and for the sake of sim-
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plicity we will in the following Articles (19—24) suppose the
motion to take place in one plane (that of the paper suppose).

If two lines Oz, Oy be drawn in
the plane of motion inclined at any 3
given angle, the position of any point A’/ P
P may be simply defined with refer- /
cnce to these lincs (as fixed lines /
of reference), by drawing two lines 7/ M =
through P, one of them PN parallel
to Oz, the other PM parallel to Oy: if the distances OM,
ON corresponding to any point are known, the position of
the point is easily determined ; for we have simply to draw
lines through the points M, N parallel respectively to Oy
and Ox, and the point in which these lines interscct is the
geometrical position of P.

"The point M is called the projection of the point I on the
line Oz, or the position of P referred to the line O, and simi-
larly N is the projection of Pon the line Oy, or the position
of P referred to the line Oy.

Note. The above mode of representing the position of a
point will be familiar to the student who is acquainted with
co-ordinate geometry as the method of co-ordinates, OM and
ON being the co-ordinates of P measured along O« and Oy.

20. Resolution and composition of velocities.

“Further, if a particle be moving p
with uniform velocity in a given di- P

rection (as PQR), so that P, Q, Rare o/
the positions of the particle at given 7 ¢ /
instants, and if we regard those points £

e T z
P, Q, R as determined by their pro-
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Jections on two fixed lines Oz, Oy, then will p, ¢, » be the
projections of P, @, R on Oz, and we readily see by simple
geometry that the ratio of pg : pr is the same as that of
PQ : PR, whatever be the intervals of time in which the
lengths P¢), PR are described by the particle. That is, if
the particle move uniformly, its projection on a given line Oz
will also move uniformly,—not with the same velocity as the
particle, but with a velocity which bears to that of the parti-
cle a ratio dependent only on the inclination of the direction
of motion of the particle to the two lines of reference Ox, Oy.
The same is obviously true of the projection of the particle
upon the other line of reference Oy.

The velocity of the projection of P along Oz is called the
velocity of P resolved along Oz, or the velocity of I referred to
Oz; and similarly with respect to the velocity referred to Oy.

21. Now since we regard the velocity of a particle at
a given instant as a quality which the particle then possesses,
without any reference to the time during which it retains that
velocity, or the space through which it moves in consequence
of it, and also without reference to any causes which may
subsequently modify it,—we may represent S ¢
the velocity of a particle P by a line P¢/ /‘ —
drawn in the direction of motion, and pro- / //
portional to the velocity in magnitude; # R
and if a parallelogram be constructed, of which PgQ is the
diagonal, and the sides of which (viz. PR, PS) are in the
direction of known lines of reference, the sides PR, PS will
represent the velocity of P resolved along those lines of refer-
ence severally.

TaEOREM. In other words, we have this theorem: “If a
straight line PQ which represents the velocity of a particle
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be made the diagonal of a parallelogram PQRS, whose adja-
cent sides PR, IS are in assigned directions, the resolved
velocities in the direction of the sides will be represented by
those sides respectively.”

And conversely,

“If the resolved velocities of a particle in two given direc-
tions be represented by two lines PR, PS drawn from a point
I, the actual velocity of the particle will be represented in
magnitude and direction by the diagonal of the parallelogram
constructed on those two lines as adjacent sides.”

22. In the preceding Article we have represented velo-
cities as to magnitude and direction by lines, and in a similar
manner we may represent accelerations by lines,—and we
may regard an acccleration as resolved in given directions in
the same way as we supposed a velocity to be resolved in
given directions; and with this understanding we shall have
the following theorems respecting acceleration analogous to
the preceding ones respecting velocity, via.

THEOREM. “If a line A.D, which
represents the accelerationeof a par-
ticle, be made the diagonal of a pa-
rallelogram A CDB, whose adjacent
sides AC, AB are in assigned direc-
tions, the resolved accelerations in
the' directions of the sides will be represented by those sides
respectively.”

And conversely,

«If the resolved accelerations of a particle in two given
directions be represented by two lines AC, 4B drawn from a
point 4, the actual acceleration of the particle will be repre-
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sented in magnitude and direction by the diagonal of the
parallelogram constructed on those two lines as adjacent
sides.”

23. The theorems of the twe preceding Articles may
be called the Iurallelogram of Velocities, and the Parallel-
ogram. of Accelerations. They are analogous to the Paral-
lelogram of Forces in Statics, and admit of the same exten-
sion as the latter theorem, so far as composition and resolution
arc concerned; but the student must bear in mind that these
two theorems respecting velocity and aceeleration form part of
a purely conventional mode of representing geometrically the
position and motion of a particle; and he must be careful not
to confound the meaning of lines which in one problemn may
be employed to represent velocity, with the meaning of other
lines, which in the same or other problems may be taken to
represent acceleration, and vice versd.

24. The results of the parallclo-
gram of velocities may be stated as
follows, with algebraic symbols—re-
sults which may easily be obtained
by trigonometry. A velocity V,in a
direction inclined at angles a, 8 to
the lines Oz, Oy, is equivalent to the
velocities

sin B ,,,S,ir!,f,, )
@B ™ Vein@+p)’

resolved in the direction of Ox and Oy respectively.

And conversely, if these component velocities in direction
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of Oz, Oy be represented by X and ¥, the actual velocity V
and its direction will be determined from the equations

~ 1, sinfg , 1. Bina

sin (2 + )’ =7 sin (a+p)’
which give V*=X"+ 17+ 2X} cos (a + B)l
 Ysin(@a+p) ,
X+ Yceos(z+8) J
which two equations determine the magnitude and direction
of the actual velocity,—the angle (@ + 8) between the fixed
lines Ox, Oy being a known angle.

tan a =

The same formulwe, substituting acceleration for velocity,
will hold good for the resolution and composition of aceelera-
tion.

25. The advantage of the mode of geometrical repre-
sentation explained in Articles (19—24) will become obvious
to the student when he has become acquainted with the laws
of motion, and the application of them to determine the
position and motion of a particle when acted on by known
forces.

Obs. We have supposed, as was before mentioned (19),
that the motion is entirely in one plane; when this is not the
case, the method must be extended by taking three lines of
reference in space analogous to the method of co-ordinates in
geometry of three dimensions; but in the present treatise we
shall have occasion to consider but few cascs of motion which
may not be regarded as taking place in one plane.

26. Having explained the mode of representing the
motion of a particle geometrically, we proceed to enunciate
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and illustrate certain principles deduced from observation
and experiment which are commonly called laws of motion,
and according to which the motions of a body considered as
a particle are calculated.

FIRST LAW OF MOTION, -

27. A particle if at rest will continue at rest, and 1f in
motion will move in a straight line with uniform velocity, unless
it 18 acted on by an exfraneous force.

This law is sometimes referred to as the law of Inertia or
the principle of Inertia. It expresses the fact that a particle
of matter has no power within itself of altering or influencing
its own stute of rest or motion,

Of this principle no direct proof can be given, but it may
be rendered probable by such experiments as the following,
If a ball be projected along a smooth pavement it will con-
tinue in motion for a considerable time, and its path will be
more nearly a straight line the smoother the pavement is;
but the friction will gradually reduce it to rest: if it be pro-
Jected along a sheet of ice, it will continue longer in motion,
and will move more uniformly. Such experiments may suggest
the inference that if all extrancous force could be removed,
the ball would go on for ever with uniform velocity.

28. Having established the principle that a particle can-
not put itself in motion, nor alter in any tanner the nature
of its own motion when it is in motion, we next require some
principle which will enable us to calculate the effects of
forces on a particle in motion. The experiments and re-
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searches of philosophers have led to the following, which
may be called

THE SECOND LAW OF MOTION.

20. When a particle is in motion under the action of any
Sforce, the acceleration of the particle estimated 1n any assigned
direction 1s wholly due to the force resolved in that direction,—
und 3s the same in intensity as if thut resolved jforce alone
acted on the purticle at rest.

Thus for cxample, if the particle P be moving with any
velocity v in the direction PV, and

Y

if X, Y be the forces acting upon / Ypoav
P at t.hn.t instant resolved in direc~ s/.«____t e e
tions parallel to two fixed lines Ox,

Oy,—this second law asserts that / /

(atthe instant under consideration) 4~ =73 """

the accelerations of P estimated in

directions parallel to Oz and Oy are the same as would arisc
from the separate and independent action of X, ¥ upon P at
rest, in direction of Oz and Oy.

By the acceleration due to a force is meant of course the
acceleration which that force is capable of producing in the
particle. And if several forces act simultaneously on the par-
ticle, the force mentioned in the enunciation of the second law
must be taken to mean the resultant of the several forces
which act upon the particle: this resultant being determined
in the same way as the resultant of statical forces is de-
termined, ’

The enunciation of this second law further implies the fact,
that the accelerating power of a given force upon a particle (or
what we have before called the accelerating force) estimated
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in the direction of its action, is of the same intensity what-
ever be the dynamical state of the particle, i.e. whatever be
the velocity and direction of the particle’s motion,—or, the
same as it would be if the particle were for an instant af rest.

30. The principle stated in the second law of motion will
be sufficient (theoretically speaking) when the accelerating
forces acting upon a particle are given, to enable us to deter-
mine the motion of the particle, i.e. to determine its position and
velocity at any time; for we should only have to calculate its
position and velocity referred to two fixed lines as Oz and Oy
(Art. 19, &ec.) (or referred to threc lines fixed in space if the
motion be not in one plane), and when its motion referred to
these lines 1s known, its actual position and velocity are
known. )

It will however frequently be the case in nature that the
forces on a particle will vary with the position of the particle,
and thus its motion will indirectly affect the forces which act
upon it. To determine the motion of a particle generally will
require the processes of the Integral Calculus, but in the pre-
sent treatise we do not propose to consider any motions which .
require for their calculation anything beyond ordinary alge-
bra; such for example as arise from the action of uniform
forces or from impulsive action, or these combined.

31. Illustrations of the second law of motion.

Experiments such as the following may be mentioned as
illustrating and confirming the second law of motion.

If a ship be moving uniformly, a ball when thrown with-
the same force will go to equal distances from the ship,
whether it be thrown towsards the bow or the stern, or at
right angles to the direction in which the ship is moving. A
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ball let drop from the top of the mast will strike the deck at
the foot of the mast, and will fall in the same time, whether
the ship be at anchor or moving uniformly. A ball let drop
from the top of a railway-carriage in uniform motion, will
strike the floor of the carriage at the point directly bencath
the point from which it started. A pendulum will vibrate in
the same time from cast to west, as from north to south, or
in any other direction; thus shewing that whilst it is carried
uniformly in one definite direction by the earth's rotation, its
motion relatively to bodies on the earth’s surface which have
the same motion as the pendulum arising from the earth’s
rotation, is uninfluenced by the motion thenee arising.

32. Experiments such as these, of course, do not prove
the law. Strictly speaking it could only be proved by shew-
ing it to be true for cvery individual case that can oecur,
which is manifestly impracticable, But when the results of
numerous and intricate calculations based upon it are invari-
ably found to agree with obscrvation, we arrive at a moral
conviction of its truth. And the principle itself having been
obtained by induction from a considerable number of facts and
observations, we employ it with confidence in deducing other
consequences from it.

33. The mode of obtaining the magnitude of the accele-
ration which a given force is capable of producing in a given
particle will be cxplained presently (see third law of motion);
and assuming the principle which has been stated in the second
law of motion, and illustrated in the preceding articles, we
shall know how to obtain the magnitude of the acceleration
of the particle, estimated in any proposed direction, when we
know the forces which are acting upon it. Now the effect of
an acceleration on a particle is to create or modify velocity
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in the particle, and we may regard the velocity with which
& particle is at any instant animated, as the accumulation
of the effects of the accelerating forces which have acted
upon it during the successive portions of the interval of time
during which it has been in motion. This consideration will
readily lead us to the following conclusion as a necessary
consequence of the second law of motion stated in Article 29,
viz, the velocity of a particle estimated in a given direction
is wholly due to the acceleration which has operated on it in

that dircction.

34. In order to obtain actually the velocity acquired by
a particle by the action of given forces, we shall in general
require (as before remarked) the integral calculus: but we
will here give the solution of a particular problem of frequent
occurrence, which can be readily inferred from the sccond law
of motion,

35. If there be simultaneously impressed on a particle
two velocities which would separately be represented by the
lines AB, AC, the actual velocity will be represented by the
line AD, which is the diagonal of the
parallelogram of which AB, AC are
adjacent sides. 11/ e

Let the motion of the particle be Py
referred to the directions AB, AC, /
then we may suppose the particle at >
rest at 4 to receive simultaneously
two blows in directions 4B, AC respectively, which would
(if they operated independently of each other) generate velo-
cities represented by. 4B, AC. Complete the parallelogram
ABDC. Then since the instant after the blows are commu-
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nicated to the particle it is subject to no force, it must move
with uniform velocity in some straight line (by first law of
motion), and this straight line must be such that the velocity
along it when referred to the lines 4B, AC will be repre-
sented by the lines 4B, AC (by the second law). The
resultant velocity them must be represented by AD the
diagonal of the parallclogram ABDC.

36. In the problem of the previous article instead of
supposing two blows to be given to the particle simultane-
ously, we may suppose one blow given to the particle alrcady
in motion ; for example, if the particle be moving in direc-
tion AC with a velocity represented by AC, and at the
instant the particle is at 4 let a blow be given to it in
direction 4B, capable of producing on the particle at rest a
velocity represented by AB: the actual velocity as regards
direction and magnitude (by the samc reasening as the above)
will be represented by 4D. .

Hence it appears that velocities (regarded as the effects
of impulses) may be compounded in the same way that
statical forces are compounded by the polygon of forces, and
the same theorem mutatis mutandis will hold good for velo-
cities as for statical forces.

87. The theorem stated and proved in Article (35), may
for convenience be referred to as the dynamical parallelogram
of #elocities ;—it is a consequence of the second law of motion,
and exhibits the application of that law to find the effect of
one or more impulsive forces—those effects being expressed
in accordance with the geometrical mode of defining and
estimating motion previously explained (Art. 19—25). The
student will be careful to distinguish it from the geometrical

P, M 12
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parallelogram of velocities explained in Art, (20), which is
simply a geometrical convention.

In a similar manner from observing the analogy between
the statical parallelogram of force and the second law of
motion, we may regard the second law as the dynamical
parallelogram of accelerations; carefully distinguishing it
from the geomstrical parallelogram of accelerations stated in
Art. (22).

38. We may, if we please, regard any velocity with which
a particle is animated as remaining permanently impressed
upon it, and when force acts on the body, the velocity arising
from the action of that force may be regarded as superadded
(so to speak) to the existing velocity—so that the actual
velocity of the particle at any time in a given dirvection will
be the algebraic sum of the velocities which have been im-
pressed upon 1t in that direction.

39. The following experimental illustration may be given
of the dynawmical parallelogram of velocities.

Let AB represent the deck of a ship which is moving
uniformly parallel to itself from left to right, and let a body
on the deck have a velocity communicated to it, which if the
ship were at rest would make it move uniformly from C to D
along the line CD in the same time that the ship moves
from A B to the position f 4’5"
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It i3 found by experience that the body moves on the deck
relatively to it in exactly the same way as if the ship were at
rest, i. e. (drawing the parallelograms asin the figure) if in any
time 7 the line CD would have been brought to C.D, by the
motion of the ship, and CP be the space which the body
would have moved through in the same time 7 if the ship had
been at rest, then it is found that P, is the position of the

body (CP,= CP) at the end of the time 7, whatever be the
magnitude of .

Thus, in reality, the velocity of the ship has been com-
pounded with that of the body, and the body has described
in space the line G uniformly and in the same time that
the point C on deck has moved to (.

This confirms the dynamical parallelogram of velocities,
and by inference the sccond law of motion also, so far as one
experiment can do so,

40. Thus we see that if a body be moving along with a
space which moves uniformly, and if any velocity be impress-
ed on the body, the motion of the body relutively to that space
will be the same as if the body and the space had been origi-
nally at rest ; and more generally (if the second law of motion
be true) we infer that if several bodies be in uniform motion,
but be at rest relatively to eack other ; and if any force acts on
one of them, the motion of this oue relatively to the others is
thé same as if they had been all originally at rest.—Or we
may state this principle as follows: “If all the points of a
gystem have uniform and equal velocities and move in parallel
directions, and if one of these points or particles be acted on
by any force, its motion relative to the other particles will be
the same as if the common motion of the system did not

199
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exist, and the particle in question were acted on by the same
force acting in the same direction.”

And from hence also it is obvious that we may (when we
find it convenient to do so) impress any the same uniform
velocity on each of the bodies composing a system, without
affecting the motion of these several bodies relative to each
other.

41. When the acceleration of a body for all successive
instants is known, the motion of the body can be calculated as
has been stated before. Now experience shews that the ac-
celerations produced in different bodies by equal forces are not
the same. We require then some principle based upon experi-
ment which will enable us to determine the acceleration of a
body of given mass when acted on by a given force or pressure.
The principle required for this purpose is called the third low
of motion, and may be stated thus.

THIRD LAW OF MOTION.

42. When a force or pressure acts on a particle, the moving
Jorce on the particle is proportional to the force or pressure
acting upon .

That 1s, if P, P' be two forces measured statically (viz.
by the weights they would respectively support) acting on
two particles whose masses are m, m/, and if f, f’ be the
consequent accelerations of the two particles, then

P: P :wmf: mf
or Po mf.

Since our units of force, mass, and acceleration are arbi-
trary, we may for convenience make P’ =1, f'=1, m' =1, and
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we shall then obtain P=mf In other words, if we take our
unit of mass to be such that a unit of force acting upon it
would produce in it a unit of acceleration, then referred to
these units the number expressing the force will be equal to
the product of the numbers which express the mass and
acceleration,

43. If W be the weight of a body whose mass ism, and g
the accelerating force of gravity at the surface of the earth
(i.e. the acceleration which the attraction of the carth, acting
freely on the body in vacuo, would produce in the body), we
shall have by the previous article W=mg = Vpg. (Art. 9.)

The numerical value of g must of course be determined by
experiment, and the observations made upon pendulums are
those which give the most trustworthy results, They are
however of too refined a character to be introduced here; and
it may be sufficient for the present purpose of the student to
state, that if a foot and a second be taken for the units of
space and time, the numerical value of g, in the latitude of
London, is 3219 or 322 nearly.

The value of gis found by experiment to be slightly differ-
ent at different places on the earth’s surface, but the variation
is so small, that we may for all ordinary purposes assume the
value of g to be that just given.

Or we may state the above result respecting the value of
gsthus :

A body falling freely from rest ¢n vacuo under the action of
gravity will, in one second from the beginning of its motion,
have acquired a velocity of 322 feet per second.

44. If we call the moving jforce the dynamical measure
of a force, the third law of motion establishes a connexion
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between the statical and dynamical measures of force, and
asserts that the statical measure is proportional to the
dynamical measure.

Considering the equations
m=TVp, W=mg=Tpg;
we see from the former that the unit of mass would be the mass

of a body of a unit of volume and a unit of density; and from
the latter, since g =322 when a foot and a second are taken

for the units of space and time respectively, the unit of weight
is the weight of a body of the wnit of density, and of volume
equal to the 32:2* part of the unit of volume.

The density of distilled water is gencrally taken as the
unit of density, and a cubic foot as the unit of volume,

The weight of a cubic foot of distilled water is 1000 oz.
avoirdupois, nearly.

45. The equation P =mf must be always understood in
accordance with the explanation given in Article (42). Asa
further illustration, we will apply it to the following problem,

A body weighing 24 lbs. is moved by a constant force, which
generates in a second a velocity of 3 feet per 1”; find what weight
the force would statically support.

If we take m to represent the mass of the body and P for
the number of lbs. the force would support, g the accelerating
force of gravity, we have

24 = mg,

P=mf,
m being the same in both equations. And by the question,
S the acceleration produced by P in the mass m isrepresented
by 8, a foot and a second being the units of space and time,—.
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and with the same units, g the accelerating force of gravity
is =322.

Whence I —'f 2= —?)—z 236 1bs. nearly; that is, the
force which acts on the body would support in equilibrium
a weight equal to 2236 lbs.

46.  Action and Leaction.

If two bodies A and B are in contact and at rest, we know
from statical principles that the pressure which A exerts upon
B is equal in magnitude, and opposite in direction, to that
which /2 exerts upon ; and again, if two bodies A and B at
rest are connected by a fine thread, the strain which the
thread exerts upon one of the bodies is equal in magnitude
and opposite in direction to that which it exerts upon the
other. The question will arise, “Is this the case when the
bodies are in motion? or, if the mutual pressures which they
excrt on each other are not equal, what relation subsists
between them?”  And to these questions (which must arise
in all problems where there is any mutual action between the
different parts of a system of bodies), the principles which
we have already stated afford no satisfactory answer. It 18
assumed, however, that when one particle acts on another
particle, in motion as well as at rest, the second exerts on
the first a force equal in magnitude and opposite in direction
to that which the first exerts on the second. If the force
which the first exerts on the second be called “action,” that
which the second exerts on the first may be called “reaction,”
and the principle just stated may in other words be expressed
thus: “ Whenever one body A acts on another B, the latter
reacts on the former, and this action and reaction are equal
tn magnitude and opposite tn direction.”
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47. The action here spoken of may be of any kind what-
ever; as for example, when two bodies in motion or at rest
press against each other, their mutual pressures are equal and
opposite; or in other words, the action and reaction are equal
in magnitude and opposite in direction. Or again, when two
particles move in any manner connected by a string, the force
which the string exerts on one is equal and opposite to the
force it exerts on the other. Or again, if two particles attract
or repel each other, the dynamical measure of the force which
one of them A exerts upon the other B, is equal to that which
D exerts upon A. This principle is frequently embodied in
the brief statement that “ Action and Reaction are equal and
opposite.”

48. For some illustration of the third law of motion, we
may refer to the observations made with Atwood’s machine
(Arts. 80—82); but the motions of the heavenly bodies atford
the most interesting as well as the most searching test of the
truth of the dynamical principles which are employed in
investigating them.

It has been before remarked, that the laws of motion are
enunciated and asserted to be true only with respect to
particles—and of course, as we have no practical experience of
particles, in the mathematical sense of the word, the student
must’ not expect to find them proved with that degree of
strictness which attaches to geometrical demonstration. He
is recommended for the present to accept them as conclusions
which have been arrived at by philosophers after much painful
inquiry and observation, and not to trouble himself much
with the particular experiments which may be said to suggest
these laws, or with the calculations of more complex phe-
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nomena which are based upon them, till he has grasped their
meaning, and applied them to a variety of problems. He will
then be able more fully to appreciate the bearing of particular
experiments on the principles which they are intended to
illustrate and confirm. But as no individual experiment will
involve one law of motion to the exclusion of the others, the
laws of motion must be taken as a whole,—and when we find
the observations of numerous and complex phenomena agree-
ing with calculations based upon these principles and involv-
ing them in every variety of combination, we arrive at a moral
conviction of their truth.

The following remarks on the Laws of Motion may be
omitted by the student until he is further acquainted. with
the subject.

48*. a  Much difference of opinion has prevailed at
different times as to the proper mode of stating the prin-
ciples derived from experience and observation which are
commonly spoken of as Laws of Motion. These principles
were the subject of much discussion among mathematicians
at the close of the 16th and the beginning of the 17th
centuries, and it would appear that to Galileo is due the
credit of first apprehending and stating the principles in-
volved in the first and second laws. Newton’s Principia was
published A.D. 1687, and the celebrated Azioms or Laws
qf Motion which 'stand at the beginning of the book are a
much clearer and more general statement of the grounds of
Mechanics than had yet appeared,—though they do not

_involve any doctrines which had not been previously stated
or taken for granted by other mathematicians.

The distinction between Statics and Dynamics . now
accepted is of recent date, and was not made till the
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beginning of the present century :—and the statement of the
several Laws of Motion given in this chapter is substantially
that adopted by Dr Whewell. The terms Ainematics and
Kinetics are now much used in reference to the movements
of particles and bodies: see Statics Art. 3, p. 3.

B. The three Laws of Motion given by Newton are as
follows.

Lex 1. Corpus omne perseverare in statu suo quiescends
vel movendi uniformiter in directum, nist quatenus a virtbus
impressis cogitur statum suum mutare.

“LEvery body continues in ils stute of rest or of umifvrm
motion in a straight line, except in so fur as it may be com-
pelled by impressed forces to change that state.”

Lex II. Mutationem motis proportionalem esse vi mo-
trict impresse, et fiere secundum lineam rectam qud vis illa
smprimatur,

“ Change of motion ts proportional to the tmpressed force,
and takes place in the direction of the straight line in which
the force acts.”

Lex III. Actioni contrariam semper et @qualem esse
reactionem: sive, corporum duorum actiones in se mutuo semper
esse @quales et in partes contrarias dirigr.

“To every action there is always an equal and contrary
reaction : or, the mutual actions of any two bodies are always
equal and oppositely directed.”

Remarks.

9. The first Law of Motion as stated in Art, 27 agrees
substantially with the first Law as stated by Newton.
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8. The second Law of Motion as stated in Art. 29 has
regard to acceleration :—and the velocity will be derived from
this in the manner described in Art. 0.

Newton defines quantity of motion to be its measure ex-
pressed by the product of the mass and the velocity—so that
the word motion used in his statement of the Second Law
must be understood as synonymous with momentum. Writers
who adopt Newton’s statement of the three Laws, derive
their method of measuring mass from a discussion of his
second Law.

It has been cxplained in Art. 30, how the velocity at any
time has to be calculated from the acceleration from instant
to instant by methods which—except in very simple cascs—
require the Integral Calculus:—so that we may look upon
the second Law given in Art. 29 as taking up the problem
of determining the motion of a body subject te given forces
at a step earlier in the process than does the second Law
of Newton.

e. The statement in Art. 40, that whenever one body A
acts on another B, the lutter acts on the former, and this action
and reaction are equal in magnitude and opposite tn direction—
agrees substantially with Newton's third Law.

It is maintained by Dr Whewell that the Law (Art. 42),
that the Moving Force is proportional to the Pressure—is only
ancther form of stating Newton's principle that Action and
Reaction are equal and opposite.

He illustrates his view of it by the impact of balls in
which the momentum gained by one ball is lost by the
other—i.e. that the Action of one is equal and opposite to the
Reaction of the other, He applies his reasoning to cases of
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continued pressure, e.g.—a boat and a ship afloat, if a person
in one of them pull the other by means of a rope, the force
on each of the two is the same, namely, the tension of the
rope, but in opposite directions. He extends his reasoning
to attractions :—if two bodies, as a magnet and a piece of
iron, are at liberty to approach each other, the attraction will
act in cxactly the same manner as the tension of a cord by
which one should be pulled to the other—-the pressure on
each of the two, arising from the attraction, is equal and in
opposite directions.

{ The three Laws of Newton are not adopted in the
principal French treatises ;~—but we find in them fwo prin-
ciples only as borrowed from experience, viz.

First. The Law of Inertia, that a body not acted upon
by any force would go on for ever with a uniform velocity.
This coincides with Newton’s First Law.

SecoND. That the velocity communicated is proportional
to the force, and the second and third Laws of Motion are
reduced to this second principle by the French writers,—
especially Poisson and Laplace.

The student may consult on this subject a paper by
Dr Whewell On the principles of Dynamics, particularly as
stated by French writers, in the Edinburgh Journal of Science,
Vol. 8.

». It would seem difficult to express the principles by
which the motion of matter is governed in simpler or more
elementary terms than those given in this chapter :—but we
recommend the student to endeavour to apprehend clearly
what the several principles are which have to be determined
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from observation and experience, without attaching much
importance to the mere phrase Law of Motion :—after he has
mastered the principles of the subject, if he has leisure, he
may examine for himself the different views adopted by
different writers.

A disposition to return’ to Newton's statement of the
Laws of Motion has during the last few years been shewn in
this country.

The student may read with interest WHEWELL'S History
of the Inductive Sciences, Book VI, and History of Scientific
Ideas, Book 111, CH. 7, by the same author.



CHAPTER IL
OF UNIFORM MOTION AND COLLISION,

49. WHEN a body, regarded as a particle, is subject to
no extrancous force it moves with uniform velocity in a
straight line (first law of motion). If then v represent this
uniform velocity, and s be the length of path described or
passed over in any interval of time ¢, we shall have s =t;
which is the formula for uniform motion.

The equation s = vt which connects the three quantities
s, v, t will still be true if the path of the body be curvilinear,
provided the velocity be uniform : but when the path is not
a straight line there must be some force acting on the body
which deflects it from a rectilinear path; and if the velocity
be uniform, this force must always act perpendicularly to the
direction of the body’s motion at any time, and the magnitnde
of this force will depend upon the curvature of the path,
This kind of motion however we do not propose to discuss.

50. The position, velocities, and direction of motion, of two
particles at any time being given, to find after what mterval
they will be at an assigned distance
Jfrom each other, and to determine their
position at that time: the motion being ¢
in one plane.

Let A, B be the position of the
particles at first, and A0, BO the
directions of their motion. Take 40
to represent the velocity of 4, and BT, on the same séale,
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to represent that of B. Complete the parallelogram A4 C and
Join CT. Let a circle with centre O and radius equal to
the proposed distance, cut CT in D): join OD and com-
plete the parallelogram PD. Then will P, Q be contemporary
positions of the particles originally at 4, B, and the time of
moving from 4 to P: that from 4 to O:: CD : CT.
For by the construction
PO :QT=QD: QT=BC: BT = A0 : BT;
S AO—-PO:BT—-QT=A0:BT;
ie. AP : BQ=A40: BT,

that is, AP, BQ are in the proportion of the velocities of the
particles, and therefore they are simultaneously at P, @, and
the distance P @ is equal to 0D, the distance proposed ; and
further, time of moving from 4 to P : time from 4 to O

=AP:40=8BQ: BT
=D : CT by similar triangles.

Cor. 1. Since the circle with centre O and radius OD
will in general cut C7 in two points, there will in general be
two periods at which the particles are at a distance from each
other equal to OD; we leave it as an exercise for the student
to form the construction for the other position.

Cor. 2. Since 0D canunot be less than a certain dis-
tance, viz. the perpendicular from O to C7 (unless 1" and (O
coincide) we see that the particles will approach each other
till their distance is equal to this perpendicular, and is then
a minimum, and afterwards they will recede from each other.

If P, Q be the centres of two spherical balls, the proposition
will enable us to examine the circumstances of their approach
to each other &c.;—if the distance PQ = sum of the radii of
the balls, we find when and where they will come into con-
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tact—if the sum of their radii be <the perpendicular from
O to CT, we can find when and where they are nearest to
each other.

51. An analytical solution of the above problem may be
given as follows.

Let a, b be the co-ordinates of one particle 4, and o/, b’ of
the other B, at first; u, v the velocities of A estimated in
direction of the axes of , y; u/, v the corresponding velocities
of the other B; then after an interval of time ¢ the co-

ordinates of
A will be a +ut, b+ vt, and of
B......... a +u't, b+t

and if & be their distance at this time we must have
F=la—a' +@w—-u). "+ b=+ @w-0).t}%
an equation for determining ¢, the time when the distance
between the particles is 8. This equation has two roots, from
which we may draw the same conclusion as in Cor. 1, Art, 50,
We may arrange the equation in the form
&8=E-2Dt+CP,

in which E, D, C do not involve f, but only the known
quantities a, &', b, V', u, «', v, ¥,

_EC-D'+(Ct-D)
or &= - ;

from which we see that as EC — D is essentially positive,
8 will be least when C¢t— D=0, which correspinds to the
case of Cor. 2.

52. We proceed to discuss the problem of the collision
of two bodies.
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All bodies with which we are acquainted are capable
of being compressed more or less, and have a tendency in
different degrees to recover their original forms when the
compressing force is removed. This property we call their
elasticity: and the internal force which any body exerts to
recover its original form is called the force of restitution.

The ratio which the force of restitution bears to the force
of compression is found by experiment to be the same for the
same substance, whatever be the amount of the compressing
force, but to be different for different substances. This ratio,
which is generally represented by the symbol ¢, is taken as
the measure of the elasticity of any substance, and is fre-
quently called the modulus of elasticity.

This modulus can in no case be greater than unity; those
substances for which it is equal to unity are said to be
perfectly elastic, all others are imperfectly elastic; and the
greater the numerical value of this modulus, the greater do we
regard the elasticity of the substances we are comparing.

Probably no substances are perfectly elastic; in steel
balls the value of the modulus ¢ is about §, in glass about }§.

For the results of experiments on the elasticity of bodies
see Reports of the British Association for the Advancement of
Science, Vol. 111,

53. In considering the effects of collision we shall sup-
pose the bodies to be spheres, perfectly smooth, and of uni-
form density,—so that their centres of gravity coincide with
their geometrical centres.

Def. The line joining the centres of the spheres at the
instant of impact is called the line of impact; when the centres
are moving in the line of impact, the impact is said to be
direct,—and in all other cases oblique.

P M 13
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When a ball 4 impinges directly on a ball B, the effect
of the mutual pressure between them will be to accelerate
B and retard 4; and this will continue till their velocities
become equal. When the velocities are equal the mutual
pressure between them will cease, if the balls are inelastic,
and the balls will move on together uniformly with the
velocity which they then possess.

The intensity of this mutual pressure will vary during
the short time the balls press against each other; but so far
as its effect in producing momentum is concerned we may
regard it as retaining some mean uniform value (see Art. 18),
and we may measure the effect of the collision by the mo-
mentum X gained by B and lost by 4: these effects on 4
and B being equal in magnitude and opposite in direction
(Art. 46).

g
¥

54. If the balls are elastic, the mutual pressure between
them will continue after their velocities have become equal,
in consequenceé of the efforts they make to recover their
original forms; and the momentum gained by one and lost
by the other after that time (which we may call X") will bear
to the momentum generated during the first part of the
collisian a ratio (¢ : 1) depending upon the elasticity of the
substances: so that X' =e¢X, and the whole momentum gained
by B and lost by 4 will be expressed by X + X’ or (1+¢) X,

The time during which this entire action is performed is
too small to be appreciated, but the illustration we have given
may serve to render the naturé of it more intelligible, and
convey an idea of what is meant when it is said that Imvact

s a pressure of short duration.



ELASTICITY, - 105

55. Two snelastic balls moving with given velocities im-
pinge directly upon each other; to find ﬂw velocity of each
after ympact.

Let %, » be the velocities of the two balls 4 and B
respectively, before impact ; and let

the direction of the arrows indicate N
the direction of motion. Since Y 7

they are inelastic, they will move

on together in the same direction after the impact with some
common velocity, which we may call ¥,—let X be the
momentum lost by A and gained by B during the impact;

then 4u' = momentum of 4 after the impact,

=momentum before impact — X,

=Au—X i @@,
By’ = Bv + X by similar reasoning ........... (ii) ;
. adding (A + B)w' = Au+ By...........(i11),
. Au+ By .
OF % = — g e (iv),

and substituting this in (i),
X=Au—-Av =4 (u—u)
_ Au+Bv\ AB(u—v)
=4 <u A + B ) '-2+“B‘ ...... (V).
#&quation (iv) gives the common velocity of each ball

after the impact, and (v) ‘gives the monentum gained by B
and lost by 4.

Cor. 1. We see from (iii) that the whole momentum of
the two balls is the same after impact as before it,~a result
we might have anticipated from the principle of Art. 46,

13—2
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Cor. 2. We may put the results in the following form :
H — ay —ay _X _ B (’Ll, — ‘U)
velocity lost by A=u—v' = A=d5B"

: : e ny? __X_A(u—v)'
velocity gained by B=u —v=p="gIgH’

in which shape they are sometimes useful,

Obs. If B be moving in a direction opposite to that of 4
before impact, we have only to change the sign of v in the
above investigation : in other words, we may regard u, v as
representing the velocities of 4, B algebraically,—the proper
signg being given to them in any particular example in
accordance with the actual directions of motion.

The same remark applies to the subsequent propositions
of this chapter.

Cor. 3. If A impinges on B at rest, we have simply to
put v = 0 in the above results.

56. Two imperfectly e'astic balls moving with given velo-
cities impinge directly upon each other ; to find the velocity of
each after vmpact. (See fig. Art. 55.)

Let u, ' be the velocity of 4 before and after the impact ;

v, v the same with respect to B ;
and let 4, B represent the masses of the balls, the direction of
their motion being indicated by the arrows in the figure.

Let 4 impinge upon B, and let X be the momentum lost
by the former and gained by the latter during the first part
of the impact, i.e. before their velocities become equal, gene-
rated by the force of compression; and X’ the momentum
generated by the force of restitution, after the velocities have
become equal, and which causes the balls to separate,
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Then if ¢ be the modulus of elasticity X'=eX, and X+X'
or (14¢) X is the whole momentum lost by 4 and gained
by B,

whence Au'=Au—(1+e) X}
BY=Bv+(1+e) X

Now X, being the momentum generated by the mutual
pressure of the balls before their elasticity comes into play, is

the same in magnitude as if the balls were inelastic, and

AB (u—1)
therefore by the previous proposition X'= R B

Hence, substituting in (i),

w=u-(1+e)§ u—(1+e) A(-FB’IL)
......... (i),
- v)

v’=v+(1+e)-}‘;——v + (1 +e) A+

These two equations give the velocities of 4 and B after
impact.

Cor. 1. By adding equations (i) we get Au’ + By’ = Au
+ Bv; that is, the whole momentum is unchanged by the
impact.

Cor. 2. We may put the results expressed by (ii) in the
form

%elocity lost by A =u—1u'= (1 +¢) B‘“‘“ﬁ}”)

A ) [ G

velocity gained by B=¢"—v =(1+¢) 53

Also from (ii) we get by subtraction
v —w=v~ut+(l+e)(u—v)=e.(u~9)...... @(iv);
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i.e. the relative velocity of 4 and B after impact: their
relative velocity before impact =v' —y' : u—v=¢ : 1,

Cor. 8. If A4 impinges upon B af rest, we have simply
to put v =0 in the above results.

87. 'The problem of direct collision of two balls (Art. 56),
is sometimes solved by assuming (i) that the total momentum
after impact is the same as before impact,—this would follow
from the principle that action and reaction are equal and
opposite ;—and (ii) that the relative velocity of the two balls
after impact bears a constant ratio to their relative velocity
before impact, say the ratio e:1;—this result being the
statement of an experimental fact, and e being then defined
to be the modulus of elasticity.

On these two assumptions we should have, with the
notation of the preceding article,
Av' + By = Au + By
and v — ' =e¢ (u— ) }
from which we readily obtain the results marked (ii) in
Art, (56), or we may obtain « ¢ in the equivalent forms
v = Au+ By —e Bu-v)
A+DB A+ B
v,_Au+Bv+ A(u=-1)
Ad+B 4+ B
Obs. We prefer the mode of treating the problem given
in Art. (56), as it is more strictly referred to the sxmple laws
of motien than the method of this article.

58. Two smooth imperfectly elastic balls, moving in one
plane with given velocities in given directions, impinge obliquely
on each other—to determine the motion of each after smpact.
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Let Ox be the line passing through the centres of the
balls at the instant of impact,
and let the arrows indicate the
direction of motion of the balls
before and after impact.

Let u, ' be the velocities of A
before and after impact in directions
making angles a, 8 with Oz,

v, v, B, ¢ similar quantities with respect to B.

Now, since the balls are smooth the mutual action between
them will take place entirely in the direction Oz, and hence
it will be convenient to estimate the velocities of the balls in
direction of Ox (Art. 20), and at right angles to Ox; and
these motions may, by the second law of motion, be treated
separately. Since no force acts on either ball perpendicular
to Oz their velocities resolved at right angles to Oz will
remain unchanged by the impact, whence we get

Weinf=usng)...ocrenennnnnn, (i),

v'sin¢g =vsin B
and further, the resolved velocities in direction Ox are affected
by the impact just to the same extent as if these resolved
velocities alone existed.

Now, *, C08 a}, ?COSB} being the velocities of 4, B
wcosd)’ o cos¢

res:)lved along Oz, b:ff;l;e} the impact,—if X be the momen-

tum gained by B and lost by 4 during the impact, we should
get, as in Art. (56),
X = (1+¢) AB (ucosa—vcos f)
e A+ B
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and we get
. B 1
w'cos 8 =ucosa—(1+e) A+ B (ucosu—vcosf) [ oo (iii),

v cosp=vcosB+ (1+e) .71:-%1? (ucosa-'vcosﬁ)J ...... (iv).

The equations (i), (iii) suffice to determine ' and 6, and
(i), (iv) to determine v’ and ¢ :—and these four quantities
define the magnitude and direction of the velocities of the
two balls.

Obs. The above expresses in general terms the solution
of the problem of the collision of two balls moving in one
plane ; any particular cases can of course be deduced from it,
by assigning to the symbols involved their proper values, and
this the student can readily do for himself. We will only
notice the following interesting case,

Cor. If a ball A impinge obliquely upon a very large
ball B at rest, we have

A B
v=0; :4+B=0’ and ;41”+'B—1’ very nearly,
so that we get
w'sinf= wusina)

which give ' and 6
W cos@=—eucosal’ & ’

and ¢ =0, very nearly.

This shews that the motion which is 0
communicated to B is inappreciable; and
since cot @ = — ¢ cot @ we must have 8 > 90° \j
and therefore A is reflected :—a ball strik- j‘f_

ing a fired plane is a case of this kind;
or again, when a ball strikes the earth, the [z
mass of the earth is so great compared with
that of the ball that the motion communi-
cated to it is insensible, r
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59. When two balls impinge upon one another and their
motion does not take place in one plane, in order to de-
termine the subsequent motion of the balls we must employ
the same principles as those we have used in Art. (58), viz.
resolve the velocities of the balls tn the direction of impact
and at right angles to it : theé latter will be unaffected by the
impact, and the former will be altered in the same manner
as if they alone existed. The formule which express the
general solution of the problem require a knowledge of Geo-
metry of three dimensions, and are too complicated to be given
here.

60. A ball impinges obliquely upon a fized smooth plane ;
to find the motion of the bull after impact,

Let PQ be the normal to the plane at the point where the
ball is in contact at the instant of
impact: let the plane of the paper 0
contain this normal, as well as the TR
line of A’s motion before impact, and VTN
intersect the fixed plane in the line {:‘mm
CPD; then the line of A’s motion ‘oo © ___,j
after impact will lie in this same
plane, since no force acts on the ball during the impact at
right angles to this plane.

+Let a, 6 be the inclination to PQ of A’s velocities before
and after the impact ; u, o the velocity of A before and after
impact, P the momentum destroyed by the force of compres-
gion. Then the velocity parallel to CD being unaffected by
the impact, we have

% sin @ =usin 1......... @;
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and since the momentum of A4 resolved along the normal QP
is entirely destroyed by the plane '
X = Aucosa,
and eX is the additional momentum generated in the opposite
direction by the elasticity, or force of restitution ;
o eX = Av cos¥,

whence, u'cosf = eucosa......... (i1).
From (i) and (ii) we get

cot @=ecota }

u' =u « (sin’ a + ¢* cos’ a)

These equations (iii) determine the velocity and direction

of motion of A after impact.

Obs. The student may compare this solution with the
solution of what is substantially the same problem, deduced
in Art. (58), Cor.

Cor. 1. If the ball be inelastic, e= 0; whence 8 = 90°,
and «'=u sing; i.e. when an inelastic ball impinges obliquely
on a fixed plane, after impact it will move along the plane with

& velocity equal to #sin . '

Cor. 2. The impulse sustained by the plane will be
=4 (ucosa + u' cosf) =(1+e¢) Aucosa.

61. To find the velocity of the centre of gravity of -two balls
moving uniformly in one plane. )

Let the position and motion A;L_-
of the two balls be referred to the 5‘31?_”____ .
two rectangular axes Oz, Oy in J }
the plane in which they move, ¢ ‘( l 4

which we may suppose to be the
plane of the paper.
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Let A, B be the centres of the bﬂh at first,

D R - SN after an interval ¢,
a, b co-ordinates of 4, B measured along Oz,
Ly & viiiiriiniiiinens A ; SR

u, u' the velocities of 4 and B resolved parallel to Oz,

which will be uniform, since the balls are supposed to move
uniformly (Art. 20),

then z=a +ut } . .

Fom bpag] e v (),

and if #, T be the co-ordinates of G the centre of gravity of

A and B in the first and second positions of 4 and B, measured
along Ox,—we have by Statics, Art. 74,

(A+B)z=Ada+ Bb)

(A+B)z' = Az + Bx'|

S (A+B) @ -2)=A(x—a)+ B« -1)

= (Au+ Bu')t;

E e B T O et (iii).

Now this represents the space passed over by &, measured
parallel to Oz,—and it o« ¢ the time—consequently the velo-
city of G parallel to Ox is uniform and

~Aut By % suppose.

T A+B
Similarly, if v, o/, v be the velocities of 4, B, G paraliel
to Oy we should have

whenoe %, v being known, the motion of G is known.
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Cor. 1. If there were three or more balls, by a similar
process we should obtain

Aut Bu' +Cu" +... % (4w)
A¥B+C+...  34)°

Av+ By + Ov'+... I (A4v),

T A+ B+C+...  2(4)’

and if the motions of the balls were not confined to one plane,
and we introduced a third co-ordinate axis at right angles to
Oz and Oy, and represented the velocities parallel to this
axis by w, w, w'... we should have

Aw+Bw + Cw’'+... I (Aw)
A+ B+ 0+ s

These formule are analogous to those for the position of
the centre of gravity of a system of bodies (Statics, Art. 74).
They may be expressed generally thus: The velocity of the
centre of gravity of a system of bodies estimated in a given
direction 1s equal to the sum of the momenta of the several
bodies estimated in the same direction, divided by the mass of
the system. Or, if each body of a system be moving uniformly,
the centre of gravity of the system also moves uniformly with a
velocity such that the whole momentum of the system estimated
in any given direction 18 equal to that of a single body (equal in
mass to that of the system) coincident with the cenire of gravity,
and moving with the same velocity as the centre of gravity.

i
]

Q1
1

W=

N.B. The acceleration of the centre of gravity would be
obtained by formula exactly similar to those obtained above
for the velocity—the accelerations of the several bodies being
written in the formule instead of their velocities.

Cor. 2. Since it appears by Art. 40 that if we impress
any the same velocity upon each body of a system, the relative
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motions of the parts of the system are not affected thereby,—
suppose we wish to reduce the centre of gravity of two balls
to rest by impressing velocities equal to — u, —v... on each
ball, we see that the momentum to be communicated to
A, B for this purpose would be

Au+Bu B Au+ By
4+B "’ " A+B
parallel to Ox; and — 4v, — B parallel to Oy.

-~ 44, — Bu...or -4,

62. When two smooth balls impinge upon one another the
motion of the centre of gravity 18 unaltered by the vinpact.

First, let the balls be moving in the line of impact Oz,
i.e. let the impact be direct (fig. Art. 53),

u, ¥ {velocities of ;}1} before and after impact,
u, W velocity of the centre of gravity before angd after
impact ;
then % @ti ._,_Ay lev .
CUSTAxB YT A+B
and (Art. 36, Cor, 1) the whole momentum is the same after
impact as before, therefore Au + Bv = Adu'+Bv’; whence we

get u =1, which proves the proposition.
Secondly, let the impact be oblique.

, Resolve the velocity of each ball in direction of impact
and at right angles to it; by the first case the velocity of the
centre of gravity in du'ectlon of impact will be unaltered
and since the velocity of each ball resolved at right angles
to the direction of impact is unaffected by the impact, the
velocity of the centre of gravity in this direction will not be
changed by the impact,—consequently the velocity and direc-
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tion of motion of the centre of gravity of the balls are the
same after impact as before.

Cor. We can without much difficulty extend the theo-
rem of this article to the case of several balls, and shew that
“ the motion of the centre of gravity of any number of smooth
balls is not changed by the 1mpa,ct inter se of two or more
balls of the system.”

Ezamples and Problems.

63. (I) A ball of 4 Ibs. weight moving from left to right,
with a velocity of 8 yards per second, impinges directly upon
a ball of 10 Ibs. weight moving in the same direction with
a velocity of 2 yards per second ; determine their motion after
the impact.

(i)‘ ‘When the balls are inelastic. (Art. 55.)

Since the weights of the balls are in the ratio of their
masses, we may take 4 and 10 to represent their masses, and
we shall have
. . . Au+ By
their common velocity after impact = ey

4.8+10.2 52
= ._W_ﬂ—:}# yards per second;

AB(u-v) _4.10.(8—2) 240

and X == g == gi10 ~ 18 =
i.e. the mutual pressure between the balls is capable of gene-
rating a velocity of 174 yards per second in a mass whose
weight is 1 1b,

(ii) If the balls are elastic, then using the same nota~
tion as in Art, (56),

174,
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=8 (146108~ 2) 26 30
4+10 7 e

(1+¢€) 4 (B~2) 12
............... Bovrvveiiinnn =24 T = 7 + =3

and X =174 (1 +e).

velocity of A4 after impact =

13

If 8=l—5,

the ball 4 will be at rest after the impact ;

and according as e < or> A will follow B with a less

l' ’
velocity or be reflected back and move in the opposite
direction.

64. (II) A ball 4 moving with a given velocity impinges
directly upon a ball B at rest, and B afterwards impinges
directly upon a ball C' at rest ; find the velocity communicated
to C.

If » be the original velocity of 4, we have by Art. (56),

velocity of B after first impact = (vlat-)—B— % = ¥ suppose,

(1+e)B - (1+e*AB
BxC "’ (A+B)(B+0)

Cor. 1. The velocity communicated to C by the inter-
vention of B will vary with the ma.gmtude of B, and will be

velocity of C after impact=

mm is greatest ;

(4 +B)(B+ ).

the greatest possible when
L

i.e, when is least,

and since this may be written in the form

@ -\ /(B)} +war+von
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this will be the case when B = /(4C);—in other words, the
velocity of C will be greatest when B is a mean proportional
between 4 and C.

65. (III) A particle is to be projected from a given point
P s0 as to pass through another '
given point ¢, after being reflected 3
at a given fixed plane 4B; to
find the direction of projection. :

A )

Suppose T to be the point T\
where the particle must strike the J”
plane, then the plane PTQ must
be perpendicular to the fixed plane, and will cut it in a
straight line A B.

Now the particle impinging on the plane in direction PT
and being reflected in direction 7'Q, we must have

tan QTS =¢. tan PT'A......(i) Art. (G0).

If @S be drawn perpendicular to 4B, and PT produced
to meet @8 in 2, we shall have

tan QTS =etan RTS,
and therefore @S =¢. SR,

This suggests the following simple construction for deter-
mining 7. Draw QS perpendicular to 4B and produce it to

R, making SR=_.QS; join PR cutting 4B in 7. Then

the condition (i) is satlsﬁed and PT is the dxrectxon in which
the particle must be projected. ’

Cor. If the partacle is to pass through Q after reflexion
at two planes TV, US in succession, we have the following
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construction. Draw QSR perpendicular to the latter plane,
making

1
Draw RVD perpendicular to the ‘{ //;
first plare, making - T_ﬁ?—zﬁ(’»____
VD= }; .RV; e -

Join PD cutting the first plane in T,—join TR cutting the
second plane in U,—then if the particle be projected in direc-
tion PT it will be reflected along 7U and again reflected at U
in direction U@, and so pass through the point Q.

66. (IV) A heavy particle impinges upon a fixed rough
plane; to find its motion after impact.

Let the plane of the paper represent the plane of impact,
i.e. the plane which contains the
direction of motion of the particle
before impact, and the normal to
the fixed plane at the point of
contact.

Let u, 4’ be the velocities of
the particle (mass 4) before and after impact.

a, 6 the angles its direction of motion makes with the
norimal QN before and after impact.

X, F the momentum generated by the fixed plane in the
particle, in directions QN and @QC,—the latter arising from
the roughness of the plane.

, Then resolving the motion in directions QN and OD, we
have, as in Axt. (60),
P. M 14
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% Co8 0 = eUCOB®.uvurnrnninirnnnnnen, (1),
the complete value of X =(1 +¢) Aucosa............... (i),
and Aw sin 0= Ausine~ F........ceeeool (iii).

Now we may take F'= pX (iv), where u depends uporn
the roughness of the plane, and is a numerical quantity to be
determined by experiment, it is sometimes called the coefficteni
of dynamical friction; from these four equations we get

w cos@=eucosa
% sin@=usina—pu(l +e)ucosaj’

which two equations determine ' and 6, i.e. the velocity and
direction of motion after impact.



CHAPTER IIIL
OF UNIFORMLY ACCELERATED MOTION.

67. THE acceleration of a particle is said to be uniform
when equal increments of velocity are added in equal incre-
ments of time, however large or small these increments of
time may be.

Hence, in accordance with the definitions and conventions
of Arts. 5, 13, if v be the velocity of a particle at the end of a
time ¢, during which it has been subject to a uniform acocele-
ration f, and if u were its velocity to begin with, we shall
have f. ¢ to represent the increment of velocity, and

If the particle started from rest v =0 and v = £%.

Obs. The formula (i) is algebraically true in any case
where the particle is subject to a retardation (Art. 6, Obs.), or
where the velocity u at the beginning of the time ¢ exists in
a direction opposite to that in which v is measured: in any
case it is necessary simply to assign the proper algebraic sign
to u and £, and the result (i) will be available.

68. If s be the space described from rest in time t by a
particle under the action of a uniform acceleration f, then will
s=fre

Let the time ¢ be subdivided into n intervals, each equal
to 7, so that nr=1¢; then the velocities at the beginning
of the

l1st 2nd 3rd nth of these intervals of »
wilbe 0 fr 2fr.. (n=1)fr;
14—2
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and at the end of the same intervals will be
Jr 2fr, 3fr..nfr.

Now if the particle were to move during each successive
interval of v, with the velocity which it has at the beginning
of that interval, the space described would be

=0.7+fr.r+ 2. 74 +(e—=1)fr. T,
which is
=fr (1424 ..+ (a—1)]

n—l)fx ﬁﬂ(l _%>,Sincen'r=t-

And again, if the particle were to move during each
successive interval, with the velocity which it has at the end
of that interval, the space described would be

=fr.r+2fr. v+ 3fr. 7+ .. tafr.T,
which is

=frf(1+2+...+n)=n 2~~~~fr’=%ﬁ'(l+}l),

Since the velocity is continually increasing during the
time ¢, the space actually described by the particle will be
intermediate to the spaces described under these two hypo-
theses, i.e.

8 lies between -é fe (1 - %) and ; Vi (1 + 11_1)

however large n be taken; but when n is taken indefinitely
large, these two limits each become }f#' and therefore s
which always lies between them must coincide with them in
the limit, that is 8 =§ f#*; and if v be the velocity at time ¢
we have v=j} and thence v* = 2fs.
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69. The same result (s=3}t") may be arrived at very
simply by the following geome-

trical process. T
Let the straight line AK re- -
. . e
present the time (s) of motion P
from rest, and let this be divided ,D—g ]
into n equal parts 4B, BC,CD..., ,_J{Z_r" |
let the lines Bb, Cc,...KT drawn Pl R I\l

at right angles to AK represent

the velocities acquired at the end of the successive intervals ;
the points b, ¢...T will lie in a straight line, since the velo-
city varies as the time from rest. Complete the inner and
outer series of parallelograms, as in the figure.

Now if the particle be supposed to move uniformly during
any interval (as CD) with the velocity Cc which it has at the
beginning of that interval, the number of units of area in the
parallelogram cD will represent the number of units of length
passed over by the particle during that interval. With this
understanding, the sum of the snner or outer series of paral-
lelograms will represent the space passed over by the particle,
supposing it to move during each iuterval witk the velocity
which it has at the beginning or end of that interval respec-
tively ; and the actual space described lies between the spaces
described on these two several suppositions. But when the
number of intervals is increased, and their magnitude dimi-
nished indefinitely, each series of parallelograms approximates
to the triangular area AKT, which will represent the actual
space described by the particle; and since

AK =t, and KT = fi = velocity at time ¢,
. 8= AK. KT=4t.fi=3f0

Obs. The student will remark that the above is sub-
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stantially a geometrical illustration of the proof of the pro-
position given in Art. 68.

70. A particle is projected with wvelocity u, and acted
upon by an acceleration f in the direction of motion. To
find the relation between the space (s) passed over, the time
(t) of motion and velocity (v) acquired.

The particle at any time is moving with a certain velo-
city, and so far as the subsequent motion is concerned it is
immaterial how we suppose that velocity to have been ac-
quired. Let then the acceleration f generate a velocity u by
acting for a time t' and through a space s', then we have
u=/t; and if the particle continues subject to the action
of the same acceleration, and passes over a space s in time ¢,
we have s+ & described from rest in time ¢ +¢';

s+ =%f(t+¢) and & = § f17;

Les=Rf ) =ut + 1);
alsov=f(+t)=u+ft.ccccrvnniininn i)
whence also ,

o= (u+f1) =u'+2f (wt + 3 ) = u* + 2f5...(iii).
"Equations (i), (ii) express the relations required.

Obs. If the acceleration act in a direction opposite to
that in which s, «, and v are estimated positive, we must
change the sign of f in (i), (ii), (iii), and we get

s=ut—% f v=u—~ft, " =u'-2f..... @v).

The student will have little difficulty in obtaining any of
the results of (), (ii), (iii), (iv), of this article, by a geome-
trical proof similar to that in Art. 69.

71. We may arrive at the same results thus by an ap-

plication of the principle stated in Art. 40.
'y A P

LI ¥ [}
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~ Let the particle be projected from A in direction AP
with the velocity u ;—the relative motion of 4 and P will be
the same if we impress upon both a velocity equal to u in the
opposite direction ; this reduces P to initial rest, and if P, 4’
be simultaneous positions of the particle and of 4, v their
relative velocity at the time ¢, and A’ P =s, we have
AP=3}ft', AAd =ut......(0);
cos=ut4+ 40 (i),
and v=u+ft;
the same results as before.

72. Note. The same results might have been arrived at
by a process similar to those employed in Art. 69. These
we leave as an exercise for the student.

We would here caution him likewise against a loose and
incorrect application of the second law of motion to this
problem which we have noticed in some works on dynamics.
They state that the space described in consequence of the
initial velocity is = ut, and the space that would be described
in the same time by the action of the acceleration f in
=} ft, and therefore by the second luw of motion, the whole
space described is the sum of these two, or s =ut + 4 /" The
result arrived at is true, but the principle assumed is un-
sound, for the second law of motion states the theory of the
action of forces at a particular instant, and asserts nothing
directly as to the quantitative effects accruing in any finite
time.

73. When a particle starts from rest (Art. 68)

v=ftand s=14f1;
and from these two equations a relation can be obtained
between any three of the quantities v, 8, f, &
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Thus v=ﬂ=g;=;¢(2fs)

And again, if the particle start with the velocity u
v=u+ft,
s=ut+g,ft’—”—;i‘t
v =+ 2fs;
forms which it is desirable the student should remember.

Cor. The space described in ¢’ from rest =} £,
........................... E=1)" e =2 f(E=1);
.". space described during the ¢* second =4 (2t —1)
Hence the spaces described during the 1st, 2nd, 8rd,...

seconds are §f.1, 3.8, 1.5, ... &c., and are in the ratio
of the consecutive odd numbers, 1, 8, 5...

The result a=v;ut shews that the space described in

any time is the same as if the particle had moved uniformly
during the whole time with the mean velocity.
13
74. One of the simple cases of a uniform force is that
of gravity, the accelerating effect of which is uniform. (Art.
43.) We give.an example of the application of the preceding

results to this case.
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Ex. A particle 18 projected vertically upwards with a
velocity of 100 feet per second, to find (i) its height at the
end of 8", and (ii) the time when 3t is at a height of 140 feet

. above the point of projection.

When a foot and a second are taken as the units of space
and time the numerical value of g = 32.2, (Art. 43), and if u
be the velocity of projection, and & the height at time ¢ after
projection, we have s =ut — }gt', (Art. 70).

For the first part of the example =3, u=100;

.. 8=3100~4322.(3)"=155.1 feet

= height of the particle at the end of 3 seconds.

For the second part of the example s =140, u=100; and
we have to find ¢ from the quadratic equation
s =ut—igt"
Solving the equation we get
_uty = 20)

¢ A

9
Substituting the numerical values of u, g, 5, we got after
reduction,

100 + 31.36__,. "
t==m 0 = 2" 13 or 47.08,

a double result, which is to be explained thus,—at the end of
2",48 the particle is at a height of 140 feet in its ascent, and
at the end of 4”.08 it is again at the same height of 140 feet
on its descent, after having reached its highest point and
then descending.

75. We subjoin a few intemstiné problems which can be
.solved by the principles already explained.
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ProB. Two bodies P, Q are connected by an inextensible
string which passes over a smooth fiwed pully;
to determine the motion of each body, and the V?A
tension of the string. ‘
Let P, Q represent the masses of the bodies; ‘
T the tension of the string, the mass of which

we will neglect, and suppose P > ¢. =0
Now moving force on P downwards = Pg— T, Fa
.................. Q upwards =T- Qg;
. Pg~-T
.". accelerating force on P downwards = e
T—Qq [ ().

........................ Q upwards =__

Now the string being always stretched and inextensible,
the velocity of P downwards and of @ upwards will be always
equal, and therefore the rate of change of their velocities,
i.e. the acceleration of the two bodies, must be equal ;

Pq -T_T-Qg

=T
2PQ ..
P+ 0 AP (ii),
‘ which gives the tension of the string,—andfurther substituting
this value of T in either of the expressions (i), we get the
acceleration on P downwards and on @ upwards
T 2Q P-qQ
=ITPTIT PRI P+Q9
-0

Also velocity of P and Q after time ¢ from rest == 30 gt.

...... space described ...........covoeiveiniinii., §=3 —.g

whence T'=
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Cor. 1. By taking P— Q as small as we please we may
make the motion as slow as we please, and so capable of being
measured,—by which means the value of g might be obtained
from observation. This is substantially the principle of
" Atwood’s machine, which will be described hereafter, (Art. 82).

Cor. 2. If at any instant & part (B) of one of the bodies
(@ for instance) were suddenly detached, there would be no
instantaneous change of the velocity of either body, but the

. - Q+R .
acceleration would become PrQ-R g, and the tf?usxon of

I 1d become 2L
the string wou ecome PO

76. ProB. Two bodies P, Q are in motion, connected by
a string which passes over a smooth fixed pully;
another body R s suddenly attached to Q;—find
the change of velocity und the vmpulsive struin on
the string.

Let P, Q, B be the masses of the bodies, and
suppose B to become attached to @ by a string P
connecting them suddenly becoming tight. Let V'
be the velocity of P und @ at the instant before this takes
place, and V’ the common velocity of the three the instant
after, X,, X, the impulsive strain on the strings P4 Q, QR,
respectively ; then for the motion of the three bodies we
have (Art. 46)

’

PV'=PV-X,
QV =QV+ X, - X,
RV =X,;
whence by adding (P+Q+R) V=(P+Q 7V,
o V= 52ty ),

P+Q+R



220 OF UNIFORMLY ACCELERATED MOTION.

PR

and X, =P (V—- V') =—P—;‘——Q—'|:_R | 2N (il),
. _(P+QR
A,—Pm ............................. (111).

Equations (i), (ii), (iii) determine the three quantities
required to determine the change of motion completely.

MOTION ON AN INCLINED PLANE.

77. Pros. A heavy body Q is drawn up a smooth inclined
plane by another body P, which descends vertically; P being
connected with Q by an inextensible string passing over the
vertex of the plane.

T the tension of the string, and a
the inclination of the plane to the d
horizon, B the pressure of @ on the P
plane.

Let P,  be the masses of the bodies, y ’ A
0a” ‘LP

Then resolving the motion of ¢ parallel to the plane
and perpendicular to it, the weight of @ is equivalent to
a force Qg sin a down the plane,

Qg cos a perpendicular to the plade,
the latter force is balanced by R, the pressure of the plane,

whence B=Qgcosa ......coceurvrrvnereennnnnns @),
and acceleration of Q up the plane= h%_m_g_a,
..................... P downwards = Py P— T .

And since the striﬁg continues stretched, the velocities of
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P and Q in these two directions are always equal and there-
fore the accelerations upon them are equal, that is,

Pg~T _T-Qgsina

P Q ’
PQ(1+sina "
-—9—(1)_*_1«-»5——2:‘! ..................... (i1),
and acceleration on P downwards : nd on Q up the plane

Pg—~T P-Qsina
="9 po= _PQ+_Q—_ CT et (ii),
equation (ii) gives the tension of the string, and (iii) gives

the acceleration from which the velocity acquired and space
passed over in any time may readily be obtained.

whence 7=

Cor. The preceding problem may be varied by sup-
posing @ to move on a smooth hori- Q

zontal table. The student may either — "
investigate the motion in this case inde-
pendently, or deduce the results from

. AP
the present Art. by making a= 0.

78. A heavy body descends freely down a smooth inclined
plane ;—to find the time of motion and the velocity acquired.

Let P be the mass of the

bgdy moving down the plane P
BA, the inclination of which to | 9

the horizon is a, R the pressure -

on the plane. L___ —

Then resolving the forces on
* P parallel to the plane and per-
pendicular to it,
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we have moving force down the plane = Pg sin o,
teeeerereerenn perpendicular to the plane = Pg cos a,
and this latter force is counteracted by R, since there is no
motton perpendicular to the plane;
.. R = Pg cos a, which determines R,
and acceleration down the plane =g sina;
if ¢ be the time of moving over B4 from rest, and v the velo-
city acquired,
AB=}gsina.t’, v=gsina.t

Whence t=\/<52. AB)‘ andv =4/(2¢9.sina . 4B)

sina/’
= /(29 . BO).

The latter result shews that the velocity at 4 is the same
as that of a body falling freely through a vertical height equal
to BC,—that of the plane. _

Cor. If the body start at B with a velocity u, and v be
its velocity after describing any length B4, and kb be the
vertical depth of 4 below B, we shall readily obtain

v* = u' + 2gh.

79. A heavy particle is projected with given velocity up an
inclined plane—to find s velocity at any point of its course.

We suppose the motion to take place in a vertical plane
BAC which is perpendicular to
the inclined plane.

Let the particle P be pro- B
Jjected from A4 with velocity »

. r
up the plane, v the velocity
after a time ¢ when it has
described the space AP =g,

£ the vertical height of P above
the. horizon 4 C, a the inclina-
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tion of the plane, go that #=s.8in a: the resolved force of
gravity down the plane tending to retard P is = g sina.

Hence (Art. 70) v=u—gsina.t..cccnrererernn... (1),

two equations connecting the three quantities v, s, ¢, so that
any one of them being given, the other two may be found:
these results are algebraically true if v and s be one or both
negative.
If we eliminate ¢ we obtain
v'=u"—29sina.s=u*—29z......... (iti),

a result which shews that the change of velocity can be ex-
pressed in terms of the vertical height through which the
particle has ascended-—and is the same in amount as if the

particle had been moving freely in a vertical line upwards—-
the time of motion however would not be the same in the

two cages.
From (ii) we can derive the value of ¢ corresponding to
any value of s, viz.

T Juf = 2gs sina _utJu' -2z (iv)
= geina PP PRI ,

a double result, indicating the times at which the particle
will pass through the position P—-(AP- 8)—ron its way up
angd down the plane,

1] ]

. u .U

The maximum value of 8 is=_- . and of z is=5-,
2gsina 2g

a8 may be seen from equations (iii) or (iv).

Obs. The results of this article will be applicable to the
case of a particle projected freely vertically upwards, if we
write a=90°, and .". sin a = 1.,
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80. We may apply the results of the previous article to
the following problem.

The time of descent of a particle down any chord of a
vertical circle beginning at the highest point of the circle is
the same.

Let AB be the vertical diameter of
the circle, AP any chord drawn from 4.
Then the acceleration on the particle
down AP'=gcos PAB=gsin PB4,

and time down 4AP= \/(q 24p

8in PBA
-/

AB) since AP= ABsin PBA;

and since this result is independent of the direction of AP,
the time down all chords drawn from 4 will be equal.

Cor. Similarly, it may be
shewn that the times down all
chords terminating in B are equal.

The above result leads to the
solution of several curious pro-
blems of lines of quickest descent.
We give one such problem,

To find the line of quickest
descent from a given point A to a given circle.

Construct a circle of which 4 shall be the highest point,
and which shall touch the given circle in some point P, then
will AP be the line of quickest descent required. For if
we join 4 with any other point of the given circle, the joining
line will be longer than the part of it intercepted by the second
circle, and therefore the time down the joining line would
be longer than the time down the corresponding chord of the
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gsecond circle, i.e. greater than the time of descent down
AP; consequently AP is the line of quickest descent from
4 to any point of the given circle.

If the circle be drawn it can easily be shewn that AP
produced will pass through the lowest point of the given
circle,—whence we have the simple rule: Join 4 with the
lowest point of the given circle, and the part of this line
without the circle is the line required.

81. An accurate knowledge of the numerical value of g the
accelerating force of gravity is of great importance, and various
methods have been eniployed to determine it. If a body were
sliding down a smooth inclined plane of elevation a, the ac-
celeration upon it would be g sin a; so that by diminishing
a sufficiently, the force acting upon the body might be reduced
80 as to admit of the motion being observed, without the law
of the motion being affected. This method of determining ¢
was suggested by Galileo,—but since no surface can be obtained
sufficiently smooth, the method does not practically admit of
great accuracy.

A machine invented by Atwood for the purpose of making
observations on the laws of falling bodies, leads to results
much more trustworthy than the preceding.

We will here give a short description of the machine.

82. Two equal weights P, @ are attached to the extre-
mities of a fine thread which passes round a pully C. The
axis of C rests in a horizontal position on four wheels, of
which two only are represented in the figure; the object
of these wheels being to diminish the friction on the axis
of O, which they do very considerably, since the friction of
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rolling is much less than that of rubbing. Hence they are
called friction wheels.

Now P and @ being equal would
be in equilibrium, but if a weight &
be placed upon P, it would begin
to descend subject to an acceleration
:P—-;g”:R -9, (see Art. 75), lf the
motion of the pully C were neg-
lected. It is found that the rotation
of the heavy pully C has the effect
of adding something to the weights
moved (viz. P+ @ + R), without
altering the force which produces
motion (viz, the weight of R). At-
wood determines by experiment what
this is~-call it W,—then the accele-
ration upon P becomes

R
PrQr Ry w9 (=) suppose, and

by diminishing R sufficiently, this
may be reduced to as small a quantity
as we please.

AB is a vertical graduated bar,
and 8, T are two platforms capable
of motion backward and forward along
the bar, and of being fixed in any position by serews. The
platform S is pierced so that P can pass freely through it,
but not R. :

If now the system be allowed to start from rest with P at
& given position (say 4), P will move through the space 48
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subject to the uniform acceleration f,—and R being caught off
at S, P will move on through S7 uniformly with the velocity
acquired. The times occupied in moving through A S and §7
are observed with considerable accuracy by a contrivanee of
clock-work attached to the machine.

The results of numerous experiments made with Atwood’s
machine, lead to the conclusions that gravity has a uniform
accelerating effect, and that its numerical value is that
stated in Art. 43. The most trustworthy results however
are (as there stated) to be obtained from experiments on
pendulums, but they are of too refined a character to b:
discussed here.

83. Work and ENERGY.

It is mot within the scope of this Treatise to explain at
any length the modern doctrine of work and energy, which
besides their application in mechanical science enter largely
into the theories of other branches of physical science—Heat,
Electricity, Magnetism, &c.

For an exposition of the doctrine of work and energy
within moderate compass the student is recommended to read
with attention a small elementary manual on Maiter and
Motion by a Master in physical science, the late Professor
James Clerk Maxwell.

He defines WORK' as the act of producing a change of
configuration in a system in opposition to a force which
resists that change ;—and

ENERGY is the capacity of doing work.

We shall limit our discussion to a few simple cases.
152
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832 Measure of Energy.
When a force F operates through a space s upon a mass

m with an acceleration f, and v is the velocity acquired from
. rest, we have in the simple case when the force is uniform

F=mf, v'=2fs,
and mv* =2mfs = 2F%,
or  Fy=3im

This function of the movement of the body—namely
imy*—is taken as the measure of the kinetic energy of the
moving body :—or, as it is often called simply, the energy
of the body. It is equivalent to Fs, the work done or efficiency
as defined in Statics, Art. 131.

If we consider the body in different positions, u the

velocity in one position, v the velocity in another, when the
body has moved through a space s, we have

W=t A,
or im=imut+mfs=3dmut + Fs........... (a),

and when the force operates to diminish the velocity, we
have

838. These results, a and B8, may be thus interpreted ;—
the change of kinetic energy of the body in moving from one
position to another is equal to the work done in passing
from the former position to the latter position;—the force
being treated as algebraically positive or negative, according
as it tends to increase or diminish the velocity.

If  we have regard to the condition of the body at the
time when it occupies the former position, we may look upon
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Fs as the measure of what is called potential energy, which
is in the process of transformation into kinetic energy whilst
the body is passing from the former to the later position,
—and which will be so transformed into kinetic energy, if
no other force modifies the action.

We may in a sense regard the kinetic energy of the body
as an accumulating store whilst the forces in operation tend
to increase it-——and this store as being drawn upon or re-
duced when the forces tend to diminish it—or as Professor
Clerk Mazwell expresses it—The increase of kinetic energy
is equal to the work done on the body by external
agency, and the diminution of kinetic energy is equal to
the work done by the body against external resistance.

The energy of a system of bodies must be taken to be
the sum of the energies of all the particles of the system,
or as we may write it $Zmv’—and it will generally require
the processes of the Integral Calculus to calculate this sum,

83y. Thus we look upon kinetic energy as the energy
which a body or system possesses at the instant under con-
sideration in consequence of the relative motions of its parts
at that instant;—and potential energy as the energy which
a body or system possesses in consequence of the relative
positions of its parts, or as it is called, its configuration ——and
during the motion of the system these forms of energy are
bging modified and transformed one into the other. Potential
energy is sometimes called energy of position.

Thus when a ball—mass m—is projected vertically up-
wards with a velocity u, and v is the velocity after moving
through a height A, we obtain the relation—Art. 70, Oba.

yme* = Jmut — mgh.
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We may regard the earth and the ball as a system
mutually attracting each other, but the mass of the ball is
so small compared with that of the earth that the effect
on the earth may for our present purpose be neglected.

1f then we regard the point of projection as the normal
position of the ball for reference—then 4mu* expresses the
kinetic energy of the ball on quitting that position; mv* is
the kinetic energy of the ball when it is at a height &,
—and mgh is the potential energy, or, energy of position,
when it is at the height A, at the instant it passes that
position on its ascent or on its descent.

838. To express the Kinetic Energy of a moving body in
Joot-pounds—or foot-tons.
Let v, n be the velocity and number of pounds weight

of the body,
' h a length such that }o* = gh,
a foot and a second being units of reference.

2
Then nh=14 %J— =the number of foot-pounds which ex-

presses the kinetic energy of the body:—or as it is often
simply called, the energy of the body.

This may readily be expressed in jfoot-fons, bearing in
mind that a foot-ton = 2240 foot-pounds.

Ezample A. A weight of 28 1bs. moving with a velocity
of six miles an hour has an Energy

= %S (6—6137%90—3)2 =336 foot-pounds nearly,

or, the Energy is that of 1 b. falling a distance of 336 feet.

Ezample B. The Energy of a projectile weighing 400 Ibs.
on striking a target is 25000 foot-tons ; find its velocity.
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We have
n =400, nk=25000.2240, .". h=140000,
and v=+"2gh = V2, 322140000
= 30026 feet per second nearly.

83e. We may compare the energies of two bodies having
equal momentum.
Let m, m' be the masses, », v the velocities,
E, I the energies of the two bodies, then mv=m'v’,
1 1

and F : E=mv* : mv*=v : =" : =,
m m

that is, the energies of the bodies are directly proportional to
their velocities or inversely proportional to their masses.
Ezample. A Long Enfield rifle, weight =91bs. 2oz, is
fired with a charge of 23 drams of powder. The. bullet
weighing 480 grains quits the rifle with o velocity of, suy,
500 yds. a second. The momenta of the bullet and the rifle
being equal we have
energy of bullet : energy of rifle
= weight of rifle : weight of bullet
= 9lbs. 20z : 480 grains = 133 : 1 nearly.

The energy of the bullet on leaving the rifle (Art. 833)

—§n~ =3, AR (533 ZB) : = 2395 foot-pounds.

83%. Heat. There are “reasons for believing that the
“minute particles of a hot body are in a state of rapid agita-
“tion, that is to say, that each particle is always moving very -
“gwiftly, but that the direction of its motion alters so often
“that it makes little or no progress from one region to another.
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“If this be the case, a part—and it may be a very large
“ part—of the energy of a hot body must be in the form of
“Kkinetic energy.” Matter and Motion, Art. 93.

Thus Energy may be measured in the form of Heat,
and it follows from the experiments of Professor Joule at
Manchester that 772 foot-pounds of work are required to
raise one pound of water through 1°F. of temperature, say
from 39°F. to 40°F. This number 772 is called Joule’s
Equivalent for Heat. The results of different experimeuts
vary slightly :—see Reports of British Association for 1876
and 1878,

In the impact of two balls, using the notation of Art. 56,
we have

energy of the two balls before impact = } (4u* + Bv*),

energy of the two balls after impact = § (4u™ + Bv'¥),
and we can obtain the relation

. AB

4 SO, 3 2 ———

} (4™ + Bv®) =} (A + B %A+B

a result which shews that the kinetic energy is diminished
by the collision, unless the elasticity be perfect.

A-e&) (=2,

And generally in the collision of bodies there is a loss
of kinetic energy; a compensation is probably effected by
a development of energy in the form of Heat in the bodies
—a, target, for example, becomes heated by successive shots
from a gun.

For the recommendations of the British Association as to
Weights and Measures-—and the selection of Dynamical and other
Units——see the Reports of the British Association for 1864, 1873
and 1874. :



CHAPTER 1IV.

OF THE MOTION OF PROJECTILES.

84. 1IN the present Chapter we shall consider :

(i) The projectile as a single heavy particle, (ii) that the
accelerating force of gravity is uniform, and acts in the same
direction at all points of the path of the projectile; (iii) that

- the effect of the rotation of the earth is neglected, and
(iv) that the motion takes place tn racuo—no account being
taken of the resistance of the air. See Art. 94,

85. A body projected in any direction which is not
vertical, and acted on by the force of gravity only, will describe
a parabola.

Let the body be projected from the point 4 in direction
AT with velocity v. Draw AV
vertical and downwards, and
let P be the position of the
body at any time ¢ after the
instant of projection.

Let the motion of the body /¥
be referred to the directions A7)
AV (Art. 19), and draw PT,
PV parallel to 4V, 4T ;—now the motion being at any and
every instant referred to the directions AT, A V—the force of
gravity will have a uniform accelerating effect (g) in direction
AV and there will be no acceleration in direction AT, we
shall have therefore
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PV=AT=ut (Art. 49),
AV=1}gf (Art. 68),

:
whence PV* == -25 AV

This relation between PV and AV shews that the path
AP is a parabola whose axis is vertical, and directrix con-
sequently horizontal; AV being a diameter, and AT the

2
tangent at A, the parameter at A being = 1‘2; .

Cor. 1. If A be the space due to the velocity of pro-
jection v, (i.e. the space through which a body must fall freely
from rest under the action of gravity, in order to acquire the
velocity v,) v'=2gh; wherefore PV*=4h.AV. Hence 4k
is the parameter at 4, and therefore 4 is equal to the vertical
distance of 4 below the directrix.

CoR. 2. The result of Cor. 1 may thus be interpreted :
“The velocity of projection of a projectile is the same as
would be acquired by a body falling freely from the directrix
to the point of projection.”

And further, since the body after passing through any
point of its path will move in the same way as if it had been
projected from that point with the velocity it then has, and
in the direction in which it is then moving,—hence, “the
velocity of a projectile at any point P of its path is equal to
that due under the action of gravity to the vertical distance of
that point from the directrix.”

Obs. Let the horizontal plane which passes through
the point of projection 4 meet the parabola again in H, and
let T be the time of passing from A4 to H, AH = R,—then
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R, T are called the range, and time of flight of the projectile on
the horizontal plane ; and if a be the angle which the direction
of projection makes with the horizon, the angle « is called the
elevation of the projectile.

86. If the motion of the body be estimated vertically and
horizontally—along Ay and Ax,—the velocity of projection
vertically is » sin @, and horizon-
tally is v cos 2;—the horizontal
velocity will remain uniformly
equal to wvcosa during the
motion, since there is mno force
in direction 4x; the vertical
velocity will gradually be re-
duced to zero by the action of
gravity, and the body is then
at its greatest height z above the horizontal plane 4, but
the continued action of gravity will generate velocity doum-
wards, and bring the body to the plane at H afier a time
equal to that in which 1t moved from 4 to the highest point.
We shall have the following results,
if T be the time of moving from 4 to the highest point
= time in which the initial vertical velocity vsin a is destroyed
by force of gravity g,

vsina (vsin a)* .
= ,yand z= 5 % i).
, o ()
WENE | eeeeeeseeren (i),

Hence T = crrevecrvinnsonns
g

and the horizontal velocity is uniform and equal to v cosa;

. 9
'.R=T.vcosa=2v’sm;cosa=v’s;) 2 e (CHA
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This result is the same if g—a be put for a; shewing

that there are two directions in which a body may be pro-
jected with a given velocity, 80 as to have the same horizontal
range.

For a given velocity of projection v, the horizontal range
R will be greatest when sin 22=1; i.e. when a= 45",

Again, the latus rectum of the parabola is the parameter at
the highest point, and the velocity at the highest point being
= vy cos 2, the distance of that point from the directrix is

_v'cos’a

29 (Cor. 2),
2+ cos’ a s
hence the latus rectum = — = 4 cos® a.

87. To find the range (R) and time of flight (T) of a pro-
Jectile on an inclined plane.

Let ¢ be the inclination of the r
plane to the horizon, /

a the elevation of projection;
then initial velocity perpendicular
to the plane 4P = vsin (a —1),
initial velocity parallel
to the plane AP =vcos (2 —1);
accelerating force of gravity per-
pendicular to the plane =g coss, |
.accelerating force of gravity paralle]l : g
to the plane =gsins;

A\

and these two resolved parts of gravity are constant.
Hence if T be twice the time in which the velocity
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vein (@ —4) would be generated or destroyed by the force
gcosi; we have
= 2vsin(a- 1)

Govay e (1);
W R=vcos(a—1). T—4gsint. T" (Art. 70),
_2 -
Weosasin (a—i) (i),
geos's
by substituting for T, and reducing ;
or we might obtain R, thus
R= AP_—éN veosa. T
COs 2 cos i
(since the horizontal velocity » cos « is uniform)
Hewasin(a—d) (i)

Cor. The greatest perpendicular distance of the particle
from the plane will be when the velocity is entirely parallel

to the plane,

i.e. after a time - sin (2 - ) ;

gcost
" sin® (a — 7)
and this perpendicular distance = - - z_r] wsi
Further, by putting (iii) in the form
Re v* {sin (22— z') —sin 7}
g cos’t !
’ , — .

we see that for a given velocity of projection the range is
greatest when sin (2a —17) =1,

i.e. 2a—-z==§, or a=4+2.

in other words, when the direction of projection bisects the
angle between the plane and the vertical.
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88. To find the equation to the path of a projectile referred
to horizontal and vertical co-ordinate awes.

Let A be the point of pro- ¢
Jection, Ay vertical, and Az N
horxzonf,al in the plane in which . 7 ’\
the projectile moves. Al /" N

AN =g, NP =y, the hori- /"y g
zontal and vertical co-ordinates /' ¥
of the particle at time ¢ after
projection, v the velocity and a
the elevation of projection. Let NP be produced to meet in
T the line AT which represents the direction of projection.

T

Then the horizontal velocity =vcosa, which remains
uniform, and the tnitial vertical velocity = vsin a.
And we have
z=AN=vcosa.l.....cccceerurnn.. (1).
And NP represents the space passed over parallel to Ay
in time ¢ by a particle projected with a velocity v sin a, and
retarded by a force g-—hence by Art. (70)

y=NP=vsina.t—4gf............... (it).
Eliminating ¢ between (i), (ii), we get
y=x tan a — %';gogf& ............. (lll),

which is the equation to the path required, and represents
a parabola.

If 2 be the height due to the velocity of projection v*=2gh,
and equation (iii) may be written

: «* .
y=ztana—-‘—I;—m—;,—a..................(w).
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From equation (iii) or (iv) the elements of the parabolic
path may easily be deduced.

. z
Cor. 1. The equation y =z tan a — Shoosty Moy by a
little reduction be put in the form
(#— 2h sin & cos a)* = 4h cos” @ (hsin’a — g),

from which we may readily infer that the co-ordinates (z,,y,)
of the vertex of the parabola are

x,=2hsinacosa, y,=hsin’a;
and the latus rectum = 4% cos® a.
Cor. 2. If we make y=0 in equation (iv), we get
O=ztana— thoov a’
lLe.x=0, orz=4hsinacosa;
the former value of # indicates the point of projection, the

latter gives the range on the horizontal plane Az, and accords
with the result obtained in Art. (86).

Cor. 3. If ¢ be the angle which the direction of motion
of the projectile at a time ¢ after projection makes with the
horizon, its altitude above the point of projection being y and
its,velocity v'—we shall have

vertical velocity =’ sin ¢ =vsin a —gt,
horizontal velocity = v’ cos ¢ = v cos 2,

whence we get

veina— gt
tang= pcosa
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and
v"* = (vsina — gt)* + (v cos a)*
=v'~2¢g(vsina.t - jgt*)

= v —~2gy.

89. Motion of a projectile on a smooth fiwed tnclined plane
under the action of gravity.

With the diagram of Art. 88, let Az, Ay be rectangular
axes on the inclined plane (elevation =<¢), Az being drawn
horizontal and Ay up the plane—Ay will be a line of greatest
slope on the inclined plane.

If the projectile start from A with a velocity » in direction
AT along the plane (T'dx = a) the acceleration of P will be
zero parallel to Aw,—g sin ¢ parallel to Ay—and g cos ¢ per-
pendicular to the plane, the equation to the path will be as in
Art, 88,
gsint. 2’

20 cos® a

y=a tan a— ’

a parabola, the elements of which can be obtained as in the
previous article,

. If v be the velocity at any point P (w,y) of the path,
¢ the angle which the tangent at P makes with 4z, ¢ the time
of motion from A to P, z the vertical altitude of P above A4,
so that z =1y sin 7, we shall have

¥ COR = VCOBE cevvvnrrnnnirinniinnnnns @), -
vsing =vsina—gsini.t............ (ii),

Ly=ysina.t—4gsine. ' ........ (iid),
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From (i), (ii), (iii), we get
v? =o' - 2gsint.y =1"-2¢z,
a result which shews that the change of velocity is the same

as if the projectile had moved freely under gravity, through
the same vertical height.

90. ProB. 4 body is projected with a given velocity »
Jrom a given point, to find the direction of projection that it may
strike another given point.

Employing the notation of Art. (88),

Let A4 be the point of projection, # the point through
which the body is to pass, % the height due to the velocity of
projection, and a the required elevation of projection.

Then the equation of the path is
2

y=otana= g ety

if (a, b) be the co-ordinates of P, we have the equation
2

b=atana—4h cos* &’

-— a’ 3
or b-amna—zﬁ(1+tan a),

from which to determine a.

This equation is a quadratic in tan a :—when the two roots
are real and unequal, there are two directions of projection
which will satisfy the problem ;—when the two roots are real
and equal, these two directions coincide,—and when the roots
are unreal the problem is impossible, ie. there is no direction
in which the body could be projected with the proposed velo-

-city so as to pass through the given point.
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This problem admits of a simple geometrical construction,
From the point of projection A
draw A H vertical and = A, through
H draw HLIL horizontal, then HL
will be the directrix of the para-
bolic path Art. (85), Cor. The
problem then resolves itself into
this—to construct a parabola which
shall pass through each of the points
A, P and shall have HL for its directrix,. With A4 and P as
centres describe circles touching the line HL, and let S be
one of the points in which these circles intersect.

Then since 84 = AH and SP=PL, A, P are points in
a parabola whose focus is § and HL the directrix, and if AT
bisect the angle /A4S it is a tangent to the parabola at A,
and consequently indicates the direction of projection,

If 8’ be the other point in which the circles intersect, and
AT’ bisect the angle HAS, then AT’ indicates another
direction of projection which will equally satisfy the problem.
If the circles touch each other, then 8, 8’ coincide, and there
is but one parabola and one direction of projection. If the
circles do not meet there exists no direction of projection
which will satisfy the problem.

The student will have little difficulty in reconciling the
results of the above analytical and geometrical solutions of
this problem. '

Cor. The locus of points P to any one of which there
is but one parabolic path for the particle projected from 4
with given velocity, is a parabola having A for its focus, and
H its vertex, o
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91. We have seen in Art. (89) that when a particle
moves on a smooth inclined plane the change of velocity
in passing from one position to apother is the same as if the
particle moved freely under the action of gravity through the
same vertical space. We shall see in the next chapter that
the same conclusion is true, if the particle be moving on a
smooth curve.

If then a particle moving on a smooth plane or curve
quit it and subsequently describe a parabolic trajectory un-
der the action of gravity—and if v =./9gk be the velocity
at any point 4 of the path on the surface, & will be the
vertical altitude above A of the directrix of the parabola :—so
that we may find the position of this dircetrix without neces-
sarily determining where the particle quits the surface.

We will make use of the above result in the following
problem,

92,  An inclined plane is fired on a table, and from the
Joot of it a body s projected upwards along the plane with the
velocity due to the height h; after passing over the top of the
plane the body strikes the table at distance z from the foot of
the plane ;—shew that if the length of the plane be l, and a

sts wnelination to the horizon be < -';E, the greatest value of z for

given values of h and a 15 — and corresponds to the

smacosa’
cot 2a

value | = 2h .
€08 &

Let AB (=) be the inclined plane, A Pthe table. D.raw
AD=h vertical, D T horizontal, produce 4B to meet DT'in T

and draw TP at right angles to 4T meeting the table in P.
' 1°_9
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Now the particle projected from 4 with velocity =./2gh
after quitting the plane at B will describe a parabola to which
BT is a tangent and of which DT is the directrix.

Also since tangents to a parabola which meet in the direc-
trix are at right angles to ond another, therefore TP touches
the parabola somewhere :—since then the body cannot pass
beyond the line T'F, the range on the plane AP will evidently
be greatest when it touches at P, and we have

e=AP=AT seca= - h 2h

T N S
sina cosa sin2a

Also BP will pass through the focus &, 7'S will be perpen-
dicular to BP, and the angles which 7P makes with PB and’
the vertical are each =a,

whence s=Tpe

I= 2h coﬁé’g .
T cosa

Further, BP would not meet the table to the right of 4
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resistance of the air, and this is so considerable as to render
the conclusions drawn from the theory almost entirely inap-
plicable in practice. From experiments made to detcrmine
the motion of cannon-balls, it appears that when the initial
velocity is considerable, the resistance of the air is 20 or
30 times as great as the weight of the ball ; and the horizontal
range is often a small fraction of that which the preceding
theory gives. Such experiments have been made with great
Fare, and shew how little the parabolic theory is to be de-

“ended upon in determining the motions of military projectiles.
(

From a long series of experiments made at Woolwich,
Dr Hutton arrived at the conclusion that the velocity v of a
cannon-ball on quitting the gun could be nearly expressed by

v
the formula » = 1600 \/Hul,, P being the weight of the charge
of powder and W that of the ball.

And further, if the projectile be of finite size, and have a
rotatory as well as a progressive motion, the resistance of tho
air, which acts along the surface of the body (or tangentially),
will in general change its direction, or the plane of its motion,
or both, For this resistance increases with the velocity and
the density of the air, and will consequently be greater on
that side of the body where the rotatory and progressive
motions conspire, than on the other side where they oppose
edch other: and the density of the air immediately in front
of the body is greater than bebind it.

Another cause of irregularity will also exist if the ball be
10t homogeneous—as for example if it contain air-bubbles
Tithin, from imperfection in the casting—so that its centre
(s gravity does not coincide with its centre of figure.
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The non-symmetrical action of these causes on the body
will make it deviate from its plane of motion, except in the
single case when the axis of rotation coincides with the
direction of progressive motion. Ou this principle bas been
explained the irregular motion of a tennis-ball and the devia-
tion of a bullet from the vertical plane. It is in a great
measure remedied in the case of a rifle-ball, since the rifling
of the barrel communicates to the ball a rotation about an
axis in the direction in which the ball is projected.

(See Robins’ Gunnery; Hutton’s Tracts; Art. Gunnery
in the Encyclopedia Britannica.)



CHAPTER V.,
MOTION ON A CURVE.

95. WHeN a body moves along a smooth curve the
curve exerts a pressure or reaction upon the body at every
point, but since this reaction is always perpendicular to the
curve, it has no tendency to accelerate or retard the body.
In order to determine the velocity of the body in any position
we must resolve the forces upon the body in direction of the
motion at successive instants, and examine the effect of these
resolved forces.

96.  An inelastic particle descends down a smooth curve in
a vertical plane under the action of gravity, to find the velocity
of the particle in any position.
We may regard the curve as the limit of a polygon whose
sides are equally inclined to one |
. A
another, by supposing the number of
sides to be indefinitely increased,
and the angle between consecutive
ones to become evanescent. /
Let AA4....4, be such a poly- 7.__- s
) T
gon; draw Aa, Aa, 4ga,..per- 4.t

pendiculars on the vertical line M
through 4. . ‘a
»

Let 8 be the angle between suc-
cessive sides of the polygon which
are not necessarily of equal length,

A

-l g
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u the velocity at 4 in direction 44,

Yy oviererienniien A 44,
Uy ornenniinererinens A, 4.4,
Yy vrveneeieneniien A, 4,4,
Then we shall have (Art. 89)
vi=u'+29. Aq, when the particle
similarly, v,' = v*cos*6 + 29 . a,q, comes to 4, it is de-
vi=vcos’ 0420, aa flected in direction
v 7 4 A, 4, and starts along
o iisittrsrcsvscannsersas 14111g with Velocity
v=v"_cos’O0+2g.a,_a, ) vcosb;
adding and transposing we get
vl 4+ (vl +o) + .+ 0%, ) sin* 0 = w4 29 . da,...... ().

Now if @ be the angle between the dircetions of motion at
A and A4, and v the greatest of the velocities v, v,...

and da, =1, we have a = (n~1) 6,
and (v + 9+ ... +0°,_ ) sin’f < (n—1)v™sin’é;
: 2
Lo <abv”. (?1‘%:) ,

and this vanishes in the limit when » is indefinitely inereased,
a remaining finite, (in which case the polygon becomes the
curve) ;

s fortiors (04074 .+ 0° ) sin® 6
vanishes in the limit, in comparison with v %

Hence in the limit when the polygon becomes the curve,
the equation (i) becomes )

v, =o'+ 2gh,
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which expresses the velocity at any point on the curve in
terms of the initial velocity, and the vertical height through
which the particle has fallen; or suppressing the suffix,

v =u’+ 29k,

97. Obs. In the above investigation we have supposed
the particle inelastic and moving on the concave side of the
curve, towards which the force of gravity pulls the particle ;
these suppositions being made in order that the particle may
remain in contact with the curve.  We shall sce hercafter that
a particle moving on a curve will, under certain conditions,
quit the curve; but the necessity of the supposition here
referred to would be obviated by supposing the polygon
AAA,... to be a polygonal tube (becoming a curvilinear
one in the limit) of small bore, just sufficient to allow the free
passage of the particle. The result arrived at for the velocity
at any point would hold good in this case, and will be equally
true for a particle moving either on the concave or convex side
of a curve, so long as it remains in contact with the curve.

Cor. 1. If the particle start from rest at 4, then u =0,
and v*=2gh; ie. the velocity, acquired from rest, down a
smooth curve is equal to that which would be acquired by a
body falling freely through the same vertical height. More
generally we may interpret the equation v* = v’ + 2gh thus:
the square of the velocity at any point A,, is equal to the square
of the velocity at any other point A, increased by the square
of the velocity which the force of gravity would generate in the
body in drawing it from rest through the same vertical space.

"This result it will be observed is independent of any par-
ticular form of the curve.
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CoR. 2. If a body be projected up a curve, the vertical
height to which it will rise is equal to that through which it
must fall in order to acquire the velocity of projection; for
the body in its ascent will be retarded by the same degrees
that it would be accelerated in its descent.

If u be the velocity at any point of a particle moving up
a curve, v its velocity after describing a vertical height &, we
shall have +* = «* — 2gh.

Hence if BAB be a curve in a ver-
tical plane, the lowest point of which
is 4, and the parts 4B, AB are similar
and equal, a body in falling down B4
will acquire a velocity which will carry
it up to B’; and the velocities at all equal
altitudes in the ascent and descent be-
ing equal, the whele time of ascent will
be equal to the whole time of descent.

It is moreover obvious that when
the particle has arrived at B’ it will descend again to 4 and
rise to B, and so on continually ; i.e. the motion will be a reci-
procating or oscillatory one, and the time of passing from B
to B’ through the lowest point 4 is called the time of oscil-
Lation.

Note. If m be the mass of the body or particle,
when it is at A4 its kinetic energy is imu’,
when it is at B its kinetic energy is §mo® and
its potential energy is mgh.

Cor. 8. Let BAB be a circle (radius a) of which 4 is
the lowest point, 40 the vertical radius, and BN drawn per-
pendicular to 40; v the velocity acquired by a particle in
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descending from rest at B to the lowest point 4 ; then we
shall have

o*=2g. AN=2g. (_chorgaAB)s==

{-:. (chord AB)*;

S Ve \/Cl) . chord AB o chord AB;
a

i.e. the velocity at the lowest point varies as the chord of the
arc of descent.
The result will be the same if instead of the curve BAB’

we suppose the particle attached to an inextensible string of
length.04, and fixed at O.

98. Obs. The time in which a particle will fall from
rest from a point B to the lowest point 4 will not, in most
cases, be the same for different positions of B. But if the
curve be a cycloid the time of falling te the lowest point will
be the same, whatever be the point from which the body
starts; in other. words, the time of oscillation in a cycloid
(whose axis is vertical and vertex downwards) is the same
whatever be the arc of oscillation, For this reason the cycloid
is called an ssochronous curve.

This property of the cycloid is of great importance in the
theory and construction of pendulums,

‘We procecd to give a proof of it: but for the convenience
of the student we will first give a proof (in the following three
articles) of the properties of the cycloid which it will be neces-
sary#for him to be acquainted with.

99. DA 1If a circle as P& roll in one plane upon a straight
line CBD, any point P fixed on the cirele 'will trace out & curve
GPAD called a oyoloid.

« Let CPAD be the complete curve formed in one revolution of
the circle, C, D the points where the tracing point P quits and.
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returng to the line CD, SPT the position of the circle when the
tracing point is at P, BQA4 its position when the tracing point
P ig furthest from the line C'D ; then it is evident that the parts of
the curve AC, AD will be equal and similar,—A42B which bisects
CD at right angles is called the awis, CD the base, and 4 the vertex
of the cycloid.

Draw PQN perpendicular to 4.8, join IS, I'T.

D n g C
- Szl
0 0
AN ]Is ,%fil
A
A vV 7T

Since P starts from C, and every point of the arc SP has been
in contact with the line C'S,—the arc SP =8C ; and since the line
CB is equal to the semicircle BQA, which is =semicircle SPT,
therefore arc P7'== BS = P, since BQ is parallel and equal to PS.

Hence if we suppose the circle to begin rolling from the posi-
tion BQA4 with the tracing point at 4, when it arrives at any
position P, the arc 4Q = BS=PQ.

(i) PT is a tangent to the cycloid at P.

For when the tracing point is at P, the generating circle is in
contact with the line C'D at'§, and this point § of the circle is at
rest for an instant, or the circle is turning about S,—consequently
P iz moving perpendicularly to SP, i.e. PS is a normal to the
eycloid at P, and PT (which is at right angles to SP) is the
tangent at P. , :

(ii) The length of any arc AP starting from the vertex is
twice the chord AQ of the circular arc 4@ cub off by the ordinate

PQN.
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Let PQN, be an ordinate very nenr to PQN; draw AV, V(¢
tangents to the circle at 4, @; then 4V is parallel to the base
(and also to P QN )—let V@, 4Q produced meet PQN in ¢, q;
und draw ¢n perpendiculur to Qg.

Now AV, V@ being tangents to the sume circle ¢ VAQ = . V'),
and ¢ V@4 = opposite ¢ t@q, and < ¢gQ = alternate £ VAQ.

Hence ¢ tQq = tgQ, and .~ tg=1¢Q ; consequently Qg =2. Qn.

Further, the smaller @@, is taken, the more nearly does the
arc QQ, coincide with its tangent ¢, and is ultimately equsl
to it (Newton, Lemma vit). Ience tn is ultimately a small arc
of a circle, whose centre is 4 and radius 4Q —i.e. AQ,—and ¢n
ultimately measures the increment of the chord 4Q.

Also @q is parallel to the tangent to the cycloid at P, and is
therefore ultimately equal to the arc PP,

Hence the increment PP, of the arc of the cycloid is ultimately
twice the corresponding increment of the chord A@Q,—and the are
AP and chord 4@ begin together at 4,—therefore arc AP = 2. chord
AQ=2.chord TP,

Cor. 1. Since AP =AN.AB, .. AP=2 ,/(AB.AN).
Cor. 2. Thearc AC=2.48.

100, (iii) To make a pendulum oscillate in a given cycloid.

Let AB be the axis and
DC the base of the given ) R F
oycloid, and let EC be a
semicycloid exactly equal to Q
DA *placed with its vertex
at C and base ZF parallel p B S ”
to BC ;—ED another semi.
cycloid equal to C4 placed P
with its vertex at U and
base parallel to DB. 4 T
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Let RQS, SPT be any positions of the generating circles of the
cycloids touching each other at .§'; @, P the positions of the tracing
points,—join @8, SP.

Then arc PS=S8C = RF =arc SQ ; hence since the circles are
equal, the angles PSC, @SB are equal, and thercfore PSQ is a
straight line,

But ¢S is a tangent at @ to the cycloid £@QC, and PS is normal
at P to the cycloid CPA.

Also the arc CQ = 2. chord §Q = PQ.

Hence if we suppose a string of length =length of semicycloid
EQC to be fastened at £ and applied to the cycloid FQC, and
if it be then unwrapped, being kept always strefched, it will
always be a tangent to the cycloid EQC, and its extremity will

trace out the cycloid C'A.

We have then this practical way of making a pendulum
vibrate in a cycloid.

Let two equal material semicycloids EQC, £D, be placed so
as to have a common vertical tangent at £, hnd let a fine string
of length equal to the semicycloid EQC be fastened at E, and
have a heavy particle attached to its other end P. The particle
will oscillate in the cycloid- CAD, the string unwrapping from
EC as P describes ("4 and then wrapping itself on ED, whilst P
describes 4 D,—and vice versa, continually,

101. (iv) The radius of curvature at any point P of the
cycloid=PQ=2. PS=2.normal; as is evident from the pre-
ceding article, or we may arrive at this result independently thus
with the fig. Art. 99. ‘

Join BY, BQ—the latter cutting AQ’ in o, let PS, P'S":the
normale at P, P’ intersect in O the centre of curvature at P,
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then since PO, PO’ are parallel to BQ, BQ respectively, and
PP =2. @0 ultimately,

& PO'=2.Bo=2. BQ=2, PS ultimately,

i.e, rad. curv. =2 . normal.

102. To find the time in which a particle will fall down
any arc of an tnverted cyclovd.

Let V" be the point from which the particle starts from
rest; VH horizontal meeting the axis of the cycloid 4 Bin H.

D B

RN

yt

\Q\n

On AH describe a circle, and let the ordinates PN, P’N' of
two contiguous points meet this circle in ¢, ¢'; join Hg, Hy',
and Aq cutting Hg' in b.

Now v
arc AP=2y(4B.AN) =2 v/ (43. ﬁi%'{) =24.,/ (ﬁg).

siﬁlilarly arc AP =244 \/(%Z) ;

. PP’ =2 (4q — Aq) 4/(34—1?!)'
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Again, since the particle starts from rest at V, the velocity
at P = velocity acquired in falling freely through the vertical
height AN

=veg.am =, /(2. 50) =1/ (22);

and since PP’ is very small the velocity of the particle whilst
describing PP’ will be very nearly uniform and equal to its
velocity at P, and the smaller PP’ is taken the more nearly
will this supposition be true; also, on the same supposition
Aq— Aq may be ultimately taken to be = bg,—since 4q'd
being = 90°, Ab=Aq’ ultimately, and .. Aqg — Aq'=bq.

arc PP’

Hence time of describing PP’ = ;515&{)7-&7’

=‘)(Aq_Aq’)\/4“ Eg'\/ .AII
=23t/ (55)=2<om(5);

(since —% = circular measure of < ¢H¢/, ultimately) ;

ultimately,

i.e. the time of describing any small arc PP’ varies as the
circular measure of the corresponding angle gHg'.

If then we take the sum of successive small intervals
starting from V, we get the time of describing V.P,—and the
sum of the corresponding small angles is = < VHg,

whence time of describing VP=+« VHg. ~/ <~2—§—1—3) .

Cor. 1, When P comesto 4 the « VHgbecomesVHA =7

. time from Vto 4 =1 J 2AB)
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The body after coming to 4 will ascend the opposite
semicycloid 4D to a point V" such that AV = AV ; and the
time of ascending 4 V" will be equal to the time of descending
VA. Hence the time of a complete oscillation from V'to V' is

-+ /D,

Cor. 2. Since the time of oscillation in a cycloid does not
depend upon the particular point from which the body starts
from rest, the time is the same whatever be the arc of oscilla-
tion,—in other words, the curve is isochronous.

Cor. 3. If two equal semicycloids EC, ED (fig. Art. 100)
be placed in contact at & with their common tangent vertical,
and a string of length equal to either of them be fastened at
E, and have aheavy particle attached to the other end,—this
particle will oscillate in the cycloid CAD in exactly the same
way as a free particle moving on a material cycloid C4D.

If I be the length of the string, i.e. of the pendulum,
l=AFE=2AB; and the time of an oscillation from rest to

rest will be _
o J Iy
g

Hence at the same place on the Earth's surface the time
of oscillation oc «/ (length of the pendulum).

Note. If m be the mass of the heavy particle or bob of
the pendulum—the mass of the string being so small as not
to be taken account of—VAV’ the amplitude or arc of
vibration of the pendulum—when it isat V, I, 4
its kinetic energy is nil, mg.HN, mg.HA,—
and its potential energy ismg . HA, mg. NA, nilrespectively,
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The tension of the string, acting always at right angles to the
direction of motion, has no effect on the velocity or energy—
but produces an effect in changing the direction of motion.

Cor. 4. The cycloid for a short distance from 4 will very
nearly coincide with its circle of curvature at 4, which is the
circle whose centre is & and radius 4 E.

If then a pendulum of length [ oscillate in a circular arc

of very small amplitude, the time of oscillation =7 \/ g—l—

Cor. 5. If I be the length of the seconds pendulum,
i.e. of the pendulum which oscillates from rest to rest in

a second,
U’ the length of the pendulum which oscillates once in » seconds,

lnvr\/z, n=7r,\/—l:;
9 g
. * 1

l=n

—we have

103. The length of the seconds pendulum in the latitude
of London has been found by experiment to be 39:1386
inches :—from this value of ! we can find g the accelerating

force of gravity, for we have 1=1r 1/ :;‘ ;
.~ g=a'".l=388628 inches = 3219 feet.

Cor. If g, g be the force of gravity at two places 4, B
where the same pendulum beats n, n’ times respectively inthe
same given time, we can easily compare g, g’ in terms of n,w'.
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For if T be the given interval, we have

\/l .V,__.,,\/‘
~(G)=9s

.9 —g " n*~nt
g n' n

’ 13 ’
n-—n n+n n-—n
= . =2 nearly,
n n n .

if n' ~n be small compared with z,

104. A seconds pendulum is taken to the top of a mountain
of height k ; to find the number of beats it will luse in a day.

Suppose the force of gravity to vary inversely as the
square of the distance from the centre of the Earth.

Let r be the Earth’s radius, & =the height of the mountain,
g, g the force of gravity at the foot and top of the mountain,

then .q {]( +h)“

if ¢, ¢ be the time of an oscillation at the foot and top of the 0
mountain,

]
l
t= 'n'\ ,t-— \/

and if n, »’ be the number of beats in the same time at the
foot and top respectively,

13

nt=n'l;
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-’Enenrl ;
r ¥s

[
+ |~

if 2 be 1 mile, r=4000; n = 24.60.60,

_ ., 24.60.60
4000

that is, a seconds pendulum would in this case lose about
216 beats in 24 hours.

=216;

N.B. For points outside the Earth, the force of gravity varies inversely as
the square of the distance from the centre of the Earth :—for points within the
Earth the force of gravity varies as the distance from the centre.

105. When a particle moves on a plane curve under the
action of any force, to find an expression for the acceleration at
any pownt of its path in the direction of the normal.

Let v be the velocity of the parti-
cle at any point P of its path, PO the
normal, PT the tangent at P. Take @
PQ any small arc described in time f,
and draw QS perpendicular to PT, and
therefore parallel to PO. As the par-
ticle moves from P to @ the velocity
and acceleration will in general vary.

Let o/, v” be the greatest and least velocity estimated
parallel to PT), as the particle moves from P to @; f°, f” the
greatest and least acceleration estimated parallel to PO; then
@S being the space through which the particle is drawn
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direction PO in the time ¢ by a force always intermediate
to f*, f”, we shall have

US> 4f" & <if'?,
and PS>y"t<v't;
PSS _v? o
therefore 2,08 > 7 <f" .
Now when the arc PQ is taken continually smaller and
"y ’g g
smaller, each of the expressions 1—)«-,- , v,, becomes  in the
b 7 F 7
Limit, and 2. 08 in the same limit becomes the radius of
curvature at P (= p suppose).
3 2
Hence —37=p, or f =% , the expression for the normal

acceleration required.

Ezample. A particle, mass m, is swung round in a
circle, on a smooth horizontal table with uniform velocity V',
attached by a string, length r, to a fixed point on the

table, the tension T of the string isT=m —I:;, and the

period P of revolution is P = -2-71',’”

106. By the first law of motion we know that if the
force acting upon a particle were to cease at any instant
it would proceed to move with the velocity it then has and in
the direction in which it is then moving, i.e. in the tangent
to the curve at the point where it was at the instant the force

ceased. If then the particle continues to pursue a curvilinear
2

path, the value of the expression% at any point measures



264 NORMAL ACCELERATION.

the acceleration in direction of the normal, which must operate
upon the particle in order to deflect it from the tangent and
retain it in its curvilinear path. This accelerating force in
direction of the normal has been frequently called the centri-
Jugal force of the particle,—vaguely conveying an impression
as it were that the particle of itself resisted curvilinear motion
and exerted a force per se to move in a rectilinear path, which
innate tendency was only overcome by the action of some
external force; whereas the dynamical principles now univer-
sally accepted, teach us that a particle of matter exerts no
force upon itself, but submits passively to the action of any
external force; retaining whatever motion has been impressed
upon it till it is modified by the action of some new force.
We would recommend the student to avoid this vague use of
the term centrifugal force, or if he uses it at all, to use it

simply as an equivalent for the force in direction of the nor-
3

mal, viz. % or ln;v , according as he is estimating the accele-
rating or moving force in that direction (m being the muass of
the particle).

107. A particle moves on a cycloid whose axis s vertical
under the action of gravity ; to find the pressure on the curve.
(Fig. Art. 100.)

Let m be the mass of the particle moving on the concave
side of the curve, R the reaction or pressure which the
material curve exetrts on the particle towards the concavity,
which is consequently equal to the pressure which the par-

ticle exerts on the curve in the opposite direction, then g

will be the accelerating force of this pressure; also let ¢ be
the angle which the normal PQ makes with the vertical; then
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since gravity acts downwards, g cos ¢ will be the resolved
part of the accelerating force of gravity estimated in direction

QP, and g— g cos ¢ will be the whole actual acceleration in

direction of the normal.

2
v .
But - measures the acceleration nccessary to make the

particle move on the curve as it actually does (Art. 103).
These two expressions then must be equivalent, and we
shall have

s R
b w98 e

,v!
S R=m (p +gcos¢>,
the required cxpression for the pressure.

Cor. 1. If the particle describe a cycloid by being
attached to a string, as in Art. (102, Cor. 3), the tension
of the string on the particle must be the same as the pressure
of the curve in the previous Article, i.e. tension of the string

2
in any position EQP =m (% + g cos qb) .

Cor. 2. If a particle move on any curve under the action
of any force, and S be the resolved accelerating force in
direction of the normal, estimated positive towards the con-
cavity, we should get by the same reasoning as in the

2
present Article, B=m (% - S) .
Cor. 8. . Since the curve can only exercise a pushing

force upon the particle, if the expression for R becomes nega-
tive in any case (which indicates that the curve ought to
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exercise a pulling force) the particle will guit the curve, —and
moreover will quit it at the point where I is =0, provided
that as the particle ‘passes through that point the expression
for R changes sign from positive to negative.

If the particle be moving in a tube of very small bore,
instead of on a curve simply, the direction of the pressure
which the tube exerts upon the particle will change its di-
rection at such a point as is here contemplated, i.e. if when
the particle is on one side of the point the pressure acts
towards the concave side of the curve, when the particle is
on the other side of the point the pressure will act towards
the convex side of the curve, and wvice versd.

108. We will illustrate the principles of this chapter by
the following problems.

ProB. A particle descends down the arc of o smooth ver-
tical circle, starting from rest at the vertex ; to jind where the
particle will quit the circle,

Let v be the velocity of the particle

in any position P in its course down N ¥
the circle.
AQ the vertical diameter, O the A

centre of the circle whose radius =a.

PN horizontal, POA =6, B the
pressure of the circle on the particle
outwards from O,

Then ' =2¢ . AN since the particle starts from rest at 4,
and since the radlus of curvature is the same at  every point,

and =g, therefore = ; measures the acceleration at P in direc-
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tion PO: but gcosf is the resolved part of gravity in direc-
tion PO, and thercfore g cos § — ,% is the whole actual accele-

ration on the particle in direction PO;
. cos 6 - E
a9 m’

2
S R=m (gcose—%-) ,
and v’ =29AN=2ga (1 —cos b);
. R=mg (Bcosf—2).
This gives the pressure at any point P, and so long as cosd
52;-, R is positive and the particle remains in contact with
2

the curve ; but when 6 becomes so large that cos 8 < 3 then

18 >

I becomes negative, and it would require the curve to exert
a pulling force in order to retain the particle in contact with

9
it., Hence at the point where cos 6 = 5 , It changes sign from

positive to negative, and the particle quits the curve.
At the point where cos § =§ ,AN = :13 40.

After quitting the curve the particle proceeds to describe
a parabola.
¥

109. ProB. A particle is whirled round in a vertical
plane, being attached to one end of an inelastic string, the
other end of which is fixed,—to find the tension of the string
in any position, and the conditions that the particle may
describe a complste circle.
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Let O (Fig. p. 266) be the fixed end of the string whose
length is =a, P the position of the particle when the string
PO makes any angle 6 with the vertical 04, draw PN

horizontal, then
AN =qa (1 —cos ).

Let T be the tension of the string when the particle is at P ;
u, v the velocity when it is at A, P respectively; then

v*'=u'+29. AN =u'+2ga (1 — cos ).

T . . .
Also = accelerating foree of the tension of the string in

direction PO,

g cos 8 = resolved part of gravity in direction PO ;

,}17: + g cos @ = whole acceleration in PO,

'U’
=", by Art. (107),

=" +29(1—cosf); ‘

a
uﬁ
a
ST u' 9

S T=m ;+g( —3cos ).

This gives the tension of the string in any position.

T is least when cos@=1; i.e. when =0 or Pisat 4,
and increases continually as § increases, till when 8 = (or
the particle is at the lowest point), I is greatest.

In order that the particle may describe a complete circle,
the tension must never be negative, otherwise the string
would become slack,
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If we make the least value of 7 zero, i.e. put T'= 0 when
=0, we get

S
l%.{.5;(2—3)--:0, or u'=ga, or u=4/(ga);

which expresses the least velocity the particle may have at
the highest point in order to describe a complete circle,

The greatest velocity is at the lowest point, and if

u=+/(ga),
the greatest velocity = +/(3ga).
The expression for the tension in this case becomes
T'=38mg (1 —cos 6),

the maximum value of which is when cos  =—1, or when
the particle is at the lowest point ; the tension is then equal
to 6mg = 6. werght of the particle.

The conditions mecessary to be fulfilled in order that a
complete circle may be described are

(i) the velocity at the lowest point must not be < 4/(5¢ga).

(i) the string must be capable of sustaining a strain
equal to at least six times the weight of the particle.

110. We will conclude this chapter with a short account
of the method employed by Newton to determine the elas-
ticity of different substances.

Let 4, B be two balls suspended from fixed points C, D
by parallel strings, go that they
mdy be in contact at the extremi-
ties of horizontal diameters. If the
balls be drawn aside through given
arcs, the velocities with which they
strike each other can be found
(Art. 97, Cor. 3), and by a proper
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arrangement of these arcs they can be made to impinge upon
each other when they are in their lowest position. By ob-
serving the ares through which they rebound, the velocities
with which they separate after the impact can be obtained,
and thence the coeflicient of elasticity.

By experiments of this kind Newton determined the co-
efficient (e) of elasticity of balls of worsted to be about g,—-of
balls of steel it was nearly the same,—of cork a little less,—
of ivory e= g —and of glass ¢= }—Z See Principia, Bk. 1.
Scholium to the Laws of Motion; where Newton further
shews how allowances may be made for errors arising from

the resistance of the air.

Again, if B be drawn aside and allowed to impinge upon
4 at rest, the velocities of each after impact will be found to
be the same as result from the principles assumed in the
chapter on collision.

Or again, suppose the balls to be of wood, and let one of
them B have a small steel point projecting from it which
would cause it to stick to 4 after the impact,—by properly
adjusting the arcs through which the balls are displaced their
velocities at impact can be made to be inversely proportional
to their masses, and by loading one of them with lead their
masses can be made to bear any proportion,—it will be found
that they remain at rest after the impact, shewing that equal
momenta in opposite directions destroy each other.



PROBLEMS AND EXAMPLES.
EXAMPLES NOT INVOLVING FRICTION. CHAPTERS I II.

1. Two given forces act at a point; if the angle between
their directions be increased, the magnitude of their resultant
will be diminished, and vice versd.

2. Three given forces cannot be made to balance each
other by any arrangement of their directions, if the sum of
any two be less than the third,

3. Two equal forces applied at a given point have a
resultant given in magnitude and direction,—find the locus
of the extremity of the straight line which represents either
force.

4. If O be a point within a triangle ABC, and D, E, F
the middle points of the sides,—the system of forces repre-
sented by 04, OB, OC will be equivalent to those repre-
sented by 0D, OF, OF.

5. A circular hoop is supported in a horizontal position,
and three weights P, Q, R are suspended over its circumfer-
enge by three strings meeting in the centre; what must be
their positions so that they may balance each other ?

The angle between the directions of any two strings will be given by the
formuls of Art. 23.

6. The angles 4, B, C of a triangle are 30°, 60°, 90°
respectively. The point C is acted on by forces in directions
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CA, OB inversely proportional to C4, CB. Find the magni-
tude and direction of their resultant.

Result. The resultant makes an angle 60° with C4 and its magnitude
s forcein C4 :: 4B : CB.

7. If a point be acted on by three forces parallel and
proportional to the three sides 4B, BC, DC of a quadrilateral,
shew that the resultant of the forces is represented in magni-
tude and direction by ECE’, E being the middle point of
AD, and CE’ being equal to EC.

8. If two forces P and @ act at such an angle that
R =P, shew that if P be doubled, the new resultant will be
at right angles to Q.

9. The resultant of two forces P and @ acting on a
particle is the same when their directions are inclined at an

<0 as when they are inclined at an < ';—r— @ to each other:—

shew that tan 6= /2 ~ 1.
10. A uniform sphere moveable about a fixed point in
its surface, rests against an inclined plane ; find the pressure

on the fixed point.
Result. If a be the inclination of the plane and 8 the angle which the
radius to the fixed point makes with the vertical,

pressure = ___m T8 . weight of sphere.

11. Two equal welghts P, @ are connected by a string
which passes over two smooth pegs 4, B situated in a hori-
zontal line, and supports a weight W which hangs from
& smooth ring, through which the string passes, Find the
position of equilibrium.

Result, The depth of the nng below the line 4B

- T 42
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12. The resultant of two forces P, ¢ acting at an angle
6 is equal to (2m +1)¥/(P*'+ Q") ; when they act at an angle

g— 6, it is equal to (2m - 1) /(P'+ Q" ; shew that

13. Six forces in one plane represented in magnitude
and direction by the lines 04, OB, OC, OA, O'B, 0C,
when applied at a point, balance cach other. Prove that the
algebraical sum of the triangles 0BC, O'BC (considercd of
different signs when O, (' are on opposite sides of LC) is
equal to two-thirds of the triangle A BC.

* * * * * * »

14. Two equal forces acting along the bisectors of the
angles B and C of a vertical triangular lamina, keep it in
equilibrium with the base BC horizontal. Shew that the
triangle is isosceles.

15. O is the centre of the ecircle circumscribing the
triangle ABC and forces act along OA, 0B, OC propor-
tional to the sides of the triangle: shew that their resultant
passes through the centre of the inscribed circle.

16. Three rods AB, BC, CD, whose weights are propor-
tional to their lengths a, b, ¢, are jointed at B, C,and restin a
horizontal position over two pegs P, @ :—find the strain at
the joints B C and shew that the distance PQ between the

peg#is = 0

2ad— b 2c+

17. A weight is supported by several strings of different
elasticity, which are fastened to the same point of suspension
and to the same point of the weight: find the tension of the
several strings.
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18. ABCD, A'BCD are two parallelograms, prove
that forces acting at a point, parallel and proportional to
AA', BB, CC', D'D will be in equilibrium.

19. Three forces P, @, R acting in one plane at a point
are in equilibrium; prove that the cosine of half the angle
between the direction of @ and R is

_1 J(B+P-Q)(P+Q—-R)
T2 QR ’

20. Assuming the parallelogram of forces with respect to
the direction of the resultant for equal forces (Art. 18, i.),
state the steps of the proof for forces in the ratio of 57 to 82,
and reduce the number of steps to seven.

21. Forces P, @, R act at a point; the direction of Q
is opposite to that of the resultant of R and P, and the
direction of R is opposite to that of the resultant of P and
Q: shew that P, @, & are in equilibrium.

22. Determine a curve on which a heavy particle will
rest at any point under the action of a central force varying
as the distance from the centre.

23. The altitude of a right cone is %, and the radius of
its base is r; a string is fastened to the vertex and to a
point on the circumference of the circular base, and is then
put over a smooth peg: shew that if the cone rests with its

axis horizontal, the length of the string is = /A" + 4r°.

24. A rod 5 feet long has a .string 7 feet long attached
to its ends, and by this it is hung over a small smooth
fixed peg, so that the parts of the string are as 4 : 3, Find
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the -position of the centre of gravity of the rod and the
pressure on the peg.

Result. Depth of centre of gravity of the rod below the peg = 117\/?.

inclination of the rod to the vertical =sin™?
of rod.

T rossure on = weight
5\/2,9 peg = weg

25. A smooth circular ring is fixed in a horizontal posi-
tion, and a small ring sliding upon it is in equilibrium when
acted on by two strings in the direction of the chords P4,
PB; shew that if PC be a diameter of the circle the tensions
of the strings are in the ratio of BC to AC.

26. Three furces P, Q, R acting upon a point and keep-
ing it at rest, are represented by lines drawn from that point.
If P be given in magnitude and direction, and @ in magni-
tude only, find the locus of the extremity of the line which
represents the third force R,

27. At any number of points of a parabola forces are
applied, represented by the tangents and normals at those
points,—shew that the parabola will remain at rest if the
focus is fixed.

28. A circular disc is kept at rest by three forces acting
perpendicularly to the circumference at three given points
therein ; shew that the forces are as the sides of the circum-
scribing triangle that pass through those points.

29. R being the resultant of P and @, let B be equal to
v3.Q, and make an angle of 30° with P;—find P in terms

of Q.

Result. P=Q or P=3Q.-
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30. ABis a uniform rod,—of weight W,—moveable in

a vertical plane about a hinge 4 ; a given weight P sustains

the rod by means of a string BCP passing over a smooth

pin C, situated in the vertical through 4 and at a distance

A(C=AB, In the oblique position of equilibrium of the rod,

- oos ) P

« ACB =cos W

81. Two rods similar in every respect—(the weight of

each being W )—are capable of motion in a vertical planc

round a common fixed pivot at one extremity of each, and

they are kept in equilibrium in a position inclined at < 8 to

the horizon by a string placed over the other ends and kept

stretched by two equal weights (P, I°) at its extremities.
Shew that

tan 6 = 25;;;}4 .

» L * * X L] * *

32, ABDC is a quadrilateral, and is acted on by forces
which act in the direction of, and are proportional to, AB, AC,
DB, DC respectively; shew that their resultant is parallel
and proportional to the line joining the middle points of the

diagonals.

33. A lever without weight in the form of the arc of
a circle subtending an ¢ 2a at its centre, having two weights
P and Q suspended from its extremities, rests with its con-
vexity downwards upon a horizontal plane; determine the
position of equilibrium,

Result. The chord PQ is inclined to the horizon at an angle

. P_Q
tan—? mﬁlﬂu).
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34. The ends of a uniform heavy rod are connected, by
inextensible strings without weight, with the ends of another
. uniform rod which is moveable about its middle point. Prove
that, when the system is in equilibrium, either the rods or
the strings are parallel.

35. If a uniform heavy rod be supported by a string
fastened at its ends, and passing over a smooth peg; prove
that it can only rest in a horizontal or vertical position.

36. Two cqual circles intersect in 4 and B: any line
PQN perpendicular to AB meets the circles in P and @ and
AB in N. Prove that the resultant of four forces repre-
sented by P4, PB, QA, QB is of constant magnitude.

* - » * »* » .

37. Explain how a vessel is enabled to sail in a direction
nearly opposite to that of the wind.

38. Explain how the force of the current may be taken
advantage of to urge a ferry-boat across a river; the centre of
the boat being attached, by means of a long rope, to a moor-
ing in the middle of the stream.

39. The whole length of each oar of a boat is 10 feet,
and from the hand to the rowlock the distance is 2ft. 6in.;
each of eight men sitting in the boat pulls his oar with a force
of 4 1bs. Supposing the blades of the oars not to move
through the water, find the resultant force propelling the boat.

Result. Propelling foroe =144 1bs

40. At what height from the base of a pillar must the
end of a rope of given length be fixed, so that a given power
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acting at the other end may be most effectually exerted to
overturn the pillar?
Result. -,.1/’—5 .length of rope.

41. A uniform beam of length 20 rests against a vertical
plane and over a peg at a distance h from the plane; shew

3
that the inclination of the beam to the vertical is =sin™ \/ (f—;—)

42. A uniform rod whose weight is W is supported by
two fine strings (one attached at either end), which passing
over small fixed smooth pullies carry weights w,, w, respec-
tively. Shew that the inclination of the rod to the horizon
I8

gin™ —e Y

o e g

48. Two equal uniform leavy straight rods are con-
nected at one extremity by a string, and rest upon two
smooth pegs in the same horizontal line, one rod upon one
peg, and the other upon the other:—the distance between
the pegs being equal to the length of each rod, and the
length of the string being half the same: shew that the
rods rest at an angle 8 to the horizon, such that

2cos®f=1.

44. A string is knotted so as to form an equilateral
triangle, and is placed symmetrically within another equi-
lateral triangle nine times as great, each knot being con-
nected with the two nearest angles of this triangle by strings
solicited with a tension P. If T be the tension of the tri-

angular string, then will P= 7"\/21.
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45. Two straight lines AB, AC make an .22 with
each other: when a certain force R is resolved into two
forces parallel and perpendicular to AB, P is the component
parallel to AB; similarly, when R is resolved into two
forces parallel and perpendicular to 4C, @ is the compo-
nent parallel to AC,—shew that

R=3}{(P+ Q*sec’a+ (P— Q) cosec’ a}},

and that the direction of R makes an angle

tan™ (I;:_ 8 cot a)

with the straight line bisecting the < BAC.

46. Two equal weights (P, P) are attached at the ex-
tremities of a string which passes over three small pullies
forming an equilateral triangle; a small heavy ring (W) is
slipped over the uppermost pully and descends by its own
weight ; find the position of equilibrium.

Result. The portions of the string which are not vertical are inclined to

the vertical at an angle 2 sin™? (—i \/ %) .

47. A uniform heavy rod of given length is to be sup-
ported in a given position, with its upper end resting at a
given point against a smooth vertical wall, by means of a fine
thread attached to the lower end of the rod and to a point in
the wall. Find by a geometrical construction the point in the
wall to which the string must be attached,

48. A flat semicircular board with its plane vertical, and
curved edge upwards, rests on a smooth horizontal plane,
and is pressed at two given points (P, @) of its circumference
by two beams which slide in smooth vertical tubes; find the
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ratio of the weights of the beams that the board may be in
¢quilibrium.

Result. If a, B be the angles which the radii at P, Q make with the
horizon—then the weight of the beam at P : that at @=tana : tan g.

49. Three equal heavy cylinders,—(weight of each= W),—
each of which touches the other two, are bound together by
n string and laid upon a horizontal plane; the tension (')
of the string being given, find the pressures between the
cylinders.

J"esult Pressure between the mpper and exther of the lower cylinders

~T+ »/:—between two lower eylinders:T-—’:/a

50. Three straight tobacco-pipes rest upon a table, with
their bowls mouth downwards in the angles of an equilateral
triangle, the tubes being supported in the air by crossing
symmetrically, each under one and over the other, so as to
form another equilateral triangle; shew that the mutual
pressure of the tubes varies inversely as the side of the
latter triangle.

51. If ABC be a right-angled triangle, and 4ABDE,
ACF @ be the squares on the sides constructed as in Euclid
1. 47, prove that the resultant of forces represented by CD,
BF is parallel to a diagonal of the rectangle whose sides are
AE, AG.

52. An elliptic lamina is acted on at the extremities
of pairs of conjugate diameters by forces in its own plane
tending outwards and normal to its edge: there will be equi-
librium if the force at the end of every diameter be propor-
tional to the conjugate.
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53. Three equal rods are jointed by emooth tompass-
Jjoints at the extremities so as to form an equilateral triangle.
Find the direction of the pressures on the lower joints when
the triangle is suspended from one angle. J

3

Result. They are inclined to the horizon at an angle tan™? Py

54. One corner of a square lamina is fixed, and equal
forces (P, P) act in order of direction along the two sides
which do not pass through that corner. If a single force
applied at the centre of the lamina keeps it at rest, deter-
mine this force, and the pressure on the fixed point.

Result. A single force R =2 ,/2P acting perpendicular to the diagonal
passing through the fixed point: and pressure on fixed point= =,/2P acting

parallel and opposite to R.
© B5. A cylindrical shell, without a bottom, stands on a
- horizontal plane, and two smooth spheres are placed within it,
whose diameters are each less whilst their sum is greater than
that of the interior surface of the shell; shew that the cylinder
will not upset if the ratio of its weight to the weight of the
upper sphere be greater than 2¢ —a —b: c,—~where a, b, ¢ are
the radii of the spheres and cylinder.
56. Two forces in the ratio 14n :1 where n i8 small,
act upon a point in directions inclined at an angle a; shew
that the sine of the angle which the direction of the resultant

ma.kes with that of the larger force = (l -~ 2) 8in 3 nearly

57. An endless string supports a system of equal heavy
pullies, the highest one of which is fixed, the string passing
round every pully and crossing itself between each. If
a, B, , &c. be the inclinations to the vertical of the successive
rectilinear portions of string, prove that cosa, cos 5, cosy,
&c. are in arithmetic progression.
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58. A heavy rod—(weight W, length 2a)—can turn freely
about a hinge at one extremity 4 ; and it carries a heavy ring
(P) which is attached to a fixed point C' in the same hori-
zontal plane with the hinge, by means of a string of length
(c) equal to the distance between the point and the hinge.
The . 6 which the rod makes with the horizon in the posi-
tion of cquilibrium is defined by the equation

cos 260 + ‘){;7 cosf=0.

59. A sphere of weight W is moveable about a point in
its circumference, at which a string is attached which passes
over the sphere and supports a weight P; shew that the
diameter of the sphere which passes through the point of
suspension is inclined to the vertical at an angle

= sin™ (———P ) .
P+ W
60. In a triangular lamina ABC, AD, BE, CF are the
perpendiculars on the sides, and forces represented by the
lines BD, CD, CE, AE, AF, BF, are applied to the lamina;
prove that their resultant will pass through the centre of the
circle described about the triangle.

61. Two uniform rods 4B, BC of similar material are
connected by a smooth hinge at B, and have smooth rings at.
their other extremities, which slide upon a fixed horizontal
wire: shew that the only positions of equilibrium are those
in which the lesser rod is vertical.

62. Two small rings without weight slide on the arc of
a smooth vertical circle,—a string passes through both rings,
and has three equal weights- attached to it, one at each end
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and one between the rings ;—in the position of equilibrium
the distance between the rings is equal to the radius of the
circle.

63. A ring whose weight is P, is moveable along a
smooth rod inclined to the horizon at an angle a, another
ring of weight P is moveable along another rod in the same
vertical plane as the former, and inclined at an angle a’ to the
horizon ; a string which counects these rings passes through
a third ring of weight 2W which hangs freely ; shew that the
system cannot be in equilibrium unless

Ptana~P'tana’ + W(tan a —tana’) = 0.

64. A square rests with its plane perpendicular to a
smooth wall, one corner being attached to a point in the
wall by a string whose length is equal to a side of the square ;
shew that the distances of three of its angular points from
the wall areas 1 : 3 : 4.

65. A uniform square board is capable of motion in &
vertical plane about a hinge A4 at one of its angular points; a
string attached to C' one of the nearest angular points and
passing over a pully vertically above the hinge, at a distance
from it equal to a side of the square, supports a weight whose
ratio to the weight of the board is 1:,/(2). Find the posi-
tions of equilibrium.

Result. AC makes with the vertical an £30° or £90°.

, 66. One end of a beam whose weight is W, is placed on
a smooth horizontal plane; the other end, to which a string is
fastened, rests aguinst another smooth plane inclined at an
angle a to the horizon ; the string passing over a pully at the
top of the inclined plane hangs vertically, supporting a weight
P.  8hew that the beam will rest in all positions if

‘ 2P = Wsina

ay
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67. Two equal circular discs—of radius r—with smooth
edges are placed on their flat sides in the corner between two
snooth vertical planes inclined at «2a, and touch each otherin
the line bisecting the angle ; the radius of the least disc which
may be pressed between them without causing them toseparate

1—cosz
. cos 2

68. One end of a string is fixed to the extremity of a
smooth uniform rod, and the other to a ring without weight
which passes over the rod, and the string is hung over a
smooth peg. Determine the least length of the string for
which equilibrium is possible, and shew that the inclination
of the rod to the vertical cannot be less than 45°.

69. Two similar and equal smooth rods 4B, BC, have
a compass-joint at B; a ring without weight slides on BC,
being attached to 4 by a string, so that the rods can rest with
their ends on a smooth horizontal plane. Shew that the
mutual pressure at B is perpendicular to BC.

70. Shew that the moment of a force represeuted by 4 B
about any Jine passing through a point P will be represented
by double the projection of the triangle PAB on a plane per-
pendicular to the line.

Prove by this method of projection—or otherwise—that
the sum of the moments of two forces (whose lines of action
intersect) about any line is equal to the moment of their re-
sultant about the same line.

» . . . . . .

71. The sides of a rhombus 4BCD are hinged together
at the angles; at 4, C are two pulling forces (P, P) acting
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in the disgonal AC; and at B, D there are two other pulling
forces (Q, Q) acting in BD ; shew that
o (-
= LN S,
¢DAB = cos (P' +Q')'

72, If the parallelogram of forces be true for any two
forces making a given angle with each other, prove that it
will be also true for any two forces making any other angle
with each other.

73. A particle P is placed in a smooth horizontal tube
AB, and is acted on by two forces tending to two fixed points
C, D, and proportional to the distances CP, PD; find the force
necessary to keep P at rest in a given position.

74. Two equal heavy beams 4B, CD are connected
diagonally by similar and equal elastic strings A/, BC—
determine the position of equilibrium when 4B is held hori-
zontal: and shew that if the natural length of each string
equals 4B, and the elasticity be such that the weight of 4B
would stretch the string to 3 times its natural length, then

r_ 1 1
ABT BCT 4

75. A small smooth ring is capable of sliding on a fine
elliptic wire, whose transverse axis is vertical; two strings
attached to the ring pass through small smooth rings at the
foci and sustain given weights: shew that if the ring be in
equilibrium at any point, besides the highest and lowest
points of the wiré, it will be in equilibrium in every position.

76. Two equal rods 4B, AC without weight are con-
nected by a hinge at A and are placed in a vertical plane
resting on a smooth sphere so that the point A is vertically
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67. Two equal circular discs—of radius r—with smooth
edges are placed on their flat sides in the corner between two
smnooth vertical planes inclined at «2a, and touch each other in
the line bisecting the angle ; the radius of the least disc which
may be pressed between them without causing them toseparate

68. One end of a string is fixed to the extremity of a
smooth uniform rod, and the other to a ring without weight
which passes over the rod, and the string is hung over a
smooth peg. Determine the least length of the string for
which equilibrium is possible, and shew that the inclination
of the rod to the vertical cannot be less than 45°.

69. Two similar and equal smooth rods 4B, BC, have
a compass-joint at B'; a ring without weight slides on BC,
Leing attached to 4 by a string, so that the rods can rest with
their ends on a smooth horizontal plane. Shew that the
mutual pressure at B is perpendicular to BC.

70. Shew that the moment of a force represcnted by AB
about any line passing through a point P will be represented
by double the projection of the triangle PAB on a plane per-
pendicular to the line,

Prove by this method of projection—or otherwise—that
the sum of the moments of two forces (whose lines of action
intersect) about any line is equal to the moment of their re-
sultant about the same line.

* * - * ] * &

71. The sides of a rhombus ABCD are hinged together
at the angles; at 4, C are two pulling forces (P, P) acting
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in the diugonal AC'; and at B, D there are two other pulling
forces (Q, Q) acting in BD ; shew that
L (PP
=cog™ (LT ¥
¢DAB = cos (P’+Q’)'

72. If the parallelogram of forces be true for any two
forces making a given angle with each other, prove that it
will be also true for any two forces making any other angle
with each other.

73. A particle P is placed in a smooth horizontal tube
A B, and is acted on by two forces tending to two fixed points
C, D, and proportional to the distances CP, PD ; find the force
necessary to keep P at rest in a given position.

74. Two equal heavy beams AB, CD are connected
diagonally by similar and equal elastic strings A/), BC,—
determine the position of equilibrium when 4 B is beld hori-
zontal: and shew that if the natural length of each string
equals 4B, and the elasticity be such that the weight of 4B
would stretch the string to 3 times its natural length, then

11 1
ABTBCT av
75. A small smooth ring is capable of sliding on a fine
elliptic wire, whose transverse axis is vertical; two strings
attached to the ring pass through small smooth rings at the
fpei and sustain given weights: shew that if the ring be in
equilibrinm at any point, besides the highest and lowest
points of the wir¢, it will be in equilibrium in every position.

76. Two equal rods 4B, AC without weight are con-
nected by a hinge at 4 and are placed in a vertical plane
resting on a smooth sphere 8o that the point 4 is vertically



286 . PROBLEMS.

over the centre 0. A heavy ring slides on a string attached
to the two ends B and C, the length of the string being twice
that of either rod. If BD be the perpendicular drawn from
B on A0 produced, prove that in the position of equilibrium
AO.AD = 2B’ :-——supposing the sphere to be so small that
the string is clear of it.

77. A small ring (weight ) is moveable on a rod
whose inclination to the horizon is a,; another ring (weight
W,) is moveable on another rod in the same vertical plane,
whose inclination is a,; a slender thread connecting the rings
carries a ring (weight W). Shew that

tana, W+2W,
tana,~ Wi2W "

78. Forces are applied at the middle points of the sides
of a rigid plane polygon, perpendicular to the sides, and pro-
portional to them in wagnitude, all the forces tending in-
wards or all outwards; shew that the system of forces is in
equilibrium,

79. Two rods of equal uniform thickness have their ends
joined by a compass-joint and rest in a circle whose plane is
vertical ; prove that if the rods are at right angles they are
equally inclined to the horizon.!

80. A smooth heavy rod AB—weight W—movcable in
a vertical plane about a hinge at A4, leans against a heavy
prop CD—weight P—also moveable in the same plane about
a hinge at C. Find the position of equilibrium.

Result, If AB=2a, CD=2b, CA=¢, £BAC=6, £ DCA =g, we shall have
.~ csin @=2bsin (¢ + ¢) and o Wsin 26 cos (9 +¢)+ Pb sin 2¢ = 0.
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81. A cylinder—(length=4, rad. base=a, weight =W)—
rests with its base on a smooth inclined plane—(inclination
=a);—a string attached to its highest point, passing over a
pully at the top of the inclined plane, hangs vertically and
supports a weight P; the portion of the string between the
cylinder and pully is horizontal : determine completely the
‘conditions of equilibrium.

Result. Wo must have P=Wtana, with the condition that tana is

nat > 2: .

82. A cylinder with itg base resting against a smooth
vertical plane is held up by a string fastened to it at a point
of its curved surface whose distance from the vertical plane
is h. Shew that h must be >b— 2utan @ and <5 where
2b is the altitude of the cylinder, a the radius of the base,
and 6 the angle which the string makes with the vertical,

83. Four rods jointed at their extremities form a qua-
drilateral which may be inscribed in a circle: if they be kept
in equilibrium by two strings joining the opposite angular
points, shew that the tension of each string is inversely pro-
portional to its length.

84. A regular hexagon composed of six equal heavy
rods, moveable about their angular points, is suspended from
one angle, which is connected by threads with each of the
opposite angles. The tensions of the threads are as /3 : 2.

s 85. A string 9 feet long has one end attached to the
extremity of a smooth uniform heavy rod two feet in length,
and at the other end carries a ring which slides upon the rod.
The rod is suspended by means of the string from a smooth
peg ; prove that if 6 be the angle which the rod makes with

" the horizon, then tan = s34
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86. If two forces acting along chords of a circle are
inversely proportional to the lengths of the chords, their
resultant will pass through one or other of the points of
intersection of lines drawn through the extremities of the
chords.

87. A thread passing over a vertical hoop is held to the
hoop by two equal rings P, P,, and a third equal ring
P, hangs on the thread between the two ; prove that if @ be
the point in which a tangent to the hoop parallel to PP,
meets the vertical through P,, then P, is situated at the
centre of gravity of the triangle F, QF,.

88. If lines be drawn from any point whatever to four
fixed points in the same plane with it, and these lines repre-
sent forces all acting from or all towards the point; shew
that their resultant will pass through a certain fixed point
and will be proportional to the dlstance of the first fixed
point from it.

89. Three uniform beams 4B, BC, CD, of the same
thickness and of length [, 2, I respectively, are connected by
hinges at B and C, and rest on a perfectly smooth sphere,
the radius of which =2/ so that the middle point of BC
and the extremities of 4, D are in contact with the sphere ;
shew that the pressure at the middle point of BC-—%I—O of

the weight of the beams,

90. Three forces act in equilibrium at the angles of a
triangle, one bisecting the angle at which it acts, and the
other two making equal angles with the side opposite to
that angle; shew that the forces are as the sides opposite
to their points of application, and that they will balance if
turned through any equal angles in the same direction, -
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91. A quadrilateral is formed by four rigid rods jointed
at the ends; shew that two of its sides must be parallel], in
order that it may preserve its form when the middle points
of either pair of opposite sides are joined together by a string
in a state of tension.

92. A cube whose weight is W rests upon a horizontal
table, and is cut by three planes passing through a diagonal
of the upper face and the several corners of the lower face.
If the parts cut off be placed together again, their faces being
supposed perfectly emooth, and be kept in equilibrium by &
horizontal string tied round the cube,—prove that the tension
of the string is J W.

93. A uniform beam PQ of given weight (W) and
length rests in contact with a fixed vertical circle, whose
vertical diameter is AD, in such a manner that strings AP,
BQ attached to the rod and circle are tangents to the circle
at the points 4 and B. Find the tensions of the strings,
and shew that the conditions of the problem require that
the inclination of the beam to the vertical must be

<sin™ {\/02— 1} .

Result. If a=inclination of beam to the vertical, the tensions of the
strings are 3 W (cota = sec a).

94. A particle is placed on a smooth square table at
distances ¢, ¢,, ¢,, ¢, from the corners, and to it are attached
strngs passing over smooth pullies at the corners, and sup-
porting weights P,, P,, P,, P ; shew that if there is equi-
librium,

(BB ) (B D),
\¢, ¢ ¢ ¢/ a ¢ ¢
a being a side of the table.
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95." A cone of given weight W is placed with its base
on a smooth inclined plane (a), and supported by a weight
W’ which hangs by a string fastened to the vertex of the
cone, and passing over a pully in the inclined plane at the
same height as the vertex. Find the angle (28) of the cone
when the ratio of the weights is such that a small increase
of W' would cause the cone to turn about the highest point
of the base, as well as slide.

Result. tan ﬂ:g 8in 2a.

96. A come, the vertical angle of which is 2tan™4§,
rests with its vertex against a smooth vertical wall, a point
in its base being attached to a point in the wall by a string
to which the axis of the cone is parallel when it is in equi-
librium ; shew that the tension of the string is W Ji and
that the distance of the vertex of the cone from the fixed
point in the wall is %8{% —where W is the weight of the

cone, and & the length of its axis.

97. A bowl is formed from a hollow sphere of radius
@: it is so placed that the radius of the sphere drawn to
each point in the rim makes an <« with the vertical, and
the radius drawn to a point 4 of the bowl makes an .3
with the vertical ; if a smooth uniform rod remains at rest
when placed with one extremity at 4, and with a point in
its length on the rim of the bowl, shew that the length of
the rod is = 4 sin 8 sec = ;'8.

98. Two systems of three forces (P, @, R), (¥, @, R
act along the sides taken in order of a triangle 4BC ; prove
that the two resultants will be parallel if

(QR' - @R sin A +(RP'~ R P\ sin B+(P0Q'~ PO\ sin C =0.
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- '99. Prove that if O be the centre of the circumscribing
circle and P the centre of perpendiculars of a triangle 4BC,
the resultant of forces represented by 04, OB, OC is repre-
sented by OP,

100. Prove that the resultant of forces 7, 1, 1, 8 acting
from one angle of a regular pentagon towards the other
angles taken in order is /71. '

101. A triangular lamina A BC is moveable in its own
plane about a point in itself; forces act on it along and
proportional to BC, €4, BA. Prove that if these do not
move the lamina, the point must lie in the straight line
which bisects BC and CA.

102. A uniform bar of length « rests suspended by two
strings of length 7 and I’ fastened to the ends of the bar and
to two fixed points in the same horizontal line at a distance ¢
apart. If the directions of the strings being produced, meet
at right angles, prove that the ratio of their tensions is
al+cl’ : al’ +cl

FRICTION. CHAP. IIL

1. Two parallel vertical walls—at a distance c—are one
smooth and the other rough, and between them is supported
a hemisphere—radius @ and weight W--with its curved
surface in contact with the smooth wall, and a point in its
rim in contact with the rough wall; the pressure on each

wall =—1,;.W, and the least coefficient of friction consistent

2ac —¢*

¢—a+§J/2c—c"

with equilibrium =
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2. Two rough bodies rest on an inclined plane in a prin-
cipal plane, and are connected by a string which is parallel
to the plane; if the coefficient of friction be not the same for
both, find the greatest inclination (a) of the plane which is
consistent with equilibrium.

Result, If W, W’ be the weights, u, x’ their coefficients of friction, the
o W W’

value of a=tan Wi

3. A uniform ladder 10ft. long rests with one end
against a smooth vertical wall and the other on the ground,
the coefficient of friction being =3 ; find how high a man
(whose weight is four times that of the ladder) ay rise
before it begins to slip, the foot of the ladder being 6 feet
from the wall.

Result, ig feet, along the ladder.

4. A uniform and straight plank—length 2a—rests with
its middle point upon a rough horizontal cylinder—radius ¢
—which is fixed, their directions being perpendicular to each
other. Find the greatest weight that can be put upon one
end of the plank without its sliding off the cylinder.

-1
Result. P= &-f?t%h—;ﬁ . weight of plank.

5. At what angle of inclination should the traces be
attached to a sledge, that it may be drawn up a given hill
w.th the least exertion ?

Result. The inclination of the traces to the hill=tan=1 .,

6. A string fixed to a point in a rough vertical wall is
wrapped round a ball, which is then allowed to hang in
contact with the wall; determine the limiting positions of
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equilibrium, Find the cocfficient of friction so that it may
be possible for the position of the string not in contact with
the ball to be horizontal,

Reault. The angle the string makes with the wall=sin™? ; For the
latter part of the question u=1.

7. Two uniform rods of equal weight 4B, BC are in
a vertical plane and counected by a free joint at B; the
point 4 is fixed and € can move on a rough horizontal plane
passing through 4: if X be the . of friction and 6, ¢ the
angles which the rods make with the vertical when on the
point of sliding,

cot @ — 3 cot p=2cot A

8. P, @ are two pegs, ¢ the centre of gravity of a
slender rod passing over the nearer peg P and under the
farther peg @, and just kept from sliding in direction of its
length by the friction between it and the pegs. Find the
ratio of PG to PQ in terms of u, the coefficient of friction
between the rod and pegs, and of a the inclination of the
rod to the vertical.

Result., PG : PQ=cota—u: 2u.

9. A ladder rests against a vertical wall, and is prevented
from sliding by the friction of the ground and wall; shew that
when the ladder is on the point of sliding down in a vertical
plane
a— pu'd
(na+d)’
where u, i’ are the coefficients of friction of the ground and
wall, and a, b the distances of the foot and top of the ladder
from its centre of gravity.

Will the extreme angle of inclination be increased or
diminished if a man stands on the ladder?

- tangent of inclination to horizon =
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10. A heavy hoop—weight W—which bas a string coiled
round its circumference and a weight P attached to the free
extremity of the string, is hung on a rough horizontal peg;
determine the positions in which it will rest.

Result. I 6 be the angle which the radius drawn through the peg makes

with the vertical, then Tfm.ﬁ r

T W and tan 6=pu = coeflicient of friction

actually in operation.

11. The axis of a rough parabola is vertical, shew that
the distance of the extreme points at which a particle will rest
under the action of gravity is = w. latus rectum.

12. A heavy body is kept at rest on a given inclined
plane by a force making a given angle with the plane; shew
that the reaction of the plane, when it is smooth, is a har-
monic mean between the normal components of the greatest
and least reaction, when it is rough.

13. A right cone, the height of which is A, rests with its
base on an inclined plane; when the cone is on the point of
sliding the coefficient of friction between the plane and the
base of the cone is u. Shew that the resultant action of the

plane on the cone then acts at a point distant %h from the

centre of its base. _
M » * » - * ™

14. A square lamina has a string, of length equal to-a
side, attached to one of the angular points; the string is also
attached to a point in a rough vertical wall, against which the
lamina rests; shew that the coefficient of friction being unity,
the angle which the string makes with the wall lies between

Tand tan™ §.
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15. Ooeend 4 of a heavy rod A B( rests against arough
vertical plane, and a point B of the rod is connected with a
point in the plane by a string, the length of which is equal to
A B=c; determine the position of equilibrium of the rod, and
shew how the direction in which the friction acts depends
upon the position of B,

Result. The angle 8 which the rod makes with the vertical upwards
~tan-1 267 ,
ua
and the friction acts up or down according as ¢ > or <; .

16. A cylinder, with its axis horizontal, is held at rest
on an inclined plane () by a string coiled round its middle,
and then fastened on the plane; find the conditions of equi-
librium, friction being considered.

If # be the angle the string makes with the plane obtain the equation
Bina
cos (0~ a)= “—--~cos a,
and discuss it.

" 17. A cylinder, with its axis horizontal, is supported on
a rough inclined plane, by a string coiled round it, which
after passing over a smooth fixed pully supports a weight n
times the weight of the cylinder. Prove that sin a is <22,
and that u(cosa+/2nsina—sin‘a} is >n, where a is the
inclination of the plane, and w the coefficient of friction.
Determine the sign of the radical.

18, A sphere of radius a is supported on a rough in-
clined plane—(friction=pu)—by a string of length s, at-

tached to it and to a point in the plane. Prove that the
greatest possible elevation of the plane in order that the
sphere may rest when the string is a tangent is 2tan™ u,
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and find the tension of the string and the pressure on the
plane in this case.

19. An elastic string has its ends attached to two points
on the circumfereuce of a vertical circular wire, the line
joining them being horizontal and equal to the string’s
natural length and their distance 120°. The string passes
through a small ring which slides on the wire, Find the
oblique positions of equilibrium, and shew that there are

none if the coefficient of elasticity be not > «~23 of the ring’s

N

weight,

20. 04, OB are radii of a circular arc AB, the former
horizontal and the latter inclined at 60° to 04 ; find the co-
efficient of friction according as a weight @ at B is on the
point of moving up or down the arc, a weight P being
attached to @ by a string PAQ and hanging freely.

Q-3 A/3P-0
N Jig-r’

21. A heavy hemisphere rests with its convex surface
on a rough inclined plane. Find the greatest possible incli-
nation () of the plane.

Result. In the latter case p= ”11:

—, in the former p=

Result. a=tan-} Z .

22. A board moveable about a horizontal line in its own
plane is supported by resting on a rough sphere which lies
on a horizontal table; find the greatest inclination 8 at which
the board can rest.

Besult, If p=ocoefficient of friction between the bonxd and spliere,
B tan gg
i
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23. A cylinder is supported on a rough inclined plane,
with its axis horizontal, by means of a string which is coiled
round it, and is attached to a point in the plane, so that the
part uncoiled is horigontal. If @ be the angle of the plane
and the cylinder be only just supported—shew that the

coefficient of friction = tan g, and the resistance of the plane

= weight of the cylinder.
24. A heavy circular tube hangs over a rough peg, and
a rough particle of }Lth the weight of the tube rests within

it; find the highest position of cquilibrium of the particle.

If tan ¢ be the coefficient of friction between the particle
and the tube, shew that the tube will be on the point of
slipping over the peg, provided the coefficient of friction
sing
V(n+1)'—sin*é ’

25. Two weights P, @ of similar material, rest on a
double rough inclined plane, and are connccted by a fine
string passing over the common vertex :  is on the point of
motion down the plane—shew that the weight which may be
added to P without producing motion is

sin 2¢ sin (2 + B)
sin (8—¢)sin (2—¢)’ .
a, B being the angles of inclination of the planes, and tan ¢
the ooeflicient of friction.

26. A uniform rod rests with one extremity against a

between the tube and peg be =

rough vertical wall (p, = %) , the other extremity being sup-

ported by a string three times the length of the rod, at-
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tached to a point in the wall; shew that the angle the string
makes with the wall in the limiting position of equilibrium is

5 1
-1 -1+
tan v7 or tan 3°

27. A heavy uniform rod is placed over one and under
the other of two horizontal pegs, so that the rod lies in a
vertical plane: shew that the length of the shortest rod
which will rest in such a position=a (1 + E%—‘i{); where
a = distance between the pegs, a = the angle of inclination of
the line joining them, u = coefficient of friction.

* * * * * * *

28. Two equal rough balls lic in contact on a rough
horizontal table, and another equal ball is placed upon them
50 that the centres of the three are in a vertical plane; find
the coefficient of friction between the upper and lower balls
u#, and between the lower balls and the table u’, when the
system is on the point of motion.

Result. u=8u'=2-4/8.

29. A rectangular table stands on a rough inclined
plane, and has two sides horizontal; if the coefficient of
friction of the lowest feet be u, and that of the two others
be u', find the inclination (a) of the plane when the table is
on the point of sliding,

Result. If the oentre of gravity of the table be at a distance ¢ from the
plane, and 2a be the distance between the upper and lower feet, then

w+nla

tan a=m)—c .

30. A straight uniform beam is placed upon two rough
-planes, whose inclinations to the harizon are 2 and «', and the
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coefficients of friction tan A and tan A’; shew that if 8 be the
limiting value of the angle of inclination of the beam to the
horizon at which it will rest, W its weight, and R, R’ the
pressures upon the planes,

2 tan @ =cot (2’ +A) —cot (x—1),
R _ yid _ W
cosAsin (e +A') cosNsin(a—A) sin(a—N+d +A)°
31. One end of a beam can turn in every direction about
a fixed point. The other rests upon the upper surface of a
rough plane (coefficient of friction u), which is inclined to the
horizon at an angle a. If B be the angle which the beam
makes with the plane, prove that the beam will rest in any

position if tan a be not >-— T +I~" e f)

32. Find the minimum cccentricity (e) of an ellipse
capable of resting in equilibrium on a perfectly rough in-
clined plane.

Result. If a =inclination of plane, we must have
% not <2 tana(seca~tana).

83. A rod of uniform thickness is placed within a rough
hollow sphere, in-a vertical plane passing through the centre;
shew that if 8 be the inclination of the rod to the horizon, when
bordering upon motion, 2z the angle subtended by it at the
centre of the sphere, and tan 8 the coefficient of friction, then

& sin Bcos B '

tan = cos (@+ f3) cus (« —B)°

34, A smooth sphere BCD rests against a smooth ver-
tical plane CE, and is propped up by a beam AB whose
extremity A rests on the rough’ horizontal plane E4, the
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weights of the sphere and beam being equal. Shew that if
A be on the point of sliding, the angle which the beam makes

tion between the beam and plane.

33. Two bodies of the same weight rest upon two equally
rough inclined planes, being connected by a string passing
over the common vertex of the planes, the vertical plane
which contains the two bodies being at right angles to each
inclined plane: if they be bordering on motion, shew that
the coefficient of friction is equal to the tangent of half the
difference of the angles of inclination of the planes to the
horizon.

36. A smooth sphere of radius a rests upon two parallel
rods, which themselves are supported upon two fixed hori-
zontal rods also parallel, and at right angles to the former.
If tan A be the coefficient of friction, and the weight of one of
the moveable rods be = § sec 2\.weight of sphere, then the dis-
tance between the two moveable rods in the position of rest

= 2a sin 2\.

37. A rough elliptical ring hangs across a horizontal

rod: shew that it will balance on it with any point in con-
g

¢
tif p> ——m.
tack 1l p 2vl-¢'

88, A uniform rod passes over one rough peg and under
another—(friction = w). The pegs are distant b feet apart
and the line joining them makes an angle 8 with the horizon.
Shew that equilibrium is not possible unless the length of the

rod be>b {l +Ea~:17§} Jest.
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39. A rod of length a turns freely about a point O which
is at a vertical distance ¢ above a rough inclined plane; the
lower end of the rod rests upon.the plane: shew that if in
its position of equilibrium the vertical plane through the rod
cuts the inclined plane in a horizontal line, then

a’~—c'cos"a
p=tana. e

40. A rod rests in a state bordering on motion, with one
end fixed at a hinge and the other resting against a rough
vertical wall. Prove that the pressure on the hinge is to
the weight of the rod as

JITE T d s : 2Ji7 cot'a,
# being the cocflicient of friction, and a the angle between
the rod aund the wall.

41. A heavy particle is attached to a point in a rough
inclined plane by a fine rigid wire without weight, and rests
on the plane with the wire inclined at an angle 6 to a hori-
zontal line in the plane—determine the limits of 8, the angle
of inclination of the plane being tan™ (u sec 8).

42. Two weights 4 and B are connected by a string
and placed on a horizontal table whose coefficient of friction
is p. A force P which is <ud + uB is applied to 4 in the
direction B4, and its direction is gradually turned round an
angle 6 in the horizontal plane. Shew that if P be greater
- than p«/(4*+ BY), then both A4 and B will slip when
"' (3'2;;;')i1f; but if P be <py/(4*+B) but
> pA, then 4 alone will slip when sin 4 =E’f~1 .

43. A semicircular arch composed of an odd number of
equal and similar smooth blocks, is constructed upon a rough

008 0=
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horizontal plane, prove that the number of blocks must be

three, and that the coefficient of friction at the base must
1

not be < 73"

Also prove that the ratio of the internal to the external
radius of the arch must not be greater than the positive
root of the equation

28 @ +a+1)+mr (2 ~2~3)=0.

If the blocks, with the exception of the keystone, be
rough, and if their number be =, greater than 3, prove
that the angle of friction at the p' joint from the base
must not be

i — mi_pT
< cot {(n 2p) tan 27»} poult
. » . » T S
*

44. A glass rod is balanced partly in and partly out of a
cylindrical tumbler with the lower end resting against the
vertical side of the tumbler. If a and B are the greatest
and least angles which the rod can make with the vertical,
prove that the angle of friction is
o sicfa—ein'B
ftan sin’a cos a +sin” Bcos 8’

45. A beam ADB lies horizontally upon two others at
points 4 and C, prove that the least horizontal force applied
at B in a direction perpendicular to B4 which is able to
move the beam is the less of the two forces uW ;‘;-;ab.
and }uW, where AB=2a, ACm=b, W =weight of beam,
and u = coefficient of friction.
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4G. A rod MN rests with its ends in two fixed straight
rough grooves OA, OB in the same vertical plane which
make angles a, 8 with the horizon; prove that when the
end M is on the point of slipping down 40, the tangent
of the inclination of M to the horizon is

sin (@ — B~ 2¢)
2sin(B+e) .sin(@a—¢

47. Two weights P, @ whose coeflicients of friction are
K, p, each less than tan e, on a rough inclined plane of
angle g, are connected by a string which passes through a
fixed pully in the plane. Prove that if the < PAQ be the
greatest possible, then

Po@=1-plcot’a: 1—plcot’a

48. A lamina is suspendeg by three strings from a point ;
if the lamina be rough and the coefficient of friction between
it and a particle placed upon it be constant, shew that the
boundary of possible positions of ethbrmm of the particle
on the lamina is a circle.

49, Two uniform rods 4B, BC of equal weight but
unequal length, hinged at B, rest with one end 4 at a fixed
point, and the other C against a rough vertical wall. If
in the limiting position of equilibrium 6, ¢ are the inclina-
tions of AB, BC; a, B of the pressure at 4 and B to the
horizon, prove that

(if‘tan0—3tan¢)=i2p, (ii) tana—4 tan ¢ = § 3pu,
(iii) tan B—~2tan ¢ =+ 4,
the angles 'bei‘n’g all measured in the same direction, and
the upper sign corresponding to friction acting upwards,
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FORCES NOT' IN ONE PLANE. CHAPTER IV,

1. IF auniform heavy triangle is suspended from a fixed
point by strings attached to the angles, the tension of each
string is proportional to its length,

2. If forces act along the sides AB, AC, BC of a tri-
angle, respectively proportional to those sides—find the line
of action of their resultant.

3. The line joining the hinges of a gate whose weight
is W is inclined at an angle « to the vertical ; shew that the
moment of the couple which will hold the gate in a position
inclined at an angle 8 to its position of equilibrium is pro-
portional to sin a sin 8,

4. A straight rod without weight is placed between two
pegs and forces P and @ act at its extremities in parallel
directions, inclined to the rod; required the conditions under
which the rod will be at rest, and the pressures on the pegs.

5. ABCD is a square, and forces P, 2P act along AB,
BC respectively, forces 4P, 2P along AD and DC,—find the
locus of the points, any one of which being fixed equilibrium
would exist, and the pressure on such a point.

6. A string fastened at a point 4 supports a weight P by
passing under a rough handle of any form, the loose end
being held so that the parts on each side of the handle
are parallel; find the least force which will prevent the
weight from falling, and the greatest which will not draw.
it up.
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7. A heavy uniform beam has its extremities attached
to a string which passes round the arc of a rough vertical
circle ; if in the limiting position of equilibrium the beam be
inclined ‘at an angle 60° to the vertical, and the portion of
string in contact with the circle cover an arc of 270 shew

that the coefficient of friction is = .317;- log. 3.

8. A heavy particle is attached to an endless string
which passes round a rough circular cylinder in a vertical
plane perpendicular to its axis. If in the limiting position of
equilibrium the string in contact with the cylinder covers an
arc of 270°, shew that the inclinations to the horizon of the
two portions of the string adjacent to the particle are

Rum uw

o

tan e? and tanT'e ¥,

9.  An unstretched clastic string just surrounds a fixed
square, two of whose sides are vertical, an equal square being
introduced in the same plane as the former, and between it
and the lower portion of the string, just rests without touch-
ing it. The lower square is now turned about a vertical axis
through an angle m, so that the string crosses between the
squares; shew that the acute angle € included in the posi-
tion of equilibrium by the two portions of the string between
the squares is given by the equation

. (T g_‘)~g
N sS1n (-8+4)-_ .

10. The ends of an elastic string without weight are
fastened to two points 4, B, which are in the same horizontal
line, at a distance equal to the unstretched length of the
string. A weight equal to the modulus of elasticity is at-

- ae an
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tached to any point C of the string. If 4D, BD be drawn
at right angles to AC, BC, prove that

AC BC
ABs At BAFBD™

11. A number of unequal weights are attached to an
endless string which is slung over a rough horizontal cylinder
8o that all the weights hang free from the cylinder. Shew
that in the limiting positions of equilibrium the vertical
through the centre of gravity of the weights divides the line
joining the points where the string leaves the cylinder in the
ratio 1 : e*, where a is the circular measure of the part of
the cylinder free from the string.

If the cylinder be smooth the centre of gravity of the
weights i8 vertically below the centre of the cylinder.

12, An elastic string whose natural length =c passes
round three rough pegs A, B, C, which form an equilateral -
triangle whose side =a. The natural length of the part 4B
of the string =c—a, and it is on the point of slipping both at
4 and B; shew that the coefficient of friction

~ __,3_1" “)"___tf)
“=or 0°'<c—a ’

13. A string passes over a rough pully (rad. = a) having
a concentr.c circular hole of radius & supported by a rough
axle, If the equilibrium be limiting for both, shew that

b =9 (1 +p%) a"—p'd' cosa
- (1 +/“'2) a.'—p."b‘

where « is the angle of contact.

et

)
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14. Three equal smooth spheres each weighing W, rest
within a hollow sphere of n times their radius: shew that the
pressure between any two of the small spheres

_ 2w
B

15. An elastic band whose unstretched length is 2a is
placed round four rough pegs A, B, C, D, which constitute
the angular points of a square whose side is @ : if it be taken
hold of at a point P between 4 and B and pulled in direction
AB, shew that it will begin to slip round 4 and B at the same
time, if AP= %

un?

14e2

# being the coefficient of friction.

CENTRE OF GRAVITY. CHAPTER V.

1. ABCD is any plane quadrilateral figure, and @, 4, ¢, d
are respectively the centres of gravity of the triangles BCD,
CDA, DAB, ABC; shew that the quadrilateral abed is
similar to 4 BCD.

.2, A triangular lamina, of which the sides are a, J, ¢,

cannot rest on its side ¢ on a horizontal plane if ¢ be

o~V )
3

3. At each of n —1 of the angular points of a regular
polygon of n sides a particle is placed, the particles being
equal. Shew that the distance of their centre of gravity from
the centre of the circle circumscribing the polygon is n—_—_r—— ,

r being the radius of the circle.
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4. From an isosceles triangular lamina 4 BC, of which
the sides 4B, BC are equal, an isosceles portion APC is cut
away, AP, PC being equal; (i) find & the centre of gravity
of the remainder. Also (ii) find the gondition that it may
rest in neutral equilibrium when supported at the point P.

Result, Draw BPID perpendicular to AC, then G is in this line, and
(i) BG=}(BP+BD)—(i) BD=2.BP.

5. Find the locus of the centres of gravity of all trian-
gles inscribed in a circle, the vertex being fixed, and the base
of a given length.

Result, A circle,

6.. A triangular lamina ABC having a right angle at ¢
is suspended from the angle 4, and the side AC makes an
angle a with the horizon; it is then suspended from B, and
the side BC makes an angle 8 with the horizon; shew that

BC*. tana= AC*. tan 3.

7. 1f the sides of a triangle be taken, two and twe, to
represent forces, acting in each case from the angle made by
the sides,—prove that there is one point about which each of
the three pairs will balance, and find the point.

Result. The point is the centre of gravity of the triangle.

8. If the centre of gravity of a triangular pyramid be
the commgn vertex of four pyramids whose bases are the
faces of the original pyramid severally, shew that these four
pyramids are of equal volume.

9. A square is divided into four equal triangles by draw-
ing its diagonals which intersect in O; if one triangle be
removed, find the centre of gravity G' of the figure formed
by the three remaining triangles.

Result. OG= % side of square,
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10. Five pieces of a uniform chain are hung at equi-
distant points along a rigid rod without weight; and their
lower ends are in a straight line passing through one end (0)
of the rod ; find the centre of gravity of the system.

Also, shew that if the system balance about a point of the
rod in one position it will balance about it in any position,

Result. If OC be drawn to € the middle point of the longest picece ¢f

chsain, G the centre of gravity is in OC and OG = i{) . 0C, —the distance from

0 to the firat piece of chain being the same as the distance between any two
adjacent pieces.

11. AB, BC are two rods freely jointed at B, 4 is fixed;
find at what point in BC a prop must be placed 80 as to sup-
port them in a horizontal position.

12. A triangle rests in a fixed hemispherical bowl, shew
that the pressures at its three angular points are all equal.

13. A straight uniform wire ABC is bent at B so that
the ¢ ABC =ga, and it is then suspended by a string from
the point 4 : shew that it will rest with BC horizontal, if

BC*=(AB* +24B. BC) cos «.

14. Explain why in ascending a hill, we appear to lean
forwards ; in descending, to lean backwards.

15. Why does a person rising from a chair bend his
body forward and his leg backward ?

36, What is the use of a rope-dancer’s pole?

17. A cone whose height is equal to four times the

radius of its base is hung from a point in the circumference
of its base; find the position in which it will rest. .

Result, ‘The base and axis are equally inclined to the vertical. ~
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18, Of what dimensions must a right cone be, in order
that, when the greatest sphere possible has been cut out
of it, the centre of gravity of the remainder may coincide
with that of the cone?

Result. The diameter of the base : sltitude of cone=1 : /2.

19. A smooth body in the form of a sphere is divided
into hemispheres, and placed with the plane of division ver-
tical upon a smooth horizontal plane: a string loaded at its
extremities with two equal weights hangs upon the sphere,
passing over its highest point and cutting the plane of
divigion at right angles; find the least weight P which
will preserve the equilibrium.

Result, P = f 6 weight of sphere,

20. A weight of given magnitude moves along the cir-
cumference of a circle in which are fixed also two other
weights ; prove that the locus of the centre of gravity of
the three weights is a circle.

If the immoveable weights be varied in magnitude, their
sum being constant, prove that the corresponding circular
loci intercept equal portions of the chord joining the im-
moveable weights. |

21. The three corners of a triangle are kept on a circle
by three rings capable of sliding along the circle, and the
circle is inclined to the horizon at a given angle; find the
positions of equilibrium.

‘29, If the lengths of the sides of a polygon be inversely

proportional-to the perpendiculars let fall upon them from a
point O, within the polygon,—and if G, G’ be the centres of
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gravity, respectively, of the polygon, and of a series of equal
heavy particles placed at its angular points, prove that 0G @
will be a straight line, and that 0@ = 2. G@.

23. A thin uniform wire is bent into the form of a tri-
angle ABC, and heavy particles of weights P, Q, R are
placed at the angular points; prove that if the centre of
gravity of the weights coincide with that of the wire

P:Q:R:: AR+ AC : BC+ B4 : CA + CB.

24. If a, B, vy be the fect of the perpendiculars from
A, B, C upon the opposite sides of the triangle ABC; p,q,r
the distances of the centre of gravity of triangle aBy from
the sides a, b, ¢ of ABC, shew that

p - e T
acos (B=C) UVcos(C~4) c'cos(Ad-B)'

25. The portion of a right cone cut off by a plane will
only just balance on a horizontal plane with the shortest side
VA4 in contact: prove that the vertical through 4 in that
position divides the opposite side VB in the ratio 3 : 2.

26. Three uniform rods connected by smooth hinges
form a triangle 4BC:—the weights of the rods being pro-
portional to their lengths. If the rod AB be held in a hori-
zontal position with the plane of the triangle vertical, shew
that the direction of the strain on the hinge at C' is inclined
to AB at an angle 8 given by

A-B\_ sin(d=B)
tan (9 T2 )T i%¥cs(A+ By
27. If z,, «,, , be the co-ordinates of the angular points
of a triangle referred to any axis, the co-ordinate of the centre

of gravity of the triangle is = } (z, + z, + z,).
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And if #,, «,, ,, z, be the co-ordinates of the angular
points of a tetrahedron, the co-ordinate of its centre of gravity

is=3(r,+a,+2,+2).
» » * » »* * »

28. A4,B,C,D, E, F are six equal particles at the angles
of any planc hexagon, and @, b, ¢, d, ¢, f are the centres of
gravity respectively of ABC, BCD, CDE, DEF, EFA, and
FAB. Shew that the opposite sides and angles of the
hexagon abedef are cqual, and that the lines joining opposite
angles pass through one point which is the centre of gravity
of the particles 4, B, C, D, E, F.

29. The line which joins the middle points of any two
opposite edges of a triangular pyramid is bisected by the
centre of gravity of the pyramid.

30. From the fact that a system of heavy particles has
one centre of gravity only, shew that the lines joining the
middle points of opposite sides of any plane quadrilateral
bisect each other.

31. If the centre of gravity of a four-sided figure coin-
cide with one of its angular points, shew that the distances
of this point and of the opposite angular point from the line
joining the other two angular points are as 1 : 2.

32. A cone whose semivertical angle is tan™ T}E is
enclosed in the circumscribing spherical surface; shew that
it will rest in any position,

33. Give a geometrical construction for finding the centre
of gravity of a plane quadrilateral area.
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34. If G be the centre of gravity of a triangle ABC,
shew that

3(4G*+BG*+CG*) = AB'+ BC*+ CA".

35. Two sides 4B, CD of a quadrilateral are parallel,
and their middle points O, T' are joined by a line O of
length ¢; if AB=qa, CD=5, and @ be the centre of gravity
of the figure, shew that
og=" .0t

3" u+to

36. A pack of cards is laid on a table, and each projects
in direction of the length of the pack beyond the one below
it; if each prajects as far as possible, prove that the distances
between the extremitics of successive cards will form a har-
monic progression.

37. Prove the following geometrical construction for the
centre of gravity of any quadrilateral. Let B be the inter-
section of the diagonals, and F the middle point of the line
which joins their middle points; draw the line £/ and pro-
duce it to G, making FG equal to one-third of EF'; then &
shall be the centre of gravity required.

38. A right cone whosc axis is a, and vertical angle
2 sin™ \/ (;), is placed with its base in contact with a smooth
vertical wall, and its curved surface on a smooth horizontal
rod jparallel to the wall ; shew that it will remain at rest if

the distance of the rod from the wall be not > a nor < ; .

39. The weights of three particles 4, B, C at the angu-
lar points of the triangle 4 BC are respectively proportional
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to the opposite sides of the triangle; the centre of gravity of
the three particles coincides with the centre of the circle in-
scribed in the triangle,

40. A piece of uniform wire is bent into three sides of a
square ABCD of which the side AD is wanting; shew that
if it be hung up by the two points 4 and B successively, the
angle between the two positions of BC is tan™ 18.

41. A frustum is cut from a right cone by a plane bisect-
ing the axis and parallel to the base. Shew that it will rest
with its slant side on a horizontal table if the height of the
cone bear to the diameter of the base a greater ratio than

N7 1 17,

42, A weight W is placed at O on a triangular table
ABC, supported in a horizontal position by three props at
the angular points ; shew that the portions of the weight sus-
tained by the props at 4, B, C are proportional to the areas
of the triangles BOC, A0C, A0B.

43. A right-angled triangle is suspended successively
from its acute angles, and when at rest, the side opposite the
point of suspension in each case makes angles 6, ¢ with the
vertical,—shew that  %an 6 tan ¢ = 4.

44. Through the angles of a triangular board lines are
drawn to the opposite sides, each dividing the triangle into
two equal parts. Shew that the area of the figure formed by
joining the centres of gravity of these parts is } of the area
of the triangle.

43. A heavy square board of uniform thickness is sus-
pended freely by one corner: and at each end of the diagonal
which does not pass through that corner a weight is sus--
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pended,—shew that the inclination of that diagonal to the

L - P~Q
3 1 P
horizon is = tan (P+Q+ ;

and W the weight of the board.

46. Parallel forces act at the angles A4, B, C of a triangle,
and are respectively proportional to the sides a, b, ¢—shew
that their resultant acts at the centre of the insecribed circle.

V),—where P, Q are the weights

47. Prove the following rule for finding the centre of
gravity of any quadrilateral lamina ABCD. a,c are the per-
pendicular distances of 4 and C from BD. Take F in AC
such that FA : FC :: ¢ : a. Join F with E the middle
point of BD and take GE=}JEF. G is the centre of gravity
required.

48. A heavy triangle ABC is hung up by the angle 4,
and the opposite side is inclined at angle a to the horizon,

shew that
2 tan a = cot B ~ cot C.

49. Ifthe weight of each of three particles be proportional
to the tangent of the angle subtended at it by the straight
line joining the other two,—prove that the centre of gravity
of the three particles is situated at the intersection of the
straight lines drawn from each particle perpendicular to the
straight line joining the other two.

50. If G be the centre of gravity of a triangle 4BC,

proye that
9 cot AGB+ cot CGB  cosec AGB | cosec CGB _ 0
GB 4 Ge '
51. The corners of a pyramid are cut off by planes parallel
to the opposite sides: if the pieces cut off be of equal weight,
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prove that the centre of gravity of the remainder will coincide
with that of the pyramid.

52. A round table stands upon three equidistant weight-
less legs at its edge. A man sits upon its edge, opposite a
leg. It just upsets and falls upon its edge and two legs. He
then sits upon the highest point and just tips it up again,
Prove that the radius of the table is /2 times the length of a
leg.

53. If the vertical angle of a right cone of circular base
be >sin™ §, the upper frustum cut off by any plane will be
supported with its base on a horizontal plane.

If the vertical angle be < sin™ 1, determine the limits for
the inclination of the cutting plane to the axis that the
frustum may stand.

54. A heavy right cone rests with its base on a fixed
rough sphere of given radius, determine the greatest height
of the cone compatible with stability.

55. Find the centre of gravity of an isosceles triangle,
out of which an inscribed square has been cut.

Result. If B==C in the triangle ABC and 4D be drawn from 4 perpen-
dicular to the base, G the centre of gravity required lies in 4D, and if

LtA=2
2 1+4+6tan*a+8tanda

4G=3 8(l+2tana)(l+4 tania) "

56. A triangular prism, each side of whose base =a,
rests symmetrically between two smooth parallel horizontal
bars at a distance = 2¢ from each other; if the prism be
divided into two equal parts by a vertical plane which
bisects the lowest angle of the prism, the parts will remain

. —_— . 5 1
in equilibrium, provxded cbe < 2% and > 53 &
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57. A cube has two equal portions cut off by planes
passing through a diagonal of one of its faces and two
corners of the opposite face. If it be suspended freely from
one of the extremities of the diagonal, shew that its two

4./2

remaining edges will be inclined at tan™ 5 to the vertical.

58. Two pieces of flexible chain of different weights
but of equal lengths are fastened together so as to have a
common extremity. They are then laid over a smooth verti-
cal circle resting wholly in contact with it. Find the posi-
tion of equilibrium,

59. A piece of uniform heavy wire is formed into a tri-
angle ABC, and the middle points of the sides are joined by
pieces of wire of the same thickness. If the framework so0
formed be hung up from the < A, shew that 45, AC make
with the vertical angles 8, ¢ such that

sin8 _&c(a+c)+ e
sing  5b(a+b) + 2bc

60. The centres of gravity of the area and perimeter of
a polygon circumscribed about a circle, lie on a diameter;
and their distances from the centre are as 2 : 3.

61. If ABC be an isosceles triangle having a right angle
at C, and D, E be the middle points of AC, A B respectively,
prove that a perpendicular from E upon BD will pass through
the, pentre of gravity of the triangle BDC.

62. From a given rectangle ABCD cut off a triangle CDO
(the point O being in AD) so that when the figure A BCQ is
suspended from O the sides A0, BC may be horizontal,

Resull. 40 : AD=,f3-1:3.
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63. A uniform beam of thickness 24 rests symmetrically
on a perfectly rough horizontal cylinder of radius o ;—shew
that the equilibrium of the beam will be stable or unstable
according as b is less or greater than a.

G4. A uniform wire is bent into the form of three sides
AB, BC, CD of an equilateral polygon, and its centre of
gravity is at the intersection of AC, BD; shew that the
polygon must be a regular hexagon.

65. A pyramid, the base of which is a square, and the
other faces equal isosceles triangles, is placed in the circum-
scribing spherical surface; prove that it will rest in any
position if the cosine of the vertical angle of each of the
triangular fuces be = §. '

66. Two equal heavy particles are situated at the ex-
tremities of the latus rectum of a parabolic arc without weight,
which is placed with its vertex in contact with that of an
equal parabola whose axis is vertical and concavity down-
wards; prove that the parabolic arc may be turned through
any angle without disturbing its equilibrium, provided no
sliding be possible between the curves,

67. Find the centre of gravity of the volume included
between two similar parallelopipeds which have a common
angle. Also determine the limiting position of the centre of
gravity when the parallelopipeds approach equality.

68. The centres of two circles which touch each other
internally are made to approach indefinitely near to each
other,—find the ultimate position of the centre of gravity of
the area included between the circumferences of the circles.

Also find according to what power of the distance fromi’
a fixed point in the cireumference the density of a eircular
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~wire must vary, that its centre of gravity may coincide with
that of the above figure.

69. The centres of gravity of the area and perimeter of a
plane triangle lie in a line which passes through the centre of
the inscribed circle, at distances from it which are as 2 : 8.

70.  If n lines drawn from a point represent in magnitude
and direction a system of forces acting at that point, shew
that the resultant of the system of forces will be represented
in magnitude and direction by x times the line drawn from
that point to the centre of gravity of n equal particles placed
at the extremities of the lines.

71. The centre of the circumscribing circle of any triangle
is the centre of gravity of four cqual particles placed at the
centres of the inseribed and escribed circles,

72. If a portion of a parabola bounded by the latus
rectum (L) be placed with its vertex on that of a given
cycloid, the convexities of the two curves being turned in
opposite directions, the equilibrium will be neutral if 3L =28q,
where a equals diameter of generating circle of the cycloid.

73. An elliptic cylinder, whose semiaxes are @, b, rests
between two smooth inclined planes at right angles to one
another, prove that there will be three positions of equi-
librium if the inclinations of the planes to the horizon be

> tan™ -b .
a

74. A plane quadrilateral ABCD is bisected by the
diagonal AC, and the other diagonal divides AC into two
parts in the ratio p : g; shew that the centre of gravity of
the quadrilateral lies in 4 C and divides it into two parts in
the ratio 2p+¢: p+2¢.
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75. If a right-angled triangular lamina ABC' be sus-
pended from a point D in its hypotenuse 4 B,—prove that in
the position of equilibrium, A B will be horizontal if

AD : DB :: AB*+ AC* : AB*+ BC*

76.  If G be the centre of gravity of a system of particles,—
D, A the distances of any one of them m from @, and O (any
other point),—shew that

I (mD') =X (nA*) =3, (m) GO,

77. AB, BC are rods haviug a joint at B, 4 being a
fixed hinge; find the position in which the system will rest
when a string from A4 is attached to a ring sliding on BC,
supposed smooth. Find also the tension of the string.

78. In a triangular pyramid ABCD if a, b, ¢ be the sides
of the triangle ABC, and «, 8, v the edges meeting in D,
shew that if G be the centre of gravity of the pyramid

DG=13 (& + B+ —(*+ P+ )L

79. If each particle of a system be multiplied by the
square of its distance from an assumed point 0, the sum of
these products will be least when O coincides with the centre
of gravity cf the system of particles.

80. The axis of a solid cone is bisected by a plane
perpendicular to it; find the centre of gravity of the frustum
cut off,—and prove that if the vertical angle of the cone
exceed cos“i%, the frustum cannot rest with its curved

surface on a horizontal plane, .

81. Three equal uniform rods 4B, BC, CD mutually at
right angles, are suspended by the extremity 4 : the cosines
of their inclinations to the vertical willbeas 5:3 : 1.
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82. The top of a right cone, semivertical angle a, cut off
by a plane making an angle 8 with the axis is placed on a
perfectly rough inclined plane with the major axis of the base
along a line of greatest slope of the plane; in this position
- the cone is on the point of toppling over: prove that the
tangent of the inclination of the plane to the horizon has
one of the values

49in 22 + sin 28

cos 22— cos 28

MACHINES, CHAPTER VI. °*

1. The arms of a balance are equal in length, but one
scale is loaded ; find the true weight of the body in terms of its
apparent weights when suspended at each end in succession.

Result. The true weight =gemi-sum of the apparent weights.

2. Two men A, B of the same height bear a weight
hung on a pole which rests on their shoulders; where must
the weight be placed in order that A may support n times as
much as B?

Result. The distance of the weight from B must=mn. times its distance
from 4.

3. A uniform steel rod 4B having a constant weight
P, and a scale-pan of weight kP, suspended at B and 4
respectively, is used as a balance by moving the rod back-
wardssand forwards upon the fulerum C on which the whole
rests, Shew that the beam must be graduated by the formula
¥
14 3

A=

ADB;
21
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the weight of the rod being &P, and n being each of the
natural numbers 1.2.3... taken in succession.

4, If the pitch of a screw be %r, tan ¢ the coefficient of

friction, Pthe least force which will prevent the weight from
descendmg, P’ the greatest which can be applied without
its rising, then

P-P_ .

ip= sin 2¢.

5. Weights of 30z and }1b. balance on a straight
lever of which the longer arm is 2 feet; find the length of the
shorter arm.  *

Result. 9 inches.

6. In any system of pullies in which a separate string
passes over each pully and the strings are parallel, prove that,
if the tensions of the strings increase in geometric progression,
50 do the weights of the pullies.

7. Two weights P, Q are connected by a string PAQ
passing over a pully 4,—P hangs vertically and @ rests on a
rough inclined plane (a), and (A) is the angle of friction :—if
the greatest and least angles which 4 ¢ can make with the
plane be ¢, A, shew that
1€+ A

tan 2

8. If P support W on a rough inclined plane (a), P act-
ing in a principal plane and at an angle € with the plane,
and if P may have any magnitude intermediate to P, P”
without producing motion and the plane be but slightly
rough, shew that u= :z;,_‘_ Z, ::2 :::s ; , nearly.

In what case will this be the exact value of u?

=tan A cot a,
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9. The length of the shorter arm of & common steelyard
=4 tnches : the removal of P through § tnch indicates an in-
crease of 20z. in the weight W :—and the notch correspond-
ing to a weight of 4 lbs. is 3 tnches from the fulerum:—
determine the moment of the beam.

10. If the same body be weighed successively at the two
ends of a false balance whose arms are of unequal length, its
true weight is the square root of the product of the apparent

weights.
» * * » * L »

11. If a man sitting in one scale of a weighing-machine
_press with a stick against any point of the beam between the
point from which the scale is suspended and the fulerum, he
will appear to weigh more than before,

12, Explain how a man by walking slowly up the surface
of a large rough sphere may make it roil up an inclined plane
or along a horizontal plane in any direction.

13. If a tradesman’s balance have unequal arms, a, b,
and he weighs goods alternately from one scale and the other,
does he gain or lose by his balance not being true ? and how
much ?

Result. His loss : apparent weight which he dispenses :: (a — b)? : 2ab.

14. The sensibility of a Danish steelyard at any point
varies as the square of the distance of the point from the ¢nd
where, W is suspended.

15. If a uniform wire be bent into the form of a triangle,
and at the middle points of the sides there be placed three
beads whose weights are proportional to the sides on which
they are; prove that when tho beads are moved with equal

212
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velocities in the same direction along the sides there will be
no change in the position of the centre of gravity of the
whole system.

16. If two weights support each other on inclined planes
by means of a string passing over the common vertex of the
planes, and the system is set in motion, the centre of gravity
of the weights moves in a horizontal line.

17. When P supports W on a rough inclined plane, and
R is the pressure on the planc, explain the result when

e+ ¢ is >90° (Art. 110)

18. In the system of pullies where cach string is at-
tached to the weight, if one of the strings be nailed to the
block through which it passes, shew that the power may be
increased up to a certain limit without producing motion,
If there be three pullies, and the action of the middle one be
checked in the manner described, find the tension-of each
string for given values of Zand . :

19. In a wheel and axle, if- the axis about which the
machine turns coincide with that of the axle but not with
the axis of the wheel, find the greatest and least ratios of the
power and weight necessary for equilibrium, neglecting the
weight of the machine.

20. Why is it easier to move a heavy body when placed
upon rollers than to draw it upon a rough horizontal plane ¢
_ Clompare the rates of motion of the body and of the centres
of the rollers. '

21. In the system of pullies of Adrticle 106—if the
weight of the lowest pully be equal to the power P, of the
gecond 32, and so on, that of the highest moveable pully
being 3*"P—the ratio of Pto W will be 2 : 3" —1.
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22. In the Danish steelyard, if a, be the distance of the
fulerum from that end of the steelyard at which the weight
is suspended, the weight being n lbs. prove that

1 2 1

P S )
a a a

L] Ny »
* * - * * L *

23. In each of the three systems of pullies, if P and W
receive any displacement their centre of gravity remains un-
changed in position.

24. If three foreces P, @, R are in equilibrium when
acting on a particle, and the particle be slightly displaced so
that p, ¢,  arc the virtual velocities of P, @, 2 respectively,
shew that Pp+ Q¢ + Rr=0.

Prove the principle of virtual velocities in the casc of the
Spaanish Barton. (Art. 107)

25. In the system of pullies where each hangs by a
separate string, determine the relation between the radii of
the pullies in order that, if their centres be at any time in a
straight line, they may always continue to be so.

26. If a common steelyard be constructed with a given
rod, whose weight is inconsiderable compared with that of
the sliding weight, shew that the sensibility varies inversely
as the sum of the sliding weight and the greatest weight
which can be weighed.

97. A heavy inscct of weight w crawls on the lower cir-
cumference of the wheel of a wheel and axle, and so just raises
a weight 5w, the ratio of the radii of the wheel and axle
being 10 : 1,—find the inclination to the vertical of the
radius of the wheel which passes through the position of the
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power is usually hung, passed under ancther moveable
pully, and then over a fixed pully, and attached to the
weight W, and if the weight of each pully be w and no
other power be used, prove that

W=(3.2""-n-1)o,
and find the point of the beam at which W must be bung.

36. A rope passes round a pully and its ends are coiled
opposite ways round two drums of different radii on the
same horizontal axis. A person pulls vertically upon one
part of the rope with a force 2. What weight attached
to the pully can he raise, supposing thc parts of the
rope parallel?

MISCELLANEOUS EXAMPLES IN STATICS.

1. A body consisting of a cone and hemisphere having
the same base, is placed upon a rough horizontal table; de-
termine the greatest height of the cone that the equilibrium
may be stable.

Result. Altitude of cone = /3 . radius of the hemisphere.

2. A solid is composed of a cylinder and hemisphere of
equal radius, fixed base to base; find the ratio of the height
to the radius of the cylinder, that the equilibrium may be
neutral when the spherical surfmce rests on a horizontal plane.

Result. Altitude of oylinder= 7. radius.

3. When a man stands on a hill, bow is Le inclined to

the horizon and to the hxll?
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4. Two forces F and F, acting in the diagonals of a
parallelogram, keep it at rest in such a position that one of
its edges is horizontal ; shew that

Fseca’'=F seca= W cosec (2 +a),

where W is the weight of the parallelogram, a and a the
angles between its diagonals and the horizontal side.

5. A cylinder rests with the centre of its base in contact
with the highest point of a fixed sphere, and four times the
altitude of the cylinder is equal to a great circle of the
sphere ; supposing the surfaces in contact to be rough enough
to prevent shiding in all cases, shew that the cylinder may
be made to rock through an angle of 90°, but not more,
without falling off the sphere. The base of the cylinder
being supposed to be sufficiently large.

6. 1f threc parallel forces acting at the angular points
A, B, C of a triangle are respectively proportional to the op-
posite sides a, b, ¢; prove that the distance of the centre of
parallel forces from A

2bc A
= atbio ™y
7. Two equal spheres placed in a paraboloid with its
axis vertical touch one another at the focus. If W be the
weight of a sphere, R, R’ the pressures upon it, prove that
W!: R.R =:8:2

8# Three equal cylindrical rods are placed symmetrically
round a fourth one of the same radius, and the bundle is then
surrounded by two equal elastic bands at equal distances from
the two ends ; if each band when unstretched would just pass
rouud one rod, and a weight of 11b, would just stretch one to
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twice its natural length, shew that it would require a force
of 9 1bs. to extract the middle rod, the coefficient of friction

being equal to '(’,I

9. ABCD... is a string without weight suspended from
two points 4, I in a horizontal line; and given weights W,
W,, W,... are hung from the knots B, C, D...; determine
the proportion of these weights when the string hangs in a
given form. (N.B. This is called a funicular polygon.)

If the weights be all equal, shew that the co-tangents of
the angles which successive portions of the string make with
the vertical are in arithmetic progression,

10. Two strings of the same length have each of their
ends fixed at each of two points in the same horizontal plane.
A smooth sphere of radius » and weight W is supported upon
them at the same distance from each of the given points.
If the plane in which either string lies makes an angle a with

the horizon, prove that the tension of each is= %V;_z coseca ;

a being the distance between the points.

11, Strings are fixed to any number of points 4, B, C...
in space, and are pulled towards a point P with forces propor-
tional to P4, PB, PC; shew that wherever the point P be
situated the resultant of these forces will always pass through
a fixed point.

12, Two equal weights P, P are attached to the ends of
two strings which pass over the same smooth peg, and have
their other extremities attached to the ends of a beam AR
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(weight W) which rests thus suspended ; shew that the incli-
nation of the beam to the horizon is

=tapm (270 .
=tan (a+btana).

a, b being the distances of the centre of gravity of the beam
from its ends, and sina = gg—,.

13. A particle is placed in the middle point of & hori-
zontal, equilateral, and triangular board, and is kept in equi-
librium by three equal weights, which act by means of strings
passing through the angular points. When the particle is
moved in direction of one of the angular points, find the force
tending to restore it to its position.

If the force be half of the weight, the inclination of the
strings will be = cos™ (- g)

14. A cylinder—length b, diameter c—open at the top,
stands on a horizontal plane, and a uniform rod—length 20—
rests partly within the cylinder, and in contact with it at its
upper and lower edges ; supposing the weight of the cylinder
to be » times that of the rod, find the length of the rod when
the cylinder is on the point of falling over.

Result. 2a=(n+3) Jt* +c%

15. A uniform bent lever whose arms are at right angles
to each other, is capable of being enclosed in the interior of
a smooth spherical surface,—determine the position of equi-
librium.

Result. 'The arms of the lever will be equally inclined to the vertical.

16. If ¢ be the length of the axis of a frustum of a
pyramid,—a, b homologous sides of its larger and smalier
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ends, the distance of the centre of gravity from the end a—
measured along c—is
¢ @ 2ab+ 3K
T4 T d tab b
What does this become (i) when a =5, (ii) when b=0?

17. If a triangle be supported in a horizontal position
by vertical threads fastened to its angular points, each of
which can just bear an additional tension of 11b., determine
within what portion of the area a weight less than 3 Ibs. may
be placed without destroying the equilibrium.

18. A square—whosc side = 2a—is placed with its plane
vertical between two smooth pegs which are in the same
horizontal line at a distance ¢; shew that it will be in equi-
librium when the inelination of one of its edges to the horizon

L L@ = o
=} sin ’—rvc,f yOr=7.

19. A sphere rests upon a string fastened at its extre-

mities to two fixed points; shew that if the arc of contact of

the string and sphere be not < 2tan™ 48, the sphere may

55
be divided into two equal portions by means of a vertical
plane without disturbing the equilibrium.

N.B. The centre of gravity of a half sphere, is at a distance from the
centre of the spherical surface equal o § of the radius.

20. A polygon of an even number of sides is formed by
a number of rods which are connected by free joints at their
extremities, and is kept in equilibrium by forces applied
perpendicularly to the rods at their middle points—shew that
the sums of the alternate angles are equal.
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If the polygon be of an odd number (2n + 1) of sides,
and «,, a,...2, , be the angles,—shew that the direction of the

-
strain at ¢, on the side adjacent to a,, ,,,, is inclined to that

2t
-2 a

. . 2"

side at an angle whose complement is <%+ .71 79 the
-] 2 ?

forces being all supposed to tend inwards.

21. An endless elastic string (without weight), when un-
stretched, just passes round two pegs in a horizontal plane :
two weights W, W’ are hung upon it in such a manner that
the string forms two festoons, the angles in these being 26,
2¢ respectively; shew that if A be the modulus of elasticity,
then

W
cosec 0 + cosecp— 2 = ES

22, Three equal rods connceted by two free joints are
attached by similar joints to two points in the same hori-
zontal plane. If the rod next to one of these joints makes
an angle a with the horizon—and the reaction on the joint at
its lower end an angle §,—then tan 6 = } tan 2.

sec 8 = 5: sec ¢.

23. A heavy equilateral triangle hung up on a smooth
peg by a string, the ends of which are attached to two of its
angular points, rests with one of its sides vertical—shew that
the length of the string is double the altitude of the tri-
angle.

24. A fine string A CBP tied to the end A of a uniform
rod AB of weight W, passes through a fixed ring at C, and
also: through a ring at the end B of the rod, the free end of
. the string supporting a weight P: if the system be in equi-
librium, prove that AC : BC : 2P+ W : W.

25. A vertical cylinder is cut into parts by a plane in-
clined at an angle 2 to the axis, and the parts are held together
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by a string passing in a horizontal plane round the cylinder,
find the tension of the string, and shew how it varies for
different positions of the string :—the common surface of the

two parts being smooth.

26. AB, BC are two equal uniform beams united by a
free joint at B, and hanging freely from a peg at 4 to which
is attached a string passing to C; prove that the action at
the joint is to the weight of each beam as

Jad=3cos’C: 2/ =3 sin*C.

27. A picture frame is supported by one cord, which
passes over a smooth peg and through two smooth rings,
symmetrically situated at the back of the frame : the cord is
weightless and elastic, and when unstretched, it just reaches
through the rings :—e being the modulus of elasticity, and w
the weight of the frame. Shew that the vertical angle (22)
of the triangle formed by the string is determined by the
equation e(l —sina)=wtana,

28. Two small smooth rings of equal weight slide on a
smooth elliptical wire of which the axis major is vertical, and
are connected by a string passing over a smooth peg at the
upper focus:—prove that the rings will rest in whatever
position they may be placed.

29. A right cone is held with its base against a rough
vertical wall by means of a string attached to its vertex, and
to & point of the wall vertically above the highest point of its
base :—find the greatest length of the string for which equi-
librium in such a position is possible. ‘

30. A rectangular board whose sides are g, b, and weight
W, is supported in a horizontal position by vertical strings at
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three of its angular points,—a weight 5 W being placed on
the board the tensions of the strings become W, 2W, 3W;
find all the positions of the weight.

Compare Prob, 43, p. 814.

31. Two weights support each other on two smooth in-
clined planes, which have a common vertex, by means of a
string which passes over a smooth pully at a given height
vertically above the vertex ; find the position of equilibrium,
and, if the planes themselves be capable of motion along a
smooth horizontal plane, determine the horizontal force:
necessary to keep them at rest.

32. Any number of forces act upon a rigid body in one
plane,—-—one point being supposed fixed, whose co-ordinates
i, y are given by the equations

.c_‘\+ySY-= (@X+yY);

ZZ2Y -ySX =3 (Y -yX);
prove that the forces will keep the body at rest ; and will also
keep it at rest if their directions be all turned through any
the same given angle.

33. A number n of particles of equal weight w are
fastened to an endless inelastic thread of given length ¢,
at equal distances from each, and the necklace so formed is
placed on a smooth cone (22) with its axis vertical and
vertex upwards; find the tension ¢ of the portions of thread,and
the distance z of each particle from the vertex of the cone.

Deduce the tension T' of a heavy string W placed in the
same manner on the cone.

Result, tnioosacosec('s:‘na f

oot
GRS 2
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34. A thin rod rests in a horizontal position between two
rough planes equally inclined to the horizon and whose ineli-
natiop to each other is 2a; if u be the coefficient of friction,
shew that the greatest possible inclination of the line of inter-

section of the planes to the horizon is tan™. -

35. The line of intersection of two smooth planes 4, B
is horizontal ; a rod CD rests first with its extremity C in
contact with the plane A, and secondly with the extremity D
in contact with the same plane. 1If 6, ¢ be the inclinations of
the rod to the horizon in these two positions of equilibrium,
prove that tan 6+ tan¢ is ipvariable, whatever be the
length of the rod, or the position of its centre of gravity.

36. Threc rods OA, OB, OC are jointed together at O
in such a manner that they can be fixed in any position in
which the angles they make with one another are not less
than right angles. The system is then placed successively
on each of its three points 4, B, C with the lower rod ver-
tical, the angle between the upper two being the greatest
possible. If a, B, v be the values of this angle in the three
cases (z the least of them) prove that

cosa + cos B cosry = 0.

37. Two smooth rings are connected with a third by
inextensible strings without weight. 'The three rings slide
on a smooth wire bent into the-form of a vertical circle.
Find the position of equilibrium : and prove that, if the mass
of each ring be multiplied by its distance from the vertical -
diameter of the wire, the algebraical sum of the products
(considered of different signs when the rings are on opposite
sides of the diameter) will be zero,
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38. Arod AB is placed in a fixed smooth hemispherical
bow! of radius ¢, so as to lean against the edge of the bowl
at P, with one end 4 within it. Find the position of equi-
librium.

Result. If ¢ be the inclination of the rod to the horizon, it is determined
by the equation

cos 2¢ = gc cO8 .

39. Three equal right cones stand on a rough horizontal
plane with the rims of their bases in contact with each other
and a heavy smooth sphere is placed between them. If the
vertical angle of each cone be 60°, and the coefficient of fric-
tion for the surface in contact be cot 60°, shew that the greatest
weight of the sphere consistent with equilibrium is two-
thirds of the weight of each cone: and find the magnitude
and position of the sphere if the cones are on the point of
falling over.,

40. A weight P being placed upon a triangnlar table,
place another given weight @ upon the table in such a posi-
tion that the pressure on the three props at the angles may be
cqual. Within what limits is the problem possible ?

Employ Prob. 42, p. 315.

41, If an even number of uniform beams of equal length
and weight rest in equilibrium in the form of an arch, and
a,, a,,...a, be the respective angles of inclination of the first,
second...n'® beams to the “horizon, counting from the top,
prove ‘that
. 2n+1

tan an+l = 2n :“1

42. ABGC, DEF are two horizontal levers without
weight, B, F their fulcrums; the end D of one lever rests

M ' 22

.tan a,.
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upon the end C of the other; HK is a rod without weight
suspended by two equal parallel strings from the points E, G.
Prove that a weight P at 4 will balance a weight W placed
anywhere on the rod HK, provided

“F _ BG P _BG

P~ To ™ =yp

43. Two equal particles (w, w) are connected by two
given strings (2c, 2¢’) without weight, which are placed like a
necklace on a smooth cone (2a) with its axis vertical and
vertex upwards; find the tensions of the strings.
Result. The tensions ¢, ¢’ are given by the equations
t ¥ _ wcosa

cosg’ cosg  min (7 wina’
_ cdin(rsina) , _ c'sin(r sina)
sud  tan ?=re cos (v 8in a)’ tan g'=g +¢"cos (rsina)’

41, Two particles are joined by a string, and the system
is in equilibrium on the convex surface of a cycloid whose
axis 18 vertical, and convexity upwards ; shew that their dis-
tances along the cycloid from the highest point are inversely

proportional to their weights.

45. A sphere of given weight rests upon three planes
whose equations are lz+my+nz=0; le+my+nzs=0;
lx+my+nz=0; the axis of z being vertical : shew that
the pressures upon them are respectively proportional to

lm —ml,ml—1lm and ml —m!—and find each pressure.

46. Six thin uniform rods of equal lengths and equal
given weights are connected by smooth hinge joints at their
extremities so as to constitute the six edges of a tetrahedron;
one face of the tetrahedron rests on a smooth horizontal
plane: find the longitudinal strain of each of the rods of the
lowest face,
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47. Two uniform beams of the same material and
thickness, but of unequal lengths, are connected by a hinge ;
the system is placed with the hinge on a smooth horizontal
plane and the free ends in contact with parallel smooth
vertical planes, the distance between the planes being less
than the length of either beam: determine by virtual velo-
cities the positions of equilibrium and the nature of the
equilibrium.

48. From any point within a regular polygon perpen-
diculars are drawn on all the sides of the polygon: shew
that the direction of the resultant of all the forces represented
by these perpendiculars passes through the centre of the
circle circumscribing the polygon, snd find the wmaguitude of
the resultant.

49. A right circular cone has a plane base in the form
of an ellipse, and when suspended from the point in which
the shortest generating line meets the base rests with its
longest generating line horizontal : if 2a be the vertical angle
of the cone and B the angle between the plane base and
shortest generating line, prove that

4 cot B =cota (3 sec2a~ 4).

50. Three particles of masses 4, B, C respectively are
placed at the angular points of a triangle whose sides are
a, b, ¢: prove that the square of the dlstance of their centre
of gravity from 4 is

. Bd+ CW+BOR +¢* —a)
(4+B+C)

51. A heavy particle P is suspended from a fixed point
by two inextensible strings, each of length /: and a uniform
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rod of weight W and length 2¢ has a small smooth ring at
each end, through each of which one string passes: prove

2
that if % = W(W;—:— 2F) , the system will be in equilibrium

when the rod is horizontal, and the upper part of each
string inclined to the vertical at an angle whosc sine is the

greater root of the equation

s J’/‘+(1 a
z-—l{ / } +l,,—-0

52. The twelve edges of a regular octahedron are formed
of rods hinged together at the angles, and the opposite angles
are connected by elastic strings: if the tensions of the three
strings are X, ¥, Z respectively, shew that the pressure
along any of the rods connecting the extremitics of the

strings whose tensions are ¥ and Z'is ; 5 ‘\/, (Y+Z2-X).

53. Three equal forces act at one point: a, B, vy are the
angles between their directions so that a + 8+ ¢ =2x; shew
that their resultant bears to any one of these the ratio

% 085 cos V)
(1 —8cos2coszcos2) : L
54, Two systems of three forces (P, Q, R), (P, ¢, R)
act along the sides taken in order of a triangle ABC: prove
that the two resultants will be parallel if
(QR' — Q'R)sin 4+ (RP'—R'P)sin B
+(PQ —P @) sinC=0.

55.  In a system of pullies where each hangs by a sepa-~
rate string, if W be the weight supported, and w,, o,,... @,
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the weights of the movcable pullies, there will be no me-
chanical advantage, unless

Weo +2(Wew, ) +2(W-w_)+...+ 2 (W-w)

be positive,

56. A weight is suspended from the middle point of a
string whose ends are attached to rings which can slide along
a fixed horizontal rod,—prove by the principle of virtual
velocities that the inclination of each part of the string to the
vertical cannot be > tan™ p.

57. Three beads (of masses a, B, ) are strung on an
endless string ; if they repel each other with a force ¢ (r),
where r is the distance, shew that in equilibrium they will

form a triangle whose sides a, b, ¢ are determined by

¢@_¢0)_¢0)
a I+ v

58. Four equal rods (each of weight W) forming a
rhombus ABCD (: BCD = 21), and connected by smooth
joints at 4, B, C, and D, rest in a vertical plane with the joint
C on a horizontal plane and the diagonal AC vertical—the
middle points of BC, CD being joined by a string : find the
magnitude and direction of the strain at the joints 4 and B,
and shew that the tension of the string = 4W tan a.

59. One fixed and n equal moveable pullies are arranged
accorfling to the first and third systems respectively. The
sweights which the same power P can sustain are found to be
in the ratio of 1 : 2. Shew that the weight of a pully
P

must be 27.',3—_—;,—:—; .
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60. The centre of gravity of the four faces of a tri-
angular pyramid coincides with the centre of the sphere
inscribed in the pyramid whose angular points are the
centres of gravity of the faces.

61. 1If through the centre of gravity of each of the faces
of any polyhedron there act a force, in direction perpendicular
to the face and in magnitude proportional to its area, the
gystem will be in equilibrium, supposing all the forces to act
inwards or all to act outwards.

62. A frame formed of four uniform rods of the length (a)
connected by smooth hinges is hung over two smooth pegs
a
J2’
being in contact with different rods. Shew that in the
position of equilibrium each angle =00°.

Is the equilibrium stable or unstable ?

in the same horizontal line at a distance the two pegs

€3. A heavy triangle ABC is suspended from a point
by three strings, mutually at right angles, attached to the
angular points of the triangle; if @ be the inclination of the
triangle to the horizon in its position of equilibrium, then
3
N/(1 + sec A sec Bsec ()’

64. From a right cone, the diameter of whose base is
equal to its altitude, is cut a right cylinder the diameter of
whose base is equal to its altitude,—their axes being in the
same line, and the base of the cylinder lying in the base of
the cone; from the remaining cone a similar cylinder is cut, «
and so on, indefinitely ; shew that the distance of the centre
of gravity of the remaining portion from the base of the cone
is 3} altitude of cone. '

cos @ =
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65. A uniform rod of length ¢ is cut into three pieces
a, b, ¢, and these are formed into a triangle ; when the triangle
is placed in unstable equilibrium, resting with its plane ver-
tical and one of its angular points upon a smooth horizontal
plane, find the angle which the uppermost side makes with
the horizon ;—and shew that if a, 8, y be the three an.les
corresponding to the several cases of a, b, ¢ being the upper-
most side, then

(l+a)tana+ (I+D) tan B+ (I +c¢) tany = 0.

66. A string of equal spherical beads is placed upon a
smooth cone (2a) baving its axis vertical, the beads being just
in contact with cach other, so that there is no pressure be-
tween them. Find the tension ¢ of the string ; and deduce
the limiting value 7', when the number of beads is indefinitely
greaf,

Result. If W-=sum of the weights of the beads

Weota Weota
t = —r y T — 2r -
2n 8in —~
n

67. A weight is supported on a rough inclined plane (a)
by a force exactly equal to it. Shew that the direction of
the force may be changed through an angle 4 tan™ u without
disturbing the equilibrium of the weight,—provided that’

a

tan™ p is not < 5

nor > 7. — a.
2
68. An even number of equal and uniform spherical
balls are slung in contact with each other on a fixed smooth
cylinder, whose axis is horizontal, by means of a string
which passes through smooth grooves pierced from the points
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of contact of adjacent balls to the centres of the respective
balls. If the balls entirely surround the cylinder, and the
tension of the string be such that there is no pressure be-
tween the fixed cylinder and the lowest ball which touches
the cylinder at its lowest point, shew that the pressure be-
tween the cylinder and the highest ball is jfour times the
weight of each ball.

69. Three particles are connected by strings so as to
form a triangle, and they are mutually repulsive : shew that if
one particle be suddenly annihilated the tension of the string
connecting the other two will remain unaltered.

70. The particles of two circular discs repel each other
with a force varying as the distance. An endless elastic
string passes round their circumferences crossing between
them. If the discs were held in contact, the string would be
unstretched, and the resultant repulsion would be equal to-
the modulus of elasticity. Shew that for equilibrium

™
2 ’

sin 6 (sin § — G cos )

where 28 is the . between the radii of either disc at the
points where the string leaves it.

71. Two uniform beams whose lengths are a and c are
capable of moving about hinges at their extremities placed
in the same horizontal plane. Another beam b is hinged to
their other extremities so that the system is above the hori-
zontal plane. If there be equilibrium, the difference be-
tween the lengths of the beams will be proportional to-the
difference between the tangents of the angles which they
make with the horizon.
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72. Two equal beams 4B, AC, connected by a hinge
at A, are placed in a vertical plane with their extremities
B, C, resting on a horizontal plane; they are kept from falling
by strings connecting B and C with the middle points of the
opposite sides; shew that the ratio of the tension of either
string to the weight of either beam =} /(8 cot*@ + cosec'd),
@ being the inclination of cither beam to the horizon.

73. A uniform beam is supported upon the circumference
of a circle of radius r in a vertical plane, by means of a string
of given length ¢, fastened at one end to the highest point of
the circumference, at the other end to onc extremity of the
beam ; find the length of the beam that the string may be
horizontal.

Result. Length of beam =2¢ (rf{-c')’.

il et

74. If the sector of a circle balance about the chord of
the arc, prove that, 22 being the angle of the sector,

2 tan g = 3a.

75. 'Two spheres of densities p, o and radii a, b rest in
a paraboloid whose axis is vertical, and touch each other at
the focus,—shew that p’a® =g"0". Also if W, W’ be their
weights, and R, R’ the pressures on the paraboloid at the
point of contact,

R R 1/R K

. W_'W—E(W—W)'

76. Two weights of different material are laid on an
inclined plane, connected by a string extended to its full
length, inclined at an angle 8 to the line of intersection of
the inclined plane with the horizon; if the lower weight be
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on the point of motion, find the magnitude and direction of
the force of friction on the upper weight.

77.  An endless string hangs at rest over two pegs in the
same horizontal plane, with a heavy pully in each festoon of
the string ;—if the weight of one pully be double that of the
other, shew that the angle between the portions of the upper
festoon must be > 120"

78. Two uniform beams loosely jointed at one extremity
are placed upon the smooth arc of a parabola, whose axis is
vertical and vertex upwards. If I be the semi-latus-rectum
of the parabola, and a, b the lengths of the beams, shew that
they will rest in equilibrium at right angles to each other,
if 1(a+0)(a*+ )} =a'b —and find the position of equili-
briam.

79. A heavy ring hangs loose upon a fixed horizontal
cylinder, and is pulled by a string at its lowest point parallel
to the axis of the cylinder: find the limiting position of rest
when the coefficient of friction is given ;—and shew that if
the coefficient of friction exceed a certain value, no force so
applied can make the ring slide.

80. A rod of length @ is placed horizontally between
two pegs whose distances from opposite ends are respectively
4o and }a; if weights w and 3w be suspended from the ends
of the rod, find the tendency to break at any point of the
rod, and shew at what point it is the greatest.

81. Four weights are placed at four given points in space,
the sum of two of the weights is given and also the sum
of the other two: prove that their centre of gravity lies on a
fixed plane.
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82. A uniform regular tetrahedron has three corners
in contact with the interior of a fixed smooth hemispherical
bowl of such magnitude that the completed sphere would
circumscribe the tetrahedron: prove that every position is
one of equilibrium.

If P, @, R be the pressures on the bowl, and W the
weight of the tetrahedron, prove that

3 (P +Q +RY)~2(QR+ RP +PQ)=3W".

83. A rectangular sheet of paper of length a and breadth
& is folded so that two opposite corners are made to coincide ;
shew that the centre of gravity of the folded paper is in the
perpendicular from these corners on the fold and at a dis-
tance from the corners
’ _ Ba'+ 6a’V’ - bt

T 12aWar+ b

84. A regular hexagon is formed of rods jointed at their
extremitics, strings are stretched between every pair of alter-
nate angles of the hexagon so as to form two equilateral tri-
angles. Shew that the tension of any string is § of the sum
of the tensions of the strings which cross it menus § of the
tension of the string which is parallel to it.

85. In a false balance, & weight P appears to weigh @,
and a weight P’ to weigh @’: prove that the real weight X
of what appears to weigh Y is given by

XQ-=YP-P)+PQ-1.

86. A cylindrical vessel of radius o stands vertically

and contains water to a height %; a heavy sphere of radius

g is dropped into the water and lies at the bottom of the
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vessel : prove that the new centre of gravity of the water

2
. _ . . . a
lies somewhere within a circle whose radius is 1ok and

. . a 5at
whose centre is at a distance , from the old centre of

6 72
gravity of the water.

87. Five equal rigid heavy rods (each of weight W)
hinged together so as to form a regular pentagon ABCDE,
are set in a vertical plane with one end of them CD resting
on a horizontal table, and the form of the regular figure is
preserved by help of an inextensible string connecting the
hinges B and £, Shew that the tension of the string

=1 W (tan 54° + 3 tan 18°),

88. A string of length ! is laid over two smooth pegs
which are in the same horizontal line and at a distance a
from each other. Two unequal heavy particles, which attract
cach other with forces varying as the distance, are attached,
one to each end of the string: shew that the inclination (8)
of either portion of the string to the horizon is given by the
equation ,

atan@—b=(l —a)siné,
where 2b = (the sum of the weights) + (the attraction of the
particles at the unit of distance).

89. Four equal particles are mutually repulsive, the law
of force being that of the inverse distance. If they be joined
together by four inextensible strings of given length so as to
form a quadrilateral,—prove that when there is equilibrium,
the four particles lie in a circle.

90. A particle is at rest on a smooth vertical circle
under the action of gravity, and a force varying as the dis-.
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tance from the extremity of a horizontal difmeter,—the
absolute force being such that the attraction on a particle
placed at the centre equals gravity :—shew that the particle
will rest half-way between the centre of force and the lowest
point of the circle,—and find the pressure on the curve.

91. A uniform bar is bent so as to form a triangle, and
the system rests on a smooth horizontal cylinder, whose
radius is nearly equal to that of the inscribed circle,—shew
that there will be no pressure on the greatest side «, and that
its inclination to the vertical will be
o T {8a—2s)

(B ~c)(2u—s)’
r being the radius of the cylinder, a, 4, ¢ the sides of the
triangle and 2s=a+ b +c.

tan

92. A heavy rod is placed in any manncr resting on two
points of a rough horizontal curve, and a string attached to
the middle point C of the chord is pulled in any dircetion, so
that the rod is on the point of motion. Prove that the locus
of the intersection of the string with the directions of the
frictions at the points of support is an arc of a circle and
a part of a straight line. ‘

Find also how the force must be applied that its inter-
sections with the frictions may trace out the remainder of the
circle.

Routh and Watson’s Senate-House Problems for 1860,p. 26.

93. A string whose weight is neglected passes over a
rough fixed horizontal cylinder, and is attached to a weight
W; P is the weight which will just raise W, and P the
weight which will just sustain W; shew that if 2, R’ are
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the corresponding resultant pressures of the string on the
cylinder
P:P=R:R"

94. Two uniform rods 4B, AC of lengths a, b respec-
tively are of the same material and thickness and smoothly
jointed at 4. A rigid weightless rod of length I is jointed
at B to AB; and its other end D is fastened at D to a
smooth ring sliding on AC. The system is hung over a
smooth peg at 4; shew that 4 C makes with the vertical
an angle

95. A tripod-stand is formed by three equal cylindrical
rods of radius 4, and inclined to the vertical at an < a, and
held together by a thin horizontal ring of radius ¢; the
lower cnds of the rods resting on a horizontal plane. Prove

that if ~ b <? each rod will touch the ring in two points, and

sin 2 a==——

J3ec
b_3 . . .
If o>, cach rod will touch the ring in one point only,
and ¢ —2bc =} 1* sec’ a.

96. ABCD is a quadrilateral, O the intersection of the
diagonals; P, @ points in BD, AC such that Q4 = OC and

PB=0D. Prove that the centre of gravity of the quadri-
lateral coincides with that of the triangle OPQ.

This simple and elegant construction for the contre of gravity of & plane
quadrilateral is given in the Quarterly Journal qf Mathematics, Vol, v1. p, 127,
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DYNAMICS.

INTRODUCTION. CHAP. L

1. A railway train travels over 150 miles in 5 k. 40 m.
What is its average velocity in feet per second ?

Result. 38°8 nearly.

2. What is the velocity of a particle which deseribes
438 miles in 31" 50" :—a foot and a second being the respec-
tive units of space and time{

3. What would be the numerical value of the accele-
rating force of gravity, if a mile and an hour were the units
of space and time 7 (See Art. 7.)

4. If v, v be two component velocities of a particle, and
a the angle between their directions, the resuiting velocity is
=4/(v* + v + 20 cos a).

5. If the unit of pressure (or statical force) be 11b. and
the unit of accelerating force be the force which in a second
generates a velocity of one foot per second, what is the unit
of mass?

Result. The mass of 8 weight of 322 1bs,

6. If the area of a field of ten acres be represented by
100, and the acceleration of a heavy falling particle by 583,
find the umit of time.

. 7. In the equation w = mg, what must be the relation
between the units of time and space, in order that the unit
of mass may be the mass of a unit of weight ?



352 PROBLEMS,

8. Shew from the second law of motion that if a system
of particles subject to gravity be projected simultaneously
from a point in directions which all lie in one plane, the
locus of the particles at any subsequent instant will be a
parallel plane.

9., If the unit of weight be 1 oz., and one cubic foot of
the substance of standard density weigh 1621bs., what must
be the unit of linear measure, that the formula W= Vpg may
be true, g being equal to 32 feét ?

Result. 4 inches.

10. In the equation of relation P =mf (Art. 42) sup-
posing the unit of force to be 51bs. and the unit of accelera-
tion, referred to a foot and a second as units, to be 3,—find
the unit of mass. v

Result.  Tho unit of mass is the mass of 533 Ibs, nearly.

11. The radius of the earth at the equator is 39628
miles, and it makes a complete revolution about its axis in
23 k. 56 m.; find the velocity of a point at the equator in
feet per second.

Result, 1526 nearly,

12. If the accelerating effect of gravity be numerically
represented by 9660, a yard being the linear unit, find the
unit of time.

Result. Half a minute,

13. If a body welghmg 301bs. be.moved by a constant
force which generates in it in a second, a velocity of 50 feet .
per second, find what weight the force would statically

support.
Result. 4677 Ibe. nearly,
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14. Tbe wind blowing exactly along a line of railway,
two equally quick trains, moving in opposite directions, have
the steam track of the one twice as long as that of the other;
compare the velocities of the trains and of the wind.

Result. Velocity of the train =3 times that of the wind.

15. If £, £, be the measures of the accelerating effect of a
force when m +n and m — n seconds are the respective units
of time, and a and & feet the respective units of distance,—

shew that the.measure becomes c (Wfe+ Jfb)—provided 2m
seconds be the unit of time, and ¢ feet the unit of distance.

16. A point, moving with a uniform acceleration, de-
seribes 20 feet in the half-second which elapses after the first
second of its motion; compare its acceleration f with that of
o falling heavy particle :—and give its numerical measure,
taking a minute as the unit of time, and a mile as that
of space.

Result. (i) f:g=1 : 1 nearly. (ii) f=21}.

17. A pressure P produces an accelerating effect f on a
mass m, determine the relation between P, m and f; the unit
of pressure being 11b., the unit of mass the mass of a cubic
foot of water, and the unit of acceleration the acceleration
produced by gravity.

Result. P=625.m.f.

18. 1If a point be situated at the intersection of the per-
pendiculars drawn from the angular points of a triangle to
othe sides respectively opposite to them, and have component
velocities represented in magnitude and direction by its dis-
tances from the angular points of the triangle,—prove that
its resultant velocity will tend to the centre of the circle

P. M. 23
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circumseribing the triangle, and will be represented by twice
the distance of the point from the centre.

19. If a be the distance at any time between two points
moving uniformly in one plane, V their relative velocity, and
u, vthe resolved parts of ¥ in and perpendicular to the direc-
tion of a, shew that their distance when they are neatrest to

cach other is (3, and that the time of arriving at this near-

. .au
est distance is = ECE

20. A straight rod moves,n any manner in a plane;
prove that at any instant the dircctions of motion of all its
particles are tangents to a parabola.

21. A person travelling eastward at the rate of 4 miles
an hour, observes that the wind seems to blow directly from
the north; on doubling his speed the wind appears to come
from ihe north-east; determine the direction of the wind,
and its velocity,

Result, The true direction of the wind is from the north-west—and its
velocity is 4 o/2 miles an hour,

22. The measures of an acceleration and a veloeity when
referred to (a + b) ft., (m + n)” and (a—8) ft., (m— n)"” respec-
tively, are in the inverse ratio of their measures when re-
ferred to (@ —b) ft., (m —x)” and (@ +b) ft, (m+n)"’; their
measures when referred to aft, m” and bft,n” are as
ma ; nb, shew that

7 b

D=1

a
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23. If the unit of impulse be an impulse which would
send 11b, up 1foot, what impulse will be required to send
4 Ibs. vertically up 4 feet?

» L ] * * L] . »

24. A velocity of one foot per second is changed uni-
formly in one minute to a velocity of one mile per hour.
Express numerically the rate of change when a yurd and a
minute are the units of space and time,

25. 1If the acceleration of a heavy body falling freely be
the unit of acceleration, and the velocity acquired in «
seconds be the unit of velocity, find the unit of length.

26. Explain what is meant by the dimensions of a
physical quantity.

If we have to change from a foot-pound-second to a yard-
pound-minute system-—find the ratios in which we must
alter the measures of (1) a velocity, (2) an acceleration,
(3) an angular velocity, (4) the length of a pendulum beating
time-units, (3) momentum, (6) work, (7) power, (8) density,
(9) specific gravity.

27. If the units of length and time be one mile and
one hour, and that of mass the mass of one cubic yard of .
water, find the density of the standard substance compared
with water in order that the formula M= Vp may hold, and
the formula W =My may give the weight in tons; as-
sumjng that the acceleration of gravity referred to feet
.and seconds is 32, and that one cubic foot of water weighs
1000 ounces.

28. Compare the units of momentum and kinetic energy
when the fundamental units are @ feet, y seconds, and
23—2
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z pounds with the like units referred to 1 foot, 1 second,
and 1 pound respectively.

Find the momentum in both systems of units of the
earth, assuming its mean density to be 5%, its radius to be
4000 miles, the distance of the sun 91500000 miles and
1 year to be 365} days.

COLLISION. CHAPTER 11

1. What must be the elasticity of two balls 4, B in
order that A impinging directly upon B at rest may itself be
reduced to rest by the impact ?

Result. c=‘; .

2. A man can pull a boat with three times the velocity
of the stream—at what angle to the stream must the boat
be rowed in order that he may land at a point directly oppo-
site his starting place?

Result. At an angle with the stream =eos™? ;; .

8. A ship sails N.W. at the rate of 9 knots per hour,
and is drifted S.SW. by the current at the rate of 2 knots
an hour—find the actual speed and direction of motion.

Result. Her speed = J 85-184/2—n/2 knots an hour,—her direction

8r
9-2cos —
makes an angle oot"(-——T) to the west of north.west.
2 gin —
8

4. A ball of 9 ounces moving with a velocity of 7 feet
a second impinges directly upon a ball of 12 ounces moving
with a velocity of 5 feet a second in the opposite direction ;
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find the change in the velocity and momentum of each ball,
supposing them inelastic.

5. Under what conditions will the velocities of two balls
4, B impinging directly upon each other, be interchanged
after impact ?

Result. 1f the balls be equal and the elasticity perfect.

6. Two balls 4, B arc moving in directions at right
angles to each other with the same velocity, the line joining
their centres at the instant of impact being in direction of A’s
motion; find the velocity and direction of motion of each
after impact (clasticity = e).

Result. In the formulie of Art. 58 write a==0, 8=90° u=v,

7. Two bodies of masses 24 and 34 are moving with
the same velocity in directions making angles 43° and 30°
with the common tangent at the point of impact. Find the
direction and velocity of the centre of gravity.

8. A, B are two equal and perfectly elastic spheres;
A moving with a given velocity impinges on B at rest, the
direction of A’s motion before impact making an angle of 60°
with the straight line which joins their centres at the instant
of impact ; determine the directions and velocities of 4 and B
after impact.

9. Compare the velocity of a place at the earth’s equa-
tor arising from the earth’s rotation, with the velocity of the
earth in her orbit about the sun; assuming the earth's radius
= 4000 miles, the radius of the earth’s orbit = 95000000 miles
and the length of the year = 365} days.

Result. 1 ;65 nearly.
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10. A ball 4 impinges directly with a given velocity
upon another ball B at rest; if the vis viva before impact
be n times the s viva after impact, find their common
elasticity.

A+B-nd
Result, = =B

11. A ball 4 moving with a given velocity impinges
directly upon a ball B at rest, and B afterwards impinges
upon C at rest; determine the velocity communicated to C.
If 4 and C be of given mass and B variable, shew that C’s
velocity will be greatest when B*= 4. C.

Apply the formul® of Art. 8.

12. A ball 4 strikes a ball B at rest, the direction of
A’s motion before impact being 45° inclined to the line AB;
find the velocity and direction of motion of each after impact,
and the condition that they may move at right angles to each
other.

13. A perfectly elastic ball acted on by no force, is pro-
Jected from the focus of an ellipse and impinges upon the
curve; it will return to the focus again in the same_time,
whatever be the direction of projection.

14. Two planes make an angle of 5° with each other,
and a perfectly elastic body is projected against one of them
at an angle of 105°; how many reflexions will take place
towards the angle where the planes meet ?

Result. Three.

15. A ball 4 impinges obliquely on another ball B at
rest, and after impact the directions of motion of 4 and B
make equal angles (a) with A4’s previous motion: find a, and
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shew that if the masses of the balls be equal and e the
mutual elasticity, a = tan™ y/e.

16. A smooth table has a smooth rim in the form of a
regular hexagon ; shew that an inelastic ball, projected along
one side of the hexagon, performs n complete revolutions in
(2% — 1) time of describing the first side.

17. Two imperfectly elastic balls, equal in size, but un-
equal in mass, are placed between two perfectly hard parallel
planes, to which the line joining the centres of the balls is
perpendicular,—each ball being initially at a distance from
the planc nearest to it, inversely proportional to its mass.
The balls approach each other with velocities inversely pro-
portional to their masses; prove that every impact will take
place at the same point as the first does.

18. Two balls, of clasticity ¢, moving in parallel direc-
tions with equal momenta, impinge ; prove that if their direc-
tions of motion be opposite, they will move after impact in
parallel directions with equal momenta; and that these direc-
tions will be perpendicular to the original direction if their
common normal is inclined at an angle tan™4/¢ to that
direction. -

19. A ball of clasticity e is projected along a horizontal
plane in an equilateral triangle, and after reflexion at two
sides it impinges perpendicularly on the third. Shew that the

“« . - J 36- (1 -_— e)
1 " = e e e
angle of incidence was tan 143 °

» » L » - L L

» 20. Ifu,vbe tbe velocities before direct impact of two
balls 4, B,—u', v' their velocities after impact, shew that

AB
Av* + B = Au* + By + A+ B (1-¢)u-1v).
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21. A body whose elasticity is e is projected from a point
in the circumference of a circle, and after three rebounds from
the circumference returns to the point from which it was pro-
jected ; shew that the direction of projection is inclined to
the radius of the circle at an angle = tan™ (e‘).

22. A ball projected from a point in one side of a billiard
table returns to the point of projection after striking each side
in succession ; find the direction of projection, and shew that
if it ever returns to its original position it does so after the
first circuit.

23. Two equal balls (4, 4), moving with equal velocities
in directions passing through the centre of a third ball C,
impinge upon it and upon one another simultaneously ; find
the ratio of the masses of the balls, that after impact the direc-
tions of motion of the two balls may be perpendicular to that
of the third, the coefficients of elasticity being 4.
Result. C =4d.

24. A ball 4 impinges upon a ball B at rest; find the
direction of the line joining the centres of 4 and B, in order
that they may after impact move in directions making equal
angles with the original direction of 4's motion.

Result. 'With the notation of Art. (58) we must have
B-4+2B
A+B °

25. If ABC be a triangle and D, E, I' the points where
the circle insctibed in it meets the sides BC, CA, A B respec-
tively ; shew that if a ball, of elasticity ¢, be projected from
D 50 as to strike AC in E and then rebound to F,

AE=e.CE.

If the ball return to D, AB=¢e. AC.

tan?a =
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26. Two equal balls (of elasticity e) start at the same
instant with equal velocities from the opposite angles of a
square along the sides and impinge; determine the angle
between their directions after the impact.

2¢

Reault. tan-! foett

27. Three equal smooth balls rest on a horizontal table
and each is in contact with the other two; if one of them
receive a blow at a given point in the plane passing through
the centres of the balls, determine the direction of its motion
after impact.

28. Two particles .connected by an inextensible string
are projected in given directions in one plane with giveu velo-
cities; determine their motions immediately after the string
becomes tight.

29. A body of elasticity e is projected along a horizontal
plane from the middle point of one of the sides of an isosceles
right-angled triangle, so as after reflexion at the hypotenuse
and remaining side to return to the same point; shew that
the cotangents of the angles of reflexion are e+1 and ¢ + 2
respectively.

30. The tangents of the angles of a triangle ARC are
in geometrical progression, tan Bbeing the mean proportional;
and a ball is projected in a direction parallel to the side CB,
80 a8 to strike the sides 4B, BC successively. . Shew that if
its course after the first impact be parallel to AC, its course

*® after the second will be parallel to B4 :—and that if € be the
modulus of elasticity,

}

d+ed=secB
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31. A ball is projected from the middle point of one side
of a billiard table so as to strike in succession one of the sides
adjacent to it, the side opposite to it, and a ball placed in the
centre of the table: shew that if a, b be the lengths of the
sides of the table, e the elasticity of the ball, the inclination
of the direction of projection to the side ¢ of the table from
which it is projected must be

= tan™ b (L—t?e) .
a\l+e

32. A smooth inelastic ball,—mass m,—is lying on a
horizontal table in contact with a vertical wall, and is struck
by another ball,—mass m’,—moving in a direction perpen-
dicular to the wall, making an anglé (a) with the common
normal at the point of impact; shew that if d be the angle
through which the direction of motion of the striking ball is
turned,

cotG.cota=Zn-+l.
m

33. An elastic ball is projected from a point in one of
the sides of a square billiard table so as to describe an in-
scribed square ; prove that if ¢ be the mutual elasticity of the
cushions and ball, the time of describing the square is

1-¢ 1
1-¢ o
time of describing the first side.

34. A particle, of elasticity e, is projected from the middle
point of one side of a square, in a direction making an <
with it ;—shew that if the ball strike the four sides in order, .
@ must lie between

o 2e(1+40)

+o) 22(1+6)
1+(1+e

Z2+e

and tan
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35. Two billiard balls are lying in contact on the table;
in what direction must one of them be struck by a third, so
as to go off in a given direction ? '

36. A ball 4 impinges obliquely on a ball B at rest, their
mutual elasticity being ¢, shew that the maaimum deviation
of 4 1s=tan™ - . '(l»fe”?

2V(A+ B) (4
examine the case when 4 < eB.

el provided 4>¢B: and

37. In a game of croquet a ball which is to be eroqueted
is at a certain distance on one side of a hoop: the striker
wishes to place his ball so that after the croquet it may be
in front of the hoop, and the other ball be at the same
distance behind it; shew that the player must give his
stroke in direction of the hoop, and that the line joining the
centres of the two balls must be inclived at an angle tan™ Ve
to this direction: e being the coefficient of eclasticity between
the balls.

38. Prove that after impact on two planes at right angles
the velocity of an elastic particle (e} is reversed in direction.

If a stream of particles of elasticity e, all moving in
parallel direction with velocity u, impinge successively on
two smooth given planes at right angles, prove that the
average resultant of the pressure on the plane is Mu (1 +¢),
where M is the mass of the particles which strike each plane
in ope second.

o 39. A row of elastic balls 4, B, C,... P, are at rest; if
A be made to impinge directly with given velocity upon B,
then B on C with the velocity acquired, C on D, and so on,
find the velocity of P,
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Shew that if 4 and P be of given magnitude, but B, C...
capable of being changed, the velocity communicated to P
will be greatest when the masses of the balls are in geo-
metrical progression,

And if the number of balls interposed between 4 and P
become indefinitely great, then the velocity acquired by

P= \/ Gi) .original velocity of A.

ACCELERATED MOTION. CHAPTER IIL

1. A body is projected upwards with a velocity ¥, and
after rising through a space s, has a velocity »; shew that
o' =u'— 2gs.
If the velocity of projection is 8g, find the time in which
the body rises through the height 14g.

2. A yparticle of elasticity 4 drops through 16 feet, and
then rises after impact on a horizontal plane. Find the velo-
city after rising 3 feet, and the time of this ascent: force of
gravity being taken to be 32 feet.

Result. Velocity =8 feot, and the time=} second.

3. A particle moves over 7 feet in the first second of the
time during which it is observed, and over 11 and 17 feet in
the 3rd and 6th seconds respectively. Is this consistent with
the supposition of its being subject to the action of a uniform
force ?

Result. Yes.

4. A weight @ is drawn along a smooth horizontal table
by a weight P hanging vertically, find (1) the acceleration



ACCELERATED MOTION. CHAP. III, 8463

of P, (2) the acceleration of the centre of gravity of P
and Q.

Result. (i) Acceleration of sz»,f Q

_ P N . _ re X
= (1'+6) g vertically, md—(-l,-; 'jSy horisontally.

g. (ii} Of the centre of gravity

5. A constant force (f) acts upon a body from rest during
3 seconds, and then ceases. In the next 3 seconds it is found
that the body describes 180 feet. Find both the velocity (v)
of the body at the end of the 2nd second of its motion and the
numerical values of the accelcrating force (1) when a second,
(2) when a minute is taken as the unit of time.
Result. D=40, (i) f=20. (i) f=72000,

6. A force which can statically support 50 lbs. acts uni-
formly for one minutec on a body, the weight of which is
200 1bs.; find the velocity and momecutumn acquired by the

body.

7. A body acted on by a uniform force is found to be
moving at the end of the first minute from rest with a velocity
which would carry it through 10 miles in the next hour.
Compare this force f with that of gravity g.

Result. f:g=1:131 nearly.

8. If the force of gravity be taken as the unit of force,
and a rate of ten miles an hour as the unit of velocity, what
must be the units of time and space ?

Result. Unit of time= (;i), unit of spnce=%1 foct.

9. A bullet fired directly into a block of wood will pene-
trate a inches: find what proportion of its velocity it would
lose in passing through a board of the same wood one inch
thick, supposing the resistance uniform. ‘
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10. A particle slides down a rough inclined plane (a);
find the acceleration £ ‘
Result. f=g(sina - ucosa).

11. If a weight of ten pounds be placed upon a plane
which is made to descend with a uniform acceleration of 10
feet per second, what is the pressure upon the plane?

Result. 6-8751bs.

12. A body falling in vacuo under the action of gravity
is observed to fall through 1449 feet and 1771 feet in two
successive seconds ; determine the accelerating force of gravity,
and the time from the beginning of the motion,

Result. =322, and the first of the two seconds spoken of is the fifth
from the beginning of motion.

13. The velocity generated by a gun in a bullet of 1 oz.
is 1000 feet per second ; supposing that the bullet described
the length of the barrel in 3; of a second, and that the force is
uniform, find the acceleration and moving force (f, ).

Result. f=10000 feet per second,
F =19-4 1bs. nearly.

14. A body falling vertically is observed to describe
1127 feet in a certain second: how long previously to this
has it been falling ?

Result. Three seconds.

15. A person drops a stone into a well, and after ¢” hears
1t strike the water; find the depth () to the surface of the
water (assuming velocity of sound = 35 . g nearly).

Result. Find z from the equation
z+85 /27 = 35gt.
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16. A balloon ascends with a uniformly accelerated
velocity so that a weight of 1 lb. produces on the hand of the
aeronaut sustaining it a downward pressure equal to that
which 17 oz. would preduce at the earth’s surface ; find the
height which the balloon will have attained in one minute
from the time of starting, not taking into account the varia-
tion of the accelerating effect of the earth’s attraction,

Result, 12075 yards, taking y=2382-2,

17. AB is the vertical diameter of a circle ; through 4
the highest point any chord AC' is drawn, and through Ca
tangent meeting the tangent at 73 in the point 7.  Shew that

the time of a body’s sliding down CT « ;}U'

18. A particle uniformly accelerated describes 108 and
140 feet in the 5th and 7th seconds of its motion :(—find the
velocity of projection and the numerical measure of the ac-
celeration. '

19. Shew how to place a plane of given length in order
that a body may acquire a given velocity by falling down it.

20. Prove that the locus of the points, from which the
times down equally rough inclined planes to a fixed point
vary as the lengths of the planes, is a right circular cone,

21, In a parabola whose axis is vertical, a tangent is
drawn at any point P cutting the axis produced in 7'; shew
that if gravity alone acts, the time of descent down TP bears
a constant ratio to the time of descent from T to the focus,

22. APB, AQC are two circles with their centres in the
same vertical line ABC, and touching each other at their
highest points. If AP @, Apg be any two chords, the times
of descent down P @, pg from rest at P and p are equal.
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23. A particle is moving under the action of & uniform
force, the accelerating effect of which is f: if u be the arith-
metic mean of the first andsJast velocities in passing over any
portion % of the path, and v the velocity gained, shew that

wv = fh.

24. In what time will a force which would support a
51b. weight move a mass of 101bs. weight through 50 feet
along a smooth horizontal plane, and what will be the velo-
city acquired ?

25. If a body subject to a uniform acceleration describes
36 feet, whilst its velocity increases from 8 to 10 feet per
second, how much farther will it be carried before it attains
a velocity of 12 feet per sccond ?

26. A heavy body is projected up an inclined plane,
inclined at 60° to the horizon, with the velocity which it
would have acquired in fallmg freely through a space of
12 feet, and just reaches the top of the plane; find the alti-
tude of the plane, the coefficient of dynamical friction being

1
RE

Result. 9 feet.

27. Two bodies uniformly accelerated, in passing over
the same space, have their respective velocities increased
from 5 to 7 and from 8 to 10,—compare the accelerating
forces, and the respective times of describing the space.

. o » . » e

28, AP, AQ are two inclined planes of which AP is
rough (u=tan PAQ) and AQ is smooth, AP lying above
AQ: shew that if bodies descend from rest at P anl @, they
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will arrive at 4, (i) in the same time if PQ be berpendicular
to AQ, (i) with the same velocity if PQ be perpendicular to
AP.

29. An engine whose power is sufficient to generate a
velocity of 150 feet a second in a mass m (which is its own

mass) is attached to a carriage, muss-~— by means of an
inelastic weightless chain 3 feet long; thxs carriage again in

exactly the same way to another, mass = g:, this to a third,

m
mass = o .

the train starts; shew that the last carriage will begin to move
with a velocity = 33 feet per second nearly.

The engine and carriages are in contact when

30. A body P descending vertically draws another body
Q up the inclined plane formed by the upper surface of a
right-angled wedge which rests on a smooth horizontal table;
find the force F necessary to prevent the wedge from sliding
along the table.

Result. =Qgcosa 2_“’,1_2 P.

31. A uniform string hangs at rest over a smooth peg.
Half the string on one side of the peg is cut off: shew that
the pressure on the peg is mstantaneously reduced to two-

thirds its previous amount.

32. A smooth wedge (of <a) on a horizontal plane is
Jnoved from rest with a umform acceleration; find the direc-
“tien and amount of the acceleration that a hea.vy particle
placed on its inclined plane surface may be in equilibrium
relative to it.
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Result, The wedge must move in & principal plane with an acceleration
=g tan a,

33. Find the locus of points from which inelastic parti-
cles may be let fall on a smooth inclined plane, so as always
to have the same velocity on arriving at the same horizontal
line in the plane.

Result. A plane passing through the given horizontal line.

34. If a body is projected with velocity « in the direc-
tion of a uniform force f, and if v be the velocity and & the
space described at the end of time ¢, prove that

= —— =,

The velocity of a body increases from 10 to 16 feet per
second in passing over 13 feet under the action of a constant
force; find the numerical value of the force.

35. Find by geometrical construction or otherwise the
line of quickest descent,

(i) From a given straight line to a given point.

(i) From a given point within a given circle to the
circle.

(iii) From a given circle to a given point within it.

(iv) From a given circle to a given straight line or to
another circle without it.

(v) From a given circle to another given circle either

within it or without it,
¢

36. Two circles lie in the same plane, the lowest point
of one being in contact with the highest point of the other;
shew that the time of descent from any point of the former
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to a point in the latter, down the chord passing through the
point of contact, is constant.

37. Two equal bodies connected by a string are placed
upon two planes which are inclined at angles a, 8 to the
horizon, and have a common altitude. Prove that the acce-
leration of their centre of gravity is

. a=R a+8
g-sin —;=.cos' ——.

38. A number of heavy particles start at once from the
vertex of an oblique circular cone, whose base is horizontal,
and fall in all directions down generating lines of the surface;
prove that they will at any subsequent moment lie in a sub-
contrary section.

39. Two bodies 4 and B descend from the same ex-
tremity of the vertical diameter of a circle, one down the
diameter, the other down the chord of 30". ¥ind the ratio of
A to B when their centre of gravity moves along the chord
of 120°.

Result. 4:B=,[3+1:1.

40, A geries of particles slide down the smooth faces of
a pyramid, starting simultaneously from rest at the vertex;
shew that after any time ¢ they are in a certain spherical
surface whose radius =} g¢*,

41. P pulls Q over a smooth pully;—and @ in ascend-
ing s it passes a certain point 4, catches and carries with it
& certain additional weight which makes it altogether heavier
than P; and on its descent the additional weight is again
deposited at 4. Supposing no impulse to take place when
the weight is so caught up, and that @ in this manner oscil-

: 24—2
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lates through an equal space on either side of A,—find the
additional weight.

42. If the weight attached to the free end of the string
in a system of pullies, in which the same string passes round
each pully, be m times that which is necessary to maintain
equilibrium, shew that the acceleration of the ascending

weight 1 is mo where n is the number of strings at the

g)
n+ 1
lower block, and the grooves of the pullies are supposed
smooth. What is the tension of the string ?

43. A weight W is connected with a weight P by a sys-
tem of » moveable pullies, in which the string passing round
any pully has one end fixed and the other attached to the
pully next above it—the string to which P is attached passing
round a fixed pully, and the strings between the pullies
being all parallel:—shew that the accclcratlon of Wupwa'rds

*P-W

w=pywd

44, If S be the focus of a parabola whose axis is hori-
zontal and plane vertical, SP the line of quickest descent
from £ to the curve, shew that SP is inclined at 60° to the
axis,

is =

45. Two weights P, @ move on two planes inclined at
angles a, 8 to the horizon respectively, being connected by a
fine string passing over the common vertex, in a vertical
plane which is at right angles to this common vertex; their
centre of gravity describes a straight line with uniform ac-
celeration equal to

Q sin 3 —Psina
g P+

JET2PQcs @t B 1 .



ACCELERATED MOTION. CHAP. III . 373

46, A heavy particle is projected directly up an inclined
plane (a) with velocity w, and is attached to the point of
projection by an inextensible string whose length is half the
distance a free particle would ascend: determine the time
which elapses before the particle returns to the point of pro-
Jection,

47. Supposing the weights in Atwood’s machine to be
7 and 9 pounds and to rest on scale-pans without weight, find
the pressure on each scale-pan.

48. A body starts from rest under a uniform acceleration,
but at the commencement of each successive second the ac-
celeration is decreased in a geometrical proportion (r=14):—

shew that the space described in n seconds = (211 -3+ 2,,)

—where s is the space described in the first second.

49. Two bodies whose weights are P> and @ hang from
the extremities of a cord passing over a smooth peg; if at the
end of each second from the beginning of motion P be sud-

denly diminished and @ suddenly increased by ;lith of their

original difference; shew that their velocity will be zero at
the end of n + 1 seconds.

50. In the problem of Art. 75, prove that the sum of
the weights being given, the tension is the greater the less
the acceleration.

51. A railway carriage detached from a train going at
the rate of 30 miles an hour is stopped by the friction of
*the rails in half a minute; find the coefficient of friction,

52. A parabola is placed in a vertical plane and its axis
is inclined to the vertical. S is the focus, 4 the vertex and
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Q the point in the curve which is vertically below S: if SP
be the straight line of quickest descent from the focus to the
curve, shew that the angle ASP is equal to twice the
angle PSQ.

33. A train moving at the rate of 60 miles an hour is
brought to rest in 5 minutes by uniform retardation. Find
the space traversed by the train during reduction of speed.

54. In the problem of Art. 77, if I’ be equal to @, find
the inclination of the plane that the time of drawing Q up a
given vertical height from rest may be the least possible.

55. If a weight P balance a weight W in that system of
pullies in which each pully hangs by a separate string, shew
that if P be changed to P and W to W', P will descend with
acceleration f such that

2P+ W+ (2 +1)2"P- W)
=29 (2" (P' =P+ W~ W'

56. A mass of 1000 tons at rest is acted on by a con-
stant pressure due to a weight of 141bs. After what interval
of time will it have a velocity of one foot per second ?

57. A body has been falling for 40 seconds—find the
force which will stop it in 10 seconds;—find also the force
which will stop it in 10 feet,

58. A train goes from one station to another a mile off,
being uniformly accelerated from rest in the first two-thirds
of the distance, and being brought to rest by uniform retarda-
tion in the remaining one-third of the distance, and taking
3 minutes to perform the journey. Find the acceleration
and retardation and the maximum velocity acquired. '
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59. A string charged with n+m + 1 equal weights, fixed
at equal intervals along it, and which would rest on a smooth
inclined plane with m of the weights hanging over the top,
is placed on the plane with the (m + 1)** weight just over
the top;—shew that if a be the distance between each two
adjacent weights, the velocity which the string will have
acquired at the instant the last weight slips off the plane,

will be =4/ /171?]

60. A fine inclastic thread is loaded with n equal par-
ticles at equal distances ¢ from one another; the thread ia
stretched and placed on a smooth horizontal table, perpen-
dicular to its edge, over which one particle just hangs; find
the velocity of the system when the 7 particle is leaving the
table.

Hence shew that if a heavy string of length a be simi-
larly placed on a horizontal table, its velocity in falling off
will be = /{ag).
=gc" 0D,

Result. ©,2
n

61. A number n of equal balls connected by a string are
laid upon a smooth table, the string being stretched at right
angles to the edge of the table; if onc ball hanging over the
edge draws the others after it, determine the lengths of sue-
cessive portions of the string, that each may fall over at the
end of suceessive equal intervals of time,

Result. If a.be the longth of string between the r'® and the (r+ 1)'* balls,
wo must have a,=7%.a,, snd if v, be the velocity of the system when the s

ball is passing over the edge, v, =7 (r-1) \/ %%1 .

62. A string loaded with a series of equal heavy par.
ticles at equal distances along it, is coiled up in the hand
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and held close to a peg to which one end of the string is
attached. The support of the hand being withdrawn sud-
denly from the coil, find the finite and ‘mpulsive strains on
the peg when the 7*® gection of the string becomes tight :—
the mass of the string being neglected.

If a uniform heavy chain (of length @ and weight W) be
treated in a similar manner, shew that the strain on the peg
when a length x of chain becomes tight is = 32 w.

»* * » * * * *

Work and Energy.

1. A body of mass m has been moved from rest by the
action during t seconds of a constant force P, through a
space s and has thereby acquired a velocity . Prove that
the following relations hold,—

tv met  mw
5= P=»:Zs Tt

2. A ball, weight 10 Ibs,, is projected vertically upwards
with an initial velocity of 1660 feet per second. Find its
velocity, its momentum, and its potential energy, after 30 and
after 60 seconds. (Taking the acceleration due to gravity as
322 feet per second.)

3. A bullet fired horizontally from a musket being sup-
posed to pass perpendicularly through a target suspended
freely in the air, explain on the theory of dynamical work,
why the greater the velocity of the bullet the less the dis-
placement of the target.
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4. A series of n elastic spheres whose masses are
1, e, ¢, ... are at rest separated by intervals with their
centres on a straight line, The first is made to impinge
directly on the second with velocity u. Prove that the
final kinetic energy of the system is

J(l—e+e)ut

5. A ball of mass 4 moving with velocity v impinges
directly on a second B at rest, and then B impinges
directly on a third C at rest. Prove that the loss of
kinetic energy is

1 AB ' 7 AC . ,} R
24+80 ”){1+(;44'+B)(13+’o;<1”) w

6. The energy of a projectile weighing 400 Ibs. on

striking a target is 25000 foot-tons, find its velocity.

7. A ball weighing five ounces and moving with a
velocity of 1000 feet per second strikes a shield, and after
piercing it, moves on with a velocity of 400 feet: how mucli
energy has been expended in piercing the shield 2

8. Explhin the terms unit of work, horse power and
duty of an engine.

How many units of work must be expended in raising
from the ground the materials for building a uniform column
66 feet 8 inches high and 21 feet square, a cubic foot of
brick-work weighing one hundredweight ?

" The term duty is applied to the amount of work an engine can do by

the consumption of a given quantity of fuel, Bee GoopEve’s Text-Book on
the Steam Engine, pp. 128-—128.

The work which can be done by the burning of 11b. of coal is about two
million foot-pounds, varying more or less with the engine.
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9. The depth of the shaft of a colliery is 936 feet, and
it has been calculated that the furnace burning at the bot-
tom of the pit raises all the air which ascends the shaft
through a height of 170 feet. The temperature of the air
is 50°, and the quantity of air passing through the mine
is 94960 cubic feet per minute. Having given that the
weight of a cubic foot of air at 50° is "078 lbs,, prove that
the ventilating power of the farnace iz about 38 horse-

power.

10. A weight of 10 tons is dragged, in half an hour,
a length of 330 feet up a rough plane inclined 30° to the

horizontal plane, the coefficient of friction being —1—7; find

J3
the work expended, and the horse-power of an engine by
which the work could be done.
Prove that the work expended in pulling out an elastic
string to any assigned length is equal to half the extension
multiplied by the final tension.

11, A train whose weight is 90 tons travels at the rate
of 20 miles an hour; if the resistance is 6 Ibs. per ton, what
is the horse-power of the engine ¢

12. Define work, and give examples of forces which do
no work. Does the attraction of the Sun on the Earth do
any work (1) in a month, (2) in a year?

Prove that the work required to draw a heavy body up a
rough inclined plane is the same as if the body were drawn
along the base, supposed equally rough, and then lifted
through "the vertical height.

A train of mass, 200 tons, is ascending an incline of 1 in
100 at the rate of 380 miles per hour, the resistance of the
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rails being 81bs, per ton. The steam being shut off and the
brake applied, the train is stopped in a quarter of a mile.
Find the weight of the brake-van, the coeficient of sliding
friction of iron on iron being }.

13. A train weighing 120 tons runs on a level road;
and the resistance to be overcome is 81bs. per ton. How
many units of work must be expended in making & run of
40 miles, when there is no useless expenditure of steam ?

14. If the kinetic energy of a train weighing 100 tons'
and moving at 45 miles an hour be represented by 11, while
the impulse required to bring it to rest is representéd by 5,
and 40 horse-power is represented by 13—find the units of
time, length and mass, and shew that the acceleration pro-
duced by gravity will be represented by 2016, assuming its
measure to be 32 in the foot-second system.

15. In a railway train in motion—for each ton of weight
in the train the accumulated energy is equal to
(1) 120 foot-tons at GO miles per hour,
(il) 53 foot-tons at 40 miles per hour,
(iti) 30 foot-tons at 30 miles per hour.

For a train of fifteen vehicles weighing 200 tons the energy
at 60 miles per hour is equal to 24000 tons falling a
distance of one foot.

PROJECTILES. CHAPTER IV.

1. A particle, acted on by two equal centres of force
which vary as distance,—one repulsive and the other attrac-
tive,—will, however projected, describe a parabola.
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2. A body is projected with a vertical velocity (167)
and a horizontal velocity (‘8); prove that its distance from
the point of projection at the end of one second is one foot
(g = 322 feet).

-

3. If a body fall down an inclined plane (a), and another
be projected from the starting point horizontally along the
plane with velocity », find the distance D between the two
bodies (i) after a given time ¢, (i) after the first body has
descended through a given space s.

. . 24

Result, (i) D=vt. (ii) D=v \/g sin a*

4. Find the angle which the direction of a projectile
makes with the horizon at any point of its path, and deter-
mine its distance from aline drawn through the point of pro-
Jjection parallel to this direction.

Result. With the notation of Art. 88, Cor, 8,

tan ¢ =tan a-;é’o%_a ,

and z=distance required=v sin (a—¢).t— g cos ¢ . t3
5. If 6, ¢ be the angles which the tangents to the curve
at the points P, @ of the path of a projectile make with the
horizon, the time of describing the arc PQ o tan 6 — tan ¢.

6. A body slides down an inclined plane of given height,
and then impinges upon an elastic horizontal plane; what
must be the elevation of the inclined plane in order that the
range on the horizontal plane may be the greatest possible ?

Result, 45°

7. Having given the velocities at two points of the path
of a projectile, find the difference of their altitudes above a
horizontal plane. :
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8. If a ship is moving horizontally with a velocity 3g,
and a body is let fall from the top of the mast, find its velo-
city and direction after 4",

Result. Vilosity = Gy, inclination to the horizon =tan-1 3.

9. A body is projected from the top of a tower with a
given velocity in a given direction ; find where it will strike
the ground.

10. A heavy particle is projected from one point so as
to pass through another not in the same horizontal line with
it; prove that the locus of the focus of its path will be a
hyperbola.

11. Particles are projected from the same point in a ver-
tical plane with velocities which vary as (sin 8)74, 6 being
the angle of projection; the locus of the vertices of the
parabolas described is an ellipse—whose horizontal axis is
double the vertical axis.

12. Two heavy bodies are projected from the same point,
at the same instant, in the same direction, with different
'velocities; find the direction of the line joining them at any
subsequent time.

Result, It is always parallel to the direction of projection,

13. An imperfectly elastic ball is projected from a point
between two vertical planes, the plane of motion being per-
pepdicular to both ; shew that the arcs described between the
rebounds are portions of parabolas whose latera recta are in
geometric progression.

14. A body is projected vertically upwards from a point
A with a given velocity (v); find the direction () in which
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another body must be projected with a given velocity (v)
from a point B in the same horizontal line with A4, so as to
strike the first body.

. w
Result, sin am=_.

15. A ball is projected from a point in a horizontal plane
and makes one rebound; shew that if the second range is equal
to the greatest height which the ball attains, tana=4e:

a being the angle of projection and e the elasticity.

16. Particles are projected from the same point in the
same direction, but with different velocities ; find the locus of
the foci of their paths.

Result. The straight line y +z cot 2a=0 (Art. 88).

17. The greatest range of a rifle-ball on level ground is
11763 feet. Find the initial velocity of the ball, and shew
that the greatest range up an incline of 30° will be 7842
feet—neglecting the resistance of the air.

18. If a body be projected at an an‘gle a to the horizon
with the velocity due to gravity in 17,its direction is inclined

_ at an angle 2 to the horizon at the time tan g, and at an

2

angle '"-2_ 2 at the time cot %.

19. A body is projected from a given point 4 with a
given velocity and in a given direction. After a lapse of
m seconds another equal body is projected from the same
point so that the line joining the two bodies always passes
through A4 : shew that the paths of the two bodies and that
of their centre of gravity will be equal parabolas.
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20. A perfectly elastic particle is projected with a given
velocity from a given point in one of two planes equally in-
clined to the horizon and whose line of intersection is hori-
zontal : determine the angle of projection in order that the
particle may after reﬂean return to the point of prq;ectmn
and be again reflected in the same path.

Shew that each plane must be inclined at an angle 1; to

the horizon.

21. A particle projected with velocity v impinges per-
pendicularly on an inclined plane drawn through the point
of projection at an inclination a,—shew that the range on the
plane = 27 _______sin?z .

g 1+3sin’a

* » L L - L »

22. A body is projected from a given point in & hori-
zontal direction with a given velocity, and moves upon an
inclined plane passing through the point. If the inclination
of the plane vary, the locus of the directrix of the parabola
which the body describes is a horizontal plane.

28. A body is projected horizontally with a velocity 4g
from a point whose height above the ground is 16¢; find the
direction of motion (1) when it has fallen half-way to the
ground, (2) when half the whole time of falling has elapsed.

Result. (i) p=45% (ii) p=tan~! ;;;

24. A cylinder is made to revolve uniformly about its
axis, which is vertical, while a body descends under the
action of gravity, carrying a pencil which traces a curve on
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the surface of the cylinder: if the surface of the cylinder be
.unwrapped, what will be the nature of the curve ?
Result, A parabola with axis vertieal,

25. If a ball of elasticity } is let fall through a height &
on a plane whose inclination is 80°, shew that it will strike

the plane again at a dxstance Sh from the first point where it
strikes the plane.

26. TIf the initial velocity of a projectile be given, the
horizontal range is the same, whether the angle of projection
be g+ @, or
flight.

g —a. Prove this, and compare the times of

27. The velocities at the extremities of any chord of the
parabola described by a body projected obliquely and acted
on by gravity, when resolved in a direction perpendicular to
the chord, are equal.

28. From the top of a tower two bodies are projected
.with the same given velocity at different given angles of
clevation, and they strike the horizon at the same place ; find
the height of the tower.

29. Having given the velocity and direction of projec-
tion of a projectile, determine by a geometrical construction
the points where it will strike (i) the horizontal plane passing
through the point of prq;ectxon, (i) an mclmed plane through
the same point.

. Compare Art. 90.. :
- 30. Chords are drawn Jmmng any point of a vertxcal
circle with its highest and lowest points; prove that if a

.
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heavy particle slide down the latter chord, the parabola,
which it will describe after leaving the chord, will be touched
by the former chord,—and that the locus of the points of con-
tact will be a circle.

31. If the plane in Art. 89, Dynamics, be a rectangle
of given sides, find the velocity with which the particle must
be projected from one corner 8o as to leave the plane hori- .
zontally at the other corner: and shew that the ratio of the
horizontal range after leaving the plane to that described on
the plane is the sine of the angle of clevation of the plane.

32. The barrel of a rifle sighted to hit the centre of the
bull's-eye which is at the same height as the muzzle and
distant @ yards from it, would be inclined at an elevation a
to the horizon. Prove that if the rifle be wrongly sighted
so that the clevation is @ + 6, @ being small compared with a,
acos 22
“cos'a

the target will be hit at a height . 8 above the centre

of the bull's-eye.

If the range be 960 yds, the time of flight 2", and the
error of clevation 1”, the height above the centre of the bull’s-
eye at which the target will be hit will be nearly }th of an
inch.

33. A ball of elasticity e is projected obliquely up an
inclined plane so that the point of impact at the third time
of striking the plane is in the same horizontal line as
the point of projection. Prove that the distances from this
line of the points of first and second impact are in the

' ratio 1: e.

34. If a ball be projected from a point in an inclined
plane in a direction such that the range on the plane is the

P. M. 25
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greatest, shew that the direction of motion on striking the
plane is perpendicular to the direction of projection.

35. An imperfectly elastic particle falls down an inclined
plane of given length, and at the foot impinges on a hori-
zontal plane; shew that the range on this plane will be
greatest when the angle of elevation of the inclined plane is
=tan"W2,

36. A body of elasticity e is projected from a point in a
horizontal plane. If the distance of the point of 2* impact be
cqual to four times the sum of the vertical spaces described,
1157; 1s the tangent of the angle of projection.

37. If a be the angle of projection of a projectile, T
the time which elapses before the body strikes the ground,

pfove that at the time T;-& the angle which the direction

4sin
of motion makes with the direction of projection is equal to
T—-a
g~

38. If three heavy particles be projected simultaneously
from the same point in any directions with any velocities,
prove that the plane passing through them will always
remain parallel to itself.

39. A perfectly elastic ball is projected from the middle
point of one of the sides of an equilateral three-cornered room.
It strikes the other two sides and returns to the point of pro-
jection. If @ be the length of a side of the room and the

velocity of projection be that due to the height 54_a , shew that *

the ball must be projected at an angle = % sin“—g .
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40. An clastic ball is let fall from a given height above
a smooth inclined plane; shew that the time of making &
given number of hops is the same for all inclinations of the
plane.

41. Heavy particles are projected horizontally with dif-
ferent velocities from the same point; shew that the extre-
mities of the latera recta of the parabolas which they generally
describe, lie on a cone, of which the axis is vertical and the
vertical avgle 2 tan™ 2,

42, ADB(' is a right-angled triangle in a vertical plane
with its hypotenuse A B horizontal ; a particle projected from
4 passes through C and falls at B: prove that the tangent
of the angle of projection = 2 cosec 24, and that the latus
rectum of the path described is equal to the height of the
triangle.

43. A perfectly elastic particle dropped from a point P
impinges upon an inclined plane at Q. If PN be perpen-
dicular to the plane, shew that the range=8.QN,—and
hence find the locus of P in order that the particle may
after one reflexion strike a given point in the plane.

44. A particle 4 is projected at an angle a to the hori-

zon with velocity V, and is met by a sccond particle B

which is let fall from the directrix at the instant of projee-

tion, of .4,—shew that the distance of the line described

by B from the vertical line drawn through the point of
® projection of 4 is

G 2}) cot

25—2
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45. If r,r, r, be three distances of a projectile from
the point of projection at which its angular elevations above
the point of projection are respectively a;, a,, 2,—shew that

7, cos’ a, sin (&, — a,) + r, cos’ &, sin (a, — a,)
+ 7, cos’ a sin (a, — a,) = 0.

46. If tangents be drawn to the parabolic paths of two
projectiles, baving the same focus, from any point in the eom-
mon axis, the velocities at the points of contact are equal.

47. A stone 1s thrown in such a manner that it would
just hit a bird at the top of a tree, and afterwards reach a
height double that of the tree: if at the moment of throwing
the stone, the bird flies away horizontally, prove that the
stone will notwithstanding hit the bird, if its horizontal

velocity be to that of the bird as /2 +1 : 2.
* * » * * * *

48. From several points of a plane superficies inclined
to the horizon bodies are projected simultancously in different
directions, in such a manner that the times of flight along the
superficies are the same. Prove that the locus of the bodies
at any moment is a plane parallel to the superficies.

49. Tangents at points P, Q in the parabolic path of a
particle acted on by gravity, meet in 7. If § be the focus,
shew that the velocity due to the height ST is a mean pro-
portional between the velocities at P and Q.

50. A plane is inclined at an angle of 45° to the horizon,
and from the foot of it a body is projected upwards along the
plane, and reaches the top with jth of its original velocity,
(v); where will it strike the ground ?

. 3
Result. At s distunee-_g % from the point of projection.
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51. A perfectly elastic particle is dropped from a point
on the interior surface of a fixed smooth sphere: shew that
after its second impact on the sphere it will ascend vertically,
and will continually pass and repass along the same vertical
and parabolic paths, if the horizontal distance of its first

vertical path from the centre be &s/ fi:?ija, where a == rad,
of sphere.

52. Two inclined planes of the same altitude h and the
same inclination a are placed back to back on a horizontal
plane. A ball is projected from the foot of one plane along
its surface and in a direction making an « 8 with its hori-
zontal edge. After flying over the top of the ridge it falls
at the foot of the other plane: shew that the velocity of
projection is )

3 Jgh (8 + cosec* a) . cosec B.

53. An imperfectly elastic ball is dropped into a hemi-
spherical bowl from a height n times the radius of the bowl
above the point of impact, 8o as to strike the bowl at a point
30° from its lowest point, and just rebounds over the edge of

the buwl: shew that the elasticity of the ball is = /3 . ™4,

54. An imperfectly elastic particle is projected with a
given velocity from a point in a horizontal plane from which
it continually rebounds; shew that the sum of the areas of
the parabolic segments it will describe will be a maximum
when the < of projection is 60° and that then it is

i
“sFu-a

55. A ball of elasticity e is projected from a point in an
inclined plane, and after once impinging upon the inclined
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plane, rebounds to its point of projection ; prove that, 2 being
the inclination to the horizon of the inclined plane, and 8
that of the direction of projection to the inclined plane,

cota.cot 8=1+e.

56. If a projectile can be shot through three points
«(a, b), (@, b'), (a”, b") in the same vertical plane, prove that
ab’—~a’b _ ab'—a'd
a’ (@ —a) o (@ ~a)
the point of projection being the origin and the axis of x
horizontal,

57. 1If v, ¢, v” be the velocities at three points P, @, R
of the path of a projectile, where the inclinations to the hori-
zon are a, a — B, a — 28, and if £,¢' be the times of describing
PQ, QR respectively, shew that

H

vt =0t a,nd-1 + 1,—, = ?_gg{ﬂ_
v v v
58. A body is thrown over a triangle, passing from one
extremity of the horizontal base just over the vertex to the
other extremity of the base ; prove that tan @ = tan a + tan 8,
where @ is the angle of projection, and a, 8 are the angles at

the base of the triangle,

59. From every point in the path of a projectile particles
are projected, in the same direction as the projectile at that

point, and with % th of the velocity,—shew that the locus of
the foci of the paths described is a parabola.

60. A number of particles are projected in one vertical
plane, from the same point P, so that the foci of their paths
shall be in a given straight line not passing through 7, and
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making an angle « with a horizontal plane. If v be the
velocity, and ¢ the angle of projection of any one, shew that
v*cos (@ — 2¢) is the same forall: and if PS be perpendicular
to the given line, S is the focus of the parabola when the

angle of projeetion is &
-] I J v S

61.  If n cqual particles be projected from the same point
with the same veloeity v, and in directions making the angles
a, 32, 52, &c. with the horizon, and in the same plane,—prove
that their centre of gravity will describe the path of a body
projected at an angle nz with a velocity '—;;;;};%1 .

62. From a point P on the ground cquidistant between
two vertical planes A and B, an imperfectly elastic ball is
projected with a velocity = 4/(2gh) towards 4, and reflected
by it to B; find ¢ the altitude of the highest point of B the
ball can reach, and shew

(i) That if a be the elevation of the direction of pro-
jection which enables the ball to attain that altitude,
h
2 = N . @
tan’ a = e
(ii) That if o, a” be two elevations such that
tand’ 4 tan a” =2 tana,

two balls projected in those directions towards 4 will hit
the same point of B.

63. The time of a particle under the action of gravity
describing any arc of its parabolic path bounded by a focal
chord, is equal to the time of falling from rest vertically
through a distance equal to the length of that chord,
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64. An elastic ball is projected in a given manner from
a point 4 in a horizontal plane, and at the moment it is
moving horizontally it impinges directly upon an equal ball
moving in the opposite direction with the same velocity;
shew that it will return to 4 after one rcbound if its elas-
ticity = §.

65. Two elastic balls are projected towards each other in
the same vertical plane, v being the velocity and a the angle
of projection of each; shew that after impinging on each
other they will return to the points of projection if

ga (1 + e)=ev'sin 2z,
e being the coefficient of elasticity and 2a the distance be-
tween the points of projection.

. 66. Two bodies are projected simultaneously from a
point with velocities v, v’ at elevations a, a’; shew that the
time between their passage through the point common to
their path is

_ 2 wsin(a~da)
=g vosatvoosa’”

67. A particle is projected from the vertex of a parabolic
tube with velocity due to height & : the axis of the parabola
being vertical and vertex downwards; shew that after quit-
ting the tube it will strike the horizontal plane through the
vertex in a point whose greatest distance from the vertex is

=2 Juh + I,
where 4a is the latus rectum,
Give a geometrical construction for determining the length
of the tube for this maximum range.
Apply the method employed in Art. 92.
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6S. A ball whose elasticity is e falls throngh a vertical
height %, and is then reflected by a plane inclined at an
angle a to the horizon ; shew that the range on a horizontal
plane passing through the poiut of incidence is

2% (1 + ¢) 8in 2z (e cos™ a — sin’ a).

Interpret the meaning of this expression when e = 0.

69. Bodies are projected with the same velocity in dif-
ferent directions from the same point A ; the locus of the
vertices of the parabolas described is an ellipse whose axis
minor is the height due to the velocity of projection, and
axis major double the axis minor.

70. Planes are drawn in every direction from the point
A, and bodies are projected from A4 with given velocity and
at such angles that the ranges on each of these planes shall
be the greatest; shew that the locus of their extremities is
a parabola, which touches the parabolic paths of all the
bodies.

71. A ball projected from a point on an imperfectly
elastic horizontal plane strikes a like vertical plane placed at
right angles to its direction at the highest point of its tra-
jectory. After a2 rebounds on the horizontal plane it returns
to the point of projection,—shew that if e be clasticity

(1 —e)=2¢"(1 —¢").

72. A shot of m pounds is fired from a gun of M pounds
placed on a smooth horizontal planc and elevated at an < a,
Prove that if the muzzle velocity of the shot be V', the range

will be
m
. yr (l + M) tan a

g l+(l+$) tan'a
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78. A particle is projected from a point in a smooth
plano inclined at an za to the horizon, in a vertical plane
which cuts the inclined plane in a horizontal line, and at
an ¢ 6 to the horizon. Prove that after » rebounds the
space travelled in the direction of the line of greatest slope
on the inclined planc is

asinatan @ =~ ———%,
1-¢

where a is the horizontal space described, e the coefficient of
restitution,

74. ADis the range of a projectile on a horizontal plane.
Shew that if ¢ be the time from A to any point P of the
trajectory, and ¢ the time from 2’ to B, the vertical height
of P above 4D is }gtt’.

75. A ball whose coefficient of restitution is e, is pro-
jected at right angles to a plane, inclined at an < a to the
horizon, from a point on the plane, with a velocity V. Shew
that before ceasing to bound, it will have described along the
plane a distance

2V*sina 1
geosta “(l1—e)”

76. A gun is suspended freely at an inclination a to the
horizon by two equal parallel cords. A shot whose mass

is %th of that of the gun is fired from it. Prove that the

range on a horizontal plane through the muzzle is
4n(l14+n)htana,

where L is the height through which the gun rises in the

recoil.
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77. Shew that the whole area commanded by a gun on
a hill-side is an cllipse whose focus is at the gun, whose
eccentricity is the sine of the inclination of the hill to the
horizon, and whose latus rectum is the greatest height to
which the gun could send a ball.

78. A plane AB inclined at angle & to the horizon leads
up to a horizontal plane BC : a particle is projected from the
point 4 directly up 4B, with velocity V, traverses the plane
AB, and falls upon the plane BC;—if the times of tnotion

from 4 to B and from B to C be equal, shew that
2F* sina (1 + sin’a)

D= TTr giray

CURVILINEAR MOTION. CHAPTER V,

1. If the length of the seconds pendulum be 391393
inches, find the value of g to three places of decimals.

2. A clock loses 53" per diem; how much must its pen-
dulum be shortened in order that the error may be corrected,
the length of the pendulum being 3914 inches nearly ?

Result. 0045 inches nearly.

3. The force which accelerates a body’s motion in a
cycloid—whose axis is vertical and vertex downwards—
varies as the arc intercepted between the body and the lowest
poin.

4. What is the length of a pendulum which vibrates,
(i) in § a second, (ii) in 4 of a second, in the latitude of
London 1

Result, (i) 97846 inches. (ii) 24462 inches nearly.
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5. In a series of experiments made at the Harton coal-
pit, & pendulum which beat seconds at the surface, gained 2}
"beats in a day at a depth of 1260 feet: if g, ¢’ be the force
of gravity at the surface and at the depth mentioned, shew
that
g-9._L
g 19200°
6. How much must a seconds pendulum be shortened in
order that it may oscillate seconds on the top of a mountain
3000 feet high—assuming the radius of the Earth to be 4000
miles, and the force of gravity to vary as (distance)™ from the
centre of the Earth ?

7. A railway carriage weighing 12 tons is moving along
a circle of radius 720 yards at the rate of 32 miles an hour;
find the horizontal pressure on the rails, or what is commonly
called the centrifugal force.

Result, -89 tons, nearly.

8. A railway train is going smoothly along a curve of
500 yards radius at the rate of 30 miles an hour; find at what
angle a plumb-line hanging in one of the carriages will be
inclined to the vertical.

Result, 2°.14 nearly.

9. The breadth between the rails in a railway is 4 f2.
$ in. Shew that on a curve of 500 yards radius, the outer
- rail ought to be raised about 2} tnches for trains travelling
30 miles an hour.

10. A pendulum is found to make 640 vibrations at the
equator in the same time as it makes 641 at Greenwich ; if
a string hanging vertically can just sustain 80 pounds at
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Greenwich, how many pounds can the same string sustain
at the equator ?
Result. About 80} lbs. nearly.

11. The time of oscillation of a particle in a small arc of
a circle is half the time of oscillation in the cycloid which
could be generated by the circle.
12, A scconds pendulum was too Jong on a given day by
a small quantity a, it was then over-corrected 50 as to be ton
short by a during the next day; shew that the number of
2

minutes gained in the two days was 1080 ‘“_,,,‘ nearly, if L be

the length of the seconds pendulum,

13. The time of descent to the lowest point in a small
circular arc is to the time of descent down its chord = o : 4.

14. A perfectly elastic ball is projected obliquely, and
on reaching its highest point strikes dircetly another equal
ball banging by a string from the directrix of its path; shew
that the ball struck will just reach the directrix.

15. Two particles 4, B—of elasticity e—are let fall in
opposite dircctions, at the same instant, from the highest
point of a smooth circular tube of very sinall bore, placed in
a vertical position; find the ratio of their masses in order
that the heavier may remain at rest after impact, and detor-
mine the height to which the other will rise.

Result. A=(1+2¢) B, and B will rire to a height = 4e. diameter, after
the impaot.

16. The attractive force of a mountain horizontally is £,
and the force of gravity is g; shew that the time of vibra-

a2

4
tion of a pendulum will be =7 \/ Fir e being thé length

of the pendulum,
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17. A pendulum which would oscillate seconds at the
equator, would, if carried to the pole, gain 5" a day; shew
that gravity at the equator : gravity at the pole = 144 : 145.

18. In motion on a cycloid as in Art. 99, prove that
the vertical velocity of the particle is greatest when it has
completed half its vertical descent.

19. When a particle falls from the highest to the lowest
point of a cycloid it describes half the path in two-thirds of
the time,

» * » * " * .

20. A railway train is moving smoothly along a curve at
the rate of sixty miles an hour, and in one of the carriages
a pendulum, which would ordinarily oscillate seconds, is
observed to oscillate 121 times in two minutes. Shew that
the radius of the curve is very nearly two furlongs.

Suppose a stone to be dropped from the window of this
carriage, find approximately how far from the rail it will fall.

21. A particle is suspended by two equal strings from
two fixed points in the same horizontal line, the distance
between them being equal to the length of either string; if
the particle be raised to onc of the fixed points and then
dropped, find where it will first come to rest.

Result. When the second string which becomes stretched makes an angle

Js

0=sin" with the borizon.

22. A groove is cut along the surface of a right cone of
height A, so as always to intersect the generating line at a
given angle 8; shew that the time in which a heavy particle

will arrive at the base is = \/ { )} secz sec 8 : where
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22 is the vertical angle of the cone and 4, the vertical dis-
tance of the particle from the vertex at the beginning of the
motion,

23. If a heavy particle slide freely from the highest
point of a cycloid, of which the axis is vertical and vertex
downwards, the angular velocity of the generating circle
passing through the point will be constant—and inversely
proportional to the squarc root of its radius.

24. A number of cycloids are drawn through a given
point A and having their vertices situated on a given curve
and their axes vertical.  Prove that if the given curve be a
cyeloid whose vertex is at 4 and whose axis is vertical, the
time of descent from A down all the cycluids to the given
curve will be the same :—and that whatever be the form of
the given curve the eycleid down which a particle will slide
in the greatest or least time will have the tangent at 4 paral-
lel to the tangent drawn to the given curve at the point
where the cycloid meets it.

25. Two unequal weights P, @ arc connected by a string
of given length (¢) which passes through a small ring; find
how many times 1n a second the lighter one @ must revolve
as a conical pendulum, in order that the heavicr may be at
rest at a given distance @ from the ring.

1 Thy .
Result. o7 Qlc-a) times,
26. Gravity « @ffﬁé}' ; mass of the Earth = 49 . mass

of the Moon, and radius of the Earth = 4 radius of the Moon ;
prove that a seconds pendulum carried to the moon would

oscillate in % seconds.
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and that if the length of the rod approach indefinitely to the
diameter, its pressure on the wire increases indefinitely.

37. A weight of m lbs. is tied to a string 2 feet long
which has its other end tied to a fixed point on a smooth
horizontal table and makes n revolutions a second; shew that
the tension of the string is 47*/mn’® poundals.

Assuming that at the Equator bodies “lose yly of their
weight,” find the radius of the Earth, assuming that g = 32
when referred to'1 foot, 1 second.

38. A body suspended from a fixed point by a string of
length a is projected horizontally from the lowest point with

velocity = (/3 +1) \/ ‘?;; shew that it will pass through the

. point of suspension, and that its direction of motion at that
point will make an ¢ cos™ § with the horizon.

MISCELLANEOUS PROBLEMS IN DYNAMICS,

1. If R, R be the ranges of the two projectiles, which
being thrown from the same place, attain the same vertical
height, and pass through a common point,—then will

BRR =4 A &,
h
where H is the greatest height attained, and %, « are co-ordi-

nates of the point common to the two paths.

2. From a number of points, bodies subject to gravity
are projected, all directed towards one point with velocities
proportional to the distances of the points of projection from
that point. All bit another point. Shew that the points of
projection lie in a conic section.
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3. Two bevilled wheels roll together; having given the
angular velocity w of the first wheel and the inclination (a) of
the axes of the cones, find their vertical angles that the second
wheel may revolve with a given angular velocity o',

Result. 1f 29, 2¢ be vertical augles of the first and seoond wheels, we
must have

0+¢=a, and wsin =u sin ¢.

4. The highest point of the wheel of a carriage, rolling
on a horizontal road, moves twice as fast as each of two
points in the rim, whose distance from the ground is balf the
radius of the wheel.

5. A ball projected with a velocity v would penetrate
into a block of wood m feet; what velocity would it lose in
passing through a board » feet thick, the resistance being
uniform ?

Result. v (1 - T:-!l—) .
n

6. A ball is thrown vertically down on a horizontal
pavement, and just rebounds to its original height. Shew
that the velocity of projection is to that due to the original
height above the pavement as tan (cos™ ¢) : 1-——e being the
elasticity at impact.

7. A particle is projected up a rough inclined plane;
shew that if ¢, = time of ascending, ¢, = time of descending, we

shall have
t,>' _5in (a—¢)
(t" sin (a+¢)”

*if the coefficient of friction = tan ¢.

8. Two balls are moving in the same straight line, one
of them only being acted on by a force ; if the force be con-
26—2
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stant and tend towards the other ball show that the times
which elapse between consecutive impacts decrease in geo-
metrical progression.

9. A point moves in such a manner that the sum of the
squares of its distances from any number of given points in
the same plane with it is constant. Prove that if perpendicu-
lars from the points be at any time let fall on its direction of
motion, the point itself will be the centre of gravity of the
feet of these perpendiculars,

10. The curve 4*—y.f(x)+4*=0 is such that the
times down the chords from the origin to any two points in
it vertically below each other are the same; the axis of w
being horizontal and that of y vertical.

11. Shew that the time of quickest descent from any
point of an ellipse to the horizontal axis major down the

normal is = \/ -%l—? , 1 being the latus rectum, e the eccen-
tricity.

12. Shew that the circumferences of two circles contain
all points from which the time of quickest descent to a given
vertical circle is the same.

18. A ball whose elasticity is } projected from the floor
of a room 12 feet high, strikes the ceiling and floor and just
rises to the ceiling again,—find the velocity of projection.

Result. \f312.4.

14. A perfectly elastic ball is thrown into a smooth cylin-
drical well from a point in the circumference of the circular,,
mouth. Shew that if the ball be reflected any number of
times from the surface of the cylinder, the intervals between:
the reflexions will be equal. ;
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In the last question, if the ball be projected horizontally,
making an angle %with the tangent at the point of projection,

it will reach the surface of the water at the instant of the
n't reflexion, if the space due tu the velocity of projection be
(radius)’ .om\*

= depth ( " ﬁ) )

* L * * . » L

15. From a point T two tangents are drawn to touch a
circle in the points P, @: given that the velocity acquired
by a body sliding down the chord PQ is equal to 1-nt® of
the velocity down the vertical diameter of the circle, prove
that the locus of 7' is the curve whose equation is

a 1
P st
the centre of the circle being the pole, and (¢) the radius,

16. One end of a string is attached to an angular point
of a fixed regular polygon of n sides, its length being equal to
the perimeter c; a particle, attached to the other end of the
string which is stretched in direction of a side, is projected in
the plane of the polygon perpendicularly to the string with a
given velocity V. Determine after what time the string will
coincide with the perimeter of the polygon (the action of gra-
vity being neglected).

Deduce the time when, the perimeter remaining the same,’
the Aumber of the sides is infinitely increased.

n+l e
»  Result. ol

17. Explain the object and advantages of rifling the
barrel of a gun.
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18. Find the amount of work done in drawing up a
Venetian blind. How must the same problem be solved for
a curtain ?

19. A ship is sailing with a uniform velocity in a southerly
direction, and is fired upon at the instant it is due east of a
battery; given the velocity of a cannon-ball, determine at
what elevation and towards what point of the compass it
must be fired that it may strike the ship.

20. Two perfectly elastic balls are dropped from two
points not in the same vertical line, and strike against a
parfectly elastic horizontal plane; shew that their centre of
gravity will never reascend to its original height, unless the
initial heights of the balls be in the ratio of two square
numbers,

21. A smooth tube of uniform bore and radius a, is bent
into the form of a circular arc—(= 27 — 22)—greater than a
semicircle, and placed in a vertical plane with its open ends
upwards, and in the same horizontal line, Find the velocity
u with which a ball that fits the tube must be projected along
the interior from the lowest point, in order that it may pass
out at one end and re-enter at the other.

Result. u?=ga (2+2 cosa+scca) ‘

22. A body P lying on a table is connected with another
Qbya string passing over a pully directly over P; if @ fall
through a given height before the string becomes tight, deter—
mine the impulsive tension of the string when that takes *
place, and the change of velocity of Q.

Compare Art, 75, 76.
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23. Two particles start simultaneously from the same
point and move along two straight lines, the one with uni-
form velocity, the other from rest with uniform acceleration.
Prove that the line joining the particles at any time is always
a tangent to a fixed parabola.

24, If C be the centre of curvature corresponding to any
point P of the path of a projectile—prove that the vertical
velocity of C will be proportional to the time elapsed since
P was at the highest point of its path.

25. Several bodies are prajected from the same point A4
in different directions with the same velocity ; shew that the
locus of them all at any time is a sphere, and find the radius
of the sphere and the position of its centre at any time.

26. A given weight descending vertically draws another
up a smooth inclined plane by a string passing over the vertex
of the plane. Find the path of their centre of gravity when
the bodies move from rest.

Result, A straight line.

27. Tangents are drawn to a vertical circle,—find the
locus of points in them from which particles would descend
in straight lines to the centre in the shortest time,

28. From what height must a perfectly elastic ball be
let fall into a fixed hemispherical bowl, in order that it may
rebound horizontally at the first impact and strike the lowest
point of the bowl at the second ? ’

29, From a given height a perfectly elastic particle is let
fall on a perfectly hard inclined plane, so as to strike it at
a given fixed point : prove that whatever be the inclination
of the plane to the horizon, the vertex of the.parabola which
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the particle describes after impact will lie in a certain
ellipse.

30. A perfectly elastic ball is projected from the foot of
one of the walls of a room, against the opposite wall, in a
vertical plane perpendicular to both the walls; shew that if
it be required to hit the ceiling after the rebound, the ball
must strike the wall at a point at least §ths of the height of
the room from the floor.

31. A rigid wire without appreciable mass is formed
into an arc of an equiangular spiral, and carries a small heavy
particle fixed in its pole. If the convexity of the wire be
Placed in contact with a perfectly rough horizontal plane,
prove that the point of contact with the plane will move with
uniform acceleration—and find this acceleration.

- 82. AA', BB are the axes of an ellipse. A smooth
tube is bent into the shape of the portion AB, A'B, the ends
A, B being open, and the tube is held with B on a given
horizontal plane. A particle is dropped from a certain height
into the tube at 4 so that after emerging at B it again enters
at A. The tube is then held with 4’ on the horizontal plane
and the particle is dropped from the same point so as to fall
into the tube at B, and it is found that after emerging at 4,
it again enters at B. Prove that the eccentricity of the ellipse
J45(8-/5)

2“'-—“ .

33. If two parabolas be placed with their axes vertical,
vertices downwards and foci coincident, prove that there are
three chords down which the time of descent of a particle
under the action of gravity from one curve to the other is
a minimum ;—and that one of these is the principal diameter
and the other two make an angle of 60° with it on either side.

18 =
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34. In any machine without friction and inertia & weight
P supports a weight W, both hanging by vertical stringn; if
these weights be replaced by weights P and W', and if in the
subsequent motion P’ and W’ move vertically, the centre
of gravity of P and W’ will descend with acceleration

(WP — WPy

g. ("W';{'-P)‘(P’W'V—f- W’Iy) .

35. Two particles start simultaneously from 4, B, two
of the angular points of a square ABCD, in the directions
AB, BC, and describe the periphery with constant velocities
V, v respectively, where V is > v, until one particle overtakes
the other. Prove that the minimum distance between the
particles occur at equal intervals of time; and that if

Vivaem+l:m,
where m is an integer the sum of all these minimum dis-
tances is — (m+ 1) -~ x a side of the square.
2.J/ns (n+ 1)

36. A series of vertical circles touch at their highest
points and smooth particles slide down the arcs, starting from
rest at the highest point : prove that the foci of the free path
of the particles lie on a straight line whose inclination to the
5.5

vertical is tan™ 8

87. The radii of two circles are a, b; the distance be-
tweem their centres is ¢ and its inclination to the horizon is a;
prove that the time of quickest descent from ome circle to

the other is 5 wThrosma’
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38. A ball thrown from any point in one of the walls of
a rectangular room after striking the three others returns to
the point of projection before it falls to the ground. Shew
that the space due to the velocity of projection is greater than
the diagonal of the floor,

39. There are three equal and perfectly elastic balls
A, B, C. A islet full from a given point, and at a moment
when it reaches a given horizontal plane, B is let fall from
the same point, and at the moment when 4 in returning
meets B, C is let fall. Shew that B will meet C for the
second time where it first met 4.

40. Two planes having a common altitude /% are inclined
at angles « and g— a to the horizon ; two equal, indefinitely

small and perfectly elastic balls are projected along them with
equal velocities V from their feet, and so that they may im-
pinge at the top; shew that if the ball which ascends along
the former plane falls at its foot after impact, then

2

v "
i = (L +eot @) + (1 + cota)™

41. There are generally two directions in which a pro- -
jectile may be projected with given velocity from a point 4,
80 as to pass through another point B; and one of these di-
rections is inclined to the vertical at the same angle that the
other is inclined to the line AB. Hence shew that the locus
of points, for which a given sight must be used in firing with
a given charge of powder, is the surface generated by the
revolution, about the yertical, of the path of the bullet ob-
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tained by aiming at the zenith with the given sight, and the
given charge of powder.

Bee Solutions of Senate-House Problems for 1854, Walton and Mackenzie,
p. 83.

42. A perfectly elastic particle projected against one side
of a plane polygon is reflected at the other sides in succes-
sion, the polygon being such that the angle of incidence
on each side is the same; find the impulse on the particle

at each impact, and deduce the expression for the normal
3

v . .

pressure (—) on a particle moving freely on a curve under the
P

action of no other impressed force.

43. A body falls from rest under the action of an
accelerating force which remains constant during certain
successive equal intervals of time, but is changed at the

expiration of each such interval so that the space described
gt

in the 2t interval is always = times the space described

-t
Z

in the first of them. If the®ielocity acquired at the end of
the first interval be v, shew that after a long lapse of tlme
the velocity approaches a uniform velocity 2v.

44. Three smooth equal perfectly elastic billiard balls
4, B, C are placed with their centres in the angular points
of an equilateral triangle; shew that it will be impossible,
with another egual ball, to cannon off 4 on to B,—A itself
striking C,—unless the diameter of each ball be equal to half
a side of the triangle,

45. A particle of given elasticity e is projected down a
smooth vertical cylinder of indefinite length, but terminated
by a horizontal plane at its lower end; the particle initially
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remsining in contact with the cylinder. If it be projected at
a height & from the bottom with velocity V" at an <2 with
the vertical, then after the time
S2h+ Vicosta 1+e
g ‘1—¢’
it will be moving uniformly with velocity ¥ sin a.

46. Two perfectly elastic balls A and B impinge upon
each other. First 4 impinges upon B at rest and goes off in
a direction making an <8 with the line joining their centres:
then B impinges upon 4 at rest and at the same angle of
incidence, and goes off at an < . Prove that 6 + 8 =180°.

Prove also that if the balls be imperfectly elastic, and the
angles of incidence in the two cases be « and «/, then

cot 8 +SM= l-e
cota  cotu

47. Two equal balls, one perfectly elastic, the other
inelastic, are dismissed by the same horizontal blow from the
top of a flight of uniform steps, so that each falls just on the
margin of the first step: shew that the number of steps
cleared by the elastic ball in its successive flights is the
series of successive odd numbers,—and that the two balls
reach the bottom of the steps simultaneously.

48. From a point in the lower one of two parallel
horizontal planes a ball of elasticity e is projected at an
- angle a,—is reflected by the upper plane, and again reflected
by the lower one; the distance between the planes being

(%)th that due to the velocity V of projection. If v be the
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velocity of the ball in rebounding for the m't time from the
lower plane,

2y ¢m

=1 (cos’a + e sint g+ -1"”"6») .
n 1l—¢
49, Two nations estimate the force of gravity by num-

bers in the ratio 800 : 1, but the velocity of the Earth by
uumbers in the ratio of 3 1 L. Fiond the ratios of their units
of time and space.

50. Is a railway train heavier when going East or going
West 2 Shew that for a train weighing 180 tons, travelling
G0 miles an hour in latitude 60°, the difference is about the
weight of two men. ‘

51. If the attraction of gravitation between two unit-
masses at the unit-distance from one another be taken ag the
unit-force, express the upit-mass in lbs. when the units of
space and time are a foot and a sccond respectively :—gravity
at the Eartl’s surfuce being regarded as due solely to the
attraction of the Earth considered as a sphere of radius
21000000 and of uniform density equal to 5§ of the density
of water. Find (approximately) the attraction of two pound
weights, a foot apart, in terms of the weight of a Ib.

52. Shew that in any tetrahedron the centres of gravity
of the surface and of the volume and the centre of the in-
scribed sphere lie in a straight line in the order named, and
that the distance between the first and second is one-fourth
of that between the first and third.

58. An imporfectly elastic ball is projected along a
smooth horizontal table in the direction 40, it strikes a
smooth vertical plane at O, and rebounds in the direction
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60. A billiard-ball touching a cashion is struck obliquely
by another, the line joining their centres making an- < 8 with
the cushion. The coefficient of elasticity for each impact is e
and the moments of greatest compression are simultaneous;
prove that if the striking ball move parallel to the cushion
after impact, its velocity is to that of the other as

1—-esec’f:1+e.

Prove that if the cushion be less elastic than the balls,
the moments of greatest compression cannot be simultaneous.

"61. If a body attached at its centre of mass to one end
of a string of length r, the other end of which is attached
to a given point on a smooth horizontal plane, make n revo-
“lutions a second, prove that the tension of the string is to
the pressure on the plane as 47*n’r @ g.

Prove that at the Equator a shot fired Westward with
velocity 8333 or Eastward with velocity 7407 metres per
second will if unresisted move horizontally round the Earth
in one hour and twenty minutes and one hour and a half
respectively.

62. Enunciate Newton’s second law of motion,,and
explain how it enables us to measure either force or mass.

Two particles each of mass m are at rest side by side,
when one is struck by an impulse B in a given direction,
while a constant force F begins at the same instant to act
upon the other in the same direction. If after traversing
a space s in time ¢, they are again side by sxde, prove that
2B = Ft and 2B*=mFs.
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* 63. Define the terms work, kinetic energy, horse-power.

The pressure of steam in the boiler of a high-pressure
engine working expansively is 165 1bs. per square inch,
while the pressure of the air is 15 lbs. per square inch. The

density of the steam in the boiler is i%f) of that of water,

and 200 cubic feet of steam leave the boiler per minute.
Find the horse-power required to feed the boiler from a tank
at the same level.

64. Three inches of rain fall in a certain district in
twelve hours. Assuming that the drops full from a height
of a quarter of a mile, find the pressure on the ground per
square mile of the district due to the rain during the storm:
a cubic foot of rain-water weighing 1000 oz.

65. A locomotive, 15 tons in weight, being supposed to
acquire a velocity of 20 miles an hour in moving through
a mile of distance, under the action of a constant difference
of moving and resisting forces, calculate in 1bs. the requisite
difference of the forces.

The locomotive being supposed to run, with the aforesaid
acquired velocity, in a circle of a mile radius, calculate in lbs.
its entire pressure against the rails.

66. What is meant by the Horse-power of an Engine ?

A train, mass m, moves against a uniform retardation
equal to m times its weight and starts from rest moving with
uniform acceleration until the steam is shut off, and arrives
at rest at the next station, distant a from the starting point,

in time # Prove that the greatest horse-power exerted by
D W ’ ) 27
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2mu’g*at
ugt’— 2a

on the units employed.

the engine is C

, where C is a constant dependmg

Mention suitable units in which to express the distance,
time, mass, and horse-power, and give the corresponding
values of g, C.

67. A company of length u whose thickness may be
neglected, wheels uniformly to the left ; prove that the acce-
leration of a sergeant who moves from left to right in such a
manner as to pass successive files in successive intervals of
time and to arrive at the right just as the wheel is completed

.
is % 6"+ % in a direction inclined at an . cot™ g to the com-
pany ; v being the velocity of the right file, and & the inclina-
tion of the company to its initial position,

68. If a be the angle of projection in order that a ba.ll
projected with a velocity V from a platform at rest may striker
an object in the same horizontal plane, shew that when the
platform is moving towards the object with a velocity u
(small compared with V) the angle of projection must be
diminished by ;; sina_ 180°

cos 22
well within range for the given velocity.

—— nearly, provided the object be

69. Two equal scale-pans, each of mass M, are connected
by a string which passes over a smooth peg and are at rest.
A partxcle of mass m iz dropped on one of them from a height

é},-—the coefficient of elasticity between the particld and

icale-pan being ¢: find the velocity of the seale-pan after the
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first impact, and shew that if the length of the string exceed

2eu (1+e) mu
g ‘m4+2M°

a second impact will take place.

Also prove that if the string be long enough the velocity
of the scale-pans after the nt® impact will be

-&  mu
=(1+e). 1 —¢ ' m+oM’

and that the particles will come to relative rest after a time

THE END.
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