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HIGHER MATHEMATICS FOR 
CHEMICAL STUDENTS 

INTRODUCTION 

NATURAL Science is that branch of knowledge which 
is concerned with the complete investigation of 

what we may call the" outer world," as distinguished from 
consciousness. The constant succession of our experiences 
we attribute to concomitant change in the objects of ex­
perience; we recognize the existence of phenomena. The 
succession of phenomena, on careful investigation, is found 

. to have ~ne predominating peculiarity; phenomena are 
related in experience. They do not pass unconnected, or in 
random fashion, as though due to a " fortuitous concourse 
of atoms"; they are, on the contrary, distinctly connected. 
It is this relation of phenomena which gives a definite 
meaning to science. By reason of past experiences, either 
individual or those preserved in the progress of the race, 
We are able more or lesS to foretell the future course of 
phenomena j we form "an expectation of a connexion 
between possible experiences," which Ostwald identifies 
with a so-called law of nature. ',ve have no guarantee 
that the expectation will be fulfilled; all we can say is 
that in every case observed'up to the present it has been 
fulfilled, and the probability is very great that the con­
nexion will also appear in the next case which comes 
under our observation. 

The statement of a law of nature involves the forma­
tion of a concept, or general idea, in which the likenesses 
pf phenomena are collected, and the differences, in so far 

1 



2 HIGHER MATHEMATICS 

as they are not intimately involved in the nature of the 
case, are eliminated. The formation of such a concept 
involves three stages, in which we successively compare the 
various experiences, or percepts; abstract those qualiti s 
which seem to have a likeness; and generalize by arrang­
ing our experiences under names, a name being a symbol 
for a general idea. According to the degree of our success, 
the name will be so exact as to be capable of definition, 
whereby the parts involved in the concept are set in re­
lation to the parts of other concepts. In this wayan 
emergence into clearness and distinctness is evident, and 
the degree of clearness and distinctness of the final product 
of a mental operation is an indication of the extent to 
which that process has been successful. 

Every person, even the savage, has formed a definite 
number of concepts; but the concept formed will obviously 
depend for its completeness and accuracy upon the num­
ber and nature of the experiences which go to form the 
raw material of the concept. The names ",SUlphur," 
" force," " circle" will recall very different ideas in different 
persons. In the former example, most penons will recall 
the properties of yellow colour, brittle'less, combustibility, 
etc., and the group of these essentials, abstracted from 
such non-essential properties as size, shape, temperature, 
etc., will form the concept to which they attribute the 
name "sulphur". To a person whose experience has 
never been brought into relation with the object sulphur, 
the name signifies nothing; to the scientist it signifies 
much more than to the ordinary person, his concept in­
volves the ideas of specific gravity, crystalline form, ele­
ment, atom, and the like, derived from past experiences. 
His concept is distinguished from the other by invclving 
the concept of number or quantity. 

" I often say that when you can measure what you are 
speaking about, and express it in numbers, you know SOlDe­
thing about it; but when you cannot measure it, when 
you cannot express it in numbers, your knowledge is of 
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a meagre and unsatisfactory kind; it may be the beginning 
of knowledge, but you have scarcely in your thoughts ad­
vanced to the stage of science" (Lord Kelvin, 1~83). 

The earliest chemical theory was qualitative in the 
strictest sense; the so-called Aristotelean doctrine of the 
four elements assumed that air, water, earth, and fire, were 
qualities impressed on a primal matter; and the changes 
of material bodies were expla.ined by the assumption that 
properties could be taken up by, and impressed upon, or 
removed from, the base-stuff. Transmutation as a possi­
bility followed at once, and centuries of vain endeavour 
were required to impress the fact of its impossibility, lead­
ing to the true concept of element (Robert Boyle, "The 
Sceptical Chymist," London, 1661). "And therefore I 
think you have done very wisely to make it your business 
to consider the Phamomena relating to the present 
question, which have been afforded by experiments, especi­
ally since it might seem injurious to our senses, by whose 
mediation we acquire so much of the knowledge we have 
of things·corporal, to have recourse to far-fetched and ab­
stracted Ratiocination, to know what are the sensible in­
gredients of those sensible things that we daily see ana 
handle, and are supposed to have the liberty to untwist (if \ 
I may so spe.ak) into the primitive bodies they consist of " " 
. . . "being Gentlemen and very far from the litigious 
humour of loving to wrangle about words or terms or 
notions as empty; they had before his coming in, readily 
agreed promiscuously to use when they pleased Elements 
and Principles as terms equivalent; and to understand 
both by the one and the other, those primitive and simple 
bodies of which the mixt ones are said to be composed, 
and into which they are ultimately resolved" (Boyle, loco 
cit. pp. 15, 16). 

The quantitative investigations of Black on the burn­
ing of lime and magnesia alba, in which the balance (pre­
viously characterized by the French chemist Jean Rey as 
"an instrument for clowns") was applied at every turn, 
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led to the rejection of a hypothetical "principle of causti­
city," and replaced it by a "sensible ingredient of a sensible 
body," fixed air. The extension of Black's method by the 
physicist Lavoisier led to the downfall of the purely quali­
tative theory of phlogiston, and gave to chemistry the 
true methods of investigation, and its first great quantita­
tive law-the law of conservation of matter. Wenzel and 
Richter, the latter, as we shall s-ee later, of most pro­
nounced mathematical temperament, laid the foundations 
of stoichiometry, or" the art of measuring the chemical 
elements"; and Dalton, the mathematical tutor, following 
up the lead of Newton, combined the whole of the results 
of quantitative measurement which had accumulated up to 
his time, in a comprehensive theory, based on the concept 
of the chemical atom. 

The results of a scrutiny of the materials of chemical 
science from a ma,thematical standpoint are pronounced in 
two directions. In the first we observe crude qualitative 
notions, such as fire-stuff, or phlogiston, destroyed; and at 
the same time we PElrceive definite measurable quantities 
such as fixed air, or oxygen, taking their place. In the 
second direction we n8tice the establishment of generaliza­
tions, laws, or theories, in which a mass of quantitative data 
is reduced to order and made intelligible. Such are the 
law of conservation of matter, the laws of chemical com­
bination, and the atomic theory. 

As an instance of the remarkably far-reaching effect 
which a single mathematico-physical concept has haa upon 
the development of chemical theory, one has but to recall 
the state of chemistry just before the revival of Avogadro's 
law by Cannizzaro, to be impressed by its confusion. 
Relying solely upon their" chemical instinct," the leaders 
of the various schools of chemical thought had developed 
each his own theoretical system. Types, radicals, copulre, 
atoms, equivalents, mixing-weights, and a host of other 
conceptions strove for supremacy. The strife was stilled, 
order and unity were restored, as soon as Avogadro's great 
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lUea. was seen in its true light, and the concept of the 
molecule was introduced into chemistry. A formula which 
had required pages of reasoning from a purely chemical 
standpoint to est.ablish, and that insecurely, was fixed by 
a. single numerical result. There are not wanting, even 
to-da.y, chemists who advocate" purely chemical" methods 
in chemistry, and cannot appreciate the value of physical 
evidence in conjunction with mathematical calculations. 
We can only hope that their number is decreasing ex-
ponentially with time. . 

From the time when Guldberg limd Waage gave quan­
titative form to the speculations of the physicist Berthol1et, 
a clear conception of chemical equilibrium, in sharp. con­
trast to an anthropomorphic theory of affinity dating bacl< 
to Hippocrates and Barchausen, has yielded rich and 
a.bundq,nt fruit. 

The philosopher Comte has made the statement that 
chemistry is a non-mathematical science. He also told us 
that astronomy had reached a stage when further progress 
was imp~sible. These remarks, coming after Dalton's 
atomic theory, and just before Guldberg and Waage we~'e 
to lay the foundations of chemical dynamics, Kirchhoff to 
discover the reversal of lines in the solar spectrum, serv~ 
but to emphasize the folly of having "recourse to far- ~ 
fetched and abstracted Ratiocination," and should teach 
us to be "very far from the litigious humour of loving to 
wrangle about words or terms or notions as empty". 

Jeremias Benjamin Richter in his "Anfangsgrunde 
der Stochyometrie, oder Messkunst chemischer Elemente," 
published by J. F. Korn of Breslau, in two volumes (1792), 
strikes a very decided note when he repeats a statement 
from his Inaugural Dissertation (" de Usu Matheseos in 
Chymia," Kiinigsberg, 1789) which must have puzzled his 
contemporaries: "chemistry belongs, in its greatest part, 
to applied mathematics ". The reason why so little pro­
gress is made on the mathematical side of chemistry is, 
says Richter, that "the most prominent chemists occupy 
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themselves little with mathematics, and the matl~e­
maticians feel that they have little business in the province 
of chemistry". The mathematical equipment of chemists 
must certainly have been somewhat restricted, for Richter 
begins his book by about thirty pages of mathematical 
introduction, in which he explains the arithmetical opera­
tions, and the rudiments of algebra, concluding with an 
account of arithmetical and geometrical progressions; this 
being doubtless as much as the chemist could then be 
expected to assimilate. 

" The ultimate aim of pure science is to be able to ex­
plain the most complicated phenomena of nature as flowing 
by the fewest possible laws from the simplest possible data. 
A statement of a law is either a confession of ignorance, or 
a mnemonic convenience. It is the latter if it is deducible 
by logical reasoning from other laws. It is the former 
when it is only discovered as a fact to be a law. While 
on the one hand, the end of scientific investigation is the 
discovery of laws, on the other, science will have reached 
its highest goal when it shall have reduced ultimate laws 
to one or two, the necessity of which lies outside the sphere 
of onr cognition. These ultimate laws-in the domain of 
physical science at least-will be the dynamical laws of 
the relation of matter to number, space, and time, them­
selves. When these relations shall be known, all physical 
phenomena will be a branch of pure mathematics" (Prof. 
Hicks, B. A. Address, Section A, 1895). 

An explanation of a phenomenon is regarded, appar~ 
ently instinctively, as the most general possible when it is 
a mechanical explanation. The" mechanism" of the 
process is the ultimate goal of experiment. Now this 
mechanism in general lies beyond the range of the senses; 
either by reason of their limitations, as in the case of the 
atomic structure of matter, or by the very nature of the 
supposed mechanism, as in the theory of the ether. The 
only way to bridge the gap between the machinery of the 
physical process and the world of sense-impressions is to 
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think out some consequence of that mechanism. This 
we will call the hypothesis. The hypothesis, resting still 
on the mechanical basis, is yet beyond the range of direct 
experimental investigation; but if, by mathematical reason­
ing, a. consequence of the hypothesis can be deduced, this 
will often lie within the range of experimental inquiry, . 
a.nd thus a test of. the soundness of the original mechanical 
conception may 1)e instituted. Briefly, therefore, we may 
represent the intervention of mathematics in the study of 
physical science by the sequence ;-

(Mechanism) «-_ Hypothesis __ Consequence __ 
(Range of the Senses) 

The intermediate :steps involve the mathematical opera- ' 
tions. 

As an illustration, consider that conception of the 
structure of matter which regards it as composed of dis­
crete particles. If we make the hypothesis that a gas 
consists of such particles in motion, and obeying the laws 

. 'of dynamics, we come to the Kinetic Theory of Gases. 
The hypothesis is still expressed in terms of the supposed 
mechanism, and its verification is yet out of reach. But 
if we develop mathematically this simple idea, we are led 
to a great number of relations between the sensible and 
measurable physical properties of gases; and the good 
accord between these results and the results of experi­
mental inquiry serves to strengthen our belief in the 
validity of the original hypothesis, and thence in the 
primary conception of t:b,e discrete partition of matter in 
space. \ 

If the results of experimental inquiry, which we have 
reason to believe is technically accurate, are in discord 
with mathematical deductions from a hypothesis, two 
courses are open. Either the theory may be abandoned, 
at least for a time, or else it may be modified. Disagree­
ment between theory and experiment has proved a most 
potent agent in broadening theoretical views, and in 
making clear the necessity for new concepts or hypotheses. 
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Van der Waals' extension of the gas laws, which had been 
deduced from a kinetic hypothesis assuming a simpler 
mechanism for the structure of gaseous matter than is 
really involved, is a case in point. It is necessary to guard 
against a possible danger in this connexion, namely that 
of submitting too readily to the result of a so-called 
" crucial experiment ". Very few experiments can, in the 
nature of things, be really crucial. One so-called" crucial 
experiment" which decided between Newton's corpuscular 
theory of light and Huyghens' wave-theory, viz. the relation 
between the law of refraction and the velocity of light; 
was not at all decisive. As Preston says (" Theory of 
Light," second .edition, p. 19): "We believe an ingenious 
exponent of the emission theory, by suitably framing his 
fundamental postulates, might fairly meet all the objec. 
tions that have been raised against it". In fact, we 
perceive clearly that theories and hypotheses are not ac­
cepted or rejected outright; they have their periods of 
activity, and then lie dormant for a time, only to be revived 
in a new form later on. The fundamental materia.ls from 
which we construct our picture of the universe may appear 
in different shapes, but there is really very little discon­
pinuity between what seem at first sight very different 
views. 

All measurements are made through the medium of 
the senses, and theories result from operating on such 
measurements with the instruments of mathematics. It 
is clear, however, that the distinguishing mark of the 
whole development of theoretical chemistry and physics is 
the elimination of the anthropomorphic elements, especially 
specific sense-impressions, from the concepts. This pro­
cess is called by Prof. M. Planck C" Acht Vorlesungen 
tiber theoretische Physik"; Hirzel, Leipzig, 1910) the 
objectification of the physical system. Thus, in early 
physical systems we have optics dealing with phenomena 
perceived by the eye; acoustics treating of auditory per­
cepts, and so on. The subiective concepts of "tone" and 
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" colour" have now been replaced by the objectified con­
cepts of frequency of vibration; and wave-length. The 
object of this process of elimination is, according to 
Plapck, the striving towards a unification of the whole 
thetretical system, so that it shall be equally significant 
for tall intelligent beings. 

1Vhether this will be fully realized or not we cannot 
say;' in any case the method of attack on the unknown 
still remains the same: "In comparing the science of the 
past, ~he present, and the future, in placing the particulars 
of its restricted experiments side by side with its aspira­
tions after unbounded and infinite truth, and in restrain­
ing myself from yielding to a bias towards the most at· 
tractive \path, I have endeavoured to iricite in the reader 
a spirit of inquiry which, dissatisfied with speculative 
reasonings alone, should subject every idea to experiment, 
to encourage the habit of stubborn work, and excite a 
search for fresh chains of evidence to complete the bridge 
OVer the bottomless unknown" (D. MendeIeeff, "Principles 
of Cherr.tlstry," English translation, 1905, p. viii, Vol. I). 



CHAPTER I 

FUNCTIONS AND LIMITS 

1. FUNCTIONS 

I T has been shown that the business of scientific inl 
vestigation is the tracing out and classifying of the 

. relations existing between phenomena. The first duty 
of mathematics in the service of chemistry is to pro­
vide a method of expressing this relationship between 
phenomena, without, for the present, attempting to specify 
more definitely the quantitative aspect of the problem. 
The study of the mathematical representation of the con­
nexion between phenomena will occupy us at ftlhe very 
outset. 

Let us suppose that we have a flask containing water 
and its vapour, and connected with a manometer for 
measuring the pressure exerted by the vapour. If the 
water is heated at a definite temperature, and the read­
ings of the manometer recorded for different temperatures. 
one obtains a table of vapour-pressures :-

Temperature Pressure TempM'ature Pressure 
o C. cm. Hg. o C. cm. Hg. 
- 10 0'2151 60 14'89 

0 0'4569 70 23'33 
+ 10 0'9140 80 35'49 

20 1'7363 90 52'55 
30 3-151 100 76'00 
40 5'49 110 107'5 
50 9':20 

10 
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~" A consideration of this table will illustrate the meaning 
'6f several forms of expression constantly used in mathe-
ma.thics. We observe that :- ' 

(1) The pressure depends on the temperature in such a 
way that if any particular temperature is chosen arootrarily 
there is one, and only one, definite pressure which cor­
responds with the definite chosen temperature. Both 
the temperature and pressure are capable of assuming 
4ifferent values; they are called Variables. If we agree 
to a.lter the temperature in 10° steps, and measure the 
pressure corresponding to each temperature, we may call 
the temperature, the values of which are determined by 
a.rbitrary choice, the independent variable; the pressure, 
which must take up a particular value corresponding to 
each arbitrarily chosen temperature, and is therefore com­
pletely determined by the temperature, is called the de­
pendent variable. If the pressures had been arbitrarily 
chosen, and the temperatures corresponding to each pres­
sure determined, then the pressure would be the independ­
ent, the-temperature the dependent, variable. 

(2) When one variable magnitude depends upon an­
other (or several others) in such a way that, if the value 
of the latter be fixed, the former must assume one or more 
definite values, then the first magnitude is said to be a 
Function of the other, or others. The first magnitude is 
the dependent, the second the independent, variable. By 
way of notation we say that if the pressure p is the de­
pendent variable, and t, the temperature, is the independ­
ent variable, then 

p is a Junction oj t, or 
p = Jet) (1) 

The symbol" J" means "a function of" the magnitude 
enclosed in the brackets. 

This equation states that the value of p is determined 
by that of t; in the case of the vapour-pressure of a liquid 
p is a function of t alone. If we had considered a gas, 
then p would have depended on the volume v as well as on 
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the temperature t " for if only t had been fixed by arbitrary 
choice, p would still be undetermined, and could take up 
a range of values depending on the value of v· If t and v 
are fixed, then p takes up a. definite value. In this case 

p = f(t, v) (2) 
If x is the independent variable, y the dependent vari· 

able, the functional relation between x and y is expressed 
by the equation 

y = f(x) (3) 
Instead of "f," other symbols are often used; thus F(x), 
cp(x), Vex). 

If y is a function of several variables Xl' x2' xa, ••• 
then 

y = f(x l , x2 , xa, ... ) (4) 
The vapour-pressure of a solution depends on the' 

composition as well as on the temperature. If the com­
position is expressed in tetnJ.s of the concentration c as one 
independent variable 

p = f(t, c). 
These equations are perfectly general; they "'express 

the fact that one magnitude is related to others in a fixed 
and definite way. Whether this relationship can be re­
presented by a mathematical expression is another matter. 
"All that is necessary to establish a functional relation 
between two variables is that, when other things are un­
altered, the value of one shall determine that of the other" 
(Lamb). In the case of gas-pressure, the expression is 
known to be 

p = constant x (t + 273) x (l/v) 
The corresponding expression for the vapour-pressure 

of a liquid is not yet known. 
According to Ostwald (" Principles of Inorganic 

Chemistry," trans. Findlay, p. 73), the content of a quan­
titative law of nature can be expressed by saying that it 
represents two (or several) measurable properties of a 
system as functions of one another. 

If the same symbol is used in any investigation for two 
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functions, these have been formed in the same manner. 
Thus 

if f(x) = X2, 
then J(y) = y2; 

and if 1>(x) = l/x, 
then 1>Cy) = lly· 

(3) If, corresponding with a fixed set of values of the 
independent variables, thertl is only one definite value of 
the dependent variable, the latter is called a single-valued 
function of the former. But if more than one value of the 
dependent variable can correspond with n. fixed set of , ~ 

• 

20 ,. 40 50, 60 70'C 

FIG. 1. 

values of the independent variables, the function is called 
a multi-valued function. 

The relations are rendered very evident by using the 
graphical method, invented by the great French mathe­
matician Rene Descartes (b. 1596, d. 1650). By a series 
of measurements, or by calculation, we find pairs of corre­
sponding values of the variables, say (Xl' VI)' (x2, Y2)' (xa, Ya), 
... Taking a horizontal straight line x'x, we measure off 
to the right distances proportional to the magnitudes 
Xl> X2, xa' ..• , starting from an arbitrarily chosen zero 
point O. From the points Xl' X2' ••• are erected perpen~ 
diculars proportional to the magnitudes YI' Y2' • . . The 
points (Xl' YI)' (X2' Y2)' ... are then joined by an unbroken 
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line, which indicates in a striking manner the way in 
which y changes with x. If two or more points lie on 
the Same perpendicular the function is multi-valued. The 
curve of the vapour-pressures of water is given in fig. 1. 

(4) If the temperature is altered, the vapour-pressure 
changes. Suppose that successive temperature changes 
are made smaller and smaller, say 10, 0·1°, 0.010, ... , then 
the change of vapour-pressure consequent on a change of 
temperature becomes smaller as the temperature interval 
decreases. This holds down to a point where the changes 
are too small to measure; we can, however, continue the 
process mentally, and imagine that an infinitely small 
change in the value of the independent variable will pro­
duce an infinitely small change in the value of the function. 
A function possessing this property is called a continuous 
function. 

2. CONTINUITY 

A glance at the two curves AD, CDDIE, of fig. 2 will 
reveal a marked difference between them. Whereas the 

FIG. 2. 

curve AD runs from start to finish without break, the 
curve CDIDE breaks suddenly at the point D\ recom" 
mencing at D. The curve AB is continuous, whilst 
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CDIDE is discontinuous. If we regard e!l(Ch curve as the 
graph of a given function, it is evident that we must dis­
tinguish between two kinds of functions i continuous 
functions, and discontinuous functions. We now proceed 
to give the condition which the function must satisfy in 
order that it shall be a continuous function, and to show 
that if the function does not satisfy this condition its 
graph will be of the form CDIDE (or other forms which 
will be described). 

Let f(x) be a given function of x. 
This function will be continuous, for all values of x lying 
between the limits Xl and X2, if, for all these values of X 

the numerical value of the difference 
I(x + It) - f(x) 

diminishes indefinitely with h, or is infinitesimally small 
at the same time as h. In other words, we can choose a 
value of h which will make the value of f(:1; + h) - I(x) 
less than any magnitude we choose to name, however 
small. 

) 

We can show that fex) = x2 satisfies this climdition. 
Suppose that the continuity of this function h~d been 
chil.llenged by an opponent. We should then ask :him to 
name a very small magnitude such that f(:c + h) - f(x) 
would be greater in numerical value than the chosen 
magnitude. Suppose that one millionth = 10 - 6 had been 
chosen. It would be sufficient to show that a value of h 
could be chosen so that, for a fixed value of x,J(x + h) - lex) 
would be less than 10 - 6. Now 

f(x + h) - f(x) = (x + h)2 - x2 = 2xh + fl,2. 
If x is fixed, it is always possible to find a value of It such 
that 

2xh + h2 = 10 - 6, 

because this value is simply the positive root of the quad­
ratic equation. If h is now chosen less than this value, 
the difference will be less than 10 - 6, and the opponent's 
objection is refuted. He might now choose 10 - 10 as the 
vaJqe; but we could proceed in exactly the same way and 
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find a value of k such that for all values of k less than the 
value so found, 'the numerical value of the difference 
I(x + k) - jex) = ex + k)2 - x2 would be less than 10 -10 for 
a fixed value of x. The same process would apply to any 
magnitude, however small, and the continuity of jex) = x' 
would therefore be established in accordance with thE 
definition. In a similar way we could proceed to test any 
other function, such as j(x) = x3, which might come undel 
consideration. 

It is now easy to see that the curve AB is the graph oj 
a continuous function. Let k be a small increment of x: 

FIG. 3. 

from any value lying to the right of Xl and to the left 0 

x2, to a value lying in the same range. If perpendiculan 
are erected from the extremities of this small length or 
the x-axis so as to meet the curve, then 

jex + k) - j(x) 
will be the difference between the lengths of these per· 
pendiculars. Now it is at once obvious, from the forIX 
of the curve, that this distance diminishes as k diminishes 
and that it can be made as small as we please by taking I 
small enough. But this is the condition for the continuit) 
ofjCx). 

We can now show that the cllrve CDIDC does nOI 
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satisfy such a condition. For let a small distance It be. 
taken so that its extremities lie on opposite sides of X5.1 , 

If ordinates are erected to meet the curve, one will meet 
the portion CD\ the other the portion DE; and if his, 
made smaller and smaller so that its extremities always lie \ 
on opposite sides of xs, the difference between the lengths' 
of the ordinates can never be made less than DDl, however \ 
small h may be. The curve is therefore discontinuous at I 

the value x = x5• 

Another type of discontinuity is showp by functions 
which become infinite for particular values of the variable. 

1 
Thus/(x) ="'""2 

x 
becomes infinite for x = 0. The curve (fig. 3) consists of 
two branches, each branch running up to infinity at x = O. 
If It is a small positive or negative value of x, then 
when x = 0, the numerical value of f(x + h) - f(x) is al­
ways infinity no matter how small h may be. The func. 
tion therefore fails to satisfy the condition for continuity 
at the poi;t x = 0, although it does so at all other points. 

3. ALGEBRAIC l!'UNCTIONS 

These are obtained by performing with the variable 
and known constants any finite number of operations of 
addition, subtraction, multiplication, division, and extrac­
tion of integral roots. 

e.g. 2x, X2, ,,/x. 
If the operations include addition, subtraction, multi­

plication, and division only, the function is a rational 
function; and all such functions can be reduced to the 
form 

F(x)lf(x), 
where F(x) and fex) are rational integral functions, i.e. 
each is made up of a finite number of terms of the 
form 

Axm, 
where m is a whole number, and A a constant. 

2 
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The rational integral function 
y = f(x) = a + bx, " 

where a and b are constants, is represented gra~'hically bJ 
a straight line, and is called a linear function;. ,The ex 
pansion_ of a gas with rise of temperature a~ constani 

! pressure was found by Gay Lussac to be represented b) 
the equation 

v = voCl + at), 
where v,vo are the volumes at t" C. and 
and ,a is the coefficient of expansion. 
linear function of t, th~ constants being 

a = vo, 
b = voa. 

0° C. re~pectively 
Obviously v is E 

Linear functions occur frequently in physical chemistry 
especially in the study of dilute solutions. 

A rational integral function of the form 
y = f( x) = a + bx + cx2

, 

where a, b, c are constants, is called a quadratic function 
Callendar has found that the electrical resistance of : 
platinum wire is a quadratic function of the temperatur, 
at all temperatures from that of boiling liquid air (- 19Qo C. 
to that of melting platinum (1500° C.). That is ' 

R = Ro(1 + at + bt2), 

where Ro = resistance at 0° C., and a, b are constants. 
The statement that one quantity" is a function" 0 

another, or of others, occurs frequently in treatises or 
physical chemistry, especially those dealing with the sub­
ject in its thermodynamic aspect. Students are ofter 
puzzled, by the apparently abstract nature of the terrr 
" function"; the following example may make the matteJ 
a little clearer. 

Consider a quantity of a gas, say air, enclosed in ~ 
vessel, so that its mass remains constant. There are thre{ 
possible ways in which the state of the gas may be altered 
viz. by change of volume, of pressure, and of temperature. 
If two of these variables have been fixed by arbitrar) 
choice, the third then takes up a perfectly definite value 
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over which we have no control. As Gibbs proposed, we 
say that a gas has two degrees of independent variability, 
or two degrees of freedom. The same is true of any homo­
geneous body; solid, liquid, or gas. 

Now suppose we keep the temperature constant, and 
alter the volume. The pressure alters at the same time, 
it therefore depends on the volume, and alt~8 when the 
volume alters. By definition, we therefore say that "the 
pressure is a function of the volume," or 

P = f(v) when t is constant. 
Experiments with a Boyle's law tube show what the 

"form" of this function is; in other words, they enable us 
to pass from this very general equation (which is in fact 
true for liquids and solids as well as gases) to a special 
equation which shows exactly what the relation is which 
exists betweenp and v. This is of course 

P = ~ when t is constant, and h is a constant; v 
or the pressure is inversely proportional to the volume. 
This state~ent is Boyla's law. 

Now let the volume be kept constant, and the tem­
perature be changed. The pressure is again altered, 
therefore 

P = cp(e) when v is constant, 
where e is the absolute temperature. 

Experiment shows that in this case 
P = h'e, when v is constant, and h' is a constant; 

Or the pressure is proportional to the absolute temperature 
when the volume is constant. 

Now suppose that both volume and temperature are 
allowed to change simultaneously. The pressure is then a 
function of both, or 

p = F(v, e). , 
Let PI' VI' e1 be the initial; P2' '02, e2, the final values 

of the variables. Let the change be imagined as brought 
about in two steps :-

(i) Change VI to V2, keeping e1 constant. Let the 
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pressure then become P (not Pz, because the temperature 
is still e). By Boyle's law 

PI VI = pVz = h, when ()j is constant. 

Thence P = PIVI . 
'liz 

(ii) Keeping the volume constant at vz, let the tempera­
ture be changed to (J2. The pressure must now become 
Pz, because '112 ; 82 are the two independent variables charac­
terizing the final state. 

But P ,; h'el , 

pz = h'(}2' 

P P2 .. e; = e;' 
••. P(J2 = P2(}1· 

But P = PI'll!, 
V2 

P v pv .'. -01 I = ~-82 2 = r (a constant). 
1 2 

Thus PIVI =; rOI' 
P2V2 = r(Jz, 

and generally, for a constant mass of gas, 
pv = reo 

.) 

Another way of stating this relation is often met with. 
We see that 

r(J 
P=v' 

or p is proportional to ~, which is written 
v 

() 
P rx-

v' 
I.e. "p varies as OJv", 

But p rx 1/'11 when (J is constant, 
and p rx (J when v is constant, 

and the above shows that 
1 

P x - x e when both'll and e vary. 
V 
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This relation between variables which are proportional 
s quite general. 

If A varies as B when C is con.stant, 
and A varies as C when B is constant, 

then A va1·ies as BC when both Band C va/",!" 
That is, if Aa: B when a is constant, 

and Aa: 0 when B is constant, 
then Aa: BO when both Band 0 vary. 

Notice the distinction between the two statements: 
(i) ,. y varies with x" : 

y = lex). 
(ii) "y varies as x " : 

y = kx, 
where k is a constant. 

4. LIMITING VALUES 

If a, variable, changing in accordance with some as­
;igned law, can be made to approach a fixed constant 
value as nearly as we please, without actually ever be­
:loming equd to it, the constant is called the limiting value, 
)r the limit, of the variable under these circumstances. 

Let y = lex). 
If, when x is made to approach nearer and nearer to a 

fixed value, say a, y, as defined by the equation, tendE 
more and more to another fixed value, say /3, then /3 is 
:JaIled the limiting value of y = lex) for the value x = a. 
This is written 

Lim lex) = /3, 
X_a 

~he symbol - meaning" approaches ". 
Consider the fraction 

2x + 3 
y= ---. 

x+1 
This can be written in the form 

3 
2+-x 
--1 
1+-

Jj 
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If x is made larger and larger, the fractions 3Jx and 
IJx become smaller and smaller; and if we imagine x to 
be increased until it is greater than any assignable mag­
nitude, however great, then 3/x and llx become smaller 
than any assignable magnitude, however small. We say 
shortly that 

when x is infinite, 
3/x and 1/x are zero; 

meaning that as x approaches infinity (x _ CI)), llx 
and 3/x approach the limiting value zero (0). This IS 

written 

Lim ~ = 0, 
x 

X_CI) 

:1: -. GO meaning" x tends to infinity," and 

Hence 

Lim! = O. 
x 

X_CI) 

2 
Lim y = i = 2. 

x _ CI) 

Another example is the Infinite Series 
1 + t + 1: + -k + . . . ad info 

If we add the t to the 1, the 1: to the 1 + t, the i to 
the 1 + t + 1, and so on, we increase the sum at each 
step. But after twelve steps the term added is 0'0002, 
and successive terms continually decrease as we pass along 
the series. The sum tends to a limiting value, y, the 
greater the number of added terms; and it is easily proved 
that this limiting value, when the number of terms tends 
to infinity, is 2. Thus the "sum" of an infinite series 
may be finite. 

Examples on Limits :-

(1) F · d th l' 't' I f x
2 + 3x - 4 m e 1ml mg va ue 0 xCx _ 1) when x_l. 

[5.] 
(2) Show that the valu~ of 1/(x - ~) must instantanf}-
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ously change from - 00 to + 00 as x passes through the 
value a. 

x2 + 2x - 8 [6 ] (3) Find the ~imit of X2 + 7 x _ 18 when x -+ 2. If 

(4) Find the limit of x + Z x
2 

when x -+ 00. [1.J 
x 

(5) Find the limit of J(x - 1) when x_I. 
,-.fx - 1 

Put J.i = 1 + h, so that h vanishes for x = 1. 
!(Xl) Let v - = y 
,Jx - 1 

, 2 2 1 .. y =h+ . 
When It _ 0 (i.e .. x ~1), 2jh _ ro 

Ix - 1 
,'. Lim '" -+00 

Jx - 1 
x-I 

5, GEOMETRICAL ILLUSTRATIONS OF LIMITS , 

- I 

The conception of a limiting value, or limit~ has played 
a very important part in the development of geometry as 
well as in the analytical branches of mathematics. The 
properties, and mensuration, of plane and solid figures 
bounded by straight lines can be treated in a fairly easy 
manner. But when the figures are bounded by curves, it 
is necessary to resort to the method of limits. A figure 
bounded by straight lines is constructed so that it lies out­
side or inside the given curved figure. If the volume (or 
a.rea) of this figure is found, and if this figure approaches 
the curved figure in volume or area as the number of its 
sides is continually increased, then the volume or area. of 
the curved figure is the limit of that of the rectilinear 
figure. " 

The circumference af a circle is the curve traced out by 
the extremity of a line revolving about a point "in a plane. 
It is required to find a strai~ht line equal in length to th~ 
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circumference of the circle. This is easily carried out 
practically by rolling the circle on a piece of paper until a 
point on the circumference touching the paper has come 
back into the plane of the paper. The distance between 
the two points is equal to the length of the circumference. 

Now suppose a polygon, regular for simplicity, de­
scribed in the circle, and another outside it. If we make 
the sides of each polygon smaller and smaller, and their 
number therefore larger and larger, the perimeter of the 
wscribed polygon increases, while that of the escribed 

polygon decreases. The two perimeters become more and 
more nearly equal, and we define the limiting value of the 
perimeter of either polygon, when the number of sides is 
i:ucreased indefinitely, as the circumference of the circle. 

This is equal to radius x 271', where 71' is a number 
which cannot be written exactly as an arithmetical frac­
tion. Its value can, however, be calculated to as many 
places of decimals as we please, i.e. to any required degree 
of approximation. 

71' = 3'14159 ... 
7T is called an incommensurable number. 



CHAPTER II 

THE RATE OF CHANGE OF A FUNCTION 

6. 'fHE FUNDAMENTAL PROBLEM OF THE DIFFERENTIAL 
CALCULUS 

T HE conception of the" rate" of change of any magni­
tude is familiar in many aspects of ordinary ex­

perience. The velocity of a moving body is the mte of 
change of position of the body. If we consider the body 
as moving uniformly in a straight line, i.e. describing equal 
distances in equal intervals of time, its velocity is found 
by dividing the distance traversed by the time, or 

• v = sit, 
where s = distance, say 20 feet, 

t = time, say 4 seconds, 
v = velocity, 20/4 = 5 feet per second. 

The word" per" enters into the specification of a rate. 
Now it is the fundamental problem of the Differential 

Calculus to find the rate at which one variable changes 
with regard to another, when the change of the one depends 
upon the change of the other, and the magnitudes change 
continuously. 

Two cases at once present themselves: 
(i) The rate of change is constant. For example in the 

case of uniform motion the speed does not vary from second 
to second, and the velocity is found by dividing any distance, 
however large, by the time taken to traverse that distance. 

(ii) The rate of change is variable. If a stone be 
allowed to fall freely under the action of gravity its speed, 
or ra.te of Ghange of position, is not constant but illcrease(l 

.. 25 
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by 32 feet per second every second. The distance fallen 
in t seconds cannot be found by multiplying the velocity 
of the stone by the time, because that velocity continually 
increases. It is given by 

s = {gt2, 
where g is the acceleration of gravity, 32 feet per second 
per second, i.e. the velocity added on per second. Accelera­
tion is thus the rate of change of velocity. 

Let s be the distance faIi{m after t seconds. After a 
very small interval Ot seconds, the stone has fallen a very 
small distance os feet. Ot, os denote small increments of 
time and space respectively; each is to be taken as a 
whole, i.e. ot does not mean" t multiplied by 0," but" a 
small interval of time". We call Ot, os the increments of 
the variables. The corresponding space and time are now 
s + os and t + Ot, hence 

8 + OS = {get + Ot)2, 
.'. S + os = {gt2 + gtOt + !g(Ot)2. 

But s = ~gt2, 

.. by subtraction, os = gtot + ig(Ot)2. 
Dividing by Ot we get 

os 
Ot = gt + ~gOt. 

Now as Ot is made smaller and smaller osjet approaches 
nearer and nearer to the true velocity at the instant t, i.e. 
the rate at which the stone is falling at the instant t 
seconds after it IS dropped. In the limit, when ot ap-
proaches zero, 

L
. os 
1m st = gt, 

Ot_O 
since !got is then zero. 

Thus the actual velocity at the instant t is gt. 

7. THE LAW OF MASS ACTION 

It was emphasized by Berthollet that the chemical 
(I.<;ltivity of a substance dellends not only upon its aflinit1f, 
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but also on the quantity of it which is available for re­
action. He expressed this in the concept of the active 
mass of a substance, and formulated the fundamental law 
of chemical dynamics, that the chemical action is propor­
tional to the active mass. Berthollet did not know exactly 
how to specify the" active mass ,I of a substance, and his 
idea could not take a quantitative form. This formulation 
appears clearly in the research of Wilhelmy, on the rate of 
hydrolysis of cane-sugar in the presence of acids. If cane­
sugar is heated with a very dilute solution of sulphuric 
acid, it takes up the elements of water and a molecule of 
dextrose and one of levulose appear in the place of a mole­
cule of cane-sugar :-

C12H22011 + H20 - C6H 120 6 + C6H 120 6• 

The change is fairly slow, and since a solution of 
cane-sugar is dextrogyrous (turning the plane of polarised 
light to the right), and the resulting mixture is levo­
gyrous, the amount of change may be followed by observ~ 
ing the rotation from time to time in a polarimeter. 

Let do = rotation of original (cane-sugar) solution, 
a1 = rotation of final (invert-sugar) solution, 
a = observed rotation after a time t. 

The amount of change is then 

(original mass of sugar) x ao - a 
_ a o - a

1 

The rate of inversion might appear to be given by 
amount inverted in time t 

t 
but we have to remember that the rate is a variable one; 
the velocity of inversion is, by Berthollet's law, proportional 
to the active mass of the cane-sugar undergoing change, 
and hence the velocity at any instant is determined by the 
amount of sugar present at that instant. (The water is 
present in such large excess that its active mass is practic­
ally constant.) 

Let a = number of gram-molecules Qf cane-sugar 
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present at the beginning of the reaction; a is the active 
mass of the sugar, hence velocity of reaction at the very 
beginning = ka, where k is a constant. 

If after a time t (usually measured in minutes), an 
amount x has been inverted, the active mass is then (a - x), 
and 

velocity of reaction at the time t = k (a - x). 
The velocity slows down continuously as the active 

mas's decreases, just as the velocity of a train slows down 
as the supply of steam to the cylinders of the engine is 
gradually cut off. What then is to be understood by the 
term" velocity of reaction"? The case is analogous to 
that of a falling stone. Let ox denote the very small 
quantity of sugar inverted in the very small interval of 
time ot. Dividing ox by Of we get the average velocity 
of reaction, i.e. the velocity in the interval ot measured on 
the assumption that this velocity remains constant over 
that small interval. As a matter of fact it decreases dur­
ing that interval, owing to the diminution of active mass; 
but if ot is made smaller and smaller, the changE:!Jof active 
mass becomes less and less; and in the limit, where St -.,. 0, 
the change of active mass also approaches zero. The ratio 
ox/Ot approaches a limiting value when ot is continually 
diminished and this limiting value is defined as the velocity 
of the reaction at the time t. The limiting value of ox/Ot 

is denoted by ~~, hence 

. ox dx. hI· f t· t' LIm St = (it IS t e ve OClty 0 reac IOn a tIme t. 

Ot-O 

Observe that ~~, like 0, is a symbol of operation. 

It means that we have 
.(i) Increased t by a small amount ot. 
(ii) Divided this into the resulting small change of x, 

viz. ox. 
(iii) Found the limiting value of ox/Of when ot - o. 
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It is to be taken as a whole, the dx and dt must not be 
separated. 

Then if at the time t we have (a - x) of cane-sugar 
present, we may put 

dx 
dt = k (a - x) 

as a quantitative expression of the law of mass action for 
the reaction considered. 

Note that k does not change; it is the factor of pro­
portionality for any active mass, or 

[ veloci ty ] = k x [active mass J. 
Thus the symbols of the Calculus are subject to the 

same laws and interpretations as those of arithmetic and 
algebra, but whereas in these parts of the science of num­
ber' the numbers are finite and discontinuous, in the 
Calculus we regard number as being continuous, capable 
of gradual growth and infinitesimal increase. This idea 
of the continuity of number, and the conception of limit, 
closely related to it, are fundamental in the Calculus. 

o 

8. DEFINITION OF DIFFERENTIAL COEFFICIENT 

Let y = cp(x) (1) 
be a continuous function of x. 

Let the independent variable x be changed by a very 
small amount ± ox, and let ± oy be the change of the de­
pendent variable y consequent upon the change. Then 
we may write f 

y ± 8y = ¢(x ± 8:1"), 

hence 8y = t(::__±__§_~ - ¢(x). 
8x ± 8x 

If both the fractions 
cp(x + ox) - cp(x) 
---Sx---
¢ea: - ox) - ¢(x) 

- ox 
tend to the same finite limit as ox is continually decreased, 
then the function cp(x) is said to possess a differential 
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coefficient, or a derived function, or a derivative; and this 
is defined as the value of that limit. 

The differential coefficient is denoted by 
dy Lim cf>(x + ox) - cf>(x) (2) 
dx = ox~O ox 

Thus dy/dx is the limiting value of a ratio; dy and dx are 
Dot to be regarded as separable quantities because dy/dx 
is a symbol denoting a particular operation, namely the 
process of finding the limiting value of the oy/Sx, where y 
and x are connected by the equation 

y = cf>(x), 
and ox approaches the value zero. 

The importance of the derived function in science 
turns upon the point that it measures the rate of change 
of y with respect to x. This should be remembered when­
ever a differential coefficient is used. 

[A function which possesses a differential coefficient, or 
a " differentiable" function, is necessarily continuous; the 
converse is not true, because continuous functions having 
no differential coefficients are known. These are, however, 
very rarely met with in the practical applications of the. 
calculus; they are not considered in this book. See Hob­
son, " Theory of Functions of a Real Variable," Cambridge 
University Press.] 

9. EXAMPLES 

The differential coefficients of the following functions 
may be obtained ab initio ;-

(1) Y = rnx + b, 
y + oy = mex + ox) + b, 

.. y + oy = mx + b + mSx. 
Subtract y = mx + b, 

.. Sy = mox, 

oy = m 
.. ox ' 

.'. Lim ~ = ddY =: m. 
oX X 

ox~o 
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(2) Find the rate of increase of the electrical resist­
ance of a metal wire with temperature from Callendar's 
formula.:-

R = RoCl + at + bt2
). 

Lim ~~ = ~¥ = RoCa + 2bt). 

ot -70 
This example shows that time does not necessarily 

enter into the specification of It rate; we have in this case 
considered the rate of change of resistance with tempera­
ture. 

(3) Find the rate of increase of pressure with the 
volume in the case of a perfect gas, at constant tempera­
ture. 

The functional relation between p and v is Boyle's 
law:-

pv = constant = K. . . (a) 
Let the volume be increased by a small amount ov; 

the pressur[>e is increased by the small amount op. The 
new values of the pressure and volume are (p + op), and 
(v + Sv); and since Boyle's law applies to the gas in any 
state provided the temperature is constant, 

(p + op) (v + ov) = h (b) 
From (a) and (b) it follows that dp/dv = - p/v. 

(4) The area of a circular plate of metal is expanding 
by heat. When the radius passes through the value 2 in. 
its length is increasing at the rate of '01 in. per sec. Show 
that the area is increasing at the rate of '04 7T sq. in. per 
sec. at that time. (Area of a circle = 7Tr2.) 

(5) The length of a metal bar at a temperature t C. is 
given in terms of the length at 0° C. as unity by the equation 

l = 1 + at + bt2
• 

Show that the coefficient of linear expansion is a + 2bt. 

10. OHEMICAL REAOTIONS 

When, in any change of a material system, the sub· 
stances present in the system disappear, and their place 



32 HIGHER MATHEMATICS 

is taken by new substances with different properties, the 
change is called a· chemical reaction. If VI' V2, V3"" 

molecules of the substances AI> A2 , A3, ••• are converted 
into v/, V2', va', ... molecules of the substances A/, A2', 

AI" ... , then a chemical equation may be written down, 
expressing, besides the qualitative aspect of the pheno­
menon, the additional fact that the total mass of the 
system remains constant, or the sum of the masses of the 
interacting substances is equal to the sum of the masses of 
the products of reaction (Law of Lavoisier):-

VIAl + v2A2 + vaAa + ... = v/A/ + v2'A2' + va'As' + ... 
If we desire to express the fact that, under specified 

conditions, the reaction proceeds in a direction from left 
to right (or vice versa) with respect to the chemical 
equation, an arrow may conveniently be used instead of 
the sign" = ," the law of the conservation of total mass 
being understood 

VIAl + v2A2 + ... - VI' A/ + V2' A2' + '" 
Thus, at ordinary temperatures and pressures 
(i) Zn + H2S04aq. - ZnS04aqo + H 2o " 

Here VI = V2 = 1 ; VI' = v/ = 1. 
(ii) Na~02 + 2HOlaqo - 2NaOlaq. + H20 2aq. 

VI = 1, V2 = 2; v/ = 2,v2' = 1. 
As a first classification we shall say that a reaction is of 

the ji1'st, second, third, 0 •• nth, order, when one, two, 
three, . 0 0 n molecules disappear from the left side of the 
chemical equation during the reaction, 

11. EXAMPLES 

. (1) Reactions of the First Order ;­
(a) Isomeric change 

06H5' OH = NO 0 OH - 06H5' OHII • N02' 
(b) Radioactive changes 

Ra - Ra Emanation. 
(c) If one reacting component is present in small 

amount as compared wit4 the other, or others, the amount 
of the latter converted is negligible compared with the 



THE RATE OF CHANGE OF A FUNCTION 33 

tbtal quantity present, and the reaction is apparently of 
the first order with respect to the first component. E.g. 
'the reaction cane-sugar + excess water ~nvert-sugar is of 
the first order with respect to cane-sugar. 
(2) Reactions of the Second Order:-

(a) H 20 + S03 - H2S04, 

(b) C2H 50H + CHaCOOH - CH3COOC2H 5 + R,P. 
(c) CHaCOOH + Br2 -CH2BrCOOH + HBr. 

(3) Reactions of the Third Order;­
(a) 2H2 + O~ - 2H20. 
(b) 2S02 + O2 - 2S03• ,_- , 

12. VELOCITY OF REACTION 

If the substances Al , A2, Aa, ... are mixed together, 
forming either a homogeneous phase, or a heterogeneous 
system of two or more phases, then three cases arise as to 
the condition of the system :-

(i) The substances disappear, and new substances 
appear, so rupidly that the reaction appears to be instan­
taneous. E.g. 

NaOHaq. + HClaq. _ NaClaq. + H20. 
2H2 + O2 - 2H20 (explosion). 

All explosive reactions appear to be instantaneous; 
careful measurements have shown, however, that the re­
action is propagated through the system (gas or liquid) 
with a finite and characteristic rate, which it is true is 
very large (Berthelot, Dixon). 

(ii) The substances disappear at a finite and measur­
a.ble rate, which has very different va.lues according to the 
chemical composition of the reacting system. Examples 
of such reactions are (1), (a), (b), (0); (2), (b); (3), (b) of 
the preceding paragraph. 

(iii) The initial substances persist without change in 
quantity for an indefinite time. In this case the composi­
tion of the system is independent of the time, and two 
cases are known :-

s 
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(a) If, when the amount of one component is changed 
by any quantity, however small, a corresponding small 
change in the amounts of one or more of the other com­
ponents ensues, the state is one of true equilibrium. A 
mixture of acetic acid, alcohol, water, and ethyl acetate in 
the following proportions satisfies this condition 

!CHaCOOH + !C2H 50H + lCHaCOOH + jH20. 
Berthelot found no change in the relative quantities of 

such a mixture after seventeen years. (It is assumed in 
all cases, unless otherwise specified, that the temperature 
of the system be kept constant.) But if the smallest 
quantity of acetic acid, alcohol, ester, or water was added, 
a small reaction ensued. 

(b) The relative amounts of the components are un­
changed if a finite change is made in the amount of one or 
more of them. Here two cases are possible; either it 
'nay be possible to C!mse the reaction to proceed, at the 
given temperature, with measurable velocity by the intro-

, duction of a so-called catalyst into the system; as in the 
case of a mixture of oxygen and hydrogen gases at ordinary 
temperature and spongy platinum as catalyst; or a reaction 
cannot be so instituted, as in the case of metallic gold and 
oxygen. The first is an example of a system of substances 
infalse equilibrium; the second of a system composed of 
chemically indifferent substances. It may be that these 
distinctions are only arbitrary; all substances may con­
ceivably react, but in BOme cases the reaction is either 
much too slow, or proceeds only to such a limited extent, 
that it is quite imperceptible. 

By far the t lost interesting reactions are those proceed­
ng with a finite and measurable velocity. If the reaction-
cheme in such a case be ' 
vIAl + v2A2 + vaAs + ... _,. VI' AI' + v2' A2' + va' As' + ... 

hen we shall define the velocity of this reaction as the 
ate at which the system of the components on the left side 

transformed into the system of the components on the 
'[lht side of the reaction equation. 



THE EATE OF CHANGE OF A FUNCTION 35 

13. CHEMICAL KINETICS 

The fundamental law of chemical kinetics (that is, that 
branch of chemistry which deals with the velocities of re­
actions) is the Law of Mass Action, first definitely applied 
to. the problem in hand by Wilhelmy in 1850. This states 
that the rate at which a substance disappears from a homo­
geneous system undergoing chemical change is proportional 
to the active mass of that substance in the system. 

The active-mass, or concentration, of a component is 
taken as the number of gram-molecules per unit volume 
(usually 1 litre). 

A mathematical expression of this law gives us the 
equations of chemical kinetics. 

(1) Reactions of the First Order (U nimolecular) :­
Let a = initial amount of Al (vl = 1), 

x = amount which has disappeared after a 
time t. 

Velocity of reaction = dxjdt, 
active mass = a - x 

.'. dx/dt = kj(a - x). 
(2) Reactions of the Second Order (Bimolecular) :­

Let a = initial amount of A/vl = 1), 
b = initial amount of A2(v2 = 1), 
x = amount of Al or A2 disappearing during 

time t. 
Then since the ra~e of change, dx/dt, is proportional 

to each active mass, it is proportional to their product, 
tlence 

dx/dt = k2(a - x) (b - x). 
If a = b (case of equal initial concentrations) 

dx/dt = k2(a - x)2. 

(3) Reactions of the Third Order (Termolecular):-
Let a = initial amount of AI(VI = 1), . 

b = initial amount of A2(V2 = 1), 
c = initial amount of Aa(va = 1), 
x = amount of Al , A2, or Aa which disappears in time t. 
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Then it is easily seen that 
dx/dt = kia - x)(b - x)(c - x). 

The cases for a = b, a = c, b = c, a = b = c, should be 
written out by the student. . 

If Al and A2 are identical, as in the case 
2H2 + O2 - 2H20, 

Vl = Vz. and dx/dt = kia - X)2(C - x). 
If AI' A2, and A3 are identical, as in the case 

3HCNO - (CNOH)3' 
VI = V2 = Va' and dx/dt = ka(a - x)3. 

, Generally, if 
(a - x)/v = c1' 

(b - x)/v = ~, 
where c1' c2, ••• are the actual concentrations of the sub­
stances AI' A2, Aa, ••• present in the reaction 

vIAl + v2A2 + .. , _v/A/ + v2'A12 + ... 
at any particular instant, the rate of change of concentm­
tion (obviously negative) is given by 

- dCI/dt = kCv'C2v'Cav.. . • . " 

This is the most general equation of chemical kinetics 
1'or a reaction proceeding in one direction. If the products 
of reaction reproduce the initial products, the velocity from 
left to right is 

- del/dt = kCI"C2'" .•. - k'c1'v.'c/v
.' • ••• 

H. GEOMETRICAL ASPEC1' OF A DIFFERENTIAL COEFFI­
CIENT; GRADIENT OF A CURVE. 

The extent to which a road departs from the hori­
zontal per foot of ascent is called the gradient or slope 
of the road. Similarly the gradient of a straight line 
is the increase of y per unit increase of ;c in the co-ordin­
ate system, that is, the gradient is the trigonometrical 
tangent of the angle made by the line with the positive 
direction of the axis of x. In fig. 5, -gradient of AB 

= oy/ox 
= tan a. 

" 
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FIG. 5. 

b'IG. 6. 
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If the curve is not a straight line, its gradient varies 
from point to point along the length of the curve, but it 
is still possible to speak of the gradient at any point, this 
being defined as the trigonometrical tangent of the angle 
made by the positive direction of the x-axis with the 
tangent line to the curve at the given point, drawn up­
wards or downwards, towards the right. 

Let PQ be a portion of the curve. Through P and Q 
draw PR, QR parallel to the axes, and join PQ. Let 
PR = oX, RQ = oy. Then oy/ox = tan QPR is the slope 
or gradient of the secant PQ. 

If the point Q moves along the curve until it coincides 
with P, the seca.nt becomes the tangent PQ' to the curve at 
the point P, and oy/ox, since ox - 0, becomes dy/dx, which 
is thus the slope or gradient of the CU1've at the point P. 

[Note. 
P is the point (x, y), 
Q is the point (x + ox, y + oy).] 

If cp is the angle, positive when measured counterclock­
wise, which the positive direction of the 'tangent line 
makes with the positive direction of the x-axis, 

dy/dx = tan p. 
This is an important equation. 
It must be noticed that the gradient changes from 

point to point along the curve, but if the equation of the 
curve is known the gradient at any point can be calculated. 
Thus, if the curve is 

y = 4X2, 
dyjdx = 8x ... the slope at the point 

x = 1, Y = 4,is + 8. This means that the tangent line 
to the curve at that point makes an angle with the axis of 
x the trigonometrical tangent of which is + 8. 

15. DIFFERENTIALS 

Let y = cp(x). 

Then we have seen that if oy, ox be simultaneous in­
crements of y and x, the limiting value of the ratio oyjox, 
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as 'Ox approaches the value 0, measure the rate of change 
'of y with x, and is denoted by 

. 'Oy dy LIm -=-. 
'Ox dx 

8x~o. 
In another system of notation 

Lim 8rp (x) = c!_cj>_(:c2 = A.' (x) 
'Ox dx Y' 

'Ox~O 

where cp'(x) is called the Derivative of y with respect to x. 

Thus ddy and rp'(x) are two different ways of writing the x I 

same thing. 
We shall now consider the value of 'Oy/'Ox at a point 

near the limiting value; that is, the change in value of the 
ratio oy/'Ox as ox decreases from a very small finite value 
to zero. 

Let y = XZ 

'Oy = 2xox + ('Ox) 2. 

If we rJut x = 1, and substitute small numbers for 'Ox, 
we can form the following table of values :-

'Ox 20x ('Ox) 2 

0'1 0'2 0'01 
0'01 0'02 0'0001 
0'001 0'002 0'000001 
0'0001 0'0002 0'00000001 

oy 
0'21 
0'0201 
0'002001 
0'00020001 

W~ observe that 'Oy becomes more and more nearly 
equal to 2(ox) the smaller 'Ox is taken; in other words the 
importance of the term (8x)2 becomes less and less in com" 
parison with 2'Ox the nearer 'Ox approaches zero. 

Now we can always put 

~; = rp'(x) + B, 

where B is a quantity which, by the definition of rp'(x), 
must vanish in the limit when 'Ox ~ O. Thus 

'Oy = rp'(x)'Ox + B'Ox. 
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Now as ox approaches the limiting value zero, Rox be~ 
comes smaller and smaller in comparison with cp'(x) ox, 
since R = ° when ox = 0. At some point before the limit 
IS actually reached, Rox will be so small in comparison 
with cp'(x)ox that it may be omitted altogether, and we 
can write 

dy = cp'(x)dx, 
which does not mean that both sides of the equation 
ultimately vanish, as they should for ox = 0, but that the 
ratio of the two sides approaches unity when ox ap~ 
pro aches zero. In this sense, dy and dx are called Differ~ 
entials. This method, due to Leibnitz, simply means 
that, in calculations which involve oy and ox, we may, at 
any stage, write cp'(x)ox for oy, omitting terms which ulti· 
mately vanish. The full meaning of this statement will 
become clear as we proceed. 

16. GENERAL THEOREMS ON DIFFERENTIATION 

The operation of finding the differential of a given 
function is called differentiation. The process is much 
facilitated by using general rules, which are true for all 
the functions to be considered. 

(1) The differential of a constant :-
The rate of change of a constant being zero, it follows 

that 
cp'(k) = 0 ... d(k) = O. 

(2) The differential of a constant multiplied by a func~ 
tion ofx:-

Let y = ku. 
y + Fly = k(u + au), 

,'. Sy = kSu, 
... dy = d(ku) = kdu. 

(3) The differential of a sum :-
Let y = u + V + W + ... , 

where u, V, w .. , denote differ~t functions of x. 

~ 
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y+oy=u+ou+v+ov+w+ow+ ... 
= (u + v + w + ... ) + (ou + ov + ow + ... ) 
= y + (8u + OV + ow + ... ), 

• '. oy = ou + ov + ow + . . ., 
:. dy = d(u + v + w + ... ) = du +-dv + dw + ... 

(4) The differential of a p1'Oduct:-
Let y = uv, 

y + oy = (u + ou) (v + oV), 
= uv + uov + vou + ouov 

:. oy = uOv + vou + ouov. 
Neglecting the term OUOV which ultimately vanishes, 

ve get ~ 

dy = d(uv) = udv + vdu. 
Similarly 

d(uvw) = uvdw + uwdv + vwdu. 
(The student must distinguish carefully between cases 

2) and (4). In some cases a quantity which is otherwise 
ariable is assumed to be kept constant, and the differentia­
ton must 'be carried out on this assumption. Thus, in 
tte differentiation of the gas-law -

pv = RT 
re may have the following cases :­

(a) p constant (isobar) :-
pdv = RdT. 

(b) T constant (isotherm) :­
pdv = - vdp. 

(c) v constant (isochore) :-
vdp = RdT.} 

Geometrically, let the long and short sides of the rect­
ngle in fig. 7 be of lengths u and v respectively. 

The original rectangle has an area uv. When the 
tdes are increased by OU and ov, the increment of area is 
le sum of the narrow rectangles uov, vou, and the small 
iece OU,OV in the corner. As OU and OV are diminished, it 
I quite clear that the small cornel' piece becomes vanish-
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ingly small in comparison with the narrow strips, i.e 
ouov is negligible in comparison with uov and vou. 

r-------------~-____ P.:~ _____ _ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I 
~ __ ~----~--~-J-~ 

8V" ".. 
FIG. 7. 

(5) The differential of a quotient :­

Let y = '!!. 
v' • 
U + ou 

Y + oy = V + ov' 
o _ u + _&It U vou - uov 
y - v + ov - V = v2( 1---:_-~)' 

In the limit, 0'1) becomes vanishingly small compared 
v 

with 1, 
. d(!!) = vdu - udv 

. . v t,2· , , • 

This may be found by putting 
u = vy 

:. u + ou = (v + ov) (y + oy), 

au - '!!.ov a _ ou - yov v 
.~ y- v v 

. d = d(·~) = vdu - udv 
.. y V v2 ' 
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The following formulro con tain the results we have 
lst proved; they are constantly used in the further 
'eatment of the subject, and should be colllD1itted to 
leIDory :-

(1) d(k) = O. 
(2) d(ku) = kdu. 
(3) d(n + v) = (ll~ + dv. 
(4) d(uv) = udv + 1Jdu. 

(5) d(~) = V(l1~ ~~ udv. 



CHAPTER III 

THE DIFFERENTIATION OF ALGEBRAIC 
FUNCTIONS 

17. ALGEBRAIC FUNCTIONS AND TRANSCENDENTAL 
FUNCTIONS 

A FUNCTION is said to be algebraic when it has been 
formed by opera.ting on its independent variable 

according to the laws of algebra, i.e. by addition, sub­
traction, multiplication, division, involution (formation of 
powers), or evolution (extraction of roots). Thus: z + 5, 
x - b, x2 + 5x - 6, ,Ja2 

- x 2 ,J - 3x. Fun~tions not 
algebraic are called Transcendental Functions, e.g. sin x, 
tan x, COS-lX, eX, log x. 

(Compare § 3.) 

18. THE DIFFERENTIAL OF X" 

Let Y = x", 
and when x is increased to Xl = X + OX, let y have the 
value Yl = Y + oy. 

Y Y xn x" Then _1_-_ = 1 - = X
l
"-l + XX l"- 2 + ... + Xn-I, 

-' :1\ - X Xl - X 

by division. Therefore 
Y - Yl = (X1

n
-

1 + xxn
-

1 + ... + xn
-

1
) (Xl - x). 

:. dy = ex 

But Lim Xl = X by definition of Xl> 

OX_O 
1 + Xn - 1 + .. . + x" - 1 + ... to n terms) dx 

or d(x") = nx" -ldx 
44 



ALGEBRAIC FUNCTIONS 45 

It appears, at once, if the equation is written in the form 
d(x") .. - 1 
(IX = nx 

that the gradient of the curve 
y = X" 

is greater the greater the value of n provided n> 1. 
is evident on comparing the graphs of x2 and W, 
are plotted in fig. 8. 

:J 

FIG. S. 

19. EXERCISES 

This 
which 

Differentiate (find the differentials of) the following 
functions :-

(1) y = x3• 

Working ab initio:-
y + oy = (x + OX)3 

.'. Y + oy = X3 + 3x20x + 3X(OX)2 + (OX)3 

. . oy = 3(x20x + X(OX)2) + (OX)3 

. . dy = d(x3) = ~ 
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If the formula 
d(xn) = nxn-1dx, 

is used, we must put 
n = 3 .'. n - 1 = 2, and 

d(x3) = 3x2dx, as before. 

< , 

(2) x4, x 9, X 25, x 5OO, [4x3dx, 9x8dx, 25x24dx, 500X499dx.] 
(3) (x + 1) (x + 2), 

x+3 
L t _ (x + 1) (x + 2) 

e y- x+3 

x2 + 3x + 2 
x+3 

Put ;c." + 3x + 2 = U, 

x + 3 = v, 
U 

,'. Y = V' 

d 
_ vdu, - udv 

• . y - v2 ) 

dy = i~_-l:_3)(2x + 3)dx - (X2 + 3x + 2le 
• . (x + 3)2 , 

x~ + 6x + 7 ' 
:. dy = 2 6 9dx. x + x + 

(4) L t _ ax2 + 2bx + c 
e y - ax" - 2bx + o· 

Put U = ax2 + 2bx + 0 :. du = 2(ax + b)dx; 
v = ax2 - 2bx + c :. dv = 2(ax - b)dx. 

But dy = d(;) = vdu; tldv 

2(ax2 - 2bx + 0) (ax + b)dx - 2(ax2 + 2bx+ 0) (ax - b)dx 
(ax2 - 2bx + 0)2 

_ 4b (ax2 
- 0) dx. 

(ax2 - 2bx + 0)2 

x [ - x
2 + 2 ] 

(5) Y = (x + 1) (x + 2)' dy = ;];2 +-3;;+ 2dx . 
x3 _ a3 

(6) y = ;]; _ a' 
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. (Simplify by factorizing the numerator. 
dy = (2x + a)dx.] 

i (7) y = (x + 2) 4. 

Put x + 2 = u .'. du = dx. 
Y = u 4

.'. dy = 4u3du 
= 4(x + 2)3dx. 

(8) y = (x - 5)9. [dy = 9(x - 5)8dxJ. 
(9) y = (a - X)4. [dy = - 4(a - x)3dx]. 

47 

(10) In the adiabatic expansion or compression of a 
gas, it is found that the pressure and volume are related 
by the equation 

pvY = constant, 
where'Y = CpIC., the ratio of specific heats. The elasticity 
of a substance under specified conditions being defined as 

- v . ~!, show that the adiabatic elasticity of a ga.s is "/P. 

20. INFINITE SERIES 

A collection of terms in which successive terms are re­
lated accor1ing to some law, is called a series. Examples 
are:-

a + (a + m) + (a + 2m) + (a + 3m) + ... 
a + ar + a1'2 + a1'3 + ... + a1'n. 

If the number of terms in the series is not finite the 
series is called an infinite series. 

Thus a + ar + a1'2 + . . . + a1'n + . . . + -ad inf. 
is an infinite geometrical series, in which each term is 
obtained by multiplying the preceding term by r, the 
common ratio. If the numerical value of l' is less than 
unity, I l' I <1, the sum of an infinite number of terms 
of the series converges to a finite limit. Let 

s,,+ 1 = a + ar + ar2 + ... + ar" to (n + 1) terms, 
:. rS"+1 = ar + ar2 + ... + ar"+1 to (n + 1) terms, 
, . s .. + 1 (1 - r) = a - ar" + 1 

. a(1 - rn + 1) 
• . s" + 1 = 1 = sum of (n + 1) terms, 

- l' 

a , '. s .. = 1--(1 - rn) =; sum of n terms, 
- l' 
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Now let n be continuously increased until it becomes 
larger than any assignable magnitUde, however large; i.e. 
let n -+ 00 • Then r" -+ 0, since I r I < 1 :. rn continuously 
diminishes a.s n increases until it becomes smaller than any 
a.ssignable magnitude, however small, i.e. '1''' -+ O. Thus 

s 00 = Lim _a_ (1 _ r") = _a_. 
1-r 1-'1' 

n-+oo 
Such a series, of which the sum, defined as above, ap­

proaches a unique limit, is called a convergent series. If 
the sum does not approach a limit as more and more terms 
are included, but on the contrary increases without limit, 

. the series is said to be divergent. The geometrical series 
is divergent if I r I > 1. A third type of series is the 
oscillating series, such as 

1 - 1 + 1 - 1 + 1 - ... , 
the sum of which neither converges to a finite limit as the 
number of terms taken to form the sum is increased, nor 
diverges under the same circumstance, but oscillates In 

value:- '" 
1 -+ 0 -+ 1 -+ 0 -+ ... ad inf., 

the addition of each term causing a change per saltum 
from 1 to 0 or 0 to 1. 

Analytically, we may define a convergent series as 
follows :-

Let the sum of the nrst n terms of the series be denoted 
by Sn. Then if 8n approaches a finite and unique limiting 
value 8, as n approaches a number which is larger than 
any assignable magnitude, s is called the 8um of the con­
vergent series. Let 

s = Sn + Un, 

then the error committed by taking the sum of the first n 
terms as the sum of the series is 

8 - 8" =u". 
If the series is convergent 

Lim s" = 8, Lim Un = O. 
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The necessary and sufficient condition for the converg­
ence of an infinite series is that the remainder after n 
terms, 0",,, becomes infinitely small as n is made very large. 
There are several methods used for finding whether a I 

given series is convergent or not. Two may be men­
tioned; for the others the student may consult the text· 
books on Algebra or the Calculus (Briggs and Bryan, 
"Tutorial Algebra," pp. 432-9; Lamb, "Calculus," chs. 
I, XIII.) 

Method 1. Let the given series be denoted by 
U o + U 1 + U 2 + . . . + Un + ... , 

and let the series 
Vo + VI + Vi + . . . + v" + ... 

be known to be convergent. Then if each term of the 
first is not greater than the corresponding term of the 
second, the first series is convergent. The reference series 
most frequently used are the geometrical series ;-

a + ar + ar2 + . . . = ar n + ... 
convergent lor I r I < 1, and the series:-

1 1 1 
1 + 2m + 3m + 4m + ... 

convergent if I m I > 1. 
Method 2. An infinite series is convergent if from and 

after some fixed term the ratio of each term to the preced­
ing term is numerically less than some quantity which is 
itself less than unity. 

Let the series be 

a.nd let 
s" = a] + a'2 + ... + an 

(1 
a2 a3 a2 a4 a3 =a] +-+-.~+-.---+ 
a1 G 2 a1 aa a1 

Then, by hypothesis, 

.. .) 

a2/a 1 <a, a3Ia~<a, a4/a3 <a, etc,. 
where a<1. 
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Multiplying together the first two, the first three, the 
first four, and so on, of these inequalities, 

~/al <a or a2 <a. a l 

aala1 <a2 aa<a2 .a1 

a41aI <a3 a4 <a3
• a l 

By addition, and adding a l to both sides, 
a l + a2 + as + ... < a l (1 + a + a2 + .•. ) 
a l + a2 + aa + ... < all (1 - a). 

The sum of any number of terms is thus always less 
than a finite quantity al/(l - a), and the series is con· 
vergent. 

Examples :­
(1) The series 

1 1 1 
1+1+21+31+'" 

is convergent because, beginning at the mth term 
am+dam = 11m; am +2/am + I = l/(m + 1); 

am+a/amH = 1/(m+2) .' . ., 
and these quotients are all not greater than a finite 
quantity 11m, less than unity. 

(2) Show that the series 
1 + {x + { . tX2 + t . t . }x3 + ... 

is convergent when I x I <1. 
(3) We will consider two interesting examples of con" 

vergent series in chemistry. 
(i) Washing Precipitates. 
R. Bunsen (1868) was the first to try to raise the 

prosaic operation of washing a precipitate to the rank of a 
fine art. Suppose the precipitate, say of AgCl, is on the 
filter, and let the concentration of the soluble substance 
(which is to be washed out) in the original liquid be :1:0, 

E.g. if 250 C.c. of liquid stood over the precipitate, and 

contained 2'5 gr. HN03, the concentration :1:0 = :~~ = 0'01 

gr·/c.c. 
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Let a ... volume of liquid left entangled in the pre. 
cipitate, after as much as possible has 
drained through, and let 

m = volume of liquid poured on for washing. 
Total volume of liquid = m + a, 

. a 
... concentratIOn Xl = --xo' m+a 

When this liquid has drained through, a c.c. are left in 
the precipitate. The absolute amount of substance left 

in the precipitate is now aXl = _a-axo' m+a 
After a. second quantity of m c.c. of liquid has been 

poured on, and drained through, the absolute amount of I 

substance left in the precipita.te will be 
a ( a )2 

axz = m + a aXl = m + a axo• 

Thus, a.fter 1, 2, 3, ... n washings 
3 

m : aaxo, (m : aYaxo, (m : a) axo• •.• . \ 

, " . (_!!:_)Raxo will be the residual quantities left in 
m+a 

the precipitate. These terms form a geometrical series 
with common ratio a/em + a). If we have a given 
volume of liquid, V c.c., then V = mn. It is obvious that 

(_a_)" will be much smaller if n is large, than when it 
m+a 

is smaIl; it can be shown in fact that it is more efficient 
to ma.ke m fairly small, and n large, than vice versa; in 
other words, it is better to wash often with small quantities 
of liquid than to pour on a large volume at once. 

It must be observed that we have assumed that no 
dissolved substance is retained in the precipitate by ad­
,orption; this condition is, however, very rarely satisfied. 
(Cf. Freundlich, "Kapillarchemie," Leipzig, 1909.) 

(ii) Extraction with ether, etc. 
Let a solution of aniline in water be shaken out with 

ether in a separating funnel. Let 
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a = volume of the aqueous solution, 
m = volume of ether added (we assume that none is 

lost by dissolving in the water, i.e. m is 
constant), 

Xo = initial concentration of the aniline in the solution. 
As before let Xl' X2, Xa, ••• x., be the concentrations after 
I, 2, 3, ... , n extractions. 
~ Now it has been shown by Berthelot and Jungfleisch, 
and by Nernst, that any solute which does not alter its 
molecular state on passing from one solvent to another, 
will distribute itself between the two solvents in such a 
way that the ratio of its concentrations in each remains 
constant, irrespective of the absolute or relative amounts 
of the two solvents. This ratio is called the Partition 
Coefficient for the particular solute and pair of sglvents; 
let it be denoted by w. Then 

concentration in water t t 
concentration in ether = cons an = ru, 

.. ~ = ruxo - Xl 
am' 

wa 
•• Xl = m + ruaxo· 

A second, third, ... nth extraction gives 
~ = ruX1 - X2 

a m 
x _ x ( rua )2 

.. 2- Um+w,a' 

x = X (~(1, __ )3 
8 0 m + wa ' 

( 
wa )U x" = Xo ' • m + wa 

Complete extraction is theoretically impossible, be-

cause ( wa )n, although it may become very small, is 
m + wa 

never zero. The number of extractions (n) requisite to 
reduce the concentration in the aqueous layer to a small 
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value, will depend on the magnitude of (I). In the case of 
ether and water, 

(I) = 1/80 for benzoic acid, i.e, eighty times as much 
goes into the ether as into the water, If 
a = 1000, m = 200, then 

Xl _ (l)a 1 
Xo m + (l)a = 17' 

i.e. after one extraction only 1/17 of the acid is left in the 
water. After three extractions, only (l.,..)3 = 1/4913 is left, 
and the extraction is "complete". For succinic acid, 
with the same solvents, (I) = 6, After one extraction H is 
left; repeated extraction is necessary. 

21. THE BINOMIAL SERIES 

The Binomial Series, discovered by Newton, is of very 
frequent use in scientific investigation :-

(1 ' )n _ 1 n(n - 1) 2 n(n - 1) (n - 2) 3 
+ X - + nx + 1. 2 x + --l·:-2.lf~x 

'J + .. , + x". 
(a) If n is positive and greater than 'unity, the series is 

convergent for all values of x. 
Thus 

(1 )5 _ 1 5 5 . 4 2 5. 4 . 3 ~ 5 . 4.3 . 2 4 5 
+ X - + x + 1. 2x + 1. 2 . 3x + 1. 2 . 3 . 4 x + X • 

If the first term in the binomial is not unity, it can be 
made unity by division:-

(a + X)4 = (1 + ~ya4 = a4( 1 + 4~ + 6:: + .. .) 

Examples.-Find the expansions of the following 
binomials, testing the resulting series by giving X a 
numerical value:-

(1) (1 + 2X)3. 
(2) (1 - 4X)4. 

I (3) (a + X2)3. 

i (b) If n is fractional or negative, the series is conver-
!gent provided the numerical value of x is less than unity, 
~ 
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i.e. - i < I x I < + 1. This condition can a.lways be 
satisfied if the second term in the binomial is an infinit­
esimal, (1 + 8x), beca.use we can alwa.ys suppose 8x to be 
less that;l unity before the expansion is made. 

Examples :-
(1) Expand (8 + x) I} 

(8 + X)1l ={8(1 + ~)f! = 81t(1 + §)1! 
= 16{1 + It. § + 1i(ii.; 1) . (~Y. 

1*(1* - 1) (It - 2)(~). } 
+ 1.2.3 8 + ... 

= 16 + 2ix + l8x2 + 6;8x3, etc. 

(2) Find the cube-root of (x + 4)4 to four terms. 
(3) Expand (1 - x) - I. [1 + x + x2 + x3 + ... J. 
(4-) Expand (1 - x) - 3. [1 + 3x + 6x2 + 10x3 + ... J. 
(5) Prove that d(x") = nx" -ldx, by using the Binomial 

Series. Since the binomial expansion can he used for 
positive and negative, integral and fractional values of n, 
the formula for the differentiation applies to all these 
cases. 



JHAPTER IV 

MAXIMUM AND MINIMUM VALUES OF A 
FUNCTION . .~~~ 

22. :MAXIMA AND MINIMA 

CONSIDER_ the curve in fig. 9. Notice the sign of 
the gradient as the tangent line rolls round the crest 

A and the trough B. 

" 

FIG. 9. 

At a1 the tangent line makes a positive angle with the 
:I;~axis 

:. tan 4> "" dy/dx is positive. 
At A the tangent line is paraUeJ to the x-axis 

.. tan 4>.:: dy/dx is zero. 
Q5 . 
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At a9 the tangent line makes a negative angle wi~h the 
x-axis 

:. tan <p = dy/dx is negative. 
The changes of sign as the tangent line rolls round a 

crest are in the order 
[ + ] - [OJ - [ - J. 

At B, the trough, the changes are in the order 
[- ]-[0]-[ +]. 

Definition: a maximum value of a function is a value 
algebraically greater than all values in the immediate 
neig hbourhood. 

The points A, D, on the graph thus satisfy the condi­
tion for maxima. 

Definition: a minimum value of a function is a value 
algebraically less than aU values in the immediate neigh­
bourhood. 

The points B, C, on the graph satisfy the condition for 
minima. The case of C will repay close attention. 

Notice that a maximum value need not be the greatest 
value of the function; this may be one maxini-um value, 
e.g. D, but the criterion refers only to values in the im­
mediate neighbourhood of the point considered. Similarly 
for minimum values. This explains why a function may 
have more than one maximum (or minimum) value. 

The elementary methods of finding the maximum and 
minimum values of a function depend upon the properties 
of quadratic equations; they are discussed in all text-books 
on algebra. Far more rapid and simple is the method of 
the Calculus, which follows at once from the foregoing 
remarks. 

At a maximum, dy/dx passes from a positive, through 
zero, to a negative value. 

At a minimum, dyjdx passes from a negative, through 
zero, to a positive value. 

The maxima and minima are therefore to be determined 
by the changes of sign of the gradient at the critical points. 
It is important to notice that dy/d"X vanishes for both a" 
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ma.ximum and a minimum; the changes of sign determine 
which case is under investigation, 

Examples :-
(1) Find the maximum or minimum values of the 

function 3x2 + 2x - 6. 
[Solution; Put y = 3x2 + 2x - 6, 

~~ = 6x + 2. 

. . . d1f ° For a maXimum or mInImUm, d---'- = , a; 
:. 6a; + 2 = 0, 
:, x = - ! = - 0'33. , . , 

Substitute values a little less, and a little greater, th'1 
0'33 and observe the change of sign. 

(i) x = - 0'4 
:. dy/dx = - (6 x 0'4) + 2 = - 0'4. 

(ii) x = - 0'2 
:, dy/dx = - (6 x 0'2) + 2 = + O·S. 

Conseq~ently the changes of sign are 
( - ) ~ (0) ~ ( + ) I 

md we are dealing with a minimum. 
(Notice that - 0'4 is algebraically less than - 0'2.) J 
This result should be confirmed by plotting the graph 

~f 3x2 + 2x - 6. 
(2) Find the maxima, or minima, of 

4x3 
- 10x2 + 3x + 7. 

[Put Y = 4x3 
- iOX2 + 3x + 7 

:. dy/dx = 12x2 - 20x + 3. 
For maxima or minima 

dy/dx = 12x2 
- 20x + 3 = 0, 

.'. x = i or}. 
Take the values separately ;­

(a) x = 3/2 = 1'5. 
(i) Put x = 1'4, dy/dx is -, 

(ii) Put x = 1'6, dy/dx is +, 
.'. we have the - ~O ~ + case, 
i,e. a minimum at x = 1'5, 
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(b) x ... 1/6 = 0'166. 
(i) Put x = 0'10, dy/dx is +, 

(ii) Put x = 0'2, dy/dx is - , 
:. we have the + ~ O~ - case, 
i.e. a maximum at x = 0'16.] 

(3) Find the maximum and minimum values of 
x(x - 1)2 

[There is a maximum at x = t, a minimum at {t = 1. 
The corresponding values of the function, obta.ined by 
substitution, are ;", O.J 

(4) Find the points on the curve 
y = (x - 1)2(x - 2)2 

which are at maxima or minima. 
[dy/dx = 2(2x3 

- 9x2 + 13x - 6). 
This can be factorized by making use of the Factor 

Theorem: "If a rational integral algebraic expression 
vanishes when a is put for x, then (x - a) is a factor". 

The above vanishes for x = + 1, + 2, + t 
.'. (x - 1), (x - 2), (2x - 3) are factors . • dy/dx = (x - 1)(x - 2)(2x - 3) = 0 
... x = 1, 2 or %. 

As x passes through the value + 1, ~; changes from - to + 

" " " + 2, " " ., " ,,+ ~, " " 
- " + 
+ " -

Evaluating corresponding y-values we find, 
s. maximum at (~, -h-), 

minima at (1, 0) . and (2, 0).] 
x2 -x+1 

(5) y = x2 + tv + l' 
[A minimum at (1, !); a maximum at (- 1, i).J 

(6) X4 - 8ax3 + 22a2x2 - 24a3x + 12a4
• 

[x = a(a miD.); x = 2a(a max.); x = 3a(a min.)] 
(7) (x - 1)4(x + 2)3. 

[x = 1 (a min.); x = - If (a max.)] 

(8) x
3 

~ 1 . [x = ~2 = 1. 26 ... (a min.)] 
x 
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!.l3. CALOULATION OF SMALL ERRORS 

Let some variable x, on which another variable y de­
pends, be measured in the laboratory. It is required lio 
finn what effect So small error in the measurement of !il) 

would have upon the value of y. We use the equation 
dy = cp' (x)dx, I 

i.e. an error of dx in x causes an error cp'(x)dx in y. This 
is ca.lled the absolute error. 

'. 

FIG. lO.-Radius Error. Height Error. 

Examples;-
(1) In measuring a cylinder, a possible error of dr is 

made in the radius. What is the error in the estimate of 
the volume? 

V = 7rr2h 
.. dv = 27rrhdr, 

i.e. the error dr is multiplied by 27rrh. 
If h = 7 cm., r = 1 cm., dr = + 0-01 cm. 

dv = 0'44 c.c. - an appreciable amount. 
Hence one has to be very careful indeed in measuring the 
radius. 
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The effect of an equal errOP-in measuring the height 
1S dv = wr2dh 

= 3'14 x 1 x '01 = '03 C.c., 
which is only about one-tenth the former. 

(2) The curious divergencies of students' results from 
the "theoretical" values are often explained by the fact 
that some quantity has not been measured with sufficient 
accuracy; the accuracy which is sufficient for some portion 
of the work is not sufficient for others. 

Thus, if the coefficient of linear expansion of a metal 
bar is to be found, the formula is 

l = lo (1 + at). 
If lo = 100 cm., t = 100°, an error of 0'1 cm. in lo will 

make an inappreciable difference in a. 
But a = (l - loJ/t,l = Ai/lot 
.'. da = d(Al)/lot. 

For an error of 0'1 cm. in LJl (the increase of length), 
an error of 0'00001 cm. is made in a, and since, for iron, 
a = 0'000013, this would give a totally incorrect result. 

This example shows that the accuracy reqillrE'\d in the 
measurement depends not only on the form of the function 
connecting the variables, but also on the absolute magni­
tude of the quantity to be found. It is therefore usual to 
find the propoTtional erTOr, that is, to divide the absolute 
error by the value of the quantity, or da/a. This, multi­
plied by 100, is the percentage error. 

(3) Very often a suitable arrangement of the conditions 
of experiment reduces the error to a minimum. It is shown 
in the text-books on practical electricity that the minimum 
error is made in measuring a current with a tangent 
galvanometer when the deflection is 45°, other sources of 
error being neglected. The current through the insku­
ment is therefore adjusted by shunting until this deflection 
is approximately obtained. 

(4) If there are errors in more than one variable, the 
error for each is calculated separately and the results 
added. (" Superposition of Small Errors. ") If the density 
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of a. body is to be found by Archimedes"method, and if the 
weights in air and in water are in error by dW, dWl, 
show that the relative error in the density p will be 

WI dW dWI 
dp/p = vV _ WI vV + W - WI 

\. 
24. EXAMPLES \ 

If y = I(x) , 
then it has been shown that 

'Oy = y + oy - Y = I(x + ox) - f(x),~ 
and if 'Ox is small (otherwise the experimental ~esults are 
useless) 

I(x + 'Ox) - I(x) = j' (x) 'Ox 
.'. absolute error = 'Oy = j'(x) 'Ox, 

and relative error = 'Oyjy =j(~1 'Ox. 

(a) Atomic weight determinations;-
Let the equivalent of sodium be determined by pre­

cipitating a, known weight x of N aOI with 1 part of Ag, 
and weighing the AgOI. 

Let A = equivalent of silver 
B = equivalent of chlorine, 

both be known. Then if y is the equivalent of Na, 
(y + B) : A = x: 1, 

.. Y = Ax - B, 
j'(x) A 

.. oy = I(x) 'Ox = Ax _ B 'Ox 

= ~'Ox = Y + B 'Ox 
y y x' 
23 + 35'5 'Ox 

23 x 

An error of 0'1 parts in a thousand in th~ measure­
ment of x gives rise to an error of 0'25 parts per thousand 
in the calculated value of y. In the case of BaC1111 y = 

137/2, 

y + B = 1'52. 
Y 



62 HIGHER MATHEMATICS 

(b) Reaction velocity:-
The constant k in the formula 

dx/dt = k(a - x)(b - x) .•• 
will be shown later on to be given by 

1 
k = 1CP(x), 

1 
or y = t4>(x) , 

where Y = k; cp{x) is a function of x. 
A small error in the measurement of t has very little 

influence on y; an error in the estimation of x (the extent 
of reaction) on the contrary, gives rise to a marked error. 

oy = i<fJ'(X)Sx. 

In a series of determinations, the values of ox are 
usually nearly equal, hence the errors in yare proportional 
to 4>/(x)it. The reliabiUty of any calculated value of y is 
therefore proportional to tlf (x). The best value of y is 
in this case found by multiplying each calculated value by 
the corresponding value of t/q! (x), and dividing"the sum of 
these products by the sum of the latter expressions ;-

tl t2 
Ylq>,(X

I
) + Y2cp'(X

2
) + ... 

Y = ---:-~. --+...-.:~--
tl t2 

4>' (Xl) + cp' (x~ + ... 
t l /4>'(x l ) is called the weight of the observation (1). 

The relative error, 
oy _ ~ cp'{x) I' 
y - t . 4> (x) oX, 

diminishes with diminishing values of ox and :/(~i. 
The experimental conditions a.re therefore to be ar~ 

ranged so that 4>'(x)/<P(x) is a minimum. 
This is the case when 

~(~) = (CP'(x)y = 0 
dx cp(x) ¢(x) J . 



VALUES OF A FUNCTION. 63 

Thus, in the measurement of conductivity by Kohl­
rauch's method, the error is least in the bridge-reading 
when the slider is in the neighbourhood of the middle of 
the stretched wire. 

Let y = resistance measured (Le. of the electrolyte), 
l = length of wire, 
x = reading when the bridge is balanced. 

Then y ~ f ex) = w_X
_, 

l - x 
where w = the resistance with which the measured re­
sistance is compa,red. 

/,(x) l 
I(x) = x(l - x)' 

. (f' (X»)' 2x - l 
... \7{X) = x~(l - X)l' 

This vanishes for (2x - l) = 0, or x = l/2. 
If the scale, the comparison resistance in the bridge, 

a.nd the reading x are all affected by errors, the relative 
error in the ,calculated resistance will, by the principle of 
superposition of separate small errors, be 

8y l 1 1 - - ox + -ow + --oZ. y x(l - x) w l - x 

25. DIFFERENTIATION OF A FUNCTION OF A FUNCTION 

If we were asked to differentiate Jl + X2, it might 
appear at first sight that the formula 

dCx") = nx" -ldx 
would apply, and we should have 

d( Jl + x2) = d(l + x2)! = -HI + X2) -tdx . (i) 

, This is not the case, because Jl + x2 is a function not 
of x simply, but of x2• 

. Let us write u for 1 + X2, then 
Jl + x2 = u!, 

d( Jl + x2) = dCt"!) = tu - tdu. . (ii) 
We can see at once where the error comes into state­

. ment (i), because du is not equal to dx unless u = x. In 
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this ca.se it is evident that the addition of a constant to :t 
does not /likect the form of the result :-

d(l + X)2 = 2(1 + x)dx. 
But in the example we are considering, u = 1 + x" 

. . du = 2xdx, hence the complete result is 

d( JI+X2) = tu - !du = t· J11+ x2 ' 2xdx, 

:. d( Jl + x2
) = Jl x+ X2dx. 

x 
Similarly, d("';l - x 2

) = - J1 _ xzdx. 

Generally, if the function to be differentiated is a 
function of a function of x, we put the function of x equal 
to u, and proceed in the usual way, taking care not to 
omit to find du and substitute in the final result. 

Example.-Differentiate Ja,2 + x2• 

Let a2 + x2 = U, 

.'. Ja2 + x 2 = u,} 
:. d( Ja2 + x2) = tu - -}du. oJ 

But du = d(a2 + x 2
) = 2xdx, 

... d( Ja2+' X2) = _x _ dx. 
Ja~ + x2 

In general symbols let 
y = cp(u), 

where u = f(x). 
d[ ¢(x) J = cp' (x)dx, by definition, 

,'. d[¢(u)] = ¢'(u)du. 
But du = d[j(x)] = j'(x)dx,­

.'. dy = cp'(x) .f(x)dx. 
Thus to differentiate a function of a function of x, we 

multiply the differential coefficient of the original function, 
taken as a whole, by the differential of that function with 
respect to x. 

26. EXAMPLES 

Differentiate the following expressions with respect 
tox:-



VALUES OF A FUNCTION 

(2) !/a2 + x~. 
(3) (ax + bt. 

[- Jazx_ X2dx]' ,f', _. 

(i(a2 + x2) -ixdx]. { 
[an(ax + bY-Idx]. 

65 

11 + x + x~ 
(4) 'VI - x + x2 ' [Hint: Put 1 + x + x 2 = U, 

1 _ x + x2 = v, and use the 
formula for a quotient. The result is 

1 - x2 

(1 + X + x2)t(1 - x + x2)idx.] 
(5) Find the isothermal elasticity of a gas obeying van 

der Waals' equation :-

(p + ~ )(v - b) = constant. 

[The equation, when multiplied out, becomes 
a ab 

pv - bp + v _ v2 = constant, 

a ab 
.'. pdv t vdp _ bdp - ilidv _ 2 V3dv = 0, 

• dp I' . / a 2ab) v ] 
. . dv . V = e astIcIty = - t.!' - v2 + 1)3 . v - b . 

(6) The velocity of a compressional wave through an 
elastic fluid jg given by Newton's formula 

velocity = u = ~~, where 

E = elasticity of the fluid under the conditions obtaining 
when the wave is passing, p = density of the un compressed 
fluid. 

Show that for a change of density dp, the change of 

1 't . ~ (1 de 1) ve OCI y IS "2" U - d- - -
e p p' 

If the fluid is a perfect gas, € = ryp, p = 1/v where v = 
volume of unit mass, because the conditions obtaining 
when the sound wave passes are adiabatic conditions, and 
we have shown that the adiabatic elasticity is ryp. Also 
P = kp"f (p. 47). 

li 
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Thus u = J'1Pv. 
Show that du/dp = 0, i.e. the velocity is independent 

of the pressure. 
(7) Differentiate (ax" + c). m[m(ax" + c)"'-lnax .. -1dx]. 
(8) Differentiate (a + ox8)Z(a - x)f. [Hint: 
Put y = uv = (a + OX3)2 x (a - x)t. 

12abx2 
- 15bx3 

- 3a ] 
dy = (a + bx3

) (a - x)L 2 dx . 

. . (x + 3)3 [(X + 3)2. ( - x2 - 12:1: - S) ] 
(9) DIfferentIate (X2 _ ~,W . (X2 _ 2)3 dx . 

(10) If y = F(axn ± b) show that 
dy = anF'(ax" ± b)x .. - 1dx. 

(11) If y = {F(x)}n prove that 
dy = n{F(x)}n- 1 x F'(x)dx. 

Compare with examples (7) and (8). 

27. EXAMPLES ON MAXIMA AND MINIMA 

If a given function 
y = ¢(x) 

is to have a maximum or a minimum value, it is necessary 
but not sufficient that x shall have a value which satisfies 
the equation 

:; = ¢'(x) = O. 

The condition which must at the same time be satisfied 
in order that the function shall be a maximum or a 
minimum is that ¢' (x) shall change sign as x passes 
through the value which makes ¢'(x) vanish. The criterion 
for a maximum or a minimum is found in this change of 
sign of the function as x increases from a valu~, a little less 
than the critical value (q,'(x) = 0), to a value a little greater. 

For a maximum, the change of sign is (+) - (0) _ (-). 
For a minimum, the change of sign is ( - ) - (0) - ( + ). 
If ¢' (x) does not change sign in passing through zero, 

that is, if the criterion becomes 
(+ ) _ (0) -;. (+), 

or (- ) _ (0) _ ( - ), 



VAL UES OF A FUNCTION 67 

the curve becomes parallel to the axis at that point, but 
then continues in the same 
direction as at first. ~ 

Let acb be a line parallel 
to the x-axis and cutting a 
ourve in three points a, c, b. 
If the three points approach 
a.nd ultimately coincide, we 
have a point satisfying the 
condition given above. At 
this point (such as P) there is 
a change of curvature; it is 
therefore called a point oj in­
flection. The critioal point 
on the critical isotherm of 
van der Waals' equation is an 
example of such a point. 

One part of the curve is 
conca.ve to the x-a.xis, the 
other part i~ convex, and the 

p 

~--------______ ~X 

FIG. 11. 

point of inflection (where the curve is parallel to the 
x-axis) divides the two. 

of 
Examples.-Find the maximum or mInImUm values 

(1) 2x3 - 3x2 - SSx + 10. 
[Max. at = x - 2, min. at x = 3.] 

(2) 4x3 - 18x2 + 27x - 7. 
[Point of inflection at x = l'5'J 

(3) x Jax - JP. [Max. at x = 3a/4.) 

(4) x(x~ + 1) [M l' 2 . 1 2 ) x. _ J;2 + l' ax. va ue IS + ,rom. va ue - . 

(5) x(x2 
- 1) 

x· - x2 + l' 
[2 max. v.a.lues of + 0'5,2 minima of - 0·5.J 
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(6) The magnetic force on a small magnet placed 
at some point on a line drawn through the centre of 
a circular coil, and perpendicular to the plane of the 
coil is 

F = k x 
(a2 + x2)·r 

where x = distance of magnetic pole from plane of coil, 
a = radius of coil. 

This is a maximum when x = t a. 
(7.) If methyl acetate is hydrolysed in presence of 

acetic acid as catalyst, the acetic acid produced increases 
the concentration of catalyst as the reaction progresses:­

CHaCOOCHa + H 20 - CRaCOOR + CRpR. 
From this cause a.lone the velocity would increase 

with time; but since the active mass of ester diminishes, 
the velocity from this latter cause would decrease. At some 
point the velocity, after increasing, will have a maximum 
value. It then begins to decrease. When is the velocity 
!L maximum? Start with a of acetic acid, b of methyl 
acetate, and after a time t let x be hydrolyse'd., producing 
x molecules of acetic acid, 

Velocity du~ to acetic acid added = d:it1 = lc1a(b - x), 

Velocity due to acetic acid produced = ~2 = kIx(b - x), 

'" actual velocity = sum of component velocities, or 
dx _ ~ dX2 _ k b _ 
dt - dt + dt - I (a + x) ( x), 

For a maximum, :x(~~) = 0 
d 

,', dx(a + x) (b - x) = 0 

or - (a - b) - 2,x = 0 
.', aJ = i(a - b). 

Ostwald calls such reactions autocatalytic. 
Observe that we have differentiated a differential co­

efficient. The result represents the rate of change of a 
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rate of change. If: is differentiated with respect to t, 

the result is called the second differential coefficient with 

t t It . . t d2
x .l.." respec 0 t. 1S WrIt en dt2, or 't' (t). 

Since dy/dx measures the gradient of the curve 
'!J = 4> (x) , d2y /dx2 will measure the rate of change of the 

FIG. 12. 

gradient. We can illustrate the meaning of this expres­
sion by consjdering the two roads represented in section in 
fig. 12. The gradients at points equidistant from the 
starting-points are obviously greater in the second case 
bhan in the first, or the gradient is increasing at a greater 
rate. Thus d2y/dx2 is grea.ter along the curve AB' than 
s.long AB. 

As we should say, the road AB' gets steeper more 
~apidly than the road AB. d2yldx2 is thus a measure of 
,he rate at which the gradient is increasing. 



CHAPTER V 

EXPONENTIAL AND LOGARITHMIC FUNC· 
TIONS 

28. INDICES 

I N elementary algebra, am is defined as the product of m 
factors, each equal to a;-

(1) am = a x a x a ... to 1n factors, 
a is any positive or negative, integral or fractional, quantity. 

The index m is a positive integer, otherwise the ex­
pression is meaningless. From the definition it is easy to 
show that, if m and n are positive integers ;-

(2) am X an = am + n 

(3) am/an . = am - n, jf m>n, 
= l/a,,-m, if m<n .. b 

(4) (a"'}n = a"''''. 
(5) (ab)"" = ambm

• 

(6) (i) m = am jbm• 

(Cases (2) and (4) should be care:fully distinguished.) 
If the indices, m and n, are not positive integers, but 

are fractional, zero, or negative, the methods of proof, 
based on the fundamental laws of algebra, fail; it is 
meaningless to speak of multiplying a quantity by itself 
t times, or - 2 times, or 0 times. To find a meaning 
for such expressions as al, or a - 2, or aO, we assume that 
the fundamental Index Law 

am x an = am+ .. , 

is true for all varues of m and n, including fractional., nega­
tive, and zero values; and then proceed to find what in­
terpretation must be put on q,m for these values. We at 
the same time tacitly assume that an algebraic law which 

70 



EXPONENTIAL FUNCTIONS 71 

is proved under certain restrictions is true generally pro­
- vided that the removal of these restrictions is not incom~ 

patible with the truth of the law. 
Interpretation of fractional indices. 

m 

Consider an, where m and n are positive integers. 

( m)" m m 
an = an x an x ... to n factors 

~+~ + ... t.onterml = atl- n 

~ X n 
= an = am, 

'" _"J( m)n .•. a;; = ~ an = ZYam
• 

m 

Thus a:;; is the nth root of am. 

Thus a~ = Va, a~ = ~a, at = :;a~ 
Interpretation of the zero index. 

am x an = am +" for all values of m and n. 
Put m = 0 .'. aO x an = aO + n = an 

an 
.', aO = an = 1. 

/ 

Thus any finite quantity raised to zero power equals 
unity. (Notice that we have not yet found a meaning for 
0°, which is indeterminate.) 

Interpretation of a negative index. 
In the equation am x an = am + n, put m =! - n, 

.'. a - 11 X an = a - n + n = aD = 1, 
Thence a -" = llan. 

a _n is therefore the reciprocal of an. 
Thus a -2 = 1/a2

, a -~ = 11a! = 1/ Ja. 
Results in indices:-

am x an = am +" 
am/an = a",-n 
a- m = l/a" 

]. 

an = ~a 
m 

an ;= ::jam 
aO = 1. 
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29. EXPONENTIAL FUNCTIONS 

Any function which contains the 'independent variable 
in the index is called an Exponential Function. 

Exarnples ;-
2 

aX, (a + x) -x, aX. 
Before proceeding to the differentiation of such func­

tions, we will give a brief accoun t of the properties of 
~ logarithms. The student is assumed to be acquainted 

with the elementary treatment. 

30. LOGARITHMS 

Let a'" = y, 
where a is any fixed quantity. 

From the results of indices we saw that 
a" = 1 

if a is finite. We now consider the va.lue of a'" when x 
becomes infinite. 

(i) Let I a I > 1, where I a I denotes the numerical 
value of a. 

Then I a2 I > I a I, I a8 I > I a2 I , and so~ Thus if 
(C increases without limit, aX increases without limit, 

or aX _ + 00 as x -;. + 00. 
Again a -z -l/a'" _1/00 = 0 

or a- oo _0. 
(ii) Let I a I < 1. Put a = lib, then if I a I > 1, I b I 

will be < 1, which is the case we wish to investigate. 
bX = 11a" _1/00 = 0 when x _ 00 , 

... b 00 _ 0 if I b I < 1. 
Again b - z = 11bz = 1/0 - 00 if x _ 00 • 

Let us now suppose that a in 
a"'= y 

is a fixed positive quantity, greater than unity. Then if 
x ranges from - 00 to + 00, y will range from 0 to + 00. 

If we imagine the series of indices (x), and powers (y) 
tabulated for a given value of a, then the indices will con­
stitute a table of logarithms of the corresponding nurp,bers 
in the table of powers, a being called the base. 
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Thus if aX = y, 
x = log~ y (Definition of logarithm). 

The logarithm of a. number to a given base is the 
index of that power of the base which is equal to the .. 
given number. 

Thus Iog4 256 = 4, because 44 = 256. 
From the above discussion it follows that 

loga (+ 00) -'> 00 , 
log. 0 -'> - U), 

where a is any base greater than unity. 
The equations loga(an

) = n, 
aloga~ = x, 

are seen to be identities in the light of the definition. 
We shall now prove some important properties of 

logarithms, these being true for any base ;-
(1) Since aO 

= 1 .'. loga1 = O. 
(2) Since a1 = a .'. log.a = 1. 

(3) logaMN = logaM + logaN. 
For let logaM = m, 

, logaN = n, 
then M = am, 

N = an, by definition. 
Thence MN = am x an = am +n 

.'. logaMN = logaam + n = m + n, 
= logaM + logaN. 

M 
(4) logaN = logaM - logaN, 

'\. by a. similar proof. 
(5) log.M" = n logaM, 

where n is positive or negative, integral or fractional. 
For let logaM = m, 

... am = M. 
Then M" = (amr = amn

, 

.'. logaM" = log.am 
.. = l1tn = n log.M. 

- 1 
Corollary. loga ~M = n;log.M. 
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81. LOGARITHMS TO DIFFERENT BASES 

Let a, b be two different fixed numbers adopted as the 
bases of two systems of logarithms, and let M be any 
positive number. 

Let log"M = X, IOgbM = y. 
Then M = a\ and M = b·, 

:. a~ = b' 

:. a = (aX)~ = b~, 
~ 

and b = a'. 
Thus JL = logba , :: = log"b, 

X Y 
X 

. '. y = x log.a = -1 b' ag. 
. _ _ Iog.M 
.. logbM -logaM .log.a - -}-b-' 

og" 
Thus, to transform any logarithm to a given base to 

another base, we divide it by the logarithm of the second 
base with respect to the first base. 

1 . m 

~b is often called the modulus of the second system with 
loga 
respect to the first. 

82. RESULTS IN INDICES AND LOGARITHMS 

aX = y x = logaY 
aO = 1 log"l = 0 
a I = a log"a = 1 
} _ 1 

if' = 'Ja loga~a = n 
a - I = lla ]og.(l/a) = - 1 
a oo = oo(a>l} logaw =W 

a - OJ = O(a> 1) Iog"O = - CIJ 

a"'aY = aX + • logaxy = log"x + log"y 
x 

aX/au = aX
-

Y log"y = log"x - log"y. 

(aX)n = an", logax" = n log.x 
- - 1 

':.Ia'" = aX1
" log" ':.Ix = -log"x. n 
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33. SYSTEMS OF LOGARITHMS 

With regard to the value of the base adopted, it may 
be said that two systems of logarithms are in common 
use, each being characterized by particular advantages. 

(1) The Common Logarithms, or Briggsian Logar­
ithms (introduced by Henry Briggs of Oxford, b. 1556, d. 
1630) are to the base 10. 

Thus loglo2 = ,0'3010300 ... , 
because 10IH\)1\)3\)1) ••• =,. 

These have the advantage that the base is at the same 
time the radix of the common scale of notation. Numbers 
having the same figures, but differing in the position of 
the decimal point, will therefore have common logarithms 
differing by a positive or negative integer only. This leadE 
to a very considerable abridgment of the logarithm tables. 

Proof Let· M, N be numbers differing only in th€ 
Rosition of the decimal point, e.g. 106'4, and 1'064. Then 

M = N x some integral power of 10 = N x 10", 
:. IpglOM = loglo[N.10n

] = loglON + n loglQ10 
= logloN + n. 

(2) The N atuml, Hyperbolic, or N apierian Logarithms 
(John Napier, b. 1550, d. 1617) are calculated to a base 
called e, where e is an incommensurable quantity. To 
seven places 

e = 2'7182818 .... 
These are related to a number of important theorems 

in higher mathematics, which will be considered in the 
sequel. Natural logarithms are denoted by "log.," or 
"hi," or, in mathematical works, simply by "log," the 
base e being understood. 

Since the equation 
logaY = x, if y = a'\ 

is true for all bases, 
log,y = x, if y = e%; 

or if a is a constant, 
log.y = ax, if y = eaz. 

This is the definition of log •. 
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To convert natural logarithms into common logarithms, 
they must be mUltiplied by the modulus of the common 
logarithms, i.e. by logloe, usually denoted by",. Thus 

10gloM = ",. 10g.M = 10g.M . logloe = logeM/log.10, 
where", = 0'4343, or 1/", = 2'303. 

34. HISTORICAL NOTE 

John Napier in 1614 published a table of natural sines 
and their logarithms, but these were not to the base e, 
although closely related to such logarithms. Henry Briggs 
took up Napier's idea, and developed it with great en­
thusiasm, publishing in 1617 his" Logarithmorum chili as 
prima," containing common logarithms of numbers from. 
1 to 1000. Logarithms to the base e, often incorrectly 
called "Napierian logarithms," were first tabulated by 
John Speidell (" New Logarithmes," London, 1619). 

35. THE OOMPOUND INTEREST LAW 

Let a capital of e pounds be invested at compound 
interest of p per cent per annum. 

Interest after the lapse of one year = e1~0' 
. . capital at the beginning of the second year 

= eJ = e + el~O = c(l + 1~0)' 
Capital at the end of the second year 

p ( p )2 
= e2 = el + el100 = e 1 + 100 . 

The capital at the end of n- years is thus 

Cn = c(l + l~Or 

') 

/ 

Thus, as the time increases in arithmetical progression, 
the capital increases in geometrical progression. . 

N ow suppose the interest, instead of being added· 
yearly, is added monthly. At the end of the first month 
the capital is 

el = c + e '100~ 12 = c( 1 + 100 ~ 12); 
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at the end of the second month it is 

C2 = 01(1 + 100
P
x 12) = 0(1 + 100~ 12Y: 

and after n months it is 

On = c(l + lotx l~"; 
e.g. after a year, n = 12, and 

( 
p )la 

012 = C = 0 1 + 100 x 12 . 

Putting p = 5 we find, by using logarithms, that the 
capital after 1 year is 

£105 Os. Od. if reckoned by the first method; 
£105 2s. Od. if reckoned by the second; 

the principal being £100 in each case. 
(An interesting account of compound interest and its 

calculation in various cases is given by Briggs and Bryan, 
"Tutorial Algebra," ch. XVIII.) Now if the interest be 
added weekly, daily, or every second, we approach more 
and more qlosely to an ideal limiting case in which the 
interest on a given capital at any instant is proportional 
to the capital at that instant. The capital is then inm'eas­
ing continuously at a rate proportional to itself. Pro­
cesses of this kind are common. If in unorganized or or­
ganized nature, a process proceeds in such. a way that an 
agent, by its own mode of operation, steadily augments, 
the increment originating at every instant at once acquir­
ing the functions of the operating agent, then the increase 
follows the Compound Interest Law. The mathematical 
expression for a function y, which increases with respect 
to another variable x at a rate proportional to itself is 

dy/dx = y. 
Lord Kelvin has called this "the Compound Interest 

Law in Nature". 
To derive this from the case just considered, we put, 

instead of 12: 100' the term 160n' where n is ultimately 
. / 
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greater than any magnitude, however large, and denote 
p/lOO by x, Then 

c = c Lim (1 + ~) n. 

n-;;.oo 
Let x/n = 1/0 :. n = O,X, 

(1 + ~y = (1 + ~t = [(1 + ~YJ. 
It is required to find the limiting value of (1 + i) a 

when 0-00, 
By the Binomial Theorem 

( 
l)a 0 0 ,0 - 1 1 0 , 0 - 1. 0 - 2 1 

1+~ =1+"8+ 21 p+ 3! ~+ ... 

1 1 - ~ (1 - ~)(1 - i) 
=1+-+_+ + 

1 21 . 3! '" 

The limiting value of this expression, when 8 ap­
proaches infinity, is the sum of the infinite ser~'es 

1 1 1 1 'fl' + 1 + 2! + 3! + ... to III mty, 

The value of this sum can be calculated to any desired 
degree of approximation by taking a sufficiently large 
number of terms of the series, To five places it is 2'71828, 
. . . It is thus the basis of the natural logarithms, denoted 
~~ . 

Now C = c Lim (1 + ~)", 
n_oo n 

and Lim (1 + ~)n = e", 
n-'7J:; n 

:. C = ceX, 

which is a second way of writing the compollItd interest 
law. 
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The series 
x x'2 x'l, X4 

eX = 1 + I + 1. 2 + 1. 2 . 3 + 1. 2 . 3. 4 + .... ad int, 
x x2 X 3 'X4 • 

= 1 + I! + 2T + 3! + 4! + ... ad mf., 

is called the Exponential Series; it is true for all values of x. 

36. IMPORTANT SERIES 

.Two other important series are given below; the 
proofs being deferred until Taylor's Theorem has been 
considered ;- , 

x x2 x3 \. 

(1) aX = 1 + I1og.a + 1 .2 (log.a) 2 + 1.2.:3 (log.a)3 + " . admf., 

lor all values of x. 
This may be regarded as a generalized form of the ex-

ponentia.l series. .. 
x2 x3 X4 x 5 • \ 

(2) log.(l + x) = x - 2 + 3" - 4" + 5" - ... ad mf.,. 

for I x 1<1. 
An eXPl!>nsion of log.x alone in a series of ascending 

powers of x cannot be derived, but it is easy to show by 
putting x = - x in (2) that; 

it} x3 

(2a) log.(l - x) = - x - 2' - "3 - ... ad info 

37. CALCULATION OF NATURAL LOGARITHMS 

Series (2) and (2a) may be modified in different ways, 
and the resulting series are often more convenient than 
the original series. 

1 + x 
Thus log'-l - = log.(l + x) - log.(1 - x) - x 

{ 
X3 x5 x,7 } 

=2x+ 3 + 5 +r+····· 

Now let 1 + x = m, 1 - x = n, 
m-n 

•.. X=--, 
m+n 

1 + x m 
1 - x = n' 

r·' log.?!!: = 2{~ + _a1(m - n\3 + 15_(m - n\,> + ... }. 
"."" m+n. m+nJ m+·1i) 
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Put n + 1 = m, 
n+1 {Ill } 

.'. log.----;- = 2 2n + 1 + 3(2n + 1)3 + 5(2n + 1)5 + ... ; 
which enables one to find the logarithm of the second of 
two successive integers when the logarithm of the first is 
known. A table of natural logarithms ma.y thus be 
formed, commencing with log.2:-

n+l {II} 
log'-n- = 2 2n + 1 + 3(2n + 1)3 + ... etc. . 

Put n = 1, 

{
Ill 1 } 

. '. log.2 = 2 3 + 3. 33 + 5. 35 + 7 . 37 + . .. . 
The method of calculation is exhibited below:-

1/3 = '333,333,333 
1/33 = (1/3) +9= '037,037,037 ... 1/(3.33

) 12,345,679 
1/35 = (1/33

) + <;) = 4,115,226 ... 1/(5. 35) 823,045 
1/37 = (1/35

) + 9 = 457,247 ... 1/ (7.37
) 65,321 

1/39 = (1/37) + 9 = 50,805 ... 1/(9.39) 5,645 
1/311 = (1/39

) + 9 = 5,645 ... 1/(11. 3ll) = 513 
1/313 = (1/311) + 9 = 627 ... 1/ (13.313) =. 48 
1/315 = (1/313

) + 9 = 70 .'. 1/ (15 . 315
) = 5 

1/311 = (1/315
) + 9= 8.'; 1/(17.317

) = 0 

'346,573,589 
2 

'693,147,178 
. '. log.2 = '693147180 to 9 places. 

We now put n = 2 in the series for log.n + 1 = log.3 
n 

- log.2; and since log.2 is known, the value of log.3 is 
found by adding to log.2 the value of the right-hand 
member of the series. Similarly log.4, log 5, ... are found. 

{
Ill } E.g. log.5 - log.4 = 2 9 + 3.93 + 5.95 + .... 

It is only necessary, however, to calculate the prime 
numbers, for 
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log.4 = log.2 + log.2 = 2 x '693147180, 
log.1O = log:5 + log,2, etc. 

38. CALCULATION OF COMMON LOGARITHMS 

To calculate the common logarithms, we should theo­
retically have to multiply each _ member of the table of 
natural logarithms by 1', the modulus of the common 
logarithms. In practice, a much less laborious direct 
method is used. 

In the equation 

'11.+1 {I 1 1 } 
log·-n- = 2 2'11. + 1 + 3(2n + 1)3 + 5(2n-+ 1)5 + ... 

we observe that the error committed by neglecting all 
terms beyond the first will be less than 

{ Ill} 
2 3(2n + 1)2 + 3(2n + 1)3 + 3(2n + 1)4 + ... 

<2. 3(2n : 1)2/(1 - 2n 1+ 1) 

<'2 1 2n + 1 _ 1 
3(2n + 1)2' 2n - 3n(2n + 1)' 

Ifn is not less than 10,000, this error will b,e less than 

~HOOO~'20001' i.e. < '000000001, and will not affect the 

eighth place of decimals in the logarithm. Thus, if we 
retain only the first term :-

10 n + 1 = __ 2_ 
g. '11. 2n + 1 

• n + 1 2p. 
.. 10gIo-- = 2-1 n n+ 

• 21' 
.. loglo(n + 1) = loglon + 2n + l' 

This will serve to calculate common logarithms to 
seven places, because we can commence with 

logIo100OO = 4, 
1Lnd logarithms of numbers less than 10000 will differ 
only from those' above 10000, with the same significant 

6 
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digits, by the values of their characteristics, i.e. the figures 
before the decimal place. . 

Thus loglo536'4 = loglo53640 - 2. 
We have treated the exponential and logarithmic func­

tions at some length, because they playa most important 
part in the practical applications of mathematics. A very 
large number of natural processes are of the type con­
templated by the compound interest law, and exponential 
terms occur constantly in the equations of physics and 
chemistry. If, in any process, a function is found to be 
increasing or decreasing at a rate 'proportional to itself, it 
may be inferred to be an exponential function. 

89. THE GRAPH OF THE EXPONENTIAL FUNCTION 

Lety = eZ
• 

If, corresponding to each value of x as abscissa, we 
erect an ordinate proportional to eZ

, and join the ends of 
the ordinates, we obtain the graph of the exponential 
function. Tables giving the values 6f e" are' to be found 
in most collections of mathematical tables, and may be 
used in drawing the graph. A short tablfj of values will 
be found in appendix (6). A good idea of the shape of the 
curve may, however, be obtained without actually plotting 
the values of eX, but simply by noticing the character of 
the function y = e";-

(1) As x increases from 0 to + ct), Y increases from 
+ 1 to + ct). The curve will therefore cut the y axis at 
y = 1, and will then recede more and more from the x axis. 

(2) As x decreases from 0 to - ct), Y decreases from 
1 to 0, but much more gradually than in (l), since the 
curve starts from the ordinate y = + 1. 

(3) For all positive and negative values of x, the value 
of y is positive. The curve will therefore lie wholly above 
the x axis. Thus e - Z = l/e"', and is therefore positive. 

The graph of e$ is seen on inspection to have all these 
characteristics. 



LOGARITHMIC FUNCTIONS 83 

o. 

S 

7 

, ' , 

s J 

s I 
I -

... 

8 / 
1 J 
,II 

----v 
- -I ofl +~ 

FIG. 13. 



84 HIGHER MATHEMATICS 

(The graph of y = e- Z may be derived from the data 
for y = e\ since e- Z = l/ez

• The ordinate for any value of 
the abscissa. is therefore the reciprocal of the ordinate in 
the graph of eZ for the same value of the abscissa.) The 
shape and position of the curve should be remembered. 

40. EXAMPLES ON EXPONENTIAL AND LOGARITHMIO 
FUNOTIONS 

(1) Prove from the definition of logarithm that :­
(a) if y = eiOS

.", then y = x; 
(b) if log,yo - log,y = kct, then y = yoe - !ct; 

(c) iflog U = P_ - ~log v then • c c e' 
• .R 

U = ee. v-e. 
(2) Show that if x is positive 

x-I 1 x2 - 1 1 X S - 1 . 
log,x = x + 1 + 2' (x + 1)2 + 3' (x + 1)3 + .... 

[Hint. x = (1 - x : 1)/(1 - x : I)'J 
(3) Prove that if x> 2, 

2 (2 + 1 22 + 1 23 + 1 ) }og.(x + 3x+ 2) = 2 log.x + -- - --~- + --3 - •••. 
x x x 

(4) Show that 
L' z/1 + x 2 

1m 'V 1 ~ x = e. 
x_o 

(5) Show that 
1 1 1 1 

log.2 - '2 = 1. 2 . 3 + 3.4. 5 + 4. 5 . 6 + ..• 
[2 log.2 = 2 (1 - i + t - t + ... ) = etc.] 

(6) Show that 
. e"-e-" 

LIm log(l + x) = 2. 

x-o 
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[If we substitute x = 0 directly in the expression, we 
obtain 

~ - 1/~ 1 - 1 0 
log(l + 0) = log 1 = 0' 

o 
which is known as a vanishing fraction. The value of 0 
being indeterminate, it is necessary to ascertain if the 
expression has any finite limit when x approaches zero. 
This is easily done by expansion into series.) 

(7) If x is so small that its square and higher powers 
are negligible, show that 

e
Ox = e(1 + x). 

(8) If a(log y + x) = llog x + m, 
show that xt = ya. e= -m • 

[In transforming logarithmic functions into expon­
entials or vice versa, the student is recommended to write 
down the fundamental equation :-

y = aX if x = logaY, 
and compare the symbols with those in the example, after 
collecting logarithmic terms.] 

(9) Expand eX (l - x) in a series of ascending powers 

[ 
,,:,2 x3 X4 x5 ] 

of x. 1 - 2 - 3. I! - 4. 2! - 5. 3! - .... 

(10) Prove that 
2 log.m - log,(m + 1) - log.(ll. - 1) 

{ Ill} 
= 2 2ma _ 1 + 3(2m2 - 1)3 + 5(2tn~ 1)5 + .... 

(11) Prove that 

log'(l : x) = x + ~2 + ~ + ..•• 

(12) Expand log. (X2 + 5x + 6) in a series of descending 
powers of :e. 

[ {
3 + 2 1 32 + 22 1 33 + 23 

] 
2Iog.x+ -x- - 2' x2 + 3'-r - .... 
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41. DIFFERENTIATION OF THE EXPONENTIAL FUNCTION 

We shall first prove that the exponential series 
x2 x3 

1+x+ 2 !+3!+'" 
is convergent for all values of x. 

2 

The first term is 1, the second is y, the third is ~ !' and, 
x"- l 

generally, the nth term is (n _ 1) r Thus if U. + l' u" are 

the (n + l)th and nth terms 
U.+ 1 x u:- = n' 

.. Lim U
n + 1 = 0, since Lim'!!. = 0 

n_oo Un n_oo n 
for all values of x. 

Then, by method 2 of testing the convergency of a 
series (see "Infinite Series"), we conclude that the ex­
ponential series is convergent. 

It must not be supposed, however, that the series 
obtained by differentiating a convergent series term by 
term is also convergent. Thus the series 

1 + Xl + XI •2 + X I •2•3 + X I •2•3•4 + ... 
is convergent for I x I < 1, but the series 

1 + 2x + 6x5 + ... , 
obtained by differentiation, is divergent for all values of x. 

It can be shown, however, that the series obtained by 
differentiating the exponential series term by term is uni­
formly convergent, hence the differentiation is legitimate. 

x2 x3 

Let y = e~ = 1 + x + 2 ! + 3! + ... 

:. dy = dee} = (1 + x + ~~ - .. . )dx 

= e~dx. 
d(e~) 

Hence ~ = e~ 
dx ' 

and thus e~ satisfies the condition for a function y - lex) 
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mch that the differential coefficient is equal to the function 
:tself; or the rate of increase of the function is equal to 
;he value of the function; 

dy/dx = y. 
Corollary I.-The graph of y = eX cuts the yaxis at an 

angle of 450
• 

Corollary 2.-At any point on the graph of y = eX, the 
gradient is equal to the value of the ordinate. 

42. TESTS FOR AN EXPONENTIAL FUNOTION 

There are two methods of determining whether one 
variable is increasing (or decreasing) exponentially with 
another, which are frequently used in practice. 

(1) Let y = aeb' 
be an exponential function; a and b being constants. If 
/Lny two values of yare taken, one being double the other, 
and if Xl' x2 are corresponding values of X : 

Yl = aeb'l, 
Y2 = aeb<g. 

But Yl = !Y2, 
.'. ·bz = aeb'l (i) 

yz = aebZg (it) 
Dividing (i) by (ii) we get 

t = eb(Xg - "i', 
or Xz - Xl = (log.t)/b = a constant. 

Thus if X increases in arithmetical progression, yin· 
creases (or decreases) in geometrical progression. The 
curve of the function is drawn, and the increase in value 
of X for an increase of y to double, or a decrease to half, 

. its value, is found on different parts of the curve. 
These increments of X are all equal if the curve is ex­

ponential. The student may easily test this rule on the 
curve of e\ fig. 13. 

(2) Let y = aebZ, as before. 
Then log.y = log.a + bx. 
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This is of the form 
y' = a' + hx, 

where y' = (log.y), a' = (log,a) - constant. 

FIG. H. 

But this is the equation of a. straight line. If therefore 
(log.y) is plotted against x, the result will be a. straight 
line if y is an exponential function of x. The length in­
tercepted on the y (i.e. logeY) axis is log.a, and the slope of 
the line is h . 

. ~f a = 1, log.a = 0, and the line passes through the 
ongm. 

The lines for y = eX, y = e - X, y = e2x, 

y = 2esz, are drawn in the figure. 

Thus, in the case of y = 2esz, 

(log.y) = log.2 + 3x 
= '693 + 3x. 

The intercept is '693, and the gradient + 3. 
This method is of frequent application in chemics.l 

kinetics, as wjll be illustrated later on. 
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4S. DIFFERENTIATION OF LOG X 

Let y = log.x, 
.'. x = eV

, by definition of logarithm, 
dx = d(c#) = d(c IO

,,,,,), 

:. dx = c!og"", d(log.x), 
.'. dx = x. d(log"x) , 

. dx dOog.x) 1 
.. d(log.x) = -, or d = -. x x x 

This result is of the utmost importance. 

44. EXAMPLES 

(1) If 11 = ea., dy = ae""'dx. 
dx 

(2) If y = logax, dy = -1--' 
X og.a 

\ If a = 10, dy = dx/x log.1O 

= f£dx "" O'4343dx. 
x x 

(3) If 11 = log u, where u = f(x), 
d'y _ du dy _! du 
, -- u' dx - u, . dx' 

1 1 + x 
- (4) Let y = 2 logl _ x' 

dx dx dx 
then dy = i}-- + 1-1 -, = -1 2' +x -x -X 

(5) If y = log{x + Jx2 ± I} 
dx 

dy = Jx2 ± 1 

This result is olten very useful in effecting an integra­
tion (see Part II). 

x dx 
(6) If y = log Jx2 + I' dy = x(x2 + 1)" 

_ x d =dx+_j,x . 
(7) If y - log "/(x2\+ 1) _ x' Y X Jx2 + 1 

1 + x + x2 2(1 - x2
) 

(8) If 11 = log1 2' dy = 1 2 4' _-x+x +x+x 
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45, GRAPH OF THE LOGARITHMIC FUNCTION 

Let y = log.x. 

Plotting values of y corresponding to given positive 
values of x by means of the tables, one obtains fig, 15, 

log.e = 1 log.e2 = 2 log.e3 = 3, ' .. 
1 1 1 

log,; = - 1 log'e2 = - 2 log.e-a = - 3, •.. 

.', x = 0 

y = -

1 1 
e 

00 - 2 - 1 

dy/dx = + 00 e 

1 

o 
1 

e 

1 
1 
e 

2 + 00 

1 o. 

.";,,_ .. 

From the properties of eX and log.x it is evident that if 
the axes of x and yare interchanged, in fig, 15, we have 
the graph of the exponential function. Log.x and eX are 
said to be inverse functions. 

The following characteristics should be noted :-
(1) As x increases from + 1 to + 00, y 'increases 

slowly from 0 to + 00. 

(2) As x decreases from + 1 to 0, y decreases rapidly 
from 0 to - 00. 

(3) The function does not exist for negative values of 
x. 

(4) The tangent to the curve makes an angle with the 
x-axis decreasing from 90° at x = 0, through 45° at x = 1, 
to 0° at x = + 00 

(dyjdx = tan a = IJx 
x=O 

l/x = tan a = 00 

... a = 90° 

.', when 
1 
1 

45° 

The shape and position of the curve should be re­
membered. 
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~. THE DIFFERENTIATION OF a 
Let y = aX 

. .. y = exIog
./'. 

(.: log.y = log.ax = x log.a 
.'. y = e,log.a.) 

Thence dy = d(exloll.a) = log,a . exlog.adz 
:. d(a') = log.a. a' .dx. 

47. LOGARITHMIC DIFFERENTIATION 

Logarithmic differentiation is a method of differentiating 
complicated functions involving exponentials or powers. 
It consists simply in taking logarithms before differenti­
ating. 

Let y = u. v. w, 
where u, v, ware given functions of x. 

Then log y = log u + log v + log w 
•. d(log y) = d(log u) + d(log v) + d(log w) 

dy du dv dw 
:. - = - + - +-Y u v w 
.. dy = vw. du + uw. dv + uv. dw. 

48. EXAMPLES 

(1) If y = xx, show that 
dy = x'(l + log x)dx. 

(2) If y = (ax + b)". (ex + d)f3/(ex + j)Y, show that 

d1/ - [____!!:!!_ + ~ - ____!Y_-Jdx y y - ax + b ex + d ex + f . 
(3) _ /a + 2bx + ex2 

y - '\I a - 2bx + cx2' 

[
dy 2b(a - ex2

) ] 

dx = (a - 2bx + CX2)~ (a + 2bz + cz2yf 
(4) y = u·, 

where u, v are functions of z. 
log y = v log u 

dy du - = v- + log u. dv y u 
•• dy = v. u· - 1 • du + u· . log u. dv. 
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If u = aX, V = x 
y = a

xx
, 

:r: - 1 % 

and dy = xa~ dx + aX log a"'dx. 

[ 
nx" - ldx dx ] 

(5) Y = log x". dy = xn = n x· 
(6) y = log(log x). [dy = dl(log xl = _ldx .J-

og x x og x 
(7) y = x2 log x. [dy = {2 log ;c + 1 }xdx.] 
(8) y = x", 

.. log y = n log x, 
dy = nx" - ldx. 

(9) y = ex
{: ~ a i 

log y = x + t log(x + 1) - t log(x - 1). 

-. dy = y(dx - dx/(x2 _ 1) = eX. (X2 - 2) .dx. 
(x + l)!(x - 1)"-

(10) The order of a chemical reaction is defined as the 
!l.lue of n in the velocity equation (Ostwald). Thus 

dx/dt = k(a - x)". 
Put a - x = CJ the concentration, 

dc= - dx 
:. dc/dt = - kc'''. 

Let the initia.l concentrations be different in two cases, 
Ly cl , C2• Then 

dCl/dt = - kct 
dcfJ/dt = - kct 

. dCI/dt "!" 
.. d~/dt = C1 C2 

dc de. -
... log di - log dt2 

= n(log c1 - log c2) 

1 dCI 1 dC2 
ogdt - ogdt 

:. n = . 
log c1 - log C2 

dc de . 
The values of dt, d: can be found expenmenta.lly by 

le~?ourements at the beginning of the rea.ction. 
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(11) Magnus's empirical formula for the vapour pressure 
of water at (}O C. is 

IJ 

P = ab'+ 8
, 

where a, b, r are constants. 

Sh th t d jdO - ar log b b'! 6 
ow a:p - (r + 8)2 . . 

(12) The intensity of radioactivity of radium emana­
tion decays with the time according to an exponential law 

I = loc- A
" 

where 10, I = activities at times 0, t, 
).. = the radioactive constant. 

dI 
Thence dt = - AI. 

This shows that the rate of decay at any instant i8 
proportional to the activity at that instant. 

This is an example of the Compound Interest Law: 
If y = Cea~, 

dy/dx = aCe= = bea~, 

where 0, a, and b = aC, are constants. 
Show that C is the value of y when x = 0. 

According as a is + ue or - .. y increases or decreases all 
X- increases. The function Ce"" therefore satisfies the equa­
tion 

dj(x)/dx = kj(x), 
where k is a constant. Other examples of such functions 
are given below. 

(13) Newton's Law of Cooling. 
If a body at a temperature e is placed in an enclosure 

at a. temperature 00' where (},>80, the body cools by con­
vection and radiation until the temperatures of the body 
and enclosure are equal. Newton assumed that, when 
() - eo is small, the rate of cooling is proportional to the 
difference of temperature: 

dO/dt = - k(O - ( 0), 

Thence show that 
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where a and b are constants. 
1 1 (Jl 

a= ~og.e' 
2 1 . 2 

Newton's law holds only when (Jl - (Jo is small, as in 
most calorimeter experiments. Boltzmann and Stefan 
have shown theoretically and experimentally that the rate 
of emission of energy from a "perfectly black body" is 
proportional to the fourth power of its absolute tem­
perature: 

dE/dt = - kT4 
(Haber, "Thermodynamics of Gas Reactions"; Waidner 
and Burgess, "Optical Pyrometry," Washington). 

(14) Absorption of Light.-The rate of diminution in 
the intensity of a beam of homogeneous light passing 
through an absorbing medium is proportional at every 
point in the medium to the intensity of the light at that 
point. Let x = thickness of medium traversed, 

dI/dx = - aI, 
where a = extinction coefficient. 

If Io = initial intensity (x = 0), 
I = Ioe - o.x. 

(15) Show that the time t which is required for a radio­
active preparation to decay to half its intensity is a definite 
and characteristic constant (" time period") for each radio­
active substance. \Ve have 

I = ,10 
and I = Ioe-A.· 
... i = e-l<l 

.. log.i = - At 
log2 

... t = -T- = constant ... k. 

For different substances 
tl = log.2/A1 = kl' 
t2 = log.2/A2 = k2, etc. 

(16) The Course of a Chemical Reaction.-According 
to the law of mass-action, the rate at which a substance is 
disappearing in a chemical reaction is proportional to its 
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concentration at any instant. This is at once suggestive 
of the compound interest law. If c is the concentration 
at any instant, the mathematical e.spression of the mass­
law is 

dC/dt = - kC, 
hence C = Coe - kt, 

where Co = concentration at time t = 0, i.e. at the begin­
ning of the reaction. 

The amount of active substance therefore disappears 
exponentially with the time. To obtain a graphic repre­
sentation we put Ct} = 1 and plot the C,t curves for 
different values of k. This has been done in fig. 16 for 
k = I, 2, 5, 10. It will be observed that when k is large 
the curve approaches the t-axis more rapidly than when k 
is small; this obvIously corresponds with a more rapid re­
action. It is also evident that, although the curve ap­
proaches the t-axis more and more closely as t increases, 
it never coincides with it in finite time, but only when 
t = + 00. This means that a chemical reaction is, theo­
retically, never finished. The amount of unchanged 
substance left after a finite time, even after a very short 
time, may, however, be far too small to allow of its being 
detected. 

Thus the reaction c = e - 10< is practically finished after 

Ie 
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O· 5 mins.; whilst the reaction c = e - t is not complete 
a.fter 2 mins. 

The constant k, called the velocity constant, may be 
evaluated by the logarithmic method:-

c = e - kt, for Co = 1, 
:. log.c = - kt. 

If therefore log.c is plotted against t, a straight line is 
obta.ined, running down from the origin below the t-axis, 

FIG. 17. 

and having a gradient = - k. If Co is the initial concen­
tration (where CO:::f: 1), the curve starts on the log c axis at 
a point log.co' and slopes downwards as before. If a few 
mea.surements are made near the beginning of the re­
a.ction, the initial concentration Co may be found by plotting 
the straight line, as described, and prolonging it backwards 
to cut the log.c axis. The point where it cuts this axis 
:corresponds to log,co, whence Co is easily found. 



CHAPTER VI 

PARTIAL DIFFERENTIATION 

49. PARTIAL DIFFERENTIAL COEFFICIENTS 

U p to the present we have been considering functions 
of one independent variable. The majority of 

magnitudes investigated in physics and chemistry are, 
however, functions. of two or of several independent 
variables. Examples of such functions are;-

(1) The volume of a gas, which depends on the tem­
perature (0) and the 'pressure (P), 

v = j(p, 0). 
If the gas obeys Boyle's and Charles's laws 

BO 
V=-. 

P 
(2) The area (A) of an ellipse is a function of its semi-

axes a and b, 
A = /(a, b). 

(3) The volume (V) of a rectangular prism is a. func­
tion of the lengths of its edges 

V = j(x, y, z). 
In conformity with previous notation, we shall speak 

of v, say, in example (1), as the dependent variable; p and 
e as the independent variables. 

Now functions of several independent variables are of 
special interest in chemistry, because the properties of a 
given material system depend not only on the temperature 
and pressure, but also on the chemical composition. If 
there are n components in the mass, there will be n + 1 
independent variables, including tempera,ture and pressure. 

98 
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50. PARTIAL DIFFERENTIALS 

'" Let us consider, for simplicity, the area of a rectangle, 
. as determined by the lengths of its sides. 

A = xy . (1) 
Let the edges x, y be increased by very small amounts 

dx, dy, and let dA~, d~ be the increments of area due to 
each of the increments dx, dy considered as independent. 
From the figure 

B' E C' 

BI-------C;;;-f----1 D 

·0 

FIG. 18. 

dAz = ydx 
dA~ = xdy 
dAz dAy 

.. dx = y, dy = x. 

We denote these differential coefficients by 
7JA 7JA 
7Jx' 7Jy . 

(2) 
(3) 

(4) 

where 7JAj()x is to be understood as "the rate of increase 
of A with x when y is constant ". In the example 

()A ()A 
-= Y -= x 
()x '()y (5) 

()A/()x and "3A/()y are called the Partial Differential Co­
efficients with respect to x and y respectively. Thus 

7JA 7JA 
dA~ = ()x dx; dAy = ()y dy (6) 

But oA = AA'CD + BB'CE + CDEC' 
= dAz + dAw + dxdy (7) 
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In the limit, when dx and dy approach the value zero, 
~=~+~ ~ 

The geometrical meaning of this is quite obvious. dA 
is called the Total Differential, dAx , dAy the Partial 
Differentials of A. From the equations (6) and (8) 

oA oA 
dA = ox dx + oydy (9) 

, This equation is another example of the Principle of 
Superposition of small effects. 

Generally, let 
u = {(x, y) . (10) 

ou 0 
oX = o'a/(x, y) = t(x) say. (y const.) (11) 

(JU (J 
dux = ~x = o,;/(x, y) . dx = f (x)dx (12) 

Similarly, 
(JU (J 
oy = o/(X, y) = f (y) say. (x const.) -. (13) 

au 0 
dUg = oydy = o/(x, y). dy = f(y)dy (14) 

Also du = dux + duu 
(lu OU 

.'. du = (Jxdx + oydy 

(J () 
.'. du = (l"-!(x, y) . dx + a/ex, y) . dy 

.'. du = f(x)dx + j'(y)dy. 

51. EXAMPLES 

(1) u = ax2 + by2 
(lu (Ju 

~u = oxdx + (Jydy + a(dx)2 + b(dy)'/. 

du = 2axdx + 2bydy. 
(2) U = x2 _ y2. 

du = 2xdx - 2ydy. 
(3) U = log(x2 + y2). 

d 2(xdx + ydy) 
u=~+y'}, 
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(4) If pv = RO, the gas law, 
(JP RO i>p R 
(JV = - V2,; (J() = V· 

Interpret each differential coefficient. 
52. THREE INDEPENDENT VARIABLES 

In the case of a function of three independent variables, 
U = ICx, y, z) (1) 

~: = o~(x, y, z) = f'(x) ) 

()u () 
oy' = ol(x, y, z) = fey) (2) 

(JU (J 
()z = oi(x, y, z) = fez) 

()U ()u (JU 
du = -dx + -dy + -dz . .(3) 

()x oy (JZ 

(J (J () 
.'. du = i>'-j(x, y, z) . dx + ?>'yf(x, y, z) . dy + ol(X' y, Z)d2 

. '. du = j'(x)dx + j'(y)dy + /(z)dz, 
Example ;-
Let u be the volume of a rectangular prism 

u = xyz. 
du = yzdx + xzdy + xydz. 

This gives the increase in volume due to slight incra.. 
ments in the lengths of the sides. 

53. FUNOTIONS OF FUNCTIONS 

Let u = F(x, y) (1) 
where x = I(t), y = cp(t) • (2) 

(JU (JU 
du = -dx + -dy oX oy 

• du ()u dx ()u dy 
•• dt = ()x' dt + ()y . dt (3) 

... ~~ = ~:f'(t) + ~;CP'(t) (4) 

If u = F(x, y, z). (5) 
where x = I(t) , y = cp(t), z = tet) (6) 

~; = ~?r'(t) + ~;tf>'(t) + ~~""/(t) . (7) 
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As examples consider the coefficients of superficial and 
cubical expansion. Both these are ultimately functions of 
temperature (0). 

ds 
Let u = ail 

where s is unit surface. u is, by definition, the coefficient 
of superficial expansion. Consider a plate of a non-isotropic 
material cut with its edges x, y, parallel to the two axes of 
expansion; the surface is 

S = xy • (1) 
"3S (lS 

dS = ~xdx + ~ydy (2) 

But ~S/~x = y, ~S/~y = x (3) 
. dS dx dy 

.. dO = y de + x de (4) 

Let it, = y = 1, 
.'. dS/dO = 'ds/dO = u, 

dx dy 
and u = dO + dO' 

or the sum of the coefficients of linear expansion is equal 
to the coefficient of superficial expansion. 

To obtain a numerical relation, we may assume with 
sufficient accuracy that x and yare linear functions 
of 0:-

x = 1 + "X10, 
y = 1 + 11..;,0, 

.. u = Al + A.2 (5) 
In the case of cubical expansion, 

V = xyz. (6) 
dV dx dy dz 
dO = yz dO + xz de + xy de (7) 

If x = y = z = 1, 
dV/dO = a, the coefficient of cubical expansion, 

. dx dy dz 
., a = dO + de + dO . (8) 

the s.um of the coefficients of linear expansion along the 
three axes. With the same assumption as before 



PARTIAL DIFFERENTIATION 103 

x = 1 + A/l, 
y = 1 + ~8, 
z = 1 + '11.38, 

•. a = Al + '11.2 + '11.3 (9) 

Formuloo (5) and (9) must be used for crystalline 
bodies, the properties of which depend on the direction 
in the crystal along which the property is measured. In 
the case of an isotropic body, such as a piece of glass, the· 
properties of which are uniform in all directions in the 
mass, 

-

Al = ~ = '11.3 =. X, say, 
,', U = 2:.\, 

a = 3'11., ' 

the well-known equations of elementary physics. 

54. SIDE REACTIONS 

(10) 

If several chemical reactions are proceeding simultane­
ously in a given system, so that each progresses indepen­
dently of the others, the total change is the sum of the 
separate changes, (Principle of the Mutual Independence 
of Reactions.) 

Consider two unimolecular reactions progressing simul­
taneonsly, a principal reaction and a side reaction 

A -7 BI (principal reaction) 
A -7 B2 (side reaction), 

dxl/dt = kl (a - x) for the first reaction, 
d~/dt = k2 (a - x) for the second reaction; 

then, total velocity = sum of separate velocities, 

• '. dx/dt = dxl/dt + dx2/dt 
= (kl + k2Ha - x). 

In the nitration of benzoic acid in presence of excess of 
nitrating acid, the three isomeric mononitrobenzoic acids. 
are produced simultaneously at different rates. 
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(10, 17 °/0' 

ortho C02H 

(J0' 60%. 
meta 

OO,H 

para o 
COgH 

The velocity of the reaction is 
dx/dt = (k1 + k2 + ka) (a - x). 

55. THERMODYNAMICS 

Partial differential coefficients appear very frequently 
in textbooks on thermodynamics, and since modern theo­
retical chemistry is largely based upon the fundamental 
laws of thermodynamics, it is of the utmost importance 
that the chemical student should be able to realize at once 
the significance of such a partial differential coefficient in 
any mathematical deduction from those laws. 

Many of these differential coefficients represent magni­
tudes familiar to us from the physical side; such, for 
example, as coefficients of expansion at constant pressure, 
coefficients of increase of pressure with temperature at 
constant volume, specific and latent heats, isothermal and 
adiabatic elasticities, etc. 

The state of a homogeneous gaseous, liquid, or solid 
phase is (in the absence of electric and magnetic forces, 
and when the energy due to gravity or to capillarity 
(surface-tension) can be neglected) completely defined by 
some law connecting the variables p, V, e; the pressure, 
volume, and absolute temperature, respectively. Thus 

j(p, V, 8) = 0 (1) 
(Thus a mass of liquid water satisfies the condition 

mentioned above; a very small drop of water does not, 
because the surface-energy is not negligibly small in com­
parison with the total internal energy of the drop. As a 
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result of this, the vapour-pressure of water in the form of 
• small drops is greater than that over a horizontal surface 

of wa.ter at the same temperature, and the pressure is then 
not completely defined by the temperature and volume of 
a given mass, If the drop is electrified, its vapour-pressure 
is also increased, and another variable is required, 

Anyone variable is therefore completely defined in the 
normal state if the values of the remaining two are fixed: 

p = 11 (v, 8) (2) 
v = 12(P, 0) (3) 
8 = 13W, v) (4) 

In the case of a perfect gas 
pv - BO = 0 
Re Be pv 

" p = v'v = p' 0 = B' 

A number of equations may now be obtained by the 
partial differentiation of equations (2) to (4). A few ex­
amples are given below. Let 

p = Il(V, e) 

dp = ~!dv + ~~de (5) 

Obviously 
"tJp/'(jv = coefficient of increase of pressure with volume 

at constant temperature 
= coefficient of elasticity. 

For all real states, ()PJov is negative, otherwise the 
pressure would increase along with the volume. 

~pf~(J = coefficient of increase of pressure with in­
crease of temperature at constant volume. 

If we make the condition that the pressure is constant, 
i.e. the change is isopiestic, 

dp = 0 (6) 

.'. (dP) dv = _ (dP) dO 
dv 8 dO v 

or (~~) p - (~~).I (Tv) 8 (7) 
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(where (a:v) 8 is another way of writing .. ~~ at constant 

tem.perature ". The ordinary notation 7:Jp/lJv loses definite­
ness when there are more than two variables.) dvjdO 
must be written (dv/d()p by reason of condition (6). 

Equation (7) states that the ratio of the increase of 
pressure at constant volume per r rise in temperature, to 
the compressibility is equal to minus the coefficient of 
expansion at constant pressure. 

Proceeding in the same way with equations (3) and (4), 
one finds the relations 

(~~)v - (~~)p/(~;)s' 
(~;) 8 = - (~;),./ (~~t 

In the case of mercury, 
(dvjd())p = 0'00018 c.c. per 1° C., 
(dv/dP)e = - 0'000003 c.c. per 1 atm.,' 

.. (dp/d(). = 60 atm. per 1° C. 
This means that an increase of pressure of 60 atm. is 

required to keep the volume of 1 C.c. of mercury constant 
when it is warmed from 0° C. to r C. (Planck," Thermo­
dynamics ".) 

Further examples on Thermodynamics will be found 
,n Part II. (Integral Calculus.) 

56. HIG HER PARTIAL DERIVATIVES 

It has been stated that if 
y = j(x), 

dy/dx = I(x) is called the first derivative of y This will 
usually be a function of x. 

E.g. if y = x3, 

/,(x) = 3x2• 

The first derivative may thus be differentiated with 
d2 

respect to x, and the result is denoted by d~ = j"(x) , and 
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called the second derivative. In the example taken, 
rex) = 6x. 

dny 
In general, the nth derivative is denoted by dy,n' or 

rex). 
Examples :-

(1) Find the values of rex), or ~~, if 
y = x2(1 - X)2. [2 - 12x + 12x2.] 
y = -b!-,x2(3l2 - 4lx + 2x2). [i!-'(x - il)2.] . '-' _ 

(2) Find the value of ~~ if 
y = x2e". [(X2 + 6x + 6)e".] 

In the same way we may have higher partial deriva-I 
tives. If 

u = ¢(x, y), 
then/our second derivatives are a priori possible, viz. 

. o2U o2U 02U o2U 
ox2' oxoy' oyox' oy2' 

It can be shown, however, that under certain conditions 
which are usually satisfied in practice, the second and 
third are identical; that is, the result is independent of the 
order of differentiation, 

o2U 02U 
oxoy = oyox 

rrhis result is exceedingly important. 
Examples :-
(1) Let u = xy 

vu vu 
vx = y, oy = x; 

02U _ ~ ou _ l' o2U = 1. 
oyox - oy' ox - 'oxoy 

(2) Let u = X2 + y2. 
OU OU 
- = 2x - = 2y 
oX ' oy 

()2U = o2U = 2. 
oyox oxoy 

(1) 
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(3) Let u = x2 + y2 + x2y3 
ou ou 
"Ox = 2x + 2xy3 i oy = 2y + 3x2y2; 

()2U 02U 
-- = -- = 6y2X • 
oyox oxoy 

57. PERFECT DIFFERENTIALS 

Letf(x, y), cp(x, y) be two functions of the independent 
variables x and y, and suppose that 

du = f(x, y)dx + cp(x, y)dy • (1) 
It by no means follows from (1) that du is a differential 

of a finite quantity u which is a function of x and y, con­
sidered as independent variables. In some cases it is, in 
others it is not; and in order that du may be the differen­
tialof a function of x and y, a certain condition must be 
fulfilled by the functions/(x, y) and ¢(x, y). 

If du is the differential of a function u of x and y, 
OU OU 

du = -dx + -dy . (2) 
ox oy 

Comparing (1) with (2), we see that the condition that 
u in (1) is a function of x and y is 

ou ou 
{(x, y) = ox' cp(x, y) = 01/ (3) 

But 02U = 02U 

oyox oxoy 
'0 0 
,', "Oyf(x, y) r= "Oxcp(x, y) (4) 

is the condition that du in (1) is the differential of a func­
tion u of x and y. Under these circumstances du is called 
So Perfect Differential, and equation (4) is known as 
Euler's criterion that the expression on the right of equa­
tion (1) is a perfect differential. If we write (1) in the 
form ' 

Mdx + Ndy (5) 
where M, N are functions of x and y, the condition that 
(5) is a perfect differential is 

oM/oy = oN/ox (6) 
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This rdation is exceedingly important, occurring re­
pea.tedly in thermodynamics, and must be remembered. 

Examples. Show that the following expressions are 
perfect differentials :-

~~x + hy + g)dx + (hx + by + j)dy; 
x(x + 2y)dx + (x2 - y2)dy; 

(3y2x - x2)dy + (y3 - 2xy)dx j 
(xa - 4xy - 2y2)dx + (y2 - 4xy - 2X2)dy. 

Show that the following expressions are not perfect 
differentials :-

ydx + 5xdy, 
ydx - (x + ya)dy. 

ISS. MAXIMA AND MINIMA OF FUNCTIONS OF TWO 
VARIABLES 

If y = j(x), the necessary, but not sufficient, condition 
tha.t y has a maximum or a minimum value is that x shall 
have a value which satisfies the equation 

~~ = 1'(x) = o. 
If u = j(x, y), i.e. is a function of two variables, then it 

can be shown that, for a maximum or a minimum value 
of u, it is necessary but not sufficient that 

~U ~U. 
~x = 0 and ~y = 0 sImultaneously. 

If it can be otherwise inferred that a maximum or 
minimum value exists, and the discrimination between 
them effected, then the condition just given is sufficient. 

59. EXAMPLES 

(1) Find the rectangular parallelepiped of least sur- ' 
face for a given volume. 

Let x, y, z be the edges, a3 the volume. 
Then xyz = a3, 

The surface = U = 2(xy + yz + zx). 
We have to find the relations existing between x, y, 

and z so that u shall be a minimum. Now u can be 
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expressed a.s a function of two variables, x and y, SInce 
3 

z = !!_, and a3 is, by hypothesis, constant. 
xy 

a3 a3 

Thus u = xy + - + -. 
x y 

()u as ()u as 
~x = y - x2' oy = X - !t' 

The condition for a maximum or minimum value of u 
requires that x and y shall have values which satisfy the 
simultaneous equations 

a3 

y - 2 = O. (i) 
x 
a3 

x - y2 = 0 (ii) 

Thus x2y = xy2 
.'. x(xy) = y(xy), 

and unless xy = 0, which cannot be the case, 
x = y = a, and .'. z = a, or 
x = y = z. 

. as as 
The equatIOn u = xy + - + -

x Y 
shows that the surface must have a minimum value, since 
x and yare positive. Thus the required figure is a cube. 

(2) Find the condition which must subsist between the 
initial concentrations a and b, where (a + b) is constant, 
so that the velocity of reaction shall be a maximum in a 
bimolecular reaction. 

dxjdt = V = k(a - x) (b - x) . 
()V ()V 

:. ()a = - k(b - x) ; ~= - k(a - x). 

The conditions oV/()a = 0, ()V/()b = 0, lead to 
a = b. 

It is easy to see that this corresponds to a maximum 
value; since, by the mass-law, the velocity is increased by 
addition of one component or the other, and is zero for 
each pure component. Thus the initial concentrations 
must be equal. 



CHAPTER VII 

INTERPOLATION AND EXTRAPOLATION 

60. INTERPOLATION 

L ET Y be a continuous function of x 
y = f(x). tl) 

Then corresponding to every value of x, within certain 
limits, there will be at least one value of y. We will 
further suppose Y to be a single-valued function of x, then 
each value of x corresponds to one definite value of y. 

If the form of j(x) is known, then the value of y may 
be calculated directly for a given value of x, and the prob­
lem offers no difficulty. But if this form is not known, 
the process is different. 

Suppose that two pairs of corresponding va. lues of x 
and y, say Xl' Yl' and x2, Y2, are known. Further, let Xl 

and X2 be nearly equal in value. It is required to find the 
value of Y corresponding to a value of x lying between Xl 

and x2 • From the conditions imposed it is evident that 
(X1YI)' (X2Y2) are two points on a curve, and it is further 
evillent that if Xl and x2 are close together, the portion of 
the curve lying between them may be taken very approxi­
mately to be a straight line. 

Let this part of the curve be supposed drawn on a 
large scale, as in the figure. Then, by a well-known geo­
metrical proposition (of. fig. 19) : 

(X2 - x): (x", - Xl) = (Ya - y): (Y2 - YI)' 

... Y = Y2 - Y2 - YI(X'/. - X) (2) 
X2 - Xl 

wvjn~ the desired value of y. 
111 
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This is the Rule of Proportional Parts. 
It is essential that y shall lie between YI and 112; the 

rule therefore fails at maximum and minimum points on 
the curve. 

If the values of x for which corresponding values of y 
are known lie fairly widely apart, the rule fails. Other 
rules, called Interpolation Formulre, may be used; but in 
practice it is usually simpler to read off the required value 
from a carefully drawn graph. This involves a know­
ledge of several values in the neighbourhood of the point 

:1:, 

FrG. 19. 

required, but so do the formulre. It is more exact if the 
curve can be reduced approximately to a straight line by 
an appropriate change of variable (say by plotting l/y, or 
log y, against x). 

61. EMPIRICAL FORMULlE 

If the form of the function 
y .;; f(x) 

is not known, it is usual to endeavour to find some ex­
pression which represents, very closely at least, the rela­
tion between x and y. Thus, the vapour pressure (p) of 
wa.ter a.t a given temperature t C. was found by Biot to~ be 
given, very closely, by the equation 

logp = a + bat-c, 
where a, b, a, c are constants. 
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Such an equation is called an Empirical Formula, 
since it is not a consequence of any natural law. 

In practice, one usually has accumulated a number of 
pairs of values of the variables, and wishes to find an 
equation which will represent these values. In such a 
case, the graph is first drawn. If the curve increases or 
d~reases steadily, the function is probably algebraical; 
if it alternately increases and decreases, it is probably a 
trigonometrical function. 

If the curve is a straight line, the equation is 
y = a + bx, 

where a and b are constant. 
If it is not a straight line, the equation must be ob· 

tained by trial. The following forms may be applied ;­
y = a + bx2, 

Y = axn, 
ax 

Y = 1 + bx' 
Y = aeb~(exponential function; the 

test for this has already been given), 
a+x 

y = b - x' 
y = 10a+b~, 

(lOglOY will then give a straight line when plotted .fl.gainst 
x). 

Y = a + b log x, 
Y = a + bc~. 

A. very useful method is that depending on an applica. 
tion of Maclaurin's theorem (chap. IX.). 

We then assume that the function may be represented 
by an expression of the form 

Y = a + bx + cx2 + dx3 + ... 
The values of the constants a, b, c in any of these 

equations may be fonnd by three methods:-
(1) Algebraically. As many pairs of values of the 

variables are taken as there are unknown constants, the 
simultaneous equations being solved by algebraic methods. 

8 
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The equation may often be modified before this method is 
applied. Thus if 

show that 

bot 

Y = a.l01 + CZ
, 

1 I Y2 II Ya -og- - -og-
X2 a xa a 

c= , 
10g1b - Iog1h. 

a a 

I Y2 I Ya(l 1) og-. og- - --
b = a a x2 xa 

logY3 - logY2 
a a 

(a is the value of Y when x == 0). 
If we use the empirical equation, 

Y = a + bx + ex'}. + ... 
it is usually sufficient to take terms up to that in X2, and 
write 

Y = a + bx + OX2 • (1) 
Three points on the curve, which has been plotted 

from known values of x and y, are then taken, one at each 
end and one in the middle. Let these be (Xl' Y 1)' (X2' Y2)' 
(Xa, Ya)' Substitute in (1) (which is true for every point 
on the curve), and we get 

Yl = a + bX1 + ex1
2 

Y2 = a + bx,! + ex'}. 2 

Ya = a + bXa + ex/. 
These equations are now solved for a, h, e; and these 
values are substituted in (1). The result is 

Y = a + bx + ex2 
• (2) 

in which a, h, and e are now known. a, b, e are some­
times called the parameters of the equation. 

We now calculate, by means of (2), the values of Y 
corresponding to those values of x for which the y values 
are known. A table is then drawn up containing ;-

(i) Values of x. 
(ii) Values of y from curve. 
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(iii) Values of Y calculated from equation (2). 
(iv) Differences between observed and calculated values 

ofy. 
The differences are then plotted against the correl?pond­

ing values of x, having regard to sign; and the character 
of the resulting curve noted. The curve may be ;-

(i) A straight line parallel to the x-axis. A change in 
a, equal to the distance between this line and the x-axis, 
is required. 

(ii) A straight line inclined to the x-axis, but cutting-~ 
it midway between the greatest value of x and the origin. 
A change of b, equal to (Y2 - YI) / (X2 - Xl) is required, where 

Yi - YI = difference between extreme ordinates, 
x2 - XI = difference between extreme abscissffi. 

(iii) A straight line crossing the x-axis at some point 
not midway between the extreme values of x. A change 
in both a and b is then necessary. 

(iv) A curve, concave or convex to the x-axis. A 
change in c, and perhaps also in a and b is then re­
quired. 

In cases (iii) and (iv), it is usually easier to deduce the 
values of a, b, and c by another method, which takes 
account of all the experimental numbers. This is (2) 
The Method of Least Squares. 

62, METHOD OF LEAST SQUARES 

Let us suppose that the values of the constants in the 
Iuation 

Y = a + bx + cx2 + ... 
ave been found by some method. Then if values of Y, 
)rresponding to values of x for which the y values are 
nown, are calculated, these will always differ more Or less 
'om the observed values. It can be shown by the Theory 
[ Probabilities that the most probable values of the COD­

;ants a, b, c ... are those which make the sum of the 
squares of the differences between observed and calculated 
values of Y as small as possible. 
L 
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Let "71' 'T)2, "73 ••• be the calculated, 
Y1' Y2' Ys .•• the observed, values of y correspond. 

ing to values 
Xl' X2, Xa, ••• of x. 

The differences are 01' O2 , 03 , ••• such that 
Yl + 01 = '1]1' 

Y2 + O2 = "72' 
Ys + 03 = 'Tho 

y" + 0" = "l7l' 
According to the theory we have just referred to, the 

"most probable" values of a, b, c ... are those which 
make 

S = 01
2 + 02

2 + 03
2 + ... + on2 

a. mmlmum. S 'Will be positive if the results are affected 
by errors, whether positive or negative. The theoretical 
treatment is much too difficult to be given here, but the 
practical method of finding the most probable va.lues 01 
the constants is perfectly simple, and is useful. We will 
suppose the equation to be 

y = a + bx + cx2, 

and that n pairs of values of X and yare known. a, b, c, 
are, of course, not yet known, and we require their" most 
probable" values. (i) We write down in the first place, 
all the observation equations, substituting the values of x 
and y, and leaving a, b, c yet undetermined. The column 
is then added:-

a + bX1 + CX 1
2 

- Y1 = 0 
a + bX2 + CX2

2 
- Y2 = 0 

a + bX3 + CX3~ - Ys = 0 

a + bXn + cXn2 - y" = 0 
" ~a + Ibx + Icx2 

- Iy = 0, 
where Ibx = bX1 + bX2 + bxs + ... + bxn , etc. 

(ii) We then mUltiply each equation through by the 
coefficient of b (which will be a known value of x) in that 
equation. The column is. again added. 
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aXl + bXl
2 + CXl

3 
- YlXl = 0 

aX2 + bXz2 + CX2
3 

- Y2X2 = 0 

ax" + bX,,2 + CX,,3 - y"X .. = 0 
., ~ax + ~bX2 + ~CX3 - ~YX = O. 

(iii) Multiply each equation through by the coefficient 
'of 0 (which will be a known value of X2), and add the 
column:-

ax1
2 + bXl

3 + OXl
4 

- y l x1
2 = 0 

ax2
2 + bX2

3 + OX2
4 

- Y2X22 = 0 

aX,,2 + bXn3 + ex,,4 - Ynxn2 = 0 
.. ~ax2 + ~bX3 + ~OX4 - ~yx2 = 0 

By operations (i), (ii), and (iii) we arrive at what are 
called the three normal equations for a, b, e, viz., 

~a + ~bx + ~CX2 - !y = o. 
a!x + btx2 + e!x3 

- !xy = 0 
a!x2 + btx3 + etx4 

- !X2y = O. 
These equations are' linear with respect to the un­

knowns, a, h, c; being of the form 
la + rnb + no = k, 

where l, rn, n, k, are numbers. 
They are solved for a, b, 0 by the usual method, or 

preferably by determinants (see Appendix), and these are 
the required values of the constants. 

(Further information will be found in Kohlrausch, 
.. Lehrbuch der praktischen Physik"; Chauvenet's " As­
tronomy "; and especially Merriman, "Method of Least 
Squares" .) 

If the equations are linear, 
'- y = a + bx, 
the normal equations are of course 

~a + tbx - ty = 0 
atx + btx2 - ~xy = 0; 

and so on for different forms of the general type 
y ... a + bx + ox2 + ... 
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The two following examples (Mellor, " Higher Mathe-
matics ") will serve to illustrate the method :- , 

(1) Bremer gives for the expansion of solutions of 
sodium carbonate of percentage strength p, the following 
volumes:-

p = 3'2420 
v x 104 = 1'766 

4'8122 
2'046 

7'4587 
2-343 

Assuming v = a + bp, find a and b, 

10-1400 
2'732. 

(2) The temperatures at different depths in a. well were 
found to be 
x = 28 66 173 248 298 400 505 548 
0° = 11'71 12'90 16-40 20'00 22'20 23'75 26'45 27'70_ 

At the surface (x = 0), 0 = 10'6. Thence 
0= 10'6 + 0-042096x - O'000020558x2. 

63, EXAMPLES OF INTERPOLATION AND EMPIRICAL 
FORlIWLJE 

The following examples may give the student some 
idea. of the kinds of formulre used in cases where a theo­
retical relation is not known, 

(1) The dependence of specific heat on the temperature 
is well known. It is usual to assume it to be given by an 
equation of the form 

(]' = a + bt + ct2
• 

Thus, Weber, in the case of diamond, found 
t C, = 10'7 247. 980 

Atomic heat (]' = 1-35 3-63 5-47 
Find the values of a, b, and c in the formula given 

above. 
Holborn and Austin give for the specific heat of CO2 

(per gram molecule at constant pressure) 
Cp = 8-923 + O'003045t - O'000000735t2• 

Langen used 
Cv = 6'5 + 0-0026t (at constant volume), 

(2) The dependence of the vapour-pressure of a liquid 
npon the temperature has been represented by a large 
number of empirical formulre;-
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6 

de la Roche: p = ab'" + '14, 
9 

Magnus; p = ao" + 8, 

Biot: in p = a + baG - 0/36, etc. 
Horstmann used a similar formulro to Biot's to repre­

sent the dependence of the dissociation pressure of NH4CI 
on the temperature :-

In p = a + ba'r, 
where T = to C. - constant. 

(3) Bodenstein measured the degree of dissociation of 
HI (x) at different temperatures W C.) ;-

t = 508 487'2 443 427 410 393 
x = 0'2408 0-2340 0-2198 0-2157 0-2100 0-2058 
t = 374 356 328 302 283 
x = 0'2010 0'1946 0'1885 0'1815 0'1787. 
Show tha.t Bodenstein's results are represented by;­

x = 0'13762 + 0'00007221t + 0-OOO,OOO,25764t2. 
(4) The dependence of the intensity of radiation from 

.. .lot body on the temperature of the body was expressed 
by different empirical formulro before Boltzmann showed 
theoretically that it was proportional to the fourth power 
of the absolute temperature. Thus Dulong and Petit 
found that their experimental results were represented by 
a formula:-

/(8) = Aa9 + B, 
where f(O) = rate of surface-loss per unit surface at ab­
solute temperature 0; A, a, B are constants. 

(5) Cauchy has expressed the relation between thE. 
refractive index (j.t) of a medium, and the wave-length (X) 
of light, by the equation 

b () 
fi' = a + ).,2 + ).,4 + ... 

a, b, 0, ••• being constants. 
Hartmann used the interpolation formula. 

() 
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(6) Van der Waals has proposed the formula 

log~= a(i ~ 1) 
as a means of calculating the vapour pressure (:p) at the 
absolute temperature T in terms of the critical values 
(71", 7) . a is a constant, approximately equal to 3. 

Nernst has used the equation 

p(va - Vb) = RT(l - ~) 
where Va, Vb are the molecular volumes of the vapour and 
liquid, for the same purpose. 

64. REMARKS ON INTERPOLATION FORMUL.E. 

It must be observed that interpolation formulre are 
simply intended to enable one to calculate, with fair 
accuracy at any rate, the value of some magnitude inter­
mediate between values which have been experimentally 
obtained. We cannot make any theoretical deductions 
from them alone. 

It is possible that a purely empirical interpolation 
formula may be a disguised form of a theoretical law. 
Thus, Regnault, as a result of an extensive series of re­
searches on the compressibility of gases, arrived at the 
empirical formula:-

P1V1 = 1 - A(m - 1) + B(m - 1)2, 
Povo 

where m = vOlvl • 

Put Vo = 1, Po = 1, 

:. pv = 1 _-AI: V + Be ~__y_r 

or pv + A + 2B _ ~ = 1 + A + B. 
V v2 

Now van der Waals' equation, deduced from theoretical 
considerations, may be written 
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a ab 
pV + v - bp - v2 ~ R. 

But P = PoVo = !, approximately, 
v v 

a - b ab 
:. PV + -- - 2 = R, v v 

which is identical with Regnault's formula when 
a - b = A + 2B, 

ab = B, '." 
R = 1 + A + B. 

The converse, that a formula deduced from theoretical 
considerations, may agree with the results of experiment 
simply because it is an interpolation formula, is, of course, 
possible, especially if it contains several constants. 

65. EXTRAPOLATION 

If the value of x, for which the corresponding y value 
is required, lies outside the range of values for which y is 
known, the value of y may sometimes be found by extra­
polation. The curve is drawn up to the extreme value of 
it in the known region, and then produced without change 
of form as far as the value of x for which the correspond­
ing ordinate is required. This extrapolation is most easily 
effected when the curve is a straight line; in other cases 
a waxed black thread, or the wooden shapes used by 
architects, may be employed. Flexible steel bands with 
a lead backing are now sold, and are very convenient. It 
is of course assumed that the equation of the curve is the 
same throughout the whole region considered, and that 
the curve is continuous. These conditions can, in general, 
only be safely assumed when the range of extrapolation is 
small in comparison with the range of known values. 

Let PI' P, P 2 be three points having the positions rela­
tive to the known curve AB shown in the figure. Then it 
can be safely assumed that the point P most probably lies 
on the extrapolated curve. The same assumption could 
not be made with respect to the point Q in the set Qj, Q, 
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Q2' for the curve might equally well pass through Ql or Q2' 
or through none of the three points. 

FIG. 20. 

66. CAUTION. 

If the curve is discontinuous, or exhibits sharp breaks 
or mrnings, as in the solubility curve of sodium sulphate, 
extrapolation might lead to wholly fallacious results. 
Thus if the curve APl had been extrapolated from 3\ to :£2' 

FIG. 21. 

the value P 2 would be absolutely wrong; because the curve 
exhibits a sharp turning at P. The true value is Pz'. 

The method must therefore be applied with great care. 
67. EXAMPLES 

(1) According to Raoult, the depression of· freezing­
point (A) of a solvent is pr6portional to the concentration. 
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If A is the depression for a 1 per cent solution, the mole­
cular depression ..d for a gram molecule in 100 C.c. will be 
given by 

A:,d = l:M, 
.. AM = ,d = constant, 

since the depression is a molecular property. This is 
strictly correct only for infinite dilution, so that Eykman 
determined the depression for three or four concentrations 
and then extrapolated to zero-concentration to obtain the 
value of A for infinite dilution. 

(2) If Avogadro's law were strictly true, the molecular 
weight of a gas could be exactly determined by a cflireful 

.,' 

'f. 

FIG. 22. 

measurement of the density. Rayleigh has found that the 
permanent cases obey Boyle's law more and more exactly 
Ghe lower the pressure, and it may be assumed that at 
?;ero-pressure (p = 0) the agreement would be exact. D. 
Berthelot has made this the basis of a method of determin­
ing atomic weight from gas densities. 

Van der Waals' equation 

(p + ~)(V - b) = RT, 

)eC9mes, for p = 1 atm., and T = 273, 

(1 + '/):2)(VO - b) = 273 R, 

IVhere Vo = molecular volume at N. T. P. 
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For the ideal gas the equation is 
pgVO "" RT :. Vo = R . 273 

where Vo = molecular volume at N. T. P. 

Thus Vo = vo( 1 + v:z)( 1 - ~) 
:. Vo = vo(l - !!_ + a2) approximately. 

Vo Vo 
Thus, to reduce the measured density to the ideal con­

dition it must be multiplied by 

V
Vo = (1 + ~ - az) approximately. 

o Vo Vo 
Now Van der Waals' equation may be written 

pv = RT[ 1 + p(irr - (R~)2) ] 
since a/v2 and b/v are small compared with unity. This 
is of the form 

pv = l + mp, 
where l, and m, are constants at a fixed temperature. pv 
is thus a linear function of p; and if values of pv are 
plotted against p, the extrapolation to p = 0 gives the 
reduction to the ideal state. Such measurements have 
been carried out by D. Berthelot and by Guye. Recent 
experimenters find that in some cases pv is not really a 
linear function of p, but the extrapolation of the curve 
may still be made. 

68. DIFFERENTIAL COEFFICIENTS FROM EXPERIMENTAL 
RESULTS 

It was shown in the first part of this book that the 
differential coefficient ,has a very important significance in 
many branches of physical chemistry, especially in thermo­
dynamics. In many cases, the quantity represented by this 
coefficient is given a special name. Thus, we recall that ;­
(dv/dt)p is the coefficient of expansion at constant pressure; 
(dp/dt)., the coefficient of tension; 
(dQldv)" the latent heat of expansion; 
(dQ/dt)., the specific heat at constant volume; 
(dQ/dt)p, the specific heat at constant pressure. 
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It is therefore important that we should be able to 
find the value of such a differential coefficient in terms of 
the magnitudes which are experimentally determined. 
We therefore pass on to a consideration of some methods 
of determining differential coefficients from experimental 
results. 

69. METHOD OF MEAN·VALUE. 

(I.) The first method, which may be called the Method 
of the M ean-Value, depends on the following very import­
ant theorem ;-

" 70, 

FIG. 23. 

II 

- \ 
\ 
I 

I 
Let PQ be the graph of the function f(x) which is 

continuous in the interval from x = a to x = b; then there 
is some point between P and Q where the ta,llgent to the 
curve is parallel to the secant PQ. Let Xl be the abscissa 
of this point, then 

I~b)b~:: ILa) = /'(x
1
). 

- a 

This general theorem is almost obvious from an inspection 
of the figure; we shall assume its truth in what follows. 
Its connexion with the problem in hand depends on the 
fact that if the rate of cbange of I(x) with x is small, as is 
usually the case in practical examples, we may without 
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committing any sensible error take Xl midway between a 
and b, provided the latter are close together. Thus 

I(b) - I(a) = j'(b + a) approximately. 
b - a 2 

Examples ;-
(1) The vapour pressures of water at 9«;)'5° and 100'5° 

being 746'52 mm., and 773'69 mm., find dp/dt at 100°. 
a = 99'5, b = 100'5; f(a), = 746' 52, I(b) = 773'6~, 

,'. f' (100) = ~~ at 100° = 773'69 - 746'52 

= 27'17 mm. per r. 
(2) Hortsmann, in the first applications of thermo­

dynamics to chemistry, used the well-known Clausius­
Clapeyron formula :-

dp 
A. = T(v" - Vb) dT' 

where A = latent heat of volatilization or dissociation, 
T = absolute temperature, 

V", Vb = molecular volumes of gaseous and condensed 
phases, 

p = vapour, or dissociation, pressure. 
Usually Vb is negligible compared with V" 

dp 
.'. A = TvdT, 

'V being the molecular volume of the vapour. 
Butpv = nRT, 

. nRT2 dp 
··A.=--P·dT· 

If PI' P2 are two pressures corresponding to the tempera­
tures T l , T2• which are not too far apart, 

~~ = ~: = !III approximately, and in the above equation 

p = t(PI + P2)' T = t(TI + T2)· 

Horstmann considered various cases of dissociation; 
as an example we will take Isambert's results for am­
monium hydrosulphide : 

NH4HS H NHs + H2S. 
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Here n ... 2, since 2 molecules are produced. Horstmann 
took R = 1'997 gram-calories (the number now adopted is 
1 '985), so that 

. T2 dp 
A. = 3994:1)' dTg. caL 

(Observe that the unit in which P is measured does 
not effect the equation.) 

Temperature Pressure 
°C. mm, 

Heat of Dissociation 
Cal. at 0 

9'5 175 
12'0 212 
15'0 259 
18'0 322 
22'0 410 
25'1 501 

" 

\24'65 
21'86 
24'24 
20'61 
22'64 

aking the first pair of numbers we have 
Pl = 175 mm., P2 = 212 mm . 

. '. P2 - PI = 37 mm. 
Tl = 282'5°, T2 = 285°,' 

:, T2 - TI = 2'5. 

10'7 
13-5 
16'5 
20'0 
23'5 

Thus dp/dT = f_!_ = ~- = ~:5 = 14'8 mm. per 1°. 
2 1 

P = t(175 + 212) = 193'5 mm. 
T = i(282'5 + 285). = 283'7° A?s. = 10'7° C, 

:, T2 = 80486 . ~ . 
80486 

,', i\ = 3'994 x 193'5 x 14'8 = 24650 g. cal. 

= 24'65 Cal. at 10'7° C, 
(1 Cal., or "kilogram calorie" = 1000 g. cal.) 

The calculated heats of dissociation are nearly constant, 
the mean being 22'8 Cal. This agrees with the heat of 
dissociation calculated from thermochemical data: 

(NH4HS, aq) = - 3'25 Cal. 
(NHaaq, H 2Saq) = + 6'19 Cal. 

(H2S, aq) = + 4'75 Cal. 
(NHa, aq) = + 8'61 Cal. 

,', A = (NHa, H 2S) = 3'25 + 6'19 + 4'75 + S'61 = 22'S Cal. \ 
This will, of course, be heat absorbed on dissociation, 
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(3) The effect of pressure on the melting-point of ice 
is given by the formula: 

dT T(v2 - VI) 

dp = L 
where T = absolute melting-point; 

VI = specific volume of ice; 
V2 = specific volume of water; 
L = latent heat of fusion. 

T = 273; VI = 1'09 c.C.; V 2 = 1'00 c.c. 
L = 80 gm. cal. = 80 x 42350 gm. cm. 

To find the change of melting-point per 1 atm. in· 
crease of pressure, we put dp = 1 atm. = 1033 grams 
weight per sq. cm., hence: 

dT = T(v2 - VI) dp 
L 

... 273 x (1'00 - 1'09) x 1033 
80 x 42350 

= - 0'0075° C. 
The melting-point of ice is lowered by increase of pres­

sure, since VI> v2• In the case of most other substances, 
VI <V2, and the melting-point is raised by increase of 
pressure. 

70. ANALYTICAL METHOD. 

(II) The second method depends on the use of an em· 
pirical formula, obtained by previous calculations, to ex­
press the functional relationship. If the constants in thiE 
formula can be found, we have simply to differentiate it tc 
obtain the desired differential coefficient. 

We may call this the Analytical Method. 
Examples ;-
(1) The pressure at constant volume (p) of isopentane 

is, according to Young, a linear function of the tempera. 
ture (0° C.) 

p - be - a 
.'. dp/dO = b, 

or the curve is a straight line with gradient h. 
(2) The vapour-pressure of water was represented by 

Biot according to the formula 
ltntn ......... "1'1 ...L. hnT 
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where T = t - constant. a, b, a are constants. By differ­
entiation ;-

1 dp p (Ii = b. lna . aT 

or dpJdt = pblna. aT 
(3) A formula used by engineers for the pressure of 

steam at t C. is 
p = 29'77P/5 - 37'6 lb. per sq. foot. 

Thus t = 5'954p - t. 

At t = 2000 C., 

P = '2<J'77('200)t - 37'6 = 48'44Ib./ft. 2 

[log ('200)"t = i- log '200 = etc.] 

Thus (dp
) = 5'954 x (48'44) - * . 

dt 1=200 

= 5'954 x '0449 
= ''267 lb. per sq. ft. per r c. 

(4) Horstmann, in his classical .investigations on 
lermodynamics (Ostwald's Klassiker, No. 137, "Ther­
IOdynamik chemischer Vorgange," August Horstmann) • 
~tempted to work out Deville's analogy between evapora­
on and dissociation. He concluded that Biot's formula 
lould apply to dissociation pressures as welt as to vapour 
ressures, and expressed the dissociation 'pressure of am­
tonium chloride by the formula 

log p = a + baT, 
hen a = 5'15790; b = - 3'34598; log b = 0'5~439( 
log a = 0'9979266 - 1; T = t C. - 258'5. 

To ca.lculate dp/dt at 2600 C:­
T = '260 - 258'5 = 1'5; 

log a l •5 = 1'5 log a = - 0'0031101, 
:. log a - 1.5 = - log a1.5 = 0'0031101, 

= log 1'0072, 
:. a -}.5 = 1'0072, 

... a1•5 = l/a - 1.6 = 0'9928. 
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Thus bal •5 = - 3'3'2189, , 
.'. log p = 5'15790 - 3'3'2189 = 1'83600. 

But log 68'6 = 1'83600, 
.'. P = 68'6 mm. 

Therefore dp/dt = pbal
•
5 log a . 

. '. dp/dt = 68'6 x (- 3'3'2189) x (- 0'00307) 
.'. dp/dt = 0'7039 mm. per 10 C. at 2600 C. 

(5) In the case of calcium carbonate 
CaCOa 0 CaO + CO2, 

'lorstmann quotes three results of Debray :-
t = 1040° C. P = 5'20 mm. 

860 85 
440 imperceptible. 

He remarks that the differential coefficient dp/dt can­
not be evaluated from these numbers, but he makes the 
assumption that the curve has the equation 

log p = a + baT, (i) 
and gives the following calculation :-

Put 'T = t - 860, and let 
log p at 8600 

= YI' 
log p at 10400 

= Y2' 
Then Yl = a + b } (ii) 

Y2 = a + ba180 

. b = Y2 - Yl (iii) 
• • alSO - 1 

and q =YI - b. 
~Differentiating (i) with respect to t we get 

/ 

~ = pb log a . aT (iv) 

.'. ~l = PI b log a } 

~2 = P2b log a. alSO 

dP2 
dt 

and - = '8_ . al80 

dpl PI 
dt 

(v) 

(vi) 
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The differential coefficients (or rather, their ratio) he 
next expresses in terms of the heats of dissociation :-

dp 
A = T..::1v dT' 

where ..::1v = excess of volume of gaseous product over 
solid residue, 

= volume of gaseous product (approx.) 
If 8 0 = vol. of 1 kilogram CO2 at N. T. P., 

T 760 
..::1v = 80 , 273 . p.' 

where p = dissociation pressure, 
. _ 760 T12 dPl } 

• • Xl - 80273 , Pl' ([[ 

"\. _ 760 T22 dp2 
""l! - 80273 . P; . IIi 

• A2 _ T22 180 
")::-T2· a . 

1 1 

(vii) 

(viii) 

.out, A being practically constant between 8600 and 
1040°, A2/Al = 1, 

T2 
• alSO =_1 . . T

2
2' 

and thus the constant a can be found. Then T = t - 860; 
a = 3·m.l377; b = - 2'06435, log a = 0'9988426 - L 
From these numbers the values of P for temperatures 
between 8600 and 10400 can be calculated. 

[These calculations are now only of historical interest; 
modern thermodynamic theory indicates that log P can be 
calculated from the heat of dissociation A, the specific 
heats of the substances involved, the absolute temperature, 
and a "chemical constant". See Nernst, "Recent Ap­
plications of Thermodynamics to Chemistry".J 

71. GRAPHICAL METHOD 

(III.) The third method of finding the differential co­
efficient of a function is the Graphical Method. The curve 
of the function is drawn on a fairly large scale, and a 
tangent line drawn to it at the point where dy/da; is 
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required. The gradient of this line, read off directly, IS 

dy/dx. 
Examples :-
(1) Horstmann used this method to calculate dp/dT 

from Debray's measurements of the vapour-pressure of 
Na2HP04,12H20. 

(2) As an exercise on the method, thQ student may 
find the values of dy/dx at different points on the graph of 

y = x3, 

and compare the results with the calculated values. 
(3) Using the values of p and T for water given in § 1, 

ca.lculate the latent heat of evaporation of water at 100° C. 
The observed va.lue is 536 cal. 

[Draw the p, (t + 273), curve for a. few points near-
100° C., draw the tangent, and find dp/dT. Then use the 
Clausius-Clapeyron equation.] 

Methods of finding the differential coefficient by the . 
usc of interpolation formulre, such as Stirling's formula, 
can only be referred to here. 



CHAPTER VIn 

THE iNDEFINITE INTEGRAL 
I, " 

72.! INVERSE OPERATIONS AND INVERSE FUNCTIONS ~ 

WHEN, in Arithmetic, a quantity is repeated a certain 
number of times, the resulting quantity is called 

a multiple of the original quantity; the operation whereby 
it is obtained is called multiplication. To recover the 
original quantity from a given multiple of it, we make use 
of the operation of division " and the operations of multi­
plication and division are related in such a way that with 
proper values of multiplier and divisor, the effect of operat­
ing with the divisor exactly annuls the effect of previously 
operating with the multiplier. The symbols x and + 
~ing used to denote the operations of multiplication and 
~ivision respectively, and the symbol x being defined by 

~
'he equation: 

a x n = a + a + a + ... n times, 
hat of division + must be defined by the equation:-

. (a x n) + n = a. 
"The operation of division is said to be the inverse 01 

the operation of mUltiplication, in the sense just explained. 
Similarly, the processes of forming a power of a num­

ber, and extracting the root of a number are inverse opera­
tions; as is seen from the definitions of the symbols 

an = a x a x a x ... n times. 
::Ian = a. 

In this particular case, the inverse operation, i.e. the 
extraction of the root of a quantity, is more complicated 
~han that of division, for the followin8 considerations enter 
mto the nature of the case :-

133 
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(1) Whereas, in division, we arrive at the original 
quantity, and there is only one answer to the question: 
"What quantity multiplied by n leads to a given quantity?" 
in the extraction of the root this is not always the case. 

na-;-'n=a; 
but '!ja2 = + a or - a; 

because there are two quantities + a, and - a, both of 
which satisfy the copdition that, when they are raised to 
the second power, a2 results. 

(2) Also, given a real quantity a, the operation of divi­
sion leads to another real quantity. But if we are re­
quired to extract the square root of - a2, the operation is 
impossible, since no real quantity has a negative square. 
The result must be left as .; - a~, or as a';-- 1, or ai, 
where i = .;~ Thus we can say that the problem: 
" What function is the inverse of a given function?" may 
or may not have an answer; or it may have more than 
one answer. 

The operation of differentiation, applied to a given 
function, leads to the differential of that function. 

Thus d(X2) = 2xdx, 
or d[¢(x)] = ¢'(x)dx. 

It is evident that the operation which is the inverse oj 
differentiation will be such that, when performed on the 
differential of a function, it will lead to the function itself. 
Let us denote this operation by the symbol " ~," then 

~dx = x, 
or idu = u . 

.. i " is called the integral sign; the operation it denotes 
is called integrat'ion. The equation idu = u may be re­
garded as defining the meaning of the symbol i. 

Examples ;-

\ 
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73. INTEG RATION CONSTANTS 

If we put u = cp(x), 
then du = cp'(x)dx; 

and since, by definition, 
~du = u, 

.'. )¢'(x)dx = ¢(x) 

i This equation is, however, incomplete. 
any arbitrary constant whatever, then 

d(x + C) = dx, 
or d(u + C) = du; 

(1) 
For if C be 

~he arbitrary constant vanishing in the differentiation 
n~ I 

)du = )d(u + C) = u + C. \ 
Ifu = cp(x) , \ 

W(x)dx = ¢(x) + C .. (2) 
which is the most general definition of I. ~ 

C is called the Integration Constant; since its value I 

is, at present, quite arbitrary, the integral )¢'(x)dx is called 
m indejin~te integml. If, in any particular case, C has a 
Imown value, the integral W(x)dx = ¢(x) + C, is called a 
lejinite integml. ,I 

74. GEOMETRICAL IN'l'ERPRETATION 

It is easy to find a geometrical interpretation of C\ 
Given a function <j>'(x), the result of integration is a func- \ 
tion cp(x) + c. Now q,'(x) represents the slope or gradient 
of a curve at a given point (x = Xl)' and the operation of 
integration is that of determining the equation to a curve, 
i.e. of finding the curve, when the gradient for any value of 
x between certain limits is known. It is at 6nce obvious 
that an infinite number of curves may be drawn having 
the same gradient at every value of x within, it may be, 
certain limits. The different values of y corresponding to 
the same value of x may be obtained by the addition (or 
subtraction) of a constant from anyone value. (fig 24). 
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(i) Let ~~ = 1, the curve y = j(x) is obviously any 

straight line making an angle of 45° with the x-axis. 
The equation y = x + tJ, the integral of dy = dx, re­

presents an infinite number of straight lines, one of which 
;J 

I I 
I I I 

~ 
~----------------------~ 

FIG. 24 

passes through the origin and makes an angle of 45° with 
the x-axis, and all the rest are parallel to this line. 

) 

FIG. 25. 

The equations of these lines are 
y=x 
y = x + c1 

y = X + C2, etc., 

/ 
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a.nd C1, C2 ••• are the lengths of the y-axis cut off by the 
lines. If C1 = 1, £1l = 2, ' .. the lines are equidistant, as 
shown in the figure. This family of curves represents the 

indefinite integral of ~~ = 1. 

(ii) Another example is the case of a stone falling 
freely under gravity. If U o is the velocity at a given in­
stant, taken as the initial instant, t = 0, then the velocitv 
at any time t is given by 

ds 
dt = U o + gt, 

,where ds is an element of space, and g is the acceleration 
of gravity. Integrating, we obtain :-
""" ~ds = Huo + gt)dt = ~d(uot + tgt2); 

,'. S = uot + igt2 + C. 
Now put t = 0, 

.'. So = C, i.e. C is the distance of the stone from 
a. fixed point at the time we begin observations. If the 
actual position of the stone at t = ° be taken as this point, 
e = 0. 

75. DIFFERENTIATION AND INTEGRATION 

We may sum up what has just been said in the state­
ment that, whereas the fundamental proposition of the 
Di1ferential Calculus is to find the rate of change of a 
given function, that of the Integral Calculus is to find the 
function corresponding to a given rate of change:-

Differentiation ------
Function Rate of Change -----Integration 

If we remember that the operations denoted by d and ~ 
mutually annul each other, it is clear that if the function 
to be integrated can be put in the form du, where u is 
another function, the result of the integration will be 

u + constant. 
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Thus ~2xdx = ~d(X2) = x2 + constant. 
i3x2dx = ~d(X3) = x3 + constant. 

JX
4dX = JdG

5

) = ~X5 + constant. 

Itt; = Id(lOg x) = log x + constant. 

~exdx = id(eX
) = eX + constant. 

Integration, as de Morgan said, is "the memory of 
differentiation ". If the function to be integrated does 
not correspond to any of the standard differentials, it can 
often be modified so that it does. 

76. TABLE OF STANDARD INTEGRALS 

(A) d(xm) = 1nXm 
- ldx 

... if 'In = n + 1, 

d(xn+ 1) = x"dx 
n + 1 

Thus the integrals of x, X2, x3, x-2, x-5 are ~X2, ~X3, iX4 
1 1 
X' 4x4' 

The case when n = - 1 is now to be considered . 
dx 

(B) d(log x) = - = x - Idx 
x 

(C) d(e X
) = exdx 

d(a X
) = aXlog a, dx 

. '. J~ = log x. 

~exdx = eX 

/ 

[In all cases, "log" is to be taken as "log.," unless 
otherwise indicated.] 

The correctness of a result of integration may be 
tested by differentiating it; the original function should be 
regained. 
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77. EXAMPLES 

(1) J(X + a)mdx = 1m: Id(a + x)m+l 

= _1_ (x + a)'n+ 1 
m+I ' 

where a is a con$tant. This is an extension of Type A. 

('2) fx-~x a = log (x + a) ; fx~a = log (x - a). 

Examples (1) and ('2) show that the addition of any 
:trbitrary constant to the variable makes no difference in 
the form of the result. 

(3) f dx - Id C1 - x) = - log (1 - x). 
1-x= l-x 

(4) fa d~ x = - log (a - x). 

(5) J~ = !Jdcax + b) = !lo (ax + b). 
ax+b a ax+b a g 

(6) J ~-r}_X:__- = - hog (a - bx). 
a - bx b 

Examples (3) to (6) show that if the variable is multi­
olied by a constant, the integral must be div'ided by that 
~onstant. Generally 

l' 1 
YCkx)dx = T/(kx). 

(7) feaxdx = ~e·". 
(8) ~e-'dx = - e-~. 

78. TWO GENERAL THEOREMS ON INTEGRATION 

(1) ~Cdu = C~du (F) 
",here C is a constant, u a function of x. 

This follows from the definition of ~, as is seen by 
lifferentiation. 

(2) ~(u + v + w + .. . )dx = ~udx + ~vdx + Iwdx + ... 
Nhich also follows by differentiation (G) 

Thus the Integral of a Sum = Sllm of integrals of its 
'erms. 
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(a) An important example is the rational integral 
function of x, i.e. a. function of x containing only finite 
integral powers of x, and in which the denominator is 
unity'. The most general type of such a function is 

aox'" + a1x"'-1 + ay:m- 2 + ... + am_IX + am. 
m is a positive integer, and the function is linear, quad­
ratic, cubic, etc., according as m = 1,2, 3, etc. Generally, 
it is said to be of the mth degree in x. 

Haoxm + a1x"'-1 + a.JX"'-2 + ... + am_IX + am)dx 
1 m+l 1 m 1 ",-2 = m + laox + ma1x + m _ 1a2x + ... 

+ iam _ 1X 2 + a",x. 
(b) Verify the following results :-

J(~ + x)dx = log x + ~X2. 
JX: 2dx = x + log (x2). 

79. RATIONAL FRACTIONS 

The last example is a special case of the type 
F(x) 
x + a' 

which is the simplest form of rational fraction. By 
division 

F(x) A 
--~ = f(x) + -- where 
x + a x + a' 

{(x) is a function of x lower in degree by one than F(x), 
and A is a constant which is independent of x. Now f(x) 
must be a rational integral function, which has just been 

dealt with, and ___!_ is of the form (B). 
x+a 

Example ;-

L ~2 xdx = - ~(X2 + 2x) - log (1 - x). 

(Note: ~1. dx is always written ~dx; it is, of course, 
x.) 
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80. FURTHER GENERAL EXAMPLES 

(1) J~ = !Jd(2_a;--=-1l = ! log (2x - 1). 
2x - 1 2 2x - 1 2 

J2bxdx = Id(a + bx
2
) = 1 ( b 2) 

a + bx2 a + bx2 og a + x , 
Generally, we see that 

Jcp'(X)dX _ 
cp(x) - log cp(x) , 

Proof:-
d[cp(x)] = cp' (x) dx ; -. 

. cp'(x)dx = d[cj>(x)] = dEl .I.()], 
"cp(x) cp(x) og 'I' x , 

.'. Jcp~~~~x = Jd[10g cp(x)] = log cp(x). 

This very important rule may be stated in wor4e 
~~: , 

If the numerator is the differential of the denominator 
0/ the e.xpressiOlz, the inteqral is the natural loqart'thm 0/ 
the denominator. 

JdX 1 1 
(2) - xn = n _ 1 'xn - 1 • 

(3) ~4x _ 6dx. [ - x - 4]. 
(4) ~4ax _ fdx. [5ax!]. 
(5) HI + X)2X3dx= Hx3 + 2X4+ x5)dx= (-1 + tx+ tX2)X4• 

] 1 1 8 

(6) Ha + x'I)2x'dx. [(ia2 + ax'I + jx)x~], 

J xdx [ 1 ] 
(7) 1 _ x3 ' log Jl _ x2 . 

(8) J~. The denominator is factorisable;­
x - a 

x2 ~ a2 = ia {x ~ a - x ~ a} 

-~ J dx 11 x - a 
, " x2 - a2 = 2a ogx + a' 

J dX 1 a+x 
(9) -2--2 = -2 log--, (cf. § 77, ex. 2). 

a-x a a-x 
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J 
dx II d(x + fc) 

(10) a + bx + cx2 = C (x + ~)2 _ b2 
- ~ac 

2c 4c2 

(d. appendix I) 

1 I 2cx + b - (b2 - 4ac) ~ 
----,-log J' (J) 
(b2 - 4ac)' 2cx + b - (b2 - 4ac)~ 

This result is real only if b2 > 4ac. 

I 
dx 1 a~ + b~x 

f dx 1 -- = --,log--, ---. 
(11) a - bx2 = b i _ x~ 2(ab)· a'! - b!x 

J dx f dx I d(x + 1) 
(12) i - 2x - X2 = 2 _ (x + 1)2 = 2 - (x + 1)2 

= 1,Iog2~ + x + 1. 
2' 2' - x-I 

(13) J (a + bx)ndx = H(a + bx)nd(a + bx)-

(a + bx)n + 1 

= --b(n-l-l)--' 

(14) f (a + bx2)nxdx = ilJ (a + bx2)nd(a + bx2) 

(a + bx2)n+ 1 

2b(n + 1) . 

(15) Jea" - xm)"xm-Jdx = -1J(a»> - x",)nd(a>n - xm) 

men + 1) . 

(16) f (a + bx + cx2)n(b + 2cx)dx = (a + b: : ;X2)" + 1. 

(17) J x2dx 2 S 3 i 
(a3 _ x3); = - S(a - x) • 
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81. THE PRINCIPLE OF UNDETERMINED COEFFICIENTS 

Two expressions are said to be identically eq'ual iwhen 
they are equal for all values of a particular letter in ~hem. 
The sign = is then often written == . I \\. 

E.g. (a + X)2 = a2 + 2ax + X2, \ 
for)all values of x, or \': 

I (a + X)2 == a2 + 2ax + x2• 

A very important theorem concerning such expressions 
is proved in textbooks on Algebra, viz. the Principle of 
Undetermined Coefficients. 

If two functions of a finite number of terms are equal 
for all values of any letter involved in them, then the 
coefficients of like powers of this letter are equal in the two 
functions. 

Examples :-
(1) Find the square root of X4 + 2x3 + 3x2 + 2x + 1. 
Let J(x4 + 2x3 + 3x2 + 2x + 1) == x2 + mx + 1, 
Then X4 + 2x3 + 3x2 + 2x + 1 == (X2 + mx + 1)2 

== X4 + 2 mx3 + (m2 + 2)X2 + 2mx + 1.\ 
Equating coefficients of x3

, X2, and x; 
2 = 2m, 3 = m2 + 2, 2 = 2m, 

therefore m = 1, and 
J (X4 + 2x3 + 3x2 + 2x + 1) = x2 + X + 1. 

(2) If 4X4 + 8x3 + mx + n is a square, find m and n. 
Let 4X4 + 8x3 + mx + n = (2x2 + p,X + V)2 

:. 4X4 + 8x3 + mx + n= 4X4 + 4p,x3 + (p,2 + 4v)x2 

Then 8 = 4p" p,2 + 4v = 0, m = 2,_"v 
:. p, = 2 :. v = - 1, m = - 4 

:. n = 1. 

+ 2p,vx + v2• 

Confirm by substituting p,= 2, v = - 1, m = - 4, n= 1 

82. PARTIAL FRACTIONS 

If a given fraction can be expressed as the sum of two 
or more fractions, the latter are called its partial fractions. 
Thus t a.ml t a.r{l the partial fractions of * :~ 

!r; = t + i. 
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The methods of finding the partial fractions of an alge-
braic fraction are of great importance in the Integral 
Calculus. In what follows, the methods will be explained 
as they arise; further particulars will be found in C 
Smith's" Algebra," and Lamb's" Calculus ". 

SS. EQUATIONS OF CHEMICAL KINETICS 

(i) Unimolecular reactions :-
dx/dt = k(a - x). 

(ii) Bimolecular reaction :-
dx/dt = k(a - x) (b - x), 

dx/dt = k(a - X)2. 
(iii) Terrnolecular reaction :-

dx/dt = k(a - x)(b - x) (c - x), 
Special cases :-

dx/dt = k(a - x)2(b - x), a = c; 
dx/dt = k(a - X)3; a = b = c. 

In order that these equations may be tested experi­
mentally they must be integrated, because dx/dt ca.nnot 
usually be found directly (see Introduction). 

S4. EQUATION OF THE UNIMOLECULAR REACTION 

dx/dt = k(a - x), 
dx 

,'. --= kdt, 
a-x 

Integrating we have ;-

J~ - Jkdt = constant =C, 
a-x 

:. - log (a - x) - kt = C. 
C is the unknown arbitrary consta~t of integration. 
To determine C we have the experimental relation;­

x = 0 when t = 0; 
... - _log a = C, 

.'. log a - log (a - x) = kt, 
1 a or -log-- = k 
t a - x ' 

which is capable of direct verification. 
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Instead of determining a, the initial concentration, the 
equation may be modified so that the concentrations 
(a - Xl)' (a - X2) at times t l , t2 may be used ;-

ktl = - log (a - Xl) + e, 
kt2 = - log (a - x2) + 0, 

\ '. __ 1_ a - Xl 

I .. k - t _ t . log - . ~. 
2 1 a X 2 'I 

. The 'equation may also be thrown il~to an eX1!?,n. tial 
forn~. Let a - X = 0, the concentratIOn of actt'(' sub-
stance at time t ; : 

.'. d(a - x) = - dx = de; I: 
.. dO/at = - ke; \ 

or ~ = - kdt. \. 
I 

Integrating we have \ 

log e = - kt + constant. \ .. 
Put" constant" = log b, . 

where b is another constant; and multiply the right-hand 
member by log e = 1, 

log e = log b - kt log e 
= log b + log e - 1<1 

= log be - k' 

:. e = be - k'. 

This form of integral expresses more clearly the ex 
ponential progress of the reaction; an integral identical in 
principle with the above was used by Wilhelmy, who 
made the first application of the law of mass-action. 

85. EQUATION OF THE BIMOLECULAR REACTION 

dx 
dt = k(a - x)(b - X), 

dx = kdt. 
•. (al - x)lb - x) 

The expression f )\b ) may be split into Pa.rtia.l 
~a - x - X 

Fractions as follows :-
10 



146 HIGHER MATHEMATICS 

1 A B 
Assume = -_ + --, 

(a - x) (b - x) a - x b - x 

. which equation must be true for all values of x. 
Multiply by (a - x) :-

1 a - x 
b--=::A+ B'-b-' - x - x 
Put x = a, 

1 
.. b--=::A; - a 

orA = __ 1_. 
a - b' 

keeping the letters a, b, c ... in cyclic order. ' 
Now multiply by (b - x) :-

1 b - x 
:. --=::A. -- + B. 

a-x a-x 
Put x = b:-

1 
:'--b=B; a-

whence the values of A and B are determined. 

Thus 1 =- _1_{_1 ___ 1_} 
(a - x) (b - x) a - b b - x a - x .J dx =_1_1 a-x 

" (a - x) (b - x) a - b' ogb - x' 
1 a - x 

Thus kt = --b' logb-- + C, a - - x 
and by putting t = 0 and x = 0, we find 

C = _l_log~ 
a - b a' 

. 1 b(a - x) 
•. k = tea _ b)" loga(b - x)" 

Exercises ;-
(1) ,For two times tl> t2, prove as in the previous para­

graph 
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If a = b, i.e. reacting substances in equivalent amounts 
~t the start, 

dx 
dt = k(a - X)2, • 

Ghence show that 
1 x-

ak = -.--. 
t a - x 

The special case a = b cannot be obtained frQIll the 
:ntegrated equation by putting a = b, since the result is 

~ . g, which is an indeterminate form. 

This case will be considered when we are dealing with 
raylor's theorem. 

(3) If t l , t2 , are two times, and Xl' x2 the amounts of 
}hange at these times, reckoned from the starting-point, 
;how that;-

k = _1_. X2 - x J 

~ - tl (a - xl)(a - ~) 

= t2 ! tl {a ~ X2 - a! xJ 
The quantities (a - Xl)' (a - x2) are amounts of sub­

;tance left unchanged after times tl , f2, and are easily 
:ound by experiment. This form of the equation, and the 
}orresponding form for the unimolecular reaction, are 
~specially useful when the initial portion of the reaction is 
listurbed by other simultaneous reactions, as is usually the 
}ase. The constant k, deduced from measurements carried 
)ut in the initial stages, would therefore be incorrect; the 
modified equations enable one to find the constant at any 
;tage in the reaction. 

86. EQUATION OF A TERMOLECULAR REACTION 

dx/dt = k(a - x)(b - x) (c - X), 

• dx = kdt. 
(a - x)(b - x)(c - X) 

The expression on the left may be split into three 
?Qrtial fractions ;-
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1 ABC 
:---~~-c--c----------,- = --- + -_ + --
(a - x) (b - x) (c - x) - a - x b - x c - x' 

Multiply each side by (a - x) :-

1 { Be} 
(b - x) (c - x) == A + (a - x) b - x + c - x . 

-,Put x = a, 
1 

... A = - (a - b)(c - a)" 

Similarly, by multiplying by (b - x) and (c - x) and 
then putting x = b, and x = c, one finds :-

B = - 1 and C = _ 1 
(a - b) (b - c) (b - c)(c - a)' 

(Notice the" cyclic order" in the factors.) 
Thence we obtain :-

f dx 1 Jdx 
(a - x)(b - x)(c - x) = - (a - b)(c~(i) a - x 

1 Jdx 1 Jdx 
- (a - b) (b - c) b - x - (b - c) (c - a) c - x' 

Therefore :-

(a _ b~(C _ a)log (a - x) + (a _ b)l(b _ a)log (b - x) 

1 
+ (b _ c)(c _ a)log (0 - x) = kt + constant. 

The constant is found as usual by putting t = 0, x = 0, 

o. C = - (a _ b)l(C _ a)log a - (a _ b~(b _c)log b 

1 
- (b - c)(c _ a)log c 

(a - X)(b - '1 (b _ X) Ie - a) (c _ x)(" -b) 

. _ 1 log -a +log -b- +log -c-
. k - -0 0 

t (a - b) (b - c)(c - a) 
Notice the symmetry in the expression. 
Exercise ;-

If a = b = c, 
dx 
dt = k(a - x'l. 
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Thence prove that 

1 {II} 
k = 2t (a _ X)2 - a2 • 

. 87. SPECIAL OASES OF PARTIAL FRAOTIONS l \ 
(a) . Termolecular reaction with two equal concentr~- . 

tions. 
dx 
dt = k(a - x)2(b - x) 

dx 
.. (a - x)2(b _ x) = kdt. 

It is proved in advanced textbooks on Algebra (e.g 
Chrystal's" Algebra") that in this case the Partial Frac 
tions are' 

1 ABC 
(a - x)~(b - x) =: (a - X)2 + a - x + b - x" 

The student will easily find, in this case, that 
A=_l_ B= __ 1_ C= __ 1_ 

b - a' b - a' b - a' 
and the complete integral is 

1 1 {(b - a)x b(a - X)} 
k = t' (b - a)2' a(a - x) + loga(b - x) . 

(b) If the denominator contains a quadratic expression 
which has no real roots we have the following equation 
for the partial fractions. 

Example ;-
1 A B Cx + D 

.-~:--: .. = -- + -- + -:-;----::; 
(X2 + X + l)(x - a) (x - b) - x - a x - b x2 + X + l' 
from which the constants may be found by giving x par­
ticular values. By way of example, take 

1 A B Cx + D 
(C-x~2-+-x-+--::Clc--) (x - 1) (x - 2) == x-I + x - 2 + (X2 + X + 1) 

MUltiplying by (X2 + X + 1) (x - 1) (x - 2) 
1 A(x - 2) (X2 + x + 1) + B(x - 1) (x2 + x + 1) 

+ (Cx + D) (x - l){x - 2). 
Put x = 2:-

.'. 1 -- B(2 - 1) (4 + 2 + 1) .'. B = t. 
Put x = 1 .'. A = - i. 
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We now substitute the values of A and B in the first 
of these equations, and give x two values in succession; 
we can then find C and D by solving the simultaneous 
equations, preferably by using determinants. 

The constants may also be evaluated by equating co­
efficients of like powers of x, and solving the resulting 
simultaneous equations. 

Example ;-
1 Ax + B Cx + D 

~+~+l=~+x+l+~-x+l 
.• 1 = (Ax + B)(X2 - X + 1) + (Cx + D)(x2 + X + 1) 
• . 1 = (A + C)x3 + (- A + C + B + D)x2 

+ (A + C - B + D)x + (B + D). 
Equating coefficients of like powers of x :­

A + C = 0, - A + B + C + D = 0, 
A + C - B + D = 0, B + D = 1. 

Solving the four equations we get :­
A = - C = i, B = D = i. 

(Such cases may often be solved by imaginary sub­
stitution, followed by an application of Demoivre's theorem. 
See Edwards, "Diff. Calculus for Beginners," § 63.) 

88. GRAPHICAL METHODS IN CHEMIGAL KINETICS 

Let C = concentration of a reacting substance; then, 
by the law of mass-action, the rate at which that substance 
disappears in the reaction is given by ; 

dC/dt = - kC", 
where n is called the order of the reaction. 

If more than one substance participates in the reaction, 
dC/dt = - kC/IC2"2CaHa .•• ; 

and the order of the reaction is 
n = n1 + n2 + na + ... 

Van't Hoff identified n with the number of molecules 
of the reacting substances. Thus in the reaction 

CHaCOOC2H 5 + NaOH -'» CHaCOONa + CaH,OH, 
n=1+1=2. 

Whilst n can usually be defined in this way, there are 
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ca.ses in which n a.s derived from velocity measurements 
does not agree with that derived from the chemical equa­
tion, and the former definition is to be preferred. Special 
cases arise when n is given different values, which of 
course are integers. 

(a) Let n = I, i.e. the reaction is unimolecular, 
... dC/dt = - kC, 

or the active substance is disappearing at a rate propor­
tional to its concentration at any moment (" compound 
interest law"). On integration, 

dO 
C = - kdt, or 

- log.O = kt + constant. 
Thus if the logarithms of the concentrations are plotted 

-against times, the graph is a straight line. (Ordinary 
logarithms may be used, since 

10gloO = '4343 10g.O 
... - logloO = (,4343k)t + constant). 

Values of t and 0 may also be plotted on semi-loglLrith­
!D.ic pILper, in which the horizontal rulings a.re spaced in 
proportion to the logarithms of the natural numbers. (See 
Watson, I< Text Book of Practical Physics".) 

(b) Let n = 2, i.e. the reaction is bimolecular, 
. '. dO/dt = - kC2 

.'. l/C = kt + constant. 
If reciprocals of concentrations are plotted against 

times, the graph is a straight line. 
The student will easily show that for ter-, quadri-, etc., 

molecular reactions, 1/C2, 1/C3, etc., will give straight lines 
when plotted against t. 

Thus, to find the order of a reaction we have simply to 
·find by trial which one of the following expressions gives 
a. straight line when plotted against the times ;-

(i) log C (or plot on semi-lag-paper) - unimolecular. 
(ii) l/C - bimolecular. 

(iii) 1/C2 - termolecular. 
(iv) l/cn - 1 - n molecular (n> 1). 
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Any numbers proportional to C may be used, for ex­
ample the number of C.c. of a standard solution used in 
titrating the active substance. 

A supply of experimental results, for testing the above 
method, can be found in any textbook of physical 
chemistry. 

89. COURSE OF A REACTION 

There is a very important point in connexion with the 
order of a reaction which may be referred to here, although 
the full consideration is deferred until later. A large 
number of chemical reactions appear to be made up of 
a number of simpler reactions, which may either go on 
simultaneously (Side Reactions), or one after the other 
(Consecutive Reactions). The substance A may be con­
verted into B through an intermediate stage C :-

(i) A - C, followed by the reaction 
(ii) C - B. 
One of these reactions, say (iJ may be very much 

faster than the other, and the measured rate is then 
practically the velocity of (ii), the slow reaction. The 
calculated "order" will then be, not the order of the com­
plete reaction, but that of the slowest component re­
action. Prof. James Walker (" Proc. Roy. Soc. Eain.," 
22, 1898) gives a very lucid analogy: "The time occupied 
by the transmission of a telegraphic message depends 
both on the rate of transmission along the conducting 
wire, and on the rate of progress of the messenger who 
delivers the telegram; but it is obviously this last, slower 
rate that is of really practical importance in determining 
the time of transmission". 

The view is becoming more and more pronounced that 
reactions of higher orders are very rare. These are 
supposed to be made up of a series of consecutive simpler 
reactions, and of these the bimolecular reaction appears to 
be the most frequent. The reason is at once apparent if 
we Qonsider the subject from the molecular standpoint. 
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"In illustration, imagine a substance, say gaseous for 
simplicity, formed by the immediate spont~neous com­
bination of three gaseous components A, B, C. When 
these gases are mixed, the chances are very remote of the 
occurrence of the simultaneous triple encounter of an A, a 
B, and a C, which would be necessary to the immediate 

, formation of an ABC; whereas if ever formed, it would 
be liable to the normal chance of dissociating by collisions; 
it would thus practically be non-existent in the statistical 
sense. But if an intermediate combination AB could 
exist, very transiently, though long enough to cover a 
considerable fraction of the mean free path of the mole­
cules, this will readily be formed by ordinary binary en­
counters of A and B, and another binary encounter of 
AB with C will now form the triple compound ABC in 
quantity" (Larmor, " Proc. Manchester Phil. Soc.," 1908). 

90. REACTION CONSTANTS WITHOUT INTEGRATION 

W. C. Bray (" Journ. Phys. Chem." IX. 573) obtains 
the reaction constants without integration by the followiIw· 
method. Suppose the equation of the reaction is 

~: = RCA - x)(B - X)2. 

Then we take any simple function of A, B, x, t which 
represents the course of the curve near a point (x, t) for 
which we require dx/dt, and differentiate it. Thus, in the 
above equation, if B is large compared with A, we can use 

dx 
dt = k(A - x) 

to represent a small portion of the,curve near (x, t). Then 
1 A k 

. k = t ln A _ x ... K = B~' 
The preliminary constant (k) is calculated from as 

simple an equation as possible, and the final constant (R) 
derived from it by means of the differential equation. The 
value of k must be calculated from pairs of consecutive 
llleasurements, 
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dx 
Let kl = value of k for Ct l , Xl)' .'. dt = kl (A - Xl)' 

dx 
k2 = " " (t2' X2) .'. dt = k2(A - X2)' 

But ~: "" R (A - Xl) (B - xl)2, 

~: "" R(A - X2) (B - X2)2, 

. K kl k2 
, =' (B - X

1
)2 (B - X

2
)2' 



CHAPTER IX 

THE INDEFINITE INTEGRAL (CON'J:INUED) 

91. VELOCITY OF REACTION 

A METHOD of treating the velocity equations of re­
actions which leads to useful results has been 

described by G. W. Todd (Phil.' Mag., 35, 281, 1918). A 
reaction between two substances, A and B, of the form:-

mA + nB _ one or more products, 
in which the reverse reaction is negligible, is considered. 
In this case the law of mass action gives for the velocity 
of reaction:-

- ~~ = k. C: . C; = k. [Ar . [Bf 

where CA = [A], CB = [B], 
is a useful notation for the concentrations. Todd shows 
that it is possible to plot curves which will apply tlo all 
reactions of a similar type, so that a separate integration 
is llot necessary in each case. '\ 

If the reaction is Bimolecular: A + B -» products, the 
velocity equation is :-

dx 
dt = k (a - x) (b - x) 

= ka2 (1 - ~) (~ - ~) 
== R(1 - X) (p - X), 

- where x/a = X = fraction changed; R = ka; p = b/a. 
(i) If the initial concentrations are equal, a = b, 

;.p = 1, 

f dX X 
;. Rt = (1 _ X2) = 1 - X' 

1156 
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The maximum value of X is I, Giving X values from 
o to 1 we find 

X = 0 'I '2 '3 '4 '5 '0 '7 '8 '9 1'0 
Kt = 0 '111 '250 '428 '666 1'00 1'50 2'33 4'00 9'00 00 

These are plotted in curve A(p = I), 
(ii) If one of the substances is in excess, say b/a = p > 1, 

then Kt = _1_{ log. p(l - ~}. 
1-p p-X 

The values of Kt are again calculated for different 
values of X from 0 to 1, and with values of p, say 1'5, 2, 
3, ' , , and a series of curves B, 0, D, ' , , obtained, 

These curveS may now be used as follows :-
(1) To tind k, the velocity constant: measure the 

fraction X of the substance changed in a given time t; 
thence read off from the curve the value of Kt, from which 
k is found by the relation: k = Kt/at, 

(2) To tind the fraction X changed in a given time t. 
This requires a knowledge of k and the initial concentra­
tion. Thence Kt is found, and X read off directly from 
the curve. 

If the reaction is Termolecular: 2 A + B --7 one or 
more products, then 

dx 
ilT = k(a - x)2(b - x) 

= ka3 (1 - ~y(~ - ~} 
With the previous notation this gives, when K = ka2, 

J dX 
Kt = (1 - X)2(p - X)' 

(i) If the initial concentrations are equal (p = 1) 

J 
dX (2 - X)X 

Kt = (1 _ X);J = t (1 _ X)2 ' 

which gives :-
X = 'I '2 '3 '4 '5'6 '7 'S '9 1'0 

Kt = '117 '281 '520 '889 1'5 2'63 5'06 12'0 50 (1) 

These are plotted on a curve, which applies to all ter­
molecular reactions with the initial substances in equivalent 
!\moupts, 
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(ii) If B is in excess, p = b/a> 1, then 

J 
dX 1 { p(l- X) X(l-P)} 

Kt= (I-X)2(p-X)=(l.=..p)2 log. p-X - I-X' 
The values of Kt are calculated for different values of 

p (1'5,2, 2'5, 3 ... ), and a series of curves obtained. 
(iii) If A is in excess, p = b/a < 1, and then 

J dX 1 { P - X X(p - I)} 
Kt = (p _ X)2(I _ X) = (p - 1)2 log. p(I - X) ~ p(p - X) , 
where K =' kb2

• Another series of curves may be plotted 
for different values of p, as before. 

The cases of quadrimolecular reactions, and the figures 
of the curves for the various cases, are given in the original 
paper. 

The application of this method to the rate of oxidation 
of nitric oxide admixed with air, which is an important 
technical problem, will be found in the publication, " Phy­
sical and Chemical Data of Nitrogen Fixation," Munitions 
Inventions Department Publication, H.M. Stationery 
Office, HH8. 

The above calculations refer to constant volume; if the 
volume changes during the reaction (e.g., 2NO + O2 = 2N(2), 

they require modification if the pressure is maintain~d 
constant throughout the reaction. In the case just men7 
tioned:- \ 

NO + NO + O2 = 2N02 

let a = half the number of mols of NO in the reaction 
space v, 

b = total number of mols of oxygen in volume v, 
x = half the number of mols of NO converted, 

= number of mols of oxygen used up. 
Then :t(;) = kC ~ xy(b ~ X) 
or 1 dx x dv k 

V dv - ;2 dt = v3 (a - x?(b - x) . (A.) 

The volume is now proportional to the number of 
molecules present, at constant pressure:-

v 3a(I + aX) + (b - a) 
Vo 3a + (b - a) 
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where X = x/a, a = - !, since the diminution of volume 
is one volume in three volumes. Thus 

dv 3voa dX 
dt = 3a + (b - a) . dt . (B) 

Substitute (B) in (A), putting x/a = X; b/a = p> 1 (B 
in excess);-

dX = k(a_)2 (1 - X}2(p - X) 
:. dt 1'0 3a X 

1+ 2 + p 
3a 

:. k(~)2 _ f 1 + 2+P X 
Vo t - (1 _ X)2(p _ X)dX 

1 {2 p(1 - X) p + 1 X} 
= p + 2. (p - 1)2 log. p - X + p - 1 . 1 - X . 
If na molecules of inert gas are present initially as 

well as 2a molecules of A and b molecules of B, we have 
v 3aCI + aX) + (b - a) + na 
Vo 3a + (b - a) + na ' 

3a 

. (~)2 _'J 1
+2+ p +n

X 
.. k Vo t - (1 _ X)2(p _ X)dX. 

Corresponding equations with A in excess are found by 
a similar method (cf. Todd, Phil. Mag., 38, 435, 1918). 

92. GENERAL EXAMPLES FOR EXERCISE 

The following are to be worked by the metholl of 
Partial Fractions. 

f X3 x 2 

(1) 1 + X2dx = '2 - log ,,/1 + x2
• 

(2) 

(3) 

(4) 

(5) 

f X3 x2 

1 _ X2dx = - '2 - log )1 - :rt. 

f dx = 10 2x + 1. 
1 + 3x + 2x2 g X + 1 

J
X+1 2 

(x _ 1)2dx = log (x - 1) - x - r 

J 
xdx 1 (x + 4)2 

x2 + 6x + 8 = og x + 2 . 

I X2 - 1 (x - 3)8 
(6) (x':::-2)(x- 3)ax "" x + log(x _ 2)3' 
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i The following are to be integrated by the method of 
Substitution. 

Let u = j(x), 
du =f(x)dx. 

Thusf(x) may be replaced by u, and dx by I~:) in the 

integral. After the integration has been performed, re­
place the original variable. 

S dx 
(7) x(1 + x~)' 

Put x2 = u, 
du 

.'. dx = 2x' 

I dx I du I(l 1) .'. x(1 + x2) = t u(l + u) = t u - 1 + u du 
U x2 X 

... t logl + u = t logl + x2 = log ../1 +-~~. 

I xdx x2 - 1 
(8) x' _ 1 = t logx2 + l' 

f x2dx 
(9) (a + bx)"t>' 

z-a 
Put a + bx = z • . x - -b - ; 

dz 
bdx = dz .'. dx = b' 

I x2dx = I(Z - a)2 dz 
(a + bX)3 b2 ' bzS 

= !_J(Z - a)2dz 
bS ZS 

1 IZ 2 - 2az + a~d 
= 1)3 ZS Z 

= !:_S(! - 2a + a
2
)dz 

bS z Z2 Z3 

= !_(log z + 2a _ !!!_) 
b3 Z 2Z2 

1 { 3a2 + 4abx} 
= 1)3 log (a + bx) + 2(a + bx)2 . 



160 HIGHER MATHEMATICS 

f dx 
(10) x2(a + bX)2' 

A double substitution is necessary in this example. 

L 1 dz 
et x = - .', dx = - 2' z z 

f dx J z2dz 
x2(a + bx)2 = - (b + az)2' 

Now put b + az = y, 
y--'- b 

:. z = ----;1,-' 

dz = ~1j_ 
a 

J z2dz I(Y - b)2 dy 
(b + az)2 = - ~-'y2 

= - ~f(Y -. b)2 dy 
a3 Y~ 

= _ !_J(l - 2b + b
2

)dy 
a3 y y2 

1 ( b
2

) = - (j} Y - 2b log Y - ii 
= - 2b

1o 
a + bx _ ___!! + 2ba;_ 

a 3 g x a2x(a + bx)' 

(11) J(a - ~ + cx~)dx = ax + _!_ + 2c x~' 
x 3 2x2 5 

S 
(a _. x)dx 1 

(12) (2ax _ x2) i = (2ax - x2
) V, 

(13) ro~ x dx = t(\og X)2, (Put x = eU
,) 

(14) I (1n + nx)dx - ~l ( b 2) 
b 2 - 2 og a + x + cx a+ x+ox 0 

_ 2mc - nbf __ d_x __ 
20 a +, bx + ox2' 

(15) Arrhenius used the following expression in his 
study of the hydrolysis of ethyl acetate;-

1 + mx - nx'.l d 
(a - x)(b - x) x. 
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To integrate, divide out by the denominator 
1 + mx - nx'1. 1 + abn + {m - n(a + b)}x 
(a - x) (b - x) = - n + (a - x)(b - x) . 
Put 1 + abn = p, m - n(a + b) = q, p and q being 

constants. Then assume 
p + qx A B 

(a - x)(b - x) - a - x + b - x' 
By multiplying both sides by (a - x) (b - x), putting 

x = a and x = b in succession, we readily find;-

A=_p+aq 
a - b' 

B =p + bq 
a - b' 

. JI + mx - nx
2 dx = J{ _ n _ p + aq _.1_ 

(a - x) (b - x) a - b . a - x 

+ p + bq ._I_}dx 
a-b b-x 

= - nx + P
a 

+_ ~q log (a - x) - ~ ~ ~blOg (b - x). 

(16) Noyes' method of finding the order of a chemical 
reaction is an application of the method of "Equal Frac­
tional Changes". Different initial quantities or concen­
trations of the reacting substances being taken, the times 
for the conversion of equal fractions of the original 
amounts are determined. The general velocity equation is 

dC . 1 1 
- Cn = kdt .. n _ 1 . cn -1 = kt + const. 

Let leO be one initial concentration (t = 0) 

:._1_1 (C~-l - C~ -1) = kt!. 
n-- 1 10 

Let 100' 2CO be two initial concentrations (t = 0); t l , ta 
the times for equal fractions to be transformed, so that 
hOo - C})/}CQ = ~CQ - C2)/~Cq.·. lCQ/Cl = 2CO/C2 = a, say. 

11 
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Then n : 1 (C/-l - lC~-l) = kt1; 

_1_ (~1 ___ ~1 ) = kt2 
n - 1 c

2
n-1 2CO"-1 

( C n -1 _ C n -1) C n -1 C n -1 t 
• 10 1 220 =...J 

•• (2CO" 1 - C2" 1) C1" 1 1CO" 1 t2 

2CO"-1 (1 - a) =!J ... n = 1 + log tl - log t2 
.. lCO"-1 (1 - a) . t2 log2Co - JoglCo 
(17) In the case of opposing reactions, the products of the 

direct reaction interact to reproduce the original substances. 
Example :-

(i) CHaC02H + C2H50H _CHaC02C2H5 + H20, 
(ii) CHaC02C2H; + H20 _ CHaC02H + C2H;OH; 

or, expressing this in one equation, 
CHaC02H + C2H;OH ~ CHaC02C2H; + H20. 

Let a, b, c, d denote tb_e initial concentrations of acid, 
alcohol, ester, and water; and let the amount of change 
after a time t be x. 

The velocities of the direct and reverse reactions are 

~l = k1(a - x)(b - x), 

dxz at = k2 (c + x) (d + x) ; 

hence the velocity of esterification is 

~: = ~~l - a;: = k 1(a - x)(b - x) - k2(c + x)(d + x). 

To integra.te this equation we put 
dx/[~(a - x)(b - x) - klc + x)(d + x)] = dt. 

The denominator on the left can be written 
(k1ab - kzcd) - {k1(a + b) + k2(c + d)}x + (k1 - ka)xZ; 

or dividing by k2 and putting kJ/k2 = K, 
(Kab - cd) - {KCa + b) + (c + d)}x + (K - 1)x2 ; 

which is of the form . 
lx2 + mx + n. 

To factorize this expression we proceed as follows :­
;yet a, f1 be the roots of the 'luadratic equation 

lX2 + mx + n :: 0, 
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Then n : 1 (C)--I - IC~-l) = ktl ; 

_1_ (_1_ _ _~1_) = kt 
n - 1 C

2
" -1 20 0" -I 2 

( C ,,- 1 _ C n - 1) C n - 1 C n - 1 t 
, 1 0 1 2 2 0 = _J 

" (20 0" 1 _ O2'' 1) Oin 
1 JCO" 1 t2 

2CO"-1 (1 - a) =.!..I ,'. n = 1 + log tl - log t2 
.• lCO"-1 (1 - a) . t2 log 2CO - log lCO 
(17) In the case of opposing reactions, the products of the 

direct reaction interact to reproduce the original substances. 
Example :-

(i) CHa002H + C2H 50H -» CHaC02C2H 5 + H20, 
(ii) CHaC02C2H 5 + H20 -» CHaC02H + C2H 50H; 

or, expressing this in one equation, 
CHaC02H + C2H 50H ~ CHZC02C2H 5 + H 20, 

Let a, b, c, d denote th_e initial concentrations of acid, 
alcohol, ester, and water; and let the amount of change 
after a time t be x. 

The velocities of the direct and reverse reactions are 

a:"l = k1(a - x)(b - x), 

dx 
d/ = k2 (c + x)(d + x); 

hence the velocity of esterification is 

~~ = ~1 _ d~2 = kI(a - x)(b - x) - k2(C + x)(d + x). 

To integra,te this equation we put 
dx/[~(a - x)(b - x) - k2(C + x)(d + x)] = dt. 

The denominator on the left can be written 
(klab - k2cd) - {kI(a + b) + klc + d)}x + (k1 - k2)X2 ; 

or dividing by k2 and putting kI/k2 = K, 
(Kab - cd) - {KCa + b) + (0 + d)}x + (K - 1)x2; 

which is of the form 
lx2 + mx + n. 

To factorize this expression we proceed as follows:­
;yet a, f3 be the roots of the quadratic equation 

- la;2 + rna; + n = Q, 
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It is proved in the appendix that 
.___,,----;-;--_ m + Jm2 _ 4ln 

a = 2l ' 

_ rn _ Jm2 _ 4ln 
fJ = 2l . 

On comparing these results with the exprbssion to be 
factorized, it is seen that 

l = K _ 1, " 
m = _ {K(a + b) + (0 + d)} = _ Q saiy, 
n = Kab _ cd; 

tbence 1 

a = 2(K
1
_ 1){Q + JQ2 _ 4(K _ l)(Kab _ od)}, 

13 = 2(K
1
_ 1){Q _ JQ2 _ 4(K _ l)(Kab _ od) }-

Put JQ~ - 4(K _ l)(Kab - cd) = P \ 
Q+P Q-P 

.'. a = 2(K _ 1)' p = 2(K - 1)" '\ 
Thus (Kab _ od) - {K(a + b) + (0 + d)}x + (K - 1)x2 

= (x _ a) (x - P). 
N ow, to split into partial fractions, assume 

1 A B 
(x _ a)(x - (3) = x - a + X _ f3' \ 

&nd. by the usual methods, it is found that 
A = (K _ l)/P, B = _ (K _ 1)/P. 

The expression is now integrable 
t = {2(K - 1)2}{ 1 log [Q + P _ 2(K _ l)x] 

Pk2 2(K _ I} 

- 2(K
1
_ l)log [Q _ P _ 2(K -1)x]} + C. 

To find C put x = 0, t = 0, and simplify 
. 1. K _ 1'1 (Q - P)[Q + P _ 2(K _ l)x] _ k 
.. t ---p- og (Q + P)[Q _ P _ 2(K _ l)x] - 2' 

(18) M. Bodenstein studied the rate of decomposition 
of hydriodic acid heated in a glass bulb. Let 1 gram 
molecule of HI be beated in a v litre globe. 

HI + HI~H2 + Ia. 
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dx (1 - X)2 (X)2 - = kl -- - k2 -
dt v v , 

where 1 - x = concentration of undissociated acid. 
v 

Put k1/kz = K 
. J dx _kt/2 .. K(l _ X)2 _ x2 - 2 v. 

1 A B 
Put + .- c-----

KCl - x)t - x2 JK(l - x) + x JK(l - x) - x' 

.. l=(JR + l)A(J~! 1 - x) 
/~ ( v'K ) + (.,r K - l)B v'K _ 1 - x . 

v'R v'K. . • 
Put x = ..jK _ l' and ..jK + 1 In succeSSlOn, 

A _ _ v'K - 1 B _ v'R + 1 
- 2v'R' - 2,..jK· 

The student may now complete the integration: 
~ v'R(1 - x) + x _ 2 

2..jK1ogv'K(1 _ x) _ x - kzt/v. 

(19) Integrate 25x33+ 1 2' by partial fractions. 
x - x + 

[5t + 15x - 6 log (x - 1) + 41 log (x - 2).J J) 

(20) The Clapeyron-Clausius formula (p. 126) in the 
form :-

1 dp _ d log P _ A-
(1) i dT= dT - RT2 

may be integrated on the assumption that A- is indepen­
dent of temperature to give 

A- B log P = - -.- + canst. = A - -
RT T 

(2) 

where A and B are constants. This is a vapour-pressure 
formula, giving the vapour pressure of a liquid as a func­
tion of the temperature. If we assume that ~ (the latent 
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heat of evaporation) is a linear function of temperature: 
A = Ao - aT, we find 

A a B 
log p = - RT - R log t + canst. = A - T - Clog t (3) 

This is Kirchhoff's vapour-pressure equation. Julius­
burger (Ann. Physik. [iv.], 3. 618, 1900) found that this 
equation gave excellent results with pure liquids even up 
to the critical point; Dr. G. N. White and the author 
find that it applies to aqueous solutions of sulphuric acid 
(the composition of each solution fixes the values of the 
three constants A, B, C). 

If we consider solutions, the osmotic pressure P takes 
the place of the vapour pressure, and X is the heat of 
solution. But P = CRT, where C is the concentration, 

. d log C _ X • (la) 
dT - RT2 

Van't Hoff (1886) assumed that X was independent of 
temperature over small intervals, and thus found 

X B 
log C = - RT + const. = A - T' . (2a) 

This equation has been shown (e.g., by Noyes and 
Sa.mmet, Zeit. phys. Ghem., 4,3. 513, 1903) to give good 
results with a small temperature range. R. T. Hardman 
and J. R. Partington (Trans. Ohem. Soc., 99. 1769, 1911) 
extended the range of the equation by showing ~rom ther-

. mochemical measurements of Thomsen that the heat of 
solution could be expressed in the form A -= Ao - aT. 
Thence 

B log C = A - - - 0 log T 
T 

This formula gives excellent results even with 
concentrated solutions, e.g., with cane sugar:-

TO abs. 283 313 333 
Gms. per 100 gm. 

water (calcd.) 
Do. oba. • 

189'8 

190'5 

239'8 

238'1 

(Sa) 

very 
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9x2 + 9x - 128 . . 
(21) Integrate 3 5 2 3 9 by partIal fractIOns. 

x - x + x+ 

[ - 8 log (x + 1) + x : 3 + 17 log (x - 3).] 

x2 + 1 
(22) Integrate (x _ 1)4(x3 + 1)" 

Assume x
2 

+ 1 = __!_L_ + ~. + ~ 
(x - 1)4(x3 + 1) (x - 1)4 (x - 1)3 (x - IF 

A4 Cx + D B 
+ (x - 1) + x 2 - X + 1 + x -I- l' 

,'. x2 + 1={Al + ~(x - 1) + Aa(x -I)2+A4(x-l)3}(x3 +1) 
+ {B(x2 - X + 1) + (Cx + D)(x + 1)}(x - 1)4. (1) 

Put x = 1 .'. 2 = 2Al . (2) 
.'. Al = 1. 

From (1) and (2) by subtraction 
x 2 

- 1 = Al (X3 - 1) + {~+ A3 (x - 1) + A4 (x - 1)2} ... 
X (x - 1) (x3 + 1) + {B (X2 - x + 1) + (Cx + D) (x + 1)}(x - 1)4. 
Divide by x-I, then 

x + 1 = Al(X2 + X + 1) + {A2 + A3(x - 1) + A4(x - 1)2} 
x (x3 + 1)+ {B(X2 - x+ 1)+ (Cx+ D)(x+ 1)}(x -1)3 (3) 

Put x = 1, then 2 = 3Al + 2A2 • (4) 

.'. ~= - i· 
We subtract (3) and (4), divide by x-I, put x = 1, 

etc., and so on, until we have found AI' A2 , Aa, A4, Bp Cl 
and D. The separate fractions are then integrated/and 
the result is 

- 3(x = 1)3 + 4(x ~ 1)2 + 4(x ~ 1) + ~log (x - 1) 
+ -h log (x + 1) - ! log (x2 - X + 1). 

93. INTEGRATION OF IRRATIONAL FUNCTIONS 

An irrational function may be transformed into a 
rational function of a new variable by suitable substitution. 
For the general discussion, see Lamb's" Calculus," §§ 75, 
85. We shall indicate the nature of the process by the 
consideration of particular examples. 
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Examples :-
(1) ~x Jl + x. dx. 

Substitute x + 1 = u2
, 

.'. X = u 2 - I, 
:. dx = 2udu. 

Sx Jl + x. dx = ~(U2 - 1)2u2du 
= 2~U4du - 2~U2du 
= 2U5 - -}u3 

-,'C'--_, ~ 

- = i(x + 1)~ - i(x + 1)~ 

_; = 2(x + l)i{~ - {5}' 
(2) J JdX ,by the same substitution as (1), gives 

x 1 + x 

I-dx = 2f udu = 2f~ 
x J1 + x (u2 

- l)u u2 - 1 

= 10gU - 11' by Partial Fractions, 
u + 

= 10 JT+X - 1. 
. gJl+x+l 

f
- dx 

(3) x J5 - 6x5 

Putx5 =!_ 
u2 

,. 5 log x = - 2 log u 

- ,'. ~dx = - ~du 
x u 
dx 2 du 

or x = - 5'u' 

J dx 2f du 
x J5 - 6x5 

= - 5" u~ 5 - !2 
2f du 

= - 5 J 5=='u'-7i' 2=-==;;;6 

2 f du 
= - 5 J5 YU2 _ ~. 

5 
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dx 
d[log (x + JX2 ± a2)] = -=== 

JX2 ± a2
' 

hence the last integral is 
2 ( ,-6) 

"" - 5 Jf}og u + 'Y u2 
- 5 ' 

The substitution of x - ~ for u will complete the inte· \ 
grationo \ 

f 
dx 

(4) JX2 + a2 
may be independently worked as follows-a very instruc­
tive example :-

Let a2 + x2 = Z2, 

,0, xdx = zdz, 

, '. dz = dx = dx + dz 
x z x+z' 

by the very important rule of the Theory of Proportion, 
viz, if a series of fractions are equal, 

h f t o sum of numerators 
eac rae Ion = 0, 

sum of denommators 
Proof;-

dz dx Let - = - == k ." x z ' 
Then dz = k:e, and dx = kz, 
• 0 (dx + dz) = k(x + z), • 

dx + dz = k = dz = dx. 
x + z x z 

Hence J dx = Sdx = Sdx + rJ:_f! = Sd(x + z) 
Ja~ + x2 z X + z x + Z 

:-:c---,,-. 
= log (x + z) = log {x + Ja2 + x2} 

f 
dx 

(5) J 2 2 = log {x + JX2 - a2} x - a 

(6) f dx = J dx = - If d(~) 
x Ja

2 
- x

2 
2(a2 )>1 ~ ~2 )' x --1 --1 x2 2 
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co _ ~log {~ + (:: _ 1) t} 
l' x = -log . 
OJ a + Ja2 

- x2 

(7) A double substitution is required in integra.ting 

I· dx 
X4.jX2 - l' 

Put x = lIz, 
:. log x = - log z 
.'. dx/x = - dtlz . 

I x 2 - 1 = l/z2 - 1 = (1 - Z2)/Z2 

I 
dx 'f Z2~ Iz2 

(- zdz) 
... X4(X2 - 1)1 = - .(~ - z2)i = (1 _ z2)1 

z 
Now substitute 1 - Z2 = u2 

. '. - 2zdz = 2udu, 
or - zdz = udu. 

Also Z2 = 1 - u2 

... IZ2( - sdz) = I(1 - u
2
)udu = I(I _ u2)du 

(1 - z2)l u. 

= u - ~3 ,d; ue ~ u) 
JV(3 - 1 + Z2) 

(8) Integrate 
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94. METHODS OF APPROXIMATE INTEGRATION 

It may be proved that every continuous function has 
an indefinite integral. This integral may not, however, 
be expressible in a finite form by using the ordinary 
functions of mathematics. 

Examples :-

I eX'dx, I ~= dx, I J1
d

: x3 

cannot be integrated in finite terms, because we do not 
know any ordinary function which, when differentiated, 
gives as a result ex·, etc. Now such integrals often occur ~ 
in practical work. Thus ~e - ,2dx is a very important in· 
tegral in physics, occurring in the mathematical treatment 
of heat conduction (Fourier's theorem), the secular cooling 
of the earth, the kinetic theory of gases, and the path of a 
ray of light through a continuously varying medium. Two 
lines of attack suggest themselves. 

(1) Invent a new mathematical function. 
Thus, if we had been ignorant of the logarithmic 

function, we could not have integrated the expression I~x, 
and such a function might have been suggested by an 
attempt to integrate this particular expression. (Cf. 
Hardy's" Course of Pure Mathematics," Cambridge, 1908, 
chap. IX.) Various new functions have arisen in ''this 
way; for example Legendre's Elliptic Functions, the 
Error Function, etc. 

(2) Obtain an approximate value of the integral. 
The method most generally employed is to endeavour 

to express the function as an infinite convergent series, 
which may then .be capable of integration to any desired 
degree of accuracy. This is called Integration by Series. 

Let y = cp(x) 
be the function we are given to integrate: 

Assume that cp(x) may be expressed in the form of an 
infinite convergent series :- . 

cp(x) = ao + alx + a:aX2 + .•. + a"x" + ... 
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When we assume that a function can be expanded 
into such a series, containing only algebraic terms, we 
assume that it is a continuous function. -

The constants ao, a1, a2, ••• , which are independent -of 
the value x, are at present undetermined. If these con­
stants cfl,n be found up to a certain point in the series, the 
value of the integral can be at once found to a degree of 
accuracY' corresponding to the magnitude of the terms of 
the serie$ which have been rejected. The integral is in 
fact 

IA..()d" 1 2 1 a 1" + I 
't' X X 9 aox + 2alx + Sa2x + ... + n + 1 anx + ... 

The investigation of the next paragraph enables us to 
find the values of the constants ao' aI' ~, ... in the series. 

95. MACLAURIN'S THEOREM 

Maclaurin's Theorem determines the law for the ex­
pansion of a function of a single variable in terms of a 
series of ascending powers of that variable. 

Let u = 4>(x), 

and assume that 4>(x) can be developed into a series of 
ascending powers of X, this series being uniformly conver­
gent. Then the derivative 4>'(x) may be obtained by differ­
entiating the series term by term ;-

4>(x) = ao t alx + a2x
2 + .. , + a"x" + .. . 

:. 4>'(x) = a l ':: 2~x + ... + na"x"- l + .. . 
The resulting series will also be convergent, and the 

process of differentiation may be repeated. 
4>"(x) = 2~ + ... + n(n - 1)anx,,-2 + ... 

4>"'(x) = 2. 3.aa + ... + n(n - l)(n - 2)a"x"- a + ... 

4>"(x) = n(n - 1) (n - 2) ... 3. 2.1 . an + ... ; 
a constant vanishing at each step. With the" factorial " 
notation (2 !, = 1 . 2; 3! = 1 .2. 3, etc.; n! = n(n - 1) ... 
2.1) ;-
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, cp(x) = ao + alx + a2x2 + a3x3 + ... + anx" + 
cp'(x) = a l + 2~x + 3a3x2 + ... + na"x" -I + ... 
cp"(x) = 2! ~ + 31a3x + ... + n(1L - 1)a"x"-2 + ... 

cp" (x) = 7b! an + ... 
These equations being true for all values of x, the con­

stants ao' all ~, ..• a" have the same value for a particular 
form of cp(x) whatever value we assign to x. Let us 
asaume that x = 0;-

cp(O) = ao 
cp'(O) = a l 

cp"(O) = 2' ~ 

cp'" (0) = 3! a3 

:. ao = cp(O) ; 
:. a l = cp' (0) ; 

:. a2 = 2
1

,CP"(0); 

1 "'", 0) .. a3 = 3 !'t' ( ; 

cp"(O) = n! an .. an = 1,CP"(O). 
n. 

4>(0), cp'(O), etc. imply that x is put equal to 0 after the 
differentiations have been performed. Substituting the 
values of ao' ai' ... an> we get 

4>(x) = 4> (0) + x4>' (0) + ~2ICP" (0) + ... + :~<pn(o) + ... 

which is called Maclaurin's Theorem. 

,96. TAYLOR'S THEOREM 

Let u = cp(x + y). 
Taylor's theorem determines the law for the expansion 

of a sum or difference of two variables in terms of a series 
of ascending powers of one variable. 

We assume that 
cp(x + y) = ao + aly + a2y2 + ... + anY" + ... 

where ao' aI' ~, ... are independent of y, but may be 
functions of x. Now since the series is assumed to be 
true for all values of x and y, it will be true when x 
assumes a particular value ~. 
cp(~+ y) = a'o + a'lY + a'2y2 + ... + a'"y"+ . .. 
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Put Z = ~ + y, :. y = Z - ~, and, by Maclaurin's theorem 
u'=Cp(Z) =a'o+ a/l(z- ~ +a'2(z- ~2+ .. . +an(z - ~t+ .•. 

cp'(z) = a'l + 2a'z(z -~) + 3a's(z- ~)2+ ... 
cp"(z) = !' 2.a'2 +3.2.a'a(z - ~+ ... 
cp"'(z) = ' 3.2.a'a. 

+ 4.3.2. ~(z - ~ + .... . 
Maclaurin's theorem deduces the values of ao, aI' .. . 

on the hypothesis that x = 0, but in the present ca.se it is 
required that x =~. Let z = ~ :. y = (z - ~) = 0, 

cp(~) = a'o :. a'o = cp(~; 
cp'(~ = a'l "':. a'l = cp'(~ ; 

,1.." (I:) = 2 la'. .. ' 1 ,1.." (1:'1 't'5 •. :.a 2 =2!'t' 51; 
,I 

cp"'(~) = 3! a'a \. 

... \ 
,l..n(l:) _ f' 1\ . ' _ _!_,l..n(l:'I. 
't' 5. - n.a n •. a ",,- n!'t' 5/'3 

:. cp(~ + y) = CP(~) + cp'(~Y + cp"(E)g; + CPIll(~KI + .. . 

+ cp,,(~)yn, + .. . 
n. 

But ~ being any value of x, we put ~ = x, 
2 3 

:. u = cp(x + y) = cp(x) + cp',x)y + CP"(x)2Y ,+CP"'(x)3Y'+'" . \.. 

\ n Y" + cp (x), + ... n. 
which is Taylor's Series. 

97. EXAMPLES ON MAOLAURIN'S THEOREM 

(1) Let u = (a + x)" 
cp(x) = (a + x)" ... cp(O) = an; 
cp'(x) = n(a + X)"-l ... cp'(O)=na,,-lj 
p"(X) = n(n - 1). (a + X)"-2 ... cp"(O) = n(n - 1)a"-2; 
tnd so on. Substitute in Maclaurin's series :-

. x2 

(a + x)" = an + nan -1. X + n(n - l)an 
- 2 2! + .•• 

Nhich is the well-known Binomial Series. 
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Now this is true for positive integral values of n for all 
values of x; but if n is negative or fractional, the expan­
sion fails unless x lies between ± 1. In the latter case the 
assumption virtually made on expansion into a series is 
invalid, i.e. cf>(x) cannot be expanded into a convergent 
power series. 

(a) Integrate (1 + x)* in series. 
(1 + x) i = 1 + ix - jx2 + ~\X3 - • , , 

. '. W + x) ~dx = x + tx2 - 2\rX3 + s\x4 - , , , 

Now if x = 0'1, say, 
X4 = 0'00001, and 8\X4 = 0'000001 approximately. 

The remaining terms are still less, and it will probably 
be sufficient to stop after the fourth term. 

(b) The coefficient of expansion of a gas, liquid, or 
solid, is defined by the equation 

V t = Vo(l + at), 
where Yo, V = volumes at 0° C., t C., and a is the co­
efficient of expansion. This equation may be written 

V, = Vo + at. 
where a = Voa = constant. 

Let m, p be the mass and density of a given amQunt of 
the substance, then m = p V, 

:, PO/PI = V,/Vo = 1 + at, 
e', p = Pol (1 + at), 

= Po(1 + at) -1, 
= Po(l - at + (at)2 - (at)3 + , , .) 

by Maclaurin's theorem. 
In the case of mercury, a = 0'00018: in the case of air 

a = 0'0036, 
Thence show that if P is required to be accurate to 6 

decimal places, all terms after the second may be neglected 
in the case of mercury, but not in the case of air, 

)J dx - 1 3 1. 3 5 
(c 1 - X + " 3x + 2-4 5x + , , , (1 - X2)2 ;c,. • • 

(it) ~ (1 + x2) - Ida; "" iii - iX3 + -g-X5 - , , • 
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(2) Let u = eZ
, 

x2 x3 

then eX = 1 + x + 2 I + 3 I + ... 

(a) If u = aX, 
x2 

u = l+x.log a + 2 I (log a)2 + ... 

(b) If u = e-Z, show that 
x2 x 3 -

u=1-x+ 21 - 31 + .. · 

J 
2 x3 af> x7 

(c) e-
Z 

dx = x - 1. 3 + 1. 2 . 5 - 1. 2 . 3 . 7 + ... 

(d) cf>(x) = log (1 + x). 
cf>(x) = log (1 + x) :. cf>(O) = 0 

:. cf>'(O) = 1 cf>'(x) = _1_ 
l+x 

:Iond so on, 
x2 x3 1\ 

:. cf>(x) = x - 2- + :3 - ... \ 
Also show that if 

cf>(x) = log (1 - x), 
cf>(x) = - x - iX2 - txS - ••• 

These a.re convergent only if x <~. 

• \ 
98. EXAMPLES ON TAYLOR'S :THEOREM 

(1) Let U 1 = (x + y)". 
Put y = 0 :. u = x"; ~ . 

cf>(x) = X"j 

cf>'(x) =ix" -1; 
cf>" (x) = n(n - 1) x" - 2; etc. 

But U1 = cf>(x) + cf>'(x).y + cf>"(x). ~~ + .•. 

(n -1) 
= x" + nx" - 1 • Y + n~x" - 2y2 + ..• 

,2) Let u 1 = a~ + ~ 

;;:;::: as ,al, 
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Put Y = 0, u = aX; 
f/J(x) = aX; 

f/J' (x) = aX log a; 
f/J" (x) = aX (log a) 2; and so on. 

Thus U 1 = 4>(x + y) 

_ z( y2()2 1t( )3 ) - a 1 + y. log a + 2! log a + B! log a +.... 
(3) Let u1 = eX +\ 

X • z h2 
X ha 

X 

U 1 = e + he + 2 !e + 3 !e + ... 

(4) Let U 1 = (x + y + a)t. 
1 _ , 

U1 = (x + a) ~ + i (x + a) 'i. y . ... 
Examine the case x = - a. 
(5) Let U = log (x + y). 

y y2 yS 
u1 = log x + - - 2---"2 + -3 s - ••• x x x 

(6) Let U = log (n + h) ; 
where h is small compared with n, and h < 1. 

h h2 

log (n + h) = log n + - - -2 2 + ... n n 
h If h<l and n = 10000, -<0'0001, 
n 

2h\ < 0'000,000,005, which is quite negligible. 
n 

h Hence log (n + h) = log n + -; 
n 
1 and log (n + 1) = log n + -. 
n 

Th 
log (n + h) - log n h 

ence = -log (n + 1) - log n l' 

the familiar "Rule of Proportional Parts" in logarithms. 

1 + x {X X
S 

x5 } 
(7) log 1 _ x = 2 1 + 3 + '5 + . .. . 

This c~n be used to find log N, where N > 1, if N = 11 + it, 
-:1; 
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99. SOME EXAMPLES ON INFINITE INTEGRALS 

(1) The velocity eqria,tion for a bimolecular reaction is 
dx/dt = k(a - x)(b - x). 

The integral of this has been shown to be 
1 1 b(a - x) 

k = -t • --b . log (b ) (1) a-, a-x 
If a = b, this reduces to 

1 1 1 0 
k = t' 0 . log 1 = t' O' 

The f~action g is "indeterminate". The case a = b 

may, however, be developed by an application of Maclaurin's 
theorem. 

For a - x = a( 1 - ~), 

b - x = b(l - E)' 
:. log ~~ = :~! = log~~ = :;~j = log(l - ~) - (1 - E) 

Develop the logarithms by the logarithmic series (ex­
ample 2(d) on Maclaurin's theoreUl);-

{
X X2 x3 

} 
log (1 - x/a) = - - + t Ii + t"3 + . " , a a a 

• {X x
2 

x
3 } log (1 - x/b) = - b + t 1)2 + t f} + . .. , 

whence 
(a - x)b (1 1) x2(1 1 ) x~(l 1 ) 

log(b _ x)a = x b - a + -2 b2 - a2 + 3 l} - a 3 + ... 
a - b x2 a2 - b2 x3 a3 - b~ 

= x(ij) + '2 ~ + 3" a3b3 + ... 

{
xl x2 a + b x 3 a2 + ab - b2 } 

= (a - b) y' ab + '2 . a,2b2 + 3' a3b'~ + ... 

Now substitute in (1), and (a - b) cancels:-
1 b(a - x) x 1 x2 a+ b x 3 a 2 + ab - b2 

a - bloga(b_x) Y'ab+'2' a2b2 +~. a3b3 + ... 
12 
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Put a -= b, 
. [1 b(a - X)] X x 2 x3 

LIm --blog (b ) = -"2 + ;i + { + ..• a- a -x a a a 
a --'1>b 

;= ~(1 + x + x: + ... ) 
a a a 
x 1 x 

= a2
• (1 _~) a(a - x)' 

on summing the geometrical series. Thus 

k-! x 
- t . a(a - xl' 

which has been found independently by integratin~ the 
equation . 

dx/dt = k(a - xF. 
(2) If dx/dt = k(a - x) (b - X)2, 

find the integral when a is very nearly equal to b. 
Add and subtract (b - x) - 8 :-

dx/(a - x) (b - X)2 

[ 1 11] 
= (b - X)3 + (a - x)(b - X)2 - (b _ X)3 dx 

[ 
1 a- b{ 1 a- b 1 ] 

= (b - X)3 - b - x (b - x)S - b - x· (a - x) (b _ X)2 dx 

[ 
1 a - b (a - W (a - b)B J)) 

= (b-X)3- (b-X)4+ (b-x)S- (b-X)6+·.' dx 

a geometrical series which is convergent if (a - b) < (b - x), 
which may be satisfied by taking a sufficiently near b, 
before developing into a series. Integrate term by term ;-

, 1[1 {II} a - b {II} ] 
k = t 2 (b - X)2 - b2 - -3- (b - X)3 - b3 + ... 
If a is nearly equal to b, all terms after the first bracket 

may be neglected ;-

1[ 1 1J 
k = 2t (b - X)2 - b2 ' 

a result which is independent of a • . ' 
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Ie"" 
(3) . x da; 

ca.nnot be integrated in finite terms, 
\ a2{J;2 a3a;3 e1 = 1 + aa; + 1, 2 + 1. 2 ,3 + " " 

e= 1 a2a; a3a;3 
X =;; + a + 1,2 + I, 2 , 3 + , , " 

f tao \ a2a;2 a3x3 

;; da; == log a; + ax + 1. 2 , 2 + 1. 2 , 3 ,3 + ... , 
80 result which will be required later. 

I Ie« (4} \ 2dx. 
i a; 
, Let e' "'" v, - IJa; = u, 

'd x d 1 ., v = e, u = X2' 
Now we have by the result of the differential calculus 

d(uv) = vdu + udv, 
.', id(uv) = !vdu + ~udv, 

,', ~vdu = uv - iudv, 
Comparing with the values of u and v selected, we see 

that ' 

Iex eX \Je' ,...2dx = - - + ' -dx 
'" a; x 

eX x2 x3 

- -; + log a; + x + 1. 2, 2 + 1, 2 , 3, 3 + . , . 
This is an example of "Integration by Parts". 

f
e2~ - 1 

(5) e2"+ 1dx 

may be integrated in finite terms by a suitable transfor­
mation, 

( 
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CHAPTER X 

DEFINITE INTEGRALS 

100. THE DEFINITE'INTEGRAL 

T HE process of i~tegration w~ have,so, far considered 
merely as the Inverse of dIfferentIatIOn; so that if 

</J'(x) be the differential coefficient of a function, the prob­
lem of integration has been to find </J (x), the function 
from which </J' (x) was derived. Another very important 
meaning which may be attached ' 
to integration is to regard it as Q P", 
the process of finding the limit- \ 
ing value of a sum, when the 
tenus tend to become infinitely Q~,F====~p~, p< 
small, and their number infi-
nitely large, We will consider 
the matter from a geometrical Qll~ 
point of view. _ I I 

.Let the line ORo = Xo be Ok-~~R--~R,:::-~_J 
• ,R, R 

increaseil continl1ol1sly from .2'0 '" 

to OR,. = x,,, say by the uniform FIG. 26. 

motion of a particle placed in the line. Let RI, R2 be 
two successive positions of the advancing point very close 
together. Describe squares on ORo, ORI• OR2, OR". 

Let RI~ = dx, 
HRlP] + RaP2) = :c, 

. , gnomon Q!PI~ = 2xdx. 
As Po advances along OP", whilst Ro advances along 

OR .. , the figure Q .. R .. is formed continuously from the in­
finitesimal gnomons like Q2R2' and the total area is the 
Bum of these when their size is diminished indefinitely. 

181 
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Area = '$2xdx when dx_O 
= Lim '$2xdx; 

dx -",0 

and to indicate that the summation is to extend over a 
ra.nge from x = Xo to x = x"' we write this , 

Lim ~;~ d 
dx_O Lt~x x. 

x::= .1:0 

This symbol we shall now abbreviate to 

f"2xdx; 
·0 

which is called the Definite Integral of 2x between the 
limits oj integration x = Xo and x = x". (N ote the 
difference in meaning between "limit of integration," 
and "limit" as used up to this point.) 

But area = OQnP .. R" - OQoPoRo 
= x2

n - x2
0 

= r d(X2). 

The definite integral is therefore equal to the difference 
between the values of the indefinite integrals when x = x" 
and x = xo:-

S'''2xdx = x~ - X2 • 
" 0' '. also ~'2xdx = x2 + C 

... if x = Xm this = XZ n + C; 
if x = xo' this = XZ 

0 + C; 
the difference being x2 .. - x2 o. 

This is denoted by 

[ x2 In = :);2 .. - X 2
0 ; 

o 

'») 

the- square brackets indicating that the value for x = Xo is 
to be subtracted from the value for x -= xn • 

We shall now generalise this reasoning. 
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101. THE DEFINITE INTEGRAL 

Let y = f(x) 

183 

be a function of x which is finite and continuous from 
:I: = :1:0 to X = Xn • 

Let the ra.nge x,. - Xo be subdivided into a la.rge num­
ber of sma.ll in tervals Xl - xO' ~ - Xl' • • • X" - X n _ r Erect 
ordinates from xo> XII' •• to the curve, and draw inner and 
outer rectangles as shown. 

If Xl - Xo = X2 - Xl = ... = x,. - X",_ I = OX. the differ-

y 

\ 

\ 
\ 

FIG. 27. 

ence between the sums of the outer and the innor rect­
angular areas is 

(y" - Yo) ox ; 
which can be made as small as we please by increasing the 
number of intervals and decreasing their size. Each sum 
therefore approaches the same finite limit when dx is 
diminished indefinitely and this is defined as the area en­
closed by the curve, the extreme ordinates :Ii =:1:0 and 
:Ii = X,,, and the a:tis of 3;, 
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The sum of the inner rectangles is 
f (xo) Sx + j' (Xl) S:» + ... + j' (X" _ 1) Sx 

= j'(XO)SX + j'(XO + SX)SX + j'(XO + 2Sx)Sx + ... 
r==n-l 

= Lf(Xo + rox)ox. 
1';::;;.0 

We define the limiting value of this sum, wqen OJ; _,. 0, 
and 

nox = X" - xo, 
as the area enclosed by the curve, and denote it by. 

Jx,' (x) dx. 
%0 

Now, considering any small strip, say that on X3X4' we 
have, if oA is its area, Y40X > oA > Ysox. ( But as ox is 
diminished Ya and Y4 approach each other continuously, 
and in the limit we may write 

dAn = y"dx; 
.'. ~dAn = ~y .. dx; 

or An = ~y ndx + C 
= ~f'n(x)dx + C. 

"', Let lex) be a function such that 
U'(x)dx = !(x) + C; 
then An = !(x,) + C, 

where A" = area PQxnxo• 
If X" = XO' this area vanishes 

:. 0 = !(xo) + C, 
or C = - !(xo), 

.. fY(x)dX = !(x,) - !(xo)' 
Xo 

The reason for the symbol of integration in 

f,' (x) dx 
%0 

is now apparent; the definite integral being the difference 
between thej'ndefinite integrals at the limits of integra.tion. 
The name" definite integral" is used because the arbitrary 
constant of integration v.!IDishes when the integration is 
performed between definite limits, 
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102. EXAMPLES ON THE DEFINITE INTEGRAL 

(1) Find the area enclosed by the part of the parabola. 
y2 = 4ax, 

the ordinates at x = xl' X = x2, and the axis of x. 
We imagine the area divided up into very narrow strips 

such as PIxr The sum of the areas of these strips, when 
their width is indefinitely diminished, and their number 
indefinitely increased, is the required area. 

Area of strip PIXI = YIdx 
But Y = 2,Jax, 

.. area of strip = 2 ,jaxi • dx. 

:J 

Q, ••••••• 
". \ 

Q~.': .• 

\ FIG. 28. 

Total area P 1P 2X 2X 1 = limit of sum\ of strips such as 
Px~ when their thickness is reduced indefinitely 

= f 2

2,Jaxdx 
; 

= 2iaI\tdX 
Xl 

r[2 'Jx2 4 ~( ) = 2..;a jjx"lJ X = 3a"lf X/I - XI~ • 
I 

(The area P IP2Q2QI is twice this area.) 
(2) The area enclosed between the curve 

y = ax", 
t.he axis of x, and the ordinate x = E is 
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fydX = fxndX 
o 0 

... a[_l_x" + IJ~ 
n+l 

.,. _a_~n+ 1 
n + 1 . 

If af' = length of extreme ordinate = "I, 

area = ~"l1' n+ 

o 

(3) Area enclosed between the rectangular hyperbola 
xy = C, 

the x-axis, aud x = a, x = b can be easily shown to be 
b clog -. 
a 

(4) Prove that 

I:e=dx = 1(e4~ - eM). 
(5) Find the area between the ordinates x-I; x = 4, 

of the parabola y2 .. 4x. [Area = 9! sq. em.] 

FIG. 29. 

(6) Find the area enclosed between 
the parabola y2 "" 4x, 

the hyperbola xy = 10, 
a,nd the ordinates x '"" 1, x = 3, 
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On solving the equations y2 = 4x, xy = 10, for x we 
find that the parabola and hyperbola cut at x = 2'92. We 
ha.ve therefore to find the area under the hyperbola from 
the point x = 1 to the point x = 2-92; the area under the 
parabola between the same limits, and then subtract the 
second area from the first_ We then find the areas from 
x = 2'92 to x = 3, subtract the area under the hyperbola 
from the area under the parabola, and add the result to 
the first difference. Thus required area 

f·92 10 I~'911 f3 f 10 ={ ---xdx - J4xdx}-{ J4xdx- -xdX} 
1 1 2'92 2'92 

= 10 log.2·92 - {H(2-92)~ - Ii)! 

- {t(3t - (2'92}~) - 10(log.3 - log.2·92)} 

= 101og.3 - !(3t - 1~ 
= 10'986 - 5'594 \\ 
= 5-392 sq. cm. ), 

(7) Find the area enclosed by t~e curve 
y = 1)-2% "'I 

between the ordinates x = 1 and x = 2. 
Area = e - 4 - e 2 

= _!_ _ !_ = 1)2 - 1 ~ 0'117. 
• e~ e2 e4 

(8) Find the area enclosed between the curve y = x2, 

the straight line y = 2 - x, and the ordinate x = 0'5. 
Draw the graphs of the curves. 
The line cuts the curve in two points, the co-ordinates 

of which are obtained by solving the equations :-

y = x2 

y=2-x 
• x2 + X - 2 = (x + 2) (x - 1) = 0, 

i.e. x = - 2 or x = + 1. 

The required area will be Olle of two areas seen in 
the figure, 
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(i) If x = + 1, 

&rea. under the line = YI ~ Y2(X2 - Xl) = 1 - ~ + 1 x '5 

"'" '625. 

area ~nder the curve = [~X3 J =.221 .. 
The difference of areas is therefore 

0'625 - 0"291 = 0'334 sq. units. 
(ii) If X = - 2, 

area under the line = 4 +21'5 x 2·5 = 6·875 sq. units. 

The area under the curve now consists of two parts, 
that for X = 0 to X = + 0·5, and that for x = - 2 to 
x = 0; 

[
1 JO.5 [1 J2 [1 J2.5 .'. area = SX3 + SX3 = Sx3 

, 

o 0 0 

neglecting signs, = 5'208 sq. units. 
The required area is thus 6·875 - 5·208= 1·667 sq. units. 
These results should be verified by plotting the curves 

on squared paper and counting up the enclosed squares. 

103. SOME PROPERTIES OF THE DEFINITE INTEGRAL 

(1) I:4>(x)dx = - I:4>(X)dX, 
) 

since the" increments" dx are now negative. 
(2) If the integral area lies wholly above or below the 

x-axis in the part oonsidered, and if 
4>( - x) = 4>(x) ; 

i.e. </>(x) is an even function of x ; 

f: :4> (x) dx = 2 f 4> (x)dx ; 

the first integral being bisected by the axis of '!f. 
E.g. 4>(x) = x2

, x\ x6
, etc. 

(3) But if 4>( - x) = - 1>(x); i.e. </>(x) is an odd fun9-
tion of Xi 
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I+a 
_.cp(x)dx = 0; 

because in forming the sum, every element of area cp(x)dx 
is cancelled by the element cp( - x)dx of opposite sign. 

FIG. 30. FIG. 31. 

E.g. if y == cfo(x} = x, 
I cp(x) = x, cp( - x) = - x 

I::xdX = ia2 
- ia2 

= O. 

(4) If part of the cur'le, or all the cur'le, lies below the 
axis of x, the corresponding definite integral is negative, 

\ '~ 
:J \, 

'\ 

FIG. 32. 

since the values of cp(x) used in forming the SUDl are 
negative. If the curve cuts the x-axis at points :t1• x2• 

. . . part of the area lies fLbove and part below the x-axis. 
In this case we integrate separately up to these points and 
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add the areas. The integra.l taken over the whole range 
gives the algebraic sum of the areas. In the figure 

f4 ydx = (I) - (II) + :(Im. 
"l 

(5) I:4>'(x)dx = f4>'(X)dX + I)'(x)dx. 

This is seen from the figure, or analytically 

f4>'(X)dX = 4>(b) - 4>(a) • (i) 
• 

[4>' (x)dx = 4>(b) - 4>(m) . .\ (ii) 

I)' (x)dx = 4>(m) - 4>(a) (iii) 

. since (ii) + (iii) = (i) the proposition is proved. 
(Compare with Example 8 of the preceding section.) 

~ m b 

FIG. 33. 

104. INTEGRATION BY PARTS 

Integration by Parts is a method of integration of very 
great service in dealing with expressions containing eX­
ponential or trigonometrical functions, and it is often re­
quired in the applications to physical chemistry. It is 
used when the function to be integrated is the product of 
two functions, one of which is a differential coefficient. 

E.g. I x log xdx -= I (log x) d~(~) 
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The method is an inver'sion of the very importa.nt 
formula of the Differential Calculus 

d(uv) = udv + vdu. 
Integrating bo~ sides 

; \ uv = ~udv + ivdu 
Special case :;, \ 

\ \. v=x 
ItX = ~udx + ixdu. 

li 

\ 
1- ~ 

Ii 

~; \:~. I 
t ' I 

\1i. 

JUdlr 

\Ii 

• ~------~~----~------~u u" \ u,& 

FIG. 84. 

Now in many cases, one of the integrals ~udv, ~vdu, is 
more easily obtained than the other. Suppose this is ~vdu. 
Then 

iudv = uv - ivdu; 
ie. from the product of the two factors subtract the in­
tegral of the non-integrated factor with respect to the in­
tegrated factor. 

The factor which is a differential (v) must be picked 
out by trial; the progress of the integration will soon 
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indicate whether the correCt factor has been chosen or not. 
Gra.phically, the total shaded area represents 

uv = (Ua - u1) (v~ - vJ. 
considering the definite integral 

[uv J:. 
The area above the curve is 

f'2 

udv, 
"I 

that below the curve is 

f'" vdu. 
"1 

Obviously uv = ~vdu + ~udv. 
(Note that v is the independent variable in the fitst 

case, u that in the second.) 

105. EXAMPLES ON INTEGRATION BY PARTS 

(1) ~x2e"·dx. 

It is obvious on inspection that eag: = !:.d(ellZ), 
a 

hence, following the method explained above, we set 
dv = e""dX} u = X2 } 

V = !ellZ du = 2xdx . 
a 

Then by the formula 

f x2e·· = ~x2e"" - ~J e'" . 2x . dx. 

We have now to deal with the second integral on the 
right. 
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Therefore ]X2ea.zdx = lx2e"" + ~xea.z - ~e ... 
a a a 2 

= ~ (f1!2 _ 2x _ ~). 
a ~ a a~ 

Suppose that, instead of -e4.., we had chosen x2 as the 

lifferential, i.e. d(g). , ~ 

... \ d:: ~dz} ClI:: :.,J 
~ .'. f x2tiaxdx = ~e"" - if x3eaxdx. 

The result is a. more complicated integral than the one 
ve started with, indicating that our choice of the differ­
,ntial factor was not suitable. 

(2) Sx log xdx = iX2 (log X - i). 
(3) ~xe·dx = (x - 1) e·. 
(4) Uog xdx = x (log x-I). 
This is an important case. Note that u = 1. 
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APPLICATIONS OF THE DEFINITE INTEGRAL 

106. THE EXPANSION OF GASES 

(i) LET 1 gram molecule of a perfect gas he enclosed 
in a rigid cylinder, fitted with an air:tight 

piston sliding without friction. Let the whole be placed 
in a vacuous space, and the piston loaded with weights 
until it is in equilibrium. 

Let p = pressure on piston (per unit area). The equa­
tion connecting the variables is 

pv = RT (Horstmann's equation) . (1) 
where v = volume (22'24 litres at N.T.P.), T = absolute 
temperature, R is the molar gas-constant. 

N ow suppose the pressure on the piston ever so 
slightly diminished by taking off a very small weight, say 
a milligram. The gas expands slightly, until the new 
volume corresponds to the slightly diminished pressure. 
The work done = force x distance 

. '. dA = p x (area of piston) x (movement of piston) 

... dA=pdv, 
where dv is the slight increase of volume. ') 

The curve representing the expansion is a rectangular 
hyperbola, T being supposed kept constant, and the work 
done by a. finite expansion from volume Vi to volume v2 is 
given by 
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To show that "log" means "natural logarithm," we 
often write it " In " :-

.'. work done = A = RTln~. 
VI 

If we had n gram molebules vf gas in the cylinder 
instead of one, and V is the total volume, then if we put 
v/n for V in (1) we have 

pv = nRT, 

and An = nRTln~' 
VI 

The work done by the gas on compression is - RTJn~' 
I ~ 

(1) Show that A = RTln~. 
P2 

(2) Interpret the two expressions for the work by 
means of the diagram expressing p as a function of v. 

(3) Show that Wdv = - ~vdp if the gas obeys Boyle's 
law. 

107. ISOTHERMAL AND REVERSIBLE EXPANSION. 

We have considered the expansion to be effected in 
a cylinder under a piston; it will next be shown that 

,the work is the same no matter how the gas expands from 
volume VI to volume v2, pro-
vii\ed two conditions are satis­
fied. 

Consider any mass of gas 
confined, for example, in an 
elastic envelope subjected to a 
uniform pressure p all over its 
surface. Let its volume be VI" 

Now imagine a slight expansion, FIG. 35. 

shown by the dotted perimeter, to take place consequent 
upon a slight diminution of pressure. 

The total (small) increase of volume, between the 
full and dotted perimeters, may be imagined divided into 
a large number of small cylinders, as shown, in each of 
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which the increase of volume is .av. The work done is 
'$p.av = p'$.av = pdv, where dv is the increase of volume 
taken over the whole surface. 

Hence in every case of isothermal expansion, under the 
conditions specified, from an initial volume VI to a final 
volume v2, the work done per gram molecule is , 

A = RTln~. 
VI 

The conditions are:- . 
(1) The temperature T remains constant. This may 

be ensured by immersing the cylinder in a large tank of 
water at temperature T, and performing the expansions 
and compressions so slowly that any heat absorbed or 
produced is compensated by conduction from or to the 
heat reservoir. The case is one of Isothermal expansion. 

(2) The pressure of the gas is just balanced at every 
instant by the pressure due to the load on the piston. A 
very slight increase of pressure causes the piston to move 
down instead of up, the expansion changes to a compres­
sion, and the process is reversed. A process is said to be 
conducted reversibly when an infinitesimal change of one 
of the conditions of the system causes the process to 
proceed in the opposite direction. Another way of stating 
this condition is to say that the forces causing the system 
to change its configuration must be infinitely near equili­
brium at every phase of the change. The concept of" a 
reversible process is fundamentally important in the theory 
of Thermodynamics, and the student should note carefully 
that when we say that a process is reversible we do not 
mean that it can be reversed by some change of conditions, 
but that it must be reversed by an infinitesimal change 
of an external condition. If the piston moves with fric­
tion, a finite change of pressure will be required to reverse 
its motion, and the process is irreversible. 

To sum up, the work done in an isothermal and re­
versible expansion of 1 mol. of a gas from volume VI to 

volume V2 is RTln~. If the process is not reversible, the 
VI 
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work is not given by this expression, but is always less. 
It varies from zero, as when ,'the gas rushes into a vacuum 

to the maximum value RTln~. This last value is called 
VI 

the maximum work of the expansion, since when the process 
is conducted reversibly, the piston is raising the greatest 
weight possible. 

108. OTHER OASES OF EXPANSION. 

(ii) If the expansion is not performed isothermally,. 
the work done is still repres~nted by the integral 

A = f 2

PdV, 
·1 

but p is now a different function of v. 
If the gas is still considered to be ideal 

'P = RTlv, ,. 
but T is no longer a constant. 

If the expansion is--performed adiabatically, that is, 
the working substance is expanded or compressed in a 
cylinder which is a perfect non-conductor of heat, so that 
no heat is transferred between the workipg substance and 
its surroundings, then the law of expansion is 

pvY = constant = c, 
w1lere 7 = cplc., the ratio of the specific heats at constant 
pressure and at constant volume. 

A = J"Pdv = c r2i~, 
t'l "1 V 

:. A = 1 ~ 7(Vz1 - Y - Vl
l

- Y), 

. A- _c_(_l __ 1 ) 
• . - 1 - 7 vz

y- 1 V
1
y- 1 ' 

But P1V1 = RT1, 

pzVz = RTz, 

:. A = ~1 (TI - Tz)· 
7-

The work of adiabatic expansion is therefore inde-
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pendent of the initial pressure and volume, and the work 
done by a perfect gas in passing along an adia.ba.tic from 
one isothermal to another is constant and independent of 
the actnal initial and final temperatures. It is propor­
tional to the difference of these onLy. 

(iii) If the gas does not obey Boyle's law, 

A = fPdv 
"I 

is still true, but instead of 
pv = const. (T constant) 

we must now write 
p = /(v) (T constant). 

The form of the function will depend on the nature of 
the substance undergoing compression. In the case of 
strongly compressed gases or liquids, van der Waals has 
proposed 

(p + ~)(V - b) = BT, 

where a and b are constants. 
Clausius gave an equation in which a was regarded as 

a function of the temperature. Many other equations 
have been given, but Kammerlingh Onnes concludes that 
the state of a strongly compressed gas cannot be repre­
sented by any equation with a finite number of terms. 'b 

Assuming the gas to obey van dar Waals' equation 
during isothermal expansion:-

A = rPdtJ, 
1 

where p = RT/(v - b) - a/v2• 

Thence show that 

A = RTl.nv2 - b _ a(l- l). 
VI - b VI v2 

(iv) If the gas obeys van der Waals' equation and 
expands adiabatically, 

A = f,"Pdv, 
I 
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wher~ 

( a) I p + VZ (v - b)Y = constant = c, 

c a' 
... p = ~ b) - 2' ' .. \v - y v 

Thence, with the equation 

(p + ~)(V - b) = RT, 

show that 

A = ___!!_(T2 - T
I
) - a( _!\- !_). 

1 - ry VI ,\ % 

100. DISSOCIATION. ' 

(v) Let the gas dissociate during expansion. 
Assume that the original gas, and the products of its 

dissociation, obey Boyle's law. Two cases arise:-
(a) There is a. change of volume. 

E.g. Ng0 4 :;: N02 + N02• 

In this case the work done on expansion is greater 
than the work which would be obtained from a non­
dissociating gas, because the volume increases as new 
molecule2 are produced by the dissociation. \ 

(b) There is no change of volume. \ 
E.g. 2HI ~ H2 + ~. 

• The mixture then behaves exactly like a non~dissociating 
gas, because for every new molecule produced one of the 
molecules of the original substance is put out of existence, 
and the total number of molecules, and ·therefore the 
volume, remains constant. 

Consider the case of nitrogen peroxide, which has been 
extensively studied. 

N20 4 ;: N02 + N02• 

Let n = original number of molecules of N20 4 present, 
x = degree of dissociation, i.e. traction of molecules dis­
sociated. (1 - x)n, 2nx are the numbers of molecules of 
N20 4 and N02 present at the equilibrium position, and 
henc13, if v = total volume, the law of mass-action gives 
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(a) 

The pressures before and after dissociation are propor 
tiona.l to the numbers of molecules present (Avogadro's 
law) 

. p _' n 1 
•• p' _ (1 - x)n + 2xn = 1 + x' 
:. p' = p (1 + x), 

Now dA = p'dv = p(l + x)dv, 
.'. dA = pdv + xpdv. 

From Boyle's law and the Mass-law equation (a), 

o oK(1 - x) 
P = V = x2' (b) 

- To find dv we differentiate (a) : 

2(1 - x)x + x2 x(2 - x) 
dv = K(1 _ X)2 dx == K(1 _ xpdx, 

thence A = fipdv + f~ xpdv 
til "1 

= 0 r2

:

V 
+ 0 J\ 1 + 1 ~ Jdx 

1 xl 

= o(ln~ + X2 - Xl - In1 - X_2), ,&) 

VI 1 - Xl 
2 

But Vl = K(1 x~ Xl) and similarly v2 ; also 0 = RT from 

the Horstmann equation, 
. A RT{ 21 xl(l - X2)} . . = X2 - Xl - n

x2
(1 - Xl) , 

(vi) If a. solution of an electrolyte is compressed by a 
semipermeable piston backed by pure solvent, the calcula­
tion is exactly similar to that in (v), except that p is now 
the osmotic pressure, and x the degree of ionisation, 

IX = AjA(J'.). 
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'l.'kence, for expansion from volume VI to volume V2 

A = RT{AI - A2 _ 21n Al (Act) - A 2)}. 

Act) A2 (Act) - AI) 

110. THE INDICATOR DIAGRAM 

The expression IPdv for the work of a finite expansion 
is, as we have seen, quite general and independent of the 
law connecting p and v. So long as the pressure is finite 
at every point, and varies continuously from point to 
point, the work of expansion is always equal to the area 
enclosed by the p-v curve and the x-axis. This area will 
of course be different for different working substances for 
the same expansion. The idea of representing an amount 
of work done on a p-v diagram was first applied by James 
Watt in studying the efficiency of steam engines. The 
diagram is called Watt's Indicator Diagram. 

111. CYCLIC INTEGRALS 

::- / Sadi Carnot's fundaments'! contribution to thermo­
dynamics was the idea of taking the working substance in 
the cylinder through a complete cycle of changes, and so 
bringing it back to its initial state. Such a cycle is repre­
sen~d on the indicator diagram by a closed loop, formed 
by a curve returning to the initial point. 

'-Let P 1QP2 represent the direct proces~; P 2RPI the re­
verse process; the pair makes up the cyd,e, and is repre-
sented by the loop QR. \ 

Let PI be (vI' PI)' 
P2 be (v2, pJ. 

Work done by the substance in direct operation 
= ~pdv = area P IQP2'lJ2V1 • 

Work done on the substance in reverse operation 
= ~pdv = area P IRP2'lJ2VI • 

.. Nett work set free during the cycle 
= area P 1QP2V2V1 - area P 1RP2V2V1 

= area of loop. 
Thus the work done per cycle = area of loop. 
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We usually denote this by mpdv, the sign m meaning 
that the integration is taken round the cycle. 

p 

~~,J:~'~,~r~,~,~,~,~~"f,,~~I~'I~: 
V 

I 

FIG. 36. 

I 
, I 

P"2, 

\.I 

112. SIGN OF AN AREA. OJ) 

We must now consider the sign to be attributed to the 
area of the loop. If the volume is increasing during the 
direct process, and decreasing under lmoer pressu're in the 
reverse process, the cyclic loop is tracpjl out clockwise and 
the work done by the system is obviously positive. But 
if the reverse process is performed at higher pressure than 
the direct process, the loop is described coun-terclockwise, 
and the work done by the system is negative. If the loop 
is made up of more than one part, due to intersection of 
the cyclic curve with itself, each part is treated separately, 
and the a}gebraic sum of the areas is the work done. 

The diagram illustrates the three cases. 
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The general method of finding the area of ~ loop will 
not concern us, it is described in treatises on the Integral 
Calculus. Some simple particular cases must" however, 
be dealt with. . 

If cf>l(V) = p 

be the equation of curve P 1QP2 in fig. 36, and 

cf>2(V) = p 

FIG. 37. 

tha.t of the curve P 1RP2, then it is an immediate conse­
quence of our definitions that the area of the loop 

= I'2 cf>l(v)dv - I'~cf>2(V)dV. 
'1 "1 

113. EXAMPLES 

(1) Find the area of the loop enclosed between the two 
parabolas 

y2 = 4x 
X2 = 4y. 

These intersect at the origin and (4, 4) as we find by 
solving for x and y. 
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= 2i sq. cm. 
(2) To find the area of the loop in Carnofs cycle (vide 

Maxwell, "Theory of Heat"). 
This consists of four operations 
performed on a working substance, 
which we assume to be a perfect 

, 
" 

FIG. 38. 

gas, contained in an engine cylin­
der of peculiar construction. The 
operations are: 

(i) Adiabatic compression, from 
state represented on the p-v dia­
gram by A, to that represented by 
B. (We shall speak of these as 
" the state A," etc.) 

(ii) Isothermal expansion from 
the state B to the state C. 

(iii) Adiabatic expansion from 
the state C to the state D. 'OJ, 

(iv) Isothermal compression from the state D to the 
initial state A. 

Total work = Area of loop ABOD 
= - AabB + BOcb + opac - DdaA. 

The equations to the various curves are 
AB, an adiabatic curve, pv"I = c :. Pava"l = C1, because 

A lies on AB, pa' Va being the pressure and volume 
at A, and so on. 

BC, an isothermal curve, pv = c .'. Pcvc = c2• 

CD, an adiabatic curve, pVY = C .'. Pcv/ = c3• 

DA, an isothermal curve, pv = C .'. PaVa = c4• 

But AabB = ODdc, 
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since the processes are adia,batic and conducted 

'\\ 
\ '\' ~ 

between 

FIG. 39. 

the same isothermals, hence these areas, being equa.l but 
oppositely signed, cancel; the work is thus equal to 

Hence 

BCcb - DdaA 

I V. 1 Vd = c2 n- - c4 n-, 
Vb v4 

But PbVb = PcVc = c2, 

Pava'Y = PbV / = C1, 

'Y -1 C1 •• Vb =-, 
~ 

Similarly v.'" - 1 = ~, 
C2 

, (~)"'-l = ~ 
,. Ve ca' 

Similarly (~)'Y - 1 = ~, 
Vd Ca 

. . work done per cycle 
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114. ATTRACTIVE AND REPULSIVE FORCES-THE 
POTENTIAL FUNCTION 

Let the force P exerted between two material particles, 
electric charges, or magnetic poles, regarded as points, be 
a function of the distance, x, hetween the points :-

P = j(x) . (1) 
Consider two point charges of electricity + q and + 1, 

separated by a distance x in air, and repelling each other 
with a force 

P = q/x2 

along the line joining the points. 
Let 0 denote the charge + q, 0' the charge + 1, 00' 

being x. 
Let 0' be moved towards 0 by an infinitely small dis­

tance - dx. The work done hy the displacement is 

dA = - Pdx = - Cj_dx ,x2 
(2) 

Thus dA is a differential of a fu~ctiOD of the distance, 

of the form (~), since 

d~) = - ~dx = dA, 
x 

we define q!x as the electrical potential, at the point 0'; 
of the quantity of electricity + q, distant x from 0'. 

For motion of 0' over a finite distance x, ») 

A = J"2~(Cj_)dx = q__ - <L. 
" dx'Z x2 Xl 

1 

If Xl = 00 , q/X1 = 0, and 
A"2 = q!x2 is the potential at a poiJlt distant X 2 from O. 

Now it is a characteristic property of the potential 
function that its gradient in any direction is equal to minus 
the force in that direction. 'Ihis follows from the equa-
tions 

Px = q/x2
, 

A. = q/x, 
.. p. = - dA,,/dx. 

- dA/dx therefore measures the tendency of the unit 
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charge to leave the vicinity of the charge + q along the 
direction Ox. 

~--~o~--------x 

FIG. 40. 
, 

Further, for motion of the charge + q in an electric 
field from a point Xl to a point X2 in the direction of x, the 
work done is ' 

A = I\force) x dx. 
Xl 

Butforce = field strength x q, 
andfield strength -= - dVjdx, 

. where V is the electric potential of the field, 

... A = - qf 2d
d
V dx = q(Vx - V%) 

I "1 x 1 2 

This work is dependent only on the initial and final 
positions, and is independent of the path taken by the 
charge from Xl to x2• This characteristic is true generally 
for potential functions. It may be proved directly by an 
application of the principle of conservation of energy. 

115. THE PERFEOT DIFFERENTIAL 

We return to the discussion of the equation 
, du = ~(x, y)dx + t(x, y)dy, . (1) 

where ~(x, y), t(x, 'Y) are functions of; the independent 
variables x and y. Writing this 

du = Mdx + N dy, . 
we see that two c;'}ses arise, according as ~(x, 
",,(x, y), i.e. M and N, do or do not satisfy 
criterion :-

~M ()N 
()y "" ()x 

(la) 
y) and 
Euler's 

(2) 

If condition (2) is satisfied, the expression on the right 
of (1) or (la) is immediately integrable; for it is a com­
pJet~ (j.jjftlrential of some function of x and 1/, in which 
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these are treated as independent variables, formed by the 
equations ;-

() 
()XF(x,11) = M; 
() 

()yF(x,11) = N. 

Thus, by integration, there is obtained 
equation of the form 

u = F (x, y) + constant .' '(3) 
But if (2) is not satisfied, it is not possible to integrate 

(1), and u cannot be expressed as a function of x ~d 11 
considered as independent variables. For if \~ 

I 
u = F(x, y), '\ 

()u (). \ 
M = ()x = oxF(x, y) ; !\\; 

N = ou = ~ F (x y)' ' .. 
dy oy , , I 

()M = o~F (x, y). oN = ~2F __0::_0il t 
.. oy oa;oy' ox oyox· \ 

But 02F (x, y) = ()2F (x, y) 
oxoy oy()X' '\ 

\, 

()M ()N . 
. . ~ = ~, contrary to the assumptIOn. uy ox 

If, however, we assume some relation between x and y, 
so that they are no longer independent variables but ahe 
can be expressed as a function of the other, integration 
again becomes possible. For if 

I(x, y) = 0 . (4) 
i.e. y is an implicit function of x, we QlLn eliminate x or y 
from (1) and obtain 

du = cp(x)dx 
.'. u = F(x) + constant (5) 

Equations (4) and (5) together may be regarded as 
forming a solution of (1). 

Since/ex, y) may have any form whatever, the number 
of solutions is infinite. 

\ 
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Geometrically, we may interpret the equations (3), and 
(4) and (5), as follows:-

Assume that F (x, Y) in (3) is a single valued function 
of the co-ordinates, and that the initial and final positions 
of the point representing the value of the function in the 
plane of co-ordinates are known points (Xl' YI)' (x2, Y2)' 
Then we can find the change in the value of the function 
u as the point passes from its initial to its final position 
quite independently of the path. For " 

u = F(x2, Y2) - F(xl , YI)' 

A potential function, as we have seen, always sa.tisfies 
this condition. 

In the second case, it is quite otherwise. Of the two 
equations 

I(x, Y) = 0 
u = F(x) + constant, 

the first may be regarded as the equation to a curve, and 
since the form of the second equation depends upon it, 
the relation between them may be expressed by saying 
that the change of u during the motion of the point is 
determinate only when the whole of the path is known, 
for an infinite number of curves may pass through. the 
initial and final points (Xl' YI)' (x2 , Y2)' If the point in its . 
trotion describes a loop. the initial and final points are 
identical 

Xl = x2, Yl = Y2' 

and in the first case (3) u = 0, but in the second case u 
may have any posi4ive or negative value. 

This distinction occurs frequently in the study of 
thermodynamics. The internal energy € of a system is a 
function of the first type; this follows at once from the 
principle of conservation of energy; for if the energy is 
not completely specified by the co-ordinates defining the' 
state, i.e. is not definite for a given state, then a perpetnum 
mobile would be possible. Thus if p, v, e, cp are the ' 

14 
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pressure, volume, temperature, and entropy, we have for 
a small reversible change 

de = pdv + Odt/> ; 
pdv = work absorbed, Odt/> = heat absorbed. 

This is a perfect differential, by the properties of E, 

.'. P = oe/ov, 0 = oe/ot/>. 
Neither pdv nor Odt/> are themselves perfect differentials, 

since the work and heat depend on the path, and a finite 
quantity of work may be done, and heat absorbed, on 
passing round a cycle. 

116. APPROXIMATE INTEGRATION 

. If the value of the indefinite integral 
~ydx 

cannot be obtained (either because y cannot be expressed 
directly in terms of x, or because the function is not 

integrable), the value of the definite integral f2ydx may 
"'1 

often be found, at least approximately. We will consider 
a few of the common methods :-

(1) Graphically. 
If y is plotted against x, from the tabulated values, 

f2 ydx is given by the area enclosed between the curve, 
"'1 

the ordinates x = Xl' X = x2, and the x-axis. This areq, is 
found:- f. 

(a) Directly, by counting up the squares. 
(b) Indirectly, by cutting out the area, weighing it, 

and comparing its weight with that of a known 
area of the same paper. ... 

(2) By the Planimeter. 
One point of the Amsler planimeter is fixed down, and 

the other is carried round the boundary of the area. The 
area is read off directly on the graduated wheels and 
vernier. 

(3) Trapezoidal Rule. 
Draw n equidistant ordinates of the curve, join their 
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extremities by straight lines, and so replace the area by 
the sum of a. series of trapeziums. If h = distance be­
tween consecutive ordinates, and Yll Y2' . . . Y", the 
lengths of the ordinates, the sum of the trapeziums is 

t(YI + Y2)h + ·HY2 +' y~h + ... + t(Yn-I + y,.)h 
= (tYI + Y2 + Ys + ... + Yn-I + ty .. )h. 

This is only a rough method, giving a result too great 
or too small according as the curve is convex or concave 
to the x-axis. 

(4) Newton-Gates Rule. 
Assume that Y is a rational integral function of x of 

the (n - l)th degree:-
Y = a o + ala: + ~a:2 + . . . + an _ IX" - 1, 

and determine ao' aI' . . . so that for the n equidistant 
values of x, Y shall have the values YI' Y2, Ys' .•. The 
area is then 

S"'2 d [ 1 2 1 3 1 "J"'2 "tY X = aox + 5tIX + Sa2x + ... + :nan-IX ",,' 

The coefficients for 3, 4, 5 equidistant ordinates are 
given below:-

t(Yl + 4Y2 + Ya)h 
~(YI + 3Y2 + 3Ya + yJh 

i1f(7Yl + 32Y2 + 12Ya + 32Y4 + 7Y5)h. 
This is the most exact method . 

• (5) Simpson's Rule. 
Let an odd number of ordinates be taken, and the areas 

between alternate ordinates, beginning with the first, be 
calculated by the formula t(Yl + 4Y2 + Ys)h of the preced­
ing section. If these areas are added, we get the total 
area, which is thertfore given by 
t{Yl + 4Y2 + Ys + Ya + 4Y4 + Y5 + Y5 + 4Y6 + Y7 + ... 

+ Y~n-l + 4Yn + Y2n+l}h 
= H(Yl +Y2n+l) + 2(Y3 + Y5 + ... + Y2n-l) + 4(Y2 + Y .. 

+ ... + y2J}h. 
The rule is in words: Take the sum of the first and 

last ordinates, twice the sum of the other odd ordinates, 
and four times the sum of the even ordinates. One-
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third of the total sum, multiplied by h, gives the required 
area. 

Example :-
Calculate log.2 from the formula 

II dx 
log.2 = I~-' 

o + x 
Divide the range into 10 equal intervals, so that h = 0'1. 

Calculate values of Y = 1/ (1 + x) corresponding to values 
x of 1,0'9,0'8, ... 0, and use Simpson's rule. The correct 
value is 0'693147 ... . 

117. MEAN VALUES OF INTEGRALS 

Let Yl' Y2' Ys ••• Y .. be values of 
Y =/(x) 

for n equidistant values of x distributed over the range 
b - a. The limiting value to which the arithmetic mean 

1 
-(Yl + Y~ + Y3 + ... + Y..) n 

tends as n is increased indefinitely js caHed the mean value 
of the function over the range b - a. 

Now h = (b - a)/n .'. the above expression 
_ Ylh + Y2 h + ... + yJ~ 
- b-a 

Also Lim (Ylh + Y2h + ... + Ynh) = 56

/(X)dX, 
h_O a 

1 56 ... mean value = b _ a /(x)dx. 

Geometrically, the mean value is the altitude of a rect­
angle on the base (b - a) and having an area equal to that 
under the curve between the ordinates')at the extremities 
of this base. See Fig. 41. 

Examples .:-
(1) The mean value of the velocity of a faHing stone in 

any interval of time tl from rest is 

II'! II'l - vdt =, - gtdt = ! ytl' 
tl 0 tl 0 

i.e. half the final velocity. 
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(2) The mean value of the velocity of a falling stone 
for equal infinitesimal elements pf space s is, since v2 "" 

2gs, I. 

lJ' J2J' I· 2 - Ivds = __fJ_ 1 Js tl. s= 3-(2gS1)~' 
S1 0 S1 0 ' 

i.e. two-thirds the final velocity. 
The mean value therefore dep~nds on the choice of the 

independent varial:>le to which the equal increments are 
given. 

\ 
\ 
\ 

\ 

f FIG. H. \ 
(3) Find the mean value of the velocity of a unimole­

Jular reaction. 
(a) For equal intervals of time, we have, since 

x = x e- lrt 
• 0, 

v = dx/dt = - kx = - kxoe- lrt
, 

mean value = - _0 e-ktdt = _j!e- ktl = _!. 
kx It I x x 
t1 0 t1 t1 

(b) For equal amounts of substance transformed 
- k IX1 k k [)lean value = --- xdx = 2 ) (X1

2 - xQ
2) = 0(x1 + xo). 

Xl - Xo 0 (Xl - xQ *' 
I 



CHAPTER XII 

DIFFERENTIAL EQUATIONR 

PART I 

118, FORMATION OF A DIFFERENTIAL EQUATION 

A RELATION bet",een x, y, and one or mo.re of the 
derivatives .dy/dx, d2y/dx2, .•. is called a. Differ­

ential Equation. 

Examples ;-

') dy 
(1 dx = m. 

(ii) y = x~~. 

(1'1'1') d2y 2 dy 2 0 
dx2 - m dx + m y = • 

If the highest derivative occurring in the equation il) 
the nth derivative, dny/dx", the equation is of the nth order, 
Thu6 (i) and (ii) above are of the first order; (iii) is of the 
second order, 

The degree of an equation is the highest power of the 
derivative occurring in it, Thus )) 

d2y dy 
XdX2 - dx 

is of the second order and the first degree; 

d2y (dy)2 
Ydx'J+ dx =0 

is of the second order and second degree. 
214 
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119. ELIMINATION OF ARBITRARY CONSTANTS 

A differential equation may be produced by the process 
of Elimination. If we are giV'en an equation between x, 
y, and n arbitrary constants, which is called the Primitive, 
then differentiation n times in succession with respect to 
x will lead to n + 1 equations, from which the n constants 
may be eliminated. 

120. EXAMPLES ON ~LIMINATION 

(1) y = mx + b 1\ 

~~ = m. '\ 
'~" b is here an arbitrary constant. 

If both constants, m and b, are ,to be eliminated 
d2y 
dx2 = o. \ 

(2) (x - a)2 + (y - {3)2 = a2 \ (a) 

(x - a) + (y - {3) ~~ = 0 • '\ (bY 

1 + (dy )2 + (y _ {3)d2~ = 0 (c) 
dx dx' 

Thence 

dy 
a=X+ (Y-{3)dx=x-

(i!Jxy + 1 
fJ = Y + d2y , 

.• dx2 

from (b) and (c). Substitute in (a) . 

. {i!Jx + (f/xy} {(~~y + I} _ ~ 
• . d2y + d2y - a , 

dx2 dx2 

2(d2y)2 _ { (dy)2}3 
or a dX2 - 1 + dx • 
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(3) If y = ax2 + bx, 
d2y 2 dy 2y 

show that d2 - - . -d + 2 = O. x x x x 
(4) If y = Ae""" + BellX (a) 

then ~; = aAe""" + f3Be flx • (b) 

and ~~ = a2 Ae""" + /32Bellx • (0) 

Multiply (a) by a/3 and (b) by /3, and subtract:.:,_ 

a/3y - /3 dy = (af3 - ,B2)Bell< (d) 
dx 

and, by symmetry, 

af3y - a
dy 

= (af3 - a2)Ae""" (e) 
dx 

Multiply (b) by a, subtract from (0), and add (d) 

. d
2
y _ (a + (3)dY + af3y = O. 

dxP dx 
(5) If y = Ae>X + Be ->x, 

d2y 
show that dx2 - k2y = O. 

Aekr + Be - 1,,· 
(6) If cp = r ' 

d2cp 2 dcp 2 
show that -d 2 + - . d- - k cp = O. r r r 

121. SOLUTION OF DIFFERENTIAL EQUATIONS 
.) 

A far more important process than elimination is the 
inverse process; that is, the recovery of the primitive of a 
given differential equation. This process is called" solving 
the differential equation," and will obvi~sly involve one 
or more integrations, an arbitrary constant appearing with 
each integration. 

122. EXAMPLES 

(1) Solve y /~; = a. / 

Whenever possible, we bring all the x's and dx's to­
gether~ and all the y's and dy's together, This is called 
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separating the variables. Each side is then integrated, 
and an arbitrary constant added to one side. 

In the example, the variables are separable:­
dy/y = dx/a, 

:. log y d.",x/a + C, 
,'" 

:. y ~ ea. eO 
\, "% 

:. y =;; be"; 
where b ~,eo, 

(2) Solve dy/dx = - x/yo \ 
xdx + ydy = 0, ' 
:. x2 + y2 = C. 

This is thE) equation of a system of circles with the 
origin as centre; the radii increase from 0 to 00 as C is 
given all positive values from 0 to (f) • 

(3) A particle moves in a straight line under an 
attractive force varying inversely as the square of the 
distance from a fixed point. Find the velocity at any 
point. 

} 

The equation of motion is 
dv 

vdx = 
fL 

- xz' 
fLdx 

:. V

1
dV = : x2

C 

\\ 

'-v2 =_+ \ .. 2 x . 

(4) Abegg states that the dielectric ~onstant 
liquid is related to the temperature by the equation 

dk k 
'}) 

- dt = 190' 
Thence show that 

k = Ce - '1190. 

of a 

(5) Solve dp/dx = (a - 2p)/x. [p = ta + Cx -2.] 

(6) Solve dy/dx = y/(x2 
- 1). [y2 = C: ~ i.J 

(7) Solve X2~~ + Y = 1. [y = 1 + Cell'.] 
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(8) Solve ~~ + b2y2 = a2
• 

Separating the variables :­
dy 

2 b2 2 = dx. a - y 
Split into partial fractions :-

dy _ dy _ dx 
2a(a.- by) 2a(a + by) - • 

Integrate ;-
1 a + by 

2ab1oga _ by = x + C 

. by + a C 2"b .. 
. , by - a = e • 

(9) Solve ax~; + 2y = Xy~;. 
Separate the variables and integrate. 

x2y" = Cev• 

(10) Solve (1 + y2)dx - xy(l + x2)dy = O. 
[(1 + y2)(1 + x2) = OX2.] 

(11) Solve dy/dx + e"y = eXy2. [log y - 1 = eX + c.] 
y 

(12) Solve (xy - X2)~~ = y2. 

We have Xy~; = X2~; + y2 

.'. dividing through by y and rearranging 
x2 dy dy 
-- = x- - y y dx dx ' >J 

dy 
. ! dy = xlIX - y = !:_I!f_) 
., Y dx x2 dx \;; . 

Now integrate, and we get 

log y = 11. + 0, 
x 

J 

:. y = Cei'. 
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(13) Solve y /~~ = k'x. [y = Cxk
.] 

(14) Solve Y~~ = kx. [y2 == kx2 + 0.] 

The student will observe that the integration of the 
velocity equations in chemical kinetics is really the solution 
of differential equations with separable variables. 
c. 

123. HOMOGENEOUS EQUATIONS 
,. 

i An expression is said to be homogeneous in respect of 
two or more variables if each term is of the same dimen-
lIOns. 

E.g. 2x4y2 - 3X3y3 + x2y4 _ y6, 

S homogeneous and of the sixth degree. 
If M, N are homogeneous functions of x and y, of the 

same degree, the equation 

M Ndy 0 i + dx = , :\ 

is called a homogeneous differential equ)ation. 

124. EXAMPLES \ 

(i) x + y. ddY - 2y = o. \ 
x \ 

• I Put Y = zx, 
... dy = xdz + zdx, 

• '. substituting in the original equation, 
(1 - z)2dx + xzdz = O. 

The variables a,land z may now be separated;-

dx zdz 
x + (1 - z) 2 = 0; 

By integration :-

fdx f zdz x + (1 _ Z)2 = C, 
1· 

log x + -1· - + log (1 - z) = c. 
- Ii 
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Replacing z by y/x, and simplifying, 
x/(x - y) + log (x - y) = C, 

or (x - y) e"/x- Y = C. 
(ii) (y - x)dy + ydx = O. 

Put x = vy, and show that . 
y = Ce -g. 

(iii) (x2 - y2) ~; - 2xy = O. 

Put Y = VX, and prove that 
x2 + y2 = Cy. 

It is obvious from the definition of homogeneous 
equations that MIN is a function of y/x alone, i.e. 

~ = ~; = f(~) . (a) 

If a straight line y = mx, or 1l = m, be drawn through 
x 

the origin, the various curves of the system represented by 
the general solution of (a) have all the same direction 
at their points of intersection with this line, for then 

~; = m = constant. 

Such curves are said to be similar and similarly situ­
ated, the origin being called, in this case, the centre of 
similitude. The curves are those which would be con­
structed to represent the same equation if we took different 
units of length. If 0 is the unit of length, then 

f(~,~) = 0 

is the general equation of the system, \nd c is called the 
variable parameter. 

(iv) Two liquids, X and Y, are boiling in a. still. Ac­
cording to F. D. Brown the ratio of the components pa.ss­
ing off as vapour is proportional a.t every instant to the 
ratio of the components in the boiling liquid at that instant: 

dy y 
dx = a;; 

• Y = Cw' 
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(v) (1 + y2)dx - xy(l + x2)dy = O. 
dy dx 

We have 1------:i = (1 2) +y xy +x 
. ydy di . 

. . 1 + y2 = x(l + x2)' 

The variables are now separated, and we can integrate 
by partial fractions: 

(1 + y2) (1 + x 2) = Cx2• 

(vi) 2xydx + (y2 - 3x2)dri = O. 
Put Y = vx, and solve as usual. 

[X2 _ y2 = Cy 3.] 
(vii) (X2 - 3y2)xdx + (3x2 - y2)ydy = O. 

[(X2 + y2)2 = C (y2 - XZ).] 

125. NON.HOMOGENEOUS EQUATIONS 

The most general type of such equation is 
(ax + by + e)dx + (a'x + b'y + e')dy = O. 

Assume x = v + h, y = 10 + k, 
.'. [av+ b1O+ (ah+ bk+ e)]dv+ [a'v+ b~1O+ (a'h+ b'k+ e')]dw 

= 0 . (a) 
Now let It and k be so chosen that 

alt + bk + e = 0, 
a'lt + b'k + e' = Q; 

. b'e - be' ac' - a'e 
I.e. It = 'b b" k = '-b ~-b' . a -a a-a 

Substitute in (a), which becomes homogeneous: 
(av + b1O)dv + (a'v + b'w)d1O = 0 

126. EXAMPLES 

(1) Solve (3y - 7x - 7)dx + (7y - 3x - 3)dy = O. 
a=-7 a'=-3 
b = 3 b' = 7 
c = - 7 c' = - 3 

Then x c= v - 1 
y = 10, 

.. It = -1 
k = O. 

an( - d 7v + 31O)dv + (- 3v + 71O)d1O = O. 

(b) 

(c) 
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Put w = vt .'. dw = vdt + tdv, 
and on substituting and simplifying, 

7dv = _ 2dt _ 5dt 
v t-1 t+1 

:. 7 log v + 2 log (t - 1) + 5 log (t + 1) = C. 
Replacing v = x + 1, t = w/v = y!(x + 1), 

(y - x - 1)2(y + X + 1)5 = C. 
(2) (2x + 3y - 5)dy + (2x + 3y - l)dx = O. 
In- this case ab' = a'b, and the above method is no 

longer applicable, for the denominators of hand k vanish. 
We put 

z = ax + by, 
eliminate y, and obtain 

z + c 'dz 
a + b ,+ d- = 0, mz + c x 

where alb = a'lb' = 11m. The variables are now separable. 
The solution is 

x + y - 4 log (2x + 3y + 7) = C. 

The equation 
127. EXACT EQUATIONS 

Mdx + Ndy = 0, 
where M and N are functions of x and y, is said to be 
" exact" if M and N satisfy Euler's criterion: 

~M ()N 
~=iX' 

(See p. 108.) 
In this case, the equation has been formed by differenti­

ating a function, u, of x and y, so that 
U = /(x, y); 

()U (J'U ) 
du = (Jx dx + (Jydy ; 

()U ()U 
where ()x = M, ()y = N. 

The most general form of function the x-derivative of 
which is M, is obviously 

U = ~Mdx + Y; 
where Y is independent of x, but may be a function of y. 
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The only other :condition is that ddu = N, 
y 

dJ dY or N = dy Mdx + dy' r, 
,'. ~~ = N - ~f Mdx. \, 

But Y being a function of y alone, the derivative of the 
right-hand side with respect to x must vanish, or 

dN _ dM = 0 as before. 
dx dy , 

Also Y = f~:dY = f(N - d~fMdX)dY; 
,', u = SMdX + Y = fMdx + S(N - :yfMdX)dY. 

This equation enables us to solve any equation which 
.satisfies Enler's criterion. We examine the equation by 
this criterion first, and if ~M/~y = ~N/~x we can use the 
above formula. '\ 

Examples :-
(1) x(x + 2y)dx + (x2 - y2)dy = 0, 

~M/~y = ~N/~x = 2x, 
i.e. Euler's criterion is satisfied. 

~Mdx = HX2 + 2xy)dx = lxs + 2x2y. 

• !:...fMdX = 2X2 N = x2 _ y2 dy , , 

:\ 
.\ 

\ 

\ 
:. N - d~S Mdx = x2 - y2 - 2X2 = - yi - X2, 

- :, S(N - :yf Mtx)dy = - S (y2 + x2)dy 

= _ iys - x2y. 
Thus, u = ix3 

- ty3 + x2y, 
is the complete solution of this differential equation. 

(2) (3y2x - x2) dy = (2xy - y3) dx. 
[xya = x2y + C.] 

(3) (x2 - 4xy - 2y2)dx + (y2 - 4xy - 2X2)dy = O. 
[xB + yB - 6xy(x + y) = C.] 
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128. NON-EXACT EQUATIONS 

Equations which do not satisfy Euler's criterion may 
often be integrated by special devices; for particulars the 
student is referred to books on differential equations, e.g. 
Forsyth. We may, however, just mention a few cases 
which are open to simple treatment, 

If the equation 
Mdx + N dy = 0 (1) 

is not exact, it implies that some factor has been cancelled 
out in deriving the equation from the primitive. The 
equation (1) may be made exact by multiplying it by this 
factor, called an integrating factor, fl-' Thus 

JL(Mdx + Ndy) = du = 0 (2) 
Let x2 + y2 = Cy, 

x2 

.',C=y+-
y 

. 2xydx - x2dy , . 0 = dy + . - -- --2 - -
-' y 

,'. 0 = 2xydx + (~2 - x2)dy (i) 
y 

Now we have previously obtained 
x 2 + y2 = Cy 

by integrating 2xydx + (y2 - x2) dy = 0 as a homogeneous 
equation; this is simply the equation (i) with the factor 
Ijy2 cancelled out by multiplying both sides by y2. Hen'ce 
1jy2 is the integrating factor of 

2xydx + (y2 - x2)dy = 0; 
because if we multiply both sides by 1/y2 we get 

{2xydx + (y2 - x2)dy} -7 y2 = d(Y + i) = 0, 

the solution of which is 
;];2 

y + - = C, 
y 

or x2 + y2 = C. 
. This example also shows that an equation which is 
'not exact, and cannot therefore be solved by the formula 
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u = J Mdx + J(N - tyI Mdx)dy, 

can often be solved by another method. ~ , 
We may also remark that an infinite number of ~n­

tegrating factors exists for Mdx + Ndy = 0, correspond~g 
to various forms of the solution. " " 

E.g. let ydx - xdy = O. 

(a) If p. = x- 2 : 'V_dx - !dy = 0 
x 2 X ' 

.'. d(~) = 0, 

... y = C'x. 

(b) If }./, = x - Iy -1 : ~x _ d: = 0, 

.. log x - log y = C, 

.'. log~ = C". 
Y 

(c) If u = y - 2 : 
ydx - xdy _ 0 

y2 -, 

d (~) = 0, 

:. x = O"'y. 
It is obvious that aU these solutions are equivalent, 

the constants being related:-
C' = 1/0'" = eO". 

129. EXAMPLES 

(1) (2x - y + l)dx + (2y - x - l)dy = O. 
[X2 - xy + y2 + X - Y = 0.] 

(2) x(x2 + 3y2)dx + y(y2 + 3X2)dy = O. 
[X4 + 6X2y2 + y4 = 0.] 

(3) (y - x)dy + ydx = O. 
This is not exact, since ()M/()y = I, ()N/()x = - 1. 

ydx - xdy + ydy = O. 
Multiply through by l/y2, and integrate 

x 
log y + - = C. 

y 
15 
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ndy dy 
(4) ax2yax = 2x dx - y, 

... ax2yndy + ydx - 2xdy = O. 
Multiply through by y/x2 

Y
2dx - 2xydy 

ay" ~. ldy + 2 = 0. 
x 

d(a!n:~) + d~) = 0, 
. ayn+2 y2 
··--2+-=C' n+ x 

dy 
(5) x dx - Y = x • ./ x2 + y2. 

Divide through by x, and put y = vx:­
dv 

v + dx - V = x";1 + v~, 
dv 

.". xdx = ";1 + v2' 

:. iX2 = log {v + ";1 + v2} + C, 
1. I 1 .". 2x· = og x{y + ";X2+ y2} + C. 

130. LINEAR EQUATIONS 

An equation which involves y and its derivatives onl: 
in the first degree, is called a "linear" equation. Th 
most general type of linear equation of the first order i 
Leibnitz' equation: ) 

dy + Py = Q (1 
dx 

where P, Q are either constants, or functions of x. 
(i) P is constant. 

dy _ ay = Q (2 
dx 

(a) If Q = 0, the variables are separable, 

dY-adx=O (3 
y 

:. log y - ax = A, 
or y = Ce"'" (4 

where C = 8-'-, is an arbitrary constant. 
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(b) If Q =f: 0, we multiply both sides of (3) by e - ... ; 
the left side is now a perfect differential: 

e - lIZ • dy _ ae - lIZ = ~(e - axy) 
dx dx' 

.'. d~ (e - axy) = Qe - ... • 1~\~5) 
Whence e - =y = ~Qe - aXdx + C "I 

i or Y = e=~Qe -""'dx + Ce"'" . ~ (6) 
The solution (6) consists of two parts: 
(1) e"'~Qe - aXdx is called the particular integral, 
(2) Ce - "'" is called the complementary function. 
One or two special cases may be noticed. ~I 
(a) Q = He aX 

• l7) 
:. multiplying both sides of 

dy _ ay = He'" 
dx 

by the " integrating factor" e - ""', we get 

dYe -.., _ aye - ax = He(<t - a)': 
dx ' 

d ... dx (e - "'y) = He(a - a)x as before, 

H and e - axy = H~e(a - a)xdx = --e(a - a). 
a-a ' 

H whence y = --e ~ + Ceax (8) 
a-a 

• (fJ) If a = .a, or Q = He": (9) 
~Qe - "'dx = H~dx = Hx, 

and y = Hxe llZ + Ce""'. (10) 
('Y) Q = Hx"e"X . (11) 

JQe- M '= HJxndX = ~x:+;, 
Hx"+ l 

:. Y = --1 + Ce= (12) n+ 
(Ii) P is a function of x. 

dy + Py = Q (1) 
dx 

Let p. be an integrating factor, i.e. a. fa.ctor which makes 
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the left-hand side of (1) a perfect differential. Then we 
may write 

p,dy + I-'(Py - Q)dx == Ndy + Mdx,. 
an identity, Thence, by the principle of Undetermined 
Coefficien ts, 

oN 01-' oM 01-' 
ox = oy; oy = (Py - Q)~y + PI-'. 

By Euler's criterion of a perfect differential 
oN oM 
ox =~' 

• 01-' 01-' 
.. ox = (Py - Q)oy + PI-', 

:. ~~dx = (Py - Q)~~dX + PI-'dx = - ~~dy + Pp,dx. 

op, op, 
.'. oxdx + oydy = Pp,dx. 

But ;~dx + ~~dY is a perfect differential of a quantity 

p" hence 
dp, = Pp,dx, 

. _ 1 dp, 
.. P - -p," dx' 

• IPdx = log 1-' • 
•. (IPdx) log e = log p,. 

since log e = 1. 
IPdX ) 

",I-'=e. (2) 
fPdx 

Bence the integrating factor for (1) is e . 
fPdX £Pd. VdX 

e (dy + Pydx) = d(ye ) = e Qdx, 
]pdX fPdX » 

... ye = Ie Qdx + C, 
- fFdXf {pdX - I'd" 

or y = e e Qdx + Ce (3) 
which is an exceedingly important equation. 

The student need not remember (3) if he understands 
£PdX 

the method-" multiply both sides of (1) by e and in-
tegrate ". 
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131. EXAMPLES ON THE LINEAR EQUATION 

(1) Solve (1 + :1;2) ~! - xy - 7n = 0, 

dy x rn 
Rearrange: -d - 1--2Y = 1~; 

! X +x l +x 

w}1ich is now of the form ~; t Py = Q. 

J . J x 1 II 
Pdx = - 1 + X2dx = - 2 log (1 + x2

) = - log .)1 + X2, 

Integrating factor = ejPdx = II -log ,JI + .2 = .) 1 
. 1 + x2, 

, Multiply through by 1/ .)1 + x 2 and integrate: 
y == rnx + C .)1 + x2, 

(2) Solve (1 - x2)dy + (xy - ax)dx = 0, 

[Rearrange as in Example (1), multiply by the integrat­
ing factor, and integrate.] 

y = a + C .)1 - x2• 

dy D 
(3) dx + 2xy = 1 + 2x2

• [y = X + Oe - z .] // 

(4) xdy + (x + y)dx = 0, [X2 + 2xy = C.] 
(5) Solve Bernoulli's equation 

d
dy + Py = Qyn, \ 

x \ 
Multiply through by (1 - '1), and di~~de through by y"', 

.. , 1 -n n . cJ...dJL + (1 - n)Pyl -n = (1 - n)Q. 
y x 

• Put yl-n = V 

• dv dCyl - n) 1 - n dy 
" dx = dx = -r' dx' 
dv 

,', dx + (1 - n)Pv = (1 - n)Q, 

which is linear in v, the solution being 
veIl - ")jPd' = (1 - n})Qe(1 - n)jPdxdx + C 

,', y(l-,,). ell -"lSpa. = (1 - nHQe(1 - nljPdxdx + O. 
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(6) dy + '!L = y2. 
dx _ x 

[
1 dy 1_ 
y2 . dx + yx - 1 . 

. dv 1 dy .J. 
Put v = 1/Y .. -d = - -2' d-' J 

X Y X 

The student will be able to complete the solution " 
Cxy - xy log X = 1.] I 

m ~+~=~ ! 
dx x ' 

:. x"~~ + nx"-ly = xm+", 

Xm+n+ 1 
xny = + C 

m+n+1 ' 
Xm + 1 

Y = + CX- n 

m+n+l ' 
the integrating factor being obtained on inspection. 

(8) The electric current i flowing in a. circuit of resist~ 
ance R and self-induction L is given by Helmholtz' equation 

L di 'R E dt + ~ = , 

where E = electromotive force, t = time. 
E constant. We have to find the current produced when 

a constant E. M. F. is acting round the circuit for a time t. 
di Ri E h) 

dt + L = L' 
which is of the standard type. Thence show that 

E -~ 
i = R + Be L, 

where B is a constant. 
If i = 0 when t = 0 

, E E-~ 
~ = R - Re L. 

D) 

The first term is the current according to Ohm's law, 
the second is the extra current at make. b..s t increases 
the second term dies away and the current settles down 
to the steady value E/R. It is a very instructive exer-
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cise to plot the value of i against t for given values of E, 
R, and L (say E = 1 volt, R = 1 orm, L = 1 henry; i is 
then given by 

i = (1 - ~).) 
The gradual rise of current afteJ; completing the cir· 

cuit is then clearly seen. The cun:ent on breaking the 
circuit cannot be calculated in this way, on account of the 
indefinite resistance of the air-gap. 

(9) A massive particle subject to a resistance varying 
as the velocity and ,to another force" which is a given 
function of the time, obeys the equation of motion 

dv 
dt + kv = Jet). 

Thence v = e - kt~ek' .j(t) . dt + Ce - .t. . 
If ret) = g, the acceleration of gravity, \ 

v = Ce -kt + {Ilk. 
This is the equation for the velocity of a falling rain­

drop, k being the viscosity of the air. As t increases, v 
approaches asymptotically a constant value glk. In this 
case we have a particle under the influence 'of forces in 
equilibrium. The motion of ions in an electrolyte IS a 
similar case. " 

!fj(t) is constant:-
v increases with time ifj(t) > kv, 
v decreases with time if j (t) < kv. 

In both casesj(t) - kv approaches zero asymptotically, 

d h 1·· . I Jet) an vapproac es a Imltmg va ue Vo = T' 
(10) Solve xdY + ydx = x3dx. [tx3 + clx = y.] 

(11) Solve ~r + k2y = k2a(1 - e - '1'). 

- JA;.dt - {".,It Y.dt -lJt 
Y = Ce + e ~e . k2a (1 - e ) dt 

= Ce - V + e - ·"}eA;.'. k2a(1 - e kjt)dt 
= Ce - '.' + e - k2t{k2a~e"tdt - k2a}e(A;. - ',l'dt} 

ka 
= Ce -ki' + a - k ~ k e -k1'. 

2 1 
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dy Ky Kx 
(12) Solve - + -- = --. dx a-x a-x 
Integrate as above, then by parts. If x = 0 when y = 0 

K(a - x) 
y = C(a - X)K + - K _ 1 • 

1 
where C = (K _ l)aK-l' 

(13) In a chemical reaction let there be present a 
parts of A, and a parts of C. Let A be changed into a 
substance B, which then reacts with C. 

Let x equivalents of A remain after a time t, and let 
w equivalents of B remain after the same interval. 

The rate of diminution of x is proportional to x:­
dx 
dt = - k1x . (1) 

The rate of diminution of w is proportional to w x 
(amount of C present), and the rate of increase of w is 
equal to the rate of decrease of x :-

dw 
dt = - k2w(x + w) + k1x (2) 

The solution of (1) is 
x = ae - ~t • (3) 

so that if the residue of x could be measured separately, 
kl could be found. In practice x and ware determined 
together, and the relation between the total residuEl" 
y = x + w, and the duration of the reaction, t, is very 
complex. 

Adding (1) and (2), we have 
dy .. 
dt + k2wy = 0 0)) (4) 

a.nd if we put dt = - dxJk1 x, from (1); 
and w = y - x, we get 

!_ dy + k2 l _ k2 ! - 0 
y2 dx kl . Y kl . X - (5) 

Put k2Jkl = K, and we get 
.!_d'Y+~_K=O 

, y2' dx y x . (531) 
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Comparing with Bernoulli's equation (Ex. 5) 

we put v = l/y, dv/dx = - \. ddY' Y x 

.'. ddxv _ Kv _ K = O. 
X .\ 

The integrating factor is e -Kx; also Q ~\ - K/x, 

I
I .,' '; 

:. ve- Kx = - K -e-Kxdx + C. ' 
x " '. 

The integral cannot be evaluated in finite terms; we 
lave already effected the integration as an infinite series 

Ie -Kx (Kx) 2 (KX)3 '. x dx = log x - Kx + 1. 22 - 1-:2. 32 + ... + C, 

• -Kx { (KX)2 (Kx) 3 
} 

. ve == - K log x - Kx + 1. 2" - 1. 2 . 32 + ... + C 

Multiply through by ye Kx 

.'. 1 == KeKX
{ C - log x + Kx - i~~22 + .}y. 

dx lc (14) dt = (a - x) (x - y) 

where y = a(1 - e -m~. 
Put z = I/K(a - x) .', dx = - dz/Kz2, 

dz _ Kze - mt = 1 
dt ' 

~ linear equation of the first order. \ 
.. fPdX _ !e - mt \ 

Put P = Ke- me :. e = em"" e- u, say. \ 

e"Ie- u 
\ Thus z = Ceu + - -duo m u 

The latter intewal has been treated in Ex, (13). 

(15) ~~ + Y = ax". 

[y = a{xn - nx" - 1 + ... + ( - Itn (1£ - 1) ... 3 . 2 . I} + Ce - ",] 
n adx 

(16) dy + . ~ydx = i' 
(1 + X2) (1 + x 2) 

[(Y - ~){x + (1 + X2)t}" "" C,] 
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DIFFERENTIAL EQUATIONS 

PART II 

132. LINEAR EQUATIONS OF THE SECOND ORDER 

T HE general linear equation of the second order is 
d2y dy 
d~ + P~d + Qy = R . . • (1) 

I x x 
where P, Q, R are functions of x, or constants. 

(i) Equations with constant coefficients. 
d2y dy 
dx2 + P dx + Qy = 0 . 

is equation (1) minus the right.hand member. 
Now the complete solution of (1) may be written 

y=u+w. 

(2) 

(3) 
where w is any function whatever which satisfies (1) as it 
stands, and u is the general solution of (2). For if u is to 
be determined, and w satisfies (1), we have, by substitution 

d2u du d2w dw 
dx2 + P dx + Qu + dx2 + P dx + Qw = R; 

d2w dw . 
but -d 2 + P

d
-- + Qw = R, by hypothesIS, if x I)) 

d2u du 
:. dx~ + P dx + Qu = 0, 

i.e. the function u must satisfy (2). 
The functions w, u are called the Particular Integral 

and Complementary Function, respectively, of the general 
solution of (1). 

Th~ particular integral may be any solution of. the 
234 
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original equation; it is usual to choose the simplest. C The 
complementary function is the general solution of (2), a.nd 
involves two arbitrary constants. 

If U 1' U 2 are two solutions of (2), then equation (l) is 
satisfied by 

y = 0lU l + C2U 2' . 

01' O2 being arbitrary constants. This can be verified by 
substitution. Let the equation be 

d 2y 
dx2 = - kyo 

Since U 1, U 2 satisfy this, we have 
d2u d9u 

1 _ ku' 2 - k.L dx} - - l' dx2 - - -s. 

Multiplying by °1,°2, and adding:-
d2(C1U 1 + C2U 2) __ k(O C) 

dx2 - lUI + 2U2' 

which proves the proposition for this case. 
This is called the principle of Sttperposition of Par­

ticular Integrals. 

133. THE OPERATOR D AND THE ALGEBRAIC LAWS 

_ We denote the operating symbol tx by D. 

• Thus Dy = dy/dx, D log x = l/x, etc. 
We have already proved that 

(i) D(u + v) = Du + Dv. 

(1'}') D du du ( D) ( + a)u = dx + au = au + dx = a + u. 
1 

(iii) D(au) = a~: = aDu, 

but D (xy) is not = xDy, 
i.e. the commutative law is only obeyed with constant 
multipliers. '\ 

Further, it can be shown that 
(iv) DmD"u = D'" + "u. 
Thus the operator D, alone, and combined with constant 
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multipliers, is subject to the algebraic laws. The following 
deductions are immediate:-

(1) Let Du = v, 
u = D - IV = (1/D)v 

• -1 1 .. D v = DV' 

or DD-I = 1. 
Obviously D - 1 = i. 

(2) Let AI> A2 be any constants, then 

(D - AI) (D - ~) u = (D - A1) (~: - ~u) 
= ~(du _ "X

2
u) _ A (du -~n) 

dxdx Idx 
d2u dn 

= dx2 - (Xl + A2) dx + A1A2n 

= [D2 - (Xl + ~) D + Al A.l]U. 
This means that any equation of the form . 

d
2
y _ (a + f3)dY + af3y = 0 

dx2 dx 
may be written as a product of two factors, since [D2 -
(a + f3)D + af3]y, which is equivalent to that equation, 
may be written as 

(D - a)(D - f3)y = O. 
134. LINEAR EQUATIONS OF THE SECOND ORDER WITH 

CONSTANT COEFFICIENTS 'lJ 

We return to the consideration of the equation 

d
2
y + pdy + Qy = R (1) 

dx2 dx 
where P, Q, R are, tor the present, consic,ered as constants. 

We have seen that to solve this we must find two 
functions wand u, called the particular integral, and the 
complementary function respectively, such that 

y = 'II. + w. (2) 
Further, w (the particular integral) is any solution 

whatever of (1), the simpler the better; and'll. (the com­
plementary function) is the most general solution of the 
equation 

\ 
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d2y dy 
dx2 + P dx + Qy = 0 . (3) 

and involves two arbitrary constants. 
Let P = - (AI + ~), 

Q = Al~; 
then (3) may be written ;-

D2y - (AI + ~)Dy + Al~y = 0, 
or (D2 - CA.1 + ~)D + Al~)Y = 0 . (4) 

Case (i). 
,P2>4Q; 

the roots of (4) are then, by the theory of Quadratic 
Equations (see appendix), real and unequal 

(D - AI) (D - ~)y = 0 (4a), 
where AI' ~ are the roots of 

A2 + PA + Q = 0 • (5) 

i.e. ~} = - iP± JiP2 - Q. 

Equation (5) is called the auxiliary equation. 
Let (D - ~)y = z . (6) 

:. (480) becomes 
(D .:.. A1)Z = 0 . 

which is a linear equation of the first order. 
of (7) we have shown to be 

z = Ae).l' . 
Substituting in (6), we get 

(D - ~)y = Ae).{ 
This is linear, and of the form 

dy 
dx - ay =Q, 

.\ where Q = He"". 

" . (7) 
The solution 

(8) 

(9) 

discussed in § 130 (a); and it was shown there that the 
solution is 

H y = -- e~X + Ce"". 
a - a 

Now a = ~, a = ~, 
.'. y = 01e'\X + 02e).3

x 

vhere 0 1 = Al ~ ~; and O2 is arbitrary. 

(10) 
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Since A is arbitrary, both Cl and C2 are arbitrary, and 
(10) is the most general solution of the equa.tion (5). 

Case (ii). 
If p2 = 4Q, the roots are equal, Al = ~. 
The equation (9) then becomes 

(D - Al)Y = AeA,' . (11) 

the general solution of which has been found in § 130 (/3) 
to be 

Y = (Ax + Bk\'" (12) 
Case (iii). 
If p2 < 4Q, the solution involves trigonometric functions, 

but is never met with in Physical Chemistry. 
Summarizing, we may say that the 801 uti on of the 

. auxiliary equation 
d 2y dy 
dx2 + P dx + Qy = 0, 

I • 
when P, Q are constants, takes three forms; accordmg as: 

(i) P2>4Q; 
y = CleAl" + C2e":!", 

where AI' ~ are the roots of 
A2 + PA + Q = O. 

(ii) p2 = 4Q; 
Y = (Ax + B)eAl"'. 

(iii) p2 < 4Q ; 

which case does not concern us. 

-
I)) 

Notice that the above results furnish only the comple­
mentary function; if the given equationjs of the form 

d2y dy 
dx2 + P dx + Qy = 0, 

they enable us to solve it, but if the form is 

d2y dy 
dx2 + P dx + Qy = R, 

we have still to find the particular integral. 
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185. EXAMPLES ON THE LINEAR EQUATION OF THE 
SECOND ORDER 

(I) Solve xdd2~ = 1. 
. X 

d2y \ 
We have dx2 = l/dt,\ 

. dy fd:!;' 
.. dx = --ail = log x + C1, 

Integrating a second time, W!3 have, 
y = Slog xdx + SC1dx, 

,'. y = x log x - x \t- Clx + C2, 

,'. Y = x log x + Ax + B, 
where A = C1 - 1: B = C2• 

A similar method enables us to solve 
d2y 
dx2 = /(x) , \ 
dy :\ 

for dx = U(x)dx + A ~ .. 

y = W/(x)dx}dx + Ax + B. 
'here A, B are arbitrary constants. 

d') 
(2) Solve d~ = xeX

, 

(Integrate by parts.) [y = (x - 2)eX + Ax + B.] 
d2 . 

(3) Solve x2d~ = a. [y = a log; + At, + B.] 

d2y dy . 
(4) Solve dx? - 14dx - 32y = 0. 

This is written in the symbolic form thus: 
(D2 - 14 D - 32)y = 0. 

The auxiliary fYluation is 
;\2 - }4;\ - 32 = 0, 

,'. (A. - 16) (A. + 2) = 0, 
:. Al = 16, ~ = - 2. 

The solution of the original equation is therefore 
y = Clel~ + C26 - 27. 

d2y dy 
(5) 6ol"ve dx2 + dx = O. [y = A + Be-X.] 
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(6) Solve ~2y _ 3dy - lOy = O. [y = Cleliz + C2e - 2xJ. 
dx2 dx 

# (7) Solve 2dd2~ - 3d
d

y + Y = O. [y = Clex + C2e;x.] 
x x 

d3y d2y dy 
(8) Solve dx3 - 6 dx2 + 11 dx - 6y = O. 

The results proved for equations of the second order 
may be generalized. The most general type of linear 
equation with constant coefficients is 

f(D). y = 0; 
if feD) can be resolved into n real factors 

feD) = (D - ;\l)(D - ~)(D - ;\3) .•• (D - ;\,J; 
where AI' ~, A3 .•. are the (real) roots of 

f(;\) = 0; 
then the solution of 

f(D)y = 0 
is the equation 

y = CleA,' + C2eA,' + C3e":J' + ... + C"eA,,' 

involving n arbitrary constants. 

(10) Solve dd2~ + 4
d
dy + 4 = O. 

. x x 
(The auxiliary equation is 

;\2 + 4A + 4 = 0, 
:. (;\ + 2)2 = 0, 

i.e. we have Al = ~ = - 2'1» . 
This is the case of equal roots, hence 

y = (Ax + B)e -2'.) 
d3y d2y dy 

(11) Solve dx3 - dx2 - dx + Y =0 O. 

(The auxiliary is 
;\3 _ ;\2 - ;\ + 1 = 0 

:. ~ = ~ = 1, A,3 = - 1. 

'. 
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The case is a combination of equal and [,;unequal roots 
and .~ \ 

Y = (A + Bx)e% + Ce -%.) \\ '\ 
d 3y d2y I~ \ 

(12) Solve - - 3-· + 4y = O. ~ 
dx3 dx2 '. 

[y = (A + Bx)e2
% + Ce-%.], 

d3y dy - \ 
Solve dx3 - 3 dx + 2y = O. (13) 

[y = (A + Bx)e% + Ce- 2%.] 

(14) Solve ~~ - f32() = O. . [8 = C1e,8· + Cze - ,8x.] 

(15) Show how to solve an equation of the type 
d2y 
dxz = /(y). 

[The first integral may be obtained in one of two 
ways:-

(i) Multiply both sides by dy/dx, and integrate 
dy d2y dy 
dx . dx2 = f(y) dx 

. 1 d (dy )2 dy 
.. 2 dx dx = fMdx 

:. ~(~~y = ff(y)~~dx + A = ff(y)dY + A. 
(ii) Let dyjdx = p, 

d2y _ dp _ (J,E dy _ dp 
dx2 - dx - dy' dx - P dy' 

d2 

Then d~ = f(y) may be written 

dp 
, PdY =/(y). 

Integrate with respect to y, 
ip2 = V(y)dy + A. 

In both cases the solution would be completed by 
separating the variables:-

dy = + dx. 
J2V(y) dy + 2A -

16 
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(16) 

(17) 

(18) 

(19) 

HIGHER MATHEMATICS 

d2y P 
Solve dx~ + y "" h~y~' . 

[(~~y + y2 = 2 J h~2dY + 0'] 
d 2y dy 

Solve a dx2 = dx" 

(Put dyldx = p.) [y = A + Bexr.] 

Solve a~J + (~~y = O. 

dy . d2y dp 
Put dx = p, dx2 = P dy 

• dp _ 0 
•. a

dy 
+ p-

.'. logp = - y/a + 0, 
:. p = e-·fa.ec 

, p = dy = Ce -" tl> 
" dx ' 
.'. dx/dy = ae"r 

... X = aaey
/
a + B, 

.'. x - B = aae·r, 
" .y x-B 

.. a=log~. 

d2V 1 dV 
Solve d-----;;-- + - -d = O. 

'1'" '1' '1' 

In this case the dependent variable (V) does not a.ppear> 
explicitly (cf, Ex. 16.) 

dV 
Put dr = p, 

dp P ., :, dr + r = 0 

. 1 . . log p = log - + 0, 
'1' 

,'. P = Air; 
dV A dr 

... d- = -, .', dV "" A-, 
'1' r '1' 

. '. V = A log r + B. 
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136. LINEAR EQUATIONS WITH VARIABLE OOEFFICIENTS 

diy dy , 
Let d~ + Pd- + Qy = 0 I" 

x x '\ 
where P =/l(X), Q =h(x).~ \ 

To aolve such an equation we put ~ \ 
x = e' ~ 

Examples ;- \1, 

2d
2
y dy \ (1) x d-~ + 4x

d
- + 2y = 0 • . 

x X I 

Put x = e', or z = log x, \. 

(1) 

(2) 

(a) 

. dx "dy dy , 
•. dz = e, e dx = dz' \ 

. dy 1 dy , 
. . dx = x dz \ . (b) 

Also 

tl}y = ~(! dy) = _!_(d2y _ dy) '\. 
dx~ dx\;;' dz X2 dz2 dz' (c) 

Substitute the values from (bY and (c) in (a) :-

diy dy 
dz2 + z dz + 2y. = 0 (d) 
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137. CONSECUTIVE CHEMICAL REAOTIONS 

The view is becoming more and more pronounced 
that many, perhaps all, the reactions which are repre­
sented by complicated equations are in reality composed 
of a series of simpler reactions, the products of one re­
action being involved in the succeeding reactions. These 
component reactions are usually bimolecular. The frequent 
occurrence of the bimolecular reaction receives a simple 
explanation from the kinetic molecular theory, since the 
chance of a binary molecular encounter is very much larger 
than the chance of a ternary, quaternary, etc., encounter. 
If one of the component reactions is very much slower 
than the others, the order of the whole reaction is then 
approximately that of the slow reaction. Thus if A is 
converted very slowly into B, and B very quickly into C, 
the order of the whole reaction is practically that of the 
reaction 

A~B; 

the B, as fast as produced, being converted into C 
B-C. 

Very rapid, or "instantaneous," reactions, such as 
occur between ions, will have little or no effect on the 
observed velocity of reaction. Purely hypothetical sub­
stances, with this convenient property, may be postulated" 
ad lib. in the supposed explanation of a reaction; if no 
independent evidence of their existence is forthcoming, 
the "explanation" is simply a complication of the prob­
lem to be solved: "It introduces a new unknown; it 
is unnecessary, and nothing more damnittg can be said of 
a scientific theory'.'. 

To get a clear idea of the nature of consecutive re­
actions, we may consider a number of reservoirs on a. 
sloping hill-side connected by pipes of varying diameter. 
Il a quantity of water is let into the first reservoir this 
will correspond with the initial substance. Since this can 
only lea.ve the reservoir, its quantity can never tend to a 
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maximum; on the contrary it will diminish continuously, 
and approach a minimum value of zero. The rate at 
which water accumulates in any reservoir will be directly 
proportional to the head of wa.ter in the preceding reser­
voir and to the cross-section of the inlet pipe; it will be 
inversely proportional to the cross-section of the outlet 
pipe. It is evident after a little thought that the quantity 
of water in such a reservoir can become a. maximum after 
some period of time has elapsed, it then decreases continu­
ously, and approaches asymptotically a. minimum value 
zero. The quantities of water in the reservoirs correspond 
to the quantities of the products of the component re­
actions; the cross-sections of the inlet and outlet pipes to 
the velocity-constants of the reactions in which the pro­
duct enters and leaves the system. The rate at which any 
substance Y accumulates is directly proportional to the 
product of the concentration of the parent substance (X) 
a.t any moment and the velocity-constant of the reaction 

X-YO 
The rate at which the substance Y disappears is propor­
tional to the concentration of Y at any instant mUltiplied 
by the velocity-constant of the reaction \ 

y_Z. " 
Hence the resultant rate of production of Y is given 

• by the equation 
dY 
dt = k1X - k2Y. 

The supply of X is however after a certain point, con­
tinually diminis~ing, and that of Y continuously increasing 

The velocity ~; will therefore pass through a maXImum 

value, and then diminish. At the maximum point the 
rates of production of X and Yare in the ratio of k2 : k1• 

Such a system of reactions, in which the various stages 
are genetically connected, must not be confused with a 
system of side reactions, in which the original substance 
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(or substances) are converted directly into a variety of final 
products. 

A chemical reaction is the resultant of a large number 
of conditioning causes. The reaction as a whole must 
proceed in conformity with the laws of conservation of 
matter and of energy; and the available energy of the final 
system must, if the reaction has occurred spontaneously, 
be always Jess than the available energy of the initial 
system. The actual manner in which the available energy 
is dissipated will, however, depend largely on the conditions 
under which the system is placed; on its temperature and 
pressure, on the concentrations of the reacting substances, 
on the extent of the surfaces of the phases, on the op­
portunity for free diffusion, etc. The reaction therefore 
proceeds in a variety of ways, and leads to a variety of pro­
ducts. It is only in a few cases that we can say exactly 
how a rea.ction proceeds in all its stages. ... 

Instead of taking up the general theory of consecutive 
reactions, which is still very incomplete, we will consider 
a few examples which have been actually investigated. 
We may refer once more to the work of Professors V. 
Harcourt and W. Esson, of Oxford; who in their researches 
"On the Laws of Connexion bGtween the conditions of a 
chemical change and its amount," " Phil. Trans.," 1866 and 
1867, laid the foundations of chemical kinetics. The" 
mathematical and experimental treatment of consecutive 
reactions was carried out by them in a manner which, 
when we remember that the general laws of mass-action 
had not then been enunciated by Guldberg and Waage, 
can but impress us by its thoroughness an~ accuracy. 

138. OASE 1 

Two consecutive unimolecular reactions :­
A-M-B. 

M is called the intermediate product. 
After a time t let the system contain 

J} mols. A + Y mols. M + z mols. B. 
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The rates of formation of A, M, B are given by 
d3J 

- dt = k1x 

dz 
dt = k3y (2) 

dy dx dz 
dt = - dt - dt = k 1x - k2y (3) 

Let one mol. of A be the initial amount, then 
x + Y + z = 1 , I., (4) 

Differentiate (2) :-
d2z dy 
dt2 - k2dt = 0 (5) 

Add and subtract k 1k2y : 
d2z dz 
dt2 + (k1 + k2) dt - k1k2 (x + y) = 0 (6) 

From (4) z - 1 = - (x + y), 
. d2 (z -1) d(z -1) 
" dt2 + (kl + k2) dt + k1k2(z - 1) = 0 (7) 

II. linear differential equation of the second order in the 
variable (z - 1) with constant coefficients. 

The solution is therefore 
z - 1 = C18- kl' + C28-'" 

When t = 0, z = 0, 
.'. - 1 = C1 + C2 • 

Differentiate (8):-
dz/dt = - k1C18-

k
l' - k2C28- k

.' 

From (2), dz/dt = 0 when t = 0 
:. 0 = - kl C1 - k2CZ 

From (9) aJlp (11) 

C- k2 ' C ___ k_1_ 
} - kl - k2 ' 2 - k} - k2' 

. 1 kz - k , k} - 1 , 
•. z - = kl _ k2 e J - kl _ kg e ". 

Put k2/(k j - k2) = A; kl/(kl - kz) = B; 
8 - kl = C; e - k. = D . 

Then x + y = A(e)' - B(D)' . 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
(14) 
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Values of A, B, C, D may be calculated which satisfy 
the data, Harcourt and Esson found an example of this 
case in the reduction of KMnO, by oxalic acid. Mangan. 
ese dioxide is first formed by an instantaueous reaction, 
and is then slowly reduced to MnO via an intermediate 
oxide, possibly Mn,07 :-

Mn02 ...,. Mn,07 ...,. MnO. 
They found that A = 42'7, B = 5'3, C = 0'94, D = 0'75, 

satisfied the data. 
Calculate the values of (x + y) for t = 2, 4, 6, 8, ' , . 

40, and compare with the following experimental num­
bers:-

t = 2 4 6 8 10 18 30 40 
x + Y = 34'75 31'75 28'6 25'75 23'1 14'15 6'7 3'9 

139. CASE 2. MONOMOLECULAR FOLLOWED BY BIMOLE· 
CULAR REACTION 

If KMnO., MnSO" C2H20" and H 2SO, are mixed in 
the proportions :-

2KMnO, + 15MnSO. + 5C2H 20 4 + 3H2SO" 
(instead of 2KMnO, + 14MnSO, + 108C2H20, + 760H2S04 

as in case (1» the followin,g reactions appear to take_ 
place: 

(i) 2KMnO, + 3MnSO, + 2H20 = 5Mn02 + K2SO, 
+ 2H2SO", 

or, since everything except KMn04 is in excess, 
KMnO,"'" Mn02, 

If x = concentration of KMnO, after a time t, 
dx 

- dt = k1x . ~ (1) 

(ii) Reduction of the Mn02 formed in (i) by the oxalic 
acid now takes place :-

Mn02 + C2H 20, + H2SO, = MnSO, + 2H20 + 2C02, 

or since H 2S04 is present in excess:-
Mn02 + C2H 20 4 ...,. MnO + 2H20 + 2C02• 

Let y, Z = concentrations of Mn02 and C2H 20 4 in the 
solution after a time t, 
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dz '. 
- dt = kzyz (2) 

dy . 
Also dt = k1x - k 2yz. (3) 

If the amounts of KMnO. and Mn02 are determineo 
together, and if a is the amount of CZH20. or KMnO. 
originally present (in gram equivalents), 

a - x = number of equivalents of KMn04 transformed 
at time t. 

a - z = number of equivalents of C2H20 4 transformed 
at time t. 

But (number of equivalents of KMn04 transformed) 
= (number of equivalents of Mn02 transformed) + (number 
of equivalents free MnOz) , from the equations, 

... a - x = a - z + y ... z = x + y (4) 
Divide (3) by (1), 

_ dy dt = 1 _ kl yz 
dt . dx kz' x· 

Substitute dy = dz - dx, from (4), ari~ put kl/k2 = K :-
dz yz '\. 

- -= - K- '. 
dx x· 

Substitute y = (z - x), and divide through by Z2:_ 

1 dz K K 
:ii . dx + z - x = 0 . (5) 

This has been solved in Example (13) on § 131 :-

Ke-Kx{Cl-logx + Kx - 1.12~(Kx)2 + .. . }z = 1. (6) 

Integrating (1) ,_ 

J~x = - Jk1dt + const . 

. . log x = - kIt + const., 
or x = ae -kIt (7) 

Substitute this value of x in (6) and neglect the terms 
~fter log x (after five minutes, it was found that the per­
lDanganate had practically disappeared) ;-

• 
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~(CI - log a + k1t)z = I, 
1 

or, collecting the constants, 
(C + t)z = l/k2 (8) 

The values C = 0'1, k'J = 0'006364 were found to gIve 
good results when compared with experiment. 

140. RADIOAOTIVE OHANGES 

The emanations of radium and thorium; and the 
substances" uranium X" and" thorium X," produced in 
the disintegration of uranium and thorium, lose their 
a.ctivity according to the simple exponential law previously 
considered. The change is monomolecular, involves the 
disintegration of a single atom, and proceeds according to 
the equation 

x = xoe -"'. 
The "excited radioactivity" produced on a body· (e.g. 

a platinum plate) exposed to the emana,tions of thorium, 
radium, and actinium, does not decay in such a simple 
manner; Rutherford therefore suggests that the deposited 
matter undergoes a series of successive changes, the 
process being an example of consecutive reactions. It 
was found that the rate of decay was quite different ac­
cording as the body had been exposed for a short time or 
for a long time to the action of the emanation. We shall 
therefore have to consider the phenomena in the cases 9f 
"short exposure" and" long exposure ". 

We will take the first part of the life of radium. This 
is composed of the following stages ;-

Ra - Ra Emanation - RaA - RaB - RaC -
active deposit 

Each change, involving the disintegration of a single 
atom, is unimolecular, and if N, No are the number of 
atoms of !Lny changing substance present at time t, and the 
number of atoms present when it begins to disintegrate, 
respectively, 

N = Noe -A,; 
where ~ is the radioactive constant. 
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This is the integral form of the velocity equation 
dN 
d{ = - AN. 

(a) Let N1, N2, Na, be the numbers of atoms of BaA, 
RaB, RaC left unchanged after a time t. Let AI' ~, Aa 
be the radioactive constallts for the same three substances; 
and, in the case of a short exposure, we may consider, say, 
N atoms of A deposited, these changing into Band C. 

A 

w.---~----+----+----+----+----+---~ 

• \1i/1I' In Minutes . 

FrG. 42. 

N 1 =Ne- Aj' 

dN2 N N 
• dt = Al 1 - ~ 2 

d~3 = ~N2 - i\.aNs • 

dN 
Therefore dt 2 = A1Ne - At' - ~N~ 

he solution of this being of the form 
N2 = N(ae- A1' + be-~"l) 

where a = All (~ - AI)' 

(1) 

(2) 

(3) 

(4) 

(5) 
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'" .. .. 

Since N2 = 0 when t = 0 ... b = - Xl (~ - Xl)' 

. N = NXI (e - V - e - AI'l (6) 
" 2 X

l
- A2 ) 

Substituting in (3) it is found that 
Na = N(ae -AI' + be -A1 + ce -A/) (7) 

h - ~l~ . b _ - Xl~ . 
were a - (Xl - ~) (Xl - Xa> ' - (Xl - ~) (~ - AJ' 

c _ Xl~ \ 
-~-~~-AJ I 

;.~~--~----~----+-~~~---+-----r~~ 

.. 
" 
" ::: 401----+-__,"d---+---~--_i'~-_+_-___l 

" " .. 

rim",.I. Mi .. t .. 

FIG. 43. 

If the curves showing the amounts of A, B, 0 present 
at any time t after a short exposure be dtawn from (1), (5), 
(7), the variation of the three substances is evident. In 
the case of radium, 

Xl = 3'85 x 10 -3, 
~ = 5'38 x 10-4, 
Xs = 4'13 x 10 - 4. 

If N = 100, and the amounts of Band 0 be taken 80S 

initially zero, the curves for the production of Band 0, 
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and the decay of A may be drawn. These are given in 
Fig. 42. 

(b) In the case of a long exposure, ~he emanation and 
its products have reached a state of equilibrium, in which 
the number of atoms of A deposited per second from the 
ema.nation change into the same number of atoms of B, 
and so on. Let no be this number. 

no = A.lNlo = ~N20 = A.aN3~ . 
where ,Nlo, etc. are the values for the stead~ state. 

Initially, Nl = Nlo = no/A.I,I\ 

\ 

hence, as before 

N2 = N 2° = nolA.l' \ 
Na = Nao = not~3 \ 

" N
J 

= nOe -AI' .\ 

A.} \ 
N2 = no (Ale-Al_ e-Al') .\ 

XI-~A.l 
Na = no(ae'-Al' + be- A2' + ce- A.') ., 

vhere a = ~ , b = - Al , 
(AI - ~) (AI - A.a) (AI - A.) (A.! - A.a) 

A}A2 
c= 

Aa (A.l - A3)(~ - AJ .. 

(1) 

(2) 

(3) 

(4) 

(5) 

Taking the value Nao = 100, and the values of \.1' ~, 
"Xa a.lready given, the curves for the change of the active 
deposit after long exposure may be drawn. They are 
gtven in Fig. 43. 





ApPENDix I 
\ 

THE THEORY OF QUADRATIC EQUATIONS 

T HE general type of quadratic equation is 
, ax2 + bx + c = 0 . (1) 

where a, b, c are constants. In proceeding to the solution 
of this equation, we observe in the first place that 

(x + a)2 = x2 + 2ax + a2, 
in which both members are complete squares. 

Any quadratic expression is a complete sguare when ,­
the third term is the square of half the coefficient of x, 
provided the coefficient of x2 is unity. 

·Divide (1) by a, and transpose:-
b c 

x2 + -x = - -. \ 
a a I 

Complete the square of the expressi~n on the left by 
b 2 ' 

ia~ding (2J to both sides :- \ 

[1;2 + ~ x + (!!_)2 = _ £ + ~ " 
a 2a a 4a2' 

( !!_)2 _ bi 
- 4ac 

.. x+ 2 - 42 • 
'" a a~_-,-

. b Jb 2 
- 4ac 

.. x+-2 =+ 2 ' a - a 
~---,:--

- b + Jb2 
- 4ac (2) 

:. x = 2a 

~. We observe that every quadratic equation has two 
toots,-i.e. two values of x which satisfy the equation. 
~hese roots are 
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- b + Jb2 - 4ac - b - Jb2 
- 4ac 

Xl = 2a ' ~, 2a ' 

If we denote the roots by a and fJ. we have 
- b + .)b2 - 4ac - b - Jb2 

- 4ac b 
a + fJ = 2a + 2a = a' 

coefficient of x 
or the sum of the roots = - ffi' t f 2' coe Clen 0 x 

Also 

afJ = ( - 2~ + _J}!2 2~~C)( - 2~ _ Jb
2 

~ 4ac) 

b2 b2 - 4ac c 
= 4a2 - ~- = a' 

third term 
or the product of the roots = ffi' t f 2' coe Clen 0 x 

Examples:-
(1) Show that the sum of the roots of 

ax2 - ax + c = 0 is unity. 
(2) Show that the product of the roots of 

acx2 + b2x + c2 = 0 
is that of the roots of 

ax2 + bx + c = O. 
(3) Let a, (3 be the roots of 

ax2 + bx + c = O. 
Show that the factors of this expression are 

a(x - a)(x - (3) = O. 
This result enables us to factorize any quadra.tic ex­

pression very readily. 
Consider the equation 

ax2 -I- bx + c = 0, 
where a, b, c are real qua.ntities, i.e. db not involve the 
square root of a negative quantity. 

The roots we have shown to be 

- b -I- Jb2 - 4ac - b - Jb2 - 4ac 
a= 2a ;{3= 2a 

Now all questions as to the nature of the roots may be 
answered, without actually solving the equation, from a 
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consideration of the expression (b2 - 4ac). This expression 
is therefore called the discriminant of the equa.tion. 

(i) If bl - 4ac is negative, i.e. if b2 < 4ac, . the roots are 
imaginary, since the squa.re root of a negative quantity is 
not a real quantity. 

(ii) If b2 - 4ac is zero, i.e. if b2 = 4ac, the roots a.re real 
and equal. 

(iii) If b2 - 4ac is positive, i.e. if b2 > 4ac, the roots are 
real and unequal. 

(iv) If bi - 4ac is a. perfect square, the roots are ra­
tional. 

(The distinction between "real" quantities and "ra­
tiona.l " quantities must be kept clear. J2 is real but ir­
rational, J - 2 is unrea.l, or imaginary.) 

(v) If b2 - 4ac is not a perfect square, the roots are 
irrational. 

Formation of Quadratic Equations :-
Given the roots m and n, it is required to form the quad .. 

ratic equation. ' 
Let the coefficient of x2 = 1, then 

coefficient of x = - (m + n), 
third term = mn, 

,'. the equation required is 
x2 - (m + n)x + mn == O. 
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THE SOLUTION OF SYSTEMS OF LINEAR 
EQUATIONS BY DETERMINANTS 

Systems of equations of the types 
alx + bly = CI} • 
<l:!X + b2y = C2 

(A) 

alx + bly + CIZ = dll 
a.Jx + b2y + C2Z = d2 

aax + baY + caz = da 
occur frequently in practical work. 

(B) 

Now it is shown in textbooks on Algebra. that the 
solution of (A) may be written 

Simila.rly I ~~~: I = bl c2 - b2cl , etc. 

The symbol I aicil is called a Determinant; the pro­
<l:!C<1 

.258 
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cess of writing out the products, in conformity with the 
rule, is called expanding the determinant, The utility of 
determinants lies in the compactness and symmetry which 
they introduce into algebraical operations. 

All simultaneous equations of type (A) may be solved 
by introducing proper values of the constants into {A') 'j\ 

If the equations involve three unknowns, ie, y, an9: ~, 
simultaneously, the determinant equations are II \ 

I 

i 
I 

I 

I
d1 bi 
d2 b2 
d b D(d,b,c) 

1: = a] b
j 

C
j 

= D(a,b,c) say, 
~ b2 C2 

0,3 ba c3 
D(a,d,c) 

Y = D(a,b,c) ' 

Z = D(a,b,d), .. 1 . 
D(a,b,c) .~. 

The determinants in these equations are expanded ~ 
the following rule :-

Rule of Sarrus: repeat the first two columns after the 
third column, make products along the diagonals as 
shown, counting descending + .. , ascending - .. , 

:.81 b l CI 8l~bXCX8/bl\ 
82 b2 C2 = 8:1 b2 C2 8 2 b2 \ 

83 b3 C3 f!-3 /b3X C3X a3~b3 
= a jb2ca + bjc2aa + 0]a2ba - aab20j" - ba02a] - c3a~b]' 

Another method is to expand the determinant into its 
minors:-

I :~ ~~ ~~ = a], b2 021_ a21 bi c] 1+ aJlI b] c]I' 
a b C 

bB Ca ba 0 3 b2 c2 
a 3 3 
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Then, expanding the minor determinants, we get 

a l (b2cs - ba~) - ~ (blcs - bscl) + as (b l c2 - bic l )· 

l!'urther particulars respecting Determinants must be 
looked for in textbooks on Algebra. 

Examples:-
(1) Solve the equations 

2x + 3y + z = 20 
3x + 5y + 7 z = 34 
x + 2y + 4z = 17. 

(x = 1, y = 2, ~ = 3,) 

(2) Field estimated the chlorine, bromine, and iodine 
in a. mixture of a chloride, a bromide, a.nd an iodide, by 
precipitating one-third with silver nitra.te and weighing 
the mixed halides, precipitating another third with silver 
nitrate a.nd digesting the precipitate with KBr, when 
AgOI _ AgBr, since the solubility-product of the latter is 
less; and finally by digesting the precipitate from the 
remaining third with KI, when AgOI_ AgI, AgBr _ AgI. 

Let w, w', w" be the weights of the three precipitates 
after treatment; x, y, z the (unknown) amounts of AgOI, 
AgBr, AgI. The student will easily prove that 

x+y+z=w 

~:~:~~ x + y + z = w' 

234'BO 234'BO z = w" 
143'33 x + 1B7'BOY + . 

Thence find x, y, z by determina.nts.'d 
(3) Macnair treated the mixture of AgOI, AgBr and 

AgI with K20r20 7 + H2S04, thus converting AgOI and 
AgBr into soluble Ag2S04, and AgI into insoluble AgIOa' 
The iodate was reduced to Ag, a.nd the Ag in the filtrate 
estimated, Let w = weight of mixed halides; wl = weight 
of Ag from AgIO,; Wi - weight of Ag from AgOl Rond 
AgBr. 
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Prove that 
Z+y+Z=W 

Z = Aglw 
Ag I 

Ag Ag 
z AgOl + Y AgBr = w2• 

Thence find z, y, z by determinants. 
(4) Sodium and potassium may be estimated by the 

evapora.tion of a mixture of their salts (with a volatile acid) 
with strong hydrochloric acid. NaCl(z) and KOI(y) re­
main. Let the weight of the residue be Wl : 

z + Y = WI' 

The mixture is evaporated with strong sulphuric acid 
and the residual sulphates weigh, say, w2 : 

71 87 
57'5x + 74'5Y = W z· 

Thence find z and y by determinants. 
(See Ostwa.ld, "Principles of Inorga.nic Chemistry," 

trans. A. Findlay, 1902, p. 472). , 
(5) A mixture of x vols. ethylene, y vols. proplyene, 

and z vola. benzene vapour is measured in the gas b~rette. 
Its volume = a. It is then mixed with excess of oxygen 
and fired. The contraction = b. The residual gas is 
passed into the potash pipette and back to the burette. 
',Che contraction = c. From the equations prove that 

x+y+z=a 
2x + {y + {z = b 
2x + 3y + 6z = c. 

Thence find:?, y, z by determinants. 
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APPROXIMATION FORMULA!] 

If the magnitudes a, b, c, d are small in compariso~ 
with unity, it is true to a first approximation that: 

(1) (1 ± a) (1 ± b) (1 ± c) ... = 1 ± a ± b ± c ± ...• 
(2) (1 ± a)~ = 1 ± 2a. 
(3) _ (1 ± a)3 = 1 ± 3a. 
(4) (1 ± a)" = 1 ± na. 
(5) J (1 ± a) = 1 ± fa. 

, (6) ~1 ± a = 1 ± !a, 
(7) Jab = -Ha + b). 

(The first member is the so-called geometric mean, the 
. second is the arithmetic mean.) 

1 
(8) -1- = 1 4= a. ±a 

1 
(9) 1 = 14= tao 

(1±~2 , 
1 

(10) (1 ± a)" = 1 4= na. 

(1 ± a) (1 ± b) _ 
(11) (1 ± c) (1 ± d) = 1 ± a;: b + c 4= do 
(12) ea = 1 + a. 
(13) x,. = 1 + a log.x. 

a2 

(14) log.(1 + a) = a' - 2' 

The student should verify the above formulro. Further 
examples (mainly modifications of the types just given) are 
added, ' . 

262 



t 

APPROXIMATION FORMULlE 263 

Examples :-
Show that to the first order of approximation, if 8 is 

small compared with a : 

(1) _1_ = !(1 + ~). 
a+o a a 

(2) Ja + g = Ja(1 +';a)' 
(3) Ja - " = Ja(1 ~ it). 
(4) Prove equation (7) above by putting b = a + 0, 

where 0 is small, and using Ex. 2. 
As an example of the practical utility of these approxi­

mation formulre, consider the correction of the barometric 
height for temperature. If a is the relative coefficient of 
linear expansion of the mercury with reference to the brass 
scale, and. h the (uncorrected) barometric height a.t tem­
perature to C., the correction to be added is-aht, to re­
duce to the reading at 0° C. 

a for a brass -scale = 0-000163. 
Now under ordinary conditions, hand t will differ but 

slightly from 760 mm. and 15° C. respectively; 
,'. h = 760 + k, 

t = 15 + 0, 
where k and 0 are small quantities compared with 760 and 
15 respectively. Thus by formula (1) 

ht = 760 x 15 + 15k + 7600. , 
Writing (h - 760) for k, and (t - 15) for: 0, 

/ ht = 11400 + 15(h - 760) + 760(t - 15) 
:. a ht = 1-86 + '0024(h - 760) + 0'124(t - 15"). 

(See Schulter and Lees, "Intermediate Practical 
Physics," § 2; Watson, « Text-Book of Practical Physics," 
Ch. I; Kohlrausch, "Lehrbuch der praktischen Physik". 

Examples :-
(1) Find the approximate values of the following:­

(1'000024) (1'000065); (1'00018) (0'99982) ; 
1 1'00018 

1'000025; 0-99986' [1'000089 j 1; 0'999975; 1'00032.] 
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(2) The formula for the expansion of a. ba.r by hea.t is 
l, = lo(l + at), 

where lo = length at 0° C. Show that if heated from to to 
t'O the fina.llength is approximately 

l,l = l,(l + at' - at). 
(3) Prove similarly for the volume of a liquid :­

W = v.(l + f3t' - f3t). 
Would this be true for It gas? [N 0; see the section 

on Taylor's Theorem.] 
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\ApPENDIx IV 
i 

TABLE OF EXPONENTIAL AND LOGARITHMIC 
FUNCTIONS 

The foUowing table will furnish values for 
y ,., log;C if z is regarded as given, 
x "" eW if y is rega.rded as given, 

Values intermedia.te between ta.bulated values ]D.ay be 
obtained by interpolation with the Rule of Propc)rtional 
Parts, 

Examples ;-
(1) Find log.125'6, 

Here x - 125'6 = 1'256 x 102 

:, log;c - log.(1·256 x 102) ,= log.l'256 + 2 log.:LO, 
Now log.1·25 ..,. 0'2231, 

log.1'26 ~ 0'2311, 
, 0'2311 - 0'2231 = log.1·256 - O'2~ 

• . 1'26 - 1'25 1'256 - 1'25 
,', \og.l'<l.,{/o = \Y<l.<l.'i'i) 

.'. log.125'6 = 0'2279 + 2 x 2'3026 
... 4'8331, 

(2) Find the value of e - 2,36, 

Here y = - 2'36, or if we put e - 2·36 = 1je2•86 we can 
evaluate e - 2036 if '\ve find the value of e2•36, From the 
tables :-

log.lO·50 = 2'3513; log.10'75 = 2'3749, 
Hence if x = e2,36:_ 

10'75 - 10'50 x - 10'50 
2'3749 - 2'3513 2'36 - 2'3513 

,', x = 10'558 
:. e- 2•36 = 1 -7 10'558 = 0'09471, 

265 
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x y x y x y x y 

1'00 0 1'51 '4121 2·02 '7031 2'53 ·9282 
1'01 '0099 1'52 '4187 2'03 '7080 2'54 '9322 
1·02 '0198 1'53 '4253 2'04 '7129 2'55 ·9361 
1'03 '0296 1-54 '4318 2'05 '7178 2'56 '9400 
1'04 '0392 1'55 '4383 2'06 '7227 2'57 '9439 
1'05 '0488 1'56 '4447 2'07 '7275 2'58 '9478 
1-06 ·0583 Hi7 '4511 2'08 '7324 2'59 '9517 
1'07 '0677 1-58 '4574 2'09 '7372 2'60 '9555 
1'08 '0770 1-59 '4637 2-10 '7419 2'61 '9594 
1'09 ·0862 1-60 '4700 2-11 '7467 2'62 '9632 
1'10 '0953 1·61 '4762 2'12 '7514 2'63 '9670 
1'11 '1044 1'62 '4824 2'13 '7561 2'64 '9708 
1'12 ·1133 1'63 '4886 2'14 '7608 2'65 '9746 
1'13 '1222 1-64 '4947 2-15 '7655 2'66 '9783 
1-14 '1310 1·65 '5008 2-16 ·7701 2'67 '9821 
1'15 ·1398 1'66 '5068 2'17 '7747 2'68 ,'9858 
1-16 '1484 1·67 '5128 2'18 '7793 2'69 ·9895 
1'17 '1570 1·68 '5188 ,2-19 '7839 2'70 '9933 
1'18 '1655 1-69 '5247 2'20 '7885 2'71 '9969 
1'19 ·1740 1-70 '5306 2'21 ·7930 2'72 1'0006 
1'20 ·1823 1'71 '5365 2'22 ·7975 2'73 1'0043 
1'21 '1906 1'72 '5423 2'23 '8020 2'74 1'0080 
1'22 '1988 1-73 '5481 2'24 '8065 2'75 1'0116 
1'23 ·2070 1'74 '5539 2'25 '8109 2'76 1'0152 
1'24 '2151 1-75 '5596 2'26 '8154 2'77 1'0188 
1'25 '2231 1'76 '5653 2'27 '8198 2'78 1'0225 
1'26 '2311 1'77 '5710 2'28 '8242 2'79 1'0260 
1'27 '2390 1'78 '5766 2'29 '8286 2'80 1-0296 
1'28 '2469 1-79 ·5822 2'30 '8329 2'81 1'0332 
1'29 '2546 1'80 '5878 2'31 '8372 2'82 1'0367 
1'30 '2624 1'81 '5933 2'32 '8416 2'83 1-0403 
1'31 ·2700 1'82 '5988 2'33 '8458 2'84 1'0438 
1'32 ·2776 1'83 ·6043 2·34 '8502 2'85 1'0473 
1'33 '2852 1'84 ·6098 2'35 '8544 2'86 1'0508 
1'34 '2927 1'85 '6152 2·36 '8587 2'87 1'054~ 
1'35 '3001 1'86 ·6206 2'37 '8629 2'88 1'0578 
1'36 '3075 1'87 ·6259 2'38 '8671 2'89 1'0613 
1'37 '3148 1'88 ·6313 2'39 '8713 2'90 1'0647 
1'38 '3221 1'89 ·6366 ·2'40 '8755 2'91 1'0682 
1'39 '3293 1'90 ·6419 2'41 '8796 2'92 1'0716 
1'40 '3365 1'91 ·6471 2'42 '8e~8 2'93 I-0750 
1'41 '3436 1'92 ·6523 2-43 '8879 2'94 1'0784 
1'42 '3507 1'93 '6575 2'44 '8920 2·95 1'0813 
1'43 ·3577 1·94 ·6627 2-45 '8961 2'96 1'0852 
1'44 '3646 1'95 ·6678 2-46 '9002 2'97 1'0886 
1'45 '3716 1'96 ·6729 2-47 '9042 2'98 1'0919 
1'46 '3784 1'97 ·6780 2-48 '9083 2·99 1·0953 
I-47 '3853 1'98 ·6831 2'49 '9123 3'00 1'0986 
1'48 '3920 1'99 ·6881 2'50 '9163 3'01 1'1019 
1'49 '3988 2'00 ·6931 2'51 '9203 3'02 1-1053 
1'50 ·4055 2'01 ·6981 2'52 '9243 3'03 1'1086 
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:z; 11 a; 11 :z; 11 :z; 11 

3'04 1'l119 3'55 1'2669 4'06 i 1'4012 4'57 1'5198 
3'05 1'1151 3'56 1'2698 4'07 1'4036 4'58 1'5211 
3'06 1'1184 3'57 1'2726 4'08 \ 1'4061 4'59 1'5239 
3'07 1'1217 3'58 1'2754 4'09 ',1'4085 4'60 1'5261 
3'08 1'l249 3'59 1'2782 4'10 \1'4110 4,61 1'6282 
3'09 1'1282 3,60 1'2809 4'11 1'4134 4'62 1'5304 
3'10 1'l314 3'61 1'2837 4'12 1'4169 4'63 1'5326 
3'11 1'1346 3'62 1'2866 ,4'13 li4183 4,64 1'5347 
3'12 1-1378 3'63 1'2892 4'14 11.4207 4'65 1'5369 
3'13 1'1410 3'64 1'2920 4015 1'4231 4'66 1'5390 
3'14 1-1442 3'65 1'2947 4016 1'4255 4,67 1'5412 
3'15 1'1474 3,66 1'2975 4'17 1'4279 4,68 1'5433 
3'16 1'l506 3,67 1'3002 4'18 1'4303 4,69 1-5454 
3'17 1'1537 3'68 I'B029 4'19 H327 4'70 1'5476 
B'18 1-1569 3,69 1'3056 4'20 1'4361 4,71 1'5497 
3'19 1-1600 3'70 1'3083 4'21 1'4375 4,72 1'5518 
3'20 1-1632 3'71 1'3110 4'22 1'4398 4,73 1'5539 
B'21 1-1663 3'72 1'3137 4-23 1'4422 4,74 1'5560 
3'22 l'l694 3'73 1'3164 4'24 1'4446 4'75 1'5581 
3'23 1-1725 3'74 1'3191 4'25 1'4469 4-76 1'560~ 
3'24 1-1756 3,75 1'3218 4'26 1'4493 4,77 1'5623 
3'25 1'1787 3'76 1'3244 4'27 1'4516 4,78 1'5644 
3'26 1-1817 3'77 1'3271 4'28 1'4540 4'79 1'5665 
3'27 1'1848 3'78 1'3297 4'29 H563 4-80 1'5686 
3'28 1-1878 3'79 1'3324 4'30 1-4586 4'81 1'5707 
3'29 l'l909 3'80 1'3350 4'31 1'4609 4'82 1'5728 
3'30 1'1939 3'81 1'3376 4'32 1'4633 4'83 1'5748 
3'31 1'1969 3'82 1'3403 4'33 H656 4'84 1'5769 
3'32 l'l999 3'83 1'3429 4'34 1'4679 4'85 1'5790 
3'33 1'2030 3'84 1'3455 4'35 1'4702 4'86 1'5810 
3'34 1'2060 3'85 1'3481 4'36 1'4725 4-87 1'5831 
3'35 1'2090 3'86 1'3507 4'37 1'4748 4'88 1'5851 
3'36 1'2119 3'87 1'3533 4'38 1'4770 4'89 1'5872 
3'37 1'2149 3'88 1'3558 4-39 1'4793 4-90 1'5892 

• 3'38 1'2179 3'89 1'3584 4'40 1'4816 4-91 1'5913 
3'39 1'2208 3'90 1'3610 4'41 1'4839 4'92 1'5933 
NO 1'2238 3'91 1'3635 4'42 1'4861 4,93 1'5953 
3'41 1'2267 3'92 1'3661 4'43 1'4884 4,94 1'5974 
3'42 1'2296 3'93 1'3686 4'44 1'4907 4,95 1'5994 
3'43 1'2326 3'94 1'3712 4'45 1'4929 4-96 1'6014 
3-44 1'2355 "'95 1'3737 4-46 1'4951 4,97 1'6034 
3'45 l'2S84 3'96 1'3762 4'47 1'4974 4,98 1'6054 
3-46 1'2413 3'97 1'3788 4-48 1'4996 4-99 1-6074 
3-47 1'2442 3'98 1'3813 4-49 1'5019 5,00 1-6094 
3'48 1'2470 3'99 1'3838 4'50 1'5041 5,01 1'6114 
3'49 1:2499 4'00 1'3863 4,51 1'5063 5,02 1'6134 
3'50 1'2528 4'01 1'3888 4'52 1-5085 5,03 1,6154 
3'51 1'2556 4'02 1'3913 4'53 1'5107 5'04 1'6174 
3'52 1'2585 4'03 1'3938 4'54 1'5129 5,05 I-6H14 1 

3'53 1'2613 4'04 1'3962 4'55 1'5151 5'06 1'6214 
3'54 1'2641 4'05 1'3987 4-56 1'5173 5'07 1'6233 
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x y x Y x y x y 

5'08 1·6253 5'59 1'7210 6'10 1'8083 6'61 1'8886 

5'09 1'6273 5'60 1'7228 6'11 1'8099 6'62 1-8901 

5-10 1'6292 5'61 1'7246 6'12 1'8116 6'63 1'8916 

5'11 1-6312 5·62 1-7263 6'13 1'8132 6'64 1'8931 

5'12 1'6332 5'63 1-7281 6'14 1'8148 6·65 1'8946 

5-13 1'6351 5·64 1'7299 6'15 1'8165 6·66 1'8961 

5-14 1'6371 5'65 1'7317 6'16 1-8181 6'67 1'8976 

5'15 1-6390 5-66 1'7334 6'17 1'8197 6·68 1'8991 

5-16 1'6409 5·67 1'7352 6'18 1'8213 6'69 1'9006 

5'17 1-6429 5·68 1'7370 6'19 1'8229 6'70 1'9021 

5'18 1-6448 5'69 1'7387 6'20 1'8245 6'71 1'9036 

5-19 1-6467 ,5'70 1'7405 6'21 1'8262 6'72 1-9051 

5'20 1-6487 5'71 1'7422 6'22 1-8278 6'73 1'9066 

5'21 1-6506 5'72 1'7440 6'23 1'8294 6·74 1'9081 

5'22 1"6525 5'73 1'7457 6·24 1-8310 6'75 1'9095 

5'23 1-6544 5'74 1·7475 6'25 1'8326 6'76 1'9110 

5'24 1-6563 5·75 1'7492 6'26 1'8342 6'77 1'9125 

5'25 1'6582 5'76 1'7509 6'27 1'8358 6'78 1'9140 

5'26 1-6601 5'77 1'7527 6'28 1-8374 6'79 1'9155 

5'27 1'6620 5·78 1'71544 6'29 1'8390 6'80 1'9169 

5'28 1-6639 5'79 1'7561 6'30 1'8405 6'81 1'9184 

5'29 1'6658 5'80 1'7579 6'31 1'8421 6'82 1'9199 

5'30 1-6677 5'81 1-7596 6'32 1'8437 6'83 1'9213 

5'81 1-6696 5'82 1'7613 6'33 1'8453 6'84 1'9228 

/l'32 1-6715 5'83 1-7630 6'34 1'8469 6'85 1'9242 

5'33 1-6734 5'84 1-7647 6'35 1'8485 6'86 1'9257 

5'34 1-6752 5'85 1'7664 6'36 1-8500 6'87 1'9272 

5·35 1-6771 5'86 1·7681 6'37 1'8516 6'88 1-9286 

5'36 1'6790 5'87 1-7699 6'38 1'8532 6'89 1'9301 

5'37 1-6808 5'88 17716 6'39 1'8547 6'90 1'9315 

5'38 1-6827 5'89 1·7733 6'40 1'8563 6'91 1'9330 

5'39 1-6845 5'90 1-7750 6'41 1'8579 6'92 1'9344 

5-40 1-6864 5'91 1-7766 6'42 1'8594 6'93 1"9359 

5'41 1·6882 5'92 1-7783 6'43 1'8610 6'94 1'9373 

0·42 1·6901 5'93 1'7800 6'44 1'8625 6'95 1"9387 

5·43 1-6919 5'94 1-7817 6'45 1'8641 6'96 1·9402 

5·44 1-6938 5'95 1'7834 6'46 1-8656 6'97 1"9416 

5·45 1-6956 5'96 1'7851 6'47 1'8672 6'98 1'9430 

5-46 1-6974 5·97 1-7867 6'48 1'8687 6'99 1'9445 

5·47 1-6993 5'98 1'7884 6·49 1'8703 7'00 1-9459 

5·48 1'7011 5'99 1'7901 6'50 1'8718'1 7'01 1'9473 

5-49 1-7029 6'00 1-7918 6'51 1'8733 7·02 1'9488 

5'50 1-7047 6'01 1·7934 6'52 1'8749 7'03 1'9502 

5'51 1-7066 6'02 1-7951 6'53 1'8764 7·04 1'9516 

5'52 1-7084 6'03 1'7967 6'54 1-8779 7'05 1'9530 

5'53 1'7102 6'04 1-7984, 6'55 1'8795 7'06 1'9544 

5'54 1'7120 6'05 1'8001 6'56 1'8810 7'07 1'9559 

5'55 1'7138 6'06 1'8017 6'57 1'8825 7'08 1'957~ 

, 5·56 1'7156 6'07 1'8034 6'58 1-8840 7'09 1'9587 

5'57 1-7174 6'08 1'801i0 6'59 1'8856 7-10 1'9601 

5'58 17192 6·09 1'8066 6·60 1'8871 7-11 1·96lf 
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Q: Y x Y x Y x y 

7'12 1-9629 7-63 2'0321 8'14 2'0968 8'65 2'1576 
7'13 1-9643 7-64 2-0334 8-15 2-0980 8-66 2-1587 
7-14 1-9657 7-65 2-0347 8-16 2-0992 8-67 2-1699 
7-15 1-9671 7-66 2-0360 S-17 2-1005 8-6S 2-1610 
7-16 1-9685 7-67 2-0373 8-18 2-1017 S-69 2-1622 
H7 1-9699 7-68 2-0386 8-19 2'1029 8-70 2-1633 
7-18 1-9713 7-69 2-0399 8-20 2-1041 8'71 2-1645 
7-19 1'9727 7-70 2-0412 8-21 2'1054 8-72 2-1656 
7-20 1'9741 7-71 2-0425 S·92 9-1066 8-73 2'1668 
7'91 1'9755 7'72 2'0438 8·23 2-1078 8'74 2-1679 
7'22 1'9769 7-73 2'0451 8'24 2'1090 8'75' 2'1691 
7'23 1'9782 7-74 2'0464 8'25 2'1102 8'76 2-1702 

! 7'24 1'9796 7-75 2'0477 8'26 2'1114 8'77 2'1713 
7'25 1'9810 7'76 2-0490 8'27 2'1126 8'78 2-1725 
7-26 1'9824 7'77 2-0503 8'28 2'1138 8'79 2'1736 
7-27 1·9838 7-78 2'0516 8-29 2'1150 8'80 2'1748 
7'28 1-9851 7-79 2-0528 8-30 2'1163 8'81 2-1759 
7-29 1-9865 7'80 2'0541 8-31 2'1175 8'82 2-1770 
7'30 1-9879 7'81 2'0554 8-32 2'1187 8'83 2'1789 
7-31 1·9S92 7'82 2·0567 8'33 2'1199 8'84 2-1793 
7'32 1-9906 7-83 2-0580 8-34 2-1211 8-85 2-1804 
7-33 1-9920 7-84 2-0592 8-35 2'1223 8-86 2-1815 
7-34 1·9933 7-85 2-0605 8-36 2-1235 8-87 2-1827 
7-35 1'9947 7-86 2'0618 8-37 2-1247 8-88 2-1838 
7'36 1-9961 7'87 2-0631 8-38 2-1258 8-89 2-1849 
7'37 1'9974 7-88 2-0643 8-39 2-1270 8-90 2-1861 
7'38 1-9988 7-89 2'0656 8-40 2-1282 8'91 2'1872 
7'39 2-0001 7-90 2'0669 8'41 2-1294 8'92 2'1883 
NO 2-0015 7'91 2:0681 8-42 2-1306 8'93 2'1894 
7'41 2-0028 7'92 2-0694 S-43 2-131S 8-94 2-1906 
7-42 2'0042 7-93 2-0707 S-44 2-1330 8-95 2-1917 
7-43 2-0045 7'94 2-0719 S-46 2'1342 8-96 2-1928 
7-44 2-0069 7·95 2-0732 8-46 2-1353 8-97 2-1939 
7-45 2-0082 7-96 2-0744 8047 2-1365 8-98 2-1950 

" 7-46 2-0096 7-97 2-0757 S-48 2-1377 8-99 2-1961 
1'47 2-0109 7-98 2-0769 8-49 2'1389 9-00 2'1972 
7-48 2-0122 7-99 2-0782 S-50 2-1401 9'01 2-1983 
1'49 2-0136 8-00 2-0794 8-51 2-1412 9-02 2-1994 
7-60 2-0149 8-01 2-0807 8-52 2-1424 9'03 2-2006 
Nil 2-0162 8-02 2'0819 8-53 2-1436 9-04 2-2017 
7-62 2-0176 -8-03 2-0832 8'54 2'1448 9-05 2'2028 
7-53 2-0189 8-04 2'0844 8-55 2-1459 9-06 2'2039 
7-54 2-0202 S-05 2-0857 8'56 2-1471 9-07 2'2050 
7-55 2'0215 8'06 2-0869 8'57 2-1483 9-08 2'2061 
7-56 2-0229 8-07 2-0882 8'58 9-1492 9-09 2'2072 
1'57 2'0242 8-08 2-0894 8-59 2-1506 9'10 2'2083 
7-58 2'0255 8-09 2'0906 8-60 2-1518 9-11 2-2094 
7-59 2-0268 8-10 2-0919 8-61 2-1529 9-12 2-~105 
7-60 2'0281 8-U 2-0931 8-62 2-1541 9-13 2-2116 
7-61 2-0295 8-12 2-0943 8-63 2-1552 9-14 2-2127 
7-62 2-0808 8-13 2-0956 8·64 2-1564 9-15 j'2138 
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(I: y x y :c y x 11 

9'16 2'2148 9·53 2'2544 9'89 2'2915 17'50 2'8621 
9'17 2'2159 9·54 2·2555 9'90 2'2925 18'00 2'8904 
9'18 2'2170 9'55 2·2565 9'91 2'2935 18'50 2'9173 
9-19 2'2181 9-56 2'2576 9'92 2'2946 19'00 2'9444 
9'20 2'2192 9'57 2'2586 9-93 2'2956 19'50 2'9703 
9'21 2'2203 9'58 2'2597 9'94 2'2966 20'00 2'9967 
9'22 2'2214 9'59 2'2607 9-95 2'2976 21'00 3'0445 
9'23 2'2225 9·60 2'2618 9-96 2'2986 22'00 3'0911 
9-24 2-2235 9-61 2-2628 9-97 2-2996 23-00 3-1355 
9-25 2'2246 9-62 2-2638 9-98 2'3006 24-00 3-1781 
9-26 2'2257 9·63 2'2649 9'99 2'3016 25'00 3-2189 
9'27 2'2268 9·64 2-2659 10-00 2'3026 26'00 3'2581 
9'28 2'2279 9·65 2·2670 10'25 2-8279 27'00 3'2958 
9'29 2'2289 9-66 2'2680 10-50 2-S513 28'00 3'S322 
9-S0 2'2S00 9·67 2'2690 10-75 2'3749 29'00 3'S673 
9-S1 2'2311 9·68 2·2701 11·00 2'3979 30'00 3'4012 
9-32 2'2322 9'69 2-2711 11'25 2'4201 31'00 3'4340 
9-33 2'2332 9'70 2·2721 1l'50 2-4430 32'00 3-4657 
9-34 2-2343 9-71 2-2732 11'75 2'4636 33'00 3-4965 
9-35 2-2354 9-72 2-2742 12-00 2-4849 34-00 3'5263 
9-S6 2'2364 9-73 2-2752 12-25 2'5052 35'00 3-5553 
9'37 2'2375 9-74 2'2762 12'50 2-5262 36'00 3'5835 
9-38 2-2386 9-75 2'2773 12·75 2-6455 37'00 3'6101 
9'39 2'2396 9-76 2'2783 13·00 lh5649 38'00 3'6376 
9'40 2-2407 9-77 2-2793 18'25 2-5840 39-00 3'6636 
9'41 2'2418 9-78 2-2803 13'50 2-6027 40'00 3'6889 
9'42 2-2428 9-79 2'2814 13-75 2-6211 41'00 n'7136 
9-43 2-2439 9-80 2-2824 14-00 2'6391 42-00 3'7377 
9-44 2'2450 9-81 2'2834 14-25 2'6567 43'00 3-7612 
9'45 2'2460 9'82 2-2844 14-50 2-6740 44-00 3'7842 
9_46 2-2471 9-8S 2-2854 14·7fi 2-6913 45'00 S'8067 
9-47 2'2481 9'84 2-2865 15·00 2'7081 46'00 3'8286 
9-48 2'2492 9-85 2'2875 15'50 2'7408 47-00 3'8501 
9'49 2-2fi02 9-86 2-288fi 16·00 2-7726 48'00 3'8712 
9-50 2'2513 9'87 2-2895 16'50 2'8034 49'00 3-8918 ' 
9·51 2'2523 9'88 2-2905 17'00 2'8382 fiO·OO 3-9120 
9'52 2-2634 
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