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“ He that secketh findeth”—he finds what he seeks, as

we know from the use of quotations and statistics.

T. R. GLOVER. )

Mathematics may be compared to a mill of exquisile
workmanship which grinds you stuff of any degree of Yineness :
but, nevertheless, what you get out depends on what you put in;
and as the grandest mill in the world will not extract wheat-flour
from peas-cods, so pages of formule will not get a definite

result out of loose data. .
T. H. HUXLEY.

3

Mathematics is that study which knows nothing of
observation, nothing of mductzon, nothing of experiment, nothing .

of causation.
T. H  HUXLEY.

Every mathematical book that is worth anything must
be read “ backwards and forwards”..................the advice
of a great French mathematician, * Allez en avant, et la foi

vous viendra.” | [f' g4
R G. CHRYSTAL.

L .F . PR



PREFACE

‘l\ '

A title adequate to express the scope and aim of this
book has not been found. To the word “ Graphs” a wider
meaning than is customary has had to be given—a meaning
which is not unfortunate, for special types of graphs have
already their own names ; and “ Statistics ” refers to no more
than a sketch of the nature of that science. This book is no
treatise. In its present form it is not even a textbook. First

and last, it is meant to be “suggestive ”, not “ impressive .

The genesis of the book was a sense of unfair treatment
meted out to the majority of First Year college students in
Bombay in their study of geometry and algebra. In

common with many students elsewhere they have to submit .

to a discipline which is meant primarily for the small
minority who are to make Mathematics their special study. -
The best was made of this irksome situation, but the lifeless
and deadening memory-discipline which it meant for most
of the students could not be regarded with equanimity.! To
suggest ways in which the last impressions of mathematics,
received by students who are to devote themselves to other ..
studies, may be made more vivid and friendly was the first
purpose of this book.

But, as the writing of the chapters proceeded, there was
opened out the possibility of doing some service to those
who have to face quantitative problems in the non-

1 In Bombay the situation has unexpectedly become less difficult than it was
when the writing of this book was begun, fov, it has been decided to make
mathematics an optional subject among First Year studies, Few teachers of
mathematics will regret this. Yet it may be that in the long run the effect of the
change will be negligible : for recognition of the essential worth of some training
in mathematics mdy lead to a refusal of valuable oppo:funities to those who have

notsubmitted themselves to a discipline of this type, . ;
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mathematical sciences. This was especially so with regard
to physiology, ard much was added simply because of the
applications of mathematical devices that had actually been
made by physiologists. The medical bias that exists is not
intentional. It may turn out to be inevitable; for the
subjects to which applications have been made, have a more
direct interest than those we have been accustomed to think
of as illustrative of mathematical methods. Further, the
difficulties of defining the quantities investigated are much
less even in metabolism than in engineering, or in actuarial
science,! or in psychology. It may be, however, that
illustrations such as would be suitable here, will be.found in
abundance in psychology or in agriculture.

To give every opportunity to test the comprehensiveness
of what is here submitted full references have been given to
the authorities that were available. The nature of many of
these references will make clear that this book is not
primarily a textbook. Also it is not self-contained ; where
material is easily available elsewhere, the treatment has
been made as brief as possible. In Mathematics conciseness
is specially a virtue, but it may easily become a difficulty
for the student of the type for whom this book is ultimately
meant. However, it will prebably be found, when once the
novelty of the subject-matter has passed, that nothing
is given which is essentially more difficult than what is
found in the mathematical textbooks customarily used—
certainly not more difficult than some of the jokes and
allusions that occur in the books read at this stage in
Literature! With the help of a teacher any student should
be able to benefit from what is written here. But the question
as to difficulty need not be kept in the forefront now:
obviously the treatment can be greatly extended or curtailed,
as experiment may show to be advisable, No attempt has
been made to produce examples merely for practice. Just

what it is fea51ble,to teach can be discovered; only through

\
|

1 For i_zpplicatmns 4o these v, Lipka'd * Graphical® " and Mechanical
Computation ** and,Elderton’s * Frequengy Curves dnd Cor;elahon ”

-



PREFACE : vii

experiment, and that only after the novelty of the dress
given to the mathematical methods has ceased to be felt by
both teachers and pupils: the effect: of, direct interest
cannot be judged beforehand.

Many mathematicians will probably ‘be disappointed in
finding so little mathematics in these proposals. It would be
very easy to strip the mathematical methods of their dress
and present them concisely in rigid form: but it will be
frankly recognisedthatitis impossible to teach Mathematics
to the students who are contemplated here. Yet they do
need to be given an opportunity to appreciate in some
measure how mathematical methods can be applied. A more
perplexing question is whether a course of this kind will
adversely affect the skill of those who are going to specialise
in mathematics. The breadth of outlook, imparted both in
the applications and in the allusions to the nature, relations,
and limitations of mathematics, will be a distinct advantage.
It is generally true, moreover, that those who are fit to
specialise in mathematics feel the direct attraction of the
transformationg of symbols, skill in which is essential to
their progress in mathematical studies. It would probably
be no hardship if aspirants to special mathematical know-
ledge were tested by the colleges at the beginning of their
course as to their skill in thsse essential manipulative
pProcesses.

But the general impression with regard to the material
presented will be one of amusement at the idea that the
processes described here are elementary. In both economics
and medicine things are dealt with which must, as things are
now, be excluded from the degree courses. Yet, when the
methods discussed are examined, it will probably be
found that the only idea which has not been admitted to be
elementary is that of functional scales. [The treatment of
the calculus is very limited and frankly imperfect ; no more
than mention is made of ¢, either in connecticn with the
calculus or with the normal curve of‘\error,,(for ¢ suggests a
beginning rather than a climax) ; the introducticn of many
coordinates involves no difficult extension of the ideas for
two coordinates. Even® functional scales have not bgen

LY A » )
» B



viii PREFACE

treated in so formal a way as to make them forbidding.
- They might have been treated more systematically, but the
method of dealing with them in particular cases, as they
actually occur has been preferred. How best to present this
idea is a question that can be investigated: it is certainly
a tremendous advantage to be able to regard functions in
such a concrete and eminently useable way.

Dissatisfaction way well be felt with the vagueness of
what is presented in the latter part of Chapter VI. This is
the part of the book that is most difficult to treat satis-
factorily, and where there is most danger of going to an
extreme inihe undogmatic attitude generally adopted here.
It has to be remembered, however, that our purpos® is even
" less to teach statistics than to teach mathematics; a real
understanding of the former involves a2 knowledge of much
more of the latter than we can contemplate in these pages.
All that has been attempted is to put the student in a
position to appreciate some of the main possibilities and
limitations of statistical methods. Though the ultimate
test is in the intelligibility of results, there »is a danger of
making things easier than they are by merely presenting
formulae in which quantities are to be substituted without
consideration of much more than the superficial meaning of
the symbols ; confidence hete can easily become unscientific. -
. Emphasis has been laid rather on the thorough examination
of a limited number of examples : it will be of interest to
discover how far this method can be made to appeal to
students. It involves sustained effort, but much can be
accomplished through emulation stirred up by dividing the
work among sets of students. It makes a world of difference
in interest, as well as in effects, if a set of figures is
actually handled, and not merely regarded in a superficial
way. Still more enlivening would be the effect, if students
could be induced to combine in preparing their own data—
when the #lmond tree diheds its leaves (7.22 Ex. 1)!

Explicit reforence should be made to the constant effort
to suggest the possibility of generalisation. One of the most
. important intellectual habits to form is that, of extending
- ong’s thoughts in a systerrlatic wacyu. The converse asgect

» - .



PREFACE ix

of this is the stress that has been laid on the interrelatedness
of apparently very different things. This gives an
unexpected unity to a book which professedly proceeds by
the selection of what is elementary.

Attention may be called here to some matters of detail. How this book is
related to the subjects more usually taught may be seen from the three pages of
notanda at the beginning. There is no need to treat the definitions and
fundamental propositions there referred to otherwise than briefly. Trigonometry as
taught at present must be retained, for direct applications of it are very frequent
The knowledge of graphs with which many students are equipped is inadequate,
but it can easily be supplemented.

Difficulties will be encountered in examining large classes in the practical
aspeots of what fs described here ; but these can be overcome. In Wilson College
it has been-cuatomary to provide candidates with numbered copies of tables of
logarithms, ete. ; this makes it possible to trace any irregularity with greater ease,
These books are collected ten minutes before the examination closes, and so
confusion is aveided. The manner of conducting short slide rule examinations is
fally explained in connection with 7.31 Ex. 3.

A book like this which breaks new ground, both in the
aim with which it is written, and in the type of subject-
matter it presents with that aim in view, must necessarily
contain many faults. These would have been even more
patent had it not been for the generous help I have received
from Mr. K. M. Kharegat, of the Tata Engineering Company,
who made nomograms more of a reality to me and gave
ready aid in other ways. The help received from Professor
V. M. Khanolkar of the Seth Gordhandas Sunderdas Medical
College, Lt.-Col. J. Morison and Major Sokhey of the
Haffkine Institute, and Dr. Muir of the Calcutta School of
Tropical Medicine and Hpygiene, has been invaluable.
Professor K. R. Gunjikar of Elphinstone College has kindly
read the early proofs of the first eight chapters, and made
several salutary suggestions. To all these I am grateful for
the help they have given. In no sense can they be
responsible for the imperfections that remain; for to no one
has it been possible to show the book as a whole. The
1ecessity of leaving Bombay on furisugh has made the final
stages of the preparation of the book rather hurried. To
Mr. B. D. Mahatme of Wilson College, I am also indebted for
-evision of the page-prqofs, and to many friends who have
1elped by placing material free]y at my dispcesal, )
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Perfection in a book which ranges so widely can be
approached only ’py the cooperation of many, and I shall be
grateful to receive criticism of any kind, especially such as
may make it possible to avoid what is merely scrappy and
inept, and make it unnecessary for students in their future
studies to unlearn anything in phraseology or fact which
is presented to them here.

JOHN MACLEAN,

WILSON COLLEGE, » H
BOMBAY,}-
Orctober, 1926,

1 Addess during furlough: ¢ , o
° . °

.. CjO F M. Offices, 121, George Skreet,.Edln\in.tgh, Scotland, Y



TO THE STUDENT

No book on mathematics is written so as to leave you
nothing to do save think; the best thought comes after
action. This book calls you specially to action. Many of
the diagrams have been drawn without a ruler so as to
remind you that you must test mathematical statements by
sketches if you are to learn, and that you must depend on
‘hand and eye to represent rapidly for you the essentials of
a graphical relation,—even when scales enter into the
figures. You may miss almost as much through being over-
exact as through being untidy; you must learn to estimate
as well as to prove. The diagrams are also frequently
grouped in a way that appears to be inconvenient; but this
~should stimulate you to multiply the figures, either in the
margin of yqur book or elsewhere: none of the figures are
meant to be authoritative. (Note, however, how figures
have been placed on the pages so as to make comparisons
as easy as possible.) Again you are called to look up other .
books, not merely to trust this hook : many of the references
you will recognise as meant for doctors and others who have
to be critical of the non-mathematical statements made
here; but most of them relate to books which are in every
college library. You will find it a real pleasure to range
through these books. Details in them are criticised when -
occasion arises; your activity should extend to thoughtful
criticism of what is written here also.

Your criticism, however, should usually be restricted
to the mathematical methods. As in all serious study, you
are asked in this book to work with ideas (in medicine and
in money) which you do not fully understand.. You must
not think that, having used these ifeas, you have compre-
hended them. Before you can appreciite fully what is
written here, ,about engines or inheritance or eatmg, you
have to study, in preparation many fundamental 1deas For
inatance, with r?gard. to rne.tabollsm you will learn that

’ )
P



xii THE USE OF SCALES

proteins are not all of one kind, that vitamines have to be
considered quantitatively, that mere bulk is an important
consideration in choosing food. So too the steam which
passes through an engine has in our treatment been all too
simplified. Dr. Muir and others tell me that the representa-
tion of leprosy by curves is so much a secondary matter
that it might be made a misrepresentation of this subtle
disease. You have great reaches of chemistry and physics
and physiology to traverse before you can appreciate truly
the ideas we have simplified here.

In this book you see Mathematics as a servant, a
humble servant, of the other sciences. You get only
glimpses of her queenly glory.? She knows there are
regions she can as yet only dimly illumine—some in which
she may not aspire to shine at all. Butshe will be well
content if she can pass on to you something of her methods
of orderliness and elasticity, consistency and thoroughness,
dase and brevity of representation—there #s a mystery in
symbol rationally used.

®

You will have a great deal to do with scales in this
book. If you are to keep essentials before you, you must
respect these scales. Do not mark on a scale of reference
more than the fewest graduations that will enable you to
read with accuracy the position of a point : selécted gradu-
ations should be marked with either even or decimal
numbers. NEVER mark on a scale the graduations of the
. given points. Otherwise you show that you are crowding
your mind with detail, or that your attention is wrongly
directed. (Even in figure 46 no marks are placed on the
scales of reference themselves.) The importance of the given
values should be noted in some other way than on the

‘ . scales. When drawing a .graph too, it is a good thing to

R mark no points on the line save those given. Readings
obtained, say, by stretching a thread over the diagram,
should be put down in their proper place in your scheme of
work. .

1 “Gauss considerfd mathematics to be®* the Queen of the Sciences, and
arithmetic {not thegrithmetic you kno%] the Queer? of Mathematics ’ " e



BREVITY—THE SOUL OF KNOWLEDGE ! x1il

You should ever be devising arrangements which are
clear and concise. The conciseness of many of the tables
in this book may sometimes be puzzling, but the effort spent
in mastering and criticising them will be well repaid. in
these tables much is made to depend merely on the relative
positions of numbers, and much verbal explanation is
dispensed with. (The table on page 141 isan example: in
it there are really two tables, one to the left, not completed,
and another to the right: in the first and third columns
“log” is understood to be repeated all the way down.) In
general, repetition of any kind is avoided, e.g., in giving a
series of dates, or in stating intervals, or in writing
determim’ant's or other expressions which are obtained by
cyclic substitution. Conciseness is illustrated too by the
use of as many intelligible contractions as possible.
Standard abbreviations, like v., i.¢., should be read as part
of the sentence : other contractions suggest their meaning—
1-66+ indicates that the valueis “1:66 or a little more”;
a numerical index after the title of a book refers to the
edition whichds quoted ; in 9.32 it is considered unnecessary
to explain that the constant 10™ is replaced by ¢, etc. One
aim of this book is to make you quick to realise the
possibility of such simplifications of detail : if so we be set
free, we may learn to appreciate “ means we could not smell
as flowers towards ends we could not taste as fruit .
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NOTANDA\

Special signs:
= means “is approximately equal to”

—> means “tends to”; ~, “difference between ”
2  means “sum of”

yoc g% (read * y varies as % ") means y=Fkx?

£

nl or {n (read “#n factorial ”) means n(n—1)(n—2)...3.2.1.

sin=lr : this {s often referred to as the inverse notation.
It denotes the angle whose sine is x, and should be read
“ sine minus one x”. Sometimes it is written arc sin 2. So
also for cos—'x, tan~'x, etc. Thus, if cos~1x=6, then
cosd =x, : ‘

Greek letters:
J

o A alpha v N nu

8 B béta & & xi

vy T gamma o 0O omicron
k) A delta = II  pi

e . E epsilon p P rho

{ Z  zéta ‘ og¢ = sigma
n. H gta L. N T T tan

6 O thota b v Y  upsilon
t I iota ¢ @ phi

K K kappa x X chi

A A lambda vy ¥ psi

“« M mu w Q omega

Decimal System of Classification. This has been
adopted in-this book because of itu great convenience in
making many cross-references. It has also the advantage
of making it easy to show how the parts of a subject are
related to onv another: an integer to the right is always
~subordinate to one to the left. Ttis well worth your waile

)



2 o GEOMETRICAL NOTES

- to note carefully the numbering of paragraphs in a chapter:
it shows how the facts should be arranged in your own mind
and you should fry to fit new facts into their proper place
in the scheme. In some places other systems of numbering
may be possible, and you may prefer one of them; you
should not hesitate to make and use your own system,—and
to discard it if it turns out to be defective !

Below are noted important points you have already
studied :

I. @ress Multiplication. To solve the simultaneous
equations

Ax+By+C=0 ) think of the A B_f A><B
7 - coefficients as XX N
ax+ by+c=0J arranged thus: a 0

x I o
_Bc—bC Ca—cA Ab-aB

and write

With practice all this can be done mentally » thus to solve

OX=5y+2=0 o ihe at once, or think of, *—= 2. =L

4x+3y—7=0 29 50 38°

This is really a simple case of 1.83.

II. A straight line may be fixed by

(i) the intercepts a, b it makes on the axes; its
.. X ; . .
equation is then = +v,Z-== I; (generalised in 5.4.)

(ii) the slope m and the point (q,¢) in which it :
cuts the y axis : in terms of these the equation is y=mx+c.

(The slope is the ratio, difference of ordinates : difference of abscissae, )

III. @ounting Squares on graph paper for the area of a
curve : along the boundary of the curve the squares are cut
into by the curve: ualess there is an obvious excess of
partial squares wth more, or with less, than half their areas
included in the curve, the most workable rule is to count the
total number of partjal squares and,divide theer number by

twon . . « '
[ ] . .



ALGEBRAIC NOTES 3

IV. The Quadratic Graph y=ax2+bx+cisa parabola
with its axis parallel to the y axis, and concave upwards if
a> o0, downwards if a<o.

V., x= ﬂw, if ax?+br+c=0. This isa very
2a
excellent.mantra: it makes many tl‘\;ings clear (1.21, #%.2.)
b2—4ac is called the diseriminant’ of the expression
axt+bx+c. \

VI. Before reading this book you should know
(i) how to use tables of logarithms, etc.;

(ii) .that equiangular triangles have their correspond-
ing sides in the same ratio and their areas inthe ratio of
the squares of corresponding sides.

. (iii) that the sum of any number of the decreasing
terms of the series a, ar, ar? ard, ard,...... ar®=1, art, arntl,,...
where #<1, is never greater than q/(I1~7), and can be made

as close to this quantity as we like by taking # large enough;
(iv) that’the number of ways in which # things can

n!
nC?'; y

be combined » at a time is ———, =
rl(n—n)

(v) that the probability of an event \ which can
happen in p ways and fail in g ways is P_'%;Z’ and that if
another independent event can happen in p1 ways and fail
in g, ways, the probability of both happening together is

201
(o+4a) (o1 +as

(vi) that work done is measured by the product of
the force with which it is done and the distance through
which it is done.

); and

VIL On all possible occasinns use defached co-
efficients, and complementary divisiono(the ‘ Italian”
method) : the latter method is specially useful also for
finding how mgch less tl})e sum Jf several numbers 1s than
a given number. )

1]
' )



CHAPTER 1

. MISCELLANEA

(It has not been found possible to fit the subjects dealt
with in this chapter into the general plan of this book, and
the student, unless he have a bent towards mathematics, is
advised to refer to it only as he finds need., Chapter II is
the best starting point.)

Y

© Fig.5 Fig.l A" Ren C
antrals Tnversion  Pesucelliers Cell Harts Linkage

1.1. To reverse the process of addition or subtraction of
algebraic fractions is often difficult; but a very simple rule
enables us ¢o find the numerator of a partial fraction as it is
called, in which ;he defominator is a linear factor of the
denominator of the given fraction. The rule is as follows :

* N A B

i . o - L
&b =1t co s f x=r + a.’t“:l-i-b'x”"z-{' oo bk .
. - .

i



TRANSFER OF ORIGIN ' 5

where N is an expression of lower degree than the
denominator, then A4 is found by substituting » for x in the
given fraction, with the factor x - » omitted.

The truth of this is easily seen by multiplying through
by the denominator of the given fraction, and then putting x
equal to . The term containing B then vanishes.

62~ 8o+ 4

(a2 -3 +1)(x-1)
can prepare for one another by adding together suitable fractions. Those who are
specially interested will find the matter treated at length in almost any textbook on
algebra,

Test thie in particular cases, e.g., ; such examples students

1.2. PARALLEL DISPLACEMENTS OF AXES. A curve ina
plane is not affected by a change of the axes with reference
to which the coordinates on it are measured. If the axes
change their position, a corresponding change takes place
in the coordinates, and the equation which represents the
curve alters its form. The position of the axes may be chosen
so as to make this equation as simple, or as convenient,
as possible.

The simplest change of axes is that in which the origin
is moved to a point (&, k) and the axes retain their directions.
This is represented in figure 3, where % is negative: in all
cases we have for the coordinates of any point on the

,curve x=0D=0S+ SD=h+§

y=DP=DA+ AP=k+y,
where £ and 7 are the coordinates of a point P with respect
to the new axes. (If you have difficulty with the negative
value of k, redraw the figure with 2 somewhere in the first
quadrant, and you will at once see that these statements
hold true.) When we substitute £+ % for x and n+% for ,
we get a new equation in the variables ¢ and #: this
equation may or may not be simpler than the original, but
it represents the same curve.

" 1.21. If in the above we suppose k=0, the displacement
of the origin is simply along the x agxis. When this trans-
formation is applied to y= ax2+ 2bx+c (n. 3, IV) so that

" h=—b/a, we have

VRN BN, g B, .o Bac
ma(Emg) HA(Eg)vemaliog vematt- ST

bl



6 CUBIC EQUATIONS

Geometrically this corresponds to placing the curve 'so

that it is symmetrical (2.12) with respect to the y axis: it
cuts the y axis at a distance —(¥2—ac)/a from the origin,
whether »® is greater than ac ornot. You can easily with
the help of a figure connect this fact with the condition for
real roots. (cf.V)

1.211. SOLUTION OF CUBICS. Similarly, by putting
x=£-bla in y=ax3+30x%*+ 3cx+d, the equation can be trans-
formed so that there is no term in x2; then

3 2
y=a<f—é> +3b(§-‘- é) +30(€5_ é).‘.d
3 333 3 '
_a53+§5(3~—6~ +3)—b—+3l—£ d .

.. . 2b3 — 3abc + a®d ‘
Writing this 7 <=y— ——%T—*) a&d- (lr—ac)é'c )
we see, since the terms in £ and 7 are of odd degree (2.12)
that the curve is symmetrical about the origin for &, », i.e.,
about the point in-which the curve cuts the second y axis.
(Fig. 4.)

Ex. Apply Descartes’ Rules (2,17) to explain the signififance of the sign of
the coefficient of Em the last form of the equation to the cubie, Draw figures for

the different cases : use particular values of g, &, ¢ to make the curves definite,

The possxbility of removing the second term from ae
‘cubic expression gives an easy way of getting a graphical
. solution for any equation of the third degree. Let the
" equation, simplified by the removal of this term and by
division by the coefficient of x*, be

23—pr—g=0.

This may be regarded as x¥=px+ ¢, and so, if on a carefully
drawn graph of y=x3, the straight line y=px + ¢ is drawn, the
points where the ordinates of these graphs are equal, i.e., the
" points of intersection, give the values of x, possibly three,
for which #3—pxr—g=0. From these values have to be sub-
tracted the'b/a referredsto above in order to get the roots of
- the original equa#on; forthe equation we are here considering
is, in the earlier notation, £3—pé—g=0, and we wish to
find «, Which is E—b[a (Cf* 2.16, Ex. 3; also, say, Davison’s
“H.lgher Algebra , P. 190.), . e
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* " Ex.1. Bolve 243-5x+2=0, Construct such examples for one another ;
draw the corresponding figures. (Cf, eg, Barnard and Child, “A New Algebra,”
p. 418, Ex. 11) (In using a reference graph of y =28 to get approximate values of
the real roots of 28~ px - ¢=0 it is easiest to stretch a fine thread across the
graph inthe position y=px+¢: cf. p.2, Il ii and 1.33).

Ex. 2. Apply the transformation of 1.2 to curves like those in 2.1, eg., move
the origin for y =2 to (2, - 3), that for 2y =3 to (3, 1).

Ex. 3. Move the axes in 2.0 Ex. 3 so that the hyperbola there obtained is
expressed by the simplest equation possible.

1.31. ACCURACY IN READING SCALES. It is important
to be able to use our tools so as to give us results which are
the best possible. With an ordinary footrule we should be
able to measure habitually to 0°01 of an inch. So also with
a good scale of centimetres. If a length comes between two
successive tenths you must estimate the number of

" bundredths of a centimetre extra which should be included
in the measurement. If you find difficulty in making such
estimates, you should mark a scale of inches or centimetres
on a line, get a friend to put points on this line in any

' positions, write down your estimates of the number of
tenths these points are from a graduation, and check your
work by actual measurement with a rule. A little practice
of this sort will make you confident in the finer measurement
that is required in graphical work.

1.32. DRAWING A TANGENT TO ANY CURVE at any
given point on it. For a circle the perpendicular to the
radius gives us the tangent. But for most other curves we
have only the definition of the tangent as the limiting
position of a chord through points on the curve mear the given
point to work with (cf. 3.12). In practice we cannot
of course go to the limit: but satisfactory results may be
got by devices such as the following :—

(i) Measure off equal lengths along the curve in
opposite directions from the point, and draw through the
point a line parallel to the chord juining the ends of the
equal arcs. 9

(ii) It is usually easier, and quite as satisfactory, to
take, instead 3f the abowe chord, that«joining the points
the »abscissae of V\Ihich have the abscissa of thg given point
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as their arithmetic mean, and draw the parallel to this
chord; thus for y=x% we take as the slope of the tangent
at any point §{(x+A)2—(x=~#k)2}/2h, or 2x: cf. Barnard and
Child, “ A New Algebra”, p. 606. For other curves than the
parabola the method is not exact ; but with careful drawing
it is a good one. (3.121, 3.13.)

Ex, With a horizontal scale of 1”7=0'5 and a vertical scale of 17="0b
plot carefully from a table of logarithms the graph of y=logz between z=3and -
=5, Draw the tangent at (4, log 4) and measure its gradient. Check your
result by formula (iii) of 3.13.

1.33. DISCOVERING LAWS. In 1.31 we have noted
how accurate work in measurement depends on estimating
the position of a point relative to two other poimts in the
same line, the graduations on either side of it; and how
accuracy is attained only by practice. Very often it is .
important to be able to estimate the position of the straight °
line which is closest to a number of points which lie more .
or less along a straight line : the ability to do tkis depends -
very much on practice.

Such assemblages of points occur frequgntly when the

results of experiments are plotted with reference to suitable
~axes: cf. 9.3, 9.4, A very simple example is given in 6.22,
the determination of the value of # by measuring circles of

different sizes. But the method is not restricted to the casa -
of lines passing through the origin; whatever the trend of
the points, it is possible to move a fine thread among them

until it appears ‘that it passes evenly through them and as -

close to them as possible—the points on one side of the
stretched thread are, onthe whole, as neartoitas those on the .
other. In drawing a tangent it was found possible to avoid’
depending merely on an estimate by eye; but here no other -

procedure is possible; yet this method is the graphical

equivalent of a very elaborate arithmetical method to which
you will often see reference—the method of least squares,

the squares being squares of the distances, in some direction, -

of the points from the®line; these distances are squared in
order to get rid of the cancelling effect of opposite signs
(1.5). ,Once the line has been drawn its equation can be

‘read off by the rules of p. 2, II: geeat care mfist be taken to

choose suitable units and to manipulate them correctly?
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- It is necessary here to do little more than call attention
to this method. Those who need help should practise it
with the aid of a book which deals with difficulties in detail.
Collections of examples may befound in many such books, e.¢.,
Barnard and Child, “ A New Algebra”, p. 500; Usherwood
and Trimble : “Intermediate Mathematics”, p. 118 ; “Practical
Mathematics”, I 226, II 122.

A few examples are added from “ Practical Mathematics”,1 by Professor Perry,
who expresses himself very vigorously (p. 64) in favour of this as against the
algebraic method becausc of the type of uncertainty mentioned in the note in
6.3, — an uncertainty that can be detected e.sily on a drawing.

Ex. 1. The points (2, 5'6), (3, 6:85), (46, 927), (6. 11'63), (7, 12'75)
(9, 16-32), (12, 20-25), (13, 22-33) lie most nearly on y=2'5+15 «.

Ex. 2. V,Vhen the weight A4 was being lifted by a laboratory crane, the handle-
effort B (the force applied at right angles to the handle) was measured and found
to have the following values:

4 0 50 100 150 200 250 300 350 400

B 62 74 83 9'5 103 116 12-4 136 14-5,

Show that the law for 4 and 2 is B=02074 + 63.

Ex. 3. Show that the following observed values of x and y obey the law
y=18+01a2: (1°1, }91), (18, 2'13), (2'5, 2+42), (29, 2°65), (36, 3:09), (43, 3°G6),
(48, 4:09), (54, 473).

(A rough plotting of these points should suggest a curve of the foim y=a2;
plot then carefully corresponding values of 2% and y.)

, Ex. 4. Find the law connecting P and Win the following table :
Indicated Horse Power, P 36:'8 316 263 21 158 126 84
Steam used per hr. per L. I, P, w. 125 129 131 133 141 145 163

(The law in this cace was first discovered as W=37'5+11-5 P, where Wis
the whole weight of steam used per hour, i.e, wP.: the law may also be written
w=375£+11'5, and so may be discovered by plotting w against 1{.2. Try it
both ways. Cf, also Lipka’s “ Computation ”, p. 135.)

Ex, 5. Find the law connecting . and y for the following values :

o 0 ‘05 ‘1 ‘3 1 1-4 2 26
Y 0 - 136 26 56 97 11 122 124,

(Here at first apparently y oc @, but later it seems to be approaching a
limiting value, This suggests y =az/ (1 +ba), i.e. y|z+by=a. Accordingly plot
yjo against y, The law found is y =3/ (1+22). )

Perry suggests rules to be obsérved qwhen, as often

1 Six lectures-delivered in 1899 : published by the Board of Educatioh, 1907 ;
PD. ]8?. Price Ninepence, ‘ )

) ) "

2 4 :
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happens, there is an indication of the rate at which y changes
with respect to x:
if Dyocy |, y=aeb*  (3.22 ii, 9.3); plot log,y against &°:
if Dyo<y/x, y=ax? (3.22 i, 3.211,9.4);
plot log y againstlog x:

if Dyocx , y=a+042; (3.22 i) plot y against 22,

1.3%. POSSIBLE ERRORS. No measurement is absolutely
accurate : all that can be said is that the quantity measured
lies between certain limits, upper and lower. Thus, if
we say that a certain length is1:7°, we mean that it is
some length between 165" and 1-75"; and so on.
It is often necessary to know how this fact affects the result
of calculation when measurements are combined—what is
the possible error in the value deduced? This matter is
treated with thoroughness and generality by Barnard and
Child in “A New Algebra”, Chap. XXVIII, and here we
note only the particular result that the possible error of a
sum or difference of two similarly measured quantities is
double that of the original measurements, 7.e., the error in
the difference between measured lengths, 2¢¢ cms. and 17
cms. may be as much as 01 cm.?

Ex. 1. Sbow that in 3.151 Ex. 2 the value of the separation deduced by
different experimenters between two wave numbers corresponding to the wave-
lengths there specified may differ by 20 units. (One might say 22 units, but that
is being over- pzecise in speaking about possibilities, This example is taken from
Phil, Trans. R. 3. 4, 225 361.)

Ex, 2. 1he example of error in area given by Barnard and Child, p. 321, may
be expressed more conveniently thus :
in (1'8 4 *05) (07 4 '05) the greatest possibie departure from 1:8x 07 is

“05 (184 0°7) + (-05)2 d.e., *125 40035 or *1276. (CL. 8.151. Ex. 1.)

Ex. 3. Represent graphically as in 7.531, or otherwise, the general rules given
by Barnard and Child, gp.cit., p. 320 ; select cases in which A4 and B have varied
relative values and signs :

If a, o' b, b' are given numbers and 4, B are any numbers such that

a<A<a' and < B<p!,
then (i a+bd< A+ B <a +?¥'; e
. () a-3¥< A4-B <a'-b; ‘
and, if all the letterg denote positive numbers,
(i) gad < AP <al ¥l
v) ap' < AlB <a|b

1 Another treatmentgf this sub]eet whicy some may g&fer will be found
in ng s ¢ Statxstlcd Method ", Seg. 44 o o ° N
.
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© 1,381, An attitude, the converse of this, occurs when for
simplicity we discard differences from the true value of a
quantity as negligible and cumbersome.. A simple example
of this type of approximation to a value is when we seek
the reciprocal of, say, 1-002. By division we know that
I/I+a)=TI—a+o2—03+ ............ ; when a is small, we can
consider a2 and higher powers of & negligible. And soin
the particular case mentioned the required reciprocal is
I1--002=-998. Compare this with the values got by taking
successively more terms in the expansion——0-998004,
0°998003992, etc. This process is closely connected with
that in 3.121.

1.2, ].SROPORTIONAL PARTS OR INTERPOLATION: When
values of a guantity, e.g., logarithms, are given in a table,
it is impossible to give all values ; they have to be given
at close, regular intervals, and, if they are required at
intermediate values, it is assumed that the quantities change
regularly in the interval’. Thus in the region 41 to 45 of a

. table of logarithms between any two successive tabular
values, say, thode for 434 and 435 the logarithm increases
steadily by units for each figure .in the fourth place from
6375 to 6385 ; so also in the region 210 to 219, where the
1:ate of increase is 2 units.

1.41. But the rate of increase is not usually so regular.
Plot carefully on a large scale the nine logarithms between
the numbers 2-63 and 2:64 ; when you stretch a fine dark
thread through the first and last of these you will find that
five points lie above the line while only four lie below it,
and these are much closer to it. This indicates that the
true curve of logarithms lies rather above the straight line,
and this agrees with the general nature of the graph for
y=log x—it is concave on the lower side and to the right :
Cf. 1.32 Ex.

This test is not quite decisive, for we do not, know that the end points are
the true positions of (¢, log ) — the values are given ouiy to the nearest integer

1 For interpolation with another assumption ». Horst von Sanden, ¢ Practical
Mathematical Analjsis ” (Metheun),p. 64, Of. 1,32 (i) and the remark in 2.31
aboubid curve through z points. | ) I

2
) »
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in the fourth piace ; but it is quite a good test. Note how in the instance given
the peints group themselves in twos and threes successively in straight lines :
" this is because values have to be given to the nearest integer.

1.42, In some places the rule of Proportional Parts is
inadequate because the changes in the function are so slow,
e. £., in the upper parts of the table forlog sin »°; if the suc-
cessive values of the function are to be distinguished, an

 extra number of decimal places must be taken: but there is

usually no advantage in this. At the lower end of the table
of logarithmic sines the changes in the function are so rapid
that proportional parts cannot be used till the differences
begin to be regular, and so in Knott’s Tables a special page
is given to the values of log sin x for values of x ip to7° 50,
So also for the lower part of the table of logarithms, which
in Chambers’ Mathematical Tables is given to an extra
decimal place.

. An interesting comparison, which illustrates a difficulty in compiling really
"> good tables, may be made from Knott's Tables (1905) pp. 2, 3, on both of which

- logs are given of numbers up to 1109.

Nos. p.2 1.3 Nos. p.2 p.3 ®os. p.2 p.3
+ 1010 0043 3 1050 0212 2 1080 0034 4
1 7+ 8 1 6 6 1 8 8
2 b1+ 2 2 20 0 2 42 2
3 5+ 6 3 4 4 3 6 6 .
4 60 + 0 4 9- 8 4 51~ g
5 64+ 5 5 33 3 b 5— 4
6 8+ 9 6 7 7 6 9~ 8
7 724 3 7 41 1 7 63 - 2
8 6+ 7 . 8 5 b 8 7 - 6
9 80+ 2 9 9 9 9 71 - 0

The logarithms on page 3 are the more accurate ; it is
interesting to test them by comparison with still more -
accurate tables,e.g., Chambers’. Thenature of corrections that |
are required in the logarithms of page 2is indicated above .
by signs, and it is seew that these are in opposite directions
at the two ends ®f the range to which the mean differences
selected apply, while in the middle of the range the =~
logarithms have alipost no®errors. . It would sgem better to
have omitted.the differences on page 2, as i$ done on _p. 8 .

. . o
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but the adjective in the title ‘ Mean Difference "’ emphasises
the limitation of the results to be expected from these
tables.

Ex. 1. Make a comparison like the above between the portions of Knott's
Tables on page 8 or page 12 which overlap with page 7.

Ex, 2. Investigate the effectiveness of the device in Castle’s Tables—separate
differences for the first and second halves of the line—to overcome the above
difficulty.

1.33. LOGARITHMIC INTERPOLATION: When the values
of variables are given not directly, but as functions of the
variable, the process of interpolation has to be modified:
but the same linear assumption may be made. Tables for
vapour pressure of water at different temperatures depend
upon a formula (5.3 Ex. 2) which gives log p as a function
of the temperature. In Kaye and Laby's “ Physical and
Chemical Constants” where several such tables are given
(pp. 40-43), it is shown how intermediate values of the
vapour pressure should be calculated. Values of vapour
pressure given in different tables’ do not quite agree:
take 914 and 57-36 as the values at 10° and 20°. To find
the value for 16° we have to seek the numhber for which the

logarithm is
0°4 log9:14+0°6 log 17-36.
IThis expression can with little difficulty be found to be
logi3-43 and so the vapour pressure at 16 is I3+43-—not
0°4%x9°I4+0°6x17-36=14-07.
Ex. 1. Test one of the tables of vapour pressure of water to sce whether the
values between two chosen values actually agree with this formula.
Ex, 2. If y=10% find the values of y corresponding to xy, lizy, 132y, 224
This is the problem of finding, say, 9 geometric means, 6.12%1, between two
quantities: cf. Whipple’s « Vital Statistics”’, p. 143. In 2.21, Pp=Py(l+rn

it means finding what Pj amounts to in time = Geowmetrically this is equivalens
to considering a straight line on semi-logarithmic ruling (9.3).

As intermediate points on a straight line can be found, so points on the line
produced can be definitely located : an example pof thisis given 'in 9.3 Ex. 6,
but the process of extrapolation is difficult and risky besause of the possibility
of conditions changing (cf. also 6.3 Note),

“
L

+ 1 Gregory and Hadley’s Phygics, p. 560, Clark’s Mathematical Tables, p. 33,
) ) v ‘ !

,
) » ’

1
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1.431. INTERPOLATION BY SLIDE RULE: The calculation is greatly facil-
- itated if the logarithms are taken from a slide rule : that described in 4,11 can be
adapted to this purpose by having a uniform decimal scale corresponding exactly
with the unit logarithmic scale, thus making stationary scales (5.5 £.n.) on which
opposite graduations give a number and its logarithm. This would correspond on
the ordinary slide rule (not described in this book) to having a pointer attached
to the cursor exactly opposite the cross line so as to show, ona 10 inch scale set
to correspond, the logarithm of the number under the cross line, In some slide rules
the 25 centimetre scale can be easily adjusted to this purpose ; but another device *
for giving the logarithms on the back of the slide secms to have been found more
satisfactory,

Note—A prominent physicist says that the slide rule should not be used for
simple laboratory experiments : there is no instrument, he declares, which the
student is more liable to abuse. (His reason for saying this is probably that in the
experimental sciences good measurement should make the computer lnnecessary.)
Test the accuracy of logarithms obtained from the slide rule,

L.5. REGIONS: A simple curve divides the plane in
which it lies into two regions, points in which have opposite
characteristics in relation to the algebraic equation which the
curve represents. Thus if the line, 3x—y+6=0, is drawn and
on the same figure points are marked, it will be found
that the coordinates of all points on one side of the line,
when substituted in the expression on the lefthand side of
the equation, give a positive value; those of points on the
other side, a negative value. And sothe two sides of the
line may be described as positive and negative respectively.
The length of the perpendicular from a point (x, y) to the line
varies as the value of 3xr—y+6, and thus perpendicular
lengths may be regarded as having signs.

A similar statement is obviously true for the circle
x%+y2?—a?=0 also; the expression on the left with co-
ordinates of any point substituted in it is called the power
of the point with respect to the circle; this “power” is
positive or negative according as the point is outside or
inside the curve. When positive, it is the square of the
tangent from the point to the circle.

Similar statements, though they have not such simple
geometrical interpretations, are true for the parabola, the
ellipse and other curves® and can easily be verified by trial.

[} . L] -
1 v Smith’s “ Conic Sections”, Lrts, 82, 92, 173,
PY L ) . [ ) °
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Even for the hyperbola xy=1 which appears to divide the
plane into three regions the statement holds good: the first
and the third quadrants are each divided into regions in
which xy<1 and xy>1, and in the second and fourth
quadrants xy<0: but all this may be combined in the one
statement that “ between” the branches of the curve ay—1I
is negative, and “ beyond” it is positive.

The idea of regions which are bounded by curves, in
- crossing which a definite change takes place, is very common,
In physics we have curves defining regions which represent
conditions under which a substance may or may not be
gaseous'. In medical science there are dissociation
curves, which indicate under what conditions and to
what extent oxygen may be combined with hamo-
globin. In Bainbridge and Menzies’ “Essentials of
Physiology ”, p. 257 this idea is emphasised by colour-
ing the region on one side of the curve red, on the
other side blue. In Joslin’s “ Diabetes Mellitus” ? p. 389
arrows are drawn away from the dissociation curve of normal
CO.; (cf. 9.2) 2n an excessively simple diagram, and are
labelled ““ alkalosis” and “acidosis” to indicate the respective
dangers in too great departures from this line.

1.6, LINKAGES for connecting circular and rectilinear
motions are an illustration of a particular case of inverse
curves. Each of two curves is said to be the inverse of the
other with respect to a centre of inversion O when every line
through this centre cuts the curves at distances from O whose
product is constant, Such curves may be plotted point by point,
(fig. 5), or they may be traced by two points on a system of
rods jointed together in special ways: these are called
linkages. They may be adapted to connect parts of a machine
which aretohaveinverse motions,e.g., motions in a circle and
in a straight line. For it is easily proved that the inverse of
a straight line is a circle through the centre of inversion.®

1 v. Watgon’s “ Texthook of Physics”2? p, 275, Senter’s “Physical Chemistry,”
p.: 180, ete.

2 See any book on geometry, especially, Workman and Cracknell's Geometry
p. 474, Portions  f linkages used for demonstration parposes may be identified at
the foot of the heavily-laden figyre 2, v : Yo

»
4 4 2
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PEAUCELLIER’S CELL (fig. 6) consists essentially of six -
links, four forming a rhombus, and two other equal rods,
either longer or shorter than the four, jointed as shown in .
figure 6. But it is convenient to attach an extra rod to one of
the tracing points, so that by fixing a point in theroda
circle through O, the fixed centre of inversion, is described by
this tracing point. For this linkage it is easy to prove that

OP.0Q=0A%2~ AP2, .

HART’S LINKAGE (fig.7) is simpler in construction, -
being simply a crossed parallelogram. It permits of more
adjustment than Peaucellier’s Cell, forthe centre of inversion
may be at any point on one of the arms, say AD, and then
the tracing points P and Q0 are where the line through O
parallel to the parallel diameters cuts AB, CD, the arms which
differ in length from the arm on which O is. The proof of
the inverse property is somewhat more difficult than in the
preceding case and is given here. In figure 7 we have, if
AO:0D::m :n,and AH1 BD,

n m mn
OP. 0Q= ——AC_" BD= ol (DH+BH')£DH—.BH)

mn
= Ty AP~ ABD

Ex. Repeat this proof with O on 4.B, What results from changing the position

of O on an arm! :

Note—A description of a simple linkage with geometrical interest will be ,
found in the Philosophical Magazine, 1918, 36 143. )

1.7. BINOMIAL COEFFICIENTS. Knowledge of the bino- .
mial coefficients of the expansion of (a4 )" is often required.
They can easily be calculated from Newton’s formula ,C,/r !;
but for some it may be useful to have them set out as in -
Stifel’s Table? one of the earliest forms in which they were

presented.
1 i I
I 1 I I
I 2 1 I 2
I 3 31 , I 3 3
14 6 4 1 I 4 6
. . I 5 1o IO

1 Tl}is table was known to the Chinese about 1300, (Nunr’s * Teaching of
Algebra”, p. 212.) It was Stifel who announced ghe end of the_world for October
3, 1833 v. Ball's “. History of Mathen.mti.cs", p. 216, . .
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The rule for compiling the table is obvious—fill each
place with the sum of the number above and the number to
the left of that number. If the table is arranged symmetric-
ally as on the right, the rule simplifies to— each number is
the sum of the two numbers immediately above it on either
side; and the obvious symmetry makes it unnecessary to
write more than half the table. For reference purposes
this table should be completed up ton=20.

Ex. Write out with the help of Stifel’s table the expansions of expressions like
the following, (a+28)9, (3¢ + 55)11,

1.8, DETERMINANTS. It has been said, in apparently
irreverent paradox, that Mathematics is the science in which
we do not know what we are talking about, and in which we
do not care whether what we say is true or not! Put
positively, this means that Mathematics is the science of
symbol and its rational use: the symbols are defined with
pre’c?i@t it is no concern of the mathematician as such

a—————— [ 0 Y
to know whether the definition corresponds to anything in
the external world, or not.” "His work is to unfold the
consequences of the definitions he has formulated, whether
or no these results have intelligible application to the world
of things.

) One of the most striking examples of this is the gencralised
geomelry (i.e., geometry of many dimensions—more than
three !) which found an interpretation through the theory of
relativity after more than half a century. Equally striking
and more intelligible, is the use made of “‘imaginary’ quantities
in finding the explanation of phenomena in, say, electricity.
It would take us rather far to attempt to explain
“imaginaries”, though the idea is not difficults. We shall
take here only some of the simpler facts about another
symbol which has immediate applications: it is called a
determinant; for one of its properties is that it determines
the relation between the coeﬁ‘icients)of expressions which

L

1 Cf the astonishing tesult, which we may write as - o =+ oo, g0t when
we play with the changes in the valﬂue of y 45 x increases through zuib on the

hyperbola xy =1, ' . "
> b il
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have certain characteristics e¢. g., linear equations which
are consistent! (cf. 1.83, 1.8%).

1.81. A determinant is an array of »* quantities, called
constituents® arranged in a square: this symbol represents
the sum of all the products (#! in number) of these
quantities, taking for every product one and only one
constituent from each row, and from each column: the
sign of the product is settled by a rule which for determi-
nants containing no more than three constituents in a row
or column (i.e., third order determinants) is very easily
expressed thus: Re-write the first two columns after the
third; then the six possible products are on the complete
diagonals through these five columns; the positive sign
is attached to the products downwards from the left, the
negative to the others.

~, \, ~ A A- AN N
a b cf ‘& M 3 & 6 A
\\ \X// \\Y/ // . \\\ "
d od N N Nd” e d e A
€ f NN Y
/s \x/ \)‘/ AN N .. \ ~
v N gs N\, AN N A
g v k| g K K9 k0N A%
/ / 7/ ] ) > ~ .

The determinant here shown represents
ack+bfg+ cdh— gec— hfa—kdb.  After a little practice'
it becomes unnecessary to rewrite the columns; the broken
diagonals may be picked out as indicated on the right
for the positive products. The diagonal downwards to the
right through the leading constituents is called the principal

diagonal, the other the secondary diagonal.
Ex, 1, Find the values of

1 2 3 6 1 8 1 cos 4
4 5 6 7 85 8 (cosA 1 $
T 8 9 , 2 9 4 ’ ’
1 cos ¢ cos B a b g
cos 0 1 cos 4 h o f
[cos B cos 4 1 s g f el
e x ¥y . 4
- —  E——— & —
1Thusa x4+ b y+.c z_O} arecon- | P © ic a a b
ayx4+byyegz=0) SSBNIE], o ler ax ay by

note the cyclic order,

2 These are sometimes called el.ements dut some writer's apply this word
to thg products which are summed, ' . pply this ) T
¢ . ° .
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- Ex, 2, 8how by expansion that
a; &y ec1 ay @2 dag as @y @ag

as bz Co b] bz bB = - bz b] bs

ag bas ca ¢y €3 €3 g ¢4 €3

1.82. Elementary propertieé of determinants are

(i) An interchange of rows and columns has no
effect on the value.

(ii) If any twe rows are Interchanged, the sign of
the determinant is reversed. Consequently, the value of
a determinant is zero if any two rows or columns are
identical.”

(iii) Multiplying the determinant by a faetor means
multiplying each constituent of one row by that factor.
Accordingly, if two rows are made identical by putting .
a=b, then a-bis a factor.

The truth of these and other properties can easily be

verified. N
1 1 1 '
Ex. Prove that |a b c¢| = (b-c)(c-a)(a-b) .
a2 b2 c2

, 1.83. The use of determinants in solving simultaneous
equations has been referred to already on p. 2, I; for the

solution of
1- x .y _ I
can be written bic) Jaa | (a1 b
baca) |c2 asl a2 b

awx +oy+c1=0
azx+bzy+62=oJ

Similarly for three unknown quantities, the solution? of

X Yy _ & - -1
ax+hy+caz +di=0is |b1c1 dv di a1 by ai b c
ax + by +caz+dz=0 bs ca ds de ag be az bz c2
ax +b3y+caz+dz=0 b3 c3 ds s | dsasbs as bz cs

Ex, Test this by solving the equations !

2+2y—2=6,2r-y -32=3, 4x-2y~22=2,
g , R
r]

» ¥ i
1, The negative sign of 1 haj to be introduced for determinal}ts of odd ordet,
F] »
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; L84, The homogeneous quadratic expression,
" ax®+2hxy+by?, we know, is a perfect square if’ a h l__:o,
h b ’

and it cannot be factorised if the value of the determinant is -
positive. Compare this condition with the expression itself
written as ' (ax+hy) x
+ (hx+Dby) 3.
It can also be provedthatthe general quadratic expression,
ax%+2hxy+ byt + 2gx + 2fy + c=0,

( (ax+hy+g) x
which can be written 4 4(ax+by+f) y ) :
L + gx+ ty +¢ » S

can be expressed as a product Z 1}; § =0
of linear factors if 2 o

Ex, 1. Test 2%- 52+ 2y~1, 2202+ 7oy - 452+ x4+ 13y - 8 for linear factors, Find
these, Construct other such examples.
Ex. 2. For what values of /% bhave 1222+ 2ixy+2y%2+1lz-by+2 and
. 2hay + 52 + 3y +2 linear factors !

Ex. 3. Modify this idea abont the condition for factors # as to make it apply
to the homogeneous quadratic function az2+ &y + ¢22 + 2fyz + 2gza + 2hay.

1.85. One of the most useful applications of determin-
ants is to find the area of trlangles whose coordinates, for,
equal scales along the axes, are given. The area of the
triangle whose coordinates are (x1, 1), (xe, ¥2), (a3, y3) .

x1 y1 1] This can be verified easily for
is X2 y2 1 (2) 0), (2) 5)» (3; 5);
x3 y3 1 (3) 0): (I, 7)) (—5) 0); etc.

It is an interesting consequence of the way in which we
usually arrange the coordinate axes that, if the vertices are
taken in the clockwise order in the rows of the determinant,
the sign of the area is negative, Verify this, '

Ex. Verify by taking simple instances that ) Y1 1
the area of the& quadrilat:ral f%rmed by (21, 71) % zg Ys 1
(@2y Y2 (X3, ¥3) (%4: Ya) 18 T2-%4 Y2-Ys O

1.9. CIRCULAR MEASURE: A right angle, being the
quarter of a complete revolution, ig a natural wnit in which
tomeasure other angles. But the subdivision of the right

. L
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angle is arbitrary, and in any case there is no simple way of
connecting these measures of an angle with the lengths of
the lines that contain the angle. It is easily proved that
angles at the centre of a circle are proportional to the arcs
they are subtended by at the circumference; and that for
one angle the ratio, arc: radius is constant, whatever the
size of the radius bel If this ratio be taken as the measure
of the angle, then the unit angle, the radian, is the angle
subtended by an arc equal to the radius, and this is the
unit in “circular” measure. This system has great
advantages over the right angle system for many purposes,
one of which is pointed out in 3.13, 3.233; cf.also 9.6l
But theseradvantages, and the use of the formula are=rb,
are fully explained in text books on Trigonometry.

In reference to 7,11 mention may be made of circular diagramsl which are
extensively used to show the proportions of different constituents in a whole, If
the whole circumference of a circle, i.e., 27r, be taken as 100, the percentage of
each constituent can be marked off on a proportionate arc, and the points of
division joined to the centre, If by colour, or otherwise, there be an easy way of
making clear what each sector refers to, this makes a compact and striking diagram,
But its use is seldom more than pictorial. A good example of this type of diagram,
where owing to the large scale it has been possible to convey much detailed inform-
ation abont castes in the Bombay Presidency, may be found in the Census of
India, 1921, VIII 188, In Whipple's “ Vital Statistics ”, p. 172 a series of such
diagrams is given to convey similar information about the U.S. A.; but in such
% cage ordinary columns or bars would have been more effective in showing
changes. The ratio of the totals represented by different circular diagrams is that
of the squares of the radii : this fact makes for compactness of representation.

N

N

1 These are called “Pie” diagrams; but surely pot for the .specially
American reagon hin‘ed at in Pearl’s “ Medical Biometdy,” p. 110! A suggestive
1ame for these diagrams is compo.ient charts, » ) '

) »



CHAPTER II
TYPICAL GRAPHS

2. PLOTTING CURVES: You have learned already in
studying algebra how relations like 4x+7y=3 and y2=6x.
which are true for any number of pairs of values of x and y,
may have their general character made clear in a graph;
the pairs of values of ¥ and y which satisfy them are
represented by points which lie in a definite line. This
mode of representation may be extended to any relation
whatever between two variables, ¢.g., 9y=sin ¥, 6y3=4x2=x,
y=57%; for all that is required to make this possible is that
we find out in any way pairs of corresponding values of
x and y.

cuis. CALORIES PER #ND REFERRED TO AGE GIRLS.
po. f
&0 / N
55/ 7
RN ~
/)""\ ‘\\\
NABNN
ol
35 - - —T——|_
[ —— !
30 1 B
”éﬁ, z2 3 4 [ 10 11 2@ § ¥ o

Fig. 8. “Basal metabolism, calories per kilogram of body weight for twenty-four
hours of girls at different ages. The curve is projected from twelve years
upward. (Talbot).” ¢

®

Ex, 1. Construct a curve from any convenient table of values, e.g., from Knott’s
Mathematical Tables p, 30, col, 8 draw y=3%/10z, taking =0, 10, 20,......100
Iusert additional values wheft you have doubt # to how the» curve runs, It is
ugeful to study simjlarly the graph of y=log #; ¢ 1.32 Iix 6



‘CURVES FROM VARIQOUS SOURCES 23

© Ex, 2. Sketch the curve y =

z2+1

This is given in Lamb’s “ Infinitesimal Calculus™,3 - p. 27 : cf. typical curves
showing the prodyiction of heat in the human body, fig. 8, from Du Bois' “Basal
Metabolism ”, p. 121 (Lea & Febiger, New York). Here we have a family of curves

ool

. zi41
values, By trial approximate to the value of % for one of these curves, (The origin
for this equation must be taken to the left of that shown in the figure.)

, where % is given different

(cf. 2.13 below), whose equation may be y =

2?2 —z+1
23+ o+l
Algebra ", fig, 20. Try the effect of changing the origin (1,21) of this curve to (0, 1).

Cf. also the graph of y= given in Davison’s ¢ Elementary

Ex. 3. A line AZ of fixed length is divided by a variable point .P. Denoting
A2 by z, and the ratio AP: PB by y, plot the curve which shows the relation
between 2 and‘y, Paying respect to the signs of AP]PB, do this further when 2
divides A B externally; and find the equation to the complete curve. What kind
of curve is it !

Ex. 4. On the lefthand line in figure 1 are three scales, two for ages of males
and femaleg which are fitted to a regular scale for # normal basal metabolic rates »
NV at the corresponding ages, Draw two curves showing the variations of N with
increasing age for men and for women : cf. figure 8, and 5,31.

y

PARABOLIC CURVES

* 2.1, INTEGRAL INDICES: One of the simplest types of
relations between variables isrepresented by y=x% where »
may have any value, integral or fractional, positive or
negative. Plot roughly a few of the simpler curves of this
type, e. £, y=x, y=x2 y=x3 y=2a4 etc. It is readily seen that
they fall into two classes according as z» is odd or even—a
very important distinction. Thus, for % positive, the graph
{or curve) for y=rkx? +lextends indefinitely towards the upper
righthand and the lower lefthand corners of the figure, i. e,
it lies in the first and third quadrants.

Ex. 1, Modify this last statement to make it apply to the case of % negative,

Ex. 2. Make similar statements for the cases whbn n=2s. What is the curve
corresponding to z = 07 “

Ex, 3. Trace the changes in the shape of successive odd or even curves as
the index increases., o What is the limjting shape of the curve in each cage whea %
becomes very large ! ) Co :

l . ¥
I B



24 EFFECTS OF VARIATION OF INDEX

2.11, INTERCHANGE OF AXES: If n isthe reciprocal of
an integer r, i.e., if y isthe »®* root of x, the calculation of
values of y from those of x may be difficult. Buty=x1/r
may be written »”=x, and then x is easily calculated in terms
of . When the points are plotted, curves with the same

Y

. i Fig. 9, y=uam, .
characteristics as before are obtained, the only difference
being that the axes are interchanged. The correspondence
of this with the algebraic change is obvious : if (p, ) is on
y=xn, then (g, p) is on yn=x.

CONSEQUENT SYMMETRY: Anotherimportant geometric-
al property can be derived from this. If y=x% and y?=x are,
as we have just seen, respectively related inthe same way
geometrically tothe x axis and to the y axis (or conversely),
i.e., if there are corresponding points throughout these
curves which are the extremities of equal perpendiculars
drawn in} say, the g)ositive direction for the respective
axes; then they are both related in the same way to the
bisector of the angle between the axes. We put this more
concisely in saying that these curves are symmetrical with
respect to the line’ y=x, when the units of measurement
along the axes are the sanie., v
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Ex, Put the above general statement about identical relationship of curves
fo the respective axes in a more particalar form for the curves for y=2 23

and y=2°" shown in figuré 9, How must this figure be modified 0 as to show these
curves as symmétrical with respect to y=a ?

Note : y=a gives the members of the families of curves y=a® and y?=a
which are coincident.

2.12. AXIAL AND CENTRAL SYMMETRY: The curves
y=x" illustrate symmetries of two kinds. There is symmetry
with respect to a line, the axis of symmetry, as seen above in
y=x%, where s is a positive integer ; also with respect to a
point, called the centre of symmetry. This occurs in
y=x2¢+1, the centre is here the origin. The geometrical
tests for these forms of symmetry are alike. For the first, a
~ perpendicular drawn from any point on the curve and
- produced its own length beyond the axis reaches the curve
in the symmetrical point. For the second, a line joining
any point on the curve to the centre of symmetry and
produced its own length beyond the centre reaches the
curve again in the point centrally symmetrical to the first.

Ex. Test these sfatements in particular cases, e. g, y3=38a, y =22%. Are they
still true when the scale along the y axis is double that on the = axis?

2.13. THE FAMILY OF CURVES: To study the curves
where n is any fraction it is best to think first of the region
between the origin and the point (1, 1). Regarding the
curves we have already considered in 2.1, 2.1l where » was
successively equal to the increasing numbers o,...%, 1,2, 3,...,
a continual change is readily seem: these curves come
successively closer to the x-axis. We have only to take the
trouble of working out the position of a few 'particular
points to assure ourselves that curves for which the index
of x is intermediate between the values given above have an
appropriate geometrical property; they lie between the
corresponding curves in the figure.

Ex. Taking 5 inos. as unit, draw carefully the curves y= .z, y=o, y=a2

between (0,-0) and (1, 1). Show that the pomts( = A) (27 9) (64, Té)

are on the curve y=m 3, and (Ev g;): ("9—1 ﬂ) (;% ;f—g on y= a2,
Plot such points as these and show that they lje on curves intermediate  between
the three first draw#, Verify by ues of logar:thms that«he points given by these
formu,laa for values such as @='34p lie accuratﬂ.ly on these curves.

4 »

]
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The extension of these curves into the region beyond
(1,1) is easy. As may have been expected there is no

AGE IN YEARS

10 20 30 __40 50 ) 70 0 ' 90 100
100,000 T 100,000
8000 95,000
00,000 90,000
N~
83,000 - \_\ N 48000
\ '\ .. L\!\ L
8.000 B =0 el 20,000
'\I{ ~.d. & .. N
1y ] ‘\fQQ N N
75.000 lx\‘ - 2B '\‘J\\ +5.000
NN BN -
r0.000 " N \ %‘?{‘ P\vg1 ra000
s O N D 2N
" T 1 b | N
88.000 [ T Ne TN 85,000
\ “y “O\W NN
80.000 I\ - N \} ~\\ - 60,000
R
\ 1\\.] \ ¥
£ sso00 Y 83000 9
N W\ \_ >
E \ 3 \ 3 H
2 50.000 3 50,000 4
1 N \Y 0 S
. K N 5
; 48,000 o A - ““ - 48,000 3
N \‘ A\ z
\lL T\\\ \*R
«a000 % o \ 20000
aa.000 L\ C \\¥. 38,000
\ \3\. \
Wy N
20.000 N L% S T 22000
h AYH
25,000 S, A X 23,000
N WA
N\ AN
20.000 v ‘\ 20,000
Ay \ \
A\ WYL
15000 N ALK agoe
i\ AW \
10000 AN - \. \,\ 10000
N W
N EANAY
a.c00 AN B "\‘ - 6000
S
o ) O
o 10 20 30 <0 [ ) 0 ) 00 w00
AGC 1N YEARS

Fig. 10. “Survivor” Curves (0. R, S. significs Original Registration States.)
. .
change in the relations between the curves; only their order
with respect to the x axis is reversed.

Test8 of this statement will readily suggest themselves to phe student, e g.
whether in the figure drawn in the above examplg the values of y corresponding

k]

’ J

)
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to, say, 2=1234 lie on the extensions of the respective curves. A test should also
be applied to a new figure with a smaller scale.

Ex. By means of a table of logarithms make a table of values of y=2z U5 at
intervals of 0-333 between =0 and #=4. Plot these values, and show that the
points obtained lie on a continuous curve,

These curves can also be extended into the regions
where r and y are either one or both negative. There is no
great difficulty about this provided it is remembered that
an even root of a negative number cannot be represented in
this figure. Interesting modifications of the curves occur,
but it does not serve our present purpose to trace these out,
though for problems like those dealt with in 9.4 it is
important to be able to recognise the types of these curves.

Further information may be fonnd in Barnard and Child’s * A New Algebra”,
pp. 493-5; also in Gibson’s * Elementary Treatise on the Calculus,” p. 45, or
in his more elementary works.

2.131. It is frequently more important to think of such
curves as expressing a relation within a restricted range of
values of x. Thus in the very striking figure, 10, we
have curves which for most of theirlength suggest members
of the family y=x%, save that they are reversed with respect
to the y-axis, and the origin is not what it was in the
simplest figure (2.1). The contrast expressed numerically
s that for India the value of the index is greater than unity,
for countries more fully under the influence of western
civilisation the index is less than one.

If it be deaired to test a formula on these curves, a suitable formula may be
obtained with the help of the rule for change of origin (1.21) as y+ (+—1)*=0
This for the “ India ” cuarve corresponds to a value of 7z somewhat greater than 2,
e. g., the point (4, 1) on y =22 corresponds to (50, 25,000) which is considerably above
the carve in the figure, the umit for # being 100 years, that for » 100,000 persons :
cf, alzo 9.41. In 3.213 these survivor-curves are converted into mortality-curves,

The diagram is taken from Pearl’'s * Medical Biometry and Statistics”,
p. 184 (originally from J, W. Glover's US.A. Life Tables); this should be
compared with the apparently simpler curves on p. 191 of the same work; see
also 9.3. Another example of such curves occurring in experimental work is
the dissociation curves of oxyhamoglobin, which show to what extent oxygen
and hxemoglobin remain united under different cirbumstances. (v. Bainbridge and
Menzies’, “ Essentials of Physiology”, pp. 258, 259, Longmahs). Cf. p. 15,

2.13. DISCONTINUOUS CURVES. When negative ,values
of n are considered, it is 1t once seen ‘on sketching su_ch

» ’
] ' '
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graphs as xy=1, x¥y =1, x3y=1 that there is a great change
in the character of the curves : none of them passes through
the origin, and they are all in two parts, one for x positive,
~ and the other for ¥ negative. But that these still belong to
the same family of curves is evident from the persistence of
the division into two classes according as #is odd or even:

)
STRIR Axual Inversion,

F"g 4. Indlcial “cale

for powers of 2.

for # odd, the curves lie in the first and third quadrants, pass
through (1, 1) and (-1, —1I), and are symmetrical with
respect to the origin; for n even they lie in the first
and second quadrants, pass through (1, 1) and (—1, 1), and
are symmetrical with respect to the y axis.

Ex. 1. Sketch the graphs of the hyperbolas zy=3 and zy=% Do these
curves possess .all the symmetries of ay=11{ 1If so, why ? [Note tha symmetry
with respect to bisectors of the #hgles between the axes depends on the position of
@, n.] y

Ex. 2. Discuss the  behaviour ” of y=a0 in respect of the points it passes

: through “Do (0, 0) and (€, 1), or *indeed any point of the»y-axis, lie on the

“cupve " 1 (Examine carefully ﬁvure 9.)

» »
'y »

»
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. Here again we can jllustrate the form of these curves from curves obtained in
investigations beyond the scope of geometry, In physics the relation between the
pressure and volume of a gas (Boyle's 1aw) is so expressed ; in economics constant
outlay curves, which represent an increase in demand proportional to the fall in
price, are of this form. (v. Marshall's “ Principles of Economies ", p. 840.)

2.15, INVERSE RELATION. A geometrical interprets
ation (cf. 2.11) can easily be given to the connection
between the equations y=x% and ax®y=1. If the ordinate
throughany point M (fig.11) on the ¥ axis cut the correspond-
ing curves in P and Q, wehave MP, MQ=(0OM)» (OM)—n=1.
This holds true for all values of x and », due regard being
paid to signs. Thus a relation analogous to that between
inverse cyrves (1.6) holds. between simple parabolic?
curves in which indices of ¥ are equal but of opposite sign—
the product of the distances from the x axis of points in
which the curves are cut by any ordinate is constant.

Note: This constant need not be unity ; for y=ZX12% and ya® =%, the
product is %y ko

2.16. COMPOUND CURVES: The reference to simple
parabolic curvesimplies that they may be combined. This is
effected by simply adding for two or more curves the ordin-
ates corresponding to the same abscissz. The results
are full of interest. Thus, corresponding to the addition of
termsin algebraic expressionsthere is a geometrical process
by which a curve can be found to represent any equation of
the type

y=axp + bxn=1+4 . ...+ vx + w.

Take as a simple example y =2a3—3x. The curves
corresponding to the terms of the righthand side separately
are shown in figure 12 by broken lines. The continuous curve
is got by taking for every abscissa the sum of the two
corresponding ordinates to give the ordinate of the
compound curve, i.e.,, MP' + MP!"'=MP.

K

»
1 “ Parabolic ” when strictly used, does not apply to iscontinuous curves ;
it refers only to curves for which the index of & is positive and rational, The title
Hyperbolic @urves might have been insgrted before 2.1%: but it seems
unfortunate to make a distinetion when the fundamentzd contrast between odd and
even md10es remains unchanged and propertxeg of symmetry persxst. ®
’
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1f y = 32 had been drawn instead of y+ 3.x=O0, the same result would have
been got by measuring back from P'a length equalto the corresponding ordmate
to y =3, due regard being paid to sign.

The curve might bave been got directly also by calculating a series of values
of 243 - 3.

This example has a special interest in that, since all
the terms are of odd degree, the equation remains true
if=x,—y are substituted respectively for x, y throughout.
The corresponding geometrical property is that the curve
is symmetrical with respect to the origin (cf. 2.12); this is
evident from the figure.

Whether there be symmetry or not, this process can’ be
-carried out and curves of a great variety of shapes built up
Ex, 1. Sketch the interesting parts of the graphs of
y = a8-62%+ 11z~ 6,
Yy = a3-Ta?4+ 16z - 12,

‘What geometrical meaning has the fact that the righthand side in each of
these can be factorised ! What are the equations for these graphs when the origin
is a6 (2,0) ?

Ex. 2. Draw the graph of y=a2+2/, and find the roots of 3z =23+ 2; also a
root of 2x=a3+ 2, correct to the second decimal place. Are there more than one
oot of this second equation ? »

Ex. 3. With respect to the same axes draw the graphs of y =25 and y =5z~ 10.
From the figure find the roots of @5~ 52+10=0 and #5 - 5x+1=0. Verify your
results by substitution. (Cf. 1.211).

2.17. LINEAR FACTORS AND CHANGES OF SIGN: A
factor ¥x—a in a polynomial signifies that a is a root of the
equation got by equating that polynomial to zero. There
is a change of sign in the expression +x—a, and as_often as
any polynomial is multiplied by this binomial, at least one
more change of sign is introduced. This can be tested in
simple cases and will be seen to be true generally :

No change +  +
~ I change + -
I change + - or + + -— or + — —

, - + - — 4+ - + +
. 2 changgs + - + + - + + - +
2 changes + - 4+  or oo - - 4
» N . R T

» ~3changes + — + — + - o+ -
-
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- The signs of the sums of unlike pairs of terms do not
affect the-result and are not inserted in the third lines.
Missing terms are represented by dots. In the case of

as many as five changes may be introduced by the multi~
plication, but we can be certain of only one of these.

The converse of this gives the very useful Rule of
Signs (due to Descartes) that the number of positive roots
of an algebraic equation cannot exceed the number of
changes of sign in successive terms.

This rule can be adapted to negative roots by changing
the sign of x throughout the equation, and then considering
the number of changes of sign in successive terms to give
the maximum number of negative roots.

Ex, 1, Find from a graph or otherwise the roots of B

gf - 5B+ 5o+ b - 6=0. _ T

Ex, 2. Tind the roots of 425~ 232%— 343 +282+12=0,
and of 425 ~ 23a2% - 328 + 282 + 8=0.

. 218. METHOD OF DIFFERENCES: Mention is made
here of an important method which is based on the fact

that differences such as (x+I1)2—#% (6x+1+8)°—(6x+8)
are of degree less by one than the expressions whose
difference is found. Thus, if we obtain the differences
between successive values of any rational algebraic function
taken at unit intervals of the independent variable,
we see that they are all of degree at least one lower
than the original function. Repeat this process on
the differences obtained, and we get the differences of the
second order, or simply second differences, denoted by A2; and
so on. It may happen that we get the #th differencesA® all
alike (and therefore the (z+ I)tt differbnces A®*+ 1 zero), i.e.,
the nth differences represent a constant funttion of degree
zero. Counting back we see that, the original functi.on, A
as we may repsesent it, must have been of degree n.

» ) »
) »

H
)



32 “DEGREE” OF a NON-ALGEBRAIC FUNCTION

Note that A here represents an operalion just as D does
in 3.1, and the index shows repetition of this operation,
which is the fundamental one in the Calculus of Finite
Differences. The similarity of the result to that in 3.3 () is
evident,

Ex. 1. Show that the third differences in a table of cubes are constant.l
Test the method also on successive values of functions you have already calculated
in, e.g.,, 2.16 Ex. 1,

Ex. 2. The fact that successive differences of .the tabulated values of log-
arithms, ete. have their first differences constant has been employed in 1,42 to treat
these values as if the points representing them lay on straight lines, Show that the
points representing the logarithms of 10, 11, 12, 13, 14,..... ...may be regarded as
lying on a curve of the fourth degree. Test other parts of the table of logarithms,
and other tables, in a similar way. "

(This suggests, what is a fact, that functions like log sinz may be represented
with a certain degree of accuracy by a series of algebraic terms involving powers of
2 up to a certain degree—a power series, it is called.)

Ex. 3. Test series of values observed at regular intervals (such as those of 2
in 1.33 Ex, 2) bo sce if any light is thrown by this methed on the nature of their
variation,

L]

EXPONENTIAL CORVES

2.2. FORM OF THE CURVES: y=p* gives graphs that
are very different from those given by y=1% Their general
character is easily seen by putting 7» equal to, say, 4, and
plotting a series of points. No part of the curve is below
the x axis, and it extends from the distant left, always
rising, slowly at first to (o,1), and thereafter more and
more rapidly as it continues to the right without limit
(fig. 13).

By giving a succession of positive values to z it can be seen that these

characteristics persist for all the curves, If 2 lies between 0 and 1, e.g, %, we get
mirror-images in the y axis of the above curves,

For negative values of s the curves are not continuous ; but this case is not
like that of 2,14.

¥
Ex. What are l'the grapils for the boundary values of 7, viz,, 1 and 0°?
Compare these with the boundary curves of the classes of y=an,

o ® Y
» 1 Note that this gives an easy method of cgpstructing a table of cubes,
Py 1] i o)

o -
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- 2.21. PROPORTIONAL GROWTH (OR DECAY): These
exponential curves are sometimes called growth curves, or,
more particularly, compound interest curves. (Cf. Griffin’s
“Mathematical Analysis,” pp.236ff.;also Nunn’s “Algebra,” 1
p. 269, etc.) The reason for this cannot be given precisely,
until we come tothe next chapter (3.131i). But, if we consider
values of y at equal intervals % of the x variable, we find that
their ratio is the same at all parts of the x scale 7.,
n#+hlp?=pnt which is independent of x. And the corres-
-pondence of this # with 1+7 in the formula A=P (1+4#)®
for the amount A4 in #z years of a sum of money P at a rate
of interest » per annum is easily seen (1.43). The general idea
is that the"amount of growth is proportional to the absolute
size of the thing growing, and in this curve it is ¢lear that
the rate of increase (i.e., the slope) is greater the greater
the ordinate becomes.

Ex. 1. On a convenient scale, eay 1 cm, =1, the same for both axes, draw the

graph of y=2% between #= ~3 and #=3. Dy the method given in 1,32 draw
tangents to the curve at the points whose absciesae are -2, -1, 0,1, 2. Find

the tangents of the argles 6 made by these tangent lines with OX, and evaluate

in each case ta%e; What do you notice about the values you get ? (For use later

thiz graph should be constructed carefully on squared paper : cf. 3.130).

. Ex. 2. Show that only one curve of equation » = %a® passes through two given
points (23, 1) (22, ¥2) : draw this curve in some particular case. Show how
this fact is connected with the possibility of finding in one way. only a certain
number of geometric means between two quantities ¥y and yg ; cf, 1.43. Relate
this to the similar possibility for arithmetic means.

2.22. FUNCTIONAL SCALES: The equation y=42 can
be written log,y=x, and an accurate graph of the equation
could be used to find the product of numbers represented by
ordinates ¥ by adding their corresponding abscissae and
taking the ordinate corresponding to this sum : thus

x,+tx:=log y1+log y.=log y1¥s.

Ex. Express this in the exponential notaticn with which we starfed here.

»
But more important is it to note that ye may write on
the x axis the corresponding values of y and so get a
logarithmlc sgale, /.2, a scale such that each numbem on it
is at a distance from the Fﬁd of the scale proportional to its
5’ , y )
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logarithm. This is shown in figure 13, where the logarithmic
base is 4. This scale is just such as is used in the
slide rule, where however the base taken is that of common
logarithms, IO.

It should be noted that this device may be applied to all
graphs to give functional scales of any kind. Thus on the
y axis of the curve y=2% shown in figure 14, there:is marked,
more clearly than the uniform scale, the indlcial scale of
powers of 2 which equal the distance of the graduations
from o.

Ex, 1. Obtain from the graph of y=2? ascale of squares and one of square
roots.

Ex 2, From y=x~1 get a scale of reciprocals (%4,3).

[~ i

\ B

N R

The characteristics of the logarithmic scale should be
carefully noted: the graduations of the scale are repeated
after a certain unit inderval, in figure 13 equal to log 4, in the
" sliderule equal %0 log 1I0; and so the distance between any
two numbers which are in a given ratio is always the same:
also within the unif section the gfaduations of numbers with
equal differences are closgr together further on in the scale,

v
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All such functional scales may be constructed also from
published tables of the values of the functions. (These tables
have usually been calculated otherwise than from graphs of
the function.) The values given in the tables should be
multiplied by some factor, the modulus, so as to make the
scale of a convenient size. A rough logarithmic scale may
' =475;
from these the graduations for whole numbers save 7
can be marked,and 7 can be interpolated. (v. Brodetsky’s
“Nomography”, p. 48.)

If a more accurately graduated scale is required, a chart published with
Lipka’s “Graphical and Mechanical Computation” (Wiley ) will enable this to be
to be constructed very easily, provided that the distance between the graduations
1 and 10 is less than 10 inches, Such a chart may, however, be prepared quite
eagily for any desired scale thus: make a careful copy of a good logarithmic
scale; through any convenient point draw straight lines to pass through the

graduations of this scale; draw across these radial lines a parallel to the
logarithmic scale in the position that gives the length of the required scale,

PERIODIC CURVES

2.3. HARMONIC CURVES: y=ksinnx. Values of
trigonometrical functions repeat themselves for every
increase of the angle by four right angles. The sine and
the cosine thus give the well-known wave curve. The effect
of multiplying by some constant factor the variable which
represents the angle is simply to compress or extend this
wave curve along the axis of this variable. Thus the curve
for y=sin2r completes an oscillation in an interval of two
right angles, that for y=sin 4x in an interval of eight right
angles. The range of r within which an oscillation is
performed gives the period of the curve.

These trigonometrical ratios may also be multiplied by
constant factors, k, to increase or decrease the range of the
oscillation from I on either side: this determines the
amplitude of the curve. -

?

2.31. When several curves of this type, so modified,
are combined (2.16), interesting wave-forms are obtained.
The wave repeats itself, of course’, after an interval which is
the L C.M. of the periods for the simple curves. In figure ,15

) 4 !
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are shown by dotted lines the simple curves for the
separate terms of 3sin x ~ sin2x + 4 cos $x, and by a continuous
line the curve got by summing these. One ordinate
is drawn to make the procedure of summation clear:
MP=MP,; +MP. +MP;; here only MP, isa positive ordinate.

It will be noticed that in this case all the curves are
symmetrical about the point (180, 0), -and so the compound
curve from 180° to 360° is but an inverted repetition of that
from 0" to 180°. But the curve just beyond 360° is not the
same as that after 0°; repetition does not occur until after
720", for the longest period, that of cos %, is eight right
angles.

A further complexity may be given to the curves by
including a term like sin (x+45°).

Ex. 1. Point out any defect in figure 15, Complete the curve between 860°
and 720°,

Ex, 2. Plot y=38 sin (2° +80°) ~ 10 sin 2z°.

(Here y is the number of minutes by which the sun is late compared with a
perfect clock : sometimes this quantity is negative, i, e, thesun is ahead of the
olock, y is called the * equation of time"™, the quantity which equalises golar time ;
for the sun is not a uniform time-keeper, The curves whizh represent the two
separate termp are explained in books on astronomy.)

Ex. 3. Take from a newspaper the figures for both the heights and the times
of high and low tides. What is the effect of applying the method of 2.18 to each
set of these figures? (In the Encye. Brit. 26 940 is an interesting figure showing the,
tides at Bombay : this ghould suggest to you that series of alternate tides should be
examined separately, because of the diarnal inequality.)

One of the big problems of mathematical analysis is to reverse this
procedure of compounding curves. The resolving of fractions into partial fractions -
( I.1) is more difficult than the addition of fractions; much more so is the
difficulty of analysing a periodic curve into simple harmonic curves compared
with that of combining them as above, There is another such problem, ez, that
of finding the combination of parabolic carves (such as in 2.16 ) which passcs-
through a number of given points. It is not difficult to prove that a curve’
corresponding to an equation of the zth degree can be made to pass through »
points : test this for #=2, 3, etc. Ci L4 fn, '

2.311. . A beginning of the analysis of broken curves is
made in even elementary books on statistics. In figures of
rainfall, temper#ture, deaths, prices, etc. there are usually
sudden changes in successive numbers, and these temporary
changés make it difficult to see any general.,change that
may be takiqg place: cf. 6.52 Ex. 2; etc. In order to make

)
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any such general trend clear it is necessary to smoothe the
curve which represents the numbers. This can be effected
by taking the sum of equal groups of successive numbers,
and using these sums (or the corresponding averages, called
moving averages ) in place of the original numbers:
successive sums are altered by the differénce between the
number dropped at the beginning of the group and that
added at the end, and so the calculation is.not difficult.

It is often possible to guess from the general appearance
of the graph what the size of the groups should be so that
departures in opposite directions from the general value in
a part of the series may balance one another. If not, we
have to proceed by trial of increasing sizes of groups till we
find that a certain grouping gives a curve with a tendency
that is clear; and wethen conclude that by a grouping of this
size we have smoothed away the temporary variations which
occur in a period the size of the group we have taken.

The next step is to find how the actual figures depart
from the values which constitute the general trend. This is
done very simply by calculating the differences with proper

signs between the actual values and the corresponding
smoothed values, and plotting these differences (deviations
they are sometimes called) against time. Thus will be
thade clear the nature of the temporary fluctuations,
whether regular or not: and also the relations between
'shorter variations in two series, even when thereis no
relation between the general trends.

Ex. 1, Try grouping the rainfall figures of 7.22 Ex. 2 in successive periods
of 1,2, 3,......14 years, and consider if any of the grouped series of figures show
regularity in their variations,

Ex, 2. Apply the methed of moving averages, to thefigures in 9.33 Ex.4 (), ().

2.32. Asin 2.22, functional scales may be constructed
along the axes for these harmonic curves, though owing to
their periodic nature two and more angles may mark the same
graduation. Taking the graph of y=gos 3%, (fig. 16) we get
along the x axis a scale of cosines of angles which are repre-
sented by the distance of the graduation from the origin; and
along the y ax}s a scale of’angles, the graduation beilg at a

distaance from the origip equal jo the cosine 'of thrice the
) 4
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angle marked, 7.e., the angle marked is what is written
tcos~ly (one third of the “inverse cosine” of ) or
% arc cos y. On the cosine scale the numbers alternately
fall and rise in magnitude between I and—1 as one proceeds
along the scale to the right.

2.33. A very striking presentation of the importance of periodie curves in modern
science is the chart that forms the frontispiece to “ Phases of Modern Science”
(A, and F. Denny), the handbook of the Royal Society to its exhibit at Wembley
Exhibition : it shows the diverse nature of the whole known range of electro-
magnetic waves, ie, for sixty-two octaves—light waves extend over only
one octave ! This chart should be copied and hung in every laboratory.

The scale for frequenecies is logarithmic, equal intervals, each of two octaves,
being marked on the chart. The scale for wave-lengths (being reciprocal to the
frequencies, 3,151, Ex. 2) is also logarithmic,but graduated in the opposite direction.
The corresponding diagram in the Dictionary of Applied Physics IV 593, even
apart from its smaller size and the remarkably less-developed state of the science
which it reveals, is inferjor, particularly in the change of unit employed in the wave-
length scale. But the indication of comparative lengths given at the foot of the
diagram is a very telling illustration of the nature of logarithmic scales, (Our
knowledge of these scales tells us that to mark the space occupied by y rays in this
diagram as 6 octaves is a mis-print : an octave is the ratio 2 of frequencies.)

Strictly, however, it is a mistake to mark a length on 8 logarithmic scale a8
representing an ordinary distance measured from zero; for the lengths on the
logarithmic scale representing all such distances are infinite, the zero graduation
being towards infinity in the negative direction (2.2): there is noreal reason why the
line marked 1 cm. in this diagram should terminate on the left where it does. The
lines marked 1 cm., 1 km., 5000 kms., .taken as the interval between their terminil
graduations, represent  respectively 00999,999,999,9 cms; 0:999,99 km, ;
4,999 kma. ; but properly they represent merely numbers, the quotients 1019, 103,
and 1035 respectively. Cf. 9.32.

The chart can with interesting results be compared with the table on pp. 893,
894 of the same volume; though the capricious way in which pbysicists express
wave-lengths in terms of metres, centimetres, millimetres, 4 and A is very
confusing to ordinary people, The table, though it “shows the entire range
of wave lengths of electromagnetic waves which are within the domain of scientific
investigation at the present time (1923),” apparently, according to the Wembley
chart, doss not extend to the wave-lengths used by the British Broadcasting
Company |

A similay chart for soundswaves is given in this volume of the Dictionary
also at p. 699. The compasse? of musjcal instruments are shown by lines of
appropriate length, @he scale is the musical scale, For frequencies and wave-
lengths this is again logarithmic, an octave being represented by a length of
about 115 cms. v

) b
) 2
@



.CHAPTER III

INFINITESIMAL CALCULUS

3.11. APPROXIMATIONS: In our study of mathematics
probably we have been worried repeatedly by the insistence
that has been laid on the very great importance of a correct
choice of units and of consistency in their use; but when
we think of the world of things round about us we see that
great things are done otherwise than by conscious precision
such as has been demanded from us. The whole of in-
animate nature, rivers, rocks, winds, and stars, “ obey,” all
unconsciously, ‘“laws” which we attempt to express in
terms of definite units; and at the opposite pole are poets,
some philosophers and others who astonish us also by the
brilliance of their intuitions, their ‘ guesses” at truth,
though measurement puzzles them. We are not to attempt
to measure artists or artistry ! But in considering action and
reaction even ot dead things we seem to need some way of
expressing tendencies, the effects of the action of very
small quantities!. Much of what happens to inanimate
things, such as we habitually represent by graphs, is a
response to what to us is hardly appreciable.

When we looked closely (1.41) at particular measure-
ments which we thought to be quite definite, we found that
no quantity in nature was expressible with absolute exact-
ness in terms of any unit: thereis always a possibility
of greater refinement in measurement. Again, even our
non-material ideas of things are often, if not indeed usually,
approximations. We are content {(and rightly so for
ordinary purposes) with a very rough statement as to the
facts. Thus to say that a train has an average speed of

»

1 So also in economics: cf. pp. 32, 33 of Mar-ghall’s “ Principles of

Economics ™ 5, a book much of the early part of which is quite easy reading: in his

¢ Economics of Indusiry ”, an abridgement of the “Principles ”, Marshall makes

“ tendency " pragically equivalent to *‘ force ”, apjl the argument ‘loses its
cogengy. “ . . )

) »



@0 THE FAILURE OF THE FINITE

40 miles per hour on a certain journey includes the
possibility of its moving at different times during the
journey at speeds which we acknowledge as greater or less
than that speed; we can define “average speed’’, but when
we describe how that speed is derived from the actual
speeds of the train, we find great difficulty. When we
attempt to say at what speed the train is moving as it
passes a particular point, we find that the only answer we
can give is the average speed of the train from that point

(a)

Fi’zo,

to another point not far away ; and that answer is indeterm- .
inate, for the value obtained differs with the distance at -
which the second point is taken. '

It is worth while working out this idea in detail as it is done in, e. g., Mercer’s
Caleulus, Exercises IL

3.12. THE LIMITING POSITION OF A CHORD: The
difficulty discussed in a very incomplete way above is really
an advantage tous. We have already used devices (1.32) -,
depending on the relations between a tangent-line and
chords near it to obtain approximations to the tangent to a
continuous curve at a given point. With these devices we
are more or less®satisfied, for they fit in with our intuitions
as to the slope of the curve and its variation from point to
point. * But what cestainty is thege? The mere thoroughly
wé train hand and eye, the I?SS inclined are we to believe

D)
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THE TANGENT-LINE TO ANY CURVE 41

that they are adequate to a task like this: for two persons,
skilled or unskilled, will rarely draw the same line in
attempting,.to draw such a line as a tangent at a specified
point to a given curve. And so we are led to search for
rules that will enable us to draw such lines; one result of
the rules thus found is that we can use tangents to help
us to draw curves with speed and certainty.

Taking a point P (x, y) on any curve, we can apply the
idea of a tangent as a limit and say that the tangent at P is
the limit of the endless chord PP when the neighbouring
point P’ on the curve comes as close as we like to P. This
limiting position we clearly see is quite definite, though the
position of the chord itself varies according to the closeness
of P to P.

If we wish to assure ourselves of this definiteness, we consider 2’ moving up
to P from either side along the curve,

Now, if we take the slope of a line as the tamgent of
the angle it makes with the x axis, we can readily express
the slope of the chord PP’. The coordinates of P differ
only very slightly from those of P and may be expressed
by ¥ + 8x and y 4 8y, where § is not a multiplier but
merely a sign that a very small Difference is made in x or
in y. In figure 17, these smali changes are obviously PH

and HP’', Then P!
s HEP_ 8y,
the slope of the chord PP is PH = 3¢ and

the slope of the tangent at Pis the limit of —2% as P

comes nearer and nearer to P, ie., as §x, say!, becomes
smaller and smaller, or as mathematicians write it, §x—>o0.
That is all. We have merely to apply this to particular
cases, and in doing so to put It more neatly,
3.21. Take y=a3: for this we have
y+ 8y = (x+8x)® =x3+322 sx+3x (85)2+(5x)5
= 3x% Sx+3x (8x)2+(5x)3,

oo 3y
8y - »
or Sx 32 +3x bx -+ (5x)2

1 We might have regarded Sy a8 tending to vanish; but itis customary to
look upon y a8 depéhding on z, and & is well on the whcie to abide by thig custom

of regaeding S as leading .the waj into nothingness | , '
6

{
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“  This is true whatever 8x is, even if it be very large : bt
that has no interest for us at present : that is just ordinary
algebra. What happens when 8x—>0? Nothing happens
‘to 3¢% But the other two terms, especially (8x)?, become
smaller and smaller ; and we can make them as small as
we like, i.e.,, negligible, by taking 8x small enough. All
that is left then is 342, and thisis therefore in this case the
limit of —g—i—-—it is the slope of the tangent at any point
on the curve.

For conciseness, instead of

“the limit of 8y as ox tends to 0" (cf. 3.12), '

or L _S_y’ as mathematicians often put it,
Sx __;OSx .
. D d dy?!
we write ly, or ar y, or dx

(where, remember, we mean, not a quotient, but the limit of
a quotient); and so we have for the simplgst cubic curve,

y=x3,the compact and universal statement about the slopes
of its tangents,
. dy .
7 »
Can we test the truth of this? Whatever the value of x,
3x2 is always positive; if the tangent of an angle is positive,
the angles must be acute; and so all tangent-lines to y=a3
must make acute angles with OX.? When x is zero, 3x2=0,

1 Read these latter symbols thus : “d dz of ¥ or “dy da”, not “‘dy by dz”,
which immediately suggests a quotient, This limit, also written sometimesas
dy|da, is usually called the differential coefficient of ¥ with respect to 2 ; because in
dealing with swall changes in the variakles we have the differential formula (315),

dy= % $x, where gzy occurs as the coefficient of 8. It is better called the

derivative of y with respectfoe. The process symbolished by D is called

differentiation, " .

2 Just as we always take the horizontal arm of the angle to the right along
0X, so for simplicity we always fake the sloping arm upwards from 7. Thus
ya PTX, fig. 18, varies only from 0° to 180° fag any curve whatzver ; but thus also
the slope, tan é) PTX, has the ful] range of valpes from ~® to + w.

R}
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i.e, there is noslope. These tests of the sign of the slope
are easily seen to be satisfied in figure 18. By accurate
drawing you can verify that the slope measures 342

( Buch easy questions about signg, etc., you should constantly ask yourself
when drawing or sketching graphs, )

Ex, Find the slope of the curves y=a2 y=u5 y=2f etc, Do yousees
regularity in the results you get ? Does this suggest a law for the slope of tangents
to y=a® ?

3.122. We can apply this immediately to the parabolic
curves discussed in 2.16. Just as there we added and
subtracted ordinates expressed by the separate terms of an
algebraic expression, so here we can add or subtract the
differenceg §y of these ordinates corresponding to a certain
small change, §x.

Ex, Find dy/de when y=a2-a8. For what values of z is dy/de=0? Draw
the curve, choosing a conveniently large seale along the y axis,

3.123. Another obvious extension of this method is to
curves like y=218. This can be effected by regarding this

equation as y= x3+x3 ; or preferably by applying the funda.-

mental method once more : thus

dy 2(xr +5x)3—22% 6x23x+6x(5x)2+2(51)3
dt (x+5x)-x L ox
dx—0

3x—o0

= L [622+6x.5x+2 (5x)2]=6x2=2,3 23 L,
Sx—=>0 &

By these extensions we have made it possible for us to
find the slope of the graph which represents any equation of
the general form

y=axn+bxr-14.., . For+w.

Ex, Test this on some of the examples of 2,16, 2.17, and on other such
examples.

3.13. STANDARD FORMULAZ: As indicated in the
example of 3.121 the general formunla for the slope of
the tangent at any point of the curve given by the equation
y=x%is nan—1, This is true for all values of #n. We have
proved it for gnly #» a positive 1nteger the proof wheén 7 is

fractjonal or negative is .]engthy and involves 1deas we have
]

»”
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fiot considered, and so we shall take the result as true in all
cases:

d .
—Xn=nxn"1.,...... T
" nx . (i)

So also we assume the truth of the following formula
for derivatives?® :
DaZ = a% 10g @c 23020 cccocirvrrinnrinn. (ii)
In particular D10%=10%. 2-3026,
D2r= 2%, log 2.2*3026=0"6933.27.

I 4343
Dlog X = ; log e= g e ..(iii)
- e is a constant, irrat'onal ag 7 is, and of value approximately 2-7183,
Dsin x° = Irﬁ cosx” = +Q175 cos X,
' E and D sin nx"= <0175 1 cos nx’ve(iv)
Deos x° = = — 0175 sin x°,
- and D cos nx= —+0175 # sin z#x° s oe(y)

The second particular case under (ii) can be checked by
the results of the example in 2.21 : the ratio tlere evaluated is
Dao
25

3.131. Those who wish to take a first step into the
region of new ideas that has been referred to in the beginning
of this section may easily connect the second and third (2.2) -
of the above formule thus. If a function z, instead of
depending directly on x, depends first on a function y which
in turn depends on x,? then, considering the differentiation -
of these functions, to a small change §x in x will correspond

1 The occurrence of constants (all irrational, it happens ) in the formuls (ii) to
(v) for differentiating functions ( *transcendental functions' they are called)
other than #® ig due to the fact that they are not represented most simply when the
scales on both,axes are equal, The scales in each case can be so adjusted as to make
constant factors unity, i.e. theypdisappear from the formule—a comforting instance
of the importance of thie choice of units ( 3.11)!

2 Another type of example of this imposing of operation om operation
(*function of a function” it is called in mathematical works) occurs in connection
with the taking of logarithms in the secorfi particular casi-of (i) above. In
finding by logarithms the value of 273026 log 2 W have to get log (log 2). &

)



EXPONENTIAL FROM LOGARITHMIC DERIVATIVE 45

a small change 8y in y with a consequent small change 8z
in z, Then, by ordinary algebra,

8z _ Bzdy
dx 8y dx

Let all these small quantities be¢ome smaller and smaller

together. In ordinary cases when there is no sudden change

in the functions, each fraction tends to a limit as before,
dz _ dz dy

dx dy dx’
‘a product of limits of vanishing ratios.? In particular, if we put

and so

- 4 =4 dy
2=10%, then e (107) =% (109) I

. . P
Apply this to (iii), y=log x, where a%= ij—@ The

relation may be written r=10%. Differentiate it in this form:
then E
d d 4343 ;
= Y) = — y) 272

I dx(xo ) dy(IO ) p
x

« *4343
as in formula (i'i), where, however, x is the independent

variable.

- d — - L
- dy(loy)— =10¥Y.2-3026

3.132. Formula (iv) and (v) are most easily checked by
taking x in radian measure (1.9); then one right angle on the
xaxis is represented by 5 m, i.e.,I°571 of the unit onthe y scale
The formula are simply

; D sin x= cos x,
/ D cos x= ~sin x; for x°=1~g0« x radians: and
it can be werified that the slope of one curve is numerically
equal to the ordinate of the other. This is shown at the top of
figure 2, where the ordinates corresponding to I10°, 20°,...360°
are drawn so that 57° 18" is represented by the same unit
length as is used in the vertical scale. The curve y=cos x
is carried down into the region ruled ia squares, where slope
of lines can be measured easily. In the figure two tangents

1 Students who are to make a special study of Mathematics must {ake with
¢ ’ .
caution some of th@ statements which have been made here. They will learn ,to
appreciate precision of a higher degree than, phis, ' '



46 EXTREME VALUES

= are drawn, at ¥=30" and at ¥=90°, the points of contact
being indicated by arrows. It is easily seen that the inclin-
ation of the latter tangent is 135°; to indicate how the slope
of the former may be verified to be -4, two arrows aredrawn
showing convenient points from which to measure the differ-
ences of co-ordinates, viz.,—4 for 8y and 8 for §x.

The correctness of multiplying the derivate by the
factor # in the second generalized formulae can also be
verified graphically (2.3); or, more easily from the general
formula given in 3.131: thus, putting 2 for nx, and using
the radian as unit,

15' nx = a sin =~d i z i( )=( )
7; Sin i z=7sin 2. Z-=cos 2.7 (nx)={cos nx)n.

3.14. MAXIMA AND MINIMA: An interesting and far-
reaching application of what we have learned "about slopes
is to find the turning points of functions, i.e., the values of x
at which the ordinate changes from increasing to decreasing
or from decreasing to increasing as x increases. The former
are called maxima, the latter minima. For both of these the
obvious condition is that the tangent shoy]d be horizontal,
i.e., that dy/dr=0. Numerous examples of this are given in
text books on the Differential Calculus, and only a few
typical applications are given here.

Ex. 1. Divide the number 10 into two parts so that (a) the sum of the cubes
of these parts may be a minimum, () the product of the two parts may be
a maximum,

Ex, 2. A rectangular box with a square top and bottom is to contain 400
cubic feet. The cost per sq. ft. of making the lid, the bottom and the sides is
respectively As 4, As 3, As 2. How can the box be made most economically ?

Ex, 3. A window is in the form of a rectangle surmounted by an equilateral
triangle and has a perimeter of 20 ft, Find its dimensions if it is made so as to
admit the largest amount of light possible, .

Ex. 4. A beam of length 30ft is to be moved horizontally along a passage-
way 4ft broad and then turned into another passageway at right angles to the
first. What must the breadthof the second passageway be 4t least so that this may
be possible ?

Note : .There are other ways of determining maxima and minima than by
equating dy/dw to zero. Studéhts interested in biology should read the geometrical
proof by Roux that th® angle @ at which branches leave an artery is given by
cos 0 =L|L', where L, L' are respectively the losses of energy per unit length in the
artery and in the branch., (Thompson, ¢ Growth and Form’’, p, 668,) This is
proved also in Feldman’s ““Biomathematics”, f).‘173, but by-eqiating a derivative

to zero, b * . »
)
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3.141. In practical applications it is usually clear

whether the value of x for which dy/dx=0 refers to a
maximum or to a minimum value of y. If, however, we want
a general rule whereby to distinguish these cases, even when
what is given us is only an algebraic expression, it is
»eas'y to see from a graph that the slopes of the curve at
points on either side of the turning point are different in
these two cases. For values a little less than that for a
maximum the slope is positive, and for values a little greater
it is negative ; conversely for 2 minimum value. (Fig. 19).
' Thus in the example above, y=12—13, dy/dxr=2x—342
which vanishes when xis 0 or 2/3. Consider the values of
dyldx when x is —% and +3%: they are —32 and +33
respectively, There is thus a minimum value of y between
x=—%and r=3%. Similarly for x=3, % we have dy/dx=}, — &
respectively, and therefore there is a maximum value
between % and 4.

3.132. THE SECOND DERIVATIVE: It is usually more
convenient to deal with this distinction between maximum
and minimum Iby a further application of the idea of
differentiation. Just as,

when the ordinate is increasing, a(y) is positive; so,

when the slope is increasing, Z,d; (%) is positive,
Now, at a maximum, dees the slope increase as we 'move
along the curve in the direction of x increasing ? Before the
maximum position it is positive, and beyond it is negative,
and so the slope diminishes in passing through this zero
value.
Accordingly at a maximum value L3 (f{l) is negative. -
dx \dx :
Similarly at a minimum value this expression! is

positive.

.

1 4 /dy . a%y . vy ]
i (iw ) may be written ~— or D%, and it has npually been called the

second differential coefficient, though “ coefficient™ is quite inappropriate here, We
need not quarrel over the word, however, for tile idea is very important: % is yet
another example (# what we noticdd in connection with 3.131, the repetitipn

of an cperation, - ? , ! '
)
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. This test i8 very easily applied : in the above example, where y=a2 — 23
@y 2 — 6z, At z=o thig is positive, corresponding to the minimum value ;

da?
and at z=§ it is —2, corresponding to a maximum value,

Ex. 1. Construct functions of «, such as thesc in 2,1 and 2.3, and find
their second derivates, Interpret your results geometrically,
Ex. 2. One more geometrical interpretation is easy, interesting, and useful,

b
When %:0, what is the corresponding geometrical fact in the figure ? It reveals

- to you a new kind of “ tangent ”, ( Cf. the line of dashes in fig. 19, )

3.15. SMALL QUANTITIES: DIFFERENTIALS: Line-
graphs are used to show the relation between a great variety
of pairs of things, e¢.g., Boyle’s Law for the pressure and
volume of a given mass of gas is represehted by a
hyperbola. Hence what has just been described for curves
showing a relation between variables x and ¥ can be applied
to the relations between the changes in actual things which
are represented by these graphs. In doing this it is specially
important to consider small changes (i.e., the * tendencies”
of 3.11) in the quantities e.g., the change in the pressure
corresponding to a small increase of volume of a gas, or the
change in depth in a vessel of given shape (not rectangular)
when a given small quantity of liquid is poured in.

Taking pv=F as the formula for Boyle's law we see that a given small
change in pressure produces a change in volume that differs under differertt
circumstances. This change can be said to be proportional to the inverse square
of the pressure, or alternatively to the square of the volume, or alternatively to
the ratio of volume to pressure at the time of the change, as we please. (Note that

time is not a variable here.) All this follows from the fact that we can write,

since Dy e P 4
]

e

To express this treatment of small changes a modifi-
cation of the formula hitherto used is convenient. The

fundamental formula was

) §1 = ‘_12 » Sl d_y S_y——— é!
sxao 8% @ 4% ° & Tdr 7 o ar

The lgfthand side in eagh case involves a quotient which

tends to the limit- written on she right.  .Ror practical

purpeses, of course, the approximate equation writtery last
S .

M
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often suffices, and with the understanding that 8y and 8x
are very small (‘‘ differentials ** they may be called!) we

may write - dy = dy ) &8
dx

3.151, From this the standard formula (iii) of 3.13 may
be seen to have an important practical meaning: y represents
the distance from the graduation I to the graduation
x on a logarithmic sage (2.22), and so y=logx. Therefore

Y
dx
measurement we are liable to make habitually owing to the
nature of our measuring apparatus, etc.,, and may be taken

1

approximately 3§y = dx i 8x. Now 8y is the error of

to be constant. Therefore 8—{, the relative error in the number
x

read, is always the same throughout the logarithmic scale.

Ex. 1. If the length and the breadth of a rectangular metal plate each
increase by Tlv per cent, per degree as the plate is heated, show that the area
increases by 11; per cent. per degree, ’

Ex. 2. In the theory of light a simple relation connects the wave-length )\
with the frequency (or wave number) ¥ of a particular dolour of light, viz,
Av=V, the constant welocity of light, which is 108 in the units used. Prove
that if at wave-lengths 1200 and 1600 the error in measurement of the wave-length
is < 01 the eorresponding wave-numbers are $3,333 + 7 and 62,500 + 4.

Ex, 3. If the law for air under pressure is not Boyle's Law, but pvl'5=k
ghow that when the volume is 30 units the relative change in the pressure per
unit change of volume is 5 per cent.

Ex. 4. A beam of length 7 fixed into a wall at one end has a deflection y from
the horizoutal given by y=k(} 19.2-§ 123+ {45ot) 86 & distance 2 from the
wall, What relative changes are there in the deflection per unit increase in @ at
the middle of the beam, and at its free end ?

3.152, It is often useful® to consider the ratio of the
rate of change to the size of the changing quantity, i, e,

}-}I—% This quantity is represented in figure 18 by the
reciprocal of TK, the sub-tangent ; for TK=KP / 7‘%{0 = y ‘%’

1 Properly, the differential dy is the increase 'correqunding to 8z of the
ordinate of a point on the fangent at P in figure 17, and we ‘can write the exact
d
statement dy = Zig LES ,
2 Cf Marshafl's « Principles of Economics ¥y p. 110 : als0 9.3, 9.46.,
‘) )y
7 ) . ! !

}
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The case when this ratio is constant has been considered
in 2.21. For small quantities we can use the notation of
differentials, and convert the proportional rate of change

%/y into the proportional change 8y/y for an interval 8x,

which may be taken as unity——one year, one foot, etc.

INTEGRAL CALCULDS

3.2. AREA UNDER A CURVE: Besides the slope of a
tangent (corresponding to a rate or any other suitable
relation between two quantities) there can be obtained
another very important geometrical interpretation of the
method of reckoning by infinitesimal (i.e., “small?”)
" quantities and taking the limit of these when they tend to
vanish. In this case instead of evaluating the ratio of two
differences, we consider the sum of a great number of
differences, 7. e., we integrate these elemental quantities.

Take a portion AB of any curve (fig. 20)and draw ordinates
HA, KB through the ends of this arc. As before, let P, P' be
neighbouring points on the arc. Then the ordinates PQ,
P'Q' include with the elemental arc PP and OX an
area whose breadth is Q' or §x. If PP' were a straight
line, this would be a trapezium whose area would be
L (y+y+5y).8x,i.e., ydx + 38x 8y. Now if P and P' be taken
very close together, 8x and 8y will both be very small, and
the area of the strip PQQ'P’ may be taken as y8x: for a
product of small quantities, such as 8x. 8y, is obviously small
numerically, and negligible, compared with one of these
quantities.

This elemental area, POQQ'P’, is very small and may
be called 8z, where zis the whole area AHKB; and so we
have §z=PQQ P'=y.5x, or, more accurately, $z ==y, §x, or
5% =y, _This, when there are no breaks in the curve, we can
carry to the limit when x—o, i.e., when 7 gets as close
to P as we wish; and so we write

° ’_d_!_
» dax Ve

] L]
»

%
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s

which, being interpreted, means that the ordinate of any
point on a curve is with respect to the abscissa the derivative
of the area between that curve, OX and any two ordinates.

3.211. This is a very simple fact, though there is much
more we might say about it; and it gives us a new freedom.

L2

. . . d
Apply it to the simplest curve we know, y=412, i.e., d—j=x 2

This shows us the new process that is involved in working
this out : we have to find what expression z will give us 2
when we write its derivative, i. e., we have to reverse the
process we call differentiation. This reversed operation is

not always, easy, but in this case it is simple. The required
. . d .
function must have an index 3; andzrx3=3x2,thereforethe

23 must be multiplied by 4; and thus we get z=%13, i.e., the

area between the parabola y=x% the x axis and any

ordinate at a distance « from the origin is 3x.x2 i.e., 3 xy.
This is at once seen to be consigtent with simpler cages ; for the corresponding

area for y =20 is }:vy and for y =z is day; the result for y =22 should be verified
also for such valuesas 2=0-6, 1-3 by counting squares on a graph accurately
drawn on graph paper.

The rule for any curve y=x" is easy to deduce: the

. . I .
integral of " is at once seen to be a1 xn+1 and this we

\

I
write [ dx = xn+1
_/ n+1I

I . .
(= o if so we require to write it). Here/

is just an old-fashioned way of writing S, which stands
for “Sum”, i.e., the lefthand side really means S (x*.8x) when
8x is taken very small, and here x% is y in the graph.

3.212. DEFINITE INTEGRALS. We have really been taking for granted in
writing this formula that the lefthand ordinate is along the y axis, and for
our purpose that would do. But it is easy to wingreater freedom and to find
the area between any two ordinates by taking this as t.k differemce of the
areas from the ordinate on the y axis to the righthand and to the lefthand

ardinate respectively, i.e, in figure 20, K ,

V) 4 >
HERA=0KBC- OHAC. o
’ »
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If the abscisse for 4, B are a, b respectively we can show the position of the
initial and the final ordinates by writing this as

b b a
yde = ydr - / ydx ; *
a 0 0

2
€8y / 2 a?dx is the difference between the values of 428 when 2 is 2 and when.

2 3 ‘
2 is 1; or, more briefly, / . w’dw:éw{,l =3(8—1) =23. This should be verified

a8 in the last paragraph by counting squares, and when you feel confident about the
result you will have little difficulty in applying this to the other cases.

( The attention that must be paid to signs when part of the curve is to the
left of the y-axis will be obvious, or canbe learned frem a book on the Integral
Calculus.) .

3.213. It is not intended to attempt further applications
of this idea here, but it may be noted that fydx can have
other significations than mere area. If, as explained more
fully in 3.231, y represents a force acting through a distance
x, the sum of the products y.5x is the work done by this
force, which may or may not vary (cf. p. 3, VI vi). If y stands
for the velocity of a body at an instant ¢, Fydt is the space
traversed by the body between two times which can easily
be defined. If x is the rent paid by a number of people y,
the integral is the whole sum paid in rents within certain
classes of the people. (cf. also 7.3, 9.45, etc.). ’

Ex. Redraw the survivor diagram (figure 10) as a graph showing
the number of deaths per year of age. Thus

for India, between ages & & 10, no, of deaths for each year is 21), (65,000 ~ 50,000)=1000
» 10&15, s} (50,000-47,000)= 600

” " ”

", Italy, ” » 25 & 30, » " o» » i8 31 (66,600 - 64,000)= 500

Plot these .numbers of deaths per year of age, taking for absciss® the middle
values of the corresponding intervals. (By this method you will not be able to
distinguish clearly between the European countries, as is done in the diagram, drawn
in “Medical Biometry”, p. 185, from the original figures : but the trend of the curves
will be clear.5 Thus differencgs, represented by tangents, are converted into areas,
Prove by theoretical ggnsiderations, or by counting squares, that the total area under
each of these mortality curves is the eame,

3.22. STANDARD INTEGRAL§ To learn to integrate
involves learnmg by heart a set ,of elementary standard

i »
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integrals, which can be combined in dealing with the more
complicated functions——practically a new alphabet. We
note here the formula which are the converse of those in
3.13, the scales along both axes being the same so as to
give the usual meaning to “area.”

@ [arax = Lo B
@ / ardx = B8y, | \
In}}pa;‘ticular / 2%dx = :;%g 2% = 1:443.2° 1 \\
Go 0 [lax = 23090 108 x. = k\
’ {
(iv) /cos x'dx = 57+30 sin x° a‘\
(v) . /sin x°dx = —57°30 cos x°, \

|

u ’ |
Note that in (i) » cannot be—1I; hence the necessity
for (iii).
. The particular case of (ii) can be verified by counting
squares on the graph of y=2%, used in 2.21 Ex.

(iii) is an instance of an area that extends to infinity in
the direction of the y axis and yet is finite when x is finite.
Something like this we have seen already in the finite sum
of an infinite geometrical progression. (cf. p. 3, VI iii).

The diagrams for (iv) and (v) are very long, the length
of one loop being 180 times its height. Asalready explained
in 3.132 the use of the radian instead of the degree as unit

of angular measure gives a more manageable figure, and
simpler formula, viz.,

J
J cosx dr=sin x, J sinx dr=rcos x.

The former of these can be tdsted on the lower part of
the curve y=£¢os x shovqn in ﬁgur‘e 2: areas can be counted

R )
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.-there. The area ‘of 100 small squares is the unit area.!

3 o
To verify that, say, ﬁ)o

we count the squares between the x axis and the curve, and
betwen the ordinates for 150" and 180" marked in the figure;
for this part of the curve is identical in shape and area with
that between 0’ and 30° (cf. 2.31). Taking the ordinate for
150° as continuous with the sixth vertical line from the left
of the large square below, we count 43 squares and 15 half-
squares (p.2III) in the stated area. We get thus a value
0+505 for the area, and this is in sufficiently good agreement
with theory, considering the nature of our appliances and
the approximations with which we have been content.
Similarly we can verify the formula between any pair of
ordinates we choose.

. 300 - 0‘
cosx dx = sinx ]0" = sin 30" = %}

3.221. THE INDICATOR DIAGRAM. We shall use later
(5.5 ) the elementary facts about the expansion of steam
in the cylinder of an engine, and it may be well for us to
consider these now in order to illustrate formula (iii) above.
Steam from a boiler at pressure P is admitte¥ into a cylinder
until it occupies a volume v, (fig. 2I): during this time it
pushes the piston along, exerting a steady pressure P, and -
does work which is represented by the product P.4AB, or the.
rectangle OHBA. Then, when the volume of the steam is Vg,
the-supply of steam is cut off, and we have to consider a :
fixed mass of gas in the cylinder. We take thisas expanding
according to Boyle’s Law, pv=Fk, the pressure falling till it -
reaches a value which we can take as zero. The state of -
the steam during this expansion is represented by BC which
is an hyperbola. To find the area between this curve and
the v axis we have to sum strips of height p or kfv and

breadth 8. Then by (iii) f pdv = k f %"3 — 2-3026Fl0gy.

This summation is for a change of volume from v, to v,
. e
1 The red linesgwhich marked the boundary of the larger squares, the right
angle ordinates, ete, on the blackboard did not show up well in the original
photograph ; and so to make the figure clear they were marked as accurately as
possible in black on the plate reproduced. The, ordinate bougdmg the area here .
deseribed have alsg been touched up in the photoggaph, .

o >

»

»

an -
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and therefore its precise value is 2-3026klog(v,/v,), and
the total work done is

Py, + '2:3026(Pv, )log TU% = P%(I +2:3026 log r)
0

where 7 is the expansion ratio, v, /v,, There are corrections
to be made in this formula for the back pressure (which is
that of the air if there be no condenser), and for clearance
(the amount of the cylinder not traversed by the piston—
“ corners ” is the significant word used on the back of the
slide rule described in #.81), etc. But these do not affect
the essentials in the above formula. '

( For those who wish to know further details about this diagram, which can

be used to show how perfectly an engine is actually working, an elementary
statement is easily accessible in the Encyclopzdia Britannicall 13 138.)

Ex. 1. Explain how by measurements of the area under xy=1 a rough table
of logarithms could bs constructed.

Ex, 2. Show that f (1 @) dx= f 1 dy, and hence how proportional
y d=z y

rates of change (3.152) expressed as functions of ¥ may be converted into formulse
which give the corresppnding ordinate in terms of .

This is the converse of 3.152. (Cf. the first two of Perry’s rules, 1.33, and
9.46. In many books on the calculus, e.g., Griffin’s “ Mathematical Analysis",
p. 264, Ex, 16, instances of this in physics, etc. are given, A modified case of this
conversion of formula is of great importance in chemistry, etc., in dealing with
What is called mass action; cf. Feldman’s “ Biomathematics ", p. 216; et\;c.:

if g;-:k (a-x), then a-ax=Cjekt.)



CHAPTER IV

SLIDE RULES

#,1. THE LOGARITHMIC SLIDE RULE: Two ordinary
scales can be used to perform mechanically addition and .
subtraction of ordinary quantities. Thus, if the zero of one
foot-rule is set to 3:73 inches on another foot-rule laid
alongside it, then 6-05 inches on this second scale will be
found opposite 9°78 inches on the first ; and also the sum of
3+73 and other numbers on the second rule may be read off
on the first rule with this one setting. Similarly for
subtraction. By sliding the second rule along the first any
other numbers shown on the scales may be added. In an -
exactly analogous way the lengths on logarithmic scales (2.1)
may be added or subtracted, and thus the multiplication
and division of the numbers marked on these lengths (which
are really the logarithms of these numbers) js effected.

The logarithmic slide rule is an instrument used by
engineers and others to read off products, quotients, etc.
without actual calculation. At first sight the possibility of -
getting products and quotients in such a mechanical way is |
astonishing, and the wonders of the slide rule as usually
constructed are indeed many. But once the possibility of
constructing scales, other than uniform {(2.22), is realised,
there is little difficulty in understanding how these may be
used to give such results. :

#.11. THE UNIT RANGE: Just as for ordinary purposes
all that is required in a logarithmic table is the logarithms
of numbers throughout one range of the decimal scale, i.e.,
from 1000 to 9999, say, so the graduations on a slide rule
need run only from I to 10: the positions of decimal points -
are settled by commonsense considerations, as characteris-
tics are introduced in using logarithms. Slide rules of .
many different qualities can be purchased, but for the
purpose of learning to use “the 1nst.rument a very inexpensive
slide rule may be construc;ed by cutting from a sheet of

»
©
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logarithmic graph paper a couple of strips and mounting
them on the straight edges of two pieces of cardboard in
some convenient way'. The numbers corresponding to
graduations should be marked in a clear way as on any
good scale: too much detail leads in the use of the slide rule
to confusion and delay.

It is perhaps better to mount one strip firmly on cardboard first and then with a
sharp knife cut throngh logarithmic strip and cardboard lengthwise : if the cut is
straight, it is then easy to bring the graduations into close juxta-position in all
positions when the scalcs are slid along one another.  One of the strips should be
mounted on a narrow picce of cardboard for the purposes of 2.16

As indicated above, we shall consider here only the uses
of this simplest slide-rule. Once these have been mastered
extensions to the use of other slide rules with the unit scale
repeated become easy and exhilarating.

#.12. Itis scarcely necessary to describe how multiplic-
ation and division should be performed, if the description
in the preceding paragraph of addition and subtraction by
the use of uniform scales has been grasped. It need simply
be added that, ifsconfusion arises from the complexity of the
numbers, the best way to clear one’s mind is to set the slide
rule to some simple operation similar to the operation that
causes difficulty, e.g., if -783 is to be divided by 1519, set the
glide-rule first so as to divide 8 by 2 and then it is clear that
the slide has to be moved till 1 on it is opposite 1519 on the
rule and there need be no hesitation in reading off 516
opposite 783. The usual considerations as to the decimal
point then give the result as -000516.

4.3. THE PRINCIPLE: The guiding consideration in
all use of this simple slide-rule is that, for any setting, all
numbers on the rule and slide opposite one another are in
the same ratio. This is easily seen in the case when the
slide is set to 2 on the rule, and of course it is true generally
that pairs of corresponding numbers at any two positions on
the scales give four numbers in propor'tion. )The reason may

1 The scales could be constructed from logavithmic tables as mentioned ip 2.22;
but this, though a geed exercise in aczuraey, is too exacing a task for all save those
of specjal aptitude, * 4 N '
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be stated thus : representing the numbers on one scale and
the other by x and y, we have for any setling the constant
interval, logx—logy, i.e., log (x/y) : therefore, for that setting,

the ratio x : y of coincident graduations is constant.

This has an immediate application to the converting

of quantities in one uniform scale .to the corresponding -

2- & _ P e o
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quantities in another related uniform scale, i.e., to the
obtaining of products in which there is 2 common factor.

Ex.1, 1 kilogram =2-204 lbs. By setting 1 to 2:204 a whole series of equivalent '

weights in kgms, and lbs. can be read off at once.

Ex. 2, When the end of the slide isset to 3-14, the circumferences of any
number of circles of diameters up to 3-18 units can be read off without moving
the slide.

Ex, 8. In an examination the candidates were divided into the following
groups according to the marks they had gained : 3, 18, 14, 19, 10, 12. Find the
percentage of the total in each of these groups.

Ex, 4, Find pairs of integers whose ratio corresponds most closely to
N2=1.414. (This is an example of what may be done easily by the
slide-rule but would e difficalt and uncertain otherwise).

So also for T =3.14, which is illgstrated in the setting of the large demonstration
slide rul® shown at the top f figure 2, The grgduations in this instrument were

marked by sign-board painters, and are not, very accurate ; but theyy show
o - ’
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coincidences at 4-4, 1-4; 6.6, 2.1; 8.2, 2-6; 88, 2-8; 9-4, 3, Ofher coincidences
can be got by moving the slide through its own length (2, 124). On a good slide rule
more cr Jess close coincidences will be found at 1010, 322; 1060, 338 ; 1080, 344 ;

c. : but the important ones are those which give ratios of small integers, 22: 7 and
355 : 113,

Note—For convenience special numbers like 7 are often marked in their
positions on the scales, Chemists have slide rules on which the weights of the
morz common elements and compounds are marked ; so for other special purposes
special logarithmic slide rules make calculations easier.

In performing division with the aid of the slide-rule this
principle should always be used ; but it should be carefully
noted that it is much easier to have both the given numbers
on the same scale instead of setting them to correspond on

783 2783 _ %

- k3 ] .t
different scales. Thus -—1519 may be written 1510 1 or

1 x
——= ——_and while either arrangement may be used for
1519~ 783 g y
the setting, it is distinctly preferable to avoid having to set
two numbers like 783 and 1519 in the same position.?

8,14, THESCALEUNLIMITED: If you have tried exercises
similar to those Suggested above, you will have discovered
the difficulty in performing such operations as 3:87 x6+16 or
19°91++732. And if you have tried 4X6 and 20+ (cf 4.12),
you may have overcome your difficulty by finding that the
ekpected result comes by setting the righthand end of the
slide instead of the left. The reasonableness of this you
can work out thus in the case 20+7 (fig. 22):

log 2:86=ap=CB+AD=(AC+CB)+4D —~ AC

=log 10 +log 2—1log 7.

But you should see it also through imagining the scales
doubled towards the right, so that the coincidence between
D and p is to the right of B, at 2, and p,, and then & is the
lefthand end a,, of the scale which gives the result; or, from
analogy with the extent of a 4-figure logarithm table, it
should be evident that we can pass from the right to the left

A

1 Toread off the result 516 opposite 783 is easier because the attention is
given successively to these numbers, whereas in settmv 783 to 1519 the attention

alternates between 4B two numbers. , R
", N
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of the slide (or rule) just as we can pass from the end to the
beginning of the table.
Ex. 1, From the {formula o o
5047 (R - 0-707) test the -s1 36:90
40:30

2 .

3 4380
.

5

0'= 5547 (B = 0707 + 465 (1= &),

accuracy of the accompanying portion of a
table taken from the Du Bois’ ¢ Metabolism ”,
p. 39 (cf. 9.522), Arve the zeros in the foarth
place significant ?

47:20
5070

Ex, 2. From the formula

4485 (1- R)
4485 (1- R) + 5047 (I -0:801)
construct some part of a tabie for valucs of P! 629 629
corresponding to values of R between 0801 B9 F29s 927
and 1. (Cf. the scale of Cal, shown in
figure 58: the whole of this scale can be
obtained by dividing the computation among
sections of a class of students) 54
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[1t is well worth while to do this work
in pairs, the ¢ observer’ (cf. 7.211), 9 - 494
manipulating the slide ruls and calling out 494+
results, the ‘¢ recorder ' stating what is L4 418
: . . 90 == ]
required and arranging the work cconomically 4485 +
in some such way as is indicated herc :

154

Ex. 3. Check the accuracy of the following table (Du Bois, op, ¢it, p. 232) giving
experimental diets fcxr diabetic patients : grammes of cerbohydrate, fat aml
protein are denoted by their initial letters ; the calories of Leat fiom these are 4(,
9F, 4P ; hence {s obtained X in the fifth line; and the fcrmula for the last line is

Fatty Acids _ F4 _ 0442 + 09 F
T Glucose G T 01058 P 4 OLE

The expression in the denominators gives &. Complete the line for F4/@,

Adad a line to show ', the percentage of calories derived from the protein in
each diet. (Cf, 9.63).

DIET I 1T 111 v
0 e 10 7 60 51
Fow 8% 108 91 135
P o 150 30 85 70 .
Henge ’
Total available G ...® 105 105 118 105
Total calorics, @ M .+ 1400 1400 1400 1700 \
FA)G = - — 145

(Th&1700 of IV is an gbvious mlsprmt Jhe omissicn of .dhe three values of
FA|G seems to remove the essential point of thg table : they aré 1:35, 1- 05, 101,

»
@ e
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It should be noted in estimating the trustworthiness of this table that there is no
need to retain figures in the last place unless the fcod actually given to the patfient
is specially analysed (Joslin, op. cit. p. 426), Following Du Bois, p. 231, it should
be added, to indicate the significance of the table just referred to, that the object
in the treatment of diabetes is two-fold, (i) to keep & solow that there is no
abnormal waste, and (i) to adjust F4 so that FAJG'<1'5,in order to avoid
ketosis——whatever that may be! Cf, 9.5281. This has obviously some relation to
the oft-repeated phrase * the ketogenic--anti-ketogenic balance for any level of
protein metabolism ”. Puzzle is out with the help of 9.52 ——if yon care 1)

4.15, RADICALS AND RECIPROCALS: Finding the square
root x of anumber y may be taken as a special case of division :
given the dividend, find the divisor and the quotient which
are identical, i.e., using figure 22 for this new purpose (4Bbeing
now the selide), if a_p=logy and AD=log x, then for this
setting ar=rp=AD=logxr=4% log y. Here again the use
of the righthand end of the slide may be noted: using the
same notation (though with 4B as rule now), if pb=CB, then
it is easily shown that 24C=A4B+A4D. Test this by
setting, ¢.g., 2 log4=1og 10+1log 1-6.

Note that for every setting the numbers on either scale

opposite the end of the other are reciprocals. The reason
for this is not difficult to see. !

Test papers in the use of the slide rule (cf. 7.31 Ex. 3): . \
) I (a) 653x189 (&) 2070587 (0) 483 \

(@) If 1 kgm, =2.204 1bs., how many kgms, are in 157 lbs, ? \

I (a) 3880x56:6  (b) 1-354)58.3 (©) 515
(@) If 1 km,=0.621 mi.,, how many kgms, are in 5-5 mi. ?

III  (a) 5070 x 469 (&) -0393]-697 (&) Aj636
(@) If 1 ft,=30-5 cms., how many ft. are in 11-3m. ?

1V (a) 83-6x 644 (@) 51-9/-2223 (6) VE9L
(@) 1£ 1 yd,=09144m,, how many yds, are in 22-5m ?

V (a) 708x26-33 (®) 6-95x 73-3 ©) 673
(@) If 1m.=1-0936 yds., how many metres are in 115 yds, ?

VI (@) 54-8x-0347  (b) 2-34/83'5 ©) 777
(@) If 1m.=3.28 feet, how many metres are in 682 {t.? -
o

4.16. SLIDE INVERTED: If the slide ‘you have made
has been pasted on a narrow strip of cardboard, it can be

reversed and t,h.e relation Jbetween its graduations in this:

position and 4hose of the rule, which increase from left to

N »
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'

right as before, may be easily investigated. (By the aid
of the device called the cursor this can be done on the
ordinary four-scale slide rule.) The graduations x on the
slide thus placed are distant log (10/x) from the lefthand
end. Thus, if the ends of the scales coincide, graduations
x and y opposite one another give (after adjustment of the
decimal point) a number and its reciprocal; and for any
setting we have the constant difference as in %.13
log y—log (10/x), i.e., log (xy)/10.
Therefore, for that setting of the inverted logarithmic scale
the product xy of opposite graduations is constant.

These coincident scales may also be regarded as stationary scales for recip-
rocals : cf. 5,5 f. n,

This arrangement of the scales is convenient when the same number is
divided by a serics of other numbers. Set one end of the slide opposite the
constant dividend (which is 2y) oa the rule: then opposite each divisor on
either rule or slide will be found the required quotient.

Ex. 1. Prove that to perform multiplication with the slide inverted the
factors should be set opposite onc another, and then the product is found on either
scale opposite the end of the other. Modify this procedure so as to avoid setting a
number against a number other than unity (ef. 213, fn.).

Ex. 2. State the rule for finding the square root with the sglide in the
inverted position.

Ex. 3. What with the slide inverted corresponds to the reciprocal property
of the end readings in the ordinary position of the slide rule ?

)

4,2, QUADRATIC SLIDE RULE: Any quadratié equation
- represented by x?+ax+b=0 can be solved by the use of a
uniform scale B (fig. 23 ) sliding between two fixed scales.
(A demonstration slide rule of this type is shown in fig. 2
below the blackboard.) One of the fixed scales 4 is uniform
also, though on half the scale of B; the other C is a
scale of squares corresponding to the numbers on B.
The expression,—%a=% 4/ {(3a)2=b} (p. 3, V), gives the clue
to the use of these scales: set zero of B to a on A4:
opposite this on C is (3a)?; from this by calculation subtract
b; locate this difference in two places on C; opposite these
on B are found the two roots: for the zero of Cis at a
distance—% a from that of B. !

In fig. 23 this process is shown for 22~ 472-12=0. ( So also in fig. 2, where
the scale identical 'ygi'tb A marked or, the upper side of the slide has been inserted
merely to illustrafe the addition process descriped in #.1.) !

N ) ’
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4.3. RECIPROCALS SLIDE RULE: The quadratic slide
rule is not likely to be of much practical use, for it is un-
usual to have a large number of quadratic equations to solve,
and the use of the rule is not purely mechanical and free from
slips in calculation; besides, the equation has to be prepared
by division by the coefficient of ¥, Much more likely to be
useful would be a rule consisting of two identical scales
graduated so that the distance of a mark x from the end is
proportional to I1/r (2.22 Ex. 2). The use of such a slide
rule where, as in finding the focal lengths of mirrors and
lenses, formulae involving nothing but reciprocals occur
repeatedly, is obvious. (Cf. also 5.%)

.21, THE HORSE-POWER SLIDE RULE: One more
example of a special slide rule is given (fig. 24). It
illustrates the possibility of combining more than one slide
with two scales on the rule. We are not here concerned
with the meaning of horse-power, mean pressure, etc.; if
information is required about these, it may be found in
dictionaries and other reference books. But it is well worth
our while to examine how this apparently very complex
rule is constructed; for it involves no ideas we have not
considered, and from this we can learn how slide rules may
be constructed to solve other special problems.

A nomogram, as in 5.3 Ex. 3, may easily be constructed to give the same
results as the slide rule, but the latter is much more easily carried about by the
working engiaeer : its extra price, compared with that of the nomogram, is not
usually a ditficulty, but it may more easily get lost! (Cf. for other such consider-
atioas, Encye. Brit. 30 45a),

Instructions given with the slide rule are as follows:

To find Power of Engine :—Set the ‘“mean pressure”
on lower slide against the ‘cylinder diameter”, and
retaining it in this position bring the “revolutions” on.
upper-slide, opposite the “ stroke ”” {(or the “piston speed”
opposite the small arrow)! the large arrow will then point
to the “ power ”.

»

Py

1 The small arrow referred to appears on this slide-rule as an asterisk
opposite the graduation 6 inches on the ¢ stroke ” scale. The large arrow is more |
obvious, being represented by three asterisks, &ote carefully ths feet and incheg
on the scale for the piston-stroke. 4 o N
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Other instructions are given for finding the size of the
cylinder for a given horse-power, 7, e, the converse of the
above problem, and for other uses of the instrument; but
the above is the main problem, and we shall consider only
it. In doing so we shall neglect any reference to revolution
and stroke, since (how we need not consider) the piston
speed is connected with them in an invariable way, and
includes the facts as to them. Having thus removed non-
essentials, we may re¢-stalte the instructions for the use of the
slide rule, making use of the skeleton-representation of
it in fig. 26. ‘

The capitals D, D/, C are the points on the respective
scales which represent the given values of mean pressure,
cylinder diameter, and piston speed. The above instructions
then become :

Set D, the mean pressure (p) on the lower slide,
against I, the cylinder diameter (d) on the lower rule, and
retaining it in this position bring C, the piston speed (s) on
the upper slide, opposite C’, the small arrow. B’ the large
arrow, will pointto B, the horse-power (#1.P.) ontheupperrule.
Then AB = A'D — (C'D — CB').

2.42, To interpret this equation we note that all the
scales are logarithmic, the metrical scale for each being
log3 =1 inch, save in the “ cylinder diameter” scale where
it is log3=2 inches. In figure 26 are inserted the actual
lengths corresponding to the setting photographed in fig. 24.
Here we give the general equivalents of the terms in the
above equation,

25

d 8 s
=2 log -i)—log ;4 +Iog1—25-

log

(We introduce the faetor 2 in the ‘‘cylinder-diameter ”’
term, because a length on the corresponding scale is marked
by a graduation which would be shown on half that length
on any of the other scales, and therafore it represents the
square of that graduation if the other sciles are taken as
the standard.)

The usua) formula employed by engineers is expressed
in terms ofthe area A of the cwlinder. and so we chahse
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log (d/10)? intolog (44/1007). Transform now the equation
from the logarithmic to the ordinary form, and we get
the formula,

4A.7 p s s.Ap

P- = X—= - ==
25* f00.22 84 125 33,000

which can be easily interpreted by those who know what
“work ” is (p. 3, VI vi).

4.43. One difficulty remains : why do the scales run In
different directions, as indicated by the arrows in fig, 26?
If we look at the corresponding graduations for horse-power
and piston speed as they appear in fig. 24, we see that, as
we should expect in accordance with 4,16, their .product is
constant. But this is not the clue. We have here an
instance (4%.13) of quotients obtained by division by a
constant, 125, represented by the large “arrow?”, i.e,
multiplication by the constant -008: similarly at the small
arrow corresponding to the constant divisor 84. But the
difference of direction in the case of the juxtaposed pressure
and diameter scales has the effect of glvmg immediately a
product, as in #4.16. All the scales of products run from
right to left.

Reversing the order of consideration of the scales, the
effect of the differences of direction in the combination of the
scales will become clear. The fundamental direction in
which results are recorded is from right to left. The product
Ap is recorded implicitly in this direction on the lower slide;
to multiply this by s, the scale for s must be (#.16) from left
to right, the opposite direction to that for Ap; then the scale
for Aps is from right to left on the upper slide, and the
fraction of this that is required is shown by the large arrow
onthe horse-powerscale, which (%.13)is in this same direction.

. 4A ‘p /
The whole procedure may 1007 y
be representgd thus: 84 s ~HP

125 o

U

y.4Y4. MODULTS OF ASCALE?, In the actual scale photographed in fig. 24 the
metrical scale of the mean pressure Ioganr,hu%lc scale is log 8=0'995 ins. ( The

dlst@nce between graduations 1 and 81 in the origjnal scale was fovnd to be 3+98
° . " i
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inches,) This is a fraction o close to unity that it makes little difference in
practice; it is said tha$ these slide-rules are expected to give results accurate only
within 29/, The effect on the theory is that, just as the ¢ diameter” logarithmic
term was multiplied by 2, so the  pressure ” logarithmic term must be multiplied
by 0:995 : such a factor is not the scale-modulus of 2.22 ; it belongs essentially to
the logarithmic formula, The formula for the horsepower that results is

s, Ap 0-995
33,000
I have not been able to find out after reasonable enquiry if this is actually the
formula for which the slide rule is constructed or not., In the figure of the
Hudson's horse-power slide rule shown in the Napier Tercentenary Celebration
Handbook, p. 176, the metrical scale of the mean pressure scale i3 exactly equal to
that of the horse-power scale, ete., and it may have been that the maker of the
slide rule shown in fig. 24 nodded while at his work! If in this casc the mean
pressure scale, had shrunk, the stroke scale would have shrunk also, In any case
we should always be prepared to ask questions about our tools——though not be tco
ready to blame them |

HP =

.45, It is interesting to note kow the cylinder diameter scale has been
lengthened by inserting at a distance log /10 to the right of the graduations for
100, 90, 80,...... graduations for 10, 9, 8,...... with the instruction that, if these are
to be used, the number given on the 7, P, scale is to be divided by 10. This is
correct because log N/I—(T on the diameter scale is the same length as log 10 on the
H.P, scale, '



CHAPTER V

NOMOGRAMS

5.1. ALIGNMENT NOMOGRAMS: Graphs may be con-
structed from formulae so as to give directly values which
may also be obtained by the use of slide rules or otherwise.
One of the most important ways of dealing with the rather
complicated operations represented in such formula is to
graduate three curves (which in the simplest cases are

larblend) e ) Fig.3l.

straight lines) in such a way that by passing a straight
line, e. g., a stretched thread, through the graduations for
given values on two of these, the graduation on the third,
through which thisline passes, gives the result of an operation
which depends upon the nature of the diagram. Such a
diagram is called a nomogram, a “law graphed. 1

1 More strictly, the alignment nomogram described above may be
distingnished from intersection nemograms which are generalisations of
ordinary graph‘é. Several diagrams of this general type are given later, notably in
5.3 Ex. 6, 9.2, 9.6, §ee also the segmentary nomogram for golving simultaneous
equations given in Brodetsky’s “Nomography”, p. 18 (ef. 5.22 Ex. 3, 4). Engincers
use this type of diagram frequently, e ¢., along with Ewing’s “ Steam Engine ” are
given largé drawings to show the relations betwaen such quantities as pressure and
tota» heat of steam under different condxtwns of temperature, volum¢ and dryngss,

v v




FUNDAMENTAL ARRANGEMENTS 69

. The simplest of nomograms is that for addition, such as
can be performed by two uniform scales sliding along one
another. It consists (fig. 27) of three equidistant parallel
. straight lines, the outermost of which are gradaated with
identical scales. If the middle line is graduated on a scale
half that on the outer lines, the three zeros of the scales
being in one line, then obviously a straight line drawn
through any two numbers graduated on the outer scales
passes through the graduation which marks the sum of
these two numbers.

Only a few graduations are shown on the lines in
fig. 27; but for this and subsequent figures it should be
clearly understood that in nomograms for actual use the
graduations can be made as fine as drawing instruments
will permit. Here we are concerned only with the principles
on which nomograms are constructed.

An easily accessible example of a working nomogram, will be found in the
chart, “TableI”, for correcting barometer readings as given at the end of
Watson’s ¢ Practical Physics ” : the use of the diagram is explained on page 159 of
that bools, but it is not there called a nomogram. Note carefully how in using this
diagram, the trouble Jf considering anything corresponding to the propeortional
parts in Watson’s Table 10 (which is equivalent to the nomogram) is avoided
Cf. 5.5, f. n. and Ex. 1. Note also that the range of barometer height is distinctly
larger, and that of temperature slightly less, in the nomogram than in the table.

»

5.2. PARALLEL NOMOGRAMS: UNIFORM SCALES: The\
 simple construction for addition given in the preceding’
paragraph may obviously be generalised and modified in
several ways.

5.211. By extending the scales in the negative direction
subtraction may be performed as the addition of a graduated
negative number to one of the original positive numbers ;
—II*5+5=—06-5 is shown in figure 27.

5.212. Subtraction may also be effected by reversing
one of the outer scales so that these two scales are graduated
in opposite directions. This is done with the scale a in
fig. 28 where the arrangement shown is for, finding x=b6—aq,
and in particular 8—15=—7.

5.22, The distance between the graduated lines'may be
varied so #at a line crussing thim is divided i)nto segmeats,
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not equal as above, but in aratyo [: m. The following easy
investigation of similar triangles shows that we thus can
effect the addition of given multiples of the numbers on the
outer scales.

Let 4, X, B be the respective zeros of ‘the scales, and
let any straight line cut the graduated lines in H, R, K.
respectively, the points graduated a, x, b respectively, and
the line of zeros in Z. Then by a simple construction

AH—-XR. _ AX _ 1

XR—BK XB o

or ’ (I+m) XR = . AH + 1. BK. ‘
This equation may be interpreted as equiyalent to
= ma + Ib.

and then it is obvious that the scale on the inner line
is that on the outer lines divided by /-m : for we took all
the lengths XR, AH and BK to be measured in terms of
the same unit. The nomogram we first considered was the
special case of this where /=I=m. The above proof can
be modified for all positions of HRK, due Attention being
paid to signs. Thus for a given value of x all straight lines
through the corresponding graduation will cut the a and b scales in
values of these variables such that x=ma +1b.
’ Ex, 1, Construct a nomogram for the formula v=wu +/¢, where f is a constante
—~——32, 981, or any other number,
Ex, 2, The length s of a circular arc is given approximately by 3s = 8/ - L,
where { is the chord of half the are. and L the chord of the whole arc (Borchardt
and Perrot, Trignometry, p. 306). Construect.a nomogram to represent this formula,
Ex. 3. Solve for a and » by means of a nomogram such simultaneous equa-
tions as 15=4a+5, ~10=a+25. (Construct parallel equal scales for ¢ and b, and
between them appropriate scales like X R for say & and @'; the straight line joining
the points z=13, #/=-~10 will when produced cut the « and & scales at the
required values.)
Ex, 4, Construct a nomogram to represent the relations, ) y
0.02¢ M=C+0-41P )

F=40+14P s
(These may be Fegarded as simuljaneous equations in € and P and dealt with as in
the preceding example, But €, F,and P have the meanings stated in 0.1
Ex. 3, and M denotes the number of food calories required per day, The medical
application of the nomogram, which is given in Du Bois' “Bagal Metabolism, "
p. 235, and"also in Joslin’s “Djabetes Mellitus"3, p, 461, is to ﬁn,ﬂ 6’ and 7 when

P anil M are glven) N . ) »
s L ]
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" 5,221, With a view to noting the flexibility of this
method depending on similarity of triangles, it may be
remarked that the equation

(I+m) x={+m)XR=m. AH+1.BK=ma-+1b

may be used to effect simple addition by making the scales .
on the a, b and x lines, not equal as in figure 29, but some
standard scale divided by m,! and m-+I respectively
for these lines.’ This fact makes the converse problem, that
of getting the equation from the mere figure, indeterminate,
unless the scales are given. Cf. 5.3 Ex. 6.

5.23, A CONSTANT TERM: An obvious modification of
figure 29 is to displace the =z line along its own length until
the graduation at X is ¢. The effect of this is to make the
reading at R greater by this constant, and thus the formula
corresponding to this arrangement is

x=ma+lb+c

Note—1f » is a constant in v =u+f¢, the formula becomes of the type
y =max, which leads to another simple type of nomogram, that used in 9.6.

5.24., If the summation is to extend to three or more
terms which involve variables, the above process has to be
" repeated, the terms being taken in pairs in any way that is
convenient. As the final result alone is required, it is
wnnecessary to graduate the lines on which the partial sums
~are found. Such a line is called a reference line or a
. dammy axis. Thus in figure 30, which represents the
simplest case, all that we need to know on the a5 line is the',
position of S, where it is cut by the line joining the gradu- '
ations on the a and b lines. It will be clear that the scale on
the a+0 line is half that on the 4 line; and so also must be
the scale on the ¢ line, if the a+b+c¢ line is taken midway
between the a-+& and the ¢ line. The scale on the a+b+c
line will then be } of that on the a line. And so on.

Much ingenuity may be spent in arranging such nomo-
grams so as to secure ease and accuracy of reading, and also

]
7 oo . ) .
1 ie. multiplied by 7, m and Z-I-L:n , a8 it is put in Feldman’s ‘ Biomathe~
»

matics,” p. 121 ¢ sp also Lipka, op. git. p. 45. These quantities, or 1fm, 1{,’1/( +m),
are the respec}ijé scale-moduli ; 5f. 4.44%. ,

) ) 7
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other advantages. It is held that these are attained more
readily if the whole nomogram occupies an area on the
paper that is nearly square : the likelihood of oblique inter-
sections, the graduations at which are difficult to read, is thus
reduced. Brodetsky, in his “Nomography ”, page 11, lays it
down toothat we must as much as possible aveoid the use of
widely differing unlts. This is so; but a consideration
of possible errors (1.3%) shows that there is no dis-
advantage in having to read off the result ¥ of a sum or

A B A AN o} D E E! 4,
Width' Depth" Langth’ CubicFt. Galtons Los Tows
y wl
0 L - -e00!
o 4+ a .
# -0t
s 71 | N 5
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JL '
s.n 0o 1000{ 100004
o b 10

Fig. 32. OChart showing the capacity of a Rectangular Tank, (Modified
from the Textile Recorder, 1923, p. 669)

difference of two quantities, « and b, on a scale half those .
on which the given quantities are marked: the possible
error of the result, a%p, is twice that of the given quantities,
and the accuracy that is obtained by reading off a result on
a scale equal to that used for either given quantity is
illusory. But it is well, to note (as Brodetsky emphasises)
that the nomogmam may be modified so as to bring the line
giving the result of addition or subtraction to the outside of
the diagram, B
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- 5,281, This is done simply by rearranging r=a-+0b as
—a=b+(~—%); in the nomogram the corresponding change
is that the outer lines are those for b and x graduated on the
same scale in opposite directions, while the middle line is
that for a graduated on half the scale in the negative
direction. Thus a diagram may be built up to determine
the sum of any number of terms. In figure 31 the process is
shown repeated thrice, as indicated by the arrows. For
simplicity the coefficients of the terms are taken as
unity; thus there are only two scales in the figure,
the scale of @ and all the dummy axes, and the scales of
b, €yeeeren-.., half that of the former. This is indicated in the
figure by (5), and the directions in which the graduations
are to be marked are shown by the signs attached to the
quantities, as well as by the arrows.

To emphasise the method of arrangement the lines on which the terms are
graduated are drawn rather heavily, In a working nomegram this should never be
doue, as the accuracy with which graduations can be read is much reduced if a
line is thick.

Ex,..1. Re-draw the nomogram for v=u+/¢, (5.22 Ex. 1.), 80 as to bring the
line for v to the outside of the diagram,

Ex. 2. By purely statistical methods the following formulz have been
found for A, the heat production for 24 hours of individuals of weight W kgms,
height 77 cms,, and age ¥ years ( Du Bois, op. ¢it., p. 161 ):

For men M=664730+137516 W+50033 H- 67550 ¥;
for women M=6550955+9-563% W+1-8496 H - 46756 Y,

Taking approximate values for the constants, construct a nomogram for each of
these formule, (Cf. 9.5271).

5.3. PARALLEL NOMOGRAMS : NON-UNIFORM SCALES :
The rules given in the preceding paragraph are
comparatively unimportant in their application to the
cases so far dealt with; for it is not usually worth
while to construct nomograms to effect mere ,addition.
But there is no need to restrict the grdduations of lines to
uniform scales. Just as in the case of tht slide rule, the
lengths on logarithmic scales in a npomogram may be com-
bined so as to get the products of the nurgbers corresponding

to the givep/graduations: The same is also true of other
10 ’ ) '
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scales, e.g., squares, square roots, reciprocals; and lﬂomq-
grams can be constructed with ease for formulae like " ~

_ " I I I
ct=q24 b2, E-I-;:f—.

CAPACITY OF A RECTANGULAR TANK : The accompany-
ing figure, 32, is adapted from a Cotton Trades publication.
The nomogram consists of the four lines on the left of the
figure. Tt is noteworthy that the three logarithmic scales
4, A', A" which are used are identical. The three lines,
C, D, E, to the right of these merely carry scales on any of
which the result may be read off according to the form in
which it is required. A duplicate A; of the logarithmic
scale of the nomogram is given on the extreme right so as to
facilitate setting parallel lines across the figure. Frequently
equivalent scales are marked on either side of one line, and
this has been done here with the very similar scales for
pounds and tons of water, though in the original diagram
they were shown on separate lines (5.5 f. n.).

It is important to notice that a simplification of the
figure has been effected through using the %cale A" both to
mark the depth of the tank and to record the final product.
Yet none of the scales on which this product is read off is
marked on A’ itself; hence the importance of drawing a
horizontal line accurately across the figure.

Having noted these things, the construction of the
nomogram is easily unravelled. The sum of the logarithms -
on A and A’ is given on the reference line B on a half-scale -
{not marked). The sum of twice the half-logarithm on B and

* A nomogram for this formula is worked out in Hezlet’s ‘* Nomography,” (Royal
Artillery Institution, Woolwich) p. 25 : in the figure, however, the graduations 1
for the scales @ and b clearly are not inserted accurately—the iaterval from 1 to
1-5 is shown as greater than that from 1'5 to 2 ; also some of the other graduations
are not conSistent, It would have been well to have carried these scales back to
the graduatioa 0; for they are not logarithmic, In graduating the scales it is
unnecessary to use Hezlet's general formulwo ; the calculation may be arianged
very simply thus: 7

Graduation , I, 2, 3, 4,enire
“Distance from zero graduation, @ and, ) scales L, 4 9 16ue.n.

o , cscale (ef 5.1) 5, 2, 5, Byerusaenes
- ) .
. , "
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the logarithm on 4" is given on 4’ whose distances from B
and 4" are as I to 2. The scale of the logarithms for this
result is one third that of the original scale, but this again
is not marked on the line A’ : the result is read off on either
C, D, E or E, which are all logarithmic scales. The
distances between these last lines have of course no
significance.

Ex. 1. Redraw on & larger scale fig. 32, and insert more numerous gradua-
tions (2.22). Note that the line joining the 127 graduations passes through 625 on
the / scale : this agrees with the fact you learn in physics, that the weight of
1 c. ft. of water is approximately 62:5 lbs. Check the accuracy of the nomogram
by calculating values for each of the scales for a tank of specified dimensions.
Draw a similar nomogram for larger tanks.

Ex. 2. In Gregory and Hadley’s “Classbook of Physics™ p. 560 is given a
table of the maximum vapour pressure » (in mm. of mercury) of water at different
temperatares ¢, The formula for these values is

log p=A+ §+C log 6, where 8 =¢+ 273,

(Kaye and Laby “Physical and Chemical Constants, " p, 40.)
Show how to coustruct a nomogram which is equivalent to this formula, and state
the modifications that are necessary when negative values are given to some of the
above constants thus ;1

J623:932
log p = 1524431 - —e - 2367233 log @ for values of 6 from 15° to 270°;

245
log p = 10°04087 -32-7-192——— —~+7020637 log @ for values of 6 from 270° to 450°,

(Kaye and Laby, op. cit. p.41)

Il

Show how the nomograms for these two formul® may be arranged in one
diagram in which the reciprocal scale and the p scale are the same for both
formulze, i

Ex, 8, Devisea nomogram for the formula found for the horse-power slide
rule in 4.42.

(Writing the formula as

log H.P.=log s+2 log 4 + log p -~ a constant,
there is little difficulty in constructing this nomogram ; but a detailed treatment of
it, if required, will be found in Lipka's * Graphical and Mechanical Computation ”,
p. 63.)

1 These formula: are given in full in order to indicate a limitation to which
nomograms are subject, Only a very skilled draughtsman could prepare a diagram
in which all the figures of these constants would %e significant, and even then
separate diagrams would have to be drawn for successive rarges of the values of 9.
Cf, the remarks about the superiority of arithmetical methods over graphical
methods in the preface to Whittaker and Robinson’s “The Calculus of Observations”
p. vi, and the incjdent (already refsrred to in #.#1) yelated in the Ené’yclop:edia
Britannica, 35,&5 a. . 3 ,

» ’ !
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)

Ex, 4. Construct a nomogram for A =1 ab sin C.

This may be taken as logA\ = log a+log b + (log sin O+log ) ; then, follow-
ing the method of 5,221, we may construct the a logarithmic scale in what we take
to be the positive direction, and parallel to it the & logarithmic half scale in the
opposite direction. These give us a dummy axis for b, With values (which are
all negative) from a table of logarithmic sines the scale for log sind may be
inserted in the positive direction with balf-unit compared with the a scale, but
displaced a distance log2 along the direction of the & scale. Thus, the final
result being to be read off on a scale identical with the a scale we started with (i.e, |
A\ =a numerically) the zero of the log sin{ scale (i.e,, 90° in the ¢ graduations)
must te opposite one graduation 2 on the & scale; also the graduation 6° will be
necarly opposite the next graduation 2 on the & scale, for log sin 5° 44'= -1,

(Those who cannot construct the figure from this description will
find it on page 106 of Brodetsky’s ¢ Nomozraphy ”. The figure there might have
been reduced to one of three lines if the ¢ graduations had beeneplaced on the
same line as the » graduations, one set on each side of the line ; and then the area
would have been shown oa the a line, the scale on it being the same as for the
area ab on the dummy axis, though in the opposite direction, as in 5.241. The
double set of graduations on the O scale, each pair totalling 180, is not necessary,
though it should be noted: if it is thought advisable the two numbers can be inserted
side by side on the same side of the line without risk of confusion : cf, fig. 16.)

Ex 5. Devise a nomogram for tan}(B- ) = bTZ cot 34.

Here b is taken greater than c¢; otherwise we should,have to deal with the

logarithms of negative quantities, The formula is equivalent to
log tan 3(B~ 0) + log tankd =log Ib)—;z,

and the same method of representation as was used in the last examplg
may be employed, though the namber of terms is less. From a table
of logarithmic tangents a scale for log tanj(B~0) is constructed ;
and parallel to it, but in tbe opposite direction and with half the wunit,
a scale for log tanj4. The unit may be checked by noting that log tan 45°=0,
log tan 84°17/=1; and so the intervals between the graduations 90° and
168° 34/ (or 11° 26/, for the gcales are symmetrical about the graduation 90°) on
the B-0O and the 4 scales will be 1 and % respectively, The scale for

1og-:—;—j must be caleulated ; it is most convenient to mark its graduations with

values of the ratio &f¢ which is casily caleulated. The position of a particular
graduation on the 3/c seale may be fixed by considering, say, B— (0=60"=4 ; then
-0 +c)=% or bje=2, 1f the bjc scale is to be equidistant with the B~ ¢

: . b-
scale from the A scale, then the same unitis to be used for log b—_{_—g as for

7
log tan } (B~ ), but the graduations are to be in the reverse direction, The
arrangement of the nomogram is now determined, and all that remains is to
>
insert the appropriate gradustions from calculan’ed,values of log Z—*_I_-_-\c:, e gy

»
’ ’ » ?

>
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Ble 19 9 5 3 2 15 125

b-c 18 8 4 p) 1 1 1

b+e 20 10 6 i 3 5 9
b-¢ . . - - — _ "

log ;— T9542 19031 18240 16990 15228 13010  1-0457

(This again is a description of a nomogram to be found in Brodetsky's
% Nomography ', page 107. It is given as a further test of the student’s
grasp of the principles that have been described.  The figure given by Brodetsky
is not quite accurate, for the line joining the two graduations 60° passes the
graduation 1'95 for b/c. A more thorough test of the accuracy of the figure may be
madé by considering the three logarithms underlined in the table above, Measure-
ment gives the distance between graduations 5, 2 as 2:36 cms., between 2, 125
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Fig, 33. Chart for determining surface area of man’s body.

a8 413 cms. : these give, instead of a constant logarithmic scale, 7'87 cums,
and 866 cms. as the scale per unit difference of logarithm in the two parts of the
scale. This nomogram applied to a set of examples (XX in Borchardt and Perrot’s
“ Trigonometry ”) was found to be inapplicable to five out of twelve because the
range for b/c did not extend below 1:25. For the remaining seven the average
error in the value of B~ C was 1°35/ with a maximum error of 3°14'. Other
arrangements for the nomogram can of course be devised.)

Ex. 6. Construct a nomogram to determine tl® surface area A 8q. metres
of the human body of weight W kgms. and height I cms, fram Du Bois’ equation,
A =T71'84 W0425 I 0725

(This is a straightforward piece of work, But those who need help »or who
wish to check thej.’work will find a‘homogram for this® formula given in Pearl's
# Meceal Birafbtry” (Sa:unders') p. 184; also in Feldman’s * Biomathematics”
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(Grifin) p. 124, where only C. G. S, units are given: these nomograms as

reproduced, though from the sime source, do not give quite the same results
Feldman gives a description of the construction of the nomogram.

1t is interesting to compare this diagram with two others for the same formula
given in Du Bois’ ¢ Basal Metabolism” (Lea and Febiger) pp. 142, 3, The former is
an intersection nomogram (5.1 f.n.), reproduced here much reduced as figure 33; the
latter, another alighment nomogram, which is marked & ¢ Copyright, 1920 ”;
but the fact that it forms part of a later chart (reproduced as figure 1, and
described in 5.31) which has not been copyrighted iindicates how rapidly the
nature of such figures has become common knowledge, This alignment nomogram

OBIEque 7 . 04 | , :
A!es. ’ P 5.5 /,4-100

+ i

| p=PRU-230gR) -~

differs elightly in plan from tha¢ in “Medical Biometry,” and it gives a better
range of values, but it is overloaded with figures; their readings also do not
always correspond, e. g., W=140 Ibs,, H =5 ft. 6 inches give respectively 170 and -
1-71 square metres : the intersection nomogram gives 172 or 1'73. Cf. also 5.61.

A fourth nomogram, and the best of them in the selection of ranges for
variables, is that given by Wilson and Wilson in the “Lancet” 199 1044, It may
be re-drawn from the following specification, and its construction investigated : the
H, A, W graduations for 150, 1'3, 40 are on a line perpendicular to the scales,
with distances 3'93 cms., 2'07 cms, between them ; and the distances in centimetres
of graduations from these graduations along their respective scales are

for H,160, 170, 180, 196 200 ; 2+66, 5'14, 7-52, 977, 11°89 respectively ;

for A 1+4, 1'6, M8, 2, 22, 24 ; 096, 408, 642, 8'52, 1042, 12:15 ;

for W50, 60, 70, 80, 90, 100 ; 2-89, 525, 723, 898, 10-52, 11- 88.)

o Ex»7. Counstruct nomograms for the followmg surt‘ace-area formula for the
-hyman body (from ¢ Basdl Metabohsm ” p 144) the average error fo: each

" ) " a
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formula, and in some cases the maximum error (in the case of fully-grown bodies),
are noted for interest,; nots also the indices.

Av, error Max, error
H 4=1672 WS HS s 2'2 per cent. — 5'8 per cent,
) 4= 256 W3B H . 33 per cent,
(i) 4= 12:312. W (Meeh 1879) 15 per cent.  (CL 5.23. Note)
Cf for A= 71:84 VW45 F125 w17 per cent, 2 per cent.

Note—Other formulae for finding metabolism are discussed-in the Lancet 199
290, and these may similarly be reduced to nomograms, if desired: a quantity W
called * the theoretical weight ¥ (less likely to be altered by illness than the actual
weight) is obtained from the trunk length and chest measurement; and this is
directly connected with calorie requirements 3 and age ¥ by

W-B/(MY'338)=a constant, viz., *1015 for men, *1127 for women.

5.31 BASAL METABOLISM. A nomogram correspondihg
to the muitiple type of 5.24 is reproduced as figure 1:!
counting from the right, the first, second and fourth lines
form the nomogram referred to in 5.3 Ex. 6 as marked
“copyright ”. The purpose of this part of the nomogram is
to obtain the body area A. This is proportional to the
metabolism M of the body. The factors by which 4 must
be multiplied to give M vary, however, and all such factors
N are given on the lefthand line. This is marked on a
logarithmic scale for &V, since N is simply M/24A4; and so
this part of the nomogram is of a simpler type than
the other. |

Along this IV scale are marked two scales of the ages of
men and women at which IV has been found experimentally
to have the values indicated. The age scales are not
regular. Note that for boys of 12 to I3 years there is a
"check in the fall of the standard metabolic rate; so also,
though less markedly, for men of 50 to 59, and for women of
40 to 49. Cf. 2.0 Ex. 2, 4 : in figure 8 the comparison is with
weight, not area.

Ex. Fix a point on the N scale, and note that all straight lines through it cut

the M and A scales at gradustions which are ive the ratio, 24 times the N
graduation. 0

1 This is given on the page preceding that referred to in each book eited in
i » .

5.22 Ex, 4, ’ - .

N ]
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5.4. INTERSECTING SCALES. The lines on which
graduations are marked in a nomogram need not be parallel,
or indeed rectilinear. The theory of such nomograms is
usually, however, rather more difficult than in the cases we
have considered, and only one or two simpler cases will be
dealt with here.

The equation to a straight lineg + % =1 gives a very
. . 1 1 1
simple nomogram for reciprocals. If x=y, then a + b x

The three lines involved in the corresponding figure are
obviously the axes and the bisector of the angle between .
the axes, and the scale on the bisector is 42 times that on

the axes.

Hitherto for any purpose we have not considered axes
the angle between which is not go°. But it is easy to see that

the equation g + z =1 depends solely on similar triangles;
. P P . .
for (fig. 34) + y - BP + = ar 1. The equation is.

“BA " 4B »
therefore true whatever the value of the angle between the

obligue axes, OX and QY. If this angle is made 120°, the .
scales on the two axes and the bisector of the angle
between them become equal. This makes it possible to
get a simple diagram on which the sum of any number of
reciprocals can be quickly read off. In figure 35 the -
quantities g, 2%, I3, },...whose reciprocals are added are -
represented by OA4, OB, OC, OD, OE,......The successive
sums are marked on'the sloping lines OY, OZ alternately.
The points are noted with great ease if a straight line k
ruled on a transparent celluloid sheet is used to connect
successive points; or by two workers each using a fine
thread.

Ex. 1. Why do successive Ps come nearer to 0! Does this fact affect the
worth of the pomogram ?

Ex, 2. Construct nomogfams of this type for

A - 1 1 1 - 1 1 i
ai’ P g2 sind sin B sin O* A

, 5:5. EMPIRICAL NOMOGRANS: Most important is it
"t note that in practice it is not. necessary tn knoW the

” »
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theoretical basis of a nomogram before being able to
construct it. If either from a formula or from experiment we
can get a sqfﬁcient number of relations between the given
variables g and b and the unknown variable x, then itis
usually possible to get from the intersections of lines joining
pairs of values of a and b which give the same value for x, a series
of graduated points for ¥ which lie on a curve. From these
points the x scale can be completed by interpolation.

Many examples of this mode of procedure can be found
in textbooks or articles. We shall consider here how to
devise an alignment nomogram to serve the purpose effected
by the scales' on the back of the horse-power slide rule,
figure 25. In 3.221 we found the work done by steam in the
cylinder to be Pv,(1-+2-3logr)/r. It follows that the mean
pressure p during the increase of the volume of thesteam in
the cylinder to a value v, is P(I1+2¢3log7)/7, where constants
relating tocondenser pressure, etc., are omitted for simplicity.
r here is the expansion ratiov,/v,: this we can replace by
its reciprocal, R, the ratio /v, at which the steam is cut off,
and the formula<for the mean pressure becomes

p=PR(1—2'3logR)
This is the formula that is required by the scales on the
back of the horse-power slide rule, ¢.g. if R=+ or 10°/,, then
151+ 2+3logl0)="-33, which is the corresponding reading on
the scale of coefficients.?

1 These are called fized or Stationary scales, or simply double graduations,
and are sometimes classed as nomograms, An example has been noted in passing
in the nomogram for the capacity of a tank, 5.3. Other examples may be found
in the Dictionary of Applied Physics, III 635, or, more fully, in Lipka's ¢ Graphical
and Mechanical Computation ", p, 5, The graphical table of logarithms illustrated
in figure 36 is another example of stationary scales : note that here, as in 5,1 there
is no need to trouble with proportional parts to get the fifth decimal place ; all
that is needed is skill in reading a scale (1.31). Another example is the relation
between the fixed logarithmic scale and the centimetre scale mentioned in

1.431. Cf. also the lefthand ecale of figure 1, ete, . ’

2 The engraver has done more abundant honour to the hack parts (fig. 25) of
the horse-power slide rule by reproducing it on & larger scale than the front (fig, 24),
which also is shown somewhat enlarged ; but vhis had the advantage of making
thc mean pressure scale more easiy read in the figare than in the original
ingtrument | (Ear the actual size, pee S.84.) ¢

+
1 4 , > ’
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Fig. 36. Part of Tichy's Graphical Table of Logarithms,

(The length of page of the original table is evidently twice that shown above.
In this space is given what ocsuapies 28 lines of the same size in, say, Paterson’s
Five-figure Togarithmj; Tables—including both logarithmic and anti-logarithmic
tables; but the accuracy of the latter is not as great as that of Tichy’s Table. And
so the difference in actual space occwpied by the two tables is not so much. In
Chambers’ seven-figure tables, 12 pages are rejuired for the same range of the
logarithmio table.)
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When we consider how to represent this formula by a
nomogram, we see that it is not one of any of the forms we
have considered, and so we cannot say how the figure should
be arranged. But it is easy to calculate from the formula
suitable corresponding values of P, pand R. If then the scales
of the two pressures are set out uniformly on parallel lines in
opposite directions (fig. 37), it is easy by a series of inter-
secting lines to get the graduated line for R. Thus for the
extreme value R=1, or 100°/,, P=p which gives one end of
the R line as the intersection of all like graduations—a kind
of centre of symmetry for the pressure scales. Again for
R=0'1 we get p=+v% P (1+2-3), whence come the pairs of
values for P and p, 100, 33; 200, 66 : the intersection of the
lines joining these pairs of graduations gives the point
R=10°/, on the Rline. And so on, for as many graduations
of R as we judge to be useful.

Mr. Kharegat, who with many details and altcrnative scales, such ag
engineers dclight in, prepared me this nomogram, much reduced the amount of
drawing required in constructing it by using the fact that the above formula belongs
to a class for which thg corresponding nomograms consist of three rectilinear scales
two of which are parallel; this is the class (B) described in the Encyclopwedia
Britannica, 12th, edition, Vol. 31, p. 1142. Obviously, when P=0, then p=0, and
therefore the R line is the join of the zero graduations of the pressure scales. Then,
taking P =100, it is eagy to calculate values of p corresponding to the values of B
Whichare to the graduated : a fan of lines radiating from the graduation £=100 to
the graduations of these calculated values of p intersects the line of zeros in the
corresponding graduations, When these graduations have been marked, the con-
struction lines are of course deleted.

/ -0001635¢

Ex. 1. From the equation °="m construct the nomogram for the

correction to be applied to the reading 4 of the brass scale of a barometer at
temperature ¢ (cf. 5.1 Note),

Ex, 2. The area 4 of a segment of a circle smaller than a semicircle is given
approximately by the equation A=3}A3%c+5 ch, where 4 is the height and ¢ the
chord of the segment. Construct a nomogram to give the result of this equation. (If
the formula is written 4 =22} Aje+3c[R) it is reduced to the type here considered
——sometimes called Z diagrams : rectilinear sca‘es for 2, Aje a.nd A compose
the nomogram) “

5.6, The Principle of Duallty. Mention shouwld be
made here/of another way of relating nomograms to Cartes-

» »
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B

ian diagrams which is sometimes illuminating.? In the
latter figures we regard a line / as determined by two points
P; and Pq; in the former this corresponds to a paint L deter-
mined by two lines, p; and p2. This can be easily worked
out in figures 38 and 39 ; there the ordinates and abscissz

Nomagraphie

Axes

-4.0 &aﬁntfcm,«»
g4z Dbt o b

[In figare 39 the lines (zy, 7,), (23, ¥2) should have been marked z;, pg
respectively.]
of fizure 38 are set out as parallel coordinates in figure 39.
It is clear that to every point on / corresponds a line through
L : this is illustrated by the point of intersection with the x
axis to which corresponds the line through the origin of the
y scale in the nomogram.

'

1 Cf. Journ, B{3l. Chem, 59 991, The principle has far-reaching applications
fn pure mathematics, A dlstmctlon may be made between the point (or punctual)
- equatiorn, those we are accustomed to a8 determining which points are on the inter-
gection lines in ordinary graphs, and the tangehtial equations of -the corresponding
points which lie 7n scales in alignment nomograzis (Hezlet’s “Nambyrapby”, pi 16)
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Ex, Prove that the ratio of the distances of Z from the 0’, 0" scales is equal
to the ratio of the intercepts of £ on the x, y axes; i.e,, all points which correspond
to lines of equal slope are equidistant from either the O’ or the 0" scalel Obtain
an expression for the distance of .Z from the line of origins 0'0”,

(Note that OX corresponds to 07, OY to @', and 0 to 0'0").

5.61. To apply this idea to the body area nomograms
given in part of figure I and in figure 33, it is necessary
first to modify the latter so as to transform the curves for
equal area into straight lines. This can be done as in 9.4 by
making the scales along the axes logarithmic; for, putting
X=logW, Y=IlogH, the equation given in 5.3, Ex. 6 becomes
*425 X+ 725 Y=a constant, if the area A is taken constant
as along any one of the curves ; and this equation is linear
in Xand Y. Hence the curves of figure 33 become straight
lines of constant slope, =4%, on logarithmic ruling; and each
of these lines corresponds to a point on the area scale which
is parallel to the parallel reference logarithmic scales of
the nomogram, and at distances from these scales in the
ratio 17: 25, if the units of the logarithmic scales are alike.

Ex, Convert diagrams like that described in 9,62 into nomograms with
either uniform or logarithmic primary scales.

(Cf. Encyc, Brit, 31 1141, figs. 7, 12 ; on this page also a more general accouut
than that above is given of the principle of duality. Note that determinants
41.83) are made the basis of classification of nomograms in this ayticle in
the Encyclopedia) = , o R

\
'

1 For use later in connection with figure 64 and 9.521 (ii) we quote here
from the Journ. Biol, Chem, 59 397 : “ On the nomogram broken lines define the
position of the points of intersection of arterial and venous lines corresponding to
values of the respiratory quotient in the range between 0'70 and 100, Each of
these lines is the locus of all points correlative with lines gf a definite constant
slope on a Cartesian nomogram, But on a Cartesian nomogram, having total
oxygen and total carbonic acid (9.2 f.n., eta.) as coordinates, the sIope of a line
joining arterial and venous points mgasures the valne of the respiratory quotlent
(9.1 Ex. 3).” L’ » -

’ ’ ’



CHAPTER VI

TYPICAL NUMBERS

“ The true Logic for this world is the Calculus of Probabilz'tz'és,
the only Mathematics for Practical Men.”

(JAMES CLERK-MAXWELL.)

6.1. COMPARISONS: There are several ways in which
we think of the relations between things—for  individual
things we think of their differences or their ratios. When
we wish to compare groups of things, such as 'the coins in
the purses of several persons, addition of the values suggests
itself as the most obvious method. But this method we
should consider rather out of place if we had to compare
several patrols of boy scouts. For one thing, the possibilty
that the patrols contained different numbers of boys
suggests that a fairer method of compalison than, say,
addition of heights would be to find the arithmetic mean of
their heights.

But when we look at the boys in their patrols sized from
right to left, we may feel that simply to give the average
height is not as fully true a comparison as we should make. -
Some patrols appear very even, others slope down very
steeply to their left, while occasionally the line of heights .
is quite broken at either end, by a giant on the right, or, it
may be, by a very short, but very sharp, youngster on the
left. If we feel we must reduce such facts to figures (and
there are similar, though less “ human ’’, facts that are well
reduced to such a manageable form ), there are two things
we may do, besides finding the average.

6.11, 'Having arranged the boys in order of height,
we may decide to take the middle height {or the mean of
the two middle heights if the number of boys is even) as
typical’ of the whole. The reagonableness of this may
be”seen more_ clearly if wg consider another comparison,

4 o
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say, one between the wealth of people who dwell in different
parts of a city : comparison by taking the arithmetic mean
of the wealth of a number of people selected at random from
each district may be quite fallacious if, say, in a poor
district there has been included the wealth of a millionaire
who is content to live in a humble way. If, instead, the
numbers representing wealthiness are arranged in order of
magnitude and the middle one taken, the abnormal influence
of exceptional extreme numbers is avoided, and a more
truthful typical number than the arithmetic mean in this
case is obtained. This is called the median.

If you test a few series of actual measurements of any
kind (e.g.r those in Table 1) and compare the median
value with the arithmetic mean, you will find that in most
cases they differ but little; and hencé you will feel that
the median is quite adequate to give us what we have
expected from the mean value, and you will have further the
satisfaction derived from the comparative ease with which
in many cases it is obtained. But even more important
is it to notice that here we have introduced quite a new
principle in that we are using order of magnitude to guide us
to a typical magnitude, and not magnitude itself.

The idea of order has become prominent in higher mathematics, and it is
interesting to find a practical use for it in elementary work.

A. A, Robb has constructed a theory of space and time based on the
ideas of *“before’ and “after”: times, points, lines, and planes are known only in
their relations of succession, not fundamentally in their identity or equality; but
the ¢ order ” used is called “conical ” order, to distinguish it from linear order.

Ex. What is the median value of 222

in the example, of 2.21? Does it
differ much from the mean value?

6.12. But this does not enable us to differentiate
between the patrol which is very uniform as regards height
and that in which there are great differences. To do this
we must seek the aid of quantity again, and find the
deviation of the heights from either the mean or the median
value. The idea of this is almost obvious. 'The difference
between each measurement and the mean is found, and the
sum of all these (obviot‘ljsly without respect to sign) is
divided by thé number of measugements to get the mean

r , , >
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"

devlation from the arithmetic mean: so also for the mean
deviation from the median. This gives an acceptable measure
of the differences within a group, while the A.M. or the
median indicates the position of each group with respect to
others; and so from the two numbers, a typical height, and
a deviation from that height, we get a fairly vivid idea of
the appearance of each scout patrol.

6.13. We have used scout patrols as a simple illustra-
tion. But if one is to think fairly of statistical work, it
cannot be too carefully remembered that the word *“typical **
becomes full of meaning only when the number of things of
which it is a type is large. If the type of a large number of
things is well chosen, there is a large degree of certainty
that a particular individual thing will resemble the type
closely!: but, when the numbers are as small as those ina
scout patrol, little can be said with the confidence of
certainty behind it ; and this would still be true with less
uncertain things than boys! In statistics the ‘“universe?® of
things considered should be as large as possible: how
good, manageable samples should be tuken from that
universe is a difficult question which is examined in text-
books on statistics.

6.141. Another typical number is the mode, which is simply the value
that occurs most often in a large group of measurements—it is the position of the
maximum in the frequency curve (Chap. VII), the * fashionable” measurement,
But we do no more than mnotice it here, though it may be very reasonably
regarded as the proper typical number from which to measure deviations, Relationg
can be found between the positions of typical numbers: cf. 7.42, The geometric
mean (2.21 Ex. 2) is rarely, and the Larmonic mean scarcely ever used.

6.1242. As to measures of deviation, there are others than the mean
deviation which are empioyed because of convenience in calculation or for other
reasons : these are much used in investigations, but they lead us into more diffienlt
regions of thought and manipulation than we may enter here, We cousider only
one of these measures, the quartile deviation, in 6.3 and there it will be seen
that this measure of deviation is rather arbitrary, though quite in aceordance with
commonsense standards. The standard deviation is mentioned in 7.52,

6.15. The consideratica of measurements made in thig complex world by
the imperfect means, with which we are equipped must raise many difficulties :

1 This of course does not exslude the - practical certainty ” that in a large
number 8f measures there will be some that gre very different from the typical
nember. See, eg., the rainfall figures in 6,52 Eg. 2. "
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.

through these difficulties scientists are just feeling their way, and many non-
mathematical scientists simply follow empirically the methods which have been
deviged by statisticians to give meaning to measurements. There is often no proof of
the “correctness” of these methods save in the intelligibility of the results
they give. But it all makes the study of this branch of mathematics more of an
adventure ; the thrill of seeing for oneself the vistas that great intellects have
descried ( or merely indicated, for intuitionl is the way of the great in Mathematics
as in other fields) is exciting enough ; but it is possible for any of us, who are not
content with merely travelling through the carefully mapped regions of the text-
books, however interesting, to experience the thrill of finding sure ground through the
many difficulties and uncertainties of the application of quantitative idcas to everyday
occurrences : we have only to be on the lcok-out. A key to the meaning of the gusts
before the rain-cloud bursts, or to thc way in which advantages are balanced when
prices are fixed, may be given us at any time !

6.2. TYPICAL RATIOS : These ideas may be applied
not only to single measurements but also to pairs of related
measurements; for the ratio of these, just as any other
function, may be regarded as an indirect measurement.
But this statement has a special meaning when we use
mechanical aids in dealing with the ratios of these pairs of
measurements.

, .

6.21. Already with the help of the simple slide rule
(%13 Ex. 4) we have worked out something like the
converse of this: given a number e. g I-414, which we
may regard as typical, we have found pairs of integers
whose ratio is approximately equal to this. And so, if we
are given a number of pairs of measurements whose ratio
we know should be constant, e g, measurements of the
circumferences and the diameters of coins, we can find
opposite the end of the slide a good value for that ratio by
moving the slide about till we judge the pairs of measure-
ments to be on the whole as nearly opposite one another as
possible. This of course leaves a great deal to the
judgment of the user of the slide rule, but it is a device
well worth practising just because of the speed with which
it operates, and its freedom from arithmetical errors (cf. also
1.33). ,

¥
[

1 Mathematigians like 8. Ramanujan, have often , stated propositions, of the
truth of which they were confident, though thes could not prove them.
12 ) !
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This method can be extended to more complex relations between two
measurements if a suitable slide rule is available; e. 4., to pairs of numbers with
a constant product zy (as for Boyle's law) if the slide is inverted, #.16, to pairs for
which @y is constant with the ordinary four-scale slide rule, and to pairs for
which 22y is constant if the slide is inverted in the ordinary slide rule; and so on,
(See any book on the slide rule, or Horst von Sanden’s ‘¢ Practical Mathematics ”
pp. 23, 24, Cf. also 9.45 Ex. 2, etc.)

In using this method we are really considering the
order of the graduations with which we are concerned,
- arranging them, some on this side, some on that side, in a
balanced way; and so the result we get is of the same
nature as the median value of the factor that expresses
their “ constant ” relationship.

"

6.22. A less empirical, though more cumbersome, way
of arriving at this median value itself, without performing
the arithmetical calculations, is to plot the pairs of
measurements in a way that suits the special problem
before us. Suppose we are given pairs of values of x and
y which we know lie nearly on a curve, x2=ky. Each pair
of values of x and y substituted in this equsation gives us a
value of %, and from among these we have to choose.

Instead of working out all this arithmetically, arranging
the values of k in order and choosing the middle one, we
set out the problem in a much more striking way by care-
fully plotting points (2%3). We thus get points more or
less on a straight line through the origin; if each of these
points is joined to the origin we get a narrow fan of lines,
the slope of each line being a particular value of 1/k.
But it is better not to draw the lines. Instead, we pass a
fine thread through the origin and each of these points in
succession, beginning with the least slope; we really are
arranging the values of 1/k in order of magnitude. We
know the total number of points, and so it is easy, as the
thread passes over the plotted points in succession, to stop
at the middle point.® The calculation of % from x%/y for
this point givestus the required median value. (Fig. 40.)

In some respects the method af 1.33 is more general, for the trend of the

points ;g‘lotted need not be through the orjgin: but this absence of a fixed point
ma4kes it a very arbitrary pr'oceeding, to determige a line which igin a xdnedian

P
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position with regard to all the points. This, kowever, is what is really done in 1.33 3
and there is no reason why a skilled experimenter should not estimate, in
accordance with the idea described in the next paragraph, the positions of quartile
lines through a iinear assemblage of points, if that would serve any useful purpose,

6.3. QUARTILES. In connection with the graphical
method of the last paragraph it is guite convenient to
introduce the second measure of deviation referred to in
6.181, though it has no special connection with fans of
lines. It is obtained by considering the “scatter” of the
values below and above the median value. The method is
just a repetition of that for finding the median : the middle
value, in order, of the measurements below the median is
called the Yower guartile ; that for the measurements above,
the upper quartile. This gives us at once a good idea of how
the values are distributed, whether close together or far
apart; and the fact as to this distribution can be stated
adequately and concisely by noting the difference between
the quartiles, the inter-quartile range. A measure of
deviation commonly used is the semisinterquartile range,
or quartile devigtion; it will be seen in most cases not to
differ much from the mean deviation from the median (and
that from the mean also): it is also called the probable
error’ of a symmetrical series (Bowley’s “Statistics”?,
p. 113 ); but this term is given many meanings: cf. 6.%.

This deviation is shown graphically in figure 40, where
for clearness a greater ‘“scatter” amongthe 15 measurements
is shown than ought to occur in a good series. The point
which gives the median value is shown by a long arrow,
the quartiles by short arrows marked L.Q. and U.Q.
respectively.

NoTE.—In this diagram there is also indicated what often happens in carrying
out experiments : large values of the constant sought seem to depend on the size of
the absolute measurements made ; here 1% is representcd as large when y is large.

When this oceurs, it is necessary to examine the way in which the experiment

is being conducted ; 1f nothing faulty can be found in the procedure, it may then
$

1 On the same page, 310, of Yule's * Theory of Statist;cs ¥ as isreferred to
in 7.55 is explained how the probable error is found to be 0-67448975 times the
standard deviation (7,52) (or standard error). “ Probable " signifies that it ie equally
likely that an error which oceurs will be greatet or smafler than the probable errur,

2 )
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be concluded that there are limits to the absolute size of the measurements which
should be made in trying to fiud the value of the constant,! Thus in finding the
value of T by direct measurement very small circles and very large circles are not
used because both are so difficult to measure with accuracy. Perry puts it thus:
¢ the percentage error or the probable error may be in some curious relation to the
observations, ”

6.31,> There is no reason, save convenience, why in
considering values at a given distance along an ordered
series we should restrict ourselves to the fractions %, %, 4.
It is sometimes convenient to note the values at %, %, Toy-- e
along the series, and these values are called the first,
second, third,......deciles.? So also we might speak of
centiles, the values at intervals of 13 These typical
numbers are sometimes useful in making general compari-
sons: thus “in the statistics of wages the upper* decile is
always somewhat less than twice the median...... In the
distribution of salaries the upper decile is approximately

twice the median............the prevailing distribution of
tncome from property. In the Massachusetts probate statistics
the upper decile is eight or nine times the median............

Among French estates the upper decile is t8irteen times the
median, . Cf. also Bowley, 0. cit. pp. 68, 70.

6.4. Hitherto in this chapter we have been concerned
mainly with the relation among themselves of numbers in %
series. But we might have proceeded directly in the
problem we first stated by comparing sets of values two
by two, found some relation between each pair, and
combined these relations; instead of, as we did, trying to find

1 Chemists sometimes speak of optimum values of the substances to be used in
an experiment ; thesz are related to the size of the weighing machine which has been
found most sensitive and consistent : and this depends on the dimensions of our
hands and eyes : and eoafter all it is only commonsense |

2 The remainder of this chapter is not required in Chapters VII and VIII,

3 Galton plotted at equgl intervals the values of a series in the order of their
increase : from the LLurve through these points, the above typical numbers can of
course be read off at once (Bowley, loe. cit., p. 107 ; 7.31 £. n.) This curve is called
the ogiye because of the sudden tarns at either cnd, Cf. 9.4%41,

"4 Presumably the ningh? Or is the refesence to quartiles?, The quotation is
gi‘ven in Pigou’s/»“ Economics of Walfare ”, p. 698, Cf.9.42. | ’ .
»

]



A STANDARD FOR COMPARISON ! 93

’

quantities which were characteristic of each group. The
former is often a very natural procedure, especially when
we have some standard series with which we can compare
others. Thus in 8.4 we find the departure of the heights
from the correct heights we can calculate, and the average
error we thus get is used as a measure of the correctness
of the performance. Similarly, Professor Perry in finding
the formula which fits observed values very closely (1.33)
writes of “the probable errors in the observed values ”, and
takes for granted that it will be understood that *probable
error” (not the P. E. of 6.411) means the difference between
what the value in question is and what it ought to be accord-
ing to the,probable “law”. (Cf.also 9.33 Ex. 6 Note. )

Differences alone are sometimes what is of importance in a set of values : thus
what {s recorded in meteorclogical reports is how far rainfall in a stated pericd has
departed from the average for that period. In the Census of India, 1921, VIII 119
are given charts which show the inequality in the numbers of men and women at
all ages by the departures of these numbers from 50°/, of their total, The
superiority of this type of diagram over the more usual arrangement, in which the
total numbers of either sex are represented (e.g, Whipple, “Vital Statistics”
p. 194), is evident : cf, 7.11. Rainfall figures are dealt with thus, lec. cit. VIII 12,
CE, also 2.311. “

Ex. Find the average error of the formula you have fitted to one of the curves
in figure 8 (2.0 Ex. 2).

9

This method can be applied to marks of students in two
examinations marked on the same scale; but in such a case
(just as in comparing by pairs the heights of groups of boys),
neither set of values is a standard with which to compare
the other, and the result is difficult to interpret:e.g., if we
seek a distinguishing meaning in the average difference
between pairs (account being taken of sign), we find it is
just the difference of the A.Ms.,, which is a rather jejune
criterion ; at the most it gives a comparison of the standards
of examination. The matter is essentially very difficult :
consider the ways in which inconsistency between results
may arise—in the candidate, aspurt of over-confidence, ill-
ness or health, his temperament, the nature ‘of the questions;
in the examiner, inexperience oy weariness, obscurity in
answers, his temperament (the more stable, it is hoped’) ;
and then, errors in handling the ﬁgures.

1 ) y
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This is very depressing : it suggests to those who grodn
because of the unequal lots that are man’s in this world,
that man himself would not have improved matters had he
had the ordering of the universe! Certainly it is true that
individual scores may be very far from representing the
truth ; and consequently resort should be made on every
possible opportunity to sources of information other than
mere examination totals—we readily acknowledge that they
are far from representing life-values truly.

6.41. But we need not leave the matter there. Methods
have been developed of handling facts of this kind if they
are sufficiently numerous; the various factors,we have
suggested above as causing discrepancies tend to compens-
ate one another in ways that can be defined. On certain
assumptions' many formulz, more or less empirical have
been worked out. These are frequently applied in the
non-mathematical sciences, sometimes without much attent-
ion to the underlying assumptions, which are mathematical
simplifications of the data that are often difficult to relate to
the actual situation.? Here all that is attempted is to give
an idea of the type of formula that is available for elucida-
ting the nature of numerical data.

If we arranged the boy scouts in two equal patrols in

order of increasing height, and found the difference between .

the heights of each pair of boys, we would get a fairly clear
idea as to whether the distribution of height in each patrol
was alike, whether heights increased correspondingly on the
whole or not. This is a procedure not unlike that in the
method of ranks,® which may be used in finding the degree
of consistency between two examination tests; only in the
latter no account is taken of the actual size of the n results of .

—

1 e g, regarding the form of the frequency-distribution : cf. 7.31, 7.32,
7.42 (p. 120% R
2 Of. Brown and Thomson, “Mental Measurement”, p, 103,

3 This method may be looked upon as midway between what Yule
distinguighes in his ¢ Theory of Staistics” as the theory of attributes (qualities,
types, we may call them: cf. 7.211% n.) aad the theory of vgriables (in which
thele is a definite order for the groupe) : of, Brown aud Thomson, op, cit., p. 331,

L » oy
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each of the tests arranged in order of magnitude. The
calculation in this method is made in two stages : first is
found the number p, the rank correlation coefficient, from the
6 22
n(n—1),
ranks for each individual in the two tests ; and then is found
from r=2sin(p 30°), the correlation coefficient® r, which is a
measure of the degree in which the two series agree, +1 if
there be perfect consistency, 0 if they be indifferent to one
another, —1 if they be perfectly contrary to one another
(ci. 7.622).

Ex, In Table I are given three sets of marks obtained by stndents at a test
examination and at a public examination not long after : f signifies a failure at the
latter examination, the marks earned not having been announced. Verify that by
using the above furmulax (neglecting fractions of ranks) the values of » for 4 and
B are *700 and ‘788 respectively. (This indicatss a rather higher consistency than
a mere inspection of the figures suggests, though a still higher consistency should be
possible.) Test the marks in some of the ways indicated earlier in this chapter
e.g., by reducing the marks to percentages, finding medians, etc.: space is left
for doing this. The marks in O are given for further practice.

(The results of £ seem more satisfactory from the point of view of those who,
conducted the test examination in that only three of the candidates failed at the
public examination; but, if the public examination is taken as the standard, the
coefficients of correlation indicale that examination B was a more reliable
investigation than 4 of the ability of the students. But this comparison of the values
of ris upjust: for in ranking the larger number of failures in Bg, they were
arranged in the same order as they had at the test examination. In the absence of
the marks scored at the public examination by the candidates who failed, the
only way to make a true comparison is to include in the calculation only the
marks of successful students,

Another possibility of vitiating the comparison is the fuct that the last six
candidates in 4, and the last eight in B, had failed at a former examination and
were not regular students, The marks of these candidates noticeably fluctuate,
whatever the reason, and perhaps they should be omitted from the comparison,

If the numbers given are numerous, they should be written on cards, one
for each individual, and these can be sorted in any desired order. But in a case
like that of Table I the following method of neting the ranks is effective,
Working from the highest score downwards, choose a convenient mark, and put a
dot, or other small sign, opposite the marks (three {3 eight, say), which are higher
than that chosen, The rank numbers ean then be easily -ssigned to these few

formula p=1-— where 4 is the difference of the

1 Other approxlmate values for, r are given in a convenient way in Yule’s
“Theory of Statistics” ) p. 2021, ’
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TABLE I—Consistency of Examination Marks

Total

2%

10

17

15

1
13

21

MEASURES OF GENERAL ABILITY

Aq
825

192
278
249
227
244

173
188
202
198
330

199
232
436
218
213

229
175
205
254
347

242
199
218
192
274

247
174
209
199
345

249
227
197
267
251

232
219
295
220
180

226
350
196
229
22%

4.
625

277
33¢
338
245
317

223
220
220
257
343

292
269
427
275

s

321
211
f
300
364

282
251
330
245
279

275
261
267
277
377

300
263
239
250
306

241
351
353
23
249

290
302
299
2ve
266

B,

725

250
179
217
198
193

166
170
286
449
178

267
222
437
367
229

297
339
258
176
292

280
239
326
228
229

251
301
222
308
226

248
290
197
272
296

202
188
230
396
216

205
428
385
163

e 262

B
625

393

y
299

»

Gy

700

329
332
262
322
297

306
272
380
355
280

L]
263
299
289

240

269

249
322
292
257
262

306
269
423
259
274

376
327
361
263
334

293
287
299
319
369

243
360
342
270
258

228
293
252
%37
390,

e~
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’

values and written so as to obliterate the dots. If the process is repeated down the
series, the ranking is effected with a minimum of strain on the attention. The
method is indicated in column A4;. Note that if identical values occur an odd
number of times; the middle rank is repeated that number of times.)

Ex, 2 Some of the marks in Table I give the impression that at the test
examination higher marks were given on the whole to the better boys than
they earned in the public examination-—possibly due to unconscious bias in the
teachers who conducted the test. Does an examination of the marks, by the
methods of Chapter V1L or otherwise, confirm this impression? Is there any way
of saying that one examination is more reliable than the other ?

6.411, It is worth while examining the vague statement
in 6.1 about the procedures in comparing heights and
marks. The object of the comparison of the patrols by means
of the heights of the boys is not to find which patrol is the
taller on the average, but to test how far height is a criterion
by which to establish the similarity of the patrols. We have
no right to expect that height will be a good criterion,
though it may be such. In examination tests we have a
right to look for consistency in the marks of individuals on
the whole. It is just because of this distinction that in one
case we compare, the measurements of pairs of individuals
who have to be arranged to give some sort of regularity,
and in the other we consider the serial orders of the marks
of the same individual. The questions we ask are: does
thte arrangement by height give consistency in change of
height? and, do two tests of abilities, which differ in a

(contd.) A1 Ao By B2 Ci Cy
8 9277 320 171 236 302 339
15 249 291 179 7 240 291
217 243 240 f 245 286
18 246 305 250 808
v 294 361 216 316
177 f 398 499
Additional candidates )
297 258 L
276 32 '
185 276 176 f
174 275 202 278 3 (
192 268 165 281 .
186 251 186 ' 275 R
153 239 190 f C
182 ' 293 172 77 ‘ N
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.

definite way along their range, give consistent results for
the whole range of abilities of the candidates?

Rememberthatinthe case of the marks we are investigat-
ing merely the consistency of two sets of measurements;
what the characteristics of each set are we do not ask,
This would be our question if, say, we considered how often
the difference of the two marks (adjusted to a common
standard) were positive or negative—we add the differences
in some way: if we considered /how great these differences
were, we would get merely a more precise answer.

Investigation of the character of a group as a whole is
the method followed in 7.31 Ex. 3, where a diffigulty arises
as to whether ability or the test should be taken as the
standard. There irregular variations in ability are noted,
but deliberately set aside. The question is as to whether a
large area in a graph means unusual ability of candidates,
or unusual ease of tests : the difficulty is as to aggregates.
Here in 6.41, it may be repeated, the difficulty is as to
consistency of measurements—whether in one case height,
the type of measure chosen, is such as to show consistency,
and how far in the second case the marks show the consis-
tency they should show.

The possibility of treating statistics in a variety of ways is a matter you should
ponder repeatedly in special cases, In the simple case discussed above it may
quite fairly be held that the comparison i a bad one; for the procedures are the
converse of one another in respect of the origin of the pairs of measures compared,
the nature of the measures, and also in that in the second case one series is taken
as a standard of rank; cf. also .52, where differences along a time series are
considered, It may be held too that the way suggested for comparing the patrols is
esgentially valueless. It is certainly well worth your while to form a considered
opinion on the matter, after you have tried to get results from the actual figures,

This objection to a standard would have apparently
more cogency if the formula we had used were
Spearman’s “footrule”, which gives in an easy way
from their ranks a rough idea of the amount of

consistency between two sets of numbers. Spearman’s
. 63

coefticient is expressed by R=I_nz—fl’

is the sum of the “gains” jn rank (sum of positive

differences) of the Zecongl series ¢nthe first. A discyssion
L

£

where Zg
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of this formula will be found in Nunn’s Algebra II 472, 488.
It may be tested on the marks in Table I; for »==sin (R 45°).

Ex. Consider how far quantity and order enter into each of the procedures
discussed in @.211.

6.42. But it is not enough to calculate correlation
coefficients. The value found may or may not be significant,
A test of this is given in the probable error of » which in
this case is defined by P.E.=-6745 (1—#2%)/ J/».' In the above
example this works out to -045 and -036 for 4 and B
respectively, and the comparative smallness of these values
indicates that the correlation is a reality : a criterion given
for the reality of a correlation of any degree is that » should
be at least six times its probable error.

6.51. Thus far in this chapter we have considered only
sets of numbers occurring simultaneously. When we
consider series of values which are measured concurrently
in time, a new consideration emerges much more clearly—
that of cause and effect. We have tried to define the nature
and extent of similarity or contrast between sets of values.
Can we now determine how far similarity or contrast in the
variation of two series of numbers indicates some causal
relation?

Sometimes the relation 'is obvious: the following
represent, at fortnightly intervals during the year 1914, the
percentage f of plague-infected rats examined in Bombay,
and d the plague mortalities for the same intervals :

f 8122027523531 25 17 1'2 0-7 0°4[0°4 04 02 0-3 0-3 0:3)0-2 0:2 02 0°1 01 0-2
42 3 9184252/56322513 6 1/ 3 2 1 5 0 0/ 0 0 0 1 0 2

If curves are drawn representing these figures, the fact that
the curve for plague deaths repeats the curve for rat fleas
after a certain interval is very apparent: this is so especially
if the vertical scales are adjusted so that, say, the maximum
’

1 The proof of this formula is much beyond our scops : cf.cNunn, gp, ¢it, 11 500;
the fraction is that mentioned in 6.3 f.n, Nunn finds a probable error of
0-43 1+ 1 for Spearman’s coeffiient. »
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100 CORRELATION IN TIME-SERIES

on each is the same—the lag, the interval in time between
corresponding points on the curves, could then be measured
as the average of the differences of the abscissge for eqgual
ordinates at regular intervals along the curves. Or, the
time-origin for the mortality curve may be set back (1.21) by
an amount equal to the lag and then the closeness of.
coincidence of the two curves may be observed directly :
this is a satisfactory device, for there is little meaning in
measuring the lag with great exactness—the relation of
cause and effect is not usvally simple and unigue. A good,
though laborious, way of determining the lag in more
obscure cases is mentioned in Ex, 2 of 6.52.

6.511, These numbers may also be comparéd as such
without a graph if they are reduced to a convenient common
scale, say, percentages of the mode or some other typical
number in each series. The resulting numbers may be
regarded as Index numbers of each variable. In this form,
after the correction for lag has been applied, the numbers
may be compared by their average error; and this may be
taken, as in 6.4, as an inverse measure of “the closeness of
their correspondence, or fit, or correlation, whichever word you
chose to use.

6.52. If we seek a standard number by which this
correlation may be expressed, there are several such which
are not difficult to calculate; but the meaning of these is
very difficult to state with exactness.! In books on statistics
information is given which will determine how far a char-
acteristic number is suited to a particular type of problem.
One such numberis the coetficient of concurrent deviations;

2c—n

this is r=:}:\/:h "

concurrent deviations out of a possible number #; in some
cases it gives a rough indication of the correspondence
between series of numerical observations. It is described as

L]

, where ¢ is the actual number of

1 In the Census of India, 193, VIII cxvi is given a graphical description of

a case Of inverse correlation where the resglt of calculating fhe ceefficient of

correlation was judged to be’qisleadjng | .
v
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CONSTRUCTION OF A FORMULA 101
“a coefficient of correlation which has the merit of extreme
simplicity, and in most cases may be used satisfactorily in
the study of short time oscillations® (cf. 2.311)......it takes
almost no account of the general trend......well suited for
use with irregular graphs......in which smoothing by means
of a moving average is well-nigh impossible.”’?

The deviations here considered are the increases or
the decreases of successive numbers in both series: if two
increases or decreases occur simultaneously, this is called a
concurrent deviation of the measurements. "The main idea
of the formula is made obvious by considering the extreme
cases, when there is nothing but coincident changes and
when there are no such changes. Expressing this alge-
braically, the three pairs of value of ¢ and » we have to fit
into the formula are respectively n,1; 3#, 0; 0,~ 1 : the middle
values determine the form of the numerator. There is no
such clear reason for taking the square root, but this is
frequently done in defining typical numbers. In this formula
the upper or lower signs are taken together, for a reason that
is easy to see. ?

Ex. 1. 'When this formula is applied to the flea, plague figures given in
6.51, a negative value of r is found for the figures for the whole year, whatever the
Xag be. (This is obviously due to the inclusion of figures for the second half of the
year when no definite cause was operative., and only random cases of plague,
probably imported, are recorded.) The figures for the first six *months alone give
practically perfect correiation, cither with or without lag. Test these statements,
and state what the indiffcrence to lag in this casc signifies for the formula,

1 This remark is not quite supported by Exs. 1, 2 below; but note the words
“in most cases’,

2 King, “Statistical Method”, pp.207, 211 : but no specific reference to the
original authority is given which would enable us to examine applications of the
formula. The insafficiency of considering only the scnse, and not the magnitude,
of the deviations is brought out well by the following clear statement of principle,
given in the article from which Ex. 2 is taken : « If eyery fluctuation ia the rainfall,
appropriately measured were followed by an exactly equal, appropriately measured,
fluctuation in the incidence of cholera, then the coefficient of ’correlation would be
unity. If there were no relation between increases in rainfall and increases in cases
of cholera, the correlation coefficient would bezero, If increases in rainfall were
followed by equal’decreases in cases the coefficient wo?ld be —1.” ,

» v
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102 A WATER-BORNE DISEASE

Ex, 2. The following numbers give z the rainfall in the catchment area near
Poona, and Y the deaths from cholera in Poona City from June 7 to August 31,
1914 : figures up to October 31 are added for comparison.

@, Daily Rainfall (in cents, *01”) from June 7.

| 0 12 18 0 (VN 37 0 43 1656 40
| 28 0 0 22 173 120 115 40 12 71
247 276 93 81
July 49 93 61 61 74 239
220 462 368 487 267 201 187 120 201 224
647 669 508 711 829 383 2903  BS9 227 325
219 241 310 239 218 .
August 343 284 206 420 591
422 398 187 87 51 59 87 77 31 90
12 15 12 31 82 94 145 85 151 146
42 12 25 37 34 7
September 0 0O "0 o
14 0 1 0 42 41 22 52 66 28
43 276 311 291 55 18 0 0 0 4
0 30 44 15 0 19
October 0 13 105 76
1 0 0 0 26 0 19 0 0 7
5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

|

¥, Cholera Deaths from June 7 »

1 0 0 0 1 0 0 1 0 0
0 0 0 1 1 0 2 1 1 1
0 2 0 2
July 2 0 o 0 5 17
1 1 1 5 6 0 4 4 2 6
6 7 8 6 6 6 5 10 6 10
12 11 14 8 6
August 8 9 4 2 7
2 4 1 2 3 10 6 2 3 1
4 2 2 3 0 0 1 0 1 1
0 2 0 0 0 0
September 2 1 0 1
1 0 1 0 0 1 0 1 0 0
0 1 0 1 0 0 0 2 0 0
0 0 0 0 0 0
: October 0 0 0 0
. 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 1 0 0 1 0 0

By using the standard forfula for correlation (not discussed in this book) the
following coefficients of correlation r were found between the rainfall igures (taken
however, right up to Oct. 31) and the number of deaths 0, 1, 2, 3,......13, 14 days
later ¢ -

L4 ]
58+« -63 .88 .57 .64 Y -67‘,'-73 18 J78 <76 .66 -62 -62 N 51

P
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MANIPULATION OF THE DEVIATIONS 103

v

- (The value of » for an interval of nine days being the highest, this interval was
taken as the lag; and the reality of the correlation wastested by an investigation
as to the possibility of infective germs reaching Poona in that time, "The corre-
sponding P. Es. .(6,42) were

04 .03 -04 .04 .03 03 .03 -03 -02 -02 -02 -03 -03 -03 .04,

Find for the figures from June 7 to August 31 the corresponding fifteen
coefficients of concurrent deviations, 1f you find that these coefficients do not
confirm the above result, consider any possible defects in the method of
concurrent deviations or in your application of it: eg., whether it is right to make
“no deviation ” uncommon in the rainfall series by measuring up to *01” ; whether
the figures should be smoothed first by a moving average of, say, about a weelk;
cf. 9.33 Ex. 3; how “no change” should be reckoned—taken as one of three
kinds of coincidence, or taken as a coincidence with both incresse and decrease,
or excluded from » altogether. Make a thorough search for there is a connection ;
cf. 9.4 Ex, 5: Laplace defined Probabilities as “ good sense reduced to caleulation,”

( Note that the number of pairs decreases by one for each day of increase of
the lag reckoned. The comparison may be made very easily by writing in order on
two pieces of ruled paper the signs for increase, decrease or no change, +, —~,or .,
regularly spaced ( three or four between successive rulings), and by placing the
paper showing the deviations of cholera mortality over that showing successive
deviations of rainfall, and marking in columns on the former the coincidences for
lags of 0, 1, 2, 3,......, 14 days. The mortality paper is moved one place dowa for
each increase of the la@ allowed for. In this way a record is got of the places in
the series where coincidences are most frequent in each case. The comparison may
also be made fairly easily from a table of signs arranged regularly in tens, like the
@,  tables,

» For the reason given in Ex. 1 the low figures of rainfall and plague mortality
from September 1 to October 31 are not {ncluded in the above. But they are added
in the 2, y tables, so that it may be judged from the figures what is the effect of
their exclusion : for reasons coanccted with the investigation into the disease it may
have been necessary to include them, )



CHAPTER VII

FREQUENCY GRAPHS

7.1. CHECKING IMPRESSIONS: We must now consider
how the chief ideas suggested in the last chapter can be
applied to large numbers of measurements—so numerous
‘that their addition, or even their arrangement in serial order,
would be very laborious or impossible ; e.g., we cannot find
directly the typical height of all people of a certain age;
we have to take a very large “sample ” of such people, and
even then the mass of data we accumulate by measurements
may be difficult to deal with simply by use of the ideas we
have examined so far,

In chapters Il to V we have generally considered how
to deal with quantities which change in some regular way
(in accordance with a “law”, it may be said), which
is known. This regularity has been expressed by some
formula of greater or less complexity,and we have
discussed methods applicable to all such formula. But
there are many relations we meet with constantly which
change in no obviously regular way, but yet are recognised
by everyone as controlled by definite forces. Take the
heights of children 10 years of age ; they are not alike, and
yet we have a general idea as to what height a child of
that age “should be”, as we say; i.e., we acknowledge
that there are forces and conditions which determine in a
fairly definite degree what the height at a given age is likely
tobe. We caninvestigate the matter further, e.g., by saying
that parents of average size in a certain community will
have children of equal heights at that age; but we are not
much surprised if we find our prediction falsified, and we -
are very ready to acknowledge that the forces which -
determine’ such ordinary things are too numerous, or too-
elusive, for complete description.

Are we then to give up thinking of such things? Are
our general impressions, which we all share, mere illusions?
We have illusions ; aifwl so it behoves us to apply the test of

v D v



GRAPHICAL COMPARISONS 105

measurement and arrangement to our impressions, or
rather, in the first place, to what they are based on.
Lord Kelvin has said: “When you can measure what
you are speaking about and express it in numbers,
you know something about it, but when you cannot
measure it, when you cannot express it in numbers,
your knowledge is of a meagre and unsatisfactory
kind.” You perhaps rise at once to contradict this, or
at least to say that it is only a partial truth. But it is a
saying that goes deep enough to treasure with you and
ponder over at least for your student-days. We may hope
to see more deeply into it now.

7.11. Thsre isa graphical method of representation of numerieal facts which
we need not consider here, By means of areas, it may te, of various shapes,
sizes and colours a striking idea is given of, say, the exports and imports of a
country, and how they should be analysed and compared with those for other
countries. This is mere graphic representation of facts, drawing certain
quantities to scale ; and this representation cannot be used to deduce anything
further as to the nature of these facts. For the purpose it can serve, however, it
has been very effectively employed in educational films, where there is the added
advantage that by change in size and shapeand colour the development of fact can
be presented graphicelly and “kinematically . The charts in the Bombay
Government’s Report on Wages and Hours of Labour in the Cotton Mill Industry
are mainly of this nature: the material in this Report which could -have been
presented as frequency curvesis given in tabular form, probably because people
trugt figures more than curves, (Cf. 7.4 Ex. 1))

Many most ingenious devices have been used to represent facts graphically.
A most striking example is the “ Butterfly Didgram ” which shows the variation in
the numbers and positions of sun-spots from year to year, This diagram is
frequently reproduced in books on astronomy, and may be seen in Hutchinson’s
“Splendour of the Heavens”, p, 146, ( This work is a veritable mine of ingenious
and interesting diagrams,) Sun-spots have been studied very thoroughly by the
uge of the methods suggested below ; and they should be noted also as affording a
good illustration of periodicity, a subject, however, that is not relevant to this
chapter : cf, 2.311. See e,g., Sampson’s “The Sun ", Ch, VI ( Cambridge Manuals) :
also compare 2.33.

A good contrast between methods of representing the numerical relations
between the sexes is given by the diagram in Whipple's “ Vital Statistics”,
p. 194, and the more striking, though redundant, grf.ph in the Census of India,
1921, VIII 119 : these are really frequency curves ; cf, p. 114 Ex, &,

’

1 If you have not been subdued by the comprehensiveness of the motto at the
beginning of Chapter VI, your revolt against it may have been still more severe,
But it is a more penetrating statement even than this, and it should be pondered
with vhre——aven to the capital Itbers! o 7 ,

14
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106 THE CHOICE OF FREQUENCY-CLASSES

7.2. QUANTITATIVE CLASSIFICATION : The first step
in dealing with a large number of quantities of the same
kind is to classify them., In a sense this is done .when we
arrange quantities in a time series or in any other obvious
way, ¢.£., the numbers of people who visit an exhibition on
successive days. When there is no clear way in which to
arrange the given quantities, we have to create classes in
any way that we think convenient and find the frequency
with which the given numbers occur in each of these
classes. In this method time is seldom the variable with
respect to which we classify: usually we consider graduated
measures of objects existing together at one time.-

The v:vay in which we chose these classes of course may make a great difference
to the result we derive, and only experience can teach us how to classify so as to
get results which are really significant—a possibility of illusion here also! In this
freedom, which may easily be abused, we have part of the reason too for the
common saying that statistics can be made to prove anything, Further, it ig this
‘ concentration of the attention on a swall number of artificial groups” which
fundamentally differcntiates statisticians from historians : for the latter study the
conduct of individuals and ¢ endeavour to improve their knowledge of the elements
of human nature in much the same way as an astronomer corrects the elements of
a planet by comparing its actual position with that dedaced from the received
elements” (Clerk-Maxwell).

7.21. This preliminary operation of counting,?
especially when the quantities are (as they should be for
reliable results) numerous, must be carried out in a systematic
way, and the results recorded without dubiety; else confusion
enters right at the beginning. Sometimes the counting is
done by special machines, but for ordinary purposes the
most useful device is to arrange strokes in fives as the class
into which the quantity goes is recorded: four parallel
strokes are made, and the fifth is a bar crossing these.
Another device gives counts by tens—nine dots in a square,
which is covered by a cross when the tenth item is recorded.
Thus

R TR e

represents 23. As in all ,calculations, it is very important
to use thecks here also as often ps possible, so as to test if

1 For “Bowley’s rules ofenumdtation” v. W hipple's “Vital Btatistics” p.:1_08.‘

"



COUNTING A SAMPLE 107

errors have been made in recording; e.g., a large number
of measurements might be taken by 100s, and the.total of
the classes checked after each hundred is recorded

7.211. For special purposes special devices can be adopted. Thus in
counting corpuscles in the blood (wherethe classes are diagnostic,} not in this respect
quantitative) the objects are practically innumerable, and all that is sought is the
. percentage number of each of the five kinds of corpuscles that may be present.
The counting has to be done for many specimens and it adds much to the labour
( especially if a slide rule is not used ) and distracts attention if, a percentage has
to be worked out when a total of, say, 153 corpuscles has been recorded. A
convenient way of avoiding this difficulty is to make the record on ruled squares of
100 small squares. When one of these large squares has been filled, the counting
is stopped and the percentage is obtained at once. 1f counting only 100 blood
cells does not give a sufficiently accurate result, the counting is continued for as
many more large squares as may be desired, and the totals thus got are divided by
the number of these squares used, frequently 5 : cf. 7,5,

ple|elele]e|e|p|P|P
o|le|e|lp ple|p|2| |
plearo|2i2oy | | I |
Plp|p|ep JT T
_P—!? P P}T R
T e EYEY
N R I A A M .
| |
T‘Th_ | | | |=®
‘L_i—L—‘TT—L——M-_M-ﬁz#?
‘L“[TTTE__L_I_?_*—E_

Fig. 41, Recording Bacteria,

The final counting may be simplified by dividing the square into quatter
squares of 25 cells each, and recording the different kinds of’ objects in different
parts of the square according to convenience; or in separate squares if several are

’

—— r

“ [N}
1 Ap example of what Yulg calls “attr)itgutes” ,:,/Theory of Statistics, Part T,
Y
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“108 THE LIMITS OF FREQUENCY-CLASSES

‘being used for a count, A square partially filled is shown in figure 41: here- the
corpuscles are expected in the percentages, P 60 to 65, L 20 to 30, M 10, E 5 and
B 05 These quantities vary in disease. When a square is filled the only trouble
in counting is in the bottom righthand quarter. -

But such devices must never be so elaborate as to interfere with the attention
the observer hag to give to his work ; e.g., if any two of the corpuscles were difficult
to distinguish, the record should be made by a person other than the observer,
(CL 2,12 Ex. 2)

7.22. Thus the first stage in dealing with large numbers
of observations of one kind is the formation of -a frequency
table. Data are often presented in this form, not as the
original individual measurements. The table may be very
simple, as in the case of blood-corpuscles, or elaborate
according to the complexity of the material dealt with. In
classifying examination percentages, for example, it may
be doubtful whether the classes should proceed by groups
of five or of ten. Very often it is found desirable to have
classes of different sizes in different parts of the table,
certainly so in statistics of infantile diseases according to
age (cf. 7.3 Ex. 5); these diseases attack glder people, but
so infrequently that it is not worth while showing the
number of attacks for each year of age separately: § or 10
year intervals suffice. There is "also this, that, when we
come, as in the next paragraph to plotting the corresponding
graph, if the groups are too small accidental variations
(note this specially in rainfall figures) are prominent and
destroy the simplicity of the figure. On the other hand, if
the groups are too large, details are obscured and a
sameness comes over the graph—the limit of which would
be the horizontal straight line which represents the average.

Ex, 1. Measure the lengths in ems. of thirty or more cucumbers: arrange
your measures in frequency tables, using class-intervals 1, 2, 4 and 6 cms. for the

respective tables. Examine the maximum girths of the cucumbers in a similar way,
Experiment thus with any fairly uniform group of objects, e,g,, leaves from one tree,

( Keep in.a systematic way the measures you make ; they will be useful in
connection with 7.6, The type of result that is got by this process applied to
agricultural problemsis illustrated in Brunt's * Combination of Observations”,
pp. 43, 47, where a thorough invegtigation ig given.)

&
Ex, 2, Form a frequency table (or #ables) to analyse the following
figtires for the June rainfall ity Bomhay during the 70 years from 1857 to »1926.

) 5
9 N ” »



Directory, 1926.)

1850

60
70
80
90

1900
10
20

FREQUENCY-TABLES MADE COMPARABLE

22
22
21
25

18
24

15

9
15
14

25
11
27

22
24
28
13

10
11
27

23
20
14
21

20
26

11
24

5
18

7
40
27

13
13
43
28

13
24

35
24
14

22
15

Treat similarly the daily rainfall figures given in 6.52 Ex, 2.

Ex, 3. The

accompanying

table shows how marks at part of

an examination were distributed

among candidates at different places

where the examinatiorywas held. It

was pointed out that candidates at

A and B had received exceptionally

high marks,

with presumably

the implication that the teaching

which candidates resident at A

and B reeceived was superior,

By

re-stating the figures as percentages
show that the figures indicate the

roverse of this to be true,

(Re-

grouping of the classes for marks

may be useful in bringing out their

meaning; e.g. 0—59, 60—119, etc.)

Note the slight modes near 20
and 160—indicating respectively the
incompetent and the

brilliant students ? (Cf. 7.5%.)

normally

Marks

0=
10-
20~
30~
\ 40~

50~
60~
70~
80~
90~

100-
- 110~
120~
130~

\

",
.
&

A

3
7
12
8
13

22
18
24
32
17

13 -
12

D

O M OU W

202

=]

12
33
45
42
25

12

ot ov
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(These figures, and those for other months also, may be found in the Times of India
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7.31. NUMBER REPRFSENTED BY AREA : The numbers
in 1 frequency table »may be deult with by entirély
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110 " BREADTH OF COLUMNS

atithmetical methods, and in the end these methods are the
most satisfactory (5.3. Ex. 2 f.n.). But they are sometimes
laborious and difficult. Here in the first place we shall
consider how the numbers may be represented graphically.
We might do this, as in Ex. 4 below, simply by plotting a
point above the mid-point of the interval and at a distance -
from the axis proportional to the number in the interval. .
But, seeing that the measurements in a class have not all the
value which the mid-point of the class represents, it is
customary to represent the number of these, not by an
ordinate at a point which we regard as typical of the class,
but by a column erected on the length of abscissa corre-
sponding to the class-interval. Thus we get a colxumnsgraph
( or histogram!) in which the area of any column depends
on the number in the corresponding class.? It can easily be
seen that the scale of ordinates is for a column of some
standard breadth; if the breadth of the column is 1/5 that of -
the standard breadth, the height of the column must be
made 5 times what it would have been had the column been
of the usual breadth. N

Ex.1, Re-state the last sentence, substituting * class interval ” for ¢ breadth
of column "’ to get the point of view of 7.22

Ex. 2, Draw histograms for the frequency tables you have constructed in
7.22 Fxs 1, 2. ”

1 Not historigram, a word used for the type of time-series considered in
2.311.

2 Another way of representing the frequency of measurements is the
integral curve ; in it the ordinate represents the sum of all frequencies up to
the interval or measurement represanted by the abscissa, 1t is closely related to
the ogive of 6.31 fn, : for in it the ordinate represents the measurement below
which lie the number of measurements represented by the abecissa; which is
equivalent to interchanging ‘ ordinate ” and “ abscissa '’ in the definition of the
integral curve, If the scales are properly adjusted, the relation between the curves
1s seen to be that described in 2.11: you should try to express this relation in words
in some particular case, e.g., th®heights of the boys in a scout patrol. Cf. also
9.41, 9.84. The val;ges of the ordinates in the integral curve are got easily from a
frequency table by adding on successive frequencies : the final ordinate of course
represents the total number of cases,”and from it can be drawn readily the parallels
whose intersection with the eurve give the aleciles, ete. Cf Dearl, *Medical
Biothetry ”. p. 119, . '™ o .

» » w
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A SEARCH FOR A STANDARD 111

Ex, 8, The six sets of exercises
given in 4.15 on the slide rule were Marks I II III IV V VI Total

4_.

meant to be of equal diffculty, The 0 1 0 1 o0 0' 0 2
results of giving these at random as 1 3 1 2 1 9 1 10
tests to students of the same class are 9 5 1 1 0 2 9 n
shown in the accompanying table 3 4 4 4 4 6 1 23
of the numbers of students gaining,
for each of the scts of excreises, 4 S 6 1 6 3 O 23
the numbers of marks indicated. 5 4 3 2 1 1 6 17
. Sketch six gimilar column graphs, one 6 3 5 6 1 4 & 25
under the other, and consider if they 7 2 4 7 B 5 B 28
indicate that any of the sets are more
difficult as tests than the others. In 8 1 2 7 6 4 8 28
examining the answers it was felt 9 4 6 4 b5 4 2 25
that 1T was more difficult, while the 10 8 3 4 4 3 7 24
work of the students who did ITI 11 4 6 2 1 6 b 24
" scemed inferior, Can we from
“ the figures reject, justify or explain 12 5 38 2 3 1 0 14 -
these impressions ! 13 01 3 7 5 ¢ 20
14 1 2 2 3 2 1 11
(Before you draw the graphs 15 0o 1 1 0 2 0
make up your mind how the tests o
should be arranged in order of 48 47 49 47 50 48 289

difficulty. The graphs need Dot

contain 16 columns,)

Note: The other main factor that may cause differences in the results is the
varying ability of the students : the fact of this variation is apparent in the graphs,
But though it varies differently in each set of students, it may be taken as constant

",for a whole set (for the assignment of student to test was entirely random~-an equal

number of copies of each test, these placed in any order, the students taken without
gelection and assigned a test in the order they chose to come); then the criterion
of the easiness of ezch test is the total area of another graph which represents, not
the number of mark-carners, but their mark-earning capacity, This graph could
be constructed, but it has an easily worked arithmetical equivalent. (Strictly we

- ghould take the average mark-earning capacity, for the numbers of mark-earners in

the groups are not quite the same: cf. p. 118.)
Conversely, if we take the difficulty of the tests as constant, we get from this

' gecond graph a direct measure of aggregate ability.

This seems very confusing, But it shows the need for cultivating a balanced
judgment in order to approximate to the truth.l Cf, .15, 6.411.

Ex. 4, In figure 42 are shown two distributions of nebulx with respect to the
Milky Way (or Galaxy). Make from the graphs frequency tables giving the
numbers of nebulxe found at different distances north and sguth of the Milky Way.
Describe the nature of the distributions, and state how far they are consistent.

—

1 For a similar balancing of assumptions a8 to uniformity, either of Heath-rate,
or of increase of 'population, see Whlpple 8 " Vltal Statlstlcs ", pp. 263, 264,
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Per AGE GROUPS
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A METHOD OF AVOIDING BIAS 113

.

(This is an example of how observations which can be made only by the most
skilled observers with special photographic and other equipment can bg presented
in a very simple way. A complete survey of the sky for this purpose could
not be undertaken, but 139 sclected areas were examined thoroughly. To avoid
accidental bias these arcas were taken alternately and arranged in two series of
groups, each of five arcas (save ouc in which therc wure only four areas); for
each of these groups the sum and the mean latitude of the nebulie were found,
and plotted as .in figure 42. It is evident that there is considerable general
agreement batween the series, and this gives the hope that further research along
these lines will be fruitful in revealing some definite lav of distribution; this,
however, will be complicated by the fact that there is a band, in which nebulae are
frequent, crossing the Mitky Way almost at right angles. Note in the graph that
knowledge of the southern hamisphere is defective, The original figures may be
found in the Astrophysical Journal 62 171.)

Compare the results got from the graph with the figures got by treating the
arcas as a single serjes of groups of five arcas cach (save one) : devise other ways
of grouping the figures for graphical representation.

Mean galactic N 78 69 62 58 52 48 43 40 36312824 1914126 0

latitude. S 69 54 45 38 31 26 20 14126 0
Numbers 232 63 5% 75 48 47 33 72 69 55 18 12 7 4 020
of nebule 68 31 32 20 89 25 1 1 400

Ex, 5, Draw a histogram to represent the distribution with respect to age
of the death-rate due to diphtheria in England and Wales from 1891 to 1900, as
given in the following table, (From Yule’s “Statistics”, p. 98), Cf. 9.3 Ex, 4 Col, e.

Age. No, of deaths No. for year of age .
0- Vo 4,186 4,186
1- 10,491 10,491
’ 2- V11,218 11,218
3- 12,390 12,390
4~ 11,194 ' 11,194 .
5- 23,348 ' 4,670 L
10- 4,092 818
15~ 1,123 225
20- 585 117
25- 786 79
35 512 51 .
45- 32¢ 32 . 4
55- 260 26
65- 127 13
75- 35 ' ? .
) Y

80,671 »

(You may easily express by the slide rule the numbers in the last column as
percentages of the total deaths before plotting them: but the diagram,is more
informing if the original numbers are shown on the vertical scale,” A percantage
scale may with advantage be shown, in addition o the actual numbers. :

15 ’ ) )
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The frequencies are almost always marked along the vertical scale. 1 have
seen in a medical journal a graph in which along the verbical axis was shown the
average number of parasites observed under certain conditions, while along the
horizontal axis was recorded the number of observations of each such number ; but
I remember seeing no other direct breach of this convention.)

7.311, Difficulty arises when at either end of a frequency table aclass is
given, described either as “ below or above” a certain bounding value. Only
knowledge of the circumstances of measurement, etc., can enable us to judge how
broad the corresponding columns should be. Itis often very important to have
exact information about the extreme classes, This is illustrated in 7.312, the
examples of 7.32, Ex. 1, etc.

7.312. In figure 43 is reproduced from a weekly report, dated Angust 18, 1922,
issued by the United States Public Health Service, a * chart” which looks like a
frequency diagram. In reality it belongs to the category referred to ¢n 7.11, for the
time-scale is not umiform ; also the height of a column is a percentage of the total
in the corresponding age-clas s, not of the universe considered, as in an ordinary
frequency graph. The diagram is published with much simple information about
diphtheria, and is probably meant for popular instruction, But had its arrangement
been more strictly scientifie, it might have achieved its purpose more effectively,
It may very reasonably be held that representation of risks are most truly given
by comparison with the number between given ages who are exposed to that risk.
Bus in the figure that is constructed so it should be clear that there is a changing
scale—the columns should not be contiguous, ag they may L when the unit of area
is the same in successive columns.

The superscription on the chart is “ Showing the early increase in susceptibility
to diphtheria, followed by the development of a natural immunity.” In figure 44 the
essential part of the diagram is re-drawn : the change in the aspect of the diagram
is most striking. The very early rapid rise inrisk was to be expected, but few
would have predicted the very considerable rigsk that persists up to 20 years of age.
The latter impression, however, is modified when the distribution curve is substituted
for the histogram : also the columns to the right are proportionally higher than if
they represented percentages of the whole population. (Cf. Ex, 5.)

These diagrams should be compared with that got from Ex, 5 ; this histogram
is given in Yule's ¢ Statistics”,6 p,97. The English figures are for deaths, not
attacks ; hence the skewness of the curve is even more marked than in the American
diagram. The American figures are apparently estimates, for they are mostly in teas.
. Precise figures are given in Whipple’s « Vital Statistics” pp. 376, 377.

7.32. GENERALISING THE GRAPH: DISTRIBUTION
CURVES: It is frequently desirable to replace the column-
graph by a continuous curve. In some ways this is a more
truthful representation of the facts; for all the measurements
withirf a group are not alike, and,are not sharply contrasted
with the members of the groups below and above it as the

b .
» 2l Y
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FREQUENCY ( AND PERCENTAGE ) CURVES 115

stepwise representation seems to imply; the continuous
curve removes these misrepresentations, though there is no
direct guarantee that it is more correct than the other.

The word “ corrret " is inappropriate here, The data we select, or are given,
are but a sample of the measurements the nature of which we are discussing ; and
experience shows that the more numerous the data are, the closer to the frequency
curve does the shape of the column graph become. What we are really doing in
smoothing the graph is to suppose that the number of cases has become innumerable
while the class interval has become infinitesimal, i.e,, we are proceeding to a limit
(cf. 3.2). But in going to a limit we must keep checks on ourselves, else we get
. nowhere ; the restriction we have to observe is what we must pay attention
to now,

The important consideration is that the numbers in the
column grdph are represented by areas, and therefore the
continuous frequency curve should have the same area.
There is no more rigid rule than this for drawing the
continuous frequency curve, and only practice can settle
how best to draw the curve in each case so that the area
between the curve, the axis and the bounding ordinates for
a class is equal to the area of the corresponding column.!

Ex. 1. Represen’the followir\ig figures (copied from Bombay Government

Reports) in a graphical form, Are the frequency graphs thus obtained suitable for
conversion into distribution curves ? ( ¢f. also Census of India, 1921 IX xviii ),

(a) Percentages of occupants of tenements living in a certain number of
rdoms, (Working Class Budgets, page 24)

No. of roomg 1 2 3 4 5 6 and over

Bombay 66 14 8 5 4 3
London 6 15 20 17 11 25 (Note thedefectin these figures.)

(b) Percentages of cotton operatives whose daily wage lies between specified
limits (Cotton Industry, page 6)

Wages in annag: 12 12-18 18-2¢ 24-36 36-48 48 upwards

Bombay 48 353 238 272 52 37
Ahmedabad 1011 36'8 200 269 36 26
Sholapur 495 239 14:2 103 1-3 8

A

1 In figure 44 no such clear rule can strictly be‘followed, for the numbers in
each age-group are not equal (cf. Ex. 4); and so the actual number, corresponding
to the percentage number, of diseascd people represented by unib area varies from
column to column, In drawing the smooth curve general considerdtions of
a(mtimfity im variation can in this case be the'o\nly guide, ,

’
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Ex, 2. A class of students, who bad just escaped the
fetters of school, was divided into two sections A and B
according to ability ag shown by examination marks, Some
weeks later they were tested with the result shown in the
accompanying table, Represent these results in one craph,
and suggest an explanation of the fact that the graph for
A is double-peaked. Cf. 7.22 Ex, 3 ; also 7.54.

Ex. 3. Plot the information given in the accompanying
table of Auctuations (cf. 6.4) of daily average spot prices
(001 dollar) of cotton at ten places from the prices given by a
moving average (2.311) of five days. Draw the curve which
shows the distribution of these fluctuations from their general
trend. (Cf, Moore, * Forecasting the Yield and the Price of
Cotton ”, p. 26: Macmillan, This curve is a close approxim-
ation to the symmetrical frequency curve which is got when
siinple measares like height of men of one race are classified :
cf. 7.51 ; it is called also thc nermal error curve, a name
which is appropriate in this cxample, )

Ex. 4, Exhibit on one graph the distributions by age of
populations of Bombay City given in the following talle.
1921, IX xi, xii)

Marks A B

0- 3 26

5- 14 41

10- 13 31
15 11 22
20- 19 9
25- 10 7
30- 8 b
85- 7 1
40- 10 0
50- 3 0
60- 0 0
70- 2 0
Fluctuation FreqY.
-'165- -
-+135- - 3
-105- 4
- 075 23
- 045 55
~015- 107
015- 54
045- 16
075« 7
*105- 2
*135-"165 1

the scctions of the
(Census of India,

Do you see anywhere in these statistics a tendency for people to give their
ages in round figures ! This may be more marked in other cities than in Bombay :
test this suggestion from other figures given in the Census Reports, »

Hindus Jain Parsi Musalman Christian Total Cf. Sholapur

0- 9,060 241 767 1,607 804 12,662 3,526
1- 5,640 133 425 1,313 482 8,075 1,776
2. 10,643 275 575 2,407 i 888 14,852 2,632
3- 11,738 293 820 2,672 888 16,500 2,447
4. 11,733 246 831 2,670 872 16,543 2,970
B- 63,348 1,379 4,226 13,769 4,422 88,032 14,192
10- 63,470 2,250 4,647 14,937 5,189 91,383 13,128
15- 78,640 3,287 4,614 15,921 6,965 110,281 9,812
20- 121,464 4,029 5,327 23,817 10,487 166,242 10,873
25- 136,692 3,691 5,122 27,005 9,773 183,483 11,440
30- 118,661 2,980 5,179 25,990 8,164 162,093 . © 10,749
35- 74,5565 1983 4,367 17,274 6,343 105,213 6,532
40- 55,242 1,356 4,239 14,482 4,742 80,683 7,449
45- 26,797 692 2,946 6,581 3,099 40,431 - 3,524
50- 26,300 562 3,097 6,998 2,443 38,708 5,230
55- 7,704 55 1,669 1,963 996 12,636 1,595
60- 11,283 192 1,649 3,603 928 17,733 3,785
65- 2,297 45 780 604 327 4,096 679
70-  ”3,528, 73 974 1,272 357 6,268 1,592

Total 837,690 23,884 52,23¢ 184,685 " 68,169 1,175,914 113,931
Ao

”
wy
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(For the purpose stated you will have to convert by the slide rule the numbers
given above into percentages of their respective sections. You cannmot expect, of
course, to represent on a graph the fourth, fifth and sixth figures in numbers; but
these, though they look as important in the table as other figures, are not really
important, The graph does represent the important figures.

If you find the percentages very much alike and if colours are not available,
you will have to represent the facts on separate diagrams: but this should be
avoided if possible. These percentages may also be combined so as to show to what

type of population, according to the Sundbiirg’s Types of Populations.
accompanying classification, cach Age-group Progressive Stationary Regressive
community given in the above table 0- 40 33 20
should be assigned: ». Whipple, op. 15- 50 50 50
cit. p, 189: cf. Census of India, 50- 10 17 30

1921 VIII 87),

Ex. 5. D‘raw graphs for the extreme cases of frequency distribution of diameters
of blood cells of individuals within cach of the three classes given on p. 127,
Describe how these vary from the forms of the curve for the aggregate numbers in
each class (7.5). Cf. 7.54.

Ex. 6. In the Census of India, 1921 VIII 126, ten distribution curves are given
of married pcople by age., By counting squares test these for equal areas, Find ag
in 7.4 typical numbers for these distributions.

741, CALCULATION OF TYPICAL NUMBERS. To find the
. arithmetic mean of the measures arranged in a frequency
distribution, we suppose that all those in a class have as their
mean the middle value of the class. This is not usually true,
but uneven distribution in one direction in the classes
towards one side of the corresponding graph will tend to be
balanced by unequal distribution in the opposite direction
on the other side, if the figure be a simple one with one
mode : and the mean value calculated for the whole will not
be far from the actual mean value which would be got if all
the measures were added.

K

We can make the calculation much easier by taking the
differences with proper sign between the mean class-values
and a value we judge to be near the mean of the whole.
These differences multiplied by the class frequencies, added, and
divided by the total number of measurements, give the difference
between the calculated A.M. and the chosen value. We
can convince ourselves of the correctness of this procedure
by simple examples. Dealing first with direct measures: the

}
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mean of the following nine numbers was badly jtudged to be
I4, and yet the result of the calculation by the method
indicated is exactly that got by the ordinary method.

Nos. QII I3 121617 8 I4 II;total ITII(=9X12°33)
Dces. {—5 -3 -1 -2 -6 -3; —zo} ~1I5
(from 14) 2 3 +5 =9 X —I-67

o i

s the A, M.=14—1-67=12-33.

So also for a simple frequency table where we represent
the classes by successive ordinals; we can alwayg do this
if we make the classes uniform and then insert the value of
the unit, , 5, or whatever it may be, at the end of the
calculation thus simplified :

. Class 8 9 10 II I2 I3 I4 15 1617
Freqq 1 1 2 4 5 8 121614 6 Total 69 i

‘. ces. =7 060 -5 -4 -3 -2 - ’
.. D 7 6 -5 3 -2 -1 I 22

(from 15) )
o [ =T —6—10 =16 =15 —16 ~12 - 56+69=~-811
Prods. { 14 12} by slide rule,

L]

The A. M. is thus found to be I4-189. Checking by
direct calculation we get 979+ 69, which by the slide rule
is 1418 : the class-interval is the unit here.

Ex, 1. Calculate the mean of the June rainfall in Bombay from the
frequency tables you have constructed (7,22 Ex, 2).

( The value, as given in the Indian Year Book, 1924, p, 282, is 20:56 inches,
This is doubtless the A M, of the actual falls recorded to date, not that calculated
from any frequency table : it may also include records prior to 1857, )

Ex, 2. Verify that the mean fluctuation in 7.32 Ex, 3is —0'002. (Moore,
loc, cit, p. 21),

Ex, 8. Use the slide rule to chgck the values of the variability (i.e. the ratio
8. D.: Mean as a percentage) given in the following tables, which give the

individual typical‘humbers in two of the sets of ¢.5 1 verify also tHé means.
” B ) »

P
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- I Mean S,D., Vary I Mean S.D. Var¥ - Mean S.D. Vary

6319 079 125 7339 047 64 7200 045 62
7225 069 95 7443 047 63 7274 052 71
6900 070 101 7302 052 71 7487 044 58
6611 037 86 7280 050 69 7283 041 56
5 7179 092 128 5 7124 048 67 15 7'307 043 58
6:891 076 110 7211 046 63 ©7311 047 64
7215 061 84 7'186 052 72 - 7169 048 66
6943 051 74 7091 046 64 . 7280 044 60
6702 066 9-8 7114 047 66 7160 049 68
10 6813 0063 95 10 6968 046 66 0 7231 047 65
Mean values Mean values
6:879 0686 998 7239 0470 646

Ex. 4. Check the values of the mean given on p, 127 for the frequency tables
showing the diameters of blood cells of individuals, both healthy and diseased. (In
each cage the frequencics should total 500.)

7.42. The calculation, from a frequency table containing
a considerable number of measures, of the typical number
we have called the median is easy' compared with that for
the A.M.,, thou'gh in this calculation we make the same
assumption of even distribution in a class-interval.? We first
by simple addition find the class-interval in which the median
must be; then by proportional parts (1.4) we find the position
in this interval of the central measurement for the whole,
assuming, as has been already said, that the successive
measurements change evenly in the interval. In the simple

1 This ease of calculation, however, must not be taken as marking the median
as a superior typical number : sometimes it becomes rather unintelligible. If you
are interested in this point, sce Yule's “ Theory of Statistics”, p. 119.

2 This assumption is made also in order to find for the mode a definite place
within a class interval: cf, King's ¢ Statistical Method”, p. 124. If the mode
occur in an interval of breadth ¢, beginning at 7, and is flanked, as shown in figure

N,
fl +f2
Thus the position is fixed, not immediately by the rpmber within thd group as in
the case of the median, but by numbers in the neighbouring groups: if
circumstances should render it desirable (7.22), f1 and f; could be made to
include more frequencies than those immediataly adjacent. (The same assumption
can be used in cglenlating the valug,of the mean deviation, 6:12, §f the distribution
given in a frequency-table.)

45, by intervals of frequencies f; and f3 then the position of the mode is 7+
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example of a frequency table we took in 7.31 the middle
measure is the 35th.: this ‘occurs in the class marked 15; for
the sum of the frequencies in the groups from 8 to 14 is 33.
The position of the 35th. measure in group 15, in which there

are I6 measures in all, is given by % x the class-interval.

If this interval is taken to begin at 15, the median value
is 15-125; if it ends at 15, the median is 14-125: this point as
to the classification must be made clear when the table is
given. In calculating the A.M. we implicitly took I5 as the
middie of the class-interval: with this assumption the interval
begins at 14*5 and the median is then I14-625. This is the
number to compare with the mean I14°19: we see”that the
difference is rather large, but it is in the direction that is
always found for unsymmetrical (or skew ) frequency
curves: the mean is nearer the “long tail” of the figure than
the median. (Yule, “Theory of Statistics”$, p. 114 )

The positions of the lower and upper quartiles are
determined in an exactly analogous manner. In the same
example, the lower quartile is between the ¢7th. and 18th.
measures, and so it is in the group marked 13. Its
distance from the beginning of this interval is 43+8, i e,
0°563 of a unit; this can be interpreted as above for the
median. So also for the upper quartile. '

All these numbers will be exemplified in 7.5. They should also be calculated
for the rainfall figures and for other frequency tables given in 7.2, 7.3, and the
results compared, They offer an effective and concise way of comparing sets of
figures like those in 7.22 Ex. 3, 7.31 Ex. 3, and 7.32 Ex, 4,

Students should organise themselves to work in pairs at given sets of
statistics, and then compare results for different types of distributions. These are
classified in an easy and interesting way in Yule's “ Statistics” Chap. VI, Nunn's
“ Algebra™ II p, 438, and in otker places; but we shall nct wait over this
- clagsification—you can discover these types for yourselves.

Ex. 1. The distribution of annual rainfall at Mahableshwar from 1829 to
1915 is given ifi"the accompanyigg table of frequencies in classes of 10 ins, of rain,
beginning with 130-9 and ending with 400-10: find the mean annual rainfall

during this period and” the mean 100 ius. 1,0, 6, 1,1,2,1
deviation. Compare these with o 200 3,3,65 9 6,13,7,8,6
the mediare value and the quartile 300 24223 0 0100
deviation, | . 00 1
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Ex. 2. Aclass of 234 students is grouped according to marks, 7 falling
in a group from 52 to 59, and the others in the successive groups of 1¢ marks up
to 140~9 thus: 12, 20, 50, 42, 40, 31, 22, 9,1, 1f it is desired to divide the class
into six sections according to ability, what marks will distinguish approzimately
between the sections if the numbers in them, beginning with the best section, are
fixed to be 120, 30, 25, 25,19, 157

7.5. A STUDY OF ANAEMIAS:! For twenty healthy
people, for twenty patients suffering from pernicious
anzmia, and for ten from anemia after hemorrhage
measures were made of the size of the blood cells, 500 cells
being measured in each case. The results of these measures
may be grouped as in the frequency tables on p. 127. The
unit of meagurement used, x4, is 0-00I mm., but that does not
concern us; we can take conveniently the figure that
designates a class as the lower boundary of that class,
though all that is stated in the original article is that the
diameters are measured to 0-25#. When you draw the
graphs for the grouped figures in these frequency tables, you
will see very clearly the general differences between con-
ditions of bloodcells in the two kinds of anzmia and in
healthy persons.® ‘

Ex, Draw the graphs and describe their characteristics. Try to suggest a
meaning for these. (In the original paper all graphs are reduced to a total of 500
cells (ef, 7.31), which is convenient when there sre comparisons to be made,.as
in’the original paper, with graphs for individual cases. For this exercisc only it is
slightly less trouble to work with a total of 10,000 in each case, but the above
adjustment should be made for the sake of comparison with 7.32 Ex, 5.)

7.51. Tothe right of the columns of grouped counts of
cells are shown in small type the totals of classes up to
those in which the lower quartiles, medians, and upper
quartiles occur., The calculations of these numbers for the
distribution of the sizes of healthy cells are respectively

. 2500—2236., . oo .. 932 1262
7 oo+——1832 X0-25=7-036; 7-25+ 2060 < £=7"303;
1422 3 _ 0o ’
7° 50+I784><4 7+700

1 From ths Journal of Pathology and Bacteriology 25 437, 1922 Oct,
“ Diamgters of Red Cellg in Anemiss,” by Ceni’, Price-Jones,
16 ’ ' )
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Thus the median diameter is considerably larger than the
mean, given in the paper, 7°2I0.

- +.

This discrepancy led to  2x 225 45 2060%x -25 515
guspicion as to the accuracy of 3x15 45 1784x b 892
the value, 7°210. The AM, for the 25x125 3125 1135x 75 85125
cells is recalculated here as shown, 92x1 92 620x 1 620

7 being taken as the measure from 259x ‘76 19425 236x 126 295
which departures are reckoned. The 613x *5 3065 74x15 111
result is an average departure of 1242x 25 3105 18x1756 316

0-238275, which differs from the 210 4x2 8
given in the paper. To compare - ) —943'5 1x25 25
this with the median value just . 238275

obtained we note that there 7 was : _— —_—
taken as the lower limit of the 332625 v 4332625

interval, while in calculating the A. M. 7 was the middle value of an interval, 0125
lower in the scale, Accordingly we must add 0125 to the A, M. just obtained,
7'238, and we get 7-363, exactly the value we found for the median. In view
of the symmetry of this distribution the result is not surprising (cf also fig. 47,
which is for only one case : the grouped numbers would give points even more
closely on the straight line). In checking similarly the other calculations, remember
the remark in 7.22 about the relative position of typical numbers in an
ungymmetrical distribution.

In what follows we assume that the typical numbéts shown in the table on
p. 127 are correct : this is of importance only when doctors apply these results, and
does not affect the principles we have to study.

7.52. Dr. Price-Jones uses to characterise the distribut-
ions quantities we are not to discuss : these are given below
their respective columns in order that we may compare them
with the easier characteristic numbers which we already
know. “S.D.” means “Standard deviatlon”, a very
frequently used measure of “scatter’’, f.e., of closeness of the
measures generally to the typical number (cf. 6.12): with
this, given as 0°45, should be compared the quartile
deviation, § (7+700 - 7-036) =0-332.

The variability or coefficlent of variation is here taken
as the percentage ratio of the standard deviation to the
arithmetic mean, the two numbers which precede it in the
table : it may be regarded as the ratio of any measure of
deviation to an¥ value typical of the absolute size of the
group of numbers; and so it gives a measure of the relative
scatter of-a curve; it is appropsiately 2 mere-number, and
idependent of the units usad. w v

p W w
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Ex. 1. Caleulate for the other two grouped columns the mediansand quartiles,
and obtain for all three the coefficient of variation as the percentage ratlo of the.
quartile deviation to the median value,

Ex, 2, Check the value of the A. M, givenfor each distribution of the sizes
of all the cells within a group.

Ex. 3. “The rough rule that the semi-interquartile range is usually some 2[3
of the standard deviation : it is strictly true for the normal curveonly.” (Yule,
op. cit. p. 310, : cf. also p. 146, where is given the approximate rule for nearly
symmetrical distributions that the mean deviation, 6.12, is 08 times the standard
deviation.) Test this statement by what you caleulate from Table II.

7.53. Dr. Price-Jones discounts any interpretation of
the figures for the grouped individual cells, for the material
measured (the blood cells)is so heterogeneous; apart from
differences between individual persons, the sizes of cells
vary with exercise, time of day, etc. (It is very important
to deal with material that has not been disturbed by chance
influences?'; in this case the specimens were all taken at the
same time of day.) Accordingly he takes for each case
(i.e., person!) the mean value of the diameters and the
coefficient of varlatlon and summarises his results for
grouped cases in “the way given at the foot of p. 127. (The
details for two of the groups are given in 7.81 Ex. 3: ],
post-hemorrhage anzmia; II, healthy blood.) This summary
is interpreted as follows:

“It appears (from the summary for cases on p. 127).

(a) That the mean diameter of the red cells in pernicious
anzmia is greater than the mean diameter of the red cells
in healthy persons. The smallest mean diameter of the
pernicious anamia cases is equal tothelargest mean diameter
of the healthy persons, but otherwise they do not overlap, or,
in other words, all the mean diameters of the pernicious
anzmia cases are greater than those of the healthy persons
excepting one.

(b) That the mean diameter of thg red cells it the cases
of anzmia following hemorrhage is smallerJ than the mean

) N
1. Cf the, emphasis on basej metabolism in 9.52, ic., metabolidm during
absolypte muscular repose in the n%orning, 12'0E 14 hours after food has been taken,

) ) R )
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diameter of the red cells in healthy persons. The biggest
mean diameter is less than the average mean diameter of the
healthy persons. In seven out of ten of the cases the mean
diameter is less than the smallest mean diameter of the
healthy persons.!?

() The mean coefficient of variation of the red cells of
the pernicious anzmia cases is more than twice the mean

T8, A TERS
Hoatehy 098 ¥ za7 TIEAN DWZFE cEsss
8243 '
Parnicious Anemia 7:487 &4 8ase ’
L - 6{,'9 7235 pe-hemerrhege Anemia
.LlllJlLllJlllll-xlgllJ_lJliLJL
M {0.00t mm.} 7 8
64 1
5tV 7 Haithyk  VARIABILITY
Pernicious 89 29 " 182
Anemia
9:98
" 4 ¥ -8 Past-h&mcrrﬁoye Ansemia
’ J 1 i 1 Y l 3 1 ] 1 l i ¢ I wdn ?
5 T {5

Fig, 46. Comparison of Ranges of Values.

coefficient of variation of the healthy persons, and the
smallest coefficient of variation of these cases is greater than
the biggest coefficient of variation of the healthy persons.

(d) The mean coefficient of variation of the red cells of
the hemorrhage anamia cases is half as much again greater
than the mean coefficient of variation of the red cells of the
healthy persons, and the smallest coefficient of variation is

equal to the biggest coefficient of variation of the healthy
persons.”

»
(9

— -

» 1 This sentence can be verified, from the figures given in 7.41, Ex. 8 I,
w e

@ w
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3

7.531. Though the matter is not relevant to the
representation of frequency distributions, it may be remarked
here that this summary of results may be made much
clearer by graphical representation such as is referred to
in 2.33 : this is shown in figure 46.

¢ y

If phrases like “ excepting one” at the end of (a) are
not specially important in the summary, the figure may be
relieved of the burden of numerical values attached to the
arrows, etc., and become so much the more striking through
.. direct dependence on the two scales shown: there is an
advantage in using graph paper in this case. An arrow
indicates the mean in a range of values. But the
graph ma?¥ be adapted with ease to represent fully even
such a statement as the last sentence of (). This is done by
putting marks on the post-hemorrhage line in the positions
corresponding to the mean diameter for each patient.

The positions of the means of mean diameters in the
upper half of the ranges corresponds in some degree to the
skewness of the respective frequency curves. But the very
distinct departures of the mean variabilities from the
middle of their range would not have been foreseen so
easily; and so this graphical representation has the
additional advantage over the verbal statement of making
Clear unsuspected facts, which may or may not have medical
significance. In this connection there may be a real
advantage in representing each case in its proper position
on its line, as has just been suggested.

7.848. At 7.41, Exs. 3, 4 refer to these frequency tables, Individual cases are
given on p. 127, each the extremes of their class ; they show clearly the greater range
of cell-diameters in pernicious anscemia patients than in healthy persons. It should
also be noted that in Case No, 5 the distribution shows several modes (6.141) : this
is common in pernicious araemia (cf. case 13), and has led to the surmise that in
this disease there are cells of three different kinds present in the blood ; cf. 7.22

Ex. 3. This has still to be verified, for the measurement of diameters was so laborious
a process that the investigation had to be left incomplete, .
)

7.55. In connection with functional stales it is very
instructive to study the greatly reduced figures 47 and 48
where striking use is made along the y axiv of a scale
which is entitled “ Pergentage.of red cells l)ess than the

’ ) )
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stated diameter ”, the diameter being marked on a uniform
scale aloag the » axis. (The original numbers plotted in
these diagrams are given in Table II on the right of their
respective classes.) The y axis scale is closely connected
with the ‘ normal error? curve (cf.7.32 Ex. 3); but
we are not to deal with that in this book. Its connection
with the table! given on p. 310 of Yule’s “Theory of
Statistics " may however be easily seen., Starting from
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Fig. 47. Fig. 48,

Probability Ruling. (The percentages plotted are easily obtained from figures
given in Table IT, Nos. 2, 13.)

graduation 50, the second column of the table on p. 128
shows in cms. the distances of the graduations of the y
scales on the original diagrams. The third column gives
the corresponding area-fractions (cf. 7.3) from Yule’s table;
it is evident that the ratio of corresponding numbers in
the second and third ®tolumns is almost constant. Hence

w

1 This table is given in gome Yorm in all books on statistics, e, Jones 284,
Bowley4 271, Pdarl 362, Paper with the ruliag in one directiop based omit is
called probability paper (Whipple logncit, 451). .

W
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TABLE I[—Distribution of the sizes of red cells in 50 people

Pernicious Post:hemorrhage
Diam, Healthy blood ansemia anmmia
M No. 20 No. No. |No. 20 No. No. | No, 10 No,
14 persons 20 2 |17 patients 5 13 | 8 npatients 5
350 2
7% ) 2 1 2
4 N ’ 6 1 3
25 v 11 1 9
50 O 16 8 1| 3 7
*75 9 2 26 2 1 1 2y
5 o 0 us 2 4| 1 o3 1
25 [\] 0 51 3 1 0 [/ 3
50 3 0 6 89 8 6 1 97 5
P 7B 25 2 2 1 99 6 4 1 189 5
. 6 1 92 4 0] 1 us 3 7|16 2as0 25
. 2 5 259 4 3| 3 166 4 5] 30 ny35 1090 44
b0 20 eI3 31 12 4 218 15 6| 68 eer 1851 54
~ 75 55 1242 86 59 39|11 3pe 11 9102 731 61
"7 90 1832 4083 96 63| 12 360 21 10 |104 721 3303 77
25 110 2060 c15s 114 100 | 39 4731995 19 8 | 90 601 61
50 118 1784 86 112 | 52 @32 26 17 | 54 pye2 47
‘75 59 1135 68 79171 729 19 33| 26 269 33
8 24 620 22 57|77 oy84304 33 57| 10 177 22
25 10 236 11 23| 80 998 35 64 3 88 16
50 9 ™ 1 65 1003 4 751 0 28 4
75 18 | 3|41 878718 46 60 1 28 12
9 n o 1|18 760 34 52 12 7
26 [\) 13 573 30 37 i1 8
*50 h 5 485 26 18 _ 7 3
75 ' 5 300 17 10 5 4
10 1 255 24 1 y 3
25 \ 3 135 19 8 1 1
50 \ 1 119 15 2 [\] 0
» 75 ) . 69 8 2 2 2
11 ~ 60 6 1 2 2
*25 25 9 0
‘50 ' . ' 18 5 1
75 10 2
12 5 2
25 3 )
10,000 10,000 5,000
Diameters Cells

Min. 600 %75 475 575 550 3°75 375 450 450 350 500
Mean 7:283 7-210 7231 7-443 8022 8-243 8512 8314 6943 e6°850 7:179
Maxz, 850 9°50 8560 900 1050 12+25 12:60 11-50 875 1100 11.00
S. D, 04l o458 047 047 072 115 145 099 0561 o735 092
Coefficient of Variation
56 62 65 63 89 139 1770 119 74..10'9 128

Mean Diameters Oases N
Mia. 6968 7487 , 6319
Mean 7239 8243 6879
Max, 7487 89536 7225
Variability : ( Coefficient of Variation) .
Min, 54 J 89 S 2}
Mean* 646 o 129 998
Max. , 74 182 i 12§

Mean 8,D. 0470 ' 107, 0688
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"

the scale used can easily be constructed from Yule’s table.
Cf. 2.22, .

Graduation  Distance . Table

What we have to note here 5 o 0
is that the use of this function- 60 052 026
al scale along one axis results gg }%ﬁ 8;2‘1;
in the facts about a normal g0 270 13
(i.e. healthy) individual 33.9 ‘é‘go g_gg

being represented along a
straight line.

Ex. From the measurements given in Yule's table construct figures such as
47 and 48 to represent the facts given in the other frequency tables in Table IL
Modify the results you have obtained in 7.22 Ex. 1 soas to test whether they give
points on a straight line when plotted on this probability ruling.

7.61, MULTIPLE CORRELATION. On several occasions
we have used the term correlation in referring to a relation
of agreement between two quantities (6.41, 6.511); but the
word is frequently used in a restricted sense with reference to
a relation between frequencies which may be found to exist
between pairs of measurable characterisjics, e.g., over-
crowding and infant mortality. From this point of view
correlation appears as a natural extension of what we have
done hitherto in this chapter : this has been simply to fix
intervals along the x axis, and in the columns corresponding*
to these to note each occurrence of a measurement within

. that interval; the numbers of occurrences we have taken as

y ordinates and considered the properties of the frequency
curves thus obtained. Similarly, if we know two measure-
ments, say, weight and height of each individual, we can
mark convenient intervals of these quantities along the x
and the y axes, and by parallel rulings get rectangular com-

. partments, each corresponding to one interval onthe x axisand

another on the y axis. It is not difficult, in classifying the
measures for individuals, to record in which compartment:
each pair of measures should be placed. If we wish to treat

W

1 A footnote in “Mental Measurement”, p.121, indicates that the word
“correlation” is much sought after for various purposes ! Does the fact that in @.52
Ex. 2 correlation %f some degree was found, *however the sets ¢f numbers were

adjudted, help to explain the tendency #e vaguenessiin the use of this word?  »
] " VD )
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used can easily be constructed from Yule's table.
‘Cfo 2.22. . .
Graduation  Distance . Table
What we have to note here 50 o 0
~ is that the use of this function- 60 052 026
: 70 112 051
?1 scale along one axis results 80 185 086
in the facts about a normal 90 270 13
ie. h indivi 99 490 2:35
(ie. healthy) individual oo o s

being represented along a
straight line.

Ex. From the measurements given in Yule's table construct figures such as
47 and 48 to represent the facts given in the other frequency tables in Table IL
Modify the results you have obtained in 7.22 Ex. 1 80 as to test whether they give
points on a straight line when plotted on this probability ruling.

7.61. MULTIPLE CORRELATION. On several occasions
we have used the term correlation® in referring to a relation
of agreement between two guantities (6.%1, 6.511); but the
word is frequently used in a restricted sense with reference to
a relation between frequencies which may be found to exist
between pairs of measurable characterisgics, e.g., over-
crowding and infant mortality., From this point of view
correlation appears as a natural extension of what we have
done hitherto in this chapter : this has been simply to fix
intervals along the ¥ axis, and in the columns corresponding’
to these to note each occurrence of a measurement within
that interval; the numbers of occurrences we have taken as
y ordinates and considered the properties of the frequency
curves thus obtained. Similarly,if we know two measure-
ments, say, weight and height of each individual, we can
mark convenient intervals of these quantities along the x
and the y axes, and by parallel rulings get rectangular com-
partments, each corresponding to one intervalonthe ¥ axisand
another on the y axis. It is not difficult, in classifying the
measures for individuals, to record in which compartment:
each pair of measures should be placed. If we wish to treat

- '
1 A footnote in “Mental Measurement”, p.121, indicates that the word

. » s » .
“correlation” is much sought after for various purposes! Does the fact that in 6.52
Ex. 2 correlation %f some degree was found, showever the sets ¢f numbers were

adjusted, help to ex‘%)la.in the tendency e vagueness*in the use of this word?  #»
4 » n ”
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these frequencies of pairs of measures as we dealt with the
frequencies of single- measures, we can regard them as
represented by columns or lines drawn from the respective
compartments perpendicular to the xy plane; and then the
tops of these may be taken as lying on a frequency surface
(cf. 7.32) : number in this case would be represented by
volume. But our first concern here is with the counting (7.21).

Ex, Arrange pairs of measurements for individuals such as you made in 7.22
Ex. 1 in the way deseribed above,

This method we can extend to three measurable
associated variables e.g., height, weight, and chest-measure-
ment. Insuch a case the compartments are cuboids bounded
by parallel planes through the ends of intervals marked on
the three axes. It is not easy now to picture how the
numbers for which each of these triplets of measures occur
should be represented : we have almost reached the limit of
our powers of graphical representation; but we have by no
means reached the limit of the powers of mathematical
method. The methods which are explained in books on
statistics for elugidating the meaning of the frequencies of
pairs can be extended to the frequencies of any number of
measures of similar individuals or circumstances. The
relations and properties that are found become, of course,
more and more complex and difficult to appreciate: but you
now know that you can apply to the mathematician for help,
if you have to set straight a tangle of many inter-relations
in a great number of like cases: only make your problem
very definite and clear to yourself before you can expect
him to help; for the mathematician is very exacting about
definitions (1.8) !

Ex. Is the triangular diagram of 9.5 of any utility in making the counts of
measures in threes !

7.621. CORRELATION. “The full significance of
correlation is only to be realised after a careful study of the
general theory of correlation of niimerous variables, of
which the correlation of two variables, mbkasured by the
correlation coefficient » (cf, 6.41), is only a particular f:ase.”‘

) ’ '

3

'l Brown and Thomson, “Mdntal Measurément”, p. 146,
y ,

17



130 INTERRELATIONS OF VARIABLES

Bearing this warning in mind, and remembering that all
that we .are attempting here is to see some little distance
into the possibility of applying mathematical methods, we
may glance at the initial stages in the arrangement of
counts of pairs of measurements. If we have counted the
lengths and maximum breadths of many leaves from the same
iree into the rectangular compartments of what is called a
correlation table or a table of double entry, what we have done is
to construct two sets of frequency tables of lengths between
stated limits of breadth, and of breadths of leaves whose
lengths lie between certain boundary values. Then for each
interval of breadth we canfind atypical length, commonly the
mean : do this, and you will often find that these mean lengths
lie more or less closely on a straight line LL': this line (fig. 49)
shows how on the whole the lengths change with respect to
the breadth of leaves—-it is the line of regression of the length on
the breadth of this kind of leaf. Similarly, making length the
standard of reference—the subject, it is sometimes called—we
can find typical values of the breadth—the relative, and get
a line of regression of breadth on length BB,

L]

If these lines are compared with lines showing average
length and average breadth (close through the intersection
M of which they will pass), the original meaning of the
word regression can be seen. Leaves broader than the
average are seldom long in proportion ; they have a tendency
to “step back ” to the average as regards length, and so the
line of regression of length on breadth tends away from
the line of equal variation towards the line of average length,
Similarly with very long leaves; they are seldom broad in
proportion, and it is significant that we never think of a long
leaf broad out of proportion to its length—we naturally
regard it as a rather stumpy, very broad leaf! Thus the
line showing the general increases of breadth as length
increases tends towards the line of average breadth. And
so each of these meas#ires tends to regress to its respective
“normal ¥ valuaas the other departs from its average. We
seem to see here two general tendencies at work—the
tendemncy tq similarity of form, t.he balance of dimensions
whkich best suits the individual; agd the tendency tq get

-
w L

» -
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back to the dimensions which have proved “‘natural” for the
group as a whole. '

Ex, Distinguish bebween the procedure described above, and that used in
finding typical ratios in 6.22.

7,622, The typical distances of the actual values from
either of these regression lines might, in a general way, be
taken as an inverse measure of correlation between length
and breadth of the leaves : but this is a loose use of the word;
what is thus measured is merely the consistency, or average
closeness to type, though not to the type represented by the
line through the origin and M, the mean of both measures—the
type in which the increase of one variable is proportionate to
the increase in the other. (Cf. the deviations of 2.311, and the
average error of 6.%.) It would clearly be more satisfactory
to get some relation between these lines themselves.
Smallness of the angle between them would indicate greater
closeness of interrelation, i.e, a tendency for similarity of
individual form to predominate. A convenient measure of this
difference o angle (for it fits in with other quantities that
are of significance) is the square root of the ratio® of the
smaller slope m fo the larger m;. If these are equal, the
value of this square root is I, the number which indicates
perfect correlation (6.81). If there were no increase of length

rith breadth, LLL’ would be parallel to the x axis, i.e.,, m;=0,
and there would be complete indifference of length to changes
in breadth; similarly if the leaves were on the average
equally broad whatever the length, 1/m.=0. If we could
imagine leaves for which any increase of breadth coincided
with a decrease of length, and conversely (say, leaves in
which a tendency to constant area of surface predominated,
irrespective of form), the lines of regression would both
slope to the left; and the correlation would be regarded as
negative. (These different types of cases can frequently be
distinguished merely from the arrangement and relative size
of the numbers in the correlation table, which thus gives
direct a rough idea of the relation of’the variables which

is worth having.) ’

1 The actua} vaiues of my and ma depend on tho scales chosen for the vori-

ableg ; that of their ratio depends c’Jnly on the frequencies, i

» ) s )
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7.623. We can also take the next step where a third
measure, say, the thickness of the leaf' is considered.
We build on the method for two variables : for each thick-
ness interval we can find a coefficient of correlation between
length and breadth ; for each length, one between breadth
and thickness; and so also for each breadth, one between
thickness and length. But how can we combine these three
coefficients into one? This can be done only by launching
out into the sea of statistical method proper. An example of
four-fold correlation, such as would be required if we added
weight of leaves to the variables in the above example, is
given by Brown and Thomson, loc. cit., p. 146: a glance at
the summary of the work given there will show hew complex
the problem has become.

]

1 How can you measure the thickness of leaves? In the physics laboratory
you should be able to devise a way of doing ts, If you fail, measure something

easler, e.g., the sta;lks of the leaves : orstake an eader set of measures, ®
) - - -
- -



CHAPTER VIII

PROBABILITY

Let us now apply this method of representation of
distributions of events by frequency curves to cases where
the frequency with which events occur can be calculated.

~-. Our purpose is to find formulae which may fit such

distributions (8.3 Exs. 2, 3. We have to make ourselves
familjar with a new typleal curve, the binomial curve,
and so be able to judge if, by modification of this curve,
or by combination with others, the frequency-distribution
observed and the curve got from the formula fit one another
in some degree. Cf. 2.31, 6.4.

8.1. PREDICTION OF EVENTS: The simplest of these
problems are those resulting from the spinning of coins; but
as the probabilities (p. 3, VI v) of getting head or tail in any
one spin are each 4, there will be less tendency to confusion
if we consider the spinning of symmetrical tops with three
faces, these faces being coloured, say, red, white, green.
Let us denote the event of the top falling on these faces by
R, W, G, respectively. Then the probability of any one of
these events occurring when one top is spun is 3, i.e., 1+32
according to the definition. This is a simple event. 1If we.
spin a number of such tops simultaneously (or if we spin a
top several times in succession, which is numerically
equivalent to the former act ), any one of the ways in which
the tops fall on their faces constitutes a compound event,
and it is interesting to predict how often any such event will
happen in the way that is specified, e.g., if we spin two such
tops, we may expect' to get them both falling on the red

3

[d
1 This expectation is of course only realised in the long run af*er a very
great number of pairs of throws. (Ct. 6.13.)
3 ¥

)
vy .
}
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faces once out of every nine times : for the chances? of each
top giving R are %, and therefore of both giving Rare  x =1,

8.11. This is the language of everyday. The facts may
be seen more clearly by substituting for vague “ probability ”
the idea of relative frequency. ( Absolute frequency is just the
number of times an event actually occurs—what we have
already spoken of merely as “frequency”.) People think
of the probability of any event occurring as just the ratio of
the number of times it will probably happen to the total
number of occasions on which it may happen. The idea
becomes clearer and is related to the precise definition of
p. 1, VI v, if we speak of the relative frequency of the event,
Thus if one of the tops is spun 300 times, R will’ probably
occur 100 times. When we are dealing with observed
occurrences the natural definition is relative frequency

- humber of actual occurrences of the event
number of possible occurrences of the event

Thus, to return to the example of two three-faced tops
spun together, let us consider the occurrence of 2R in a
convenient number, say 9 pairs of spins. In®these spins one
top gives R three times, and for the occurrence of the second
. R we need consider only these three spins. In these the
likelihood is that only one spin will be R; and so out of the
nine possible occasions of getting two Rs it is likely that the
event will occur on only one, i.e., the relative frequency is %.
The reasoning can easily be repeated for more complex

events.

Ex. 1. Calculate the probability ( or relative frequency ) of getting two heads
(or indeed any specified event, for all four are equally likely) when two coins
are tossed.

Ex, 2. Iftwo five-faced tops are spun, each having three red, one white, and
one green face, find the probabilities of getting (i) two rel, (ii) two white, and

* (iii) one red and oce green, at one pair of spins.

Ex, 3. A tape is held so that the probability of an athlete clearing it is 2/5
‘What are the probabilities of his clearing it three and four times in succession
through his successes coming at the end and at the beginning of two succeeding sets
of five jumps ? Can yousinterpret this as a test of the reality of improvement in his
form if he makes several successful jumps?

[
1 Is it corfect to say “ chance” or “ckances” ! If both are correct, which

i th® mors suggestive ¢ we . .
® [ ]
. ®
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8.21. ALL EVENTS: THEIR REPRESENTATION: Our
next step is to represent graphically these facts about
probability, in order to get an easily appreciated comprehen-
sive view of all the possibilities in events of a given type.
Take as an example the spinning of four of the three-faced
tops. As to W (a white face falling on the table) five
events are possible, vz, it may occur foro, I, 2, 3, 4 tops.
Consider the probability, i.e.,, the relative frequency of each
of these events,

For the simple event, no #, the relative frequency for
each top is %; and therefore for the compound event, no w,
(i.e., no W for each of the four tops) the relative frequency
is (3), i.e, §%.

The event, one #, may happen for each of the four
tops?, therefore we consider its relative frequency for any
one top, say, the first, and multiply that by four. For the
first top the relative frequency of ¥ is 4; then no W must
occur forthe remaining three tops and the relative frequency
of this is (3); thus the relative frequency of the compound
event, one W, is.4 x 5(3)3, ie., 83

Similarly the event 2/ may happen in ,C, ways, and
its relative frequency is easily seen to be 6x (3)% x (3)® =9
So for 3 and 4W the relative frequencies are 4x (3)? (2)
and (3)4, i.e., & and g respectively.

8.211. Commonsense tells us that in éonsidering the
above five events with regard to the tops falling on their
faces, we have considered all possible cases of any kind:
this supplies a test for the correctness of our arithmetical
results; for from the definition of relative frequency, the
sum of the relative frequencies of the events specified in

1. In considering one TV, its occurrence for any ome top is exclusive of its
occurrence for sny other (otherwise the result of the spin would be 2W, or 3W, or
4W), and the relative frequencies of exclusive events having been found geparately
must be added. [The multiplication of the prokpbilities of the independent
parts of a compound event ag explained in 8.1 is quite another thing (cf, Smith’s
“Algebra” p, 514): the “ other independent event ™ of p. 3, VI (v) becomes just a
part of a compound event,] The mutually exciusive events are different ways in
which the event described as one chzm occur, .., the descripfion is “inclusive,
and §0 the several events ean be t)a\kcn as one‘.’ )

) ) s )
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any way (by the green or by the red, say) which gives all
the events without any repetition, must be unity. In this
case we see that it is easiest to regard 55 as the “unit” of
relative frequency, and then 16+ 32+24+ 841 give 8I.

8.22. These results can be represented as a column or
other type of graph. As the series of events is discontinu-
ous, it seems more reasonable to represent the values simply
by points, i.e.,, ordinates, But the column graph is used, as
the important thing to consider is what happens when there

40/

ﬂg.Sd. G+4)"

\logk /lognrlog(@-;ng
o gogn tqu 5 logx.

& 30 iae F%00 logx o~ u' &
FagSC’). Paratos Lav\:l *Y F 954 weslth Figss“ 0

is a large variety, and therefore an almost continuous gradat-
ion, of possibilities; also the above arithmetical check finds
an important geometrical interpretation inthatthe areas of
the columns sum to unit area. This fact of the area under
the curve being unity is of special importance when that
curve is generalised as above for a great number of
practically continuous possibilities. (Cf. the table referred
to in 7.55). The actual construction of the column-graph
(fig. 50) presents no difficulties.

Ex.  Four tops with two faces white and one green are spun together repeated-

ly. Work out thd relative frequencies with whith all possible everits oecur (i) for
the white and (ii) for the green faces,~ Draw grapls to represent these frequenties,
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L] V

8.3. THE BINOMIAL EXPANSION: The student who is
critical will have noted that the successive relative frequenc-
jes in the example worked out above are (3)*, 4(3)%%,
6(2)2(3)%, 4(3) ()3, and (3)*%, and that these are just the success-
ive terms of the expansionof (§+4§)¢ This is in agreement
with the last remark that the relative frequencies total unity,
and it suggests a generalisation that can bereadily testedand
accepted, viz., if a simple event may occur on n occasions accord-

. ing to a definite relative frequency q, then the relative frequencies

with which the event occurs 0, I, 2, 3yuununnee. n times are given re-
spectively by the terms of the expansion of the binomial (p + q)?,
where p+q=1r. (Cf. 1.7).

Ex. 1 Restate this generalisation substituting the definite terms of any of
the above examples for the general expressions used here,

Ex.2 Try to find a binomial expression that will fit the frequency distrib-
ution of diphtheria according to age of patient, 7.31 Ex. 5. (This and similar
fitting you may attempt after experience with the exercises suggested in the next
paragraph.)

Ex,3 Try to find two binomial expressions the sum of which give values
closely corresponding with the frequency distribution of clever students given in
7.32 Ex. 2. (cf. 7.9M). Find the average error of the values given by your
Jormula (i.e. the observed frequencies are here the standard of reference). Cf. 6.4,

8.4. THE BINOMIAL MACHINE: The reality and the
significance of this distribution of the frequency of actual
events according to the binomial “law’” may be seen some-
what vividly by considering the working of the device re-
presentedinfigure 57. Thisis called the probability machine,
or more suggestively, the binomial machine.? The general
idea is that a great number of small objects is passed
through the machine, and that repeatedly the “choice” is
given them of going to one side or the other according to a
definite preference.

To effect this “definite preference” there are a number
of moveable horizontal bars (thirteen in this machine) of

L
1 The design for thig machine is given by Karl Pearsgn in the Phil, Trans,
R.8: A, 1895 Plate 7. The machine shown in figure 57 is about 4 feet high, Note
the device for emptying the machine: it works' very well with shot, but seedis
liable to stick, 41l the measurements given in the text are adjued for a space
04 crp. deep below the frame at phe foot of he columns, . ’
18 ° 9 .



138 MECHANICAL REPRESENTATION OF PROBABILITIES

rectangular section, pressing close up to a sheet of glass:
down and across these bars are cut slots of equal breadth,
say 1”, to half the thickness of the bars. The spaces
between these slots are tapered upwards to an edge in
some suitable way so that these spaces may be used to divide,
in the definite ratio selected, the objects falling through
the slots of the bars above. Thus the objects passing
through the single slot in the topmost bar are divided in the
chosen ratio between the two slots in the next bar, and then
betweenthe three slots in the bar below; and so on, until they
are collected finally in the fixed slots at the bottom of the
machine.- If the apexes of the spaces between the moveable
slots are adjusted so that they divide all the slots in one
ratio, say, 3 : 7, as in the illustration, then the objects passing
through each slot are so divided ; and this happens at each
bar. This means that the objects are separated twelve
times in succession in this ratio, and so they are finally
collected in quantities which are proportional to the
thirteen terms of the expansion of (+3+ +7)*%.

This can be worked out in detail thus: taking the
quantity passing through the first slot as 100, 30 go to the
left and 70 to the right; of the former 9 go to the left, 21 to
the middle slot of the third bar; into this slot go also 3 of
the 70, i. e., 21, while 49 go into the righthand slot of the
third bar. And so on.

The process becomes clearer still if it is generalised,
the quantity passing through the top slot being taken as
unity, the ratio of division as p:g¢; then the quantities
passing through the slots of successive bars are

» ' q
P 9PEPY s 94 ie, P2, ¢ , ¢*
pp? s P +plp0 ¢2g+pg® g% ie, P8 Bplg, Bpet , &F
ate ete.

8.41. UTHE ERROR5 OF THE MACHINE : It is well worth
while considerimg the working of this machine in some
detail, for the results got from it do not closely accord with
theory; an jnstrument of this sorf would not bg allowed in
any physics laboratory. The reasops for this discrepapncy

»
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bring out well the nature of some of the problems that are
considered in statistics ; here we have “writ large and plain”
the defects which occur in all measuring instruments, and
which have to be considered when the finest of these instru-
ments are used to give results up to the limit of their
accuracy; and, of course, in most sets of observed quantities
of any kind we have to allow for disturbing factors in trying
to determine the chief factors that affect the measurements.
Cf. also 1.431 Note.

The ogival shape of the dividing blocks between the
slots in this particular machine was adopted because it was
- realised that it was of great importance to get the seed or
shot passing through the machine spread as uniformly as
possible across the slots in downward succession; otherwise
the division of the seed in the slots below would not be at
all according to the ratio set in the machine. It was clear
too that the best shape of dividing block would not be the
-same at the bottom as at the top of the machine, because

of the difference of speeds of any object earlier and later in
its fall ; also theybest shape for seed would not be the best
for shot, because of the difference of density. Amid all these
conflicting considerations the shape adopted could be only
a guess as to what might be most effective. A careful
_inspection of the illustration,! especially of the moveable
bar marked 6, will reveal another less important precaution ;
the dividing edge is placed %" below the top of its bar,
and therefore well clear of the sides of the slot above: this
was merely to make it possible for fairly large seed to pass
through the smaller opening when the ratio set was 1:9, or
even 2:8. The actual effect of all this, however, was that,
when shot were passed freely through the machine, the force
of impact on the shoulder of a block sometimes caused a
pellet to rebound over the next block into a slot which it
ought to have been impossible for it to enter! (Fig. 5I).

It appears that the result given t% such a machine will
always tend to deviate from theory in that the central

1 Itis worth while using a leps to inspect accurate figuresand td read the
graduations of good scalcs, N o
?

30
9 . o



140 A SYSTEMATIC ERROR

columns will be shorter than they ought to be. Thisis due
to the fact that the shot starts from a central position and
there is a general movement towards the sides: thus in the
medley of interference between the pellets rebounding from
the sides of the slots the impacts directed outwards will
preponderate, with the result that has been stated.

This was so especially when the funnel at the top was
filled with shot and suddenly opened. The resulting
downpour, like any other, was interesting, but depressing;
for it interfered much with liberty: there was little of
“choice” or “preference.” Shot poured gently through gave
better results, which varied according to the speed with
which it was poured.

The device finally adopted wasto tilt the machine
backwards till it was almost horizontal and the shot was
then passed through gently; but even so there were difficult-
ies in securing uniformity of distribution, ¢.g., care had to
be taken that the shot did not get blocked owing to a bar
bulging out slightly beyond the bar above ﬂi)t.

As a consequence of this need for avoiding the effect
of impacts, the funnel at the top turns out to be superfluous
though it is not inconvenient. In any case there isa rea]
difficulty in getting the dividing edges placed accurately
enough to give a really consistent division of the objects
passing through every slot.

Ex, 1. The results of passing shot through the machine when 12 bars were
set to the ratio 8 : 2 are shown in the following table, An easy way of calculating
the theoretical values of the heights of the columns is also indicated. Notice
how here, as in all these experiments, no matter how the shot is poured through,
the tendency to excess accumulation at the sides in this machine is clearly marked,

In the expansion of (“8+°2)!2 each term is got from its predccessor by
12 11 10

multiplication by the cxtra factors in the cocfficient 4 g O, viz, T 3
9 2 2

1
IR esacsessand also by T bes g These multipliers are shown in the lefthand

column, and the decunal value is noted, if need be, to the left of this ; the meaning
of the rest, of the table should be evident,

» o »
2
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log (‘8)12 = 28372 = log -0687  Theory

Per cent, Measurement E
12 (from pre- Actual, Per cent. Xcess.
I 4771 . ceding
1-3143 2062 column)
11 ‘ [‘2 Stray shot] 3
g a4 1388 v
[ 14526 pg3e &9 168 252 183
Co ‘ 206 174 26 54
" : 10 - ' 283 119 178 —105
« " \everal . 8
prdaten . oA L9208 . 236 79 1% —11%8
Is73¢ 3362 133 62 93 —4
. e A
5625 % T7501 ‘ 53 - 30 45 — 8
= 15 21 31 16
1:1235 . 1329 3 140 15 1:2
ete. ® ete. ‘1 3 5 4
. 0 ‘1, 2 2
Note as a check how the logarithms
12 11 0 0 Average error
of the factors —, oq e change 0 0 (Without
regularly, The successive differences are 0 0 regard to sign)
*34, 21 °17, *15,°14, '13, '14 *15,...(cf. 2,1I8) 5 per cent.

Ex. 2. Repeat the above investigation for the following measurements
obtained with a 3 : 7 setting of the machine ; draw the graph of the theoretical
values, and compare, it with the curve given by the machine: 0, 01, 05, 1-8
39, 53, 83, 97, 104, 102, 57, 36, 0:3, [9 balls].

Ex, 3. Examine for the same secting, 2 : 8, of 12 bars. the following measure-
ments of the distribution of shot poured through the binomial machine by different
persons : \

T 0,0, 0,2, 5 14, 23, 46, 75, ' 104, 156, 187 ['3, 2 balls.]

B 0,0,0, 2 °517 80,58 98 122 163, 112 ['5, 13 balls.]

T 0,00 2 °5 15 26, 54, 79 113, 164, 156 [3, 6 balls,]
B' 0,0, 0.2 ‘6, 20, 35, 65, 104,  13:0, 167, 77 [6, 8 balls.]
G 0, 0,-1, '3, '8, 1'5, 33, 62, 101,  12'6, 168, 94 ['6, 8 balls.]
D 0, 00 -2, 4, 14, 24, 43, 69, 99, 152, 209 3, 0 balls ]

(D was noticeably hasty in pouring the balls through.)

8.411. Another device used sought uniformity of distri-
bution of pellets in the slots by making these longer, and so
giving the pellets more opportunity to spread. The bars
were set in pairs with slots directly one above the other so
that a division of the shot took place only at altarnate bars
this was an improvement, but it redued by half the number
of columns of the machine used. o

Ex, Check the values of the average errcr of the heights of the columns of
shot in the folJowing measurements, the bars being set in pairs to® represent

(3 4°'7)5, and the ghot being poued through‘l‘;.he machine ag indicated, ®

) 9 . d
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. Av, errory

Free rush [9 ballg, 03, *8, 13, 81, 45, 87, 7'8, 339, [4, 8balls.] 16 per cent,

Partial rush [3 ball,], *3, -8, 34, 74. 126, 144, 234, [-2, 10 balls,] 8 per cent.

Poured gently [1 ball] ‘1, 1°0, 3+4, 9-9, 175, 174, 10'8, [1°1, °1, 1 ball.] 2 per ceat.

» »  [1ball]. °1, 9, 34,96, 16°0, 174, 129, [*6, *1, 1 ball] 3 per cent.

With seed corresponding : . :

results were '2, 2, 5, 11, 165, 21, 245 6 per cent.

[Note that the results here and in 8.81 Ex, 3 could not fittingly. be combined
to give an average result for the machine. Compare this fact with Dr, Price
Jones’ attitude mentioned in 7.53 against adding the frequencies in the same class
for different cases of anemia.]

" 8.412. One defect of the machine, constructed as here deseribed, is that the
entrance for the shot is fixed rigidly. The columns at the bottom of the machine
must be fixed, and it is usually impossible to adjust the intermediate bars so that
the'uppermost moveable bar comes into the proper position with respect to the
entrance. This results in one of the dividing bars becoming ineffective,

( Note tha lack of symmetry in the figure on p. 298 of Yule’s ¢ Theory of
Statistics” : also, though less noticeable, in that referred to in 8.4, £.’n.)

8.42. An Improved Machine: Possibly the best shape for the dividing
blocks is simply triangular, espccially lower down in the machine where the risk of
jumping from the shoulders of the blocks is greatest ; and the lower corners of the
dividing blocks should be cut away : it would probably leave too great freedom to
the pellets were the blocks removed save for the top surfaces. But all this can be
determined only by experiment. Probably the most consistent results would be
obtained, however, only if the machine were re-designed so as to allow water to flow
gently through it: the bars, when they have been adjusted could be clamped together
to prevent leakage—were they arranged so as to give a low cfscade, some measure
of the picturesque might be introduced into the machine at the same time as it
becomes more satisfactory in giving results which accord more with theory, By
this device also difficulties due to lack of fit between the moveable bars and the
glass front would be removed; for the latter would become unnecessary, » ’

8.5. The binomjal machine may be compared with Galton’s Quincunx,
which is thus described in Whittaker and Robinson’s “ Calculus of Ohservations¥,
p. 168 : “Into a board inclined to the horizontal about a thousand pins are driven
disposed in the fashion known to fruit growers as the! guimcumr, ie., so that
" every pin forms equilateral triangles with its nearest neighbours. At the top of the
board is a funnel into which small shot is poured. The shot in descending strikes
the pingin the successive rows, each piece being deviated to right or toleft at
every encounter with a pin.” It issuggested that the results of the working of the
quincunx are satisfactory ; if so, it seems that the error due to sideways displace-
ment iscompensated by the lack of definite separation : but the experimental record
to which reference is made is not available in India, and it has not been possible to
examine the matter here. However, the two machines are really different in
principle :, .in the quincunx the effect is produced by random impacts—~it does
not seem essential that the pins’should be arranged regularly; this is bnt a way (as
with the fruit trees) ,of guarding against undue crowding and sparseness of
obstacles : in the binomial machine the idea is to control the shot in a definite way.
The quinepnx gives only the symmetrical binomial curve, This can also be obtained
by any device which allows particles, e.g,, flaky seed falling from» an opening, to
spread at random t:efore being collected in a row of compartments set side byuside.

|
. " ’
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Fig. 89, Heat produced in the oxidising of carbohydrate, protein,
fat in any proportions, (Michelis) 9.52

PERCENTAGES
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Fig. 60, Qeneralised Diagram showing Quantitative Relations in.Metabolism,

(Note that each side of the trigngle carries  three scales, the two on the outside
being distingnished by graluations, whole and broken, and also of different len gths.)
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CHAPTER IX
SPECIAL GRAPHS

9.1. LEPROSY CURVES: Quantity is frequently made
the basis of classification even when we are not thinking of
frequency curves: we speak of octogenarians and of
millionaires, or we reject men below a certain height for the

LEFROSY CURVES.

lr‘
» (
L
&l .. \‘
g .
s
S
3
3
S
8,
8,
A4, v,

Longth of Time.
Fig, 61. General Characteristics of the Course of Leprosy in Typical Cases.

“A =Nerve (anmsthetic) leprosy, B =8kin (nodular) leprosy.
Ay =Primary nerve leprosy, B, =First stage of ditto—few bacilli found

in the skin,

A, =Secondary nerve leprosy. B, =Second stage of ditto—more bacilli
found in the skin.

~> =Reaction-producing causes, Bg =Third stage of ditto— very marked,
generalised lepromatous infiltration,
abundant bacilli,”

police force or the army. An interesting and important
example of the use of a graph to aid in clear arranging of
this sort is the 'modern classification of patients suffering
from leprosy. (Figure 61.%)

» 1 From a pamphlet on leprosy by Dr .Muir of the Calcutta Scheol of
Tropical Medicine and Hygiene ; also “Lancet” 208 171,.1925, ’

a
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For convenience the curves shown ip ¢he figure have
been numbered from I to V; otherwise the diagram has been
reproduced as originally given. No scales are shown, for
the graphs are meant to be merely typical, Thig vagueness
is easily understood with regard to the horizontal axis, for
obviously the duration of the disease iy vary with
the age at which the attack comes, the npatyral resisting
power of the patient, etc. As regards the vertical axis, along
which the numbers of bacilli found in a patient from time to
time are represented, it may be said that the limits of the B
types are determined by the maximum values on the curves
I, IL III, and that the numbers of bacilli which may be found in

‘the successive B types are respectively 5 5, and 15§
(apparently the maximumever found) times that found in the
Atype. Then, if we can speak so definitely, why is no scale
inserted? In this case the reason may be that the lepra
bacilli are found in clumps as well as singly, and an indica-
tion of quantity must be the result of an impression rather
than of actual counting. Also the absence of a scale
emphasises that"the diagram gives typical, and not precise, -
representations. Comparison with the classification given
in the Encyclopzdia Britannica (EX. 2 below) suggests
that we have here only the initial stages in the determination
of a classification which will put the treatment of leprosy
patients on a basis of much greater certainty than at present.

However, our task is to consider the gepera) significance
of the diagram, and that is clear. There are two types
of leprosy, denoted by 4 and B (the latter djvided into
three sub-types), in which the netves and the skin
respectively are affected. Cases of the former type are
distinguished only in time as primary an(d secondary, i.e.
according as the resisting powers of the body are yielding to
or overcoming the attack of the disease. Cases of skin (or
nodular) leprosy are distinguished by Quantity as, described
above, but it is important to notice tifat they have passed
more or less quickly (though this is not represented on the
diagram) through the anasthetis type; hence the great
importance of diagnosing early the patches of, insensitive
skin, which characterise this form of the disease, )

19 . ' ’

bl
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)

The general health of the individual has a marked
effect on the likelihood of his incurring, and on the
course of, the disease. The occurrence of fever or some
other abnormal condition is represented by arrows, feathered
according to the severity of this reaction-producing
cause. This very general term is used, because the
effects of the same cause are quite different at different
stages of the disease: what may predispose to an
increase of the disease in the early stages will in the
latter stages lead to a marked decrease of its virulence;
these elimination phenomena are not yet understood. But
the importance of quite different treatment when the
disease is gaining ground and when it is "losing is
obvious.?

For this reason there would be an advantage if the
notation used distinguised between fype and siage, or, as these
words overlap, number of bacilli and time. This can be
effected very simply by retaining the notation for the four
types A, Bi, Be, B3 at the primary stage, and adding a dash
to each letter at the secondary stage: thus®there would be
three “stages” of decreasing virulence Bs' (read “B three
dash”), By, By, A'. There seems to be no advantage in
drawing the arrows parallel to the time axis; this suggests
a uniformity which does not exist.

In this diagram leprosy is represented as a self«healing
disease: cure is effected by forces that are not understood.
This representation makes clear how contradictory results
from the same treatment in apparently similar cases may
arise. Also the course of the disease has the elusiveness
that follows from the freedom to move in a plane, not the
simplicity of progress along a straight line. (Apparently

1 The following quotatlon from the Lancet is of interest: “The object of the
removal of predisposing causes 2nd of special treatment is to flatten the curve, to
bring down the crisis a3 soon ag possible, and to hasten the downgrade of the curve,
Most of the deformities of lepers are, due to lingering on the down-grade. To avoid
this, vigonous treatment must be apphed when once the signs of the disease have
begun to diminigh,”
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there can be only one maximum on the curve.?) Curve IV
represents one of the possible intermediate cases. No fatal
cases are represented, though death might result from a
reaction-producing cause or otherwise : the curve represent-
ing this would end without reaching the time axis again.

Ex. 1. “Many cases follow a course represented by a flat curve for a certain
time (it may be many years) and then, due to sudden lowering of the resistance,
the number of bacilli increases rapidly and the curve passes upwards abruptly into
the B area,” (Dr. Muir) Represent this type of case on the diagram.

Ex.2., In the Encyec. Brit. 16 4794 the types of leprosy distinguished are
(1) nodular, (2) smooth or anmsthetic, (3) mixed. No relationship between these
appears to have been clearly sean. [nterpret this classification by the diagram.

Ex. 8. Have the intersections of curves 111 and IV with II any significance ?

This is & question a mathematician should ask., Theanswer might be in the
negative, for the intersecting curves represent different cases. But the inter-
sections represent this at least, that the resisting power of individuals equally afflicted
may be very different ; and pogssibly, that cure of a severe case is often easier
than that of a mild one. More searching questions are: What significance has the -
slope of the leprosy curve 22 Why does curve V coalesce with I, instead of cutting
it as IV does ?

9.2. A BLCOD CHART: The following physiological
example will show how one diagram (fig. 62) may be used
to represent the relations between as '‘many as six
variables which are related among themselves in some

1 This is 8o : one of the objects of the illustration is to show that very rarely .
are there large fluctuations in the course of the disease, though phases of quiescence,
renction (due to breaking down of lepramatous tissue), and resolution may be supers
added again and again : i, the general trend and the deviations of 2.311. Yet,
if there were distinct successive maxima in the course of a disease, it would be easy
to modify the notation to show the number of times a maximum is known to
have been passed, e.g, by prefixing a numeral to the symbol. Thus 3.B2 would
mean that the disease had passed through two known maxima and was at the
primary stage of a third fluctuation and at the level of intensity of the type By ;
383! (“three B two dash " ) that it was at the stage of the same fluctuation in
which the diseagse was abating, but of the same typlcal intensity. i

2 1In the Journal Bjol. Chem. 59 426 the slope at a point in & blood-system
diagram is interpreted as showing direction of diffusion, and vhus a representation
of the respiratory cycle ia got ( this is transferrad to all the 105 charts referred to
in 9.21). In the same diagram, the axes being marked with scales, for Tbtal Oy
and Total COg, the'slope of a straight line gives the .. (9.521 ii). .

N s ,'
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way that is not yet fully understood.? In' studying
the composition of the blood under different conditions
physiologists have noted six substances and broperties
which can be measured: these we may denote by O, O,,
C, C;,, H, Cl.2? From these H and C, are chosen for
representation along the perpendicular axes of reference.
It is then found that specimens of blood which contain given
fixed quantities of the substance O are represented by points
( giving the quantities of H and C, they contain ), which lie
along certain lines: three of these are shown by the broken
lines in the simplified figure, 63. So also for specimens
containing equal quantities of Oi; they are represented
along lines which happen to be not very different from the
O lines. The C and the Cl lines obtained similarly are
easily distinguished from these, and from one another.

We cannot attempt to discuss here the meaning of this
diagram,®—an intersection nomogram, it may be called. But
the main point is clear, viz., that, given the quantities of any
two of these constituents, the quantities of the other four
are determinedi for the point which represents the amounts

1 This phrase was written before the following sentences from the Journ.
Biol. Chem. 59 400 were read. With reference to a nomogram containing seven
'acales given on p. 387 therein (9.22), it is said, * From a logical standpoint the figure
is one among several possible complete expressions of the nature of blood as a
physicochemical system, in accordance with present knowledge. We believe that it
contains neither more nor less than the necessary and sufficient number of scales,
although, within limits, a different choice of variables is open.” In the complete
nomogram eighteen scales are inscrted to show quantities of importance in
physiology ; but no new mathematical principle is involved in drawing these,
Of the whole diagram Henderson says, * an alignment chart is probably the only
means of presenting such a great mass of quantitative information in compact
form,” It is equivalent to the whole 105 charts, noted in 9.21.

2 ¥or the sake of the student who has dabbled in chemistry it may be
mentioned that these denote. respectively Oz and HbO, of the whole bloed, H3COg,
BHCO3, pH and BC! of the serum; i.e., 0xygen, oxyhsemoglobin, free carbonic acid,
combined carbonic acid, hydrogen-ion concentration, combined chlorides ( with
potassium, sodium, caleinm ). )

3 The main comments of L. J. Hendenson, the author of this diagram, are
reprodnced with the complete ongmal diagram in Pearl’s ¢ Medlcal Bxamutry and
Statistics ", pagé 135, ' : R
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of the firsf two substances represents also definite amounts
of the other four substances.!

9.21. Questions arise as to why the main axes of
reference are taken for H and C,: if another pair were
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Fig. 64, Part of a nomogram representing ‘the law of the blood”,

selected, would the diagram be simplified or otherwise?
The question is a legitimate one, and might need careful
investigation® before an answer could be given; in this case

1 This same fact is stated in the Journ, Biol. Chem. 59 400 in terms of a line
cutting the seven scales of the blood system nomogram just mentioned.

2 After writing this the investigation was found in a paper by Henderson,
Bock, Field and Stoddard in the Journ. Biol. Chem, 59 379, Part II thereof, with
numerous diagrams, looked like a record of many chemical experiments, I would
have passed it by, but reading a few sentences showed that the section was entirely
mathematical | The 7 variables %an be combined in twos in 7Cg, ie, 21 ways,
and with each of these p3irs as axes of reference can be taken each of the other
6 variables. The 105 diagrams thus possible are drawn from the original
diagram got from experimental data, so that students of physiology may drill
themselves in looMing at this complex subject freen all possible points of view |
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the H and the C; might have been selected because of, say,
a complementary chemical relationship, similar to "acid and
base:' note that the C and the Cl lines in the original
diagram are nearly perpendicular, though this is an accident
due to the scales chosen for H and C; (cf. the simplified
diagram); yet the C and the Cl lines are not really straight
lines—the diagram is based on experimental results, not on
a theory which has been discovered behind the experimental
facts and by which they can be checked.

9.22. An improvement in the clearness of the diagram,
especially in the original with its numerous horizontal and
vertical lines, would result if the O and O, lines were
marked in'red; for they have reference to the whole blood,
the other four to the serum only, ie.,, the fluid separated
out when blood clots on being removed from the body.
Every opportunity of representing similar properties by
related directions, forms or colours should be utilised; this
is but an extension of the economy of effort in attending to
facts which a graphical method should effect.

9.23. One bf the applications that has been made of
these curves is not difficult to follow, though it can be stated
here in but a crude manner. It is well known that blood
from the arteries contains more oxygen and less carbonic
acid than blood from the veins. Average specimens of
these types of blood are indicated by A, V respectively in
figure 63, the quantities of oxygen indicated with reference
to the dashed lines being 56 and 26, those of carbonic acid,
C;, *02954 and -03293. What happens when the venous
blood loses its carbonic acld after it enters the lungs?

Two parts of the blood, the corpuscles and the plasma
(i.e., the liquid part in which the corpuscles move) may take
a share in bringing about these changes. It is known that
the plasma is active only when the movement of the point
which shows the change in the compgsition of thie blood is
along one of the Cl lines. In the diagram this change due
to the plasma is represented by Sy S,, and tle corresponding

1 As a mefter of fact the fundamental variables were chosei? here gimply for
experimental convenience : acidity and carbonates are both very easily determined,
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decrease of carbonic acid is from -03144 to -03106, only
+00038 out of the total change of :00339, #e., one part
of the elimination of the carbonic acid is due:to the
activity of the plasma compared with ten parts due to
corpuscular action.

Ex. 1Isthere any reason why 84, Sy should be on the particular Cl line
shown in the figure ?

9.24. The righthand part of the nomegram referred to
in 9.2 f.n. is reproduced as figure 64 in order to illustrate
remarks, in 5.5 regarding the construction of a nomogram
for which a formula is not known, in 5.6 about the
equivalence of intersection (i.e., Cartesian) and nomographic
charts, in 9.521 about a grid for the R.Q.; and other details
mentioned elsewhere. Only four of the necessary and
sufficient scales for a complete description of the blood
system are given: the fundamental scale for Total CO,
(¢. e., the BHCO; plus H,CO3 of figure 62) had tobe omitted,
being too far to the left; it is graduated uniformly. (The
other fundamental scale in the intersection diagram from
which the nomogram is constructed is Total Q,.) The
horizontal reference scale in figure 62 is replaced by two
scales in figure 64, one for cells and one for serum
(cf. 9.22): the latter isone of the seven primary scales
got from experimental data; the former is not quivte'”
parallel to the other scales (£.5). Note the proximity
of the HbO. and the O, scales in both figures; also
that these scales have a positive slope in figure 62, and
are beyond in figure 64 the parallel scales corresponding to
the axial scales of 62 (5.6).

Ex. 1. Explain the reasonableness of the slopes of the two blood lines. (An
envelope is a curve marked out by tangents in close succession : cf. 5.6 f.n.) More
precisely, show that these straight lines correspond to ths points A and ¥ in the
Cartesian diagrams. Stretch a thread tangent to the diffusion lines at the points
showing decimal fractions of the time required for diffusion, and plot on figure 63
(or 62) the poipts corresponding to these tangents. (Cf. Journ. Biol. Chem, 59 415.)

Ex. 2. Taking time of ditftision for uniform horizontal reference scale, draw
graphs showing the chgnges of each of the other variables in either diagram. (Note
how the possibility of moving from tangent to tangent on the nomogram corre:
sponds to,,momon from point to point in the ordinary diagram.)

Ex 3. Transform figure 64 into an intersection diagram as dearly like ﬁgure
62 a8 possible,



REPRESENTATION OF A TIME-SERIES 153

9.25, It is interesting to note two of Henderson’s
cautions (hinted at in 9.21.) with regard to his diagram, 62,

(i) The O, lines are more nearly straight if drawn
against a background in which not only H but also C, is
plotted logarithmically.

(ii) The C and ClI lines really have a slight curvature.

These comments lead us to consider more general types
of graph paper.

9.3. SEMI-LOGARITHMIC GRAPHS: When numbers are
plotted’for a long series of years during which there is a
large increase or decrease, an alteration which would have
been important at the beginning of the series might have
practically no significance at the end, or conversely. Yet if
the figures are plotted on ordinary graph-paper these
fluctuations appear equally striking to the eye at both
stages; and so a false impression is given. The effect of a
graph of receipts or expenditure on ordinary paper is often
unduly cheering or depressing ! A semi-logarithmic graph
is a more sober record of facts.

What it is désirable to show is the change relative to
the total quantity involved, and this is done if, instead of
plotting the numbers themselves, their logarithms are
plotted. Then a change from y, to ¥, appears as log y,~log yo.
ie., as log (¥1/ye ), which is always important, and not as
¥1—Y¥e, the significance of which. varies very much. This
plotting is most conveniently effected on the semi-logarithm-~
ic ruling as it appears on the right of the blackboard
depicted in figure 2. The x axis is usually graduated
uniformly, for time is “ an ever-flowing stream’; but the y
axis is on a logarithmic scale, and the values of y are placed
on it in the same way as the cardinal numbers are marked on
the slide rule.

9.31. To read the graphs in figure 2 in the usual way
the figure must be turned so that the lejthand side is below:
the time scale is then at the top of the figure,, A comparison
of the deathrate curves, drawn on the two kinds of ruling
from the same figures in Table III (¢), will show clearly the
contrast between the two méthods. In the space available

20
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2

comparison is possible only from 1880 onwards. The
apparently remarkable fluctuation from 1880 to 1883 shown
on the ordinary graph is far less prominent on the semi-
logarithmic graph, where it is comparable with the
fluctuations about 1910 and 1920. The important fact to
note, however, is that, while the ordinary graph indicates a
decrease which has a tendency to fall off, the logarithmic
graph shows a definite change In the rate of decrease at
two points, about 1887, and, more definitely, at 1910; alsothat
the rates of decrease have become distinctly larger. (The
ordinary graph should be carried back to 1870, and it will be
seen that for that decade it becomes almost unmanageable
and unintelligible.) These facts have an obvious explanation
in that “about 1888—1890 the activities of the State board
of health in the study of purification and sewage treatment
were at their height, and about 1910 the pasteurization of °
milk was adopted extensively. There have been no sudden
changes in the quality of the water supplies of the State, but
a steady improvement due more to protective measures than
to water purification and chlorination.”

h

9.32. On semi-logarithmic graph paper, which may be
called also ratio paper, equal ratios' of change, m, eg.,
percentage changes, are shown by equal slopes; just as on
uniformly ruled graph paper equal differences for corres-
ponding intervals are shown by equal slopes on the same or
different lines. This may be seen directly; or we can
deduce it from the equation of a line drawn on such ruling. -
If this be logy=mt+cj, it may be written®

y=10""* a1 =100, 10" =ca’

1 Sometimes, e.g., “ Working Olass Budgets ", Chart No. 6, the value of"
ratios are shown by separate lines of appropriate length drawn parallel to the
logarithmic scale ; this is certainly provocative of thoaght, but it js a cumbrous
device, justified only by general ignorance of such graphs, Whipple draws lines
of slope 1'1 per cent, (cf.®Ex.7) on the charts showing growths af general .
populations ; this, hgwever, is to show the typical rate of increase with which
particular instances are to be compared.

2 By comparison with A=D (1+mn of 2.21, note that, for respectively

equal scales, a=10m=1 +7, and so m=log (¥ + 7). Cf, Exs, 6, 7% also 3.I3 (ii).

-, ET &
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and this is the exponential curve of 2.21, which shows a
constant relative rate of change. Conversely, if we find that
a series of points plotted on this paper lie close to a straight
line, we deduce that the “law” governing these points is of
the exponential form: its constants can be deiermined for
the equation logy=mx+¢ by measurement in the usual way,
the relation of the scales for logy and x being noted; and
then this equation can be transformed into any of the above
forms most suitable. (Cf. 9.33 Exs. 6, 7.)

9.33. If semi-logarithmic paper is not available, a third
column'giving the logarithms may be added to a table of
values, and these logarithms can be plotted on ordinary
paper; but it is well to have a permanent semi-logarithmic
ruling on which results may be plotted direct without the
labour of looking up logarithms. This is easily obtained by
ruling a slate so. It will be found convenient to make
the length of the logarithmic scale corresponding to a
factor 10 equal to about 4 inches. The reasons for this
are two: with a larger scale it is difficult to interpolate
accurately towgrds the lower end of the logarithmic
unit, though here extra lines should be ruled, just as
there are extra graduations on the slide rule!; and on
an area the size of foolscap (or preferably more square
shan foolscap) it is possible to get a range of from I to
1000 on the logarithmic scale, and this will serve for most
purposes.

Ex, 1. Calculate the amounts of two very different sums of money, e. g.,
Rs, 10 and Rs. 100, at the ends of 20 successive ycars at the same rates, compound

interest, Represent these values on ordinary and on semilogarithmic ruling,
Wkhat conditions determine the slopes of the C. I, lines on uniform rualing ?

(Note that in comparing two series of prices represented on ordinary ruling
the fluctuations of each depend on the unit quantities for which the prices are
taken ; and so a faulty choice of units may deprive the graphs of meaning:
this defect does not occur on semi-logarithmic ruling, Also for this property compare
semi-logarithmic graphs with index numbers, 6.511.)

»

1 An effort should be made to make the meaning o7 all lines very clear, -
without thickening them, Whipple's graphs, referred toin 9.32 £. n, 1, would be
much easier to read if the unit lines were produced slightly beypnd the bordery
or the half unit Iinea broken, ? ,
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Ex. 2, bompare the business of Indian cities as indicated by the amounts of
cheques (lakhs of rupees) clesred annually
ag in the acompanying table. (Indian
Year Book, 1924, p. 768) The graphs \o\, oopyy  yo5i5 1548 530
given in this publication on pp. 838 to 8§ 921281 12585 1754 643
848 are better drawn on semi-logarithmic 9 19776 14375 1948 702 -
ruling, but people are not yet accustomed 10 22233 16652 2117 755 -
to this form ; hence the inferior represent- 1 25763 17605 2083 762
ation has to be used. In hig ‘¢ Vital 2 98831 20831 1152 1159
3
4
5

Calcutta Bombay Madras Karachi

Btatistics” Whipple uses this ruling 33133 21890 2340 1219
fre‘zely; but, Peing ;-)rimaril_‘.y c?ncem(d %gg?;}; izg%g %g; 113’;;
with quickly improving sanitation, ete.,

he gives a warning (repeated in the
Report quoted in Ex. 4) against usingit
for display | “Its unequal scale divisions
make it not well understood by the 20 153388 126353 7500 3120
people......It is not well adapted to the 1 91672 89788 3847 3579
plotting of vital statistics by months, 2 94426 86683 4279 3234
because it is not the rates of change 3 89148 75015 4712 4064
according to seasons which interests us, 4 92249 65250 5546 4515
but the actual changes (cf. 6.4)." (p. 87),

6 48017 24051 2495, 1503
7 47193 33655 2339 2028
8 74397 53362 2528 2429
9 90241 76250 3004 2266
0

Is the attitude indicated in the former sentence one to acquiesce in? For the
first time in the Census of India this type of graph has been used in 1921 : see the

very striking graphs in IX, opposite p. 3 ;! also the more obscure graphs in VIII
50, 96, ete,) "

Ex, 3. Plot on logarithmic ruling to a suitable scale the accompanying
infantile mortality figures, How would the effect of the Notification of Births Act,
1907, be shown on the graphs ! Cf, Ex, 4 (h),

. »
DEATHS UNDER ONE YEAR PER 1000 BIBTHS.

Aberdeen  Dundee Edinburgh Glasgow Scotland England

1900-04 147 163 132 150 122 . 143
1903 145 154 131 143 120 - 138
4 139 152 125 136 117 134

b 135 153 126 136 116 131

1 Without detracting from one’s appreciation of this graph, it may be
pointed out that it is unnecessary to describe the changes of population as
* proportional ¥, and that there is no need to show a uniform scale of logs
(a guarantee of honesty, is it 1) ; though this gives the example of etationary scales
referrad to in 14311 (Yet one statistician writes, **The logarithmic historigram
(7.31 f.n, ), while valuable forurelative comparison in point of time, is not good for
comparigon of the sizes of different variables at the same time..,...... ...logarithmic
curves are of no pract®al value for showing the absolute size cf the different
variables at any given date”) The remark, A slope of 45° mearns a rate of
increage which would double the population in 30 years” should be tested by

meagurement thus : log2 = +935cms, =30 years on the horizontal seale ; cf, Exs, 6, 7,
» k4 v
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DEATHS UNDER ONE YEAR PER 1000 BIRTHS- contd,

Aberdeen Dundee Edinburgh Glasgow Scotland England

1906 i 134 155 126 135 117 129
7 o134 149 123 132 1114 121

8 130 156 119 130 112 - 116

9 132 153 118 132 13 - 115
1908-12 133 155 115 130 112 112
1911 136 157 112 - 129 110 110
2 131 156 110 129 112 : 110

3 143 163 113 133 115 - 111

4 138 158 110 127 112 102

5 140 155 113 128 113 102

6 e 138 148 112 125 m 100

7 137 146 113 122 109 97

8 128 130 106 117 99 92

9 127 128 105 116 97 . 90
1918-22 126 124 99 114 96 86
1921 118 117 97 109 92 81
1920-24 119 115 90 110 91 77

These fignres are taken from a graph on ordinary ruling at the end of “A
Social Survey of the dity of Edinburgh ”, (The figure is an excellent example of
how lines may be distinguishcd {from one another, but it Is not suitable for
reproduction here.)

) The following note is attached to thc diagram : © The figures on which this
Chart is basel havc been obtained from the Annual Reports of the Registrar
General for Scotland, Quinquennial average rateés have been used in place of
annual rates because the latter are so largely affected by outbreaks of epidemic
disease and by abnormal climatic coaditions that they tend to vary considerably
from year to year, Such variations ohscure the general trend of the figures. The
quinquennial average rates minimise the cffect of these variations, and are thus
more suitable for use in showing graphically the broad course of infantile mortality
over a period of years,” Cf. 6.5, 2.3l

Ex. 4, Plot semi-log graphs of the figures given in Table IIL1

The columuns refer to deaths due to different causes; the characteristics to be
noted are indicated in each case as follows :

3

1 The critical student who compares the beginningland the end (3.151) of
some of the columns will be able to detect the fact that these figures were taken
from curves. The curves are published by Whipple and Hamblen‘in the Reports of
the U, 8, A, Public Health Service (37 1981). ’



158 MORTALITY FROM DIFFERENT DISEASES
(a) Ge;ieral death rate.! Compare this with each.of the other cufves.
The figures from 1851 to 1869 arz
18, 17, 18, 19, 18, 17, 18, 17, 16

18, 19, 18, 23, 24, 29, 17, 16, 18, 17,
Note the steady general rise to 1890, and the more rapid fall thereafter.
QConnect features in this and the other curves with events in the following table:

1861—5  American Civil War,

i

1867 Pasteur, professor of chemistry at the Sorbonne,

1882 Tubercle bacillus discovered by Koch, )

1886 The Pasteur Institute opened for the study of bacteriology. - /[~

1889—90 Studics of water-purification and sewage-disposal at Lawrence,
Free distribution of diphtheria antitoxin, —_—
Establishment of tuberculosis dispensaries and sanitoria.

1010 Pasteurisation of milk adopted extensively,

1918 Influenza year. »

1920 (Jan) Prohibition Amendment effective.

Put marks on the time axis to correspond with these and other events which
you think relevant. You will then be doing what students of history do who wish
to make vivid the relation of events in time. Cf. Keatinge, ¢ Teaching of
History ”, p. 141 (A. & C. Black) : also 2.33, 7.531.

() Tuberculosis ( pulmonary ), Note the change in rate about 1885,
Show the poesibility of the prediction from this semi.logarithmic graph that by
1950 the deathrate from this cause will be 38 if the present decline continues.
Cf. Whipple, “ Vital Statistics,” pp. 369, 370, "

(¢) Typhoid Fever. This graph has been noted above. Which is
decreasing more rapidly, tuberculosis or typhoid fever ? Cf. ¢ Medical Biometry ™,
p. 125, where the reference is to all forms of tuberculosis ; also Whipple, op. cit.,
387 (Massachusetts only). "

(@) Diseases of the Digestive System. In 1900 there were changes in
classification.

() Diphtheria. Can you determine an approximate period for the
characteristic recurrences of this disease? Cf. Whipple, op cit,, 378. Note that
the break in the downward trend about 1910 may mean that control has been
attained, while extermination is impossible, This suggests a possible ecopomy in
public health activity.

(f) Scarlet Fever. Here there isa steady general reduction, * though
the bacteriology of this disease is not well understood, This line differs from the
diphtheria line in showing no reduction in the regular recurrences”, In view of
the vertical scale being logarithmie is this comment justified ?

1 In“ Vital Statistics,” Whipple says (p. 268) : “ A general death-rate, or gross
death-rate, is of little use until it has been analyzed. The ¢ Total solids’ in a water
analysis gives the chemt almost no idea of the quality of the water...cesvnivsonss
A general death-rate must be broken up into its constituent partS..c.sssessessessss
Death-rateanalysis today is in about the same ézondibion that water analysis was
in fifty years ago,”

w



TABLE II[—Death-Rates in the U.S.A. from 1870 to 1920.

» Year

- No, per 103 106

1870

H

© .
RO @O0 O SO0t galltd -

190

—
TR O CONOOT BRWNEO O PO TGO W

Do

.

@ ®
18 340
18 335
23 360
92 © 345
18 320
22 340
20 313
13 318
18 308
17 298
20 305
21 320
20 310
21 315
19 300
20 302
18 304
20 290
20 275
19 260
19 265
20 245
22 250
21 234
18 218
19 220
17 213
16 206
16 199
17 192
18 185
16 173
15 165
16 155
15 164
16 156
15 148
17 150
16 138
15 133
1% 133
15 128
14 120
15 114
14 113
13 112
15 121
14 130
20 140
13 110
15 98
11 85

82

. (c)

107

860
740
1050
830
700
660
510
480
390
360
470
600
590
460
460
400
410
430
430
400
370
360
350
310
300

270
280
230
240
220

220
190
180
170
160
170
160
130
160
120
130
90
76
78
70
58
46
47
40
26

25
30

@
106
68
70
76
7
77

18
77
78
79
80

a6
95
100
105
102

106
100
107
107
109
108
115
121
122
119
119
122
120
125
120

139
192
190
192
191
204
195
198
194
190

202
180
170
160
150
138
136
142
140
100

106

®
106
47
50
47
56
85
135
200
182
145
138
140
139

3]
107
430
580
850
920
830
1000
760
230
240
490

350
210
180
300
320
300
170
290
280
30
90
110
290
330
200
150
100
130
60
1¢0
110
130

T 110

180
45

40
43
90
110
80

75
50
34
80
70

50
32,
31"
20
35

53

(€3]
107
190
80
280
120
100
150
65
29
180
11

130
125
338
180
39

170
65
220
109
75

52
100
38
110
40

47
64
60
31
85
110
60
110
78
55
GO
66
50
100
49
70
46
80
90
41

40
103
95
130
49

90
4b

’110

®)
103
160
151
195
178
162

175
154
152
150
147

160
164
163
158
160

1567
155
160
160
158

165

158
159

160
156
152

156
147
150
148

154
140
142
141
137
142
140
136
139
128
132
118
119
114
109

105
101
97

g8

86
90

it

106
36
37
36
39
37

36
40
38
48

50

62
52
53
55
57
57
56
58
61
62

63
62
61
65
65
70
70
68
71
68

71
73
74
77
80

82
84
85
86
86
90
92
92
94
97

98
204
110
111
110

115

£
)

@

107
62

81

76
74
72
93
73
98
78
92
74
90
88
88
97
91

74
80
78
80

80
74
102
103
92

101
101
88
100
96

92
108
88
104
100

98
91
125
130
122

124
123
131
130
129
132
118
122
120
116

)
107
51
58
88
69
66

59
51
31
38
39
61
68
68
60
66
63
54
53
60
57
68
80
83
86
60

71
76
53
60
62

89
62
59
67
53
60
52
70
35
b7

64
60
56
94
80

50
57
66
30
18

16
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(9) Measles. “Not yet successfully controlled.”

(») Infant mortality. A steadily increasing rate of improvement eince
1890, ¢ Qeneral efforts in the direction of infant welfare have doubtless had their
effect in causing the downward rate to accelerate, but sanitation seems to have been
more effective than hygiene.,” Can you justify this statement ? cf. (¢) and 9.31.

(i) €ancer. A contrast! A modern disease?

(/) Suicide. Earlier figures from 1857 are 80, 70, 170,
89, 74 74, B2, 5l 62, 56, 57, 64 65

Find out the years of financial panic in the U. 8. A. and compare them with
this graph. (Whipple gives these years as 1857, 1873, 1893, 1907, and connects
them with subse uent decreases in the.marriage-rate.) o

(¥) Alcoholism. Earlier figures from 1861 are
98, 99, 130, 120, 45, 31, 27, 53, 67,

Figures for recent years are difficult to obtain, For 1921,-2,~3 the deathrates
for this caunse are given as 18, 26, 32, the last being attributed to the drinking of
inferior liquor, Other figures given are from 1914-1917, actual number of alcoholic
deaths, 14,270 ; 1919-1922, 6,315. Check the reliability of these figures, ( The
population of the U 8. A. in 1910 was 91,972,266 ; in 1920, 195,710,620, )

Ex. 6. Arope lapsroand a fixed post [ turns, the slack end being pulled
with a force f=2. The force IV on the other side was just sufficient to prevent
slipping; prove that the law .VjM=2'7181-846l connects the following values

of ¥and ?: »
I 3 F 3 1 1} 13 13 2 2 91
N 317 506 790 1268 1990 3210 5012 803 1258 201'5

( Perry’s ¢ Practical Mathematics ”, p. 71: the essential part of Ex. 6 is taken
also from this book, p. 79.) "
Ex, 6. Show from the following table that the population P of England

and Wales follows closely the law P=10 7:03+005506¢, tbemg reckoned in years
from 1811 (the 1811 census result to be omitted),

1811 1821 1831 1841 1851 1861 1871 1881 1891

England and
Wales ... 10:164 12:000 13-897 15914 17-928 20066 22712 25974 29:002

Scotland ... 1806 2:091 2:364 2-620 2-889 3062 3360 3736 4:026
Ireland ... — 6802 7767 8175 6-552 5779 5412 5175 4705
India ver — — — — — — 206-162 253-896 287°315
U.S. A, ... 7240 9638 12861 17063 23:192 31-443 38558 50:166 62-948

Caleulate P from the formaM, find the small differences! from it as given by

the census returns, and plot these differences as a curve. Show that the probable
population in 1901 and 1911 was 33-93 and 38'68 millions respectively,

v
1 e, the déviations of 2.31}
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v

)

. Note—The correctness of Perry’s forecast and “ law ” may be judged from the

following census figures for 1901, 1911, 1921—

©

1901 1911 1921

England and Wales ... 32.527,843 36,070,492 37,885,242
Scotland v e 4,472,103 4,760,904 4,882,288

'

Ireland . w. .. 4,458,775 4,390,219 4,470,000 (estimated),
India we e 204,361,056 315,156,396 318,942,480 »
U.5. A we | e. 75,994,575 91,972,266 105,710,620

1’I‘est; whether the figures for the other countries can be treated in a similar
WAY. .

These figures are given * accurately ”, not because they are required so in order
to test the prediction, but in view of a footnote which Perry adds; you should
consider how far you agree with the note. Having noted that simple curves go
through points representing numbers calculated from formule, and evenly among
observed numbers, he continues, “ Plotting correct numbers, as of Population, the
true curve goes exactly through the plotted points. Buf there is possibly a simple
law complicated by perturbations ; in studying the curve which goes evenly among
the points we look for the general law. Having it, we search for the perturbation
law, if there is one.” (Cf. 2.311.) If not, we must be content with the average error
(6.%). The chief points here will be elucidated by a reference to Whipple's ¢ Vital
Statistics * p. 109, ete., especially p, 188 where a noteworthy graph, of the type
described in 7.11, is p'iven to show the age-distribution of the people of Sweden,
¢ The influences which increase or decrease the numbers of children produce
results which flow as waves throughout a long life-term ”, Note also p. 204 on
which is given an example of the use of increments (not differences, as above),
Pf. the deviations of 6.52.

To illustrate the remark in 1,33 about manipulation of units we detail here the
deduction of the formula given by Perry. To determine directly the slope
of a line it is convenient if there is some simple relation between the unit of the
logarithmic scale and the equi-spaced ruling. Onb the blackboard ruling on which
this work was done (as shown in figure 2) the logarithmic unitis the side of a
square which is divided into 10 equal parts for the time scale. There seems to be
no reason why Perry should suggest that the 1811 figure should not be includedl
(v. Whipple's ¢ Vital Statistics”, p. 208); when all his values were plotted
the equation of the line through them was found as

log 20 ~
logp = log 20-log 11 ,,IOg 1t T+ log 11.
05

Here the unit for p is 108, and for 7 100 years, Accordingly we get

log(P[108) ="52, £/100 +-log11 or P =106 0052t + 10434 = 107:04 + 0052 (Alternatively,

values of P and ¢ might have been substituted twice in P=10 mt+ey

r

1 It will of course be recognisgll that figures of early cenepses rday not be
comparable with those for later, ?wing to changes of territory, ete, ) ’
}
21° , )

)
)
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n
»

and the two equations solved for m and ¢y.) The populations for 1901 and 1911
were estimated from-this graph at 32'5 and 37 millions: working on good semi-log
ruling you should attain a higher accuracy.

Ex. 7. The charts in Whipple's * Vital Statistics”, p. 205, etc., showing
growth of national populations, have straight lines of slope 11 per cent drawn
across them for comparison. By measurement the actual slope of these lines was
found to be 1+68{7°73. The unit of the logarithmic scale is 2:70 cms., and 100 years
are represented by 595 cms. Verify that the lines show correctly a slope of
1-1 per cent,

(Find the number of years represented by 2:7 ems, ; divide the slope by this
number to get log (1+7) : cf. 9.32, f.n.)

Ex. 8. Prove that the angle of inclination of a line which ehows an increase of
7 per cent, on logarithmic ruling, in which the time unit is 1/% times the

logarithmic unit, is tan—llog ( 1+ig—0 >k. Apply this to check these measure-

ments from Whipple's reference chart (p. 211), where the scales are as in Ex, 7,

Per cent. 1 2 3 4 5 10 15 20 30 50 100

Angle 11° 21°207 30°307 37°40” 43°407 61°40” 69°40! 74°25/ 79°10’ 82°30/ 85°407
Modify this formula to make it applicable to decreases, What is the limiting

case !

9.4, PARETO'S LAW. The advantags of using semi-
logarithmic graph paper for certain purposes leads us to ask
if there is any advantage in using graph paper in which
both the axes are graduated logarithmically. The general
equation to a straight line drawn on such paperis

log y=m log x+1log ¢, ie., y=cxm;

and so this type of paper is useful when we wish to represent
a relation which involves one of the variables as a power.
Any of the simple parabolic curves of 2.t would on this
graph paper be transformed to straight lines. Thus, for
example, may be obtained easily and rapidly a graph to
represent the relations between the area and side of a square,
pressure and volume of a gas, and so on.

9.41." Here we shall consider in some detail in its
mathematical a§pectsl a simple law dealing with a very
cornplex subject in economics. A well-known Italian econom-

1 These, However, relate only in a minoredegree to the graphrcal representation
on logarithmic ruling,
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ist, Pareto, in studying the distribution of wealth among
the members of a community, found by trial that there was
a relation between size of income and the number of people
who had that income: this was represented by
N=8/x$

where /N is the number of persons whose income is at least
xunits (rupees, liras, dollars, etc.), and 4 and s are constants
which depend on the country, or the class of the community,
that is being considered. Writing this in the logarithmic
form, we have log N=log A—slogx, and this we know is
represented on logarithmic ruling by a straight line whose
slope is negative, s being >0, in fact, >1. Figure 52 is
drawn in the way this line appears most frequently in books
on economics:to see it as mathematicians are "accustomed
to see it you must turn the right side uppermost, and then
get behind the paper!!

Mathematically the law is very simple, and we might
content ourselves by expressing the wish that economists
" who discuss it would represent it in some uniform way. It is
possible to interchange axes (2.11) and to vary the relations
of the constants? but, unless some definite purpose is served
thereby, an unusual presentation of the facts tends to produce
confusion, and those who are not experts get the impression
that the significance of the facts as to the distribution of
wealth is much too recondite for them to appreciate.?

9.42. It does not concern us here that some economists
doubt? the reliability of this “law’: we are in no position to
discuss this. The data economists have to elucidate are even

1 This is a good mental exercise: it might have been employed with
advantage in 2.11. Cf, also 7.31 Ex. 5, note.

2 'The formula usually given has O for the index s Mathematicians habitually
denote angles in circular measure by Greek letters, and so to use & for a slope
involves extra mental effort for them ! For convenience in printing, s has been
used here for (X ; it might, however, have been better to have followed mathe-
matical convention completely and taken s as the slope, measured in ,the usual way
(p. 42, f.n. 2) : Pareto’s law would then have bedn simply N = Az, where ¢ is
negative, )

3 Yet “ While the logieal foundation of Paretos law is open to coatrovarsy,
there is no doubt abont the validity and importance of the law.” (FDY Kdge-
worth in Palgrave's ¢ Dictionary of Dolitical Economy ”, 3 713.) ©
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more elusive than those we have encountered in chemistry
or physiclogy. Besides their difficulties of definition and of
getting reliable data, there is this, that it is impossible to
conduct experiments in economics in a laboratory where
suspected cause and effect may be isolated from other
possible influences and directly connected with one another.
Experiments can be watched only when they happen to be
taking place; but even then the results cannot be regarded
with the detachment that is possible in ordinary scientific
experiments. No one can be indifferent to the facts that
the political and economic experiments carried out in recent
vears in Russia, as a result of the Bolshevist Revolution,
have involved a reduction of the population of Petrograd
from 2,250,000 in IQI4 to 700,000 in 1921I; of Moscow from
1,800,000 to 1,000,000; and of the whole country from 180 to
130 millions. Even in a readjustment of tariffs and taxes,
more or less thorough, few people “detach” themselves
from their pockets, even in the interest of the State!

As to Pareto’s law, however, it is certain that for extreme
positions it is not reliable; in fact in some investigations the
people of a nation are divided into at least three classes, and
itis found that the law holds for each of these classes sepa-
rately, the value of s forthewealthy class being greater than
that for the poorer; and so the distribution of wealth magw
be more truly represented by a series of three straight
lines, say, none of which reaches the axes of logarithmic
co-ordinates (2.18; cf. fig, 53). This modification of the law
of distribution has a very intimate connection with the
important distinction between ‘earned and unearned
Incomes (cf. 6.31)¢ but it is difficult to say how far the law
as modified is exact.

9,43. It is notoriously difficult to get relinble information about incomes
and so it is very important to be able to check the worth of such information as
is obtained direct by comparison with say, estate duties, house remt, or claims
for exempt.lon from income tax—criteria that were used in the three ranges referred
to above. This law has been wsed successfullyl to guide income-tax authorities
ag to the clags of income.tax rayers among whom there was most evasipn of
payment—not a very pieasant Iaw from some points of view |

9.48. It should be noted that this graph, when drawn
on ordlnary rulmg, has a relation®to the integral curve we

1 8ir JosiaksStamp : * Wealt? and Taxable C Capagjty ", ? 82, w
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considered in 7.31 f.n., though the number N (or log N)is
exclusive in its tendency as x increases; it does na¢ include
the numbers in the classes lower than the value of x that is
being considered. This may be seen more easily by taking
the x axis horizontal, as described in 9.81: the curve then
appears as a reversed integral curve—XN is the number of
people who have incomes down to that shown on the x axis
as we move from left toright! The matter may be seen still
more clearly if we compare various curves thus: in 7.31{.n,
dy is the number between x and x+ dx, in 7.32 this number
is y, ‘while here 8N is the number between x— éx and x.

This suggests, what is actually so, that the information
which is given in a frequeney distribution can be derived
from this “integral ’formula by the aid of the infinitesimal
calculus. The number of persons whose income is x is the
difference SN (really —éN, but the application is so obvious
that we need not burden! ourselves with the sign) of the
numbers of those who have incomes x+ 8x and x. Here we
take dx as a suitable, comparatively small unit, £I, or Rs. 2
or Rs. 100, and we find (3.15) neglecting signs, the number
whose income is betweenx and x+1 as (ZXSx = ;:T/il
If we call this #», we get a relation between income’ x and
the number who have that income (though this time, neither
more nor less), and this also can be expressed by a straight
line on logarithmic ruling : for

log n=1log (s4) - (s+1) log x.

The only important difference is that the inclination
of the line to the income axis is greater : and so Pareto’s law
might have been expressed in this form.? Here again the
number z in the successive classes increases as ¥ decreases,

1 This does not mean that signs are usually a burden, and here certainly the
burden is not heavy, Signs are always a sure guide, but here we have other guides
that most of us know better,

2 The statement of Pareto’s law given in th) Encyc. Brit. 23 390d is worth
quoting though, to make it quite consistent, *at least " should be added before the
last two words: “The number of incomes of different sizes (above a certain size) is
approximately represented by the equation y=AjzX, where = denotes the size of
inecome, y the number of incomes of that size.” TReasons for prefcrring this form of
the'law to that as a frequency gistribution gre given under Ex, 4, 9
’ )

) )

’
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and we see that the frequency curve, drawn on uniform
raling, is.completely skew (cf. 2 remark at the end of 7.42).
Ability, like other natural qualities would be represented
by a mnearly symmetrical frequency distribution; the
skewness of the frequency curve for income corresponds
to the fact that income depends upon accidents of inherit-
ance, and not simply upon ability. (Cf. Pigou, “Economics
of Welfare ”’, p. 696.)

Ex. 1. Show that the ratio of the numbers of those who have at least a certain

income to thcse who have just that income varies as the income ; in fact 2z =As.
Rx. 2, The distribation of incomes on which super-tax was paid ir Britain

in 1911-2 was as in the accompanying table. Income Number
(Note how the irregularity of the classes would (£1000) Recorded.
make the points representing the figures directly 5 - * 7,411
difficult to interpret.) Modify the second column 10 - 2,029
50 as t0 show the nnmbers of incomes not less 15 - ) 787
than the several sums stated, and plot logarithm- 20 - / 438
ically the points showing these results Find 95 - o 389
the values of 4 and sin the formula N=A/z’ 35 - 186
corresponding to this distribution. 45 - 107
Bowley in his “ Statistics /, p. 347, gives the Zi ) Zg
values s=1-5, log4d =9'618 ; these have probably »
been obtained by arithmetical methods (cf. p. 75, 75 - 65
f.n.). In his paper in the Quarterly Journal of 100 - 66

Economics 28 2551f, he considers the possibility of these figures, along with figures
from income-tax abatement, being represented by two parallel Pareto lines of slope |

15, for which 4 =930 and 9'62 respectively.
Ex. 8. In King's * Statistical Method’

p. 99 the following, apparently

hypothetical, figures are given of the numbers of men with incomes in 1000 dollar
classes up to 18,000, Show that no Pareto line fits these figures.

5,8,10,12,14, 10,9,10,6,2, 3,1,2,0,2,

Ex. 4, In Yule's * Statistics ”, p. 83, the Annual Value

1, 1. 1, and 3 above 18,000 dollars,
No. of Houses

accompanyiug figures of dwelling houses assessed £20 ~ 306,408
to Inhabited House Duty in 1885-6 are given £30 - 182,972
as an example of the difficulty caused by "248' lgg”ggg
unequal frequency intervals, Find the Pareto £20: 71:436
formula which fits these figures for most of £80 - 32,365
the range, £100 - 41,336
. £150 - 26,732

Note how» these figures bring out the £300 - 6,198
convenience of plotting total numbers £500 - 2,098
above each value : (i) Tpere is no need toplot  £1000 - 644
838,692

at the middle of intervals of unequal gize, (ii) the

djfficulty of vague end-intervals is avoided (7.311), (iii) the range in the number-
scale is reduced—®here the frequencies for a £40 interval range from 10 to 106,

and o require an e:;h-a logarithmic unig,
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Ex. 5 Another ex‘(ample of a Annual Value No, of Estates
J- shaped distribution is given by (£(1)0_0) 17265
Yule (op. cit. p. 100), The figures ’ o ;: : ?235
are of historical interest, for they ‘ ' 2: h %5
refer to the estates of those who ) 5 - . 495
took part in the Jacobite Rising of o g - , ggg
1715, Bhow that, though the g - ) ;iﬁ5
figures are gaid to be *“of very 10 - 115
doubtful absolute value”, they lie };: 3'5
very clo;ely on two Pareto lines for » ii - 38'5
the lower and higher parts of their _ 15 - 3
ranges respecéively ; find the values ; }g B ?
of s for the two “laws", (The g?: i
numbers at the end of the table are 22 - 1
really within the unit classes g? - ;
indicated, e. g. 2 in 27-28; but g; - i
this makes no difference if you ! ig - i
plot ¥, and not n,) 2 . e 476"

V. 8. Four logarithmic unit ranges are required for the plotting of these
figures, but different scales may be used for the same units without confusion, e, g-
the lowest unit may show nnmbers both from 100 to 10 and 10 to 1, or the graph
may be drawn on two units showing both 10,000 to 100 and 100 to1l; parts of the
same Pareto line thus separated will appeéar parallel,

Ex. 6. Show that wages statistics, e.g, those given by Bowley, op, cit, p. 69,
annot be represented by a Pareto line, Assign reasons for this.

Note— Attention should be drawn to the material in Stamp’s ¢ British Incomes
and Property ” (P. 8. King & Son, 1920), which may be investigated with the help
of logarithmic ruling ; e, g, pp. 36, Graphs of assessments should be re-drawn on
)emi-logsrithmic ruling: p. 833, Pareto line of Ex, 2 is plotted, and for it $=166+
8 found ; p. 338, Three sets of super-tax statistics for which s is almost 1-75,
. 9.42; p. 457, An interesting diagram sh owin g8 a relation between rent and
necome ; the figures of each of these agree with a Pareto formula ; P. 518, Numberg
of houses assessed to house-duty in 1829 in England and in Scotland : each set of
igures lies along two Pareto lines, the respective slopes in the two partiong of tbeir
anges being distinctly greater for Scotland than for England, Approximate
ralues of s for England are 1'2, 22; for Scotland 16, 24

)
.

9.441. The comparison of the graph for N on srdinary
'ul)ing with an integral ‘curve can be put positivelv in
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another way than that suggested above. Suppose the graph
viewed from behind the paper;the reversed horizontal
income axis may then be regarded as a positive poverty
scale. The ordinate of the curve, which rises to the right,
represents the number of people who have at least as much
poverty as is indicated by the reversed abscissa! Cf. figure
54. For the ogive, which is got simply by turning this
figure, viewed from in front, clockwise through a right
angle, the corresponding statement is: an ordinate represents
poverty which has not been attained by the number of
people represented by the abscissa. .

The typical form of the integral or cumulatlve curve
is simply J* (Bowley, o0p. cit., p. 106; Pearl, op. cit.,, p. I118),
Comparison of this with figure 54, viewed from behind,
suggests that the departure from Pareto’s law in the region
of small incomes may have a natural explanation behind
that suggested in Palgrave’s Dictionary, IIl 712. “As the
law relates to averages it is notto b2 expected that it should
be verified at the higher extremity where only one or two
observations occur...... With regard to the lower extremity
of the curve, the shape depends on ou* definition of
“‘ncome” : whether with Pareto we include paupers, or
restrict the definition to a more homogeneous class.” But
this is a question for economists. In any case, the contrast
between the departure at the large-income end of our
curve and that at the lower end of the ‘“natural” curve is
striking, and appears to confirm the comment at the end
of 9.44.

The most obvious graphical comparison, however, is with
figure 10, where ordinates represent the numbers not yet dead
in a time as short as x; in figure 54 an ordinate represents the
number whose incomes are not as small as x. Comparison
of figure I0 with the ogive or with the integral curve may
provoke many reflections as to how the natural course of
events may be altered, by man., A sentence in Palgrave’s
Dictionary will extend still further our thoughts on this
subject, and on*the interpretation of the form of curves:
“Whilg dimly discerning that universal statistical principles
and stable *human institutions are behind the Paretian
formula, we need not assume such nx1ty of causatmn that
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the inequality of distribution cannet be altered so long as
the magpitude of the aggregate dividend remains unaltered.”

Ex, 1. What effect would the inclusion of paupers among the income-earners
have on the Pareto curve ?

Ex.2. Does the absenca of agricultural incomes from the Indian income-tax
returns make these unsuitable for treatment by Pareto’s law ?

Ex. 3. A percentage-wealth axis reversed (i.e. a poverty axis) and a percent-
age-population axis have been used as a basis for curves representing the distribut-
ion of property. Show that egual distribution is represented by a straight line,
and discuss the properties of the figure. (King, op. cit., p. 156.)

9.45. Sometimes economists have to reason from total
figures, or at least to check their reasoning by reference to
some conv¥enient aggregate, ¢.., the total income assessed
for income tax. By integration such a total may be obtained
from Pareto’'s formula: thus, since every number N of
people receives income Néx above Nx, the aggregate income

of those earning more than x units is Nx+_/':Ndx. But
S Ndx=AS x5 dx=4A [#1-s / (1-s)]°° (3.212)

=A [o—x1 s/(I—S) ]= — xs_l

for s is always found to have a value greater than I, usually -

about 1-5. And so the required aggregate income is
xs-1 s—1/ s—1 xs-1
This could have been obtained directly from Pareto’s
law expressed as n=s4/ x5+1; for

xndx = A @ dx__ - I
f s‘f s]x —Ix'-l

Similarly S : nd% may be found to be 4/¥s which is simply

the number N (7.3). So also may be found the total income
in a range X, to x,, etc.

Ex. 1. Show that under Pareto’s law the average income, above £x is
N

] : .
£ red and that, if $=1'5, the average income in the interval £z, to £z, is
’ P
£ 8x; =z,

1+ )29 +xg. ’
» B )

+ (The ’three following examples are from E"erry’s “ Practical Mathematics ”, p. 75),
22 ’ g
3

»
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Ex. 2, Show that a law of the form P=0:346 7168 runs through the redults
noted below of experiments in towing canal boats :
Pull, 2 Ibs per.ton 070 170 236 320 350
Speed, ¥V miles per hour 1:68 243 318 360 403
Ex, 3. A law of the form y oc z™s" can be calculated in two stages, first

keeping z constant and then z constant. Thus the formula
I=000518 D 0-55¢ ¢ 297 fits the following measurements on & steamer.

LHP 140 410 820 1500 442 351 294
Displacement 1748 1748 1748 1748 2030 1400 1000
v knots 7 10 13 16 10 10 10.

Ex. 4. Values on the expansion curve of the indicator diagram (3.'2’21) were
_ “measured as follows

¥4 396 447 53-8 785 858 1132 135:8 1782
L 10-61 973 865 7:00 623 518 459 3-87,
It was known that the clearance was not measured exactly ; hence v needed
& oonstant correction, Prove that the formula that fits these values is
2 (v - 0°6) 1340 =constant.

( Before you plot these values, make up your mind which way you expect the
line through the points will curve on logarithmic ruling, )

Ex, 5. In an investigation of a cholera epidemic in Poona, a connection was
found between the number of deaths in the city and the rainfall in the catchment
area nine days earlier. The figures are

Daily average rain, R 0 123 -356 744 1467 2874 5358 8290
Daily average deaths, b 24 33 61 119 227 4625 6546 ]4'000'

Prove that the relation between thege is approximately D=2R 0-¢1,

By your result test the statement, ‘¢ 100 per cent increase in the rainfall was
followed by 885 per cent increase in deaths,” (Indian Journal of Medical
Research 2 68),

(The averages in this example were got by counting the numbers of days on
which the rainfall was within intervals, each of which, save the end * intervals ",
was double the interval below it, i. e, the upper boundary-values were 24, *48, 96,
1'92,cecces ereennnnCan you suggest a reason for this? The numbers of days were
29, 21, 18, 21, 11, 34, 11, 1. The actual rainfall total for these days, and the
numbers of deathe on the days nine days later, were used to get the averages
stated, These can be checked from the figures on p. 102, where, however, the
total number of days is 147.)

9.46. "MORTALITY FORCE: Pareto’s law is one instance
of the relative rate of change (3.152) being expressible in
terms of the independent variable; for

_I_dwjye__ﬁ ~8-1 _ S oo I dn,_ s+r
N gdx A4 Asx B Nk s'zmlﬂlarly, ndx  x
® B ’
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Other cases of this we have had in the first two of Perry’s
rules given in 1.33, the second of these being really the
same as Pareto’s law. In Bowley’s “ Statistics” II Chap. V
are given several expressions of this type, of which Pareto’s
formula is one. The most general case

i\ Idy _ xta
2\ y dx by+by x+box?

Y
: & \
is soméwhat too difficult for us to investigate; but we
can consider the significance of the Gompertz—Makeham
formula’ -1 d—y=a+bc”,
. y dx
which represents the number y of a given generation who
survive to the age x, and a, b, ¢ are constants. This is what
we have represented for us in figure 10, which we have
already tried to investigate. The relative death-rate shown
by this formula is called the force of mortality : it is composed
of a constant part a, signifying the risk of death common
to people of a]l ages, and of a term which represents
the increasing rlsk with advancing age as changing
geometrically (2.21).1
v In 2.131 the suggestion was made, merely on the basis
of the appearance of the curves, that the equation
y+(x—1)"=0 might fit the curves of figure 10, for parts at
least of their range. To decide how far this was justified,
consider Dyly=§{—n(x—1)n-1}/{—(x—1)*l=—n(1—x)-?, forx
was taken less than I. This, for the same reason (1.3%1),
may be written

Dyly=—n—nx—nx— ..o, ==—n—nx;

and the resemblance to Makeham’s formula is appatent,
The chief difference is that the risk which increases with age
is represented as increasing arithmetically—a Yeasonable
enough assumption, made by De Moivre in the early days
of the study of life contingencies. It should be noted also

4 ) ] >
21, Cf, Institute of Actuarie;s’ Textbook, Part II, pp. 70 £, .
» H

! J) )
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that it is a defect in this parabolic formula that it has only
one arbitrary constant ; the curves that may be representec
by this formula cannot intersect like the survivor curves,

e
"

- Densiryor MorTARES T

Fig. 65, Variation in the weight of mortar according to the proportions ‘
of fine, medium and coarse sand.

unless the unit for the independent wvariable is made
arbitrary, and is takenvof different magnitudes in different
cases, )
«

Ex. 1. Connect the above simifar expressions for the proportional rate of
¢hange of # and ¥in Pareto’s law with the forgula sz =XNr. (9.4%2¥x. 1) .
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. Hx. 2. Show with the help of 3.22 ii that the integral form of Makeham's
formula may be written

y= kha’gcm.

Ex. 8, Cousider the farm of the curve in which relative change varies as
x—the case in the general form given above in which a=0=58; =bs (Writing

by as — 02 gives us the usual formula for the normal curve of error referred to in

7.55, etc.)

Ex. 4. Show that Pareto’s law is the particular case of the general formula
in which by=0 and bg=>byfs, = — 1js+1) or -1js according as y means
nor N ;

)

02 04 06 08 F

~ CoMPresSIVE STRENGTH oF MorTaR '3

Fig. 66, Effect of varying ratios of fine, pedium and coarse sand.

N
‘ 9.51. TRILINEAR CHARTS: Frequently problems arisein
which we have to deal, not with two variables pnly, but
with three whose sum may be expressed as a congtant, |

) '

) J )
3
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e.g., the quantities of the constituent metals in alloys, the
proportions of elementary gases in mixtures of different
explosive powers. The treatment of these questions is
greatly facilitated by the use of the simple geometrical fact
that the sum of the perpendiculars on the sides from any
point within an equilateral triangle is constant. (For the
whole area is the sum of the areas of the three triangles with
common vertex at the point and bases the sides of the
triangle.) The length of the perpendicular from a vertex
to the opposite side is taken to represent 100 or I, and then
the distances of any point within the triangle from thé sides
give the percentage or fractional quantities of the three
components in accordance with some specified arrangement,
Thus the three vertices represent 1007, of each component,
i.e., a pure substance without any mixture; any point on
a side represents a combination of two components only; and
so on. Conversely, the composition of a substance which
has been analysed in a specified way into three components
can be represented by a point, and by that point only.
Further, this point may be regarded as the intersection of
two lines; for points on a line parallel toYone side of the
triangle represent substances which contain a constant
percentage of the corresponding component, and the inter-
section of two such lines, each for one component of the
substance, gives the required point which represents the

substance.

9.511. The accompanying figures, 65, 66, represent
properties of cement mortars which are composed of cement
and sand in the ratio 1:3. The immediate purpose of the
diagrams is to show the effect of using varying quantities of
sand of three different degrees of coarseness on the weight

and strength of the resulting mortar. The sands used are

distinguished as tine, medium and cearse, denoted in
the diagrams by their respective initial letter: the meshes of
the screens used in siftig such sand may be, say, 0*5mm.
(to reject dust), ,2mm., and smm. To represent the

1 (Taken frop Ira Baker's “Treatise on Magonry Construction™,, p. 118, John
, Wiley), , , : )

5 )
y)
2
t
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)

component weights of these sizes of sand in various
mortars, sets of lines are drawn parallel to the sides. These
correspond to the perpendicular rulings of ordinary graph
paper, and so we get a network of triangles instead of a
network of squares. These parallel lines may be graduated
at any convenient position in their lengths: the device used
in these figures is to place the letter at the vertex, beside
the line on which are the graduations for the corresponding
kind of sand; and so the letter designating a component is
close to its highest graduation.

The use to which such diagrams may be putis shown
very strikingly in this case. By experiment the densities
and strengths of specimens of mortar are found, and these
values are marked in the positions which represent the
proportions of sand in the specimens. It is then found
that equal values of these propertles of the mixtures liein
their respective diagrams along curves. These happen to
besomewhat alike in these two diagrams, which is reasonable
in this case; and it is easy to see from them that the heaviest

and the strongest mortar can be obtained by using no

medium sand and by mixing coarse and fine in the ratio 4:1

9.512. The interpretation of this is interesting : it is easily seen that
by combining material of different gizes the interstices between the strong larger
' pieces are filled up and a closer binding together of these is made possible than if
the pieces were uniform in size. But it could not have been foreseen that the grading
of the sizes of sand should not be continuous for the best results, and the
proportions in which different sizes should be used could have been only a matter of
guesswork, The diagram by giving easily so clear a meaning to results shows that
experiments to test mortars are consistent enough to be worth while; and it gives
the satisfaction of knowing that the very best effects have been secured in the
conditions specified.

A generalised figure, 55, is given to suggest how the curves in another case
might run, not unlike the contour lines of a hill: the summit would then
vepresent the best (or worst) proportions of the components, This figure and the
form of the curves in figures 65 and 66 suggest that the next experiment to be tried
ghould be to determine whether the addition of some still finer sand would not give
an even heavier and stronger mortar. 5 :

Ex. 1, Describe the changes in composition of mortar that are represented by
a point moving along, say , the *7 and the '65 lines of figuse 65,

Ex. 2. In figure 66 mortars of the same density are represented as containing
two different 2atios of the same saads, e. g, a density °7 is obfaiiled wl)len fine and
cBarse sands are used in the retio either 5 : 95 or 41: 59,  How is this possible 7

) J
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(For the most closely packed mortar the spaces between the grains of coabse
sand, “ voidg " they may be called, occupied by fine sand, amount to % of the
space occupied by the coarse sand itself. If there is not enough fine eand to fill the
voids, the antecedent of the ratio,

quantity of material : volume of the body,

is less than it might be ; if there be more than enough fine sand to fill the 20 per
cent voids, the surplus cannot find dense particles between which to pack, and so
the consequent of the above ratio is greater than it need be: in both cases the
ratio which gives the density is less than it would be if the kinds of sand were
associated in the ratio in which they pack best, Note that there are at least five
things to consider in dealing with the properties of this mortar—air and cement as
well as the three kinds of sand.)

Ex, 3. Determine what information, beyond what is given in the graphs,
would be required if the reasoning of Ex. 2 were to be checked quantltatlvely.
(The measurements of sand are by volume.)

9.513. What has been indicated above with respect to
lines through the vertex may be tested experimentally. If
triangular wedges of glass shaped so that they fit together
into a not too thick prism of triangular section, are coloured
with the primary pigment colours,’ blue, yellow, red; then
over the section of the prism seen by transmitted light
should appear all possible tints due to thg combining of
the colours in all possible proportions. If only two of
these wedges are combined say, the blue and the yellow,
as indicated in figure 56, then the ratio of blue to yellow
along any line through the vertex O is constant, and the
resulting green tint will be uniform along that line; though
there will be a difference in intensity according to the
thickness of the glass the light has to pass through.

Ex, Carbohydrates contain carbon, hydrogen and oxygen, the two latter in
the ratio by weight 1:8, Show that all carbohydrates are represented by a straight
line in a trilinear chart, On what line of this chart would hydrocarbons ( which
coutain only carbon and hydrogen) be represented ?

9.514%. It is not difficult to see how arithmetical
calculations to determine the best combinations of foodstuffs
for a specified purpose may be simplified by the geometry of
the trilinear chart. The process will be found exemplified in '
Haskell’'s “ How tp Make and Use Graphic Charts ”, p. 32,
(Codex Book Co., New York,)

'] » P

_— —r—

3 v Webster's Dictionary, 4. v, “color”, !
. ?
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v

’ »

+  Ex. 1. The percentages of heat producel by the thres chief
constituents of different foodstuffs when consumed is showa in the fqllowing table,
Represent the heating values of these foodstuffs by points on a trilinear chart.

Food : Rice Dal Milk Bread Butter Chicken Oyster
Carbohydrate ... 90 70 29 81 0 0 29
Protein we 9 27 19 14 0 81 19
Fat ee 1 3 52 [ 100 19 52

Ex, 2. If in health a person should receive nourishment from carbo-
hydrate, protein, fat in the percentages 53, 14, 81, find from a trilinear diagram
in what percentages protein and
fat should funetion, if no carbo-

A Food (30 gms.) C P F cals
hylrate were given and the
relation  between  the other Oatwmeal (dry) o 20 5 2 118
congtituentg were maintained. gbreddeiovg;\eat e 23 ? lg i(l);
. ream, o 1
Ex. 3. Represent graphically Cream  209], 1 1 6 63
the composition by weight .
. . Milk e 15 1 1 19
of the foods mentioned in the Butter 0 0 25 225
accompanyiag tableof food values 0y w 25 20 208
important in the treatment of .
. . Oysters, six we 4 6 1 49
diabetes, (Joslin, * Treatment of
. - ) Mecat (cooked, lean) «. 0 8 5 77
Diabetes Mellitus 3, p. 422) The .
. Chicken (cooked, lean)., 0 8 3 59
figures are grammes weight of the . .
. . . Bagon we O 5 15 188
constituents coatained in 30 gms Fish 0 6 0 24
of the foods. Nite that the .=
. . Cheese we O 8 11 131
necessary modification of the figure Fzg (0n€) 0 6 p 78
t fected lid 2g (or
carll easily be effected by the slide Cucambers, tomatoes
rule, cabbage, etc. we 105 0 [
(The difference between -the Turnips, carrots,
sum of the weights and 30 is due onions, etc. e 208 0 10
to the pregsnce of water and other Potato e 61 0 28
substaaces.) Bread . 18 3 0 84

Ex. 4+, The food values of the stated amount of foodstuffs in the above table
are given in calories, Determine from the table the multiples of the grammes
of ‘carbohydrate, protein, fat which have to be usel to couvert them into
calories of food value, Represent: graphically the heat prolucing capacity of each
food. (Letter neatly cach point appropriately) Make a statement comparing
the resulting diagram with that of Ex. 3. Also compare the diagram with
that for Ex. 1, the data for which were taken from other sources, (Note the
remark after Ex. 3 in 4.12),

Ex. 5. Draw on the figure of Ex. 8 the clirves which represent foodstuits
which give equal numbers of calories for given weights of) the three constituents,
What represent these curves on the figure of Ex, 47

Ex. 6, Represent graphicalljas many as possible of the Sacts Ziven in this
tadle of variations in diet according to race. (Joslin. ov. cit., b, 417), »

)
23
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Race Weight Carbohydrate Protein  Fat Total

’ kilos, gm, .. gm, gm.  calories,
Eskimoe .. 65 - 52 . 282 41 2604
" Bengali .. 50 ' 484 ’ 52 ¢ 27 2390
' . Furopean .. 70+ 512 118 °° 65 3055
" American .. 70 00 100 100 2900

9.52, DIET ADJUSTMENT : A diagram is reproduced as
figure 58! which is suggestive of a trilinear chart, though the
triangle is not equilateral. It is connected with the problem
of discovering how the body metabolism is functioning—in -
what proportions protein, carbohydrate, and fat are being
used, and in what proportions they contribute the energy
produced ( cf. 9.514 Exs. 2, 3). For this twofold purpose two
quantities are, as in 9.2, computed and marked against two
uniform, suitably adjusted scales at right angles. A study
of the figure itself will show its use, this being indicated by
the lightly-dotted lines.

9.521. (i) N stands for the grammes of urinary nitrogen
excreted in a given period, Oz for litres of oxygen consumed
during the same period, The ratio of mitrogen excreted in
urine to the total amount of oxygen used in metabolism is
shown on the vertical scale marked N/Os. The nitrogen
comes from the protein consumed; and so at once, from these
two primary measures, Op, or simply p, the percentage of
the oxygen referred to above, which is used in the oxldation
of the protein in the food, can be determined. This is
marked on a scale alongside the N/O2 scale. Both scales are
uniform, and the range of the NJ/O: scale indicates that if
the whole of the oxygen could be used for the consumption
of nothing but protein, then 16-83 gms. of nitrogen would
be excreted for every 100 litres of oxygen used.?

1 From Dubois’ “ Basal Metabolism” p. 73.

2 This agrees with the 1628 gms, nitrogen given by Du Bois on p. 37 as
excreted when 100 gms, «© meat protein are consumed ; for the oxygen required for
this is 96-63 litres, i.e, 100 litrés of oxygen correspond to 16:83 gms. of nitrogen
These two scgles forN{Oz and O are another example of stationary bcales (5.5f n.)y

many MOre 0Ceur ih figure 60, "
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. (ii) Along the horizontal axis is marked on a uniform
scale the other computed quantity, the respiratory quotient,
R.Q. Thisis “a measure of the kind of material burnt in
the body,”? i.e, it is a number by which we can tell in what
proportion any two of carbohydrate, fat and protein are
using up the oxygen being consumed by the body, when the
percentage used by the third (in practice, protein as
above) is known. The R.Q. is found by measuring the
amount, and finding the composition of, the air exhaled;
hence can be found the quantity of oxygen used in
metabolism and of carbon dioxide given off : the R.Q. is
taken to be the ratio, volume of COaz: volume of Os. Chemists
tell us that if we were consuming only carbohydrate this
quotient would be unity; if we could assimilate only fat, it
would be only 0:707 ; while if we were to get all our energy
from protein ( which we never can ) it would be 0:801. Thus
by combining fat and protein we could get any respiratory
quotient between +707 and +801; and so for the other pairs.

A grid for the R.¢. i.e. a set of parallel lines through the graduations of an
R.Q. scale is fitted in an interesting way into the blood-system chart (9.2) given in
the Journal of Biolcgical Chemistry 59 396 (fig. 64). This grid is analogous (save
that the R.Q. scale is uniform, not segmentary) to the simultaneous equation
nomogram referred to in 5.1 £, (cf. 5.221 Ex. 3); for the lines in this grid are
parallel to the parallel scales on which are shown the volumes (or equivalent
meagures) of Oz and €0z Cf, p, 85, f, n.

9.5211. Accordingly, if any trlangle were marked out
with its vertices C, £, F in positions corresponding to the
respective graduated values of the R.Q. (though at any
distances from the scale ), these vertices could be taken to
represent the oxidation (or metabolism)} of nothing but
carbohydrate, protein, fat respectively ; and, as in 9.51, it is
clear that by drawing equally-spaced parallels to each of
the sides the oxidation of any combination of these
constituents of food may be represented,—in pairs
along the sides, in threes by any point within the triangle.
(Fig. 67.) !

2
1 * Langet * 199 1043, where an excellent account is given of the metabolic
rate and its significance in the treatment of digeases like goitre.
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./ . .

) Following in the main® the notation given by Michaelis
in the Journ. of Biol. Chem. 59 56 we shall denote by
¢, p, f the percentages of oxygen consumed by carbohydrate,

protein, fat respectively; '
C’,P',F’ the percentages of the calories derived from each;
and
v, ™, ¢ the percentages of each in the metabolic mixture, '
The construction for getting the percentages of oxygen
used as represented by any point 4, is: through 4 draw (or
suppose drawn ) a line to the ¢ scale parallel to PF, to the

P Pendingmomenrt
t"eﬁ /aﬂIn perft.?vid.tk

| Nl k gt 1
- < H 2
By

Bore

P A

: p- N 1 N 1 g g
Figb8. XC Fig.7l. 4% wibsfspfe
p and fscales lines parallel to #C, CP, Then the distances
of F, C, P from the respective intersections give the required
percentages. The cyclic symmetry in this should be noted.

Ex, Convert the essential part of 9,5¥ from a statement about perpendicular
distances into one in this form,

In any such figure the N/QOascale must be placed sothat
the zero is on the prolongation of CF, and -1683 on the
parallel to GF through P; for it is essential that this scale

1 Here ¢, P, Fare feserved for the vertices of the triangle, In #4.14 Ex,3
they were used for weights in grammes) and this use may be continued without
- confusion. ®Bimilexly ¢, p, f are used temporarily,in 9,52311 for the -lengths of the

» sides, hut they are seldom required for thiis purpose. , »
g
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whatever its position, correspond with CP, and that it
be uniform. .

Ex, 1." Verify by measurement on an accurate diagram drawn like figure 67
that ¢, p, f corresponding to R.(Q,=0824, N/03=0:090 arc 22'8, §3'5, 23'7, asin
figure 53,

Ex, 2, Show that the line joining a graduation # on F(¢ (i.e., no protein)
and 100 - x on CP is parallel to PF,

9.522. In figure 58 scales are marked for only two of
the thiree constituents, viz., Og giving the percentage of
oxygen used in the burning (i.e., oxidation ) of carbohydrate,
and simijlarly Op, or p. The percentage used for the
oxidation of fat is got by the subtraction of the sum of these
from 100. While ¢ is marked along the horizontal side, which
we have called, following the suggestion of 9.511, FC, p is not
marked along the inclined righthand side CP, and there is no
scale on PF, CPis reserved for two scales of percentages of
calories derived from protein and carbohydrate, and thus
by the three parallel lines (rather unfortunately obscuring
the factthat thg only graduated line of the three is the side
of the triangle) it is emphasised that the chief purpose of
the diagram is to show the percentages in which heat is got
from the different constituents of the food through com-
bination with oxygen.

We have already seen in #.14 Exs, 1, 2 how these heat
scales for a varying combination of two constituents may
be calculated and marked out. The non-uniform character of
the heat scale here shown (which may of course be found
alsoc by measurement) is brought out by the way in which
the parallels to PF through the calorie graduations cut
FC an increasing, and then a diminishing distance to the
left of the parallels through the corresponding ¢ graduations.
On CP the corresponding fact is masked because the
parallels to FC are drawn through the graduations of N/Os,
and there is no simple regularity. (It should be noted care-
fully, however, that in figure 58 we have really only one
heat scale—that in which no fatis being consumed, as given
in 818 Ex.’2. Cf, 9.525 Ix.)
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"

Ex. Frove from the formule for ¢ (9.5283 Ex. 1) and 0! (4.124 Ex. 1) that
it is only for R <1 that corresponding to a given value of I the ¢ graduation at
a point is less than the (7 graduation. Determine the corresponding property for
the p and 2P/ scales,

9.5231. The need of a really systematic method of
arranging such diagrams is strikingly brought out by twe
apparent defects in figure 58, One is that, save in the
original paper (J. B. C. 89 57), the impression is given that
by the same point are marked along the righthand sloping
lines independent values of C’'and P’ which total 100.) In
9.5211 has been stated the corresponding property which is
true for scales uniformly graduated, or possibly graduated
by formulae which have some suitable complementary
character. But this is not the case for the non-uniform scales

given by the formulz of %.1%4.

From the original paper it becomes clear that there is actually only one scale
here, and hence there is no need to show double graduations (cf the note on Ex, 4,
p. 76): the formula is that given in %.1% Ex, 2, which may also be written
Pl= 4'485]]-{»-4;+;7(100-1))’ since the uniform scales, R between 1 and 801, and p
between 0 and 100, are equivalent., But it is difficult to see how consistency has
been observed in the treatment of this scale: for convenience in getting O' for any
point parallels have been drawn to PF, with the result tifat the scalc has been
transferred bodily to F0, where (9.525) the appropriatc scale is that given in .12
Ex. 1; yet to get P’ for any point it turns out (9.525 Ex.) that this scale is
connected by wmequally-tilied lines with the appropriate heat scale on PF. 2

Ex. Draw a trilinear diagram with ¢, p, f; scales uniform as before; but,.
with the heat scales given by, say,
5(1R-107) 4'5(R2 - 1%)
5L E- 10T+ 47(1- 1/ 1) L5(R2—11)+ 5(R2—89)
where the values of 0' and P! at F, ¢, P are the same as in figure 67, Test whether
the join of graduations # on one scale and 100-z on the other is parallel to PF,
Devige similarly some suitable formula for #",

, P'=100

’

0/=100

1. This might be defended by saying that a point on (P of graduation @
represents F'=0and ¢': P! ::100 - :z. The corresponding point on F'J represents
Pi=0and O': F'::100-2 : x Obviously, since the same percentage 0/ is re-
presented in each case, the join of these points is parallel to PF. (The argument is
even more impressive when presented in the “coincidence” form suited to figure 58.)
But x is obtained from a differen’ formula for each of these points,

2 In asimilar diagram ( though prebably not drawn to scale) given by Du
Bois on p. 42 (or J.B.C. 99 45) there is no doubt as to the intention to show ths
heat scales as independent : otherwise #he lines joining thc heat graduations would
have becn parallelto F¢, (The phrase “ percentage- of calories fram protein " is
ambiguous when it refers to a scale, ) , , , 2

)
) \74
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. (The point may be seen with less trouble if the heat scales are mhde of any
arbitrary character, as different from the uniform scale as, 6.9., any of the stationary
scales mentioned in 5.5 £, n.)

9.52311. In considering all the possible arrangements that could result from
the nature of the formulse which determine figure 58, it may be argued that the
cyclic symmetry of the formulx for the graduation of the heat scales may cor-
respond to this parallel property : this is not so, But {tis worth while analysing
this supposition : it will be seen later (9.5262) what is the actual graphical effect
of the cyclic order of the formulze.

Taking the calorific equivalents of 1 litrc of oxygen when carbohydrate,
protein, fat alonc are metabolised as respectively Ay, Ao, kg (ffg. 67,) we get the
generalised expressions for , P, F'

100 &y (R-°7) 100 4y (1-B) 100 b3 (8- R)

b (B—D+hg(1-R) ha (I-B)+hy (B~8) hg (3-Bths(R-"T)
where R is nat necessarily the same in each expression: it i8 chosen merely as a
convenicnt uniform scale. 1 Expressing these in terms of lengths along the sides
of the triangle we have for the graduations

k71 _ ha 7o hg rg

hi7y + hg(p-1r1) PI=100 ho 7o +hy(f—rg) Fi= harg+ho(c-73
where 1, 73, 7g are the actual lengths, measured along the sides one way round
corresponding to the respective graduations ; and p, f, ¢ are the lengths of the sides.
Then, if, say, €'+ P'=100, that the line joining these graduations be parallel to

PF, we must have

¢'=100

9 r ST
j"rl ro
1 hg 7o
T =0 =100 + 2 _2
hus 100 = @'+ P'=10 (1+/i'§ Te ,"2 T2+h1 (f'-rrz))
» /&1 f—?',,

hy (f-7e) _hers
:100(k1(f»~r2)+103 ,.2+ hora +1ty (F-T3)

N242N hg 7o +hy hg 793

.N)"!'N(hg + hg) To ')'}12 hg'/'law

This relation holds if 2hg=hg + hg, i, if hg=hg; which means that the
same amount of heat would be obtained from either protein or fat metabolised by a
given quantity of oxygen—a result we might have anticipated from our attempting
to equalise the ¢’ and /7 scales, This also explains why parallelism
(i.e., eoincidence in figure 58) is so nearly attained : the difference 2y —h3 is only
about 5 per cent, of the value of either (cf. 9.524.)

=100 where N stands for Ay (f—~73).

Ex. Apply this method to the formula for ¢, p, £, viz.,

=100 (R—0:707) [0-293 (Du Bois, loc, cif. p. 353, ie., 100 (R~0707)(L~ 0-707)
etc.: prove that in this cace the join of graduations whlch total 100 is parallel to a

side of the reference triangle.
-

1 The fisgt two of these expresmons are the formulx of M1 Ex, 1 and 2
respectively,
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9.52/32. The second defect is even more one of wrong
impression : it appears as if calorie graduations of the
non-uniform scale for P’ on CF are joined to the numerically
identical graduatlons for p carried from the uniform vertical
scale for Op to FP! One rebels against this obviously
wrong suggestion: yet no hint is given in the figure as to
the construction of the lines. From the original paper it
can be found that the points on P are determined by the
formula for heat from the oxidation of only protein and fat.
and that points representing the same percentages of heat
derived from protein oxidised along with carbohydrate
and with fat respectively are joined by broken lines. These
lines, though no two of them are parallel, are ured to fix
the position of any point with respect to the Caly, i.e¢, P,
scale. Owing to the smallness of the tilt of any of these
lines (9.5231), and the degree of accuracy attainable in
the calculations (4.14, Ex. 3), the difference in the calorie
reading through not taking parallels to FC is’ scarcely
noticeable : but the principle is quite a new one and needs
examination. Cf. 9.526.

9.524. The diagram, fig. 59, which is ¥lso reproduced
from Du Bois’ work (p. 74), though on a reduced scale, is no
argument for tilted lines! It is used to determine the
quantity of metabolism from the same data which gave i
figure 58 the distribution of the metabolism. The diagram is
very simple: just as the vertices of the triangle are fitted
into the R.Q. scale, soarethey fitted into the scale for the heat
that is derived from the oxidation of food (or body substance
if the body is wasting) by a fixed quantity of oxygen: this
heat varies according to the composition of the food, the
calorie values from I litre of oxygen used in metabolising
carbohydrate, fat and protein being 5:047, 4-686, 4-485
respectively.! Accordingly the construction of the figure
is ; graduate PC uniformly between 4-485 and 5-°04/—join
the graduacion 4686 to, F, and draw parallels to this line
through the graduations on PC.

1. These numbers should be clearly dlstinguished from the multiples, 4, 4,
9 of 9.514, Ex, #, which convert grammes of the constituents into 2alories of heat
derivad from their consumption. Cf, also 4,12 Ex, ?. »
" )



SHOULD PROTEIN-METABOLISM BE NEGLECTED! 185

., Ex. Show that it is possible to draw the above figure with the ox'ygen calorie
lines perpendicular to JP ; how could the R.Q. rulings be then determined if they
had not been already settled ? Are other arrangements of the figure posslble ?

9.5241. " A few clinicians have neglected the protein
metabolism in their calculations entirely, but this is done
through gross ignorance......If we derive 15 per cent. of the
calories from protein, and this is a fair average, the calorific
value of a liter of oxygen is I per cent. lower than” the
figure from certain tables based on the oxidation of carbo-
hydrate and fat only. (Du Bois, loc. cit. pp. 38, 70). These
puzzling sentences find an easy explanation in figure 59. If a
- line is drawn parallel to CF through the graduation 15 on the
Cal, scale, (which here replaces O, as the vertical scale)
this represents metabolism in which 15 per cent. of the heat
is derived from protein. Suppose the R.(J. to be 0:8; then,
from the figure, the calorie equivalent for no protein would
be 4°798, and for 15 per cent, protein-heat 4-752. The
difference +046 is less than { per cent of either of these
measures.

Ex, One authority states that this difference arising from negleet of protein
metabolism may amegnt to 3 per cent. in extreme cases. Show that the amount of
heat derived from protein is, for such a case in hich the R.(Q. is 08, about 43 per
cent. Prove also that when the discrepancy in the calculation is of this amount,
a maximum amount of heat i8 being received from protein when no carbohydrate
is being metabolised. Determine the amount of protein thus metabolised from
a carefully drawn generalised diagram,

9.525. A \‘;_GENERALISED REFERENCE TRIANGLE:
Figures 58 and 59 can be combined in one, 60, so as to give
almost perfect eyelie symmetry in the arrangement. This
important simplification can be effected if the A.Q. scale is
removed from FC, thus leaving the sides of the triangle
free to carry the oxygen-combination and heat scales of the
constituents, carbohydrate on FC, protein on CP, fat on PF.
The R.Q. scale may be marked on a line close to FC but
distinct from it. Parallels to the sides through convenient
graduations of the uniform ¢, p, f scales will cover the
triangle with a network of similar trlangles, though not
equilateral as in figures 65 and 66, The oxygen-combination
scales are thus on the inner 51des of the boundary lines ;
very few of the graduatiofls of these scales need be marked

24
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)

with numbers. The heat scales can then be conveniently
and freely marked on the outer sides of the lines. Then,
as in 9.5211, three lines drawn (best in imagination) from
a point, determined by values of N/O. and the R.Q., parallel
to the sides in succession taken one way round, will meet the
sides in points, each of which indicates the percentage of
oxygen used by the constituent. What the relation of the
point is to the non-uniform scales we cannot as yetsay:
this we shall examine in 9.526.

The scale for the calorie values of oxygen which
consumes any combination of constituents (9.524) can be
marked outside the triangle on any convenient line (usually
parallel to CP) crossing the parallel lines through these
graduations.” Thus we have nine scales in the figure, two
on each side of the triangle, and three outside; and these
convey all the information that might have been given in
figures §8 and 59.

Ex. In the Journal of Biological Chemistry, 59 57, pairs of alternative
formule in terms of P' and ¢’ are given for graduating the heat-scales on the
sides of the triangle OPF. (In each case one formula suffices, for the point (¢, P
is on a given line.) The formulx are

1]

08497 P! 404340442 O

for OP () N:0g=_ 988972 gy po - 4043+0443 0
or O 2 Gp6s prediss O @ = Sor—osez o
07889 P' 37530682 ("

for PP (3) N:0g=_ 078892 4y po - 8753006820
or PF (3 2= oot i ages 5 #686—0-201 O

468:6—1-118 P' 4686 0'

R =."""" -~ """+ or(6 R Y

for 7O O 28 =gsroseie ©®  ° T sotr—o%61 0

where throughout P'+ (/=100, Examine these formulz, e.g., show that the
denominators of (1) and (2) are equivalent, and that the ratio of the expressions
for N: Oy and 1- R.¢. is the slope of 0P when the scales for ¢'and P! are
equal. With the help of N: 0;="001683p, deduce the formule from _the
fundamental formulw of #.14 Exs, 1, 2 and a similar formula for protein and fat in
terms of uniform-scale values—formulae sach as we begin with in 9.52311. Is
it right to use ¢’ in (4) and P’ in (5), though ¢=0 along PF and p=0 along FC?
(Cf. the abstention from the use of N : O, for F€.) Is there any reason why the
R.g. should not be expressed in terms of P’ in all cases? (Cf. 9.5231) Test
the formula on figure 58, Note how similarity of algebraic form in the columns
would be obtained by interchanging (5) and (6); what significance has this ?

(This investigation should de planned out with the whole class, and then the
work divided among sevg,)ral sections.)

1 These lines, as well as the lines through the NjO, and the R, ¢. graduations
may be dotted or dlstmguxshed in some other clear way from the ru)jugs for equal
percentages of oxygen consumed by the constituénts,
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. » \\

9.5251. This generalised figure may be modified in
several ways to secure special conveniences. Suppose it
were desirable to make the calorie-value-of-oxygen rulings
perpendicular to CP, as well as the respiratory quotient
rulings perpendicular to FC. This can be effected easily
by drawing a perpendicular to FC through the point of FC
which divides the interval between the graduations -801 and
1 of the R.Q. scale in the ratio 4:686—4-485 : 5°047— 4-486,
i.e.,, 201 : 361 or approximately I : 1-8. A circle on FC
as diameter will cut this perpendicular in a point which
lies on the side CP of the required triangle—it is the point
which has the calorie-value-for-oxygen graduation 4-686
The generalised figure, 60, is drawn with this special
arrangement.

9.5252. The question at once arises: can the rulings
for N/O2 be made perpendicular to PF? This reveals an
essential lack of symmetry in the figure; and this is easily
explained by the fact that the N/Oz scale is related to only
two vertices, like the six scales on the sides, while the other
two scales are related to three vertices. Another essential
. consideration fdr the N/Og rulings is that N/Og; is quite
independent of the R.Q., and therefore its rulings must be
parallel to the scale of the R.O. We have thus a subsidiary
complementary relation between the R.Q. and the N/O:
rulings, the essential feature of which may be expressed by
saying that the R.Q. rulings must be parallel to the line joining
the R.Q. graduation 0:801 and the vertex P, while the N|/Oz
rulings must be parallel to FC.

9.5253. If for any reason it is desirable that the
oxygen-combination secales of the constituents be made all
alike, i.e., with the same wunit, this may be effected by
the consideration that the scales marked along the sides
may be laid quite as well along any line through the vertex
at either extremity of the side to the side opposite this
vertex. Then, taking a length equal’to at least the longest
perpendicular from a vertex to the opppsite side, say
CH (fig. 68), we can mark on it one scale ¢, and on KP and
LF scales g, and f, where PK and FL are lines throsgh the
rec.pectlve vertices equal 'to C'H This, however, has» no
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signiﬁca"hlce forthe heat scales. The rulings for the weight
scales in this case are not affected: the lines CH, PK, FL
would merely have to be specially marked, say, in colour.

9.52531. This gives a means of measuring off directly
from their respective scales the relative weights of the
constituent substances. In the metabolism of protein
the ratio of the weights of the protein and the oxygen
involved in the process is +725:1; for carbohydrate the
corresponding ratio is -841:1; for fat it varies—call it 7 in
a particular case. Accordingly, if in figure 68 K, H,,L are
placed sothat PK: CH: FL :: «725: +841 :r; then thelengths
on these lines, which represent percentages of oxygen used
will, when transferred to a suitable standard scale (for 100
gms., say), represent the relative weights of the constituents
metabolised.

9.526, But there is a more direct way of dealing with
the relative quantities of constituents metabolised ; and in
connection with it we shall consider the relation of points
within the triangle to non-uniform scales on the sides,
rather then in connection with the nearl) uniform heat-
scales. It has been determined experimentally that the
number of grammes of carbohydrate, protein and fat which
can be consumed by a litre of oxygen are 1-21, 1:03, 0:30,
respectively. With these values formula like those given
.in 4-14, are constructed to determine what weights of pairs
of these substances may be combined in oxidation by
I litre of oxygen. These are the percentage weights of
9-5211, v the percentage weight of carbohydrate when
- carbohydrate and fat are burned ; and so for m and ¢ : thus

121 (R—-707) 121c¢ etc.
121 (R=-707)+5(I—R)  1-21c+-5(100—c)

V::

7 Ex, 1. Combme the abeove values with those given in 9.524 of the calorie
yalues of substances combining with 1 litre of oxygen, to find the calorie value of

1 gm. of each of carbohydrate. protein, fat. Cf. the result got in 9-514 Ex, 4.
R

Ex. 2. In the Journ, Biol, Chem, 59 58 the following formule are given for
graduating the sides of the triangle CPF with scales which show, the percentage
weights of the substances metabolised.
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)
\

) Niog= T oy pog o 97+0:06y - -
P 103+ 0187 121~ 038y
@) N:0g=_0084m @ R.g = 0+033Y
. 103 - 0-537 50+ 053y
- 50
() R.Q. = B0+036mW o ©® o = _Y
50+0717 121071y

¢ Examine these as the heat formule were examined in 9-525, Ex.

Ex. 3. Fit to the reference triangle rulings showing the absolute weight of
foodstuff per litre of oxygen, just as in 9.524 rulings to show the calorific value
of a litre of oxygen were fitted, (The essential line for this is shown in figure 60.)

9.5261. To consider what significance a point within
the triangle has with respect to non-uniform scales, we
might define its position by means of the scales for N/O,
and the R.Q., which are convenient from the experimental -
side. But it is simpler to use two of the uniform scales along
the sides of the triangle, say, ¢ and p, to give oblique
co-ordinates (5.8)—note that the N/O; and the R.Q. scales
might have been oblique (9.5211). Then our problem is to
find what relative weights of the components consume
oxygen in thg proportions c¢: p: 100—c—p.

The number of grammes of the substances that are
combined in the consumption of ICo litres of oxygen
,are respectively 1:2I¢, 1-03p, -5(100—c—p). Therefore
immediately, for any mixture of the three,

100 x 1-21¢ 121¢ 103p
Y = 12104 103p+ 5 (100-0-p) 5047164535 = 50+ 7lc+55p
50(100-¢ - p)
P = 50+71c+58p

Substitution of the values of ¢ and p in these expressions
gives us a first answer to our question.

9.5262. It is well, however, to press it further and ask
about the lines in the figure along which these percentage
weights are constant. If we take, say, vy as constant, the
corresponding formula above bedomes a linear relation
between ¢ and p, which, we have learned, represents, even in
oblique co-ordinates, a straight, line. iNorking this out,
we get *53yp=(121—71y)c—50v, or p=(228/y—]-34) c—94°5.
If in this we substitute for y the values Io, 20.......90, We
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_/: . .
get a series of stralght lines -2long each of which the
proportion by weight of carbohydrate consumed is constant.
Similarly for the other constituents.

To construct the figure the simplest procedure is to
mark the scales along the sides, as in figure 60, and then
join by straight lines graduations which total 100. Graphical
confirmation of the corrrectness of the above reasoning will
be found in the fact that lines for which the total percentage
weights of the three constituents taken in order is 100
intersect by threes: thus a triangle, ruled regularly as
just stated, becomes covered with a network of triangles,
though not of constant shape. In figure 60 this network is
not shown, as there the more fundamental parallel” rulings,
between which it is easier to judge intervals, had to be left
clear. But the three lines drawn, as suggested in 9.5211 for
parallel rulings, from the point for which vy =40, w=40, ¢ =20,
show clearly how the weight-rulings would appear.

In graduating the scales it is natural to express each weight in terms of the
corresponding percentage of oxygen used; thus for 7 we have

103p 1217

08, + 1210000=2) “PE e iem note that the Morrectness of the

™=

numerical coefficients may -be checked by putting w=100. Then the calculation
would be as shown here, The denom- T 20 40 60 80 (100)

inators increase by equal steps, and 24920 1210
may be inserted first, as indicated, P 1066 1iio2 1138 11714 ( 121 )
The checks are shown in brackets, 9:97 438 637 824,

Ex. 1 Verify the other twO percentage-weight scales in figure 60, and join by

pencil lines complementary graduations, Complete the percentage-heat scales, and

similarly draw the triangular network in red lines,

Ex. 2 Explain the fallacy in the following: “To find the significance for
non-uniform scales of points within the triangle, it suffices to draw parallels to the
sides, as suggested in 9.5211, and take the ratios of the three readings thus obtained,
though their sum is not 100. We have seen (cf. 9.5253) that the direction of the
line through the vertex on which a scale is marked makes no difference, and
therefore there 1s no change in the significance of a point if it is transferred to any
position on the’ line through it pasallel to that on which the extremity of the scale
moves, It may also be urged that the use of lines parallel to the sides has
reference primarily to th uniform scales for ¢, p, f; and the relation of these
uniform scales to the non-uniform scaids for relative heat and weight holds good
for each paiy of the constituents, Hence the abqve simple procedure ruffices,”

» e . ¥

4 » »
» »
o

°
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. 9.527. There is no intention in this book to suggest anything coﬁtrary to the
view that these studies of the mathematical aspects of diagrams used in medicine
are quite inadequate to give an understanding of the nature of the medical facts to
which they refer. Yet it would scarcely be right to leave the subject in the jumbled
state to which mathematical simplicity has reduced it: and so an outline is given
here of the procedure which is followed in using these diagrams and in making
the associated calculations described in .14, ete.

The starting point is in 9.521 where, as there pointed out, two clinical
meagures give & point from the position of which something can be inferred as to
the nature and the amount of the metabolism of the individual considered. Of
these two measures much the more important is the R.Q. This is obtained by the
person gxamined! breathing into an apparatus which measures the total volume of air
expired, and the composition of that air is found by analysis. The latter gives the
R.Q., and hence from figure 59 the actual calorie value of a litre of the oxygen used
in the metabgliem : this, combined with the former, the total volume of oxygen used,
gives the total number of calories per hour produced in this metabolism.

This figure is then divided by the surface area of the body, ag determined by
5.3 Ex. 4,to give the basal metabolic rate, which is compared with the
normal standard shown on the lefthand seale of figure 1, just as temperature during
fever is compared with normal temperature. This normal standard varies with age
and with sex, but comparison with it is not rendered thereby less valuable: even
«normal ' temperature is not an absolute constant—the doctor makes allowances
for individual peculiarities, And so the basal metabolic rate becomes in diseases
such as those in which there is abnormal thyroid activity (for which formerly
treatment was almost by intuition only2?) as important an indication of the
condition of the patient—* a measure of toxicity "—as temperature is in the case of
poeumonia,

9.,5271, The other diagrams and calculations relate to adjustment of diet
in normal or abnormal cases, For this it is necessary to know the total requirements
of the body for a day. This can be determined for either health or disease from the
nomogram, fig, 1; cf. also 5.2%1 Ex. 2, How these calories may be supplied can
be determined from 5.22 Ex. 4 or 9.63 in the case of diabetes. In health the body
can consume the three constituents in almost any proportions: cf. 9.514 Ex. 6,
‘When either the calorie values or the weights of the three constituents have been
determined, the methods of 9.51 may be used to help to determine the most suitable
foods to be given and their weights: a person’s activity has to be considered as well
a8 the above experimeatal data, which refer only to minimum requirements, Note
specially 9,63 Exs. 1, 2, 3.

1. Inthe Journ, of Biol, Chem, 59 82 a modification of the co.ndit.ions under
which a patient must be examined, as stated #® 7.53 f.n, is Shown to be
permissible,

2, With no definite guide beyond impressions as to ¢he effect of treatment,
the lot of the doctor who had to decide in a ca#e of rapidly wasting disease between

- the need and effectiveness of drugs, gest, X-ray treatment, or suagery,scould not

haye been a very happy one, *
L]
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9.5281. It does concern us as mathematicians to see
what meaning the space outside the triangle of reference
may have; this is illustrated by figure 72 (Du Bois, loc. cit.,
P- 44). The region within the main triangle to the right of
PF represents conditions under which carbohydrate is being
consumed; the region to the Ieft, conditions under which it

PROTIOIS |
Mo PROT EIN
100-E— T 0
\ FAT
80 \ PR%E\N
{60 N\ lcare |/
)
o LTIl |
\Q(
20— \ 1‘8\ CARE
] - A T0— '
FAT V| =l L] EARBGq [FaT
R.Q. 060 010 A 080 . 090 .00

“Fig, 72. ¢ Zones of Metabolism.” - - o

is being produced. Similarly the production of fat from
either protein or carbohydrate is represented to the right of
CP. In mathematics these reversed processes would be
represented by negative coordinates—the distances from
the sides, in whatever directions these be measured. Cf. 1.5.

These points beyond the bounds do correspond to observed conditions, e.g,
the R.¢Q. of geése fed liberally wjth grain was found to rise to 1-33: this means that
they could not breathe in enough oxygen to use all the protein and carbohydrate
with which they were jtuffed, and had to store part of it as fat, Buat it is not
necessaty that the B.¢). be greater than 1 that protein should be changed into fat.

v The leléers placed on the diagram refer to extreme cases: the luwest observed
> RQ. was 0:632: the 365, marked in th(/a figure, was in this case what ig called Jhe

/
) 2

Y
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.
.

“dextrose-nitrogen " ratio, (Dextrose is the @ of .14 Ex. 3.) This is; the ratio
of sugar (59-41 gms. per 100 gms. protein in this case) to nitrogen (1423 gms. as
in 9,521 f.n.) found in the urine of a dog in a diabetic condition, which was
being given 16 carbohydrate (Du Bois, op. c¢it., p. 205). Both these substances
must come from the same protein ; hence the extent to which protein is being
converted into carbohydrate is determined. The value of this ratio, 3:65: 1, has
become  the foundation of all modern calculations in diabetes, ” It is only in the
lower portion of this (second) triangle that we find patients with diabetes,
since they seldom derive more than 35 per cent. of their calories from protein,”
(. B. C. 59 48), '

The line XA represents * the threshold of ketosis, ” and is said to correspond
to figure 74, The equation to the line should be deriveable from the fundamental
formula given in 9,63, by substituting 100—2—¢ for ¥, This gives

100=30+1'65 P,
whence is gc;t a value for the intersection with F'U which agrees well with '
figure 72; the agreement for the intersection with FP is not so good. :

Ex. By what lines are F=2(0, F=30 represented in the triangular
diagram !

9.5232. In9.521 weallowed the impression made by the
figures to serve as a proof of the possibility of constructing,
as in 9.51, a constant sum for the lengths of the graduated

perpendiculars tp the sides. This is obviously not the case

in a scalene triangle for perpendiculars measured in the
same unit. To find what is involved in this for the choice of
scale unit, let us suppose .a point which represents the
measures, ¢, p,f, in a certain metabolic condition. Let u1, uz, u3
be the respective units of the uniform scales along the
perpendiculars. Then, by geometry,

cM1.PF + pus FC + fus.CP=twice the constant area.

Accordingly, put

M1 Mot ma.. FC, CP: CP.PF:. PE.FC; then
¢+ p+f=a constant,

which may be taken as 100. Note that 9.51 is a particular

case of this. . .

9.5283. The use of non-uniform scales along the sides
of the triangle of reference suggests the Sossxblhty of gen-
eralising the trilinear system of reference in a way 51‘m11ar to
thg generahsatlon of the Cartesian system in 9.3, 9.4 and

2b
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7.55. We can easily imagine how the straight rulings for
respiratory quotients, or those for calorific value of oxygen
may be displaced parallel to themselves or tilted, when the
uniform scales along the sides are for calories from, not
oxygen used by, the component substances; or when the
proportions of the triangle are altered. But there seems no
reason why more complete modifications may not be effected
in such figures by the use of suitable scales, or by altering the
shape of the triangle. Thus, if the density and strength
curves in figures 65 and 66 are ellipses, it may be p0551b1e to
convert them into circles.!

Ex, 1. Du Bofs (p. 39) gives the obvious formula (referred to ln 9,52311 Ex,)

0=100(R - -707)[-293 By substitution of R in ferms of ¢/, from the equation of
34,13 Ex. 1, in the equation for ¢, obtain an expression for ¢ in terms of JL

(This will enable a scale for O; to be marked when the Calc scale is made
uniform; ete.)

Ex. 2 (For doctors.) Consider any advantage that may result from modifying
the diagram; e.g., by making the heat scales uniform; by making the triangle
simpler, either isosceles or equilateral, (In the first of these cases the R.). and the
nitrogen-excretion scales would be non-uniform; but once these are graduated there

is no difficulty due to this in using them.)
J

Ex. 8. Devise a nomogram in which can be represented all that is shown by
the triangular diagram, figuare 60,

9.6. Straight-line graphs may occur with scales of
reference other than uniform or logarithmic, and may be used
to represent quantities inter-related in many ways. We
conclude our study of graphs w1th a few examples which
illustrate this statement.

9.61. BALLOON GRAPHS. In meteorology knowledge of
the upper air has become of great importance. One source of
information is exploration by means of small balloons which
carry recording instruments, or other means of securing
records, to great heights and distances. It is of great
advantage to be able tp determine quickly the position of

¥
1 For the whole idea compacagiie very elementary treatment of Homogeneous
Strain in I!;a.mb’a “Infinitesimal Calculus”, Art, 181; also “Naturs” 112 9, “The
use of ‘Shear’ in Geometry”. ¥ .
o
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the balloon at regular intervals while it isin sight!® The
ordinary methods of trigonometry are so cumbersome as to
be useless. in this case. The distance and height of the
balloon are obtained with sufficient accuracy by observing
the apparent length L of a tall of known length » metres
attached to the balloon, and also the elevation E of the

i
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Fig, 78. Height and Distance of a Balloon.

(In error the height for an elevation of 25° has been marked instead of for 35°:
but it is easy to read off, without apy gniding line, the height 4:4 kms.)

balloon. The latter is obtained in the usual way from a
theodolite (which also gives the direction of the balloon),
the former is measured on a special scale fixed inside the
theodolite-telescape in the field of view. On the supposition
that the tail hangs vertically, formulz for height % and

1 “In India two kinds of balloons are used ingmeteorological work (and also
for help in aviation) ; one, instrament-balloons carrying barographs, thermographs
ete. ; and the other, pilot balloons which are simply smallpydrogen-filied Walloons
Iet off in order to find the direction and velociyy of wind at different heights. In
the case of the Jatter, the essential thmg of conrse is to find the posltlon of the
bagoon at different times after releade *,
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»

distance'd can be obtained easily with the help of 1.9, and
the standard formula in trigonometry,

sin24 =2sind cos4, cos24=2cos?4—1 ;thus (fig. 69)
OB=0B'=(n cos E)/L .. h=0B sin E=(n/L) }sin2E,
and d=OB cos E=(n/L) cosE,

equations which may both be taken to represent straight
lines, through the origin and of slope #»/L, the scales of
abscissa being determined by functions of the elevation.

The values of # and 4 can be read with great ease from
a diagram such as figure 72 : ! a working diagram may have
a scale about five times as great as that shown. The origin
of coordinates is taken on the right, so that a string fixed
there may be moved over the figure with the left hand while
the right records the results. The slope of this line is
determined by »/L, which is marked as a scale of reciprocals
on the central vertical line—# being a constant, 25m, or
I100m., as the case may be. The elevation is marked on the
horizontal axis in two scales, one for %sin 2E to give the
height (continuous ordinates), the other for cos? E [i.e.,
% (cos2E+1)] to give the distance corresponding (broken
ordinates). Both distance and height can then be read off on
the same uniform scale of ordinates, conveniently placed,
for the same units and axes are used in both cases.”

The scales here are shown right up to 90° but in practice they are rarely
needed beyond 45°. The diagram can be adapted to similar problems which occur

when there are two observing stations in use: cf, J, H, Field, Memoirs of the
Indian Meteorological Department XXV v, Plate 5.

Ex. 1, Test the diagram by commonsense considerations, such as, that a
height and a distance must be equal for B=45°

Ex; 2. Sketch thearrangement of alignment nomograms which represent the
nbove formule for & and d. Which diagram is the more advantageous ?

1 Adapted from H, Jameson. Bulleting of the Colombo Observatory, 1 6.

2 Note the gimilarity and the symmetry of the scales for § sin 2% and
$cos2E+4. This is eluc1dated in figare 70, whence it can be seen that, e.g., the
gcale for 3sin 2. from 4a to 90° is 1dent10'zl with that for cos?Z from 0° to 45°, i.e
graduations 45°, 55°, 65°%......in one “seale correspond exactly with those for 0°
10°, 20°, 87,00, 4m the other,
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*  9.62. STRENGTH OF SLABS. Figure 71 is of a type you
should recognise readily: it is very common in books on
engineering.! The formula represented is B=4§ wl* which we
would naturally represent by a nomogram asin 5.3. But here
it is represented by straight lines radiating from the origin,
obtained by taking successively different values of I as
marked on the lines. Brepresents what is called the bending
moment per foot width of a cement slab, w the load (either
stationary or moving) in lbs. per square foot, and ! the
span—the distance between the supports of the slab; this
last is taken as constant to determine the slope of each line.

Ex. 1, For a “live” load of 224, a “dead” load of 75, and a span of 10 feet,
show from the graph that the value of B is 29,000,

Ex. 2, Draw a chart to show bending moment in a slab where the concrete
is such that the suitable formula is 108 =wl?,

Ex. 3. Taking successive values of the height-weight index, W|H, between
42 and -92, draw a chart to represent the area of the body,
A=1237 @W/H—4H JW/H), where W is measured in kilograms, H in
centimetres., (Du Bois, op. cit. 147.)

9.63. DIfBETIC DIET. Very special care has to be
taken by doctors in arranging for the food eaten by patients
suffering from diabetes, a disease which results from a

,weakening of the carbohydrate-burning mechanism,
Figure 74, taken from Du Bois’ “Metabolism”, p. 233,% is a
diagram that has been used for:the purpose of calculating
the weight of carbohydrate, protein and fat which may
be given to such patients : the nomogram of 5.22 Ex. 3 serves
the same purpose, but the theory of treatment on which it is
based is different; the formule are given there. The
theory here is that suggested in #.1% Ex. 3, where it was
stated that the ratio FA/G should be less than 1+5; but with
the introduction of insulin (which increases the oxidation of
carbohydrate) it has been possible to increase this ratio with
beneficial results.

[} ]

1 Adapted from the Public Works Department Havglbook I, 387,

w
2 Originally frorm the John Hopkins Hospital Bulletin, 33 128, from which
t;xe examples are also taken,



198 ANALYSIS OF THE DIAGRAM

FA __ 046P+09F
G C+o58P+o1F :
then F (-15—0:9)=P(0:46—0-87)—1-5C. ..
or B=2C+ $}P = 2€+©-5866P = 2C+5;P,

If 1.5=

Ka relationship which all points on the graph have.
Accordingly the graduations for F/C on the left of the
diagram begin at 2.

(i) The equations to the lines through the origin are
easily deduced. For, say, 10}, of calories from protein we
eliminate F thus :

P I . v
T;-sﬁfi’ = [o 11 36P=4C+9:3F=4C+18:6C+5-07P
or 3093P=226C, i.e., P="731C,

which is the equation to a straight line.

(ii) By eliminating P between this and the fundamental
equation we get the ratio F: C which must hold for this

particular case:
]

. g=2+o-5466 —CP—= 2+0-5466 % +731=2+399,

(iii) The position of the line AB, on which the ratio F/Cs
is marked so as to coincide with the P graduations, can be
determined in this case, or in any other, as follows: suppose
F/C=3 corresponds with P=50, then

3=2+0'5466 P/C ..C=50X-5466=273.

The calculation P=;%; (Total cal.—Cal,—Cal.) is avoided
by this graphical device.

(iv) To get the lines showing total calories we consider
how many calories a point (C, P) represents. The corres-
ponding ratio #/C is represented on AB by a length P. 27-3/C.
and so fof"the correspondence selected-for the scales in
this figure, viz., 2 in F/C corresponds to 100 gms. P,

B
F|C=2+ 17 P. 2R3/C * F=2C+ -546P,
which ise just the fundamental formula.
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~the total calories, M=4(C+P)+9-3(2C+ +5466P) °
' =22:6C+9+08P »
Thus, - for M=1000, the intercepts ‘on the axes are

442, 110. Also the equal calorie lines have the constant
slope =—22+6/9:08,
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Fig, 74. “ To calculate & diet formula, select the diagonal line representing
the number of calories required ; choose the radfgl line corresponding to the per-
centage of the total calories to be furnished by protein ; from the intersection of
these two lines read off the amounts of protein and carbtj:ydrate on the axes; the
intersection of the line A B with the radial psrcentage line determines the factor F]C.
This factor pjultiplied by the number of grams of carbohydrate equals the grams
of fat required. (Hannon and McCann,)”
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°

Ex. Get a general equation for the line through the origin showing
Cal, =2°].. Obtain aleo the position of 4 B from a value y of F|O.—i.e. generalise (iii)

The purpose to be kept in view in the use of this diagram ls said to be to keep
protein metabolism as low as possible (cf Ex. 3 below) to give “the minimal
amount of carbohydrate and maximal amount of fat that will avoid ketosis”,
Formerly an arbitrary allowance of 1 gm, per kgm, of body-weight had commonly
been given : with this treatment it became possible to reduce protein to '66 gms,
per kgm,

Note that the diagram shows percentages of heat derived from protein up to
what actually occurs in the case of Eskimos (9,514 Ex. 6),

Ex. 1. Show that for M=2000 cals, Cal,=10°/, the proper weights are
P=49, 0=68, F=162'5 ; and that these give a total of 1920 cals, and a makimum
glucose available 113, (4,12 Ex. 3)

Ex. 2. Verify on figs. 1 and 74 the following statement : A man 30 years old,
170 ems, in height, weighing 60 kgms. requires at least 1612 cals./day. After a period
of observation on a diet furnishing 8, Caly, it is found that his protein metabolism
ag shown by the urinary nitrogen excretion, has reached a minimum of 50 gms. per
diem, Reference to the chart shows that this constitutes 12:6°/, of his total
metabolism, If a diet is to be given which. will just cover this minimal protein,
requirement (30gms, P), the quantity of 0 which is preseribed will be 51gms.,, and
of fat 253.51 =129 gms,

Ex. 3. The following quotation may, with the help of a large dictionary, be
flluminating : “It will be found interesting to make from the %raph the following
ealculations of two diets each furnishing 2000 cals. In one case the P forms 40°/,
of the total energy value, In the other case P
forms only 10°/, of the totalenergy. It willhe P ¥  ( Available Glucose
seen that a patient, whose tolerance might be 195 125 9 134:6
just sufficient to permit the ¢taking of 2000 49 165 68 1129
cals, with the smaller amount of 2, would
probably develop hyperglycemia or glycosuria if the same nu_mber of calorles
were given with the higher percentage of protein. The diet containing less
protein permits the use of much greater amounts of free carbohydrate,”




-; And Satan stood up against I§rael, and provoked David to

number Israel.

I Chronicles xxi 1.

Having eyes, see ye not? and having ears, hear ye not ?.

and do you not remember ?

When 1 brake the five loaves among five thousand, how
many baskets faII of fragments took ye up? They say unto

him, Twelve.

And when the seven among four thousand, how many

baskets full of fragments took ye up ? And they sald, Seven.

And he said unto them, How is it that you do not

understand ?

Mark’s Gospel viii 18—21I.
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