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HIGHER MATHEMATICS FOR
CHEMICAL STUDENTS

INTRODUCTION

ATURAL Science is that branch of knowledge which
is concerned with the complete investigation of
what we may call the * outer world,” as distinguished from
consciousness. The constant succession of our experiences
we attribute to concomitant change in the objects of ex-
perience ; we recognize the existence of phenomena. The
succession of phenomena, on careful investigation, is found
to have gne predominating peculiarity; phenomena are
related in experience. They do not pass unconnected, or in
random fashion, as though due to a * fortuitous concourse
of atoms”; they are, on the contrary, distinctly connected.
It is this relation of phenomena which gives a definite
meaning to science. By reason of past experiences, either
individual or those preserved in the progress of the race,
we are able more or less to foretell the future course of
phenomena ; we form “an expectation of a connexion
between possible experiences,” which Ostwald identifies
with a so-called law of nature. We have no guarantee
that the expectation will be fulfilled; all we can say is
that in every case observed up to the present it has been
tulfilled, and the probability 1s very great that the con-
nexion Wlll also appear in the next case Whlch comes
under our observation.

The statement of a law of nature involves the forma-
tion of a concept, or general idea, in which the likenesses
of phenomena are collected, and the differences, in so far
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2 HIGHER MATHEMATICS

as they are not intimately involved in the nature of the
case, are eliminated. The formation of such a concept
involves three stages, in which we successively compare the
various experiences, or percepts; abstract those qualiti s
which seem to have a likeness ; and generalize by arrang-
ing our experiences under names, a name being a symbol
for a general idea. According to the degree of our success,
the name will be so exact as to be capable of definition,
whereby the parts involved in the concept are set in re-
lation to the parts of other concepts. In this way an
emergence into clearness and distinctness is evident, and
the degree of clearness and distinctness of the final product
of a mental operation is an indication of the extent to
which that process has been successful.

Every person, even the savage, has formed a definite
number of concepts; but the concept formed will obviously
depend for its completeness and accuracy upon the num-
ber and nature of the experiences which go to form the
raw material of the concept. The names ‘sulphur,”
“force,” “ circle ” will recall very different ideas in different
persons. In the former example, most persons will recall
the properties of yellow colour, brittleness, combustibility,
etc., and the group of these essentials, abstracted from
such non-essential properties as size, shape, temperature,

“etc,, will form the concept to which they attribute the
‘name ‘“‘sulphur”. To a person whose experience has
never been brought into relation with the object sulphur,
the name signifies nothing; to the scientist it signifies
much more than to the ordinary person, his concept in-
volves the ideas of specific gravity, crystalline form, ele-
- ment, atom, and the like, derived from past experiences.
His concept 1s distinguished from the other by invelving
" the concept of number or quantity.

“T often say that when you can measure what you are
speaking about, and express it in numbers, you know sowe-
thing about it; but when you cannot measure it, when
you cannot express it in numbers, your knowledge is of
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a meagre and unsatisfactory kind ; it may be the beginning
of knowledge, but you have scarcely in your thoughts ad-
vanced to the stage of science ” (Liord Kelvin, 1883).

The earliest chemical theory was qualitative in the
strictest sense; the so-called Aristotelean doctrine of the
four elements assumed that air, water, earth, and fire, were
qualities impressed on a primal matter; and the changes
of material bodies were explained by the assumption that
properties could be taken up by, and impressed upon, or
removed from, the base-stuff. Transmutation as a possi-
bility followed at once, and centuries of vain endeavour
were required to impress the fact of its impossibility, lead-
ing to the true concept of element (Robert Boyle, ““The
Sceptical Chymist,” London, 1661). ‘“And therefore I
think you have done very wisely to make it your business
to comsider the Phenomena relating to the present
question, which have been afforded by experiments, especi-
ally since it might seem injurious to our senses, by whose
mediation we acquire so much of the knowledge we have
of things®orporal, to have recourse to far-fetched and ab-
stracted Ratiocination, to know what are the sensible in-
gredients of those sensible things that we daily see and
handle, and are supposed to have the liberty to untwist (if:
I may so speak) into the primitive bodies they consist of ™ *

‘““being Gentlemen and very far from the litigious
humour of loving to wrangle about words or terms or
notions as empty ; they had before his coming in, readily
agreed promiscuously to use when they pleased Elements
and Principles as terms equivalent: and to understand
both by the one and the other, those primitive and simple
bodies of which the mixt ones are sald to be composed,
and into which they are ultimately resolved” (Boyle, loc.
cit. pp. 15, 16).

The quantitative mvestlgatlons of Black on the burn-
ing of lime and magnesia alba, in which the balance (pre-
v1ous1y characterized by the French chemist Jean Rey as

‘““an instrument for clowns’’) was applied at every turn,
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" led to the rejection of a hypothetical “ principle of causti-
city,” and replaced it by a ‘‘ sensible ingredient of a sensible
body,” fixed air. The extension of Black’s method by the
physicist Lavoisier led to the downfall of the purely quali-
tative theory of phlogiston, and gave to chemisiry the
true methods of investigation, and its first great quantita-
tive law—the law of conservation of matter. Wenzel and
Richter, the latter, as we shall see later, of most pro-
nounced mathematical temperament, laid the foundations
of stoichiometry, or “the art of measuring the chemical
elements”; and Dalton, the mathematical tutor, following
up the lead of Newton, combined the whole of the results
of quantitative measurement which had accumulated up to
his time, in a comprehensive theory, based on the concept
of the chemical atom.

The results of a scrutiny of the materials of chemical
science from a mathematical standpoint are pronounced in
two directions. In the first we observe crude qualitative
notions, such as fire-stuff, or phlogiston, destroyed ; and at
the same time we perceive definite measurable quantities
such as fixed air, or oxygen, taking their place. 1In the
second direction we notice the establishment of generaliza-
tions, laws, or theories, in which a mass of quantitative data
is reduced to order and made intelligible. Such are the
law of conservation of matter, the laws of chemical com-
bination, and the atomic theory.

As an instance of the remarkably far-reaching effect
which a single mathematico-physical concept-has ha,%d upon
. the development of chemical theory, one has but to recall
the state of chemistry just before the revival of Avogadro’s
law by Canunizzaro, to be impressed by its confusion.
Relying solely upon their ““chemical instinet,” the leaders
of the various schools of chemical thought had developed
each his own theoretical system. Types, radicals, copule,
" atoms, equivalents, mixing-weights, and a host of other
conceptions strove for supremacy. The strife was stilled,
order and unity were restored, as soon as Avogadro’s great
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wea was seen in its true light, and the concept of the
molecule was introduced into chemistry. A formula which
had required pages of reasoning from a purely chemical
standpoint to establish, and that insecurely, was fixed by
a single numerical result. There are not wanting, even
to-day, chemists who advocate “ purely chemical "’ methods
in chemistry, and cannot appreciate the value of physical
evidence in conjunction with mathematical calculations.
We can only hope that their number is decreasing ex-
ponentially with time.

From the time when Guldberg and Waage gave quan-
titative form to the speculations of the physmst Berthollet,
a clear conception of chemical equilibrium, in sharp con-
trast to an anthropomorphic theory of affinity dating back
to Hippocrates and Barchausen, has yielded rich and
abundgnt fruit.

The philosopher Comte has made the statement that
chemistry is a non-mathematical science. He also told us
that astronomy had reached a stage when further progress
wag impdhsible. These remarks, coming after Dalton’s
atomic theory, and just before Guldberg and Waage were
to lay the foundations of chemical dynamics, Kirchhoff to
discover the reversal of lines in the solar spectrum, serve
but to emphasize the folly of having “ recourse to far-\
fetched and abstracted Ratiocination,” and should teach
us to be * very far from the litigious humour of loving to
wrangle about words or terms or notions as empty .

Jeremias Benjamin Richter in his ‘‘ Anfangsgriinde
der Stochyometrie, oder Messkunst chemischer Elemente,”
published by J. ¥. Korn of Breslau, in two volumes (1792),
strikes a very decided note when he repeats a statement
from his Inaugural Dissertation (*“de Usu Matheseos in
Chymia,”” Kénigsberg, 1789) which must have puzzled his
contemporaries : ‘‘ chemistry belongs, in its greatest part,
to applied mathematics”. The reason why so little pro-
gress is made on the mathematical side of chemistry is,
says Richter, that *the most prominent chemists occupy
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themselves little with mathematics, and the mathe-
maticians feel that they have little business in the province
of chemistry ”. 'The mathematical equipment of chemists
must certainly have been somewhat restricted, for Richter
begins his book by about thirty pages of mathematical
introduction, in which he explains the arithmetical opera-
tions, and the rudiments of algebra, concluding with an
account of arithmetical and geometrical progressions ; this
being doubtless as much as the chemist could then be
expected to assimilate.

“ The ultimate aim of pure science is to be able to ex-
plain the most complicated phenomena of nature as flowing
by the fewest possible laws from the simplest possible data.
A statement of a law is either a confession of ignorance, or
a mnemonic convenience. It is the latter if it is deducible
by logical reasoning from other laws. It is the former
when it is only discovered as a fact to be a law. While
on the one hand, the end of scientific investigation is the
discovery of laws, on the other, science will have reached
its highest goal when it shall have reduced ultinate laws
to one or two, the necessity of which lies outside the sphere
of our cognition. These ultimate laws—in the domain of
physical science at least—will be the dynamical laws of
the relation of matter to number, space, and time, them-
gelves. When these relations shall be known, all physical
phenomena will be a branch of pure mathematics ” (Prof.
Hicks, B. A. Address, Section A, 1895).

An explanation of a phenomenon is regarded, appar-
ently instinctively, as the most general possible when it is
a mechanical explanation. The ‘“mechanism” of the
process is the ultimate goal of experiment. Now this
mechanism in general lies beyond the range of the senses;
either by reason of their limitations, as in the case of the
atomic structure of matter, or by the very nature of the
supposed mechanism, as in the theory of the ether. The
only way to bridge the gap between the machinery of the
physical process and the world of sense-impressions is to
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think out some consequence of that mechanism. This
we will call the hypothesis. The hypothesis, resting still
on the mechanical basis, is yet beyond the range of direct
experimental investigation ; but if, by mathematical reason-
ing, a consequence of the hypothesis can be deduced, this
will often lie within the range of experimental inquiry, .
and thus a test of the soundness of the original mechanical
conception may be instituted. Briefly, therefore, we may
represent the intervention of mathematics in the study of
physical science by the sequence :—

(Mechanism) «<--» Hypothesis <--» Consequence <—-»

(Range of the Senses)
The intermediate :steps involve the mathematical opera- -
tions.

As an illustration, consider that conception of the
structure of matter which regards it as composed of dis-
crete particles. If we make the hypothesis that a gas
_consists of such particles in motion, and obeying the laws
“of dynamics, we come to the Kinetic Theory of Gases.
The hypothesis is still expressed in terms of the supposed
mechanism, and its verification is yet out of reach. But
if we develop mathematically this simple idea, we are led
to a great number of relations between the sensible and
measurable physical properties of gases; and the good
accord between these results and the results of experi-
mental inquiry serves to strengthen our belief in the
validity of the original hypothesis, and thence in the
primary conception of the discrete partition of matter in
space.

If the results of experimental inquiry, which we have
reason to believe is technically accurate, are in discord
with mathematical deductions from a hypothesis, twa
courses are open. Hither the theory may be abandoned,
at least for a time, or else it may be modified. Disagree-
ment between theory and experiment has proved a most
potent agent in broadening theoretical views, and in
making clear the necessity for new concepts or hypotheses.
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Van der Waals’ extension of the gas laws, which had been
deduced from a kinetic hypothesis assuming a simpler
mechanism for the structure of gaseous matter than is
really involved, is a case in point. It is necessary to guard
against a possible danger in this connexion, namely that
of submitting too readily to the result of a so-called
“crucial experiment . Very few experiments can, in the
nature of things, be really crucial. One so-called “crucial
experiment ” which decided between Newton’s corpuscular
theory of light and Huyghens’ wave-theory, viz. the relation
between the law of refraction and the velocity of light,
was not at all decisive. As Preston says (‘‘ Theory of
Light,” second edition, p. 19): *“ We believe an ingenious
exponent of the emission theory, by suitably framing his
fundamental postulates, might fairly meet all the objec-
tions that have been raised against it”. In fact, we
perceive clearly that theories and hypotheses are not ac-
cepted or rejected outright; they have their periods of
activity, and then lie dormant for a time, only to be revived
in a new form later on. The fundamental materials from
which we construct our picture of the universe may appear
in different shapes, but there is really very little discon-
tinuity between what seem at first sight very different
views.

All measurements are made through the medium of
the senses, and theories result from operating on such
measurements with the instruments of mathematics. Tt
is clear, however, that the distinguishing mark of the
whole development of theoretical chemistry and physics is
the elimination of the anthropomorphic elements, especially
specific sense-impressions, from the concepts. This pro-
cess is called by Prof. M. Planck (‘“Acht Vorlesungen
tiber theoretische Physik ”’; Hirzel, Leipzig, 1910) the
objectification of the physical system. Thus, in early
physical systems we have optics dealing with phenomena
perceived by the eye; acoustics treating of auditory per-
cepts, and so on. The subjective concepts of ‘ tone” and
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“colour” have now been replaced by the objectified con-
cepts of frequency of vibration; and wave-length. The
object of this process of elimination is, according to
Plapck, the striving towards a unification of the whole
thegretical system, so that it shall be equally significant
for }all intelligent beings.

f}’hether this will be fully realized or not we cannot
say; in any case the method of attack on the unknown
still remains the same: ‘“ In comparing the science of the
past, the present, and the future, in placing the particulars
of its restricted experiments side by side with its aspira-
tions after unbounded and infinite truth, and in restrain-
ing myself from yielding to a bias towards the most at-
tractive path, I have endeavoured to incite in the reader
a spirit of inquiry which, dissatisfied with speculative
reasonings alone, should subject every idea to experiment,
to encourage the habit of stubborn work, and excite a
search for fresh chains of evidence to complete the bridge
over the bottomless unknown *’ (D. Mendeléeff, *“ Principles
of Chensstry,” English translation, 1905, p. viii, Vol. I).



CHAPTER I

FUNCTIONS AND LIMITS

1. FUNCTIONS

T has been shown that the business of scientific ind

vestigation is the tracing out and classifying of the
" relations existing between phenomena. The first duty
of mathematics in the service of chemistry is to pro-
vide a method of expressing this relationship between
phenomena, without, for the present, attempting to specify
more definitely the quantitative aspect of the problem,
The study of the mathematical representation of the con-
nexion between phenomena will occupy us at the very
outset.

Let us suppose that we have a flask containing water
and its vapour, and connected with a manometer for
measuring the pressure exerted by the vapour. If the
water is heated at a definite temperature, and the read-
ings of the manometer recorded for different temperatures,
one obtains a table of vapour-pressures :—

Temperature Pressure Temperature Pressure
°C. cm. Hg. °C. cm. Hg.
- 10 02151 60 14-89
0 0-4569 70 - 2333
+ 10 09140 80 3549
20 1-7363 90 52-55
30 3151 100 76-00
40 549 110 1075
50 920

10
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- A consideration of this table will illustrate the meaning

fof several forms of expression constantly used in mathe-
mathics. We observe that :—

(1) The pressure depends on the temperatme in such a
way that if any particular temperature is chosen arbitrarily
there is one, and only one, definite pressure which cor-
responds with the definite chosen temperature. Both
the temperature and pressure are capable of assuming
different values; they are called Variables. If we agree
to alter the temperature in 10° steps, and measure the
pressure corresponding to each temperature, we may call
the temperature, the values of which are determined by
arbitrary choice, the independent variable ; the pressure,
which must take up a particular value corresponding to
each arbitrarily chosen temperature, and is therefore com-
pletely determined by the temperature, is called the de-
pendent variable. If the pressures had been arbitrarily
chosen, and the temperatures corresponding to each pres-
sure determined, then the pressure would be the independ-
ent, the’temperature the dependent, variable.

(2) When one variable magnitude depends upon an-
other (or several others) in such a way that, if the value
of the latter be fixed, the former must assume one or more
definite values, then the first magnitude is said to be a
Function of the other, or others. The first magnitude is
the dependent, the second the independent, variable. By
‘way of notation we say that if the pressure p is the de-
pendent variable, and ¢, the temperature, is the independ-
ent variable, then

p is a function of ¢, or
p=s . . NG
The symbol ““f” means ‘‘a function of” the magnitude
enclosed in the brackets. -

This equation states that the value of p is determined
by that of ¢;in the case of the vapour-pressure of a liquid
p is a function of ¢ alone. If we had considered a gas,
then p would have depended on the volume v as well as on
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the temperature ¢ ; for if only ¢ had been fixed by arbitrary

choice, p would still be undetermined, and could take up

a range of values depending on the value of v. If £and v
are fixed, then p takes up a definite value. In this case

= f(¢, v) . . (2

If 2 is the 1ndependent variable, y the dependent vari-

able, the functional relation between z and ¥y 1s expressed

by the equation :
= flz) . | ®3)

Instead of ““f,” other symbols are often used thns F(z),
¢ (@), ().

If y is a function of several variables z;, @, 2; ...

then
y = fl@, 2, Ty . . ) . . 4)
The vapour-pressure of a solution depends on the
composition as well as on the temperature. If the com-
position ig expressed in terms of the concentration ¢ as one
independent variable
= f(¢, ¢).

These equations are perfectly general; they “express
the fact that one magnitude is related to others in a fixed
and definite way. Whether this relationship can be re-
presented by a mathematical expression is another matter.
“ All that is necessary to establish a functional relation
between two variables is that, when other things are un-
altered, the value of one shall determine that of the other”
(Lamb). In the case of gas-pressure, the expression is
known to be

p = constant x (¢ + 273) x (1/v)

The corresponding expression for the vapour-pressure
-of a liquid is not yet known.

According to Ostwald (““ Principles of Inorganic
Chemistry,” trans. Findlay, p. 73), the content of a quan-
titative law of nature can be expressed by saying that it
represents two (or several) measurable properties of a
system as functions of one another.

If the same symbol is used in any investigation for two
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functions, these have been formed in the same manner.
Thus
if f(x) = a7,
then f(y) = 4°;
and if ¢(2) = 1/z,
then ¢(y) = 1/y.

(3) If, corresponding with a fixed set of values of the
independent variables, there is only one definite value of
the dependent variable, the latter is called a single-valued
Junction of the former. But if more than one value of the
dependent variable can correspond with a fixed set of

o° w20 3% % .s';),eo 70 °C
Fio. 1. ‘\

values of the independent variables, the function is called

a multi-valued function.

The relations are rendered very evident by using the
graphical method, invented by the great French mathe-
matician René Descartes (b. 1596, d. 1650). By a series
of measurements, or by calculation, we find pairs of corre-
sponding values of the variables, say (z,, y,), (@, %), (s, ¥3),
... Taking a horizontal straight line z'z, we measure off
to the right distances proportional to the magnitudes
&, T, &, ... starting from an arbitrarily chosen zero
point 0. From the points z,, z,, . . . are erected perpen-
diculars proportional to the magnitudes y,, #,, ... The
points (a;, y,), (€5, ¥), - - . are then joined by an unbroken



14 HIGHER MATHEMATICS

line, which indicates in a striking manner the way in
which y changes with #. If two or more points lie on
the same perpendicular the function is multi-valued. The
curve of the vapour-pressures of water is given in fig. 1.

(4) 1f the temperature is altered, the vapour-pressure
changes. Suppose that successive temperature changes
are made smaller and smaller, say 1°, 0°1°, 0°01°, . . ., then
the change of vapour-pressure consequent on a change of
temperature becomes smaller as the temperature interval
decreases. This holds down to a point where the changes
are too small to measure ; we can, however, continue the
process mentally, and imagine that an infinitely small
change in the value of the independent variable will pro-
duce an infinitely small change in the value of the function,
A function possessing this property is called a continuous
function.

2, CONTINUITY

A glance at the two curves AB, CDD'E, of fig. 2 will
reveal a marked difference between them. Whereas the

Fia. 2.

curve AB runs from start to finish without break, the
curve CD!DE breaks suddenly at the point D', recom-
mencing at D. The curve AB 18 continuous, whilst
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CD'DE is discontinuous. If we regard each curve as the
graph of a given function, it is evident that we must dis-
tinguish between two kinds of functions; continuous
functions, and discontinuous functions. 'We now proceed
to give the condition which the function must satisfy in
order that it shall be a continuous function, and to show
that if the function does not satisfy this condition its
graph will be of the form CD'DE (or other forms which
will be described).
Let f(z) be a given function of z.

This function will be continuous, for all values of z lying
between the limits z, and z,, if, for all these values of x
the numerical value of the difference

_ fa+ 1) - @)
diminishes indefinitely with %, or is infinitesimally small
at the same time as 2. In other words, we can choose a
value of % which will make the value of f(z + &) — flz)
less than any magnitude we choose to name, however
small.

We can show that f(z) = 2? satisfies this condition.
Suppose that the continuity of this function had been
challenged by an opponent. We should then ask him to
name a very small magnitude such that f(z + &) - f(z)
would be greater in numerical value than the chosen
magnitude. Suppose that one millionth = 10 ~ ¢ had been
chosen, It would be sufficient to show that a value of A
could be chosen so that, for a fixed value of &, f(x + &) — f(x)
would be less than 108 Now

Ae+ h) - flx) = (x + h)? - 2 = 2zh + R%
If 7 is fixed, it is always possible to find a value of / such
that
2zh + h* = 10"¢

because this value is simply the positive root of the quad-
ratic equation. If 4 is now chosen less than this value,
the difference will be less than 10 ~%, and the opponent’s
objection is refuted. He might now choose 10 -1 as the
value; but we could proceed in exactly the same way and
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find a value of & such that for all values of % less than the
value so found, the numerical value of the difference
fle + k) - flz) = (x + h)? - 2? would be less than 10 1 fox
a fixed value of z. The same process wauld apply to any
magnitude, however small, and the continuity of f(z) = *
would therefore be established in accordance with the
definition. In a similar way we could proceed to test any
- other function, such as f(z) = 2%, which might come undez
consideration.

It is now easy to see that the curve AB is the graph of
a continuous function, Let & be a small increment of z,

<

&
1

H

Fic. 8.

from any value lying to the right of z, and to the left o
7, to a value lying in the same range. If perpendiculars
are erected from the extremities of this small length or
the z-axis so as to meet the curve, then
S+ B - flz)

will be the dlfference between the lengths of these per
pendiculars. Now it is at once obvious, from the form
of the curve, that this distance diminishes as % diminishes
and that it can be made as small as we please by taking /
small enough. But thisis the condition for the continuity
of f(x).

We can now show that the curve CD!DC does no
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satisfy such a condition. For let a small distance » be

taken so that its extremities lie on opposite sides of =,.!.

If ordinates are erected to meet the curve, one will meetv ‘

the portion CD?, the other the portion DE and if 4 is
made smaller and smaller so that its extremities always lie

on opposite sides of z;, the difference between the lengths -

of the ordinates can never be made less than DD!, however

small # may be. The curve is therefore discontinuous at '

the value z = ;.
Another type of discontinuity is shown by functions
which become infinite for particular values of the variable.

Thus Az) = %2

becomes infinite for « = 0. The curve (fig. 3) consists of
two branches, each branch running up to infinity at z = 0.
If % is a small positive or negative value of z, then
when z = 0, the numerical value of f{z + &) — Az) is al-
ways infinity no matter how small 2 may be. The fanc-
tion therefore fails to satisfy the condition for continuity
at the point « = 0, although it does so at all other points.

3. ALGEBRAIC FUNCTIONS

These are obtained by performing with the variable
and known constants any finite number of operations of
addition, subtraction, multiplication, division, and extrac-
tion of integral roots.

eg. 2z, a% /z

If the operations include addition, subtraction, multi-
plication, and division only, the function is a rational
function ; and all such functions can be reduced to the

form
F(z)/f(z),

where F(z) and f(x) are rational integral functions, i.e.

each is made up of a finite number of terms of the
form
, Az»,
where m is a whole number, and A a constant.
2

o
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The rational integral function
y = f(z) = a + bz,
where @ and b are constants, is represented gr&fhlcally by
a straight line, and is called a linear function. The ex:
pansion of a gas with rise of temperature a} constan!
! pressure was found by Gay Lussac to be represented by
the equation
v = v(l + af), ;

where v,v, are the volumes at ¢° C. and 0° C. respectlvely
and a is the coefficient of expansion. Obviously » is ¢
linear function of ¢, the constants being :

a = v, ’

b = vya.

Linear functions occur frequently in physical chemistry
especially in the study of dilute solutions.

A rational integral function of the form

y = fz) = a + bz + cx?,
where a, b, ¢ are constants, is called a quadratic function
Callendar has found that the electrical resistance of :
platinum wire is a quadratic function of the témperatur
at all temperatures from that of boiling liquid air (- 199" C.
to that of melting platinum (1500° C.). That is
R =R(1 + at + %),

where R, = resistance at 0° C., and «, b are constants.

The statement that one quantity ‘“is a function” o
another, or of others, occurs frequently in treatises or
physical chemistry, especially those dealing with the sub
ject in its thermodynamic aspect. Students are ofter
puzzled: by the apparently abstract nature of the term
“function’’; the following example may make the matte
a little clearer.

Consider a quantity of a gas, say air, enclosed in ¢
vessel, so that its mass remains constant. There are three
possible ways in which the state of the gas may be altered
viz. by change of volume, of pressure, and of temperature
If two of these variables have been fixed by arbitrary
choice, the third then takes up a perfectly definite value
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over which we have no control. As Gibbs proposed, we
say that a gas has two degrees of independent variability,
or two degrees of freedom. The same is true of any homo-
geneous body ; solid, liquid, or gas.

Now suppose we keep the temperature constant, and
alter the volume. The pressure alters at the same time,
it therefore depends on the volume, and altérs when the
volume alters. By definition, we therefore say that ‘‘ the
pressure is a function of the volume,” or

p = f(v) when ¢ is constant.

Experiments with a Boyle’s law tube show what the
“form’’ of this function is; in other words, they enable us
to pass from this very general equation (which is in fact
true for liquids and solids as well as gases) to a special
equation which shows exactly what the relation is which
exists between p and v. This is of course

h . .
p=g when ¢ is constant, and A is a constant;

or the pressure is inversely proportional to the volume.
This statement is Boyle's law.

Now let the volume be kept constant, and the tem-
perature be changed. The pressure is again altered,
therefore
- p = ¢$(0) when v is constant,

Whexe 6 1s the absolute temperature.

Experiment shows that in this case

p = '8, when v is constant, and A’ is a constant;
or the pressure is proportional to the absolute temperature
when the volume is constant.

Now suppose that both volume and temperature are
allowed to change simultaneously. The pressure is then a
function of both, or

p = F(v, 6).

Let p,, v,, 6, be the initial; p,, vy, 6, the final values
of the variables. Let the cha.nge be imagined as brought
about in two steps :(—

(i) Change v, to v,, keeping @, constant. Let the
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pressure then become p (not p,, because the temperature
is still ). By Boyle's law
7,0, = Pv, = h, when 6, is constant.
. Thence p = 2_7_11_:_)1_
2
(i) Keeping the volume constant at v,, let the tempera-

ture be changed to #,. The pressure must now become
p,, because v, 0, are the two independent variables charac-
terizing the final state. .

But p = 29,
Dy = h/e‘b
b _ D
6, 6
20, = p,6,
D
But p o
R o G constant).
6, [
Thus pv, = rf, B
Doy = 10,
and generally, for a constant mass of gas,
pv = r6.

Another way of stating this relation is often met with,
We see that

D= '; )
or p is proportional to g, which 1s written

p“;;

g varies as 8/v 7.

But p « 1/v when @ is constant
and p « & when v is constant,
a.nd the above shows that

S

pac - x 6 when both v and 8 vary.
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This relation between variables which are proportional
s quite general.
If A varies as B when C is constant,
and A varies as C when B is constant,
then A varies as BC when both B and C vary. -
That is, if Ao« B when C is constant,
and A« C when B is constant,
then A« BC when both B and C vary.
Notice the distinction between the two statements ;
1) “y varies with =

y = fle).
ity “y variesasz " : \
y = k=, \

where % 1s a constant.

4. LIMITING VALUES

1f a variable, changing in accordance with some as-
signed law, can be made to approach a fixed constant
value as nearly as we please, without actually ever be.
zoming equal to it, the constant is called the limiting value,
or the limat, of the variable under these circumstances.

Let y = f(z).

If, when z is made to approach nearer and nearer to a
fixed value, say a, 7, as defined by the equation, tende
more and more to another fixed value, say B, then 8 is
salled the limiting value of y = f(z) for the va.lue zT=a
This is written

‘ Lim f(x) =

T —>a
the symbol - meaning * approaches ”.
Consider the fraction
2z + 3
z+1°
This can be written in the form

2+§
T
1+}
7
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If z is made larger and larger, the fractions 3/z and
1/z become smaller and smaller; and if we imagine = to
be increased until it is greater than any assignable mag-
nitude, however great, then 3/z and 1/z become smaller
than any assignable magnitude, however small. We say
shortly that

when z is infinite,
3/z and 1/x are zero;
meaning that as z approaches infinity (z -»®), l/z
and 3/z approach the limiting value zero (0). This 18
written

€

€T —» O
z = meaning “z tends to infinity,” and

Hence Lim y =

T ->
Another example is the Infinite Series
1+4+3+3+... . ad inf,
If we add the } to the 1, the } to the 1 + 1,the } to
the 1 + 3 + 4, and so on, we increase the sum at each
step. But after twelve steps the term added is 0:0002,
and successive terms continually decrease as we pass along
the series. The sum tends to a limiting value, y, the
greater the number of added terms; and it is easily proved
that this limiting value, when the number of terms tends
to infinity, is 2. Thus the “sum” of an infinite series
may be finite.
Examples on Limits :—
2 .
(1) Find the limiting value of 2+ -4 when z —1.
xz(z - 1)
[5.]
(2) Show that the value of 1/(z — a) must instantane-
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ously change from ~ o to + @ as x passes through the
value a.
. .. z?+ 2¢ - 8
(3) Find the l‘IILIlt of 7z =18
T + 2?
wz
(5) Find the limit of X& =1 when 2 1.
3 NZZE |
Put & =1+ A, so that A vanishes for z = 1.
Let RUCEEY
e -1
2
. 2 __ =
A 1.
When /4 -0 (i.e. z— 1), 2/h —> o0
) Iz <1
. Lim :/z__i—wo | |
z~»1

when z — 2. [1%]

(4) Find the limit of

when ¢ — . [1.]

=Y

5. GEOMETRICAL ILLUSTRATIONS OF LIMITS

The conception of a limiting value, or limit, has played
a very important part in the development of geometry as
well as in the analytical branches of mathematics. The
properties, and mensuration, of plane and solid figures
bounded by straight lines can be treated in a fairly easy
manner. But when the figures are bounded by curves, it
is necessary to resort to the method of limits. A figure
bounded by straight lines is constructed so that it lies out~
side or inside the given curved figure. If the volume (or
area) of this figure is found, and if this figure approaches
the curved figure in volume or area as the number of its
sides is continually increased, then the volume or area of
the curved figure is the limit of that of the rectilinear
figure. .
The circumference of a circle is the curve traced out by
the extremity of a line revolving about a point’in a plane.
It is required to find a straight line equal in length to the
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circumference of the circle. This is easily carried out
practically by rolling the circle on a piece of paper until a
point on the circumference touching the paper has come
back into the plane of the paper. The distance between
the two points is equal to the length of the circumference.

Now suppose a polygon, regular for simplicity, de-
scribed in the circle, and another outside it. If we make
the sides of each polygon smaller and smaller, and their
number therefore larger and larger, the perimeter of the
inscribed polygon increases, while that of the escribed
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polygon decreases. The two perimeters become more and
more nearly equal, and we define the limiting value of the
perimeter of either polygon, when the number of sides is
increased indefinitely, as the circumference of the circle.

This is equal to radius x 2w, where = is a number
which cannot be written exactly as an arithmetical frac-
tion. TIts value can, however, be calculated to as many
places of decimals as we please, ie. to any required degree
of approximation.

= 314159, ..
o 19 called an incommensurable number,
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THE RATE OF CHANGE OF A FUNCTION

6. THE FUNDAMENTAL PROBLEM OF THE DIFFERENTIAL
CALCULUS

HE conception of the ““rate’ of change of any magni-
tude is familiar in many aspects of ordinary ex-
perience. The wvelocity of a moving body is the rate of
change of position of the body. If we consider the body
as moving uniformlyin a straight line, i.e. describing equal
distances in equal intervals of time, its velocity is found
by dividing the distance traversed by the time, or
' = sft,
where s = distance, say 20 feet,
¢t = time, say 4 seconds,
v = velocity, 20/4 = 5 feet per second.

The word “ per ” enters into the specification of a rate.

Now it is the fundamental problem of the Differential
Calculus to find the rate at which one variable changes
with regard to another, when the change of the one depends
upon the change of the other, and the magnitudes change
continuously.

Two cases at once present themselves:

(i) The rate of change is constant. For example in the
case of uniform motion the speed does not vary from second
to second, and the velocity is found by dividing any distance,
however large, by the time taken to traverse that distance.

(ii) The rate of change is variable. If a stone be
allowed to fall freely under the action of gravity its speed,
or rate of Qhange of position, is not constant but increases

26
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by 32 feet per second every second. The distance fallen
in ¢ seconds cannot be found by multiplying the velocity
of the stone by the time, because that velocity continually
increases. It is given by
s = 39t’,
where ¢ is the acceleration of gravity, 32 feet per second
per second, i.e. the velocity added on per second. Accelera-
tion 18 thus the rate of change of velocity.
et s be the distance fallen after ¢ seconds. After a
very small interval 8¢ seconds, the stone has fallen a very
small distance 8s feet. &8¢, s denote small increments of
time and space respectively; each is to be taken as a
whole, i.e. 8¢ does not mean ‘¢ multiplied by 8,” but “a
small interval of time”., We call 8¢, s the increments of
the variables. The corresponding space and time are now
s + 8s and ¢ + &t hence
8+ 6s = Lg(t + &t)%,
"5+ 05 = igt? + gtdt + 1g(dt)%
But s = 1gt?,
.. by subtraction, 8s = gtdt + 1g(8¢)®. .
Dividing by & we get

g;i = gt + 1gdt.

Now as &t is made smaller and smaller 8s/8¢ approaches
nearer and nearer to the true velocity at the instant ¢, i.e.
the rate at which the stone is falling at the instant ¢
seconds after it is dropped. In the limit, when &¢ ap-

proaches zero,

. 88
Lim 5= 9t

8t =0
since 1gdt is then zero.
Thus the actual velocity at the instant ¢ is gt.

7. THE LAW OF MASS ACTION

It was emphasized by Berthollet that the chemical
activity of a substance depends not only upon its afinity,
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but also on the quantity of it which is available for re-
action. He expressed this in the concept of the aective
mass of a substance, and formulated the fundamental law
of chemical dynamics, that the chemical action is propor-
tional to the active mass. Berthollet did not know exactly
how to specify the ““active mass "’ of a substance, and his
idea could not take a quantitative form. This formulation
appears clearly in the research of Wilhelmy, on the rate of
hydrolysis of cane-sugar in the presence of acids. If cane-
sugar is heated with a very dilute solution of sulphuric
- acid, it takes up the elements of water and a molecule of
dextrose and one of levulose appear in the place of a mole-
cule of cane-sugar :—
CisH30, + H;0 —» CH 04 + CH 0,

The change is fairly slow, and since a solution of
cane-sugar is dextrogyrous (turning the plane of polarised
light to the right), and the resulting mixture is levo-
gyrous, the amount of change may be followed by observ-
ing the rotation from time to time in a polarimeter.

Let d, = rotation of original (cane-sugar) solution,

a, = rotation of final (invert-sugar) solution,
a = observed rotation after a time ¢.

The amount of change is then
a, -

a, — a;

(original mass of sugar) x

The rate of inversion might appear to be given by
amount inverted in time ¢ ;

. ¢ ’

but we have to remember that the rate is a variable one;
the velocity of inversion is, by Berthollet’s law, proportional
to the active mass of the cane-sugar undergoing change,
and hence the velocity at any instant is determined by the
amount of sugar present at that instant. (The water is
present in such large excess that its active mass is practic-
ally constant.)

Let a = number of gram-molecules of cane-sugar
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present at the beginning of the reaction; @ is the active
mass of the sugar, hence velocity of reaction at the very
beginning = ka, where % is a constant.

If after a time ¢ (usually measured in minutes), an
amount x has been inverted, the active mass is then (@ — x),
and

velocity of reaction at the time t = k (@ — x).

The velocity slows down continuously as the active
mass decreases, just as the velocity of a train slows down
as the supply of steam to the cylinders of the engine is
gradually cut off. "What then is to be understood by the
term “ velocity of reaction” ? The case is analogous to
that of a falling stone. Let 8z denote the very small
quantity of sugar inverted in the very small interval of
time &¢. Dividing 8z by 8¢ we get the average wvelocity
of reaction, i.e. the velocity in the interval 6¢ measured on
the assumption that this velocity remains constant over
that small interval. As a matter of fact it decreases dur-
ing that interval, owing to the diminution of active mass;
but if 8¢ is made smaller and smaller, the change’of active
mass becomes less and less ; and in the limit, where 8¢ — 0,
the change of active mass also approaches zero. The ratio
8x/8t approaches a limiting value when 8¢ is continually
diminished and this limiting value is defined as the velocity
of the reaction at the timet. The limiting value of 8z/8¢

is denoted by %, hence

" Lim g‘f %ri 18 the velocity of reaction at time ¢.

t ==
8t—>0
Observe that %, like 8, is & symbol of operation,

It means that we have

(1) Increased t by a small amount &¢.

(i) Divided this into the resulting small change of z,
viz. ox.

(iti) Found the limiting value of 6x/8¢ when &¢ — 0,
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It is to be taken as a whole, the dz and d¢ must not be
geparated.

Then if at the time ¢ we have (@ - @) of cane-sugar
present, we may put

k-2
as a quantitative expression of the law of mass action for
the reaction considered.

Note that % does not change; it is the factor of pro-
portionality for any active mass, or

[velocity] = k x [active mass].

Thus the symbols of the Calculus are subject to the
same laws and interpretations as those of arithmetic and
algebra, but whereas in these parts of the science of num-
ber, the numbers are finite and discontinuous, in the
Calculus we regard number as being continuous, capable
of gradual growth and infinitesimal increase. This idea
of the continuity of number, and the conception of limit,
closely related to it, are fundamental in the Calculus.

0

8. DEFINITION OF DIFFERENTIAL COEFFICIENT
Let y = ¢(x) . . . @

be a continuous function of z.

Let the independent variable z be changed by a very
small amount * 8z, and let + 8y be the change of the de-
pendent variable y consequent upon the change Then
we may write

yt Sy ¢z * 8z),
r*dx z
hence SQ ¢z +gx ¢< )
. If both the fractions
9@ + 82) - d(x)
T or
Pz — 82) ~ §(2)
- oz
tend to the same finite limit as 8z is continually decreased,
then the function ¢(x) is said to possess a differential
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coefficient, or a derived function, or & derivative ; and this
is defined as the value of that limit.

The differential coefficient is denoted by

dy Lun o(z + bz) - ¢(:v)

dz = 8z =0 oz ’ @
Thus dy/dz is the limiting value of a ratio; dy and dz are
not to be regarded as separable quantities because dy/dz
is & symbol denoting a particular operation, namely the
process of finding the limiting value of the 8y/8z, where y
and z are connected by the equation

y = ¢(z),

and 8z approaches the value zero.

The importance of the derived function in science
turns upon the point that it measures the rate of change
of y with respect to #. This should be remembered when-
ever a differential coefficient is used.

[A function which possesses a differential coefficient, or

‘“ differentiable "’ function, is necessarily continuous; the
converse is not true, because continuous functions havmg
no differential coeﬂic1ents are known. These aré, however,
very rarely met with in the practical applications of the
calculus ; they are not considered in this book. See Hob-
son, ‘“ Theory of Functions of a Real Variable,” Cambridge
University Press.]

-

9. EXAMPLES

The differential coefficients of the following functions
may be obtained ab initio .—

@) y = mz + b,
Yy + Oy = m{z + 8z) + b,
y + 8y = mz + b + méz.
Y

Subtract = mz + b,
v 8y = mdz,
.Sy
i R
.8y dy
- Lim g;: = d—a; = M
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(2) Find the rate of increase of the electrical resist-
ance of a metal wire with temperature from Callendar’s
formula :—

R =R, + at + bt?).
Lim & = %R~ Ra + 2f)
St—>0

This example shows that #ime does not necessarily
enter into the specification of a rate; we have in this case
considered the rate of change of resistance with tempera-
ture.

(3) Find the rate of increase of pressure with the
volume in the case of a perfect gas, at constant tempera- .
ture,.

The functional relation between p and v is Boyle’s
law :—

pv = constant = K . . (@)

Let the volume be increased by a small amount &v;
the pressure is increased by the small amount d. The
new values of the pressure and volume are (p + 3p), and
(v + 3v) ; and since Boyle's law applies to the gas in any
state provided the temperature is constant,

(p+ 8p) W+ &) = A . . )
From (a) and (b) it follows that dp/dv = - p/v.

(4) The area of a circular plate of metal is expanding
by heat. When the radius passes through the value 2 in.
its length is increasing at the rate of "01 in. per sec. Show
that the area is increasing at the rate of ‘04 = sq. in. per
sec. at that time. (Area of a circle = 772)

(56) The length of a metal bar at a temperature ¢ C. is
given in terms of the length at 0° C. as unity by the equation
l=1+ at + bt%

Show that the coefficient of linear expansion is a + 2bt.

10. CHEMICAL REACTIONS

When, in any change of a material system, the sub-
stances present in the system disappear, and their place
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is taken by new substances with different properties, the
change is called & chemical reaction. If v, v, v, ...
molecules of the substances A}, A,, A,, ... are converted
into »/, », v;, ... molecules of the substances A/, A},
A/, ... then a chemical equation may be written down,
expressing, besides the qualitative aspect of the pheno-
menon, the additional fact that the total mass of the
system remains constant, or the sum of the masses of the
interacting substances is equal to the sum of the masses of
the products of reaction (Liaw of Liavoisier) :—
AL+ A F A+ L =0 A A+ v A+ L
If we desire to express the fact that, under specified
conditions, the reaction proceeds in a direction from left
to right (or vice versa) with respect to the chemical
equation, an arrow may conveniently be used instead of
the sign *‘ =’ the law of the conservation of total mass
being understood
A+ A+ . oA+ wA) +
Thus, at ordinary temperatures and pressures
(i) Zn + H,;80,aq. > ZnS0,aq. + H,. K
Here v, =p,=1; v/ =9/ = 1.
(il) Na,0, + 2HClaq. - 2NaClaq. + H,0,aq.
n=1u9=2;r" =23 =1
As a first classification we shall say that a reaction is of
the first, second, third, ... nth, order, when one, two,
three, . . . n» molecules disappear from the left side of the
chemical equation during the reaction.

11. EXAMPLES

(1) Reactions of the First Order ;—
(a) Isomeric change
C:H,.CH = NO.OH - C;H,.CH;. NO,
(b) Radioactive changes
Ra — Ra Emanation.
(c) If one reacting component is present in small
amount as compared with the other, or others, the amount
of the latter converted is negligible compared with the

s
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total quantity present, and the reaction is apparently of
the first order with respect to the first component. E.g.
the reaction cane-sugar + excess water ~xjnvert-sugar is of
the first order with respect to cane-sugar.
(2) Reactions of the Second Order —

(@) H,O + 8O, H,80,.

(b) C,H,0H + CH,;COOH - CH,CO0C,H; + H,0.

(¢) CH,COOH + Br, -»CH,BrCOOH + HBr.
(8) Reactions of the Third Order :—

(@) 2H; + O, — 2H,0. ‘

(b) 280, + O, - 280,.

12. VELOCITY OF REACTION

If the substances A,, A;, A, ...are mixed together,
forming either a homogeneous phase, or a heterogeneous
system of two or more phases, then three cases arise as to
the condition of the system :—

(1) The substances disappear, and new substances
appear, so rupidly that the reaction appears to be instan-
taneous. E.g.

NaOHaq. + HClag. - NaClaq. + H,0.
2H, + O, » 2H,0 (explosion).

All explogive reactions appear to be instantaneous;
careful measurements have shown, however, that the re-
action is propagated through the system (gas or liquid)
with a finite and characteristic rate, which it is true is
very large (Berthelot, Dixon).

(i1) The substances disappear at a finite and measur-
able rate, which has very different values according to the
chemical composition of the reacting system. Examples
of such reactions are (1), (a), (8), (¢); (2), (8); (8), (b) of
the preceding paragraph.

(iii) The initial substances persist without change in
quantity for an indefinite time. In this case the composi-
tion of the system is independent of the time, and two
cases are known :—

3
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(a) If, when the amount of one component is changed
by any quantity, however small, a corresponding small
change in the amounts of one or more of the other com-
ponents ensues, the state is one of true equelibrium. A
mixture of acetic acid, alcohol, water, and ethyl acetate in
the following proportions satisfies this condition

3CH,COOH + {C,H,O0H + 3CH,COOH + $H,0.

Berthelot found no change in the relative quantities of
such & mixture after seventeen years. (It is assumed in
all cases, unless otherwise specified, that the temperature
of the system be kept constant.) But if the smallest
‘quantity of acetic acid, alcohol, ester, or water was added,
% small reaction ensued.

(d) The relative amounts of the components are un-
changed if a finite change is made in the amount of one or
more of them. Here two cases are possible; either it
may be possible to cause the reaction to proceed, at the
given temperature, with measurable velocity by the intro-

" duction of a so-called catalyst into the system ; as in the
case of a mixture of oxygen and hydrogen gases at ordinary
temperature and spongy platinum as catalyst ; or areaction
cannot be so instituted, as in the case of metallic gold and
oxygen. The first is an example of a system of substances
in false equilibrium ; the second of a system composed of
chemically indyfferent substances. It may be that these
distinctions are only arbltmry, all substances may con-
ceivably react, but in some cases the reaction is either
much too slow, or proceeds only to such a limited extent,
that it is quite imperceptible.

By far the nost interesting reactions are those proceed-
ng with a finite and measurable velocmy If the reaction-
cheme in such a case be

nA A+ v A+ sy A+ A A L
hen we shall define the welocity of this reaction as the
ate at which the system of the components on the left side
transformed into the system of the components on the
ight side of the reaction equation.
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13. CHEMICAL KINETICS

The fundamental law of chemical kinetics (that is, that
branch of chemistry which deals with the velocities of re-
actions) is the Law of Mass Action, first definitely applied
ta the problem in hand by Wilhelmy in 1850. This states
that the rate at which a substance disappears from a homo-
gencous system undergoing chemical change is proportional
to the active mass of that substance in the system.

The active-mass, or concentration, of a component is
taken ag the number of gram-molecules per unit volume
(usually 1 litre).

A mathematical expresgion of this law gives us the
equations of chemical kinetics.

(1) RBeactions of the First Order (Unimolecular) :—

Let @ = initial amount of A, (», = 1),
# = amount which has disappeared after a
time £.

Velocity of reaction = da/dt,

, active mass = a —
o dzjdt = k(a - ).
(2) Reactions of the Second Order (Bimolecular) :—
Let a = initial amount of A(v, = 1),
b = initial amount of Ay(y, = 1),
z = amount of A, or A, disappearing during
time ¢,

Then since the rate of change, dz/dt, is proportional
to each active mass, 1t is proportional to their product,
hence

daxjdt = k(a — x) (b — 7).
If @ = b (case of equal initial concentrations)
dz/dt = kfa - x)
(8) Reactions of the Third Order (Termolecular) :—
Let @ = initial amount of A (v, = 1), '

b = initial amount of A,(y, = 1),

¢ = initial amount of Ay(y, = 1),

x = amount of A}, A,, or A; which disappears in time ¢,
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Then it is easily seen that
dajdt = k(e ~ z)(b - z)(c - ).

The casesfora = b,a=¢,b=¢, & = b = ¢, should be
written out by the student. )
If A, and A, are identical, as in the case

2H, + O, - 2H,0,
vy = v, and dz/dt = ky(a - z)(c ~ ).
If A}, A,, and A, are identical, as in the case
3HCNO — (CNOH),,
v, = vy = v, and dz/dt = ky(a - @)
Generally, if

~

(& - 2)lv=cy,

(b - :E)/’U = Cgy
where ¢, ¢,, . . . are the actyal concentrations of the sub-
stances A,, A,;, A,, ... present in the reaction

v A+ A+ A AL
at any particular instant, the rate of change of concentra-
tion (obviously negative) is given by '
— deyJdt = kericgracys. . ..

This is the most general equation of chemical kinetics
for a reaction proceeding in one direction. If the products
of reaction reproduce the initial products, the velocity from
left to right is

— doy/dt = keegs ...~ KeVev Y. ...
- 14, GEOMETRICAL ASPECT OF A DIFFERENTIAL COEFFI-
CIENT; GRADIENT OF A CURVE,

The extent to which a road departs from the hori-
zontal per foot of ascent is called the gradient or slope
of the road. Similarly the gradient of a straight line
is the increase of y per unit increase of z in the co-ordin-
ate system, that is, the gradient is the trigonometrical
tangent of the angle made by the line with the positive
direction of the axis of #. In fig. 5,

[N

gradient of AB
= dy/dx
= tan a.
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A

~—3%

Hia, 6,
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If the curve is not a straight line, its gradient varies
from point to point along the length of the curve, but it
is still possible to speak of the gradient at any point, this
being defined as the trigonometrical tangent of the angle
made by the positive direction of the z-axis with the
tangent line to the curve at the given point, drawn up-
wards or downwards, towards the right.

Let PQ be a portion of the curve. Through P and Q
draw PR, QR parallel to the axes, and join PQ. Let
PR = 8z, RQ = 8y. Then &y/dzx = tan QPR is the slope
or gradient of the secant PQ.

If the point Q moves along the curve unfil it coincides
with P, the secant becomes the tangent PQ’ to the curve at
the point P, and 8y/éz, since 8z ~ 0, becomes dy/dx, which
is thus the slope or gradient of the curve at the point P.

[Note.

P is the point (z, ),
Q is the point (z + 6z, y + 3y).]

If ¢ is the angle, positive when measured counterclock-
wise, which the positive direction of the iangent line
makes with the positive direction of the z-axis,

dy/dz = tan ¢.

This is an important equation.

It must be noticed that the gradient changes from
point to point along the curve, but if the equation of the
curve is known the gradient at any point can be calculated.
Thus, if the curve is

y = 427,
dy/dz = 8z .*. the slope at the point
z=1,4=4,is+ 8 This means that the tangent line
to the curve at that point makes an angle with the axis of
z the trigonometrical tangent of which is + 8.

15. DIFFERENTIALS

Let y = ¢(x).
Then we have seen that if 8y, 8z be simultaneous in-
crements of ¥ and #, the limiting value of the ratio 8y/8x,
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as dx approaches the value 0, measure the rate of change
*of y with z, and Is denoted by

. by dy
Lim va = d—i.
Sz —-Q
In another system of notation
. Op(z) _ dp(x) ,
Lim So T de T ¢’ (),
éx =0
where ¢'(z) is called the Derivative of y with respect to z.
Thus % and ¢'(z) are two different ways of writing the |
same thing.

We shall now consider the value of 8y/éz at a point
near the limiting value ; that is, the change in value of the
ratio 8y/éx as 8x decreases from a very small finite value
to zero.

Let y = a?
Sy = 228z + (8x)%

If we put z = 1, and substitute small numbers for 8z,
we can form the following table of values:—

oz 26z (8x)? Sy
0-1 0-2 0-01 0-21
0-01 002 0-0001 00201
0-001 0002 0-000001 0002001

0-0001 0-0002 0:00000001 0-00020001

We observe that oy becomes more and more nearly
equal to 2(8z) the smaller 3z is taken ; in other words the
importance of the term (8z)? becomes less and less in com-
parison with 26z the nearer 8z approaches zero.

Now we can always put

b
S - ¢@ + R,

where R is a quantity which, by the definition of ¢'(z),
must vanish in the limit when 8z —0. Thus
dy = ¢'(x) 6z + Roz.
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Now asg 8z approaches the limiting value zero, Réz be-
comes smaller and smaller in comparison with ¢'(x)dz,
since R = 0 when 8z = 0. At some point before the limit
18 actually reached, Réz will be so small in comparison
with ¢'(z)d2 that it may be omitted altogether, and we
can write

dy =¢'(x)dz,

which does not mean that both sides of the equation
ultimately vanish, as they should for 8z = 0, but that the
ratio of the two sides approaches unity when 6z ap-
proaches zero. In this sense, dy and dx are called Differ-
entials. 'This method, due to Leibnitz, simply means
that, in calculations which involve 8y and 8z, we may, at
any stage, write ¢'(2)8z for 3y, omitting terms which ulti-
mately vanish. The full meaning of this statement will
become clear as we proceed.

16. GENERAL THEOREMS ON DIFFERENTIATION

The operation of finding the differential of a given
function is called differentiation. The process is rauch
facilitated by using general rules, which are true for all
the functions to be considered.

(1) The differential of a constant :—

The rate of change of a constant being zero, it follows
that

¢'ky=0 .. dk)=0.

(2) The differential of a constant multiplied by a func-
tion of @ :—

Let y = ku.
y + Oy = k(u + Su),
> 8y = kdu,

cody = d(kw) = kdu,

Lety=u+0v+w+ ...,
where u, v, w . . . denote differ\‘egi; functions of .

~
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y+8y=u+u+v+v+w+dw+ ...
=u+v+w+..)+@u+dw+dw+...)
- =y+ @u+dv+dw+...),
Soy=%u+dv+dw+ ...,
Sdy=du+v+w+ .. )=du+dv+dw+...

(4) The differential of a product :—
Let y = uw,
y+ 08y = (u+ 8u) (v + dv),
= uv + udv + véu + Sudv
o Oy = udy + vdu + Sudn.
Neglecting the term Sudv which ultimately vanishes,
ve get ]

dy = d(uv) = udv + vdu.

Similarly
d(uvw) = wvdw + uwdv + vwdu.

(The student must distinguish carefully between cases
2) and (4). In some cases a quantity which is otherwise
ariable is agsumed to be kept constant, and the differentia-
ion must be carried out on this assumption. Thus, in
he differentiation of the gas-law v ‘

pv = RT
e may have the following cases :—
{(a) p constant (isobar) :—
pdv = RdT.

(d) T constant (isotherm) :—

pdv = - vdp.

(¢) v constant (isochore) :—

vdp = RdT.)

Geometrically, let the long and short sides of the rect-
ngle in fig. 7 be of lengths u and v respectively.

The original rectangle has an area wv. When the
ides are increased by du and v, the increment of area is
ae sum of the narrow rectangles wdv, vu, and the small
iece dudv in the corner. As Su and dv are diminished, it
3 quite clear that the small corner piece becomes vanish-
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ingly small in comparison with the narrow strips, i.e
dudv is negligible in comparison with udv and vdu.

PRRN~ " ZZ%"

e s = o . A o = - - -

w wr 2
3
—— - Sd4
—F 5
Fig. 7.
(5) The differential of a quotient :—
u
Let y =5 .
sy = LT du
y+oy= v+ o’
8y_‘u+8u, w  vdu - wdv
BT i S
(]. + ’;}‘)

In the limit, %—7 becomes vanishingly small compared
with 1,
w\ _ odu — udv
) e

v ?? T

This may be found by putting

w =y
Sou At Su = (U + S) (y + By),
5 Su — Lo
. u — you v
, Oy = Yy =T
u vdw - udv
. dy = d(l;) = '—'—/UT—.



THE RATE OF CHANGE OF A FUNCTION 43

The following formule contain the results we have
st proved; they are constantly used in the further
eatment of the subject, and should be committed to
1eTNOTY

o) ak) = 0.

@  dlku) = kdu.

3) d{u + v) = du + dv,
4) d(uv) = udv + vdu.
®) d(g) _ vdu - udv‘

v e
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THE DIFFERENTIATION OF ALGEBRAIC
FUNCTIONS

17. ALGEBRAIC FUNCTIONS AND TRANSCENDENTAL
FUNCTIONS

FUNCTION is said to be algedraic when it has been
formed by operating on its independent variable
according to the laws of algebra, i.e. by addition, sub-
traction, multiplication, division, involution (formation of
powers), or evolution (extraction of roots). Thus: = + 5,
z-b 2+ 5z -6, Jat- 2* ./ - 3z. Functions not
algebraic are called Transcendental Functions, e.g. sin z,
tan z, cos™'z, ¢, log 2.
(Compare §3.)

18. THE DIFFERENTIAL OF «»

Let y = o7,
and when 2 is increased to z, = z + &z, let ¥ have the
value y, = ¥ + dy.
Then 1 ~ ¥ L AR 7 S USRI Cal A
s z, - & X, -
by division. Therefore

y-tp=@" "tz + .+ 2 (2 - 2).
But Lim 2, = z by definition of z,,
dz — 0
Sdy=(x '+ 2+ ...+ 2"+ ... to n terms) da

or d(&™ = nx" " ldz
—_—
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It appears, at once, if the equation is written in the form

")

dz

that the gradient of the curve

y =

is greater the greater the value of n provided n>1. This

is evident on comparing the graphs of z? and 2% which
are plotted in fig. 8. '

Y / 3_13 ¥~ 2

nxt 1

Fig. 8.

19. EXERCISES

Differentiate (find the differentials of) the following
- functions :—

1) y=a%
Working ab initio ;—
' y+ 8y = (z + 8z)°

Coy + 8y = 2 + 8z%8z + 3z(8z)? + (8x)®

. Sy = 3(z%®z + z(®x)?) + (8x)®

dy = d(@® = 3z%dz.
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If the formula
d(x") = nz" " de,
is used, we must put :
n=3..n-1=92and
d(z®) = 3xz’dzx, as before,
(2) x4, 2% 2%, 2, [4aPdz, 928dx, 2bx*dz, 500x*%dz.]

(z+D(z+ 2
@ z+ 3 ’
@+ D@+ 2
Lety-——~——————m+3
_z*+ 3z + 2
T z+ 38
, ) Pat #*+ 82+ 2=u,
z+ 3 =0,
= Y
Y=
vdu — udv
dJ=~———v2 R
; . (2
o dy = (z + 3)(2z + 3)dzx (Zm + 3z + 22@2:’
(x + 3) '
z? + 6x +7
'dy=z2+6z+9dx'

az + 2bz + ¢
@ Lety = outi Qb v o
Put w = az? + 2z + ¢ .. du = 2(ax + bdzx;
v=ax’- 20z +c .. dv=2@azx - bdax.
u® vdu = udv
2ax? - 2bz + o) (ax + bydr - 2(az? + 2bx+ o) (ax — b)dx
(az® - 2bx + ¢)?

_ (az® - o)
T 4zb(aavz - 9bz +0)? L

z - x? 4+ 2
®v=GinETe Y e s i)

3 3
(6)y=xa:—-Z'
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[Snnphfy by factorizing the numerator.
dy = 2z + a)dz.]
%(7) y=(z+ 24
Put 2+ 2=u ., du = duz.
y=u'" dy = dutdu
‘ = 4(z + 2)*dw.

B y= (- 5°. [dy = 9z ~ 5)%dzx]

Q) y= (- 2t [dy = - 4(a - z)*dx].

(10) In the adiabatic expansion or compression of a
gas, it is found that the pressure and volume are related
by the equation

pvY = constant,
wherey = C,/C,, the ratio of specific heats. The elasticity
of a substance under specified conditions being defined as

-v. %, show that the adiabatic elasticity of a gas is wp.

20. INFINITE SERIES

A collection of terms in which successive terms are re-
lated according to some law, is called a series. Examples -
are i—

a+ (@+m)+ @+ 2m) + (@+3m) + ...
a+ar+ ar®+ ar®+ ...+ ar~

If the number of terms in the series is not finite the
series is called an infinite series.

Thus a + ar + ar* + ...+ ar" + ...+ ad inf,
i8 an infinite geometrical series, in which each term is
obtained by multiplying the preceding term by 7, the
common ratio. If the numerical value of  is less than
unity, |7 | <1, the sum of an infinite number of terms
of the series converges to a finite limit. Let
Sap1 =@+ ar+ ar’+ ...+ ar"to(n + 1) terms,
TS = ar + ar’ + ... + ar**1 to (n + 1) terms,
Sop 1l -1 =a - art?
a(l - 1

Ve 8y = 1 —, ~ = sum of (n + 1) terms,

(1 - 7} = sum of n terms,

P S = l—r
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Now let #n be continuously increased until it becomes
larger than any assignable magnitude, however large; ie.
let n—>co. Then 7 -0, since | r | <1 .. 7" continuously
diminishes as # increases until it becomes smaller than any
assignable magnitude, however small, i.e. #*—=0. Thus

. a w_ @
m—leﬁ(l—-r)—l_r.

n—> 0

Such a series, of which the sum, defined as above, ap-
proaches a unique limit, is called a convergent series. 1If
the sum does not approach a limit as more and more terms
are included, but on the contrary increases without limit,

" the series is said to be divergent. The geometrical series
is divergent if |» | >1. A third type of series is the
oscillating series, such as

1-1+1-1+1-.
the sum of which neither converges to a finite limit as the
number of terms taken to form the sum is increased, nor
diverges under the same circumstance, but oscillates in
value :— v
1-0—->1—-0-...adinf,
the addition of each term causing a change per saltum
from 1 to 0 or 0 to 1.

Analytically, we may define a convergent series as
follows :—

Let the sum of the first n terms of the series be denoted
by s.. Then if s, approaches a finite and unique limiting
value s, as n approaches a number which is larger than
any assignable magnitude, s is called the sum of the con-
vergent series. Let

§= 8, + O,
then the error committed by taklng the sum of the first n
terms as the sum of the series is
§ ~ 8, =0,
If the series is convergent
Lim s,= ¢, Lim o, = 0.
n->w n-> o
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The necessary and sufficient condition for the converg-
ence of an infinite series is that the remainder after n
terms, ¢, becomes infinitely small as » is made very large.
There are several methods used for finding whether a!
given series is convergent or not. Two may be men-
tioned ; for the others the student may consult the text-
books on Algebra or the Calculus (Briggs and Bryan,
“Tutorial Algebra,” pp. 432-9; Lamb, ¢ Calculus,” chs.
1, XI1L)

Method 1. Lt the given series be denoted by

Ug+ Uy + Uy + oo o F Un+ ooy
and let the series ~ ~
Y+ U+t ..Vt

be known to be convergent. Then if each term of the
first is not greater than the corresponding term of the
second, the first series is convergent. The reference series
most frequently used are the geometrical series ;—

a+ar+art+ .. =ar.+ ..,
convergent for | r | <1, and the series :—
1+i+_{+l+
T T

convergent if | m | >1.

Method 2. An infinite series is convergent if from and
after some fixed term the ratio of each term to the preced-
ing term is numerically less than some quantity which is
itsel less than unity.

Let the series be
A A S . e
and let
Spy=+ A+ ...+ a,
a1(1+q—2+(}—3.%+%.g§+ )
a,  a,a, @, a
‘Then, by hypothesis,
afa, < a, afa,<a, aja,<a, etc.,

I

where a <1,
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Multiplying together the first two, the first three, the
first four, and so on, of these inequalities,
ayja, <a or ;<a.a,
aja,<at  a;<al.a
aja,<a® a,<a'.a,

By addition, and adding a, to both sides,
ot +at.. . <al+a+a+..)
@+ A+ a; + ... <a,/1 - a).
The sum of any number of terms is thus always less
than a finite quantity a,/(1 — a), and the series is con-

vergent.
Examples :—
(1) The series
L+ = L 1+ 1 1 a7+
91+ .o

is convergent because, begmnmg a,t the mth term
“m-}-l/am = l/m am+2/am+1 = 1/(m+ 1)'

W48/ Am g = 1[0+ 2)
and these quotients are all not greater than a finite

quantity 1/m, less than unity.
(2) Show that the series
1+ dz+3.327+3.3.805+ ...
is convergent when | z | <1.

(3) We will consider two interesting examples of con-
vergent series in chemistry.

() Washing Precipitates.

R. Bunsen (1868) was the first to try to raise the
prosaic operation of washing a precipitate to the rank of a
fine art. Suppose the precipitate, say of AgCl, is on the
filter, and let the concentration of the soluble substance
(which is to be washed out) in the original liquid be z,
E.g. if 250 c.c. of liquid stood over the precipitate, and

contained 2'5 gr. HNO,, the concentration z, = %6 = 001
gr./e.c.
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Let a = volume of liquid left entangled in the pre-
cipitate, after as much as possible has
drained through, and let

m = volume of liquid poured on for washing.
Total volume of liquid = m + a,
a
mta
‘When this liquid has drained through, a c.c. are left in

~ concentration z, =

the precipitate. The absolute amount of substance left -

in the precipitate is now az, = az,

m+a v

After a second quantity of m c.c. of liquid has been

poured on, and drained through, the absolute amount of
substance left in the precipitate will be

@ a \?
ax, = az, = az,.
m+ a m + Q.
Thus, after 1, 2, 8, . . . » washings
a

o (-2 Yar, (- © Vas
mt+a "\m+a Y m+ a) ¥

a \ . . . .
. (m " a> az, will be the residual quantities left in

the precipitate. These terms form a geometrical series
with common ratio a/(m + a). If we have a given
volume of liquid, V c.c., then V = mn. It is obvious that
(m‘-li- a> will be much smaller if n is large, than when it
is small ; it can be shown in fact that it is more efficient
to make m fairly small, and » large, than vice versa; in
other words, it is better to wash often with small quantities
of liquid than to pour on a large volume at once.

It must be observed that we have assumed that no
dissolved substance is retained in the precipitate by ad-
sorption ; this condition is, however, very rarely satisfied.
(Cf. Freundlich, “ Kapillarchemie,” Lieipzig, 1909.)

(i) Eaztraction with ether, etc.

Let a solution of aniline in water be shaken out with
ether in & separating funnel. Let
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a = volume of the aqueous solution,
m = volume of ether added (we assume that none is
lost by dissolving in the water, ie. m is

constant),
x, = Initial concentration of the aniline in the solution.
As before let 2, ,, @, . . . ,, be the concentrations after

1,2, 3,..., nextractions.
" Now it has been shown by Berthelot and Jungfleisch,
and by Nernst, that any solute which does not alter its
molecular state on passing from one solvent to another,
will distribute itself between the two solvents in such a
way that the ratio of its concentrations in each remains
constant, irrespective of the absolute or relative amounts
of the two solvents. This ratio is called the Partition
Coefficient for the particular solute and pair of selvents;
let it be denoted by w. Then
concentration in water
concentration in ether

= constant = w,

Z T, — &
Pt R Sad R | 1, LY
a m
wd
Z, = z,
m + wa

A second, third, . . . nth extraction gives
T ® —
o P

a m
)
R
N wa \° ,
R

wa  \*
T = o\ k waf>'

Complete extraction is theoretically impossible, be-

ca.use< wa ), although it may become very small, is
m + od

never zero. The number of extractions (n) requisite to
reduce the concentration in the aqueous layer to a small
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value, will depend on the magnitude of w. In the case of
ether and water,
o = 1/80 for benzoic acid, 1.e. eighty times as much
goes into the ether as into the water. If
a = 1000, m = 200, then

z, m+wa 17
i.e. after one extraction only 1/17 of the acid is left in the
water. After three extractions, only () = 1/4913 is left,
and the extraction is ‘‘complete”. For succinic acid,
with the same solvents, w =~ 6. After one extractlon 3% i
left ; repeated extractlon is necessary.

21, THE BINOMIAL SERIES

The Binomial Series, discovered by Newton, is of very

frequent use in scientific investigation :—

2" = -1 5, ne-1)@m -2,
l+o"=1+ nx+ 19 2?2 + 17'2'3&'1:

* + o+t
(@) Tf n is positive and greater than unity, the series is
convergent for all values of z.

Thus .
5.4 5.4. 3 5 4.3.2
5 T2
Arap=lsbet 158+ 193" 1934
If the first term in the binomial is not unity, it can be

made unity by division :—
4
(@ + )t = <1+ §>a4=a“<l+4§+ 6£+ )

=zt + %,

Ezamples.—Find the expansions of the following
binomials, testing the resulting series by giving z a
numerical value :—

1 1+ 2z
@ A - 44
B) (@ + zh>

() If nis fractional or negative, the series is conver-

gent provided the nwmerical value of z is less than unity,

LS
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ie. —I<]2z]|<+1 This condition can always be
satisfied if the second term in the binomial is an infinit-
esimal, (1 + &z), because we can always suppose 8z to be
less than unity before the expansion is m&de
Ezamples ;—
(1) Expand 8 + )1}

o (1 )" - (1 2"

~16{1+13.2+ y W82 (2),

1.2 8
, 140E - DA} - 9z
1.2.3 \8) - }
1
=16 + 2%z + 18 64-8:6 ete.

(2) Find the cube-root of (x + 4)* to four terms.

3 Expand 1 - o)~ '.(l+az+ 22+ 23 +...] :

(4) Expand 1 - 2)~%.[1 + 3z + 62% + 102° + .. .]

(5) Prove that d(z%) = nz"~'dz, by using the Binomial
Series. Since the binomial expansion can ke used for
positive and negative, integral and fractional values of n,
the formula for the differentiation applies to all these
cases.



CHAPTER IV
MAXIMUM AND MINIMUM VALUES OF A
! FUNCTION e
22. MAXIMA AND MINIMA

ONSIDER the curve in fig. 9. Notice the sign of
the gradient as the tangent line rolls round thee crest
A and the trough B.

J

T

-+

Fie. 9,

At a, the tangent line makes a positive angle with the
z-axis
.. tan ¢ = dy/dz i8 positive.
At A the ta.ngent line is parallel to the z-axis
. tan ¢ = dy/dz is zero.
ib]
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At a, the tangent line makes a negative angle with the

Z-BX18 ‘
.. tan ¢ = dy/d=z is negative.
The changes of sign as the tangent line rolls round a
crest are in the order
[+]->[0]=[-1
At B, the trough, the changes are in the order
[-1=00]=>[+]

Definition : & maximum value of a function is a value
algebraically greater than all values in the immediate
nexghbourhood.

The points A, D, on the graph thus satisfy the condi-
tion for maxima.

Definition : a mintmum value of a function is a value
algebraically less than all values in the immediate neigh-
bourhood.

The points B, C, on the graph satisfy the condition for
minima. The case of C will repay close attention.

Notice that a maximum value need not be the greatest
value of the function; this may be one maxinfum value,
e.g. D, but the criterion refers only to values in the im-
mediate neighbourhood of the point considered. Similarly
for minimum values. This explains why a function may
have more than one maximum (or minimum) value.

The elementary methods of finding the maximum and
minimum values of a function depend upon the properties
of quadratic equations; they are discussed in all text-books
on algebra. Far more rapid and simple is the method of -
the Calculus, which follows at once from the foregoing
remarks.

At a mazimum, dy/dx passes from a positive, through
zero, to a negative value.

At a minimum, dy/dz passes from a negative, through
zero, to a positive value.

The maxima and minima are therefore to be determined
by the changes of sign of the gradient at the critical points.
It is important to notice that dy/d« vanishes for both a
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maximum and a minimum ; the changes of sign determine
which case is under investigation.

Ezamples :—

function 3z + 2z - 6.
[Solution ; Put y = 32* + 2z - 6.

dy _
a;—6$+2.

(1) Find the maximum or minimum values of the

For a maximum or minimum, Z—Z = 0,
sobr+ 2=0,
L= —-%=-033...
Substitute values a little less, and a little greater, thal?
0'33 and observe the change of sign. ‘

i) z= - 04 -
] Sodylde= - 6x 04+ 2= - 04.
@) x= -~ 02

s dylde = — (6 x 0°2) + 2

= + 08.
Consequently the changes of sign are

(=)= 0)~ (+),
and we are dealing with a menimum.
(Notice that - 04 is algebraically less than - 0-2.)]
This result should be confirmed by plotting the graph
of 32 + 2z - 6.

(2) Find the maxima, or minima, of
42 — 102 + 8z + T,
[Put y = 42° -~ 102% + 3z + 7
s dylde = 122 - 20z + 8,
For maxima or minima
dy/dzr = 1227 - 20z + 8 = 0,
cSox=3Ford
Take the values separately :—
@ z=3/2=1%5.
@) Put x = 14, dy/dz is -,
(i) Put x = 16, dy/dx is +,
". we have the - -0 - + case,
1.6 a mintmum at x = 1°5,
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() z = 1/6 = 0-166.
(i) Put z = 010, dy/dz 18 +,
(iiy Put z = 02, dy/dz is —,
.. we have the + -0 - ~ case,
ie. a mazimum at & = 0'16.]
(8) Find the maximum and minimum values of
z(z - 1)

[There is a maximum at # = }, a minimum at z = 1.
The corresponding values of the function, obtained by
substitution, are o, 0.] 3

(4) Find the points on the curve

y=(z- 1Y@ - 2°*
which are at maxima or minima,.
[dy/dz = 2(2x® — 9a2® + 13z — 6).

This can be factorized by making use of the Factor
Theorem ; ““‘If a rational integral algebraic expression
vanishes when a is put for z, then (= - a) is a factor”.

The above vanishes for z = + 1, + 2, + &

.z - 1), (x - 2), @z -~ 3) are factorg.
dyldes = (z - D(x - DRz - 3) = )
z=120r%

As z passes through the value + 1, @a} changes from - to +

1 2] ” + 2; 2] ” -+
I + 3 T 1 + oy -
Eva,lua.tlng con‘espondlng y-values we ﬁnd
a mazimum at (3, %),
minima at (1, 0) . and (2, 0).]
5 2-z+1
O Y=y T
[A minimum at (1, §); a maximum at (- 1, §).]
6) z* - 8ax® + 22a%2* - 244’z + 124
. [z = a(a min.); z = 2a(a max.); 2 = 3a(a min.)]
(M @ - Dz + 2)3,
[t=1 (amin); 2 = - § (a max.)]

= 32=1.26,.. (amin)]
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23."CALOULATION OF SMALL ERRORS

Let some variable z, on which another variable y de-
pends, be measured in the labora.tory It is required to
find what effect a small error in the measurement of 'z
would have upon the value of y. 'We use the equation

dy = ¢'(@)dz,
i.e. an error of dz in 2 causes an error ¢'(x)dz in y. This
is called the absolute error.

’/I///I/I/IIIIIIII/I/II)’IIIIIIII/IIIIII////,
- ]
THIL IS S IIITIIE I SIS VIO SIS IS IS SIS

Fia. 10.—Radius Error. Height Error.

Ezamples :—

(1) In measuring a cylinder, a possible error of dr is
made in the radius. What is the error in the estimate of
the volume ? '

v = 7rih
. dv = 2wrhdr,
i.e. the error dr is multiplied by 2mrh.
If A=T7cm., r=1cm., dr =% 0-01 cm.
dv = 044 c.c. — an appreciable amount.
Hence one has to be very careful indeed in measuring the
radius.
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The effect of an equal erros~in measuring the height

is dv = wridh
=314 %x 1% 0L ="03cec,
which is only about one-tenth the former.

(2) The curious divergencies of students’ results from
the ‘“theoretical ’* values are often explained by the fact
that some quantity has not been measured with sufficient
accuracy ; the accuracy which is sufficient for some portion
of the work is not sufficient for others.

Thus, if the coefficient of linear expansion of a metal
bar is to be found, the formula is

I =10,01+ at).

If I, = 100 cm., ¢t = 100°, an error of 0’1 cm. in 7, will
make an inappreciable difference in a.

But a = ({ — £/t = Ai[lt
oo da = ddh it

For an error of 0'1 cm. in 41 (the increase of length),
an error of 0:00001 cm. is made in a, and since, for iron,
@ = 0:000013, this would give a totally incorrect result.

This example shows that the accuracy required in the
measurement depends not only on the form of the function
connecting the variables, but also on the absolute magni-
tude of the quantity to be found. 1t is therefore usual to
find the proportional error, that is, to divide the absolute
error by the value of the quantity, or defa. This, multi-
plied by 100, is the percentage error.

() Very often a suitable arrangement of the conditions
of experiment reduces the error to a minimum. Itis shown
in the text-books on practical electricity that the minimum
error is made in measuring a current with a tangent
galvanometer when the deflection is 45°, other sources of
error being neglected. The current through the instiu-
ment is therefore adjusted by shunting until this deflection
is approximately obtained.

(4) If there are errors in more than one variable, the
error for each is calculated separately and the results
added. (“ Superposition of Small Errors.”) If the density
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of & body is to be found by Archimedes’-method, and if the
weights in air and in water are in error by dW, dW!,
show that the relative error in the density p will be
W' adW dW!
Yle=w-ww Fw-w
24, EXAMPLES A

It y = fix), §
then it has been shown that
Sy=y+ 8y - y=fz + ) f(x
and if 8z is small (otherwise the experimental \{esults are
useless)
S+ 8z) - flo) = f'(x)ox
.. absolute error = &y = f'(z)dz,

and relative error = 8y/y :ff(( )) o,

(@) Atomic weight determinations ;—

Let the equivalent of sodium be determined by pre-
cipitating a, known weight « of NaCl with 1 part of Ag,
and weighing the AgCl.

Let A = equivalent of silver
B = equivalent of chlorine,
both be known. Then if y is the equivalent of Na,

(y+B):A=m:1,

y = Az ~ B,
S@s A
%= O Kz - B
_Ay, _y+B &
y y =
_ 93+ 355 &
T 28 T

An error of 071 parts in a thousand in the measure-

ment of x gives rise to an error of 0'25 parts per thousand

1113 t/152xe calculated value of . In the case of BaCl, y =
7

y+B_ 150
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(b) Reaction veloctty *—
The constant k in the formula
dzjdt = kia - 2)(b - 2) ...
‘will be shown later on to be given by .

= 36,

or y = 24,

wherey = k,; ¢(z) is & function of z.

A small error in the measurement of ¢ has very little
influence on 7 ; an error in the estimation of » (the extent
of reaction) on the contrary, gives rise to a marked error.

by = % ¢’ (z)é.

In a series of determinations, the values of 82 are
usually nearly equal, hence the errors in ¢ are proportional
to ¢'(z)/t. The reliability of any calculated value of y is
therefore proportional to #/¢/(z). The best value of y is
in this case found by multiplying each calculated value by
the corresponding value of t/¢ (x), and dividing the sum of
these products by the sum of the latter expressions :—

£ ty
oyt Yoo~ ce
y = y1¢ (wl) y2¢ (1.2) +
. Fa) ¥ Fag T
t,/¢’(x,) is called the weight of the observation (1)..
The relative ervor,

Sy 1 ¢'@)
<=2 )
y 1@
diminishes with diminishing values of 8z and $@)

¢
The experimental conditions are therefore to be ar-
ranged so that ¢'(z)/d() 18 a minsmum.
This is the case when
a(¥@ _ (@Y
M@@)“%m =0
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Thus, in the measurement of conductivity by Kohl-
rauch’s method, the error is least in the bridge-reading
when the slider is in the neighbourhood of the middle of
the stretched wire.

Let y = resistance measured (i.e. of the electrolyte),

l = length of wire,
z = reading when the bridge is balanced.

Theny = f () = w

z
"where w = the resistance with which the measured re-
sistance 1s compared.

re

Sy =z - =)
ey ot
U\flx) T U - x)?

This vanishes for (2z - ) = 0, or = /2.

If the scale, the comparison resistance in the bridge,
and the reading z are all affected by errors, the relative
error in the calculated resistance will, by the principle of
saperposition of sepa.rate sma.ll errors, be

By
7 Cl}(l = z)&t + Bw + l—:*—Sl

25. DIFFERENTIATION OF A FUNCTION OF A FUNCTION

H we were asked to differentiate /1 + z?, it might
appear at first sight that the formula
d(x®) = nz" " dx
would apply, and we should have
d(J1+ 2t =dl +zD)t = $(1 + 2?) "4z . W
This is not the case, because ~/1 + 2 is a function not
of z simply, but of 22
" Let us write » for 1 + 2%, then
N1+ 2% = ub,
AT+ ah) =dd) =dudde . . (i)
We can see at once where the error comes into state-
- ment (i), because du is not equal to dz unless u = z. In
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this case f i1s evident that the addition of a constant to z
does not affect the form of the result:—
dll + z* = 2(0 + z)du.
But in the example we are considering, # = 1 + z*
‘. du = 2zdz, hence the complet;e result is

o 1
AT+ 2% = ju™idu = § . =7 - 20de,
— z
;aﬂ+m=ﬁfﬁh
Similarly, d(~1 - 2%) = - - Jffj“xzdm'

Generally, if the function fo be differentiated is a
function of a function of z, we put the function of z equal
to », and proceed in the usual way, taking care not to
omit to find du and substitute in the final resulf.

Ezample.—Differentiate Ja* + 22

’ Let a* + z* = u,
cooWJat + oa? = wd
CA(JaR + 2t = du T ddu. 0
But du = d{a® + z%) = 2uzdz,
z
. d(NJat + 2% = de@
In general symbols let
Yy = o),
where u = f(z)
dl¢@)] = ¢ (z)dz, by deﬁnltlon
L dlpw)] = ¢ (wdu.
But du = d[f(z)] S (@dz,
cody = '@ f(x)de.

Thus to differentiate a function of a function of z, we
multiply the differential coefficient of the original function,
taken as & whole, by the differential of that function with
respect (o .

26. EXAMPLES

Differentiate the following expressions with respect

toz:—
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o= [ te)

<
@) Jaf+ o, (#(@® + 2®) ~dzdz)
3 (az + b [an(ax + b)*'dzx].
l+z+a . ’
CY) \/1_z+2 [Hint : Put 1 + 2 + 2% = u,

1-2z+ 2 =9, and use the
formula for a quotient. The result is )

1 - 2* P
A+ z+ 2H(Q - z + oHY 2]

(5) Find the isothermal elasticity of a gas obeying van
der Waals’ equation :—

(P + %z)('v - b) = constant.

[The equation, when multiplied out, becomes

bp+ 2~ % _ constant
pv - bp + o - 5 = constant,

. pdv + vdp - bdp ~ 5o ~ al:dv =0,

‘ .. 2ab
% v = elasticity = - <p - %2 + —;Lg ﬁz]
(6) The velocity of a compressional wave through an
elastic fluid is given by Newton’s formula

velocity = u = «/ E, where

e = elasticily of the fluid under the conditions obtaining
when the wave is passing, p = density of the uncompressed
fluid.

Show that for & change of density dp, the change of

lde 1
velocity is # u( - —)
y edp ~ pl-

If the fluid is & perfect gas, e = yp, p = 1/v where v =
volume of unit mass, because the conditions obtaining
when the sound wave passes are adiabatic conditions, and
we have shown that the adiabatic elasticity is yp. Also

= ket (b 47)
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Thus u = /ypv. ,

Show that dufdp = O, i.e. the velocity is independent
of the pressure.

(7) Differentiate (az" + ¢) . "[m{az* + o)™ naz"~ ‘dz).

(8) Differentiate (@ + dx%)%*(a — x)%.[Hint:

Put y = uv = (@ + 82%% x (a - z)%.

12abz? - 15b2® - 3a
dy = (a + bz®) (a - 2)}. 3 dz].
. . z + 3 @+ 38)%.(-a2~12z-06)
9) Differentiate EZQ— o) [ @ =9 dz].

(10) If y = Fl(az" * b) show that
dy = an¥F'{az" £ byx"~ dx.
(11) If y = {F(z)}" prove that
dy = n{F@)}"~ 1 x Fz)de.
Compare with examples (7) and (8).

27. EXAMPLES ON MAXIMA AND MINIMA
If a given function

y = ¢
18 to have a maximum or a minimum value, i’ is necessary
but not sufficient that » shall have a value which satisfies
the equation

dy .
%—‘1’@)—0-

The condition which must at the same time be satisfied
in order that the function shall be a maximum or a
minimum is that ¢’(z) shall change sign as z passes
through the value which makes ¢’(z) vanish. The criterion
for a maximum or a minimum is found in this change of
sign of the function as x increases from a value, a little less
than the critical value (¢'(z) = 0), to a value a little greater.
For a mazimum, the change of signis (+) - (0) = (- ).
For a minimum, the change of sign is (-) — (0} = (+).
. If ¢’(z) does not change sign in passing through zero,
that is, if the criterion becomes
(+) = Q) = (+),
or (=) = (©) - (-),
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the curve becomes parallel to the axis at that point, but
then continues in the same
direction as at first. ;

Let acb be a line parallel F
to the z-axis and cutting a
curve in three points @, ¢, &. -
If the three points approach
and ultimately coincide, we
have a point satisfying the
condition given sabove. At
this point (such as P) there is
a change of curvature; it is
therefore called a point of in-
flection. The critical point
on the cntical isotherm of
van der Waals’ equation is an
example of such a point.

One part of the curve is
concave to the z-axis, the Fa. 11.
other part i4 convex, and the '
point of inflection (where the curve is parallel to the
z-ax1s) divides the two.

Ezamples—Find the maximum or minimum values
of

1) 2z* - 32? — 36z + 10.

[Max. at = z — 2, min, at 2 = 3.]

(D) 42® - 182 + 27 - 7.
[Point of inflection at « = 1°5.]

38) zNar — 2. [Max. at z = 3a/4.]
2
“4) % [Max. value is + 2, min. value - 2.]
z(x? ~ 1)
R

(2 max. values of + 05, 2 winima of — 0'5.]
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(6) The magnetic force on a small magnet placed
at some point on a line drawn through the centre of
a circular coil, and perpendicular to the plane of the
coil is
*

GRS
where z = distance of magnetic pole from plane of coil,
a = radius of coil.

This is & maximum when z = } a.

(7) If methyl acetate is hydrolysed in presence of
acetic acid as catalyst, the acetic acid produced increases
the concentration of catalyst as the reaction progresses :—

CH,COOCH, + H,0 - CH,COOH + CH,OH.

From this cause alone the velocity would increase
with time; but since the active mass of ester diminishes,
the velocity from this latter cause would decrease. At some
point the velocity, after.increasing, will have a maximum
value. It then begins to decrease. When is the velocity
9 maximum? Start with a of acetic acid, & of methyl
acetate, and after a time ¢ let # be hydrolysed, producing
« molecules of acetic acid.

’ de,
=

Velocity due to acetic acid produced = %:% = kzbd - 1),

Velocity due to acetic acid added = kad - 2),

- actual velocity = sum of component velocities, or .
de _ dw, | doy Efa + 2)(b - ).

dt  dt '~ dt
. dda:)__
For a maximum, ;175:(% =0
. d -
..a&(a+z)(b—m)—0
= or—-(@a-b -2 =0
&= 4a - b)

Ostwald calls such reactions autocatalytic.
Observe that we have differentiated a differential co-
efficient. The result represents the rate of change of a

~
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rate of change. If % is differentiated with respect to ¢,
the result is called the second differential coefficient with

2
respect to t. It is written %g, or ¢" (9.

Since dy/dz measures the gradient of the curve _,

y = ¢(@), d¥y/dz* will measure the rate of change of the

Fia. 12.

gradient. We can illustrate the meaning of this expres-
sion by considering the two roads represented in section in
fig. 12. The gradients at points equidistant from the
starting-points are obviously greater in the second case
than in the first, or the gradient is increasing at a greater
rate, Thus d?y/dz® is greater along the curve AB’ than
along AB.

As we should say, the road AB' gets steeper more
rapidly than the road AB. d%y/dz? is thus a measure of
she rate at which the gradient is increasing.



CaarTer V

EXPONENTIAL AND LOGARITHMIC FUNC-
TIONS

28. INDICES

N elementary algebra, a™ is defined as the product of m
factors, each equal to @ :—
(1) a"=a x ax a...tom factors.

a is any positive or negative, integral or fractional, quantity.

The ndex m is a positive integer, otherwise the ex-
pression is meaningless. From the definition it is easy to
show that, if m and « are positive integers :—

@ e xa=a""

(3) am/an — am—n’ if m>n,
= 1fa" " if m<n ”
(4) (am)n _ anm.
By (@)™ = amb™.
a\" m | J.m
(6) (3) =a /b . )

(Cases (2) and (4) should be carefully distinguished.)

If the indices, m and », are not positive integers, but
are fractional, zero, or negative, the methods of proof,
based on the fundamental laws of algebra, fail; it is
meaningless to speak of multiplying a quantity by itself
% times, or — 2 times, or O times. To find a meaning
for such expressions as ab, or @ %, or a’ we assume that
the fundamental Index Law

ax @ =a™t",
is true for all values of m and #, including fractional, nega-
tive, and zero values; and then proceed to find what in-
terpretation must be put on g™ for these values. We at
the same time tacitly assume that an algebraic law which
70
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is proved under certain restrictions is true generally pro-
vided that the removal of these restrictions is not ¢ncom-
. patible with the truth of the law,

Interpretation of fractional indices.

]

m
Consider a™, where m and » are positive integers.

myn n m
(a”) =g x a* x ...ton factors
ﬁ+%‘+...tonterml
= a”
Txn "
= a" I
m n m\n
L at = \/(a’;) = Ya™
5 s
Thus a* is the nth root of a™

Thus e} = Ya, at = ¥Ya, a3 = Ya?.

Interpretation of the zero index.

a™ x @* = a™*" for all values of m and =.
Putm=0. a"xa"=a’*" = q"
o a0 = %, = 1.

Thus any finite quantity raised to zero power equals
unity. (Notice that we have not yet found a meaning for
0°, which is indeterminate.)

Interpretation of a negative indew.

" In the equation a™ x a@* = a™*", put m ="'~ n,
e txat=a""t"=4a"=1,
Thence 8 =" = 1/a".
@~ " 18 therefore the reciprocal of a”
Thus @ =% = 1/a% @ "4 = l/at = 1/ Ja.
Results in tndices ;—
a” x q"=a"*"

am/an= am—n
a~"=1/a"
1 — —
a” = Ya
m
a:':: :/a;'
a’ =1
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29. EXPONENTIAL FUNCTIONS

Any function which contains the independent variable
in the index is called an Ezponential Function.

Lzamples :— 2
ak, @+ z) "% a* »

Before proceeding to the differentiation of such func-
tions, we will give a brief account of the properties of
> logarithms. The student is assumed to be acquainted
with the elementary treatment.

30. LOGARITHMS

Tet a* =y,

where ¢ is any fixed quantity.

From the results of indices we saw that

@ =1

if @ is finite. We now consider the value of a* when z
becomes infinite.

() Let|a]>1, where|a | denotes the numerical
value of a.

Then | a®|>]|a]|, |a®|>]|a*|, and s6. Thus if
z increases without limit, @* increases without limit,

or &*—> + w as T ~> + .
Againa~*—=1/a*—>1/w =0

' ora—%® -»0.

(i) Let [a|<1. Puta=1/b, thenif |a[>1,]5|
will be <1, which is the case we wish to investigate,

b* = 1/a® ~1/w = 0 when z - ©,
S =s0if | 0] <1
Again b~ *=1/b*=1/0 »w if z —» @,
Let us now suppose that a in
=1y

is a fixed positive quantity, greater than unity. Then if
z ranges from - < to + ©, y will range from 0 to + .

If we imagine the series of indices (z), and powers (y)
tabulated for a given value of @, then the indices will con-
stitute a table of logarithms of the corresponding numbers
in the table of powers, a being called the base.
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Thus if a* =y,
¢ = log, y (Definition of logarithm).
The logarithm of a number to a given base is the
index of that power of the base which is equal to the
given number. ‘
Thus log, 256 = 4, because 4* = 256,
From the above discussion it follows that
loga (+ s 0] ) - W, |
log, 0 - - @,
where a is any base greater than unity.
The equations log,(a@”) = n,
@\%Fa* = z,
are seen to be identities in the light of the definition.
We shall now prove some important properties of
logarithms, these being true for any base :—
(1) Sincea’ =1 .". log,1 = 0.
(2) Sincea'=a .*. log.a = 1.
(3) log, MN = log, M + log,N.
For let log M = m,
’ log, N = n,
then M = a™,
N = a”, by definition.
Thence MN = @™ x @ = @™ *"
.. log MN = log,a™*" = m + n,
= log,M + log,N.

C @ log. % = log.M - log,N,

“ by & similar proof.
(6) log,M" = n log,M
where n is positive or negative, integral or fractional.
For let log,M = m,
Soam =M.
) Then M* = (™" = a™,
*. log,M” = log,a™ = mn = n log,M.

= 1
Corollary. log, M = _log,.M
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81, LOGARITHMS TO DIFFERENT BASES
Liet a, b be two different fixed numbers adopted as the
bases of two systems of logarithms, and let M be any
positive number.
Let log.M = z, log,M = y.
Then M = a*, and M = 7,

SLat=b
La= (a:)’% = bz,
and b = as.

z
Thus % = log,a, 7 = log,b,

. —_ l — z
SOy =2 108,a = m,
log, M
log,b’

Thus, to transform any logarithm to a given base to
another base, we divide it by the logarithm of the second
base with respect to the first base.

= logM = log, M .log,a =

——loé 7 is often called the modulus of the second system with

respect to the first.
82. RESULTS IN INDICES AND LOGARITHMS

a* =1y x = log,y
a’=1 : logl =0
al=a - logaa =1
3 . -~ 1
a' = Ya log, Ya =
a"'=1la log.d/a) = - 1
a®= w@>1) log, =
a~ % =0@>1) - Jog.0 = -
a'a® = a*t’ log.zy = log.z + log.y
&la¥ = a*7* Iogaziz = log.z - log,y.
N e g y
(a?)" = a log, 2" = n log.z

_ . |
&t = a' ™ log, Yz = ;;log“z.
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38. SYSTEMS OF LOGARITHMS

With regard to the value of the base adopted, it may
be said that two systems of logarithms are in common
use, each being characterized by particular advantages.

(1) The Common Logarithms, or Briggsian Logar-
ithms (introduced by Henry Briggs of Oxford, b, 1556, d.
1680) are to the base 10.

Thus log,;,2 =.0-3010300. ., .,
because 10030% | —§§ “

These have the advantage that the base is at the same
time the radix of the common scale of notation. Numbers
baving the same figures, but differing in the position of
the decimal point, will therefore have common logarithms
differing by a positive or negative integer only. This leads
to a very considerable abridgment of the logarithm tables.

Proof. Let M, N be numbers differing only in the
position of the decimal point, e.g. 1064, and 1°064. Ther

M = N x gome integral power of 10 = N x 107,
2. log M = log; [N.107] = log,,)N + n log; 10
= log;eN + =

@) The Natural, Hyperbolic,or Napierian Logarithms
(John Napier, b. 1550, d. 1617) are calculated to a base
called ¢, where e is an incommensurable quantity. To

seven places
e = 27182818, .,

These are related to a number of important theorems
in higher mathematics, which will be considered in the
sequel. Natural logarithms are denoted by “log,’” or
“1n,” or, in mathematical works, simply by “log,” the
bage ¢ being understood.

Since the equation

logy =2, ify = a*,
is true for all bases,
logy = =z,if y = ¢;
or if @ i8 a constant,
logy = az, if y = €=,
This 1s the definition of log.,.
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To convert natural logarithms into common logarithms,
" they must be multiplied by the modulus of the common
logarithms, i.e. by log,se, usually denoted by x. Thus
logi)M = p.logM = log M. log,s¢ = log,M/log,10,
where u = 0°4343, or 1/u = 23083,
84. HISTORICAL NOTE

John Napier in 1614 published a table of natural sines
and their logarithms, but these were not to the base e,
although closely related to such logarithms. Henry Briggs
took up Napier’s idea, and developed it with great en-
thusiasm, publishing in 1617 his ““ Logarithmorum chilias
prima,” containing common logarithms of numbers from .
1 to 1000. Logarithms to the base ¢, often incorrectly
called ‘‘Napierian logarithms,” were first tabulated by
John Speidell (“ New Logarithmes,” London, 1619).

385. THE COMPOUND INTEREST LAW

Let a capital of ¢ pounds be invested at compound -
interest of p per cent per annum. .
100’
.". capital at the begmmng of the second year

= c+c£—0—c<1+100> ,

Capital at the end of the second year

- L2Y
—a=at "'1100 {1 + 165
The ca.pital at the end of n years is thus

o= o1+ 100>"

Thus, as the time increases in arithmetical progression,
the capital increases in geometrical progression.

Now suppose the interest, instead of being added -
yearly, is added monthly. At the end of the first month
the capital is

Interest after the lapse of one year = ¢~

_ . — D .
=0+ 055519 ”(1 * 100 x 12>'
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at the end of the second month it is

_ p _ r_V
o = “l(l * 100 12> = “(1 * 100 = 12>’
and after » months it is :

C, = c(l + TO—O%—E)";

e.g. after a year, n = 12, and .
_ _ ( P >12 T
=C=cll+ m . . \

Putting p = 5 we find, by using logarithms, that the
capital after 1 year is

£105 0s. 0d. if reckoned by the first method ;
£105 2s. 0d. if reckoned by the second;

the principal being £100 in each case.

(An interesting account of compound interest and its
calculation in various cases is given by Briggs and Bryan,
. “Tutorial Algebra,” ch. xvir) Now if the interest be
added weekly, daily, or every second, we approach more
and more glosely to an ideal limiting case in which the
interest on a given capital at any instant is proportional
to the capital at that instant. The capital is then increas-
tng continuously at a rate proportional to itself. Pro-
cesses of this kind are common. If in unorganized or or-
ganized nature, a process proceeds in such a way that an
agent, by its own mode of operation, steadily augments,
the increment originating at every instant at once acquir-
ing the functions of the operating agent, then the increase
follows the Compound Interest Liaw. The mathematical
expression for a function y, which increases with respect
to another variable z at a rate proportional to itself is

dyldz =y

Lord Kelvin has called this “the Compound Interest
Law in Nature”.

To derive this from the case just considered, we put,

\

P . .
instead of 100, the term 100%" where » is ultimately )
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greater than any magnitude, however large, and denote
2/100 by =. Then
. \"
C=cL1m(1+ﬁ>.
n->w

Leta/n=1/8 /. n = 3.,
n 8z [t
<1+§> =<1+%>-=[(1+%>],
It is required to find the limiting value of (1 + %)a

when 8 — .
By the Binomial Theorem

( 1>&=1+3 §.8-11 8.5-1.8-21

L+3 stTar &t g mt
1 1 2
TR Nt D

-

The limiting value of this expression, when & ap-
proaches infinity, is the sum of the infinite series

1+ 11-+ §1~!+ ~3%+ . . . to infinity.

The value of this sum can be calculated to any desired
degree of approximation by taking a sufficiently large
number of terms of the series. To five places it 1s 271828.
. . . It is thus the basis of the natural logarithms, denoted
by e. ‘

~ . \"
NOWC=0le<1+ ~),
n—>® n
and Lam (1 + 2) = ¢,
N> n
. C = ce?,

which is & second way of writing the compound interest-
 law. :
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The series
e’=1+§+3—2—+ ca + 2t + ad inf
1 1271237 1.2.3.47 -2
z? 2 at .
=1+ = +2,+3!+4,+ . ad inf.,

i8 called the Ezponentwl Series ; it is true for all va,lues of z.
36. IMPORTANT SERIES

Two other important series are given below the
proofs being deferred until Taylor's Theorem has been
considered :—

T z? g z? i ‘
Q) a*=1+ ilog,a, + ﬁ(log,a) + 1973 (loga)®+... a.d‘:mf.,

Jor all values of .
This may be regarded as a generalized form of the ex-

ponential series. ‘
22 z* ozt a2 .
(2)10g,(1+m)=z—2—+§~—Z+~5~—...admf.,a
Jor |z | <L '
An expansion of logz alone in a series of ascendmg
powers of z cannot be derived, but it is easy to show by

putting z = - zin (2) that: ’
Qa) logl-2)= -2z- 5+ -5 - ...ad inf

37. CALCULATION OF NATURAL LOGARITHMS
Series (2) and (2a) may be modified in different ways,
and the resulting series are often more convenient than
the original series

Thus Iog,l =log,(l + z) - log,(1 - z)
3 5 7
=2{z+§—+gi+;i+. }
Nowletl + z=m,1 - z=n,
m-n
T m+
l+z m
I~z n’

B A L I (e R
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Putn + 1 =m,
logt 1 2{ 1,1 1 }
n 2n+1 .3(2n+1)3 5@n + 1® TS
which enables one to find the logarithm of the second of
two successive integers when the logarithm of the first is
known. A table of natural logarithms may thus be
formed, commencing with log,2:—

lo 7i+—1~2{ 1 + 1 + et}
8 T o+ 1 3@n + L3 T ooy

Put » = 1,

. o1 1 1 1
..log¢2—2{§ tamt g gty t }
The method of calculation is exhibited below :—

1/3 =+333,333,333

1/3% = (1/3) - +9="037,037,037 .. 1/(3.8% = 12,345,679
1/85 = (1/3%) +9= 4,1159226..1/(5.3%) = 823,045
13 =(1/8) +9=  457,247..1)(7.8) = 65,321
1/30 = (1/30 +9= 50,805 .-.1/(9.39) = 5,645
/81 = (1/8%) +9= 5,645 .. 1/(11.3%) = 513
1/8%= (1/31) + 9 = 627.".1/(13.3%) = 48
1/319= (1/31%) + 9= /0 70..1/(15.319) = 5
1/317= (1/819) + 9 = 8.:1/(17.3") = 0
. 346,573,589
2

693,147,178

. log,2 = '698147180 to 9 places.

We now put #» = 2 in the series for Iog,n : L log3

- log.2; and since log2 is known, the value of log3 is
found by adding to log,2 the value of the right-hand
member of the series. Similarly log4, log 5, . . . are found.

1 1 1
E.g logh - log4 = 2{9 + 5 + g B F - }

It is only necessary, however, to calculate the prime
numbers, for
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log4 = log,2 + log2 = 2 x 693147180,
log,10 = log,5 + log.2, etec.

; 88. CALCULATION OF COMMON LOGARITHMS

To calculate the common logarithms, we should theo-
_retically have to multiply each. member of the table of
natural logarithms by g, the modulus of the common
logarithms. In practice, a much less laborious direct
method is used.

In the equation

n+1 1 1 1
log. === Q{Qn oy A TG LR To P (L }
we observe that the error committed by neglecting all
terms beyond the first will be less than

2{ 1 + L + L + }
3@n+ 1) 3@n + 1) 3@n+ 1)t T

<2ggr/ (- )

<2 1 . on + 1 _ 1 ‘
3@2n + 1)? 2n In@n + 1)
If n is not less than 10,000, this error will be less than

3'1000(1)W’ 1.e. <'000000001, and will not affect the

eighth place of decimals in the logarithm. Thus, if we
retain only the first term :—

gt 1l 2

I T |
. n+1 2u /
"+ logyg n In+ 1

2
o logy i + 1) = logy g + Qn——:i

This will serve to calculate common logarithms to
seven places, because we can commence with
log,,10000 = 4,
-and logarithms of numbers less than 10000 will differ
“only from those above 10000, with the same significant
: 6 _
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digits, by the values of their characteristics, i.e. the ﬁgures
before the decimal place.
Thus log,,536-4 = log,,53640 - 2.

We have treated the exponential and logarithmic func-
tions at some length, because they play a most important
part in the practical applications of mathematics. A very
large number of natural processes are of the type con-
templated by the compound interest law, and exponential
terms occur constantly in the equations of physics and
chemistry. Tf, in any process, a function is found to be
increasing or decreasing at a rate proportional to itself, it
may be inferred to be an exponential function.

89. THE GRAPH OF THE EXPONENTIAL FUNCTION
Lety = ¢~

If, corresponding to each value of z as abscissa, we
erect an ordinate proportional to €%, and join the ends of
the ordinates, we obtain the graph of the exponential
function. Tables giving the values of ¢* are’ to be found
in most collections of mathematical tables, and may be
used in drawing the graph. A short table of values will
be found in appendix (6). A good idea of the shape of the
curve may, however, be obtained without actually plotting
the values of ¢*, but simply by noticing the character of
the function ¥ = ¢*:—

(1) As z increases from 0 to + w0, ¥ increases from
+ 1to+ ®. The curve will therefore cut the y axis at
y = 1, and will then recede more and more from the z axis.

(2) As z decreases from 0 to — ®, y décreases from
l to 0, but much more gradually than in (1), since the
- curve starts from the ordinate y = + L.
(8) For all positive and negative values of z, the value
~ of y is positive. The curve will therefore lie wholly above
the z axis. Thus ¢ % = 1/¢*, and is therefore positive.

The graph of ¢ is seen on inspection to have all these
characteristics.
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Fia. 13.
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(The graph of ¥ = ¢ may be derived from the data
for y = ¢, since ¢™* = 1/¢*. The ordinate for any value of
the abscissa is therefore the reciprocal of the ordinate in
the graph of e* for the same value of the abscissa) The
shape and position of the curve should be remembered.

40, EXAMPLES ON EXPONENTIAL AND LOGARITHMIC
PUNCTIONS
(1) Prove from the definition of logarithm that :—
(@) if y = ¢, then y = z;
@) if logy, - logy = ket, then y = y.e™*;

(&) if log U = ;2 - l:log,'v, then

¢ B
U=e¢°c.v °,
(2) Show that if z is positive
:1:—1 1 22-1 1 22-1
z+1 2 @r ) 3@+

[, = (1- 1)/ (-5
(8) Prove that if 2> 2,
log,(z® + 3z + 2) = 2 logx +
(4) Show that

logx =

<2+1_22+1+23+1
z z* g )

Lim x/f = €2,
z->0
(5) Show that

gy 1o 1 1 1
84-5=123 "84 5 456" "
[2log2=20-4+%-%4+..)= etc]

6) Show that

. & ~e7"
T g+ 3~

z=->0



LOGARITHMIC FUNCTIONS 85

[1f we substitute 2 = 0 directly in the expression, we
obtain '
-1/ 1-1
logd +0) logl

which is known as a vantshing fractton. The value of g

=0
-5

being indeterminate, it is necessary to ascertain if the
expression has any finite limit when z approaches zero.
This is easily done by expansion into series.]
(T) If zis so small that its square and higher powers
are negligible, show that
& =ed + 2).
® Ialogy+ 2 =llogz+ m,
show that 2 = y*. e* ™,
[In transforming logarithmic functions into expon-
entials or vice versa, the student is recommended to write
down the fundamental equation:—

y =a’if z = logy,
and compare the symbols with those in the example, after
collecting logarithmic terms.]

9) Expand ¢*(1 - z) in a series of ascending powers

¢ [1 z? 3 zt z°
ot @ T9T 811 4.21 7 5.81° ]

{10) Prove that ‘
2 log;m — log,(m + 1) — log,(n. - 1)

om* — 1 3@mE- 1)° T B@mF-1)p "
(11) Prove that
m? ma

log,(l—i—x>=x+2+§+....

(12) Expand log,(z® + 5z + b) in a series of descending
powers of z.

2% 2 3 3. 93
[210g@+{§——;~2—1.3 + 2 +%.3 + 2 —]

2" 7
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41, DIFFERENTIATION OF THE EXPONENTIAL FUNCTION

‘We shall first prove that the exponential series
22 23

1+:v+ 3,+...

'+ is convergent for all va,lues of z.
The first term is 1, the second i 187 the third is = 2 P and,

n-—1
generally, the nth term is (;—_1)—, Thus if w, ,,, %, are
the (» + 1)th and nth terms
un+ 1 f
U, n
. Lim %10 0, since Lim 2 = 0
n >0 %n n-saw *

for all values of .

Then, by method 2 of testing the convergency of a
geries (see ‘‘Infinite Series”), we conclude that the ex-
ponential series is convergent.

It must not be supposed, however, that the series
obtained by differentiating a convergent series term by
term is also convergent. Thus the series

B O i A S T il N
is convergent for | « | <1, but the series
1+ 22+ 62°+...,
obtained by differentiation, is divergent for all values of .

It can be shown, however, that the series obtained by
differentiating the exponential series term by term is uni-
formly convergent, hence the differentiation is legitimate.

2 wa
Lety = &= 1+m+~+3'

'.dy=d(e‘)=<1+m+§~, ..)da:
= ¢*dz.
Hence M = ¢,
dx

and thﬁs ¢ satisfies the condition for a function y = f(z)
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such that the differential coefficient is equal to the function
teelf; or the rate of increase of the function is equal to
the value of the function ;
dyldz = y.

., Corollary 1.—The graphof y = ¢* cuts the y axis at an
angle of 45°. .

Corollary 2.—At any point on the graph of y = ¢, the
gradient is equal to the value of the ordinate.

42, TESTS FOR AN EXPONENTIAL FUNCTION

There are two methods of determining whether one
variable is increasing (or decreasing) exponentially with
another, which are frequently used in practice.

1) Let y = ae”
be an exponential function; @ and b being constants. If
any two values of y are taken, one being double the other,
and if x,, #, are corresponding values of z:

yl = aeb:l,
Yy = ae™s.
But y; = 4y,
SRy, = ae™ . . . @
Yy = aes . . . (D
Dividing (i) by (ii) we get
3 = e,

or z, — z; = (log,4)/b = a constant.

Thus if = increases in arithmetical progression, y in-
creases (or decreases) in geometrical progression. The
curve of the function is drawn, and the increase in value
of z for an increase of y to double, or a decrease to half,

-its value, is found on different parts of the curve.

These increments of = are all equal if the curve is ex-
ponential, The student may easily test this rule on the
curve of ¢*, fig. 13.

(2) Let y = a¢™, as before.
Then log,y = log,a + ba.



88 ‘ HIGHER MATHEMATICS

This is of the form
yl - al + bz’
where ¥’ = (logy), ¢ = (log,a) = constant.

Fic. 14,

But this is the equation of a straight line. If therefore
(logy) is plotted against z, the result will be a straight
line if y is an exponential function of 2. The length in-
tercepted on the y (i.e. logy) axis is log,a, and the slope of
the line is b,

If a=1, loga =0, and the line passes through the
origin.

Thelinesfory = ¢e*, ¥y = ¢~ %, y = %,
y = 2¢*, are drawn in the figure.

Thus, in the case of ¥y = 2¢%, /
(logy) = log?2 + 3z
= ‘693 + 3z.

The intercept is 693, and the gradient + 3.
© This method is of frequent application in chemical
kinetics, as will be illustrated later on,
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48. DIFFERENTIATION OF LOG x

Let y = log,x,
.. & = ¢, by definition of logarithm,
dr = d(e”) = d{g7"),
s dx = e, d(log,x),
o de = z.d(log.x),
dfogx) 1
dr 7

This result is of the utmost importance,

. dlogx) = dT;, or

44, EXAMPLES
1) Ify = ¢=, dy = ae“dzx.
dz
(2) If Y = lOga-’l:, dy = m'g—c;ll
If a = 10, dy = dz/z log,10

= ﬁg—w 04343(_@
(8) If y = log u, where u = f(z),
dy _du dy 1 du
Y= az~ w dz’
" @4) Let y =3 logi b x
dz dz
thendy—é1+x+ 1%1 p m.
G If y = logl{z + Jrtx 1}
dy = 3% __
Y Jx2+1'

This result is often very useful in effecting an integra.
tion (see Part IT).

(&Hy“bg‘/ﬁ ,dy=m.
dx dzx
= log——————e=, AY = — A+ e,
(7 If y logJ( 2\+ 5oz ¥=7 NS
1+ xz+ 22 21 - =%

@8 Ify= log1 prpra y=ﬁw2+x‘f
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f
0

Fig. 15.
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45, GRAPH OF THE LOGARITHMIC FUNCTION
Let y = log.

Plotting values of y corresponding to given positive
values of # by means of the tables, one obtains fig. 15.

loge=1 log,e® =2 loge*=3,...
logi= -1 logi= -9 logi-_3
8. = 08igz = 83 =
Sox=0 12 1 e E+wo
e e
y=-o -2 -1 0 1 2+
dyldz = + © ¢ e % :—2 0.

From the properties of ¢* and log,z it is evident that if
the axes of z and y are interchanged, in fig. 15, we have
the graph of the exponential function. Logz and ¢ are
said to be inverse functions.

The following characteristics should be noted :—

(1) As z increases from + 1 to + o, ¥y ‘increases
slowly from 0 to + .

(2) As z decreases from + 1 to 0, y decreases rapidly
from 0 to — .

(8) The function does not exist for negative values of
z.

(4) The tangent to the curve makes an angle with the
z-axis decreasing from 90° at z = 0, through 45° at z = 1,
to0atz= +

(dy/dz = tan a = 1/ .. when

z=0 1 +
l/z =tana = @ 1 0
coa=90° 45°  0°.

The shape and position of the curve should be re-
membered.
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46, THE DIFFERENTIATION OF @
Let y = a®
. y = ezloya
¢. log,y = log.a” = z log.a
= e’h’ga")
Thence dy = d(e™) =log,a. ™ dz
. d(@®) = loga.a®.de.

47. LOGARITHMIC DIFFERENTIATION

Liogarithmic differentiation is a method of differentiating
complicated functions involving exponentials or powers.
It consists simply in taking logarithms before differenti-
ating. .

Let y=u.v. w,
where %, v, w are given functions of z.
Then log ¥ = log % + log v + log w
d(log y) = d(log w) + d(log v) + d{log w)
Cdy _dudv dv
"y w v W
Ldy =ovw.du + ww. dv + wo. dw.

48. EXAMPLES

Q) I y = «*, show that
dy = @ (1 + log z)dz.
@ If y = (az + b)*. (cx + d)P/(ex + f)*, show that

_ aa B e'yﬂ]
dy/y*[ax+b+cz+d em+fdx'

4 Ohy a4 oyl
(3)y=\/:-f2bz+cz.

2bx + cx’ :
I:_(_Z:_y _ 2b6(a - cx?) :l
dx (@ - 2z + cx®i(a + 2z + c:c’)q‘.
4 = u’,
where u, v are functions of a.
logy =viogu
dy _ U@ + log u.dv
y u

wdy=v.u " du + u' . log u.dv,
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Ifu=av=2
x
y=a,

and dy = 2o 'dz + a“log a*dz.
o [y, nz""'de dz
5) y = log z". [dy S
_ _ d(log z) _ dz ] .
(6) y = logllog o). [dy " logz  zlog
(M y=2*loge. [dy= {2log & + 1}zdz.]
® y =z,

. logy = nlog z,
dy = nz" " ‘ds.

+ 1%

©) y—e{z 1}

log y =2+ $loglx+ 1) - 4 logx — 1).

- x (x2 - 2)
Ldy=yde - def@® - 1) =¢, ————— T —
Y =yl /¢ ) o+ D - DF
(10) The order of a chemical reaction is defined as the
alue of # in the velocity equation (Ostwald). Thus
dajdt = k(a ~ )™
Put a ~ z = ¢, the concentration,
de = - dz
o defdt = —~ ke
Let the initial concentrations be different in two cases,
\y ¢y, ¢;. Then

de,fdt = - Ko,
dey/dt = — ke
. dc]/dt nian
K m ¢"/e
de d :
o logdt - 1ogdi2 n(log ¢, - log ¢,)
de, dc,
_ logzﬁ - logm
log ¢, ~ log ¢,
, dey

The values of d t Z¢ o be found experimentally by

leapurements at the beginning of the reaction.
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(11) Magnus’s empirical formula for the vapour presgsure

of water at 6° C. is
o

p=abt¥e,
where a, b, r are constants.
_arlogh .3
Show that dp/df = (Tﬂwb .
(12) The intensity of radioactivity of radium emana-
tion decays with the time according to an exponential law
T=Te 2
where I, I = activities at times 0, ¢,
i A = the radioactive constant. . '
Thence Q=" AL
This shows that the rate of decay at any instant is
proportional to the activity at that instant.
This is an example of the Compound Interest Law :
If y = Ce™,
dyldz = aCe™ = be*, o
where C, @, and b = aC, are constants. !
Show that C is the value of ¥ when 2 = 0.
According as @ is +*or — " g increases or decreases ag
z increases. The function Ce* therefore satisfies the equa-

tion

df(x) jdz = kf(z),
where % is a constant. Other examples of such functions
are given below.

(13) Newton’s Law of Cooling.

If a body at & temperature € is placed in an enclosure
at a temperature 6§, where 6> 6,, the body cools by con-
vection and radiation until the temperatures of the body
and enclosure are equal. Newton assumed that, when
8 - 6, is small, the rate of cooling is proportional to the
difference of teraperature :

dbldt = - k(6 - 8,).

Thence show that

0 - be*,
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where a and b are consiants.
a = ——-—log?—1
tg — 1, .0y

Newton’s law holds only when 6, - 6, is small, as in
most calorimeter experiments. Boltzmann and Stefan
have shown theoretically and experimentally that the rate
of emission of energy from a ‘ perfectly black body " is
proportional to the fourth power of its absolute tem-
perature ;

dE/dt = - ET*
(Haber, “ Thermodynamics of Gas Reactions ”’; Waidner
and Burgess, ‘ Optical Pyrometry,” Washington).

(14) Absorption of Light.—The rate of diminution in
the intensity of a beam of homogeneous light passing
through an absorbing medium is proportional at every
point in the medium to the intensity of the light at that
point. Let z = thickness of medium traversed,

dljde = - al,
where a = extinction coefficient.
If I, = initial intensity (z = 0),
I =Te >

(15) Show that the time ¢ which is required for a radio-
active preparation to decay to half its intensity is a definite
and characteristic constant (*‘ time period ”) for each radio-
active substance. 'We have

I=14I,
and I = Ie—*
S =T
~ologd = — A2
- log.2
Pl e = congtant = %,

For different substances -
- t, = log2/\, =k,
ty = log2/A, = E,, ete.
(16) The Course of a Chemical Reaction.—According
to the law of mass-action, the rate at which a substance is
disappearing in a chemical reaction is proportional to its
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concentration at any instant. This is at once suggestive
of the compound interest law. If ¢ is the concentration
at any instant, the mathematical expression of the mass-
law is

dC/dt = - kC,

hence C = Cpe ¥,
where C, = concentration at time ¢ = 0, i.e. at the begin-
ning of the reaction.

The amount of active substance therefore disappears
exponentially with the time. To obtain a graphic repre-
gentation we put G, =1 and plot the C,t curves for
different values of k. This has been done in fig. 16 for
k=1,2, 5,10. It will be observed that when % is large
the curve approaches the ¢t-axis more rapidly than when %
is small; this obviously corresponds with a more rapid re-
action. It is also evident that, although the curve ap-
proaches the ¢-axis more and more closely as ¢ increases,
it never coincides with it in finite time, but only when

= + . This means that a chemical reaction is, theo-
retically, never finished. The amount of unchanged
substance left after a finite time, even after a very short
time, may, however, be far too small to allow of its being
detected.

Thus the reaction ¢ = ¢~ ¥ ig practically finished after




LOGARITHMIC FUNCTIONS 97

05 mins.; whilst the reaction ¢ = ¢~* is not complete
after 2 mins,

The constant %, called the welocity constant, may be
evaluated by the logarithmic method :—

c=¢ * forc,=1,
s loge = — kt

If therefore log,c is plotted against ¢, a straight line is

obtained, running down from the origin below the ¢-axis,

Lo6C

Fra. 17,

and having a gradient = - k. If ¢, is the initial concen-
tration (where ¢, -t 1), the curve starts on the log ¢ axis at
& point log,c,, and slopes downwards as before. If a few
measurements are made near the beginning of the re-
action, the initial concentration ¢, may be found by plotting
the straight line, as described, and prolonging it backwards
to cut the log,c axis: The point where it cuts this axis
‘corresponds to log,c,, whence ¢, is easily found.
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PARTIAL DIFFERENTIATION
49. PARTIAL DIFFERENTIAL COEFFICIENTS

P to the present we have been considering functions
of one independent variable. The majority of
magnitudes investigated in physics and chemistry are,
however, functions of two or of several independent
variables. Examples of such functions are :—
(1) The volume of a gas, which depends on the tem-
perature (6) and the pressure (p),

v = f(p; 0).
If the gas obeys Boyle’s and Charles’s laws
R4
v="—

(2) The area (A) of an ellipse is a function of its semi-
axes @ and b, .

A = f(a, b).

(3) The volume (V) of a rectangular prism is a func-
tion of the lengths of its edges
- V = flz, y, 2).

In conformity with previous notation, we shall speak
of v, say, in example (1), as the dependent variable ; p and
0 as the independent variables.

Now functions of several independent variables are of
special interest in chemistry, because the properties of a
given material system depend not only on the temperature
and pressure, but also on the chemical composition. If
there are n components in the mass, there will be n + 1
independent variables, including temperature and pressure.

98



PARTIAL DIFFERENTIATION 99

50. PARTIAL DIFFERENTIALS

Let us consider, for simplicity, the area of a rectangle,

* as determined by the lengths of its sides.
A=uay . . . oy
Let the edges z, y be increased by very sma.H amounts
dz, dy, and let dA,, dA, be the increments of area due to
each of the increments dx, dy considered as independent.

From the figure

~

g’ Ec
B Al
‘O ] ' AN
Fia. 18.
dA, = ydx . . )
dA, = zdy e ®
A dA,
i =2,
We denote these differential coefficients by
DA DA 4
2 dy @

where dAdz is to be understood as “ the rate of increase
of A with £ when y is constant . In the example
QA DA
%=V 3=% - . . (5)
dAdx and dAdy are called the Partial Differential Co-
efficients with respect to « and y respectively. Thus
dA, = bi; dr; dA, = %%dy . . (6)
But 8A = AA'CD + BB'CE + CDEC’ .
= dA, + dA, + dzdy . . . (M
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In the limit, when dz and dy approach the value zero,
dA =dA, + dA, . . . . @®)
" The geometrical meaning of thls i8 qulte obvious. dA
is called the Total Differential, dA,, dA, the Partial
Differentials of A. From the eguations (6) and (8)
T D;;dy )
. This equation is anothe1 example of the Principle of
Superposition of small effects.
~ Generally, let

u—f(x 0 P o (1)
az 3 xf(x y) = f(x) say . (y const.) . . 1n
du, = b_zidz =b_a:f(w’ y). de = f(@)de . . 12)

Similarly,

- f@ Y =f@my. @oonst) S . @9

du, = % y = @f(z, y).dy = fy)dy .19

Also du = du, + du,
Qu 0
. du=ﬁd:c+ b_ydy

d d
Ly = o f @) - de+ f@,y). dy
= f@dz + fydy.
51. EXAMPLES
1 u = az® + by?

= du 2 2
du = bxdm + Wdy + a(dx)? + b(dy)

du = 2axdzr + 2bydy.
2 u=2at- 92
du = 2zdx - 2ydy.
@) © = log? + y?.
_ 2d= + ydy)
du = Py
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@) If pv = RO, the gas law,
w_ RO p_ R
w0, Y
Interpret each dlfferentlal coefficient.
52. THREE INDEPENDENT VARIABLES
In the case of a function of three independent variables,
w = fiz, vy, 2) . . . Q)

D: = %f(z, y, 2) = f'(a)
%‘%ﬂn%n=ﬂw e @
= —b—zf(a: Y, 2 = f @ )

du = dz' + —g—/dy + dz . . . . (3)

?
L odu = ﬁf(z, Y, 7) . dx + D—yf(z, Y, 2) .dy + g—zf(x, y, 2)dz

= f@dz + f'y)dy + f(9)dz.
Ezxample .—
Let u be the volume of a rectangular prism
u = zya.
du = yadx + wedy + zydz.
Thls gives the increase in volume due to slight incre-
ments in the lengths of the sides.

53. FUNCTIONS OF FUNCTIONS

Letu=F@,y . . . . 1
where z = f(t Y=o . . . )
e
du = ——d:c Dydy
v e dy
“%“mdﬁ%yﬂ‘ e @
B R 1 N
If u = F(a: 7 z) . ' (9)
where z = f(f), y = ¢(t), Z = w(t) . (6)
du du

, - SO+ YOO . )
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As examples consider the coefficients of superficial and
cubical expansion. Both these are ultimately functions of

temperature (6).
ds
Let g = 2{9,
where s is unit surface. ¢ is, by definition, the coefficient
of superficial expansion. Consider a plate of a non-isotropic
material cut with its edges z, y, parallel to the two axes of

expansion ; the surface is

S==zy . . @
28 28
das = S—édz + i:l;dy . « (2)
But 383z = ¢, 38dy =z . . 3)
.48 dx dy
2 a‘g = y‘d-a J?E (4)
Letz =y =1,
. dS/d6 =ds/db = o,
_de  dy
and o = 67T ap

or the sum of the coefficients of linear expansion is equal
to the coefficient of superficial expansion.

To obtain a numerical relation, we may assume with
sufficient accuracy that 2 and y are linear functions
of 6:—

=1+ A0,
y=1+200,
o= TN . . . 5
In the case of cubical expansion,
V = zyz. . . . ' 6)
av dx dy dz
a7 =Ygt Tt Wap . (1)

Iftz=y=r=1,
dV/d@ = a, the coefficient of cubical expansion,
L a= C—Z_IE_ + ‘i:l./ + QZ. (8)
. a8 " a8 " de -’ ) ’ ’
the sum of the coefficients of linear expansion along the
three axes. - With the same assumption as before
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z=1+ A0,
y =1+ X0,
z2=1+ N0,
Sa=NAE NN . . )]

Formule (5) and (9) must be used for crystalline
bodies, the properties of which depend on the direction
in the crystal along which the property is measured. In .
the case of an isotropic body, such as a piece of glass, the -
properties of which are uniform in all directions in the
mass,

. A = Ay = Ay = X\, 84y,
o= 2,
=3, . . . . 10)

the well-known equations of elementary physics.

54, SIDE REACTIONS

If several chemical reactions are proceeding simultane-
ously in a given system, so that each progresses indepen-
dently of the others, the total change is the sum of the
separate changes. (Principle of the Mutual Independence
of Reactions.)

Consider two unimolecular reactions progressing simul-
taneously, a principal reaction and a side reaction

A — B, (principal reaction)

A > B, (side reaction),
dz,/dt = k(@ — z) for the first reaction,
dmy/dt = ky{a — x) for the second reaction;

then, total velocity = sum of separate velocities,

o dojdt = dz,jdt + dxy/dt
= (ky + k) (@ — @).

In the nitration of benzoic acid in presence of excess of
pitrating acid, the three isomeric mononitrobenzoic acids.
are produced simultaneously at different rates.
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Q\Y 17 e
0;

ortho CO,H
O g LT
——~> meta
COH
CO,H . NO,
ara
P 3-4 9.
CO,H

The velocity of the reaction is
dz/dt = (b, + kg + k{a — 2).

55. THERMODYNAMICS

- Partial differential coefficients appear very frequently
in textbooks on thermodynamics, and since modern theo-
retical chemistry is largely based upon the fundamental
laws of thermodynamics, it is of the utmost importance
that the chemical student should be able o realize at once
the significance of such a partial differential coefficient in
any mathematical deduction from those laws.

Many of these differential coefficients represent magni-
tudes familiar to us from the physxcal side ; such, for
example, as coefficients of expansion at constant pressure,
coefficients of increase of pressure with temperature at
constant volume, specific and latent heats, isothermal and
adisbatic elasticities, etc.

The state of a homogeneous ga.seous liquid, or solid
phase is (in the absence of electric and magnetic forces,
and when the energy due to gravity or to capillarity
(surface-tension) can be neglected) completely defined by
some law connecting the variables p, v, 8; the pressure,
volume, and absolute temperature, respectively. Thus

f @, v, 6) =0 . . . (1)

(Thus & mass of liquid water satisfies the condition
mentioned above; a very small drop of water does not,
because the surface-energy is not negligibly small in com-
parison with the total internal energy of the drop. Asa
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result of this, the vapour-pressure of water in the form of
* small drops is greater than that over a horizontal surface
of water at the same temperature, and the pressure is then
not completely defined by the temperature and volume of
a given mass. If the drop is electrified, its vapour-pressure
is also increased, and another variable is required.
Any one variable is therefore completely defined in the
normal state if the values of the remaining two are fixed:

P =fi{v, ) . . . @)
v=fi(p, 6 . . . 3)
8 = f3(», v) . . . @
In the case of a perfect gas (
pv - R8 =10
_BI ,_BI 4, _p
EEA b = R

A number of equations may now be obtained by the
partial differentiation of equations (2) to (4). A few ex-
amples are given below. Let

p =10
p=Law+Fag . . . @
Obviously
dp[dv = coefficient of increase of pressure with volume
at constant temperature
= coefficient of elasticity.

For all real states, dp/dv is negative, otherwise the
pressure would increase along with the volume.

/30 = coefficient of increase of pressure with in-
crease of temperature at constant volume,

If we make the condition that the pressure is constant,
i.e. the change is ¢sopiestic,

dp=0 .

- @)= - (e

- -/&, - o

. ®



106 HIGHER MATHEMATICS

(where (%)0 is another way of writing “g—g at constant
temperature”. The ordinary notation dp/dv loses definite-
ness when there are more than two variables) dv/df
must be written (dv/d6), by reason of condition (6).

Equation (7) states that the ratio of the increase of
pressure at constant volume per 1° rise in temperature, to
the compressibility is equal to minus the coefficient of
expansion at constant pressure.

Proceeding in the same way with equations (3) and (4),

one finds the relations
d d d
(59, /5.
<dp> / < )

dv
<dp>

In the case of mercury,

(dv/d0), = 000018 c.c. per 1° C,,
(dv/dp)s = — 0000003 c.c. per 1 atm.," -
" (dp/d8), = 60 atm. per 1° C.

This means that an increase of pressure of 60 atm. is
required to keep the volume of 1 c.c. of mercury constant
when it is warmed from 0° C.to 1° C. (Planck, ¢ Thermo-
dynamics ”',)

Further examples on Thermodynamics will be found
in Part II. (Integral Calculus)

56. HIGHER PARTIAL DERIVATIVES

It has been stated that if
: y = f@),
dy/dz = f(x) is called the flrst derivative of y ThlS will
usually be a function of z.
Eg if y = 2%
f@ = 3z
The first derivative may thus be differentiated with

respect to #, and the result is denoted by = f’(z), and
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called the second derivative. In the example taken,
f'(x) = 6z.
In general, the nth derivative is denoted by %, or

f @)

Ezamples :—
2,
(1) Find the values of /" (2), or %, if

y=a'(1 - 2% [2-12z+ 1222]
y = Feuac? Bl - dlz + 209, [Hp@ - 1] =~

3,
(2) Find the value of Z—ag if

y = ae”. [(z? + 6z + 6)e.]

In the same way we may have higher partial deriva-

tives. If
U = ¢’(£l?, ?/),
then four second derivatives are a prior: possible, viz,
M u u A
It can be shown, however, that under certain conditions

which are usually satisfied in practice, the second and
third are identical ; that is, the result is independent of the
order of differentiation,

%y L2
M—by = by—bﬂf . . . (l)
'This result is exceedingly important.
Ezamples :— /
(1) Let w=uay
o du
5—5 =Y, E‘y— =1I;
My L YV
Wz~ dy'de T dady
@) Let w= 2%+ 9%
o o
Sz = 2z, e 2y
2 2
b Oy 9.

Wz dmdy
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@) Let u=2+ 3 +a%p°

U _ 3. 0% _ 2 2.&
£—2z+2zy,ay-2y+-3zy, -
D L, '
dydz  dady by*.

57. PERFECT DIFFERENTIALS

Let f(z, y), $(2, y) be two functions of the independent

variables z and ¥, and suppose that
du = f(z, pdz + Hz, y)dy . . (1)

It by no means follows from (1) that du is a differential
of a finite quantity » which is a function of 2 and y, con-
sidered as independent variables. In some cases it is, in
others it is not; and in order that du may be the differen-
tial of a function of z and y, a certain condition must be
fulfilled by the functions f(z, ¥) and (z, y).

If du is the differential of & function « of z and v,

Qu du
du = D':Edz + b—ydy . . R 1]

Comparing (1) with (2), we see that the condition that
% in (1) is a function of z and y is

9 d
fay) = spd@mn =5 « . @

u RE7)
But Yoz - dXdy
~ b b '
@f(mi Y) =359 ) . . . 4)

_ is the condition that du in (1) is the differential of a func-
tion % of z and y. Under these circumstances du i3 called
a Perfect Differential, and equation (4) is known as
Euler’s criterion that the expression on the right of equa-
tion (1) is a perfect differential. If we write (1) in the

form
Mdx + Ndy . . . 5)

where M, N are functions of z and y, the condition that
(5) is a perfect differential is
Moy = dNJw . . . 6)
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This relation is exceedingly important, occurring re-
peatedly in thermodynamics, and must be remembered.
Examples. Show that the following expressions are
perfect differentials :—
az + by + g)de + (he + by + f)dy;
z(x + 2y)dz + (2 - yhdy;
By'z - 2Vdy + (y° - 2zy)de;
(@® - 4oy - 2y0dzr + (y? - 4oy - 2ahdy.
Show that the following expressions are not perfect
differentials :—
ydx + Szdy,
ydz - (z + yHdy.

58. MAXIMA AND MINIMA OF FUNCTIONS OF TWO
VARIABLES
If y = f(z), the necessary, but not sufficient, condition
that ¥ has a maximum or a minimum value is that # shall .
have a value which satisfies the equation

If w = f(z, y), ie. is a function of two variables, then it
can be shown that, for a maximum or a minimum value
of u, it is necessary but not sufficient that

%% = 0 and g_u = 0 simultaneously.

If it can be otherwise inferred that a maximum or

minimum value exists, and the discrimination between

them effected, then the condition just given is sufficient.

59. EXAMPLES

(1) Find the rectangular parallelepiped of least sur-
face for a given volume.

Let z, y, # be the edges, a® the volume.

Then zyz = a?.

The surface = 4 = 2(@y + yz + 2z).

We have to find the relations existing between z, v,
and z so that « shall be a minimum. Now % can be

=
¢
L.
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expressed as a function of two variables, z and v, since
3
z = %}, and a® is, by hypothesis, constant.

3 3

Thus u = 2y + e
z "y

du a® du a

3
Y _55’537=m :172

The condition for a maximum or minimum value of

requires that = and y shall have values which satisfy the

simultaneous equations

-%=0. )
3
x_%=0 . . . (ii)

Thus «?y = zy?
. z(zy) = ylzy),
and unless zy = 0, which cannot be the case,
=y =aand .. 2= q,or
T =1y =2
. a® at

The equation u = zy + s 7
shows that the surface must have a minimum value, since
z and y are positive. Thus the required figure is a cube.

(2) Find the condition which must subsist between the
initial concentrations @ and b, where (@ + b) is constant,
so that the velocity of reaction shall be a maximum in a
bimolecular reaction.

dejdt =V = k(@ ~ )b - 2)
. %%= - k(b—m);%%= - ko - ).

The conditions dV/da = 0, 3V/3b = 0, lead to

a=b.

It is easy to see that this corresponds to a maximum
value ; since, by the mass-law, the velocity is increased by
addition of one component or the other, and is zero for
each pure component. Thus the initial concentrations

must be equal.
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INTERPOLATION AND EXTRAPOLATION
60. INTERPOLATION

ET g be a continuous function of =
y=f . . . W0

Then corresponding to every value of z, within certain
limits, there will be at least one value of y. We will
further suppose y to be a single-valued function of z, then
each value of & corresponds to one definite value of y.

If the form of f(z) is known, then the value of y may
be calculated directly for a given value of z, and the prob-
lem offers no difficulty. But if this form is not known,
the process is different.

Suppose that two pairs of corresponding values of z
and y, say @, ¥y, and z,, U, are known. Further, let =,
and z, be nearly equal in value. It is required to find the
value of y corresponding to a value of 2 lying between z,
and z,. From the conditions imposed it is evident that
(@9, (@4y,) are two points on a curve, and it is further
evigent that if x, and =, are close together, the portion of
the curve lying between them may be taken very approxi-
mately to be a straight line.

Let this part of the curve be supposed drawn on a
large scale, as in the figure. Then, by a well-known geo-
metrical proposition (cf. fig. 19) :

(@ - @): @~ @) =W — ) @~ Yy
. o Y2 Y
LY = ——mg_ml(zg n . . 2
giving the desired value of ¥.
« 111
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This is the Rule of Proportional Parts.

It is essential that y shall lie between y, and y;; the
rule therefore fails at maximum and minimum points on
the curve.

If the values of z for which corresponding values of y
are known lie fairly widely apart, the rule fails. Other
rules, called Interpolation Formule, may be used ; but in
practice it is usually simpler to read off the required value
from a carefully drawn graph. This involves a know-
ledge of several values in the neighbourhood of the point

B

3 x T
Fia, 19.

required, but so do the formulse. It is more exact if the
curve can be reduced approximately to a straight line by
an appropriate change of variable (say by plotting 1/y, or
log y, against ).
61. EMPIRICAL FORMULZ
If the form of the function
y =f(@)
is not known, it is usual to endeavour to find some ex-
pression which represents, very closely at least, the rela-
tion between z and y. Thus, the vapour pressure (p) of
water at & given temperature ¢° C. was found by Biot to be
given, very closely, by the equation
logp = a + ba' ",

wherse a, b, a, ¢ are constants.
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Such an equation is called an Empirical Formula,
since it is not a consequence of any natural law.

In practice, one usually has accumulated a number of
pairs of values of the variables, and wishes to find an
equation which will represent these values. In such a
case, the graph is first drawn. If the curve increases or
decreases steadily, the function is probably algebraical ;
if it alternately increases and decreases, it is probably a
trigonometrical function.

If the curve is a straight line, the equation is
_ y=a+ bz,
where a and b are constant.

If it is not a straight line, the equation must be ob-
tained by trial. The following forms may be applied :—

Y= a+ ba?
y = az”,
_ az
=17

‘ y = ae™(exponential function; the
test for this has already been given),
: e+
b -z
y — 10a+bz,
(log,ey will then give a straight line when plotted against
).

Yy = a + blog =,
y=a+ b

A very useful method is that depending on an applica-
tion of Maclaurin’s theorem (chap. 1x.).

‘We then assume that the function may be represented
by an expression of the form

" y=a+ bz + cxt + dz® + .

The values of the constants a, b, ¢ in any of these
equations may be found by three methods:—

(1) Algebraically. As many pairs of values of the
variables are taken as there are unknown constants, the
simultaneous equations being solved by algebraic methods.

8
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The equation may often be modified before this method is
applied. Thus if

show that

log;l—3 - logh—

(@ is the value of ¥ when z = 0).
If we use the empirical equation,
y=a+bzr+cxt+...
it is usually sufficient to take terms up to that in 2% and
write
y=a+ bz + o2 , . . 1)

Three points on the curve, which has been plotted
from known values of « and y, are then taken, one at each
end and one in the middle. Let these be (z,, ¥,), @ ¥y,
(%, y;). Substitute in (1) (which is true for every poxnt ~
on the curve), and we get

y, = & + bz, + cx?

Yo = @ + bry + cx,?

Yy, = a + bx; + ozl
These equations are now solved for a, b, ¢; and these
values are substituted in (1), The result is

y=a+ bz + cx? | . . 2)
in which @, b, and ¢ are now known. a«, b, ¢ are some-
times called the parameters of the equation.

‘We now calculate, by means of (2), the values of y
corresponding to those values of z for which the y values
are known. A table is then drawn up containing :—

(i) Values of z.
(i) Values of y from curve. -
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(iii) Values of y calculated from equation (2).

(iv) Differences between observed and calculated values
of y.

The differences are then plotted against the correspond-
ing values of z, having regard to sign; and the character
of the resulting curve noted. The curve may be :—

i) A straight line parallel to the z-axis. A change in
a, equal to the distance between this line and the z-axis,
18 required.

(i) A straight line inclined to the z-axis, but cutting ™

it midway between the greatest value of z and the origin. .
A change of b, equal to (y, — ¥,)/(xs — ) is required, where -
Y, — ¥, = difference between extreme ordinates,

z, — «, = difference between extreme abscissee.

(i) A straight line crossing the z-axis at some point
not midway between the extreme values of z. A change
in both & and b is then necessary.

(iv) A curve, concave or convex to the z-axis. A
change in ¢, and perhaps also in @ and & is then re-
quired.

In cases (iii) and (iv), it is usually easier to deduce the
values of a, b, and ¢ by another method, which takes
account of all the experimental numbers. This is (2)
The Method of Least Squares.

62, METHOD OF LEAST SQUARES

Let us suppose that the values of the constants in the
Juation :

y=a+ br+cz?+ ... ,

ave been found by some method. Then if values of y,

orresponding to values of # for which the y values are

nown, are calculated, these will always differ more or less

om the observed values. Tt can be shown by the Theory

! Probabilities that the most probable values of the con-

ants @, b, ¢ ...are those which make the sum of the

squares of the differences between observed and calculated

values of y as small as possible.

4
s
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Liet ,, ny, 75 . . . be the calculated,

Y1 Y2» Yo - - - the observed, values of y correspond--
ing to values .

T, Ty T ... Of @
The differences are 8, 3,, 3,, . . . such that
W + 8 = M
Y, + 82 = Mg,
yﬂ + 83 = 7]3;
yﬂ + 8’" = 77"!‘
According to the theory we have just referred to, the
“most probable” values of a, b, ¢...are those which

make
S=032+82+ 82+ ...+ 82

. aminimum. S will be positive if the results are affected
by errors, whether positive or negative. The theoretical
treatment is much too difficult to be given here, but the
practical method of finding the most probable values of
the constants is perfectly simple, and is useful. We will
suppose the equation to be
: Yy =a+ bz + ca?,
- and that » pairs of values of z and y are known. &, b, ¢,
are, of course, not yet known, and we require their *‘ most
probable >’ values. (i) We write down in the first place,
all the observation equations, substituting the values of «
and y, and leaving a, b, ¢ yet undetermined. The column
is then added :—

a+ bz 4+ e -y, =0

a+ bay + cxt -y, =0

a+ bz + cxt -y, =0

a+ bz, +crt~-y,=0

v Sa + Sbx + Scx? - Sy =0,
where 3bz = bz, + bz, + bxy + ... + bz, ete.
(i) We then multiply each equation through by the

coefficient of b (which will be a known value of z) in that .
equation. The column is again added. ’
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ar, + bz + cz® - yz, =0
ATy + bat + cxg® - Yy = 0
az, + bz} + ¢z, - yx, =0

o Saz + Zbt + Zex® ~ Syz = 0.

(i) Multiply each equation through by the coefficient
of ¢ (which will be 8 known value of z?), and add the
column :—

ar? + bz + cxt - y?=0

az? + bl + ozt - Yyt = 0

az,? + bz} + cxt - yzl=10
o Zart + Zbad + Sext - Jyxt =0

By operations (i}, (ii}, and (iii) we arrive at what are

called the three normal equations for a, b, ¢, viz.,
Za + 3bxr + ex? - Iy = 0.
aZz + b3x + ¢3a® - Jxy =0
aZz? + b3x® + 3zt - Szty = 0.

These equations are linear with respect to the un-

knowns, a, b, ¢; being of the form
la + mb + nec =k,
where I, m, n, k, are numbers.

They are solved for a, b, ¢ by the usual method, or
preferably by determinants (see Appendix), and these are
the required values of the constants.

(Further information will be found in Kohlrausch,
“Lehrbuch der praktischen Physik’”; Chauvenet’s “ As-
tronomy " ; and especially Merriman, ¢ Method of Least
Squares ”.)

If the equations are linear,

N Y = a+ bz,
the normal equations are of course
Sa+ 3bzx - 3Sy=0
aZr + b3zt - Sy = 03
and so on for different forms of the general type
y=a+bx+cx®+.,,
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The two following examples (Mellor, “ Higher Mathe-
matics ) will serve to illustrate the method :—

(1) Bremer gives for the expansion of solutions of
sodium carbonate of percentage strength p, the following
volumes :—

p = 32420 48122 7-4587 101400
v x 10* = 1'766 2-046 2-343 2:732.

Assuming v = @ + bp, find @ and &,
(2) The temperatures at different depths in a well were
found to be
z = 28 66 173 248 298 400 505 548
6 =1171 1290 1640 2000 2220 2375 2645 27-70.
At the surface (z = 0), § = 10'6. Thence
0 =106 + 0:042096x — 0-000020558z>.

63. EXAMPLES OF INTERPOLATION AND EMPIRICAL
FORMULZE

The following examples may give the student some
idea of the kinds of formuls used in cases where a theo-
retical relation is not known.

(1) The dependence of specific heat on the temperature
is well known, If is usual to assume it to be given by an
equation of the form

o =a+ bt + ci’.
Thus, Weber, in the case of diamond, found
£ C. =107 247 . 980
Atomic heat o = 1'35 3-63 547

Find the values of @, b, and ¢ in the formula given
above.

Holborn and Austin give for the specific heat of CO,
(per gram molecule at constant pressure)

Cp = 8923 + 0:003045¢ - 0'000000735¢2,

Langen used

Co = 6'5 + 0°0026¢ (at constant volume).

(2) The dependence of the vapour-pressure of a liquid
upon the temperature has been represented by a large
number of empirical formule —
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[}

de la Roche: p = ab™* "%
]

Magnus: p = a¥ *6
Biot: inp = a + ba® - cf°, ete.

Horstmann used a similar formule to Biot’s to repre-
sent the dependence of the dissociation pressure of NH,Cl
on the temperature ;.—

inp=a+ ba,
where 7 = ¢° C. ~ constant.

3) Bodenstein measured the degree of dissociation of
HI (z) at different temperatures (£° C.) :—

t =508 4872 443 427 410 393

z = 02408 02340 02198 02157 02100 02058

t =374 356 328 302 283

# = 02010 01946 01885 01815 0-1787.

Show that Bodenstein’s results are represented by :—

z = 0’13762 + 000007221t + 0000,000,25764¢.

(4) The dependence of the intensity of radiation from -
« 10t body on the temperature of the body was expressed
by different empirical formuls before Boltzmann showed
theoretically that it was proportional to the fourth power
of the absolute temperature. Thus Dulong and Petit
found that their experimental results were represented by
a formula :— _
» f(e) = Ad® + B,
where f(f) = rate of surface-loss per unit surface at ab-
solute temperature ¢; A, a, B are constants.

(8) Cauchy has expressed the relation between the
refractive index {(u) of a medium, and the wave-length (A)

of light, by the equation

b c |
p=a + 32 + Y + .
@, b, ¢, . .. being constants.
Hartmann used the interpolation formula

4
P‘Po*“‘m‘;-
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(6) Van der Waals has proposed the formula

mw T . .
logi; = a(T - .l)
as & means of calculating the vapour pressure (p) at the
absolute temperature T in terms of the critical values

(m, 7). @ i8 a constant, approximately equal to 3.
Nernst has used the equation

pm-vg=3ﬂﬁ-%)

where v,, v, are the molecular volumes of the vapour and
liquid, for the same purpose.

64. REMARKS ON INTERPOLATION FORMULZA.

It must be observed that interpolation formule are
simply intended to enable one to calculate, with fair
accuracy at any rate, the value of some magnitude inter-
mediate between values which have been experimentally
obtained. We cannot make any theoretical deductions
from them alone.

It 1s possible that a purely empirical interpolation
formula may be a disguised form of a theoretical law.
- Thus, Regnault, as a result of an extensive series of re-
searches on the compressibility of gases, arrived at the
empirical formula :—

PO L1~ A - 1) + Biin - 1),
Dy,

where m = vy/v,.
Put v, =1, p, = 1,

) a1 -0 1- v\
=1 AT +BQ3—y
A+2B B
v

—5—5=1+A+B.

or pv +

Now van der Waals’ equation, deduced from theoretical
considerations, may be written
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Sopy A+ - 3= R,
which is identical with Regnault’s formula when
a-b=A+ 2B,
ab = B,
R=1+A+B.

The converse, that a formula deduced from theoretical
considerations, may agree with the results of experiment
simply because it is an interpolation formula, is, of course,
possible, especially if it contains several constants.

65. EXTRAPOLATION

If the value of #, for which the corresponding y value
i8 required, lies outside the range of values for which y is
known, the value of y may sometimes be found by exztra-
polation. The curve is drawn up to the extreme value of
z in the known region, and then produced without change
of form as far as the value of z for which the correspond-
ing ordinate is required. This extrapolation is most easily
effected when the curve is a straight line; in other cases
a waxed black thread, or the wooden shapes used by
architects, may be employed. Flexible steel bands with
a lead backing are now sold, and are very convenient. It
is of course assumed that the equation of the curve is the
same throughout the whole region considered, and that
the curve is continuous. These conditions can, in general,
only be safely assumed when the range of extrapolation is
small in comparison with the range of known values.

Let P,, P, P, be three points having the positions rela-
tive to the known curve AB shown in the figure. Then it
can be safely assumed that the point P most probably lies
on the extrapolated curve. The same assumption could
not be made with respect to the point Q in the set Q,, Q,
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Qz, for the curve might equally well pass through Q, or Q,,
or through none of the three points.

Q
T Q
2,
P
-7
A
Fra. 20.
66. CAUTION.

If the curve is discontinuous, or exhibits sharp bhreaks
or urnings, as in the solubility curve of sodium sulphate,
extrapolation might lead to wholly fallacious results.
Thus if the curve AP, had been extrapolated from z, to z,

Py 2
o
E,"\Pz\
,/2 :
'. } £
d’;' xl
Fia. 21,

the value P, would be absolutely wrong; because the curve
exhibits a sharp turning at P. The true value is P,
‘ The method must therefore be applied with great care,
67. EXAMPLES
(1) According to Raoult, the depression of freezing-
point (A) of a solvent is proportional to the concentration.
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If A is the depression for a 1 per cent solution, the mole-
cular depression 4 for a gram molecule in 100 c.c. will be
given by
A;4=1:M,
. AM = 4 = constant,

since the depression is a molecular property. This is
strictly correct only for infinite dilution, so that Eykman
determined the depression for three or four concentrations
and then extrapolated to zero-concentration to obtain the
value of A for infinite dilution.

(2) If Avogadro’s law were strictly true, the molecular
weight of a gas could be exactly determined by a careful

¢ /’

Fia. 22.

measurement of the density. Rayleigh has found that the
permanent cases obey Boyle’s law more and more exactly
the lower the pressure, and it may be assumed that at
zero-pressure (p = 0) the agreement would be exact. D.
Berthelot has made this the basis of a method of determin-
'ng atomic weight from gas densities.

Van der Waals’ equation

a
(p+%)w-b =R,
secomes, for p = 1 atm., and T = 273,
a
(1+ 1}—02)(@0 - b) = 273 R,

where v, = molecular volume at N, T. P,



124 HIGHER MATHEMATICS

For the ideal gas the equation is
2Vo=RT .. V, =R .273
where V, = molecular volume at N. T. P.
a b
Thus V, = o,(1 + 1¥2)(1 -3

Vy
s Vo= 1)0(1 _b + %\) approximately.
vy Y,
_ Thus, to reduce the measured density to the ideal con-
dition it must be multiplied by

Y_(1+b0_ 2 -
v, (1 + o, 002> approximately.
Now Van der Waals’ equation may be written

po = R2[1+ (p - (uye) |

since a/v? and bf/v are small compared with unity. This
is of the form
pv =1+ mp,
where [, and m, are constants at a fixed temperature. pv
is thus a linear function of p; and if values of pv are
plotted against p, the extrapolation to p = 0 gives the
reduction to the ideal state. Such measurements have
been carried out by D. Berthelot and by Guye. Recent
experimenters find that in some cases pv is not really a
linear function of p, but the extrapolation of the curve
may still be made.
68. DIFFERENTIAL COEFFICIENTS FROM EXPERIMENTAL
RESULTS

It was shown in the first part of this book that the
differential coefficient has a very important significance in
meany branches of physical chemistry, especially in thermo-
dynamics. In many cases, the quantity represented by this
coefficient is given a special name, Thus, we recall that ;—
(dv/dt), is the coefficient of expansion at constant pressure;
(dp/dt),, the coefficient of tension ;
(dQ/dv),, the latent heat of expansion ;
(dQ/d¢t),, the specific heat at constant volume;
(dQ/dt),, the specific heat at constant pressure,
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It is therefore important that we should be able to
find the value of such a differential coefficient in terms of
the magnitudes which are experimentally determined,
We therefore pass on to a consideration of some methods
of determining differential coefficients from experimental
results.

69. METHOD OF MEAN-VALUE.

(1) The first method, which may be called the Method
of the Mean-Value, depends on the following very import-
ant theorem :— ]

@ Z, b

Fig, 28. / i

Let PQ be the graph of the function f(z) which is
continuous in the interval from z = a to = b; then there
is some point between P and Q where the tapgent to the
curve is parallel to the secant PQ. Let z; be the abscissa
of this point, then :

S (_I%W_TJ;(;‘Q = f(z).

This general theorem is almost obvious from ar inspection
of the figure; we shall assume its troth in what follows.
Its connexion with the problem in hand depends on the
fact that if the rate of change of f(z) with z is small, as is
usually the case in practical examples, we may without



126 HIGHER MATHEMATICS

committing any sensible error take z, midway between a
and b, provided the latter are close together. Thus
fO) - fa) _ @+ a)
b-a 2
Ezamples ;—
(1) The vapour pressures of water at 99'5° and 100-5°
being 746'52 mm., and 77369 mm., find dp/d¢ at 100°.
a =995, b = 100'5; f(a) = 746'52, f(b) = 77369,

- 00y = Z—i’ at 100° = 77369 - 74652

= 2717 mm. per 1°. ;

(2) Hortsmann, in the first applications of thermo-

dynamics to chemistry, used the well-known Clausius-
Clapeyron formula :— »

7/
A= T(’Ua - @b)‘—z%v

approximately.

where A = latent heat of volatilization or dissociation,
T = absolute temperature,
v,, v, = molecular volumes of gaseous and condensed
phases,
p = vapour, or dissociation, pressure.
Usually v, is negligible compared with v,
C oy o 9P ,
A= Tvd—T, .
© being the molecular volume of the vapour. -
But pv = nRT,
nRT? dp
p . ZZ'T.
If p,, p, are two pressures corresponding to the tempera-
tures T, T,, which are not too far apart,

SA=

ng = %‘Ji : ],;‘11 approximately, and in the above equation
p=14@ +p), T=4T + Ty.

Horstmann considered various cases of dissociation ;
as an example we will take Isambert’s results for am-
monium hydrosulphide :

NHHS &> NH, + HS.
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Here n = 2, since 2 molecules are produced. Horstmann
took R = 1997 gram-calories (the number now adopted is

1-985), so that
'I‘

=3 994 ’I’ g cal.
(Observe that the unit 1n which p is measured does
not effect the equation.)
Temperature Pressure Heat of Dissoctation

°C. mm. . Cal at®
95 175 2465 107
12:0 212 . .
21-86 135
150 259 . .
2424 165
180 322 . .
2061 200
251 501

aking the first pair of numbers we have
P, = 1756 mm,, p, = 212 mm.

: - p, = 87 mm,
T = 282 5 T, = 285°,
T, - T, = 25..
Thus dp/dT = A:——RL = 81 = 148 mm. per 1°.
T, T 25T

= $(175 + 212) = 193'5 mm.
T $(282'5 + 285) = 283'7° Abs 107° C,
.~ T2 = 80486
A= 3994 x D00 148 = 24650 g cal
= 24'65 Cal. at 10'7° C,
(1 Cal., or “Xkilogram calorie” = 1000 g. cal. )

The ca,lculated heats of dissociation are nearly constant,
the mean being 228 Cal. This agrees with the heat of
dissociation calculated from thermochemical data:

(NHHS, agq) = - 325 Cal,
(NH;ag, H;Sag) = + 619 Cal.
(H,S, aq) = + 475 Cal.
(NHj, aq) = + 861 Cal. )
= (NH,, H,S) = 325 + 619 + 4'75 + 861 = 228 Cal. ,
This will, of course, be heat absorbed on dissociation.

[
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(3) The effect of pressure on the melting-point of ice
is given by the formula:
dT_ T, - v)
dp L
where T = absolute melting-point;
v, = specific volume of ice;
v, = specific volume of water;
L = latent heat of fusion.
T =273; v, =109 c.c.; v, = 100 c.c.
L = 80 gm. cal. = 80 x 42350 gm. cm.
To find the change of melting-point per 1 atm. in-
crease of pressure, we put dp = 1 atm. = 1033 grams
weight per sq. cm., hence:

- Tw, - v)
dT — dp

= 273 x (100 - 1'09) x 1033
80 x 42350
= - 00075° C.

The melting-point of ice is lowered by increase of pres-
sure, since v; >v,. In the case of most other substances,
1, <7, and the melting-point is raésed by increase of
pressure,

70. ANALYTICAL METHOD,

(IT) The second method depends on the use of an em.
pirical formula, obtained by previous calculations, to ex-
press the functional relationship. If the constants in this
formula can be found, we have simply to differentiate it tc
obtain the desired differential coefficient.

We may call this the Analytical Method.

Ezamples :—

(1) The pressure at constant volume (p) of 1sopenta,ne
is, according to Young, a linear function of the tempera-
ture (6° C.)

p=~bd-a
.. dpldf = b,
or the curve is a straight line with gradient b.

(2) The vapour-pressure of water was represented by

Biot according to the formula

Imm — a L hat
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where T = ° ~ constant. a, b, a are constants. By differ-
entiation ;—

or dp/dt = pblna.a’
(3) A formula used by engineers for the pressure of
steam at ¢° C. is
p = 297785 ~ 376 Ib. per sq. foot.
Thus%= 5954p - ¢,
At ¢t =200° C,,

P = 297T7200)° - 376 = 4844 Ib.(ft.?
[log (200)* = % log 200 = ete.]

dp ) A4y - %
Thus <Ef>,=m = 5954 x (48-44)

= 5954 x 0449
= ‘267 lb. per sq. ft. per 1° C.

(4) Horstmann, in his classical .investigations on
rermodynemics (Ostwald’s Klassiker, No. 137, “ Ther-
1odynamik chemischer Vorginge,” August Horstmann)
ttempted to work out Deville’s analogy between evapora-
on and dissociation. He concluded that Biot’s formula
1uld apply to dissociation pressures as well as to vapour
ressures, and expressed the dissociation pressure of am-
onium chloride by the formula

logp = a+ ba,,
hen ¢ = 515790; b = - 334598; log b = 052439¢
log a = 0:9979266 - 1; v = ¢* C. — 258%.
To calculate dp/dt at 260° C :—
T =260 — 2585 = 1'5;
log at® = 1'5 log a = - 0°0031101,
.o loga™ 1= - log at® = 00031101,

= log 10072,
sSoaT = 10072,
: o ab® = 1/a 1% = (°9928.

io
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Thus ba'® = - 3:32189,
" logp = 515790 - 332189 = 1 83600
But log 686 = 1:83600,
= 68'6 mm.
Therefore dpldt = pba”’ log a.
.. dpldt = 686 x (- 332189) x (- 000307)
. dp/dt = 0°7039 mm. per 1° C. at 260° C

(5) In the case of calcium carbonate

_ CaCO, €= CaO + CO,,
Torstmann quotes three results of Debray :—
t=1040°C. p = 520 mm.
860 85
440 , imperceptible.

He remarks that the differential coefficient dp/d¢ can-
not be evaluated from these numbers, but he makes the
assumption that the curve has the equation

logp =a+ ba", . . . @
and gives the following calculation :—
Put =t — 860, and let
log p at 860° = y,,

I

log p at 1040° = y,.
Then y;, = a + b : (
Yp= @ + bals"} ’ ' 1)
o — 1
b= Z{so _‘/11 . . (i)
and @ =y, - b.
“Differentiating (i) with respect to ¢ we get .
dp .
F =pbloga.a" . - (@iv)
A CCZZ =pbloga
t
dp ™)
dt2 poblog a. al®
dpy
and dit- =P g0 e ()
_& Py ’ :

dt
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The differential coefficients (or rather, their ratio) he
next expresses in terms of the heats of dissociation :—
dp
A= TAU dT["
~ where 4v = excess of volume of gaseous product over
solid residue,
= volume of gaseous product (approx.)
If s, = vol. of 1 kilogram CO, at N. T, P,,

dv = s,. 2;,% . 7%0-, (vii)
-where p = dissociation pressure,
760 T3 dpy
R 0273. ¥ Todt (vii]‘)
273" p, " dt \ ’ .
. }'_2 = 2[112 180
TR T TR a',

But, A being practically constant between 860° and
1040°, Ap/n =1,
T 2

. 180 1
a'® = =

. )
T,

and thus the constant a can be found. Then r = ¢ - 860;
a = 399377; b= - 206435, log a = 09988426 - 1,
From these numbers the values of p for temperatures
between 860° and 1040° can be calculated.

[These calculations are now only of historical interest ;
modern thermodynamic theory indicates that log p can be
calculated from the heat of dissociation A, the specific
heats of the substances involved, the absolute temperature,
and a ‘‘chemical constant”. See Nernst, ‘ Recent Ap-
plications of Thermodynamics to Chemistry ™.]

71, GRAPHICAL: METHOD

(II1) The third method of finding the differential co-
efficient of a function is the Graphical Method. The curve
of the function is drawn on a fairly large scale, and a
tangent line drawn to it at the point where dy/dz is
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required. The gradient of this line, read off directly, is
dy/dz.

Ezamples ;—

(1) Horstmann used this method to calculate dp/dT
from Debray’s measurements of the vapour-pressure of
Na,HPO,, 12H,0.

(2) As an exercise on the method, the student may
~ find the values of dy/dx at different points on the graph of
y = a?

and compare the results with the calculated values.

(3) Using the values of p and T for water given in § 1,
calculate the latent heat of evaporation of water at 100° C.
The observed value is 536 cal.

[Draw the p, (¢ + 278), curve for a few points near-
100° C., draw the tangent, and find dp/dT. Then use the
Clausius-Clapeyron equation.]

Methods of finding the differential coefficient by the -
use of interpolation formules, such as Stirling’s formula,
can only be referred to here.



CrAPTER VIII
THE INDEFINITE INTEGRAL»
4

72.gINVERSE OPERATIONS AND INVERSE FUNCTIONS S
&

HEN, in Arithmetic, a quantity is repeated a certain
number of times, the resulting quantity is called
& multiple of the original quantity ; the operation whereby
it is obtained is called multiplication. To recover the
original quantity from a given multiple of it, we make use
of the operation of division ; and the operations of multi-
plication and division are related in such a way that with
proper values of multiplier and divisor, the effect of operat-
lng with the divisor exactly annuls the effect of previously
operating with the multiplier. The symbols x and +
i)emg used to denote the operations of multiplication and
division respectively, and the symbol x being defined by
the equation :
axmn=a+a+a+...ntimes,
hat of division + must be defined by the equation :—
(@axmn)+n=a

The operation of division is said to be the inverse ol
the operation of multiplication, in the sense just explained.

Similarly, the processes of forming a power of a num-
ber, and extracting the root of a number are inverse opera-
tions ; asis seen from the definitions of the symbols

a*=a x axax...ntimes.
Jar = a.

In this particular case, the inverse operation, i.e. the
extraction of the root of a quantity, is more complicated
than that of division, for the following considerations enter
into the nature of the case ;.—

133
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(1) Whereas, in division, we arrive at the original
quantity, and there is only one answer to the question:
“What quantity multiplied by » leads to a given quantity ?”
in the extraction of the root this is not always the case.

ne - n=a;

but Ya®= + aor - a;
because there are two quantities + a, and - a, both of
which satisfy the condition that, when they are raised to
the second power, a? results.

(2) Also, given a real quantity a, the operation of divi-
sion leads to another real quantity. But if we are re-
quired to extract the square root of ~ a?, the operation is
impossible, since no real quantity has a negative square.
The result must be left as / - %, or as a4/ - 1, or ai,
where 5 = ./ — 1. Thus we can say that the problem:
“'What function is the inverse of a given function?’’ may
or may not have an answer; or it may have more than
one answer.

The operation of differentiation, applied to a given
function, leads to the differential of that function,

Thus d(z* = 2zdz,
or d(¢(z)] = ¢’ (x)dz.

It is evident that the operation which is the tnverse of
differentiation will be such that, when performed on the
differential of a function, it will lead to the function itself.
Liet us denote this operation by the symbol *§,” then

(dr = z,
or {du = u.
“(" ig called the integral sign; the operation it denotes
is called integration. The equation {du = u may be re-
garded as defining the meaning of the symbol §.
Ezamples ;—

VRadz = o2,
(82%dz = 28,
d

;z = log .
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78. INTEGRATION CONSTANTS

If we put » = ¢(x),
then du = ¢'()dz ;
and since, by definition, \
fdu = u, N
S (@de = () . . )
j This equation is, however, incomplete. For if C be
any arbitrary constant whatever, then :
d(z + C) = dz,
ordu + C)=du;
the arbitrary constant vanishing in the differentiation
Thus }
jdu = §d@w + C) = u + C. |
If u = ¢(x), ‘
f¢'(@de = p@) + C . . \ (2)
which is the most general definition of §. !

C is called the Integration Constant; since its value
is, at present, quite arbitrary, the integral {¢'(2)dz is called
an indefinite integral. 1If, in any particular case, C has a
known value, the integral {¢'(x)dz = ¢(x) + C, is called a
lefinite integral.

i

74. GEOMETRICAL INTERPRETATION .
It is easy to find a geometrical interpretation of C.\‘\
Given a function ¢'(z), the result of integration is a func-
tion ¢(z) + C. Now ¢'(z) represents the slope or gradient
of a curve at a given point (z = z,), and the operation of
integration is that of determining the equation to a curve,
i.e. of finding the curve, when the gradient for any value of
z between certain limits is known. It is at énce obvious
that an infinite number of curves may be drawn having
the same gradient at every value of z within, it may be,
certain limits. The different values of y corresponding to
the same value of # may be obtained by the addition (or
subtraction) of a constant from any one value. (fig 24).
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(@) Lt 2—1‘;= 1, the curve y = f(z) is obviously any
straight line making an angle of 45° with the z-axis.
The equation y = z + ¢, the integral of dy = d=, re-

presents an infinite number of straight lines, one of which

Fia. 24

passes through the origin and makes an angle of 45° with
the z-axis, and all the rest are parallel to this line.

Y

' Fia. 25,

The equations of these lines are
y==a
y=z+ ¢

Y =T+ ¢, ete.,
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and ¢, ¢,...are the lengths of the y-axis cut off by the
lines. If ¢; =1, ¢;=2,... the lines are equidistant, as
gshown in the figure. This family of curves represents the

indefinite integral of % = 1.

(i) Another example is the case of a stone falling
freely under gravity. If u, is the velocity at a given in-
stant, taken as the initial instant, ¢ = 0, then the velocity
at any time ¢ is given by

ds
(% = U, + gt,

:where ds is an element of space, and g is the acceleration
of gravity. Integrating, we obtain :—

- fds = S(u, + gt)dt = §d(u,t + 3gt?;
S8 = ugt + gt + C.
Now put ¢ = 0,

. 8= G, ie. C is the distance of the stone from
a fixed point at the time we begin observations. If the
actual position of the stone at £ = 0 be taken as this point,
C=0.
75, DIFFERENTIATION AND INTEGRATION

We may sum up what has just been said in the state-
ment that, whereas the fundamental proposition of the
Differential Calculus is to find the rate of change of a
given function, that of the Integral Calculus is to find the
function corresponding to a given rate of change :—

Differentiation
— >
Function Rate of Change
Etegra.tion
If we remember that the operations denoted by d and §
mutually annul each other, it is clear that if the functiqn
to be integrated can be put in the form du, where u 1s.
another function, the result of the integration will be

% + constant.
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Thus {2xdx = {d(z? = z* + constant.
132dz = {d(x®) = x*® + constant.

5 1
47 Y _Los
Ix dx = Id<5> 52: + constant.

]‘ci_x = Id(log x) = log ¢ + constant. '
le'dx = {d(e") = ¢* + constant.

Integration, as de Morgan said, is ‘‘the memory of
differentiation”’. If the function to be integrated does
not correspond to any of the standard differentials, it can
often be modified so that it does.

76. TABLE OF STANDARD INTEGRALS

A) d@@y =maz""de | (., 1 .
coifm=m o+ 1, e zdx~n+1£

m+ 1
d(z >=x"da:
n+ 1

. 5 e - 1,1, 1
Thus the integrals of #, a? «° =% z° are ;z? -a% Za*

273 4
11
.  4a*
The case when n = — 1 is now to be considered.
(B) d(og x) = @f = g~ idx %a: = log z.
C) d(e) = eddx fe*dx = ¢~
d(e™) = ae™dz Ie“"d.z' = ie“’
Xy . 4% T . az N
d{a”) = a’log a.dz Ia de = oo o ;/

[In all cases, “log” is to be taken as *‘log,” unless
otherwise indicated.]

The correctness of a result of integration may be
tested by differentiating it ; the original function should be
regained.
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77. EXAMPLES

1) j(m + a)"dz = j‘?—n—i—id(a + ™+l

-1 (z+ ay"*i

m+ 1
where a is & constant. This is an extension of Type A.
dz dz
@) iy a=lg@+a); er:a = log (z - a).

Examples (1) and (2) show that the addition of any
arbitrary constant to the variable makes no difference in
the form of the result.

® ii‘l:% = - jdil_”mw) = - log (1 - ).
@ ;ld_zx = - log (@ ~ ). |
o o e,
©6) jﬁgﬁlﬁ = - %log (@ - bx).

Examples (3) to (6) show that if the variable is maults-
olied by a constant, the integral must be divided by that
onstant. Generally

j:/'(k:c)d:c = Sk,

ax — ;It azx
D je dx = ae ,
®) e "de = ~ ¢~ ™
78 TWO GENERAL THEOREMS ON INTEGRATION
1 §{Cdu = Cldu . . . (®

where C is a constant, # a function of z.

This follows fromn the definition of §, as is seen by
lifferentiation,

@) S +v+ w4+ ..)dz = Sude + vdx + Swde + ...
which also follows by differentiation . . . (€3}

Thus the Infegral of a Sum = sum of integrals of its
‘erms.
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(@) An important example is the rational integral
SJunction of z, i.e. a function of & containing only finite
integral powers of #, and in which the denominator is
unity. The most general type of such a function is

A"+ T T @™ TR Lt @ (T O
m is a positive integer, and the function is linear, quad-
ratic, cubic, etc., according as m = 1, 2, 3, etc. Generally,
it is said to be of the mth degree in z.
f@z™ + az” "'+ a2z" "+ ...+ a,_ 7+ a)de

1
a1 + —a,x™ + "2 4,
m+ 170 m * m - 1%
+ 4a,_ 2% + a,z.

(b) Verify the following results :—
IG: + z)dz = logz + %zﬂ.

Ix ; 2d:t: =z + log (z%).

79, RATIONAL FRACTIONS

The last example is a special case of the type
Flo)
T+ a
which is the simplest form of rational fraction. By
division
F(x) A
x—;—a -f(x) + m, where
f(z) is a function of z lower in degree by one than F(z),
and A is a constant which is independent of z. Now f(z)
- must be a rational integral function, which has just been

dealt with, and is of the form (B).

z+a
Ezample :—

z? 1.,
jl — xdm-—- —Q(x + 22) - log (1 ~ z).

(Note: §1.dz is always written §dz; it is, of course,
z.)
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80. FURTHER GENERAL EXAMPLES

dz i@z -1 1
Lz i 2_[_@5:71 =5 log 2z - 1.

Iﬁbxd:t _.[d(a + bz?)
a+bz® ) a+ ba?

= log (a + ba?).

Generally, we see that

Proof :—

|92 _ 1og g .

- [l Id[log $@] = log $(@.

¢ (@)

S

At
(x)dz z)

$(@)

f

This very important rule may be stated in wordg

thus :

~  If the numerator is the dzﬁerentml of the denommator
of the cxpression, the inlegral is the natural logarithm of
the denominator.

@ -

®)

@)
®)

(6)
™

®)

Idw 1 1
-1z 1*
e ~°dz.[ - 1]

{dax "~ Y. [5az§].
§A + z)2x3de = {(x® + 22t + a:") dzr = (} + 3T+ 3z a2t
fa@ + :v")'-’a:’d:c [(§a® + azt + ;x)z"]
zdx

.[1 — [log JWJ‘
J=

The denominator is factorisable ;—

z: - a?’

__._L{_-l*_ 1}
22-a! 2alz-a z+a
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b
10'[ de 1 fz“"z‘c)
10 a+ bz +cx® ¢ <w+£>“_b‘l—4c_vg
2¢ 4¢?

(cf. appendix 1)
- - 3
1 o 2cx + b - (b? - 4ac) @

®? - 4ac)t chz + b~ (- dao)?
This result is real only if 42> 4ac.

¥ }
I Y P S L
1) a-b2 bl?® 2ab)® a* - bz
b

— 78
(12) '~—L=J dz _j di+ 1)
J1 = 2z — g2 2-@+1D2 J2- (@x+ D2
1 2 x4+ 1
. LRI |
(13) {a + bax)"dz = %J(a + bx)"d(a + bx)
_ (et botl
- T bdn+ 1)
(14) j(a + b zdr = %BJ‘(a, + bz)"d(a + bx?)
_ @+ ba?)"*t
: T 2%m+ 1)
(15) J(am - zm)nzm—ldz = - }n__-‘.(am - ™ nd(am _ xm)
B (am _zm)n+1
mmn + 1) °
(@ + bx + cx®)**?
n+1 )

(16) J(a + bz + cx)™(b + Yex)dzr =

z*dzx

2
amn Im = - -g(lls - .’E:")}.
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81. THE PRINCIPLE OF UNDETERMINED COEFFICIENTS

Two expressions are said to be identically equal when
they are equal for all values of a particular letter in them
The sign = is then often written = V\\ Y

Eg @+ 2)=a+ Zaa: + a2, \
for|all values of =, or }

’ (@ + 2)* = a® + 2ax + 2

A very important theorem concerning such expressions
is proved in textbooks on Algebra, viz. the Principle of
Undetermined Coefficients.

If two functions of a finite number of terms are equal
for all values of any letter involved in them, then the
coefficients of like powers of this letter are equal in the two
functions.

Examples :—

(1) Find the square root of * + 2z° + 32 + 2z + 1. |

Let /@' + 22+ 322 + 2z + 1) = 2 + mz + 1,

Then 2t + 22 + 322 + 2w + 1 = (2 + mz + 1)®

=zt + 2max® + (m? + )z + 2mr + 1. \
Equating coefficients of 23, 2%, and z;
2=2m,3=m?+ 2, 2= 2m,
therefore m = 1, and
JEE+ 282+ 322+ 22+ 1) =22+ 2+ 1

2) If 4z* + 8z® + mx + nis a square, find m and n.

Let 42* + 82% + mz + n = (222 + px + v)?

Sodat + 82 + mx + n=4xt + dux® + (@ + )a?

+ Quvz + V2

Then 8 = 4u, pw® + 4v =0, m = 2uv

pe=2 Lv=-1,m= -4
Som=1
Confirm by substituting u=2,v= - 1, m= - 4, n=1

82. PARTIAL FRACTIONS

If a given fraction can be expressed as the sum of twa
or more fractions, the latter are called its partial fractions.
Thus } and § are the partial fractions of £ :—
| Sttt

H
[
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The methods of finding the partial fractions of an alge-
“braic fraction are of great importance in the Integral
Calculus. In what follows, the methods will be explained
as they arise; further particulars will be found in C
" Smith’s “ Algebra,” and Lamb’s *“ Calculus .

83, EQUATIONS OF CHEMICAL KINETICS
@) Unimolecular reactions :—
dz/dt = k(a - 2)..
(i) Bimolecular reaction :—
dz/dt = k(a - z)(b - 2).
Ifa=2b
dzfdt = k(@@ - z)%
(i) Termolecular reaction :—
dz/dt = k{a — x)(b - x)(c - x).
Spectal cases :—
dz/dt = k(a - £)*(b - ), a = ¢;
dz/dt = k(@ - 2)°; a=b=c.
In order that these equations may be tested experi-
mentally they must be integrated, because dz/dt cannot
~ usually be found directly (see Introduction).

- 84, EQUATION OF THE UNIMOLECULAR REACTION
dz/dt = k(a - ),

9@ _ as.

Integrating we have :—
j dz_ _ jkdt = constant =C,
a-z
- log (@ - x) - kt = C.
Cis the unknown arbitrary constant of integration.
To determine C we have the experimental relation :—
2=0whent=20;
so-loga=C,
s loga - log (@ - o) =

=k,

which is capable of direct verification.

- or}lo a
t ga—:v
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Instead of determining a, the initial concentration, the
equation may be modified so that the concentrations
(@ - =), (@ - ) at times ¢,, £, may be used ;—

kt,= -~ log (@ - ) + C,
kty= -log@-=z) + C,

P | a-
..k—tz_tl.loga_zz. \

' Theequation may also be thrown into an expongntial
form. Let a - z = C, the concentration of activeisub-
stance at time ¢

Soda—-x)= - dr=dC;

—

. dClat = - kC; | ‘%
dC
: or E = - kdt "\‘5‘
¢ Integrating we have 1
log C = - kt + constant. \\

Put ““ constant " = log b, 1
where b is another constant ; and multiply the right-hand
member by loge = 1,

logC =logb - ktloge
=log b + loge=*
log be —*
oo C=be ",

This form of integral expresses more clearly the ex:
pounential progress of the reaction; an integral identical in
principle with the above was used by Wilhelmy, who
made the first application of the law of mass-action.

o

85. EQUATION OF THE BIMOLECULAR REACTION

da
7= k{a - o) - =),
dz
. AR— Y, I
S @-on -
The expression m may be split into Partial

Fractions as follows :—
10
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1 _ A + B
@-2yb-2 " a-z b-7
- which equation must be true for al{ values of .

Multiply by (@ - z) :—

Assume

1 a-z
- A+B'b— .
Put z = q,
1
. b__—zA.,
1
or A - m;
keeping the letters @, b, ¢ .. . in cyclic order.
Now multiply by (¢ - 2) :—
7 . 1 EA.b—z+B.
a-z a-z .
Putz = b:—
.1 g,
"a-b B;
whence the values of A and B are determined.
1 1 1 1
Thus(a—:c)(b—:c)aa—b{b—z—a—z}
_ 1 oc® "~ %
(a—:c)(b—:c) a-5 "% -4z
Thus kt = logb — + C,
and by puttmg {= 0 and z = 0 we find
C=_ logb
b ’
1 ba - =)

wk= ta - b)'loga(b - x)’

Exermses S—

(1) For two times ¢, ¢,, prove as in the previous para-
graph
1 (@a—-2)b - x) .
k= 1 2 12,
-t og(a - 2)(b - m)
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If a = D, i.e. reacting substances in equivalent amounts

at the start, . ~
dz . ’ :
E? = k(a e 2:) ',
thenee show that i
ak = 1 _ =
T t'a-2

The special case @ = b cannot be obtained from the
integrated equation by putting @ = b, since the result is
;.g, which is an indeterminate form. “

This case will be congidered when we are dealing with
Taylor’s theorem.

3) If ¢, t, are two times, and x,, 2, the amounts of
hange at these times, reckoned from the starting-point,
show that :(—

’ 1 T —- T

L el S | )
1 1 1

-t la-z a—zl}'

The quantities (@ - z,), (@ — 2,) are amounts of sub-
stance left unchanged after times ¢, #,, and are easily
‘ound by experiment. This form of the equation, and the
sorresponding form for the unimolecular reaction, are
:specially useful when the initial portion of the reaction is
listurbed by other simultaneous reactions, as is usually the
:ase. The constant k, deduced from measurements carried
>ut in the initial stages, would therefore be incorrect; the
modified equations enable one to find the constant at any
stage in the reaction.

86. EQUATION OF A TERMOLECULAR REACTION
de/dt = k(@ - z)(b - z)(c - =),
- dx =
@b -De -2 kdt.
The expression on the left may be split into three
sartial fractions :—
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1 A +*_]§~+ C
@-20-2c-2"a-z b-z ¢-z

Multiply each side by (@ — z) :—
SIS S

b -2 -2 c-z
Putz =aq,
CA = 1
ET T @b - a)

Similarly, by multiplying by (b -~ and (¢ ~ z) and
then putting £ = b, and 2 = ¢, one finds :—

1 1
T @S he o™ e T g Tor - a

(Notice the “ cyclic order”’ in the factors.)
Thence we obtain :—

dx _ 1 '_[ dx
@-20-2c-2  (@-dl-aa-~z
_ 1 j' de 1 j‘ dx
a@-bb-alb-z2z Gb-0c-a))e-=x
Therefore :—
————1-—log (@—2) + ————1—-—log (b - ay
(@ - b -~ a) (@~ b - a)

+ log (¢ — #) = kt + constant.

N
-0~ a
The constant is found as usual by putting ¢ = 0, z = 0,

1
el T T

SR S
®-0c-a 8¢

A At b -\~ 9 c — g\
211%('ZJ.'”%(_FJ + log (=2

t @a-0)( -0 - a)
. Notice the symmetry in the expression.
Ezxercise ;—
If a="b=c¢,

dt = k{a - :c)“’
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Thence prove that ,

- gila= o @)

' 87. SPECIAL CASES OF PARTIAL FRACTIONS Q \
(@) Termolecular reaction with ¢wo equal concentr&-

tions,
%’E = k(@ ~ )2 ~ x)
dx
St = fdt.

Tt is proved in advanced textbooks on Algebra (e.g '
Chrystal’'s *“ Algebra ”’) that in this case the Partial Frac
tions are ’

1 _ A B C

(@a- b -2 (@-=x° a- R

The student wiil easily find, in this case, that

1 1 1
A_b—a’B—— "t a T it w
and the complete integral is
1 1 b - a)r b(a — x)
k“?w—mftm—m+b%w—@}

(6) If the denominator contains a quadratic expression
which has no real roots we have the following equation
for the partial fractions.

Ezample :—

L 1 A N B + Cz+ D
@+zrz+ e -a)y@e~-0 =xz-a xz-b +z+1
from which the constants may be found by giving z par-
ticular values. By way of example, take

_ A + B + Cz+ D
@+z+Dz-De-2 -1 z-2 @+z+1)

Multiplying by @ + z + 1)z - D)= - 2)

l1=A@-D@+z+1)+Bx-1@E*+z+ 1)

+ (Cz + D)z - D{z ~ 2).

S 1=B@-1D@d+2+1) .. B=1
Putz=1.,. A= -1
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We now substitute the values of A and B in the first
of these equations, and give z two values in succession; -
we can then find C and D by solving the simultaneous
equations, preferably by using determinants. B

The constants may also be evaluated by equating co-
efficients of like powers of z, and solving the resulting
simultaneous equations.

Ezxample :—

1 _Az+ B Cz+ D
g+ ?+1l 2+z+1 2-z+1
SLl=QAz+B)@ -2+ 1)+ Cx+ Dz +z+ 1)
S1=A+02+ (- A+ C+ B+ D)2?
+A+C-B+Daz+ (B+ D).
Equatmg coefficients of like powers of z :—
A+C=0,-A+B+C+D=0,
A+C-B+D=0,B+D=1
Solving the four equations we get:—
A=-C=4B=D=4

(Such cases may often be solved by imaginary. sub-
stitution, followed by an application of Demoivre’s theorem,
See Hdwards, “ Diff. Calculus for Beginners,” § 63.)

88. GRAPHICAL METHODS IN CHEMICAL KINETICS

Let C = concentration of a reacting substance; then,
by the law of mass-action, the rate at which that substance
disappears in the reaction is given by:

dCldt = - kCm,
where # is called the order of the reaction.
If more than one substance participates in the reaction,
dC/dt = — kCMCyeCys .. .
and the order of the reaction is
n=Nn + N+ n+..

Van’t Hoff identified n with the number of molecules
of the reacting substances. Thus in the reaction

CH,CO0C,H; + NaOH -» CH,COONa + C;H,OH,

n=1+1=2

Whilst # can usually be defined in this way, there are
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cases in which 7 as derived from velocity measurements
does not agree with that derived from the chemical equa-
tion, and the former definition is to be preferred. Special
cases arise when n is given different values, which of
course are integers.

(@) Let n = 1, i.e. the reaction is unimolecular,

. dC/jdt = - kG,
or the active substance is disappearing at a rate propor-
tional to its concentration at any moment (‘‘ compound
interest law ””). On integration,
&~ rit,or
- log,C = kt + constant.

Thus if the logarithms of the concentrations are plotted
against times, the graph is a straight line. (Ordinary
Togarithms may be used, since

log,,C = *4343 log,C
- log,,C = (-4343k)t + constant).

Values of ¢ and C may also be plotted on semi-logarith-
mic paper, in which the horizontal rulings are spaced in
proportion to the logarithms of the natural numbers. (See
Watson, ¢ Text Book of Practical Physics ”’.)

(b) Letn =2, i.e. the reaction is bimolecular,

dC/dt = - kO?
. 1/C = kt + constant.

If reciprocals of concentratlons are plotted against
times, the graph is a straight line.

The student will easily show that for ter-, quadri-, etec.,
molecular reactions, 1/C?, 1/C?, etc., will give straight lines
when plotted against ¢.

" Thus, to find the order of a reaction we have simply to
find by trial which one of the following expressions gives
a straight line when plotted against the times :—

@) log C (or plot on semi-log-paper) - unimolecular.

(ii) 1/C - bimolecular.

@iif) 1/C* — termolecular.

(iv) 1/C"~! - n molecular (n>1).
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Any numbers proportional to C may be used, for ex-
ample the number of ce. of a standard solution used in
titrating the active substance.

A supply of experimental results, for testing the above
method, can be found 1in any textbook of physical
chemistry.

89, COURSE OF A REACTION

There is a very important point in connexion with the
order of areaction which may be referred to here, although
the full consideration is deferred until later. A large
number of chemical reactions appear to be made up of
a number of simpler reactions, which may either go on
simultaneously (Side Reactions), or one after the other
(Consecutive Reactions). The substance A may be con-
verted into B through an intermediate stage € :—

1) A—>C, followed by the reaction

(i) C - B.

One of these reactions, say (i) may be very much
faster than the other, and the measured rate is then
practically the velocity of (ii), the slow reaction. The
calculated ‘“ order’ will then be, not the order of the com-
plete reaction, but that of the slowest component re-
action. Prof. James Walker (** Proc. Roy. Soc. Edin.,”
22, 1898) gives a very lucid analogy: * The time occupied
by the transmission of a telegraphic message depends
both on the rate of transmission along the conducting
wire, and on the rate of progress of the messenger who
delivers the telegram ; but it is obviously this last, slower
rate that is of really practical importance in determining
the time of transmission ”.

The view is becoming more and more pronounced that
reactions of higher orders are very rare. These are
supposed to be made up of a series of consecutive simpler
reactions, and of these the bimolecular reaction appears to
be the most frequent. The reason is at once apparent if
we consider the subject from the molecular standpoint.



THE INDEFINITE INTEGRAL 153

“In illustration, imagine a substance, say gaseous for
simplicity, formed by the immediate spontaneous com-
bination of three gaseous components A, B, C. When
these gases are mixed, the chances are very remote of the
occurrence of the simultaneous triple encounter of an A, a
B, and a C, which would be necessary to the immediate
formation of an ABC; whereas if ever formed, it would
be liable to the normal chance of dissociating by collisions ;
it would thus practically be non-existent in the statistical
sense. But if an intermediate combination AB could
exist, very transiently, though long enough to cover a
considerable fraction of the mean free path of the mole-
cules, this will readily be formed by ordinary binary en-
counters of A and B, and another binary encounter of
AB with C will now form the triple compound ABC in

quantity ’ (Larmor, *“ Proc. Manchester Phil. Soc.,” 1908).

90. REACTION CONSTANTS WITHOUT INTEGRATION

W. C. Bray (“Journ. Phys. Chem.” 1x. 573) obtains
the reaction constants without integration by the followine
method. Suppose the equation of the reaction is

2 _K@A- 9B - 22

Then we take any simple function of A, B, z, ¢ which
represents the course of the curve near a point (z, t) for
which we require dz/dt, and differentiate it. Thus, in the
above equation, if B is large compared with A, we can use

Z—f = k(A - z)
to represent a small portion of the.curve near (z, t). Then
k=llnL : K——-i
: t A-z " B

The preliminary constant (k) is calculated from as
simple an equation as posgible, and the final constant (K)
derived from it by means of the differential equation. The
value of % must be calculated from pairs of consecutive
measurements, i



154 HIGHER MATHEMATICS

Let k, = value of k for (¢, z;), .~ g’:—:
L (AP R ) AT
But -Z_f KA -2)B -2,
Y -KA-z)B - o),
. K - k kﬂ

B -lzl)z T BT

= k}(A - (171),



CuaprrERr IX

THE INDEFINITE INTEGRAL (CONTINUED)
' 91. VELOCITY OF REACTION x

METBOD of treating the velocity equations of re-

actions which leads to useful results has been

described by G. W. Todd (Phsl.- Mag., 35, 281, 1918). A

reaction between two substances, A and B, of the form :—
mA + nB — one or more products,

-in which the reverse reaction is negligible, is considered.

In this case the law of mass action gives for the velocity

of reaction:—
dC o » .

i T kE.Cy.Co=Fk.[A]”.[B]
where C,=[A], Cs = [B], .
is a useful notation for the concentrations. Todd shows
that it is possible to plot curves which will apply to all
reactions of a similar type, so that a separate mtegra,tlon
is not necessary in each case.

If the reaction is Bimolecular : A + B — products, the

velocity equation is:—

dz
= ki - z)(b — 2)

\N/b =
kat (1 - ) G-3)
K1 - X)(p ~ X,
~ where z/a = X = fraction changed; X = ka; p =b/a.
(i) If the initial concentrations are equal, @ = b,

Sop =1,

I

X

~ Kt = _[(1 X =1- %X
155
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The maximum value of X is 1. Giving X values from

0 to 1 we find
X=01 2 -3 4 5 6 7T 8 9 10
Kt =0 111 250 428 -666 100 150 233 400 900 o

These are plotted in curve A(p = 1).

(i1) If one of the substances is in excess, say b/a = p>1,
then 1 rd - X)

K¢ = T_—E{log, p - X [

The values of K¢ are again calculated for different
values of X from 0 to 1, and with values of p, say 1'5, 2,
3, . . . and a series of curves B, C, D, . . . obtained.

These curves may now be used as follows :—

(1) To find %, the velocity constant: measure the -
fraction X of the substance changed in a given time ¢;
thence read off from the curve the value of K¢, from which
k is found by the relation: %k = Kt/at.

(2) To find the fraction X changed in a given time ¢.
This requires a knowledge of ¥ and the initial concentra-
tion. Thence Kt is found, and X read off directly from
the curve.

If the reaction is Termolecular : 2 A + B — one or
more products, then

gtf = k(@ - 2)Xb - z)

Z\/b oz « ®
=kt (1-2G-2
With the previous notation this gives, when K = %a?,

aX
t = . .
K = i x5
@) If the initial concentrations are equal (p = 1)
Ki = J ax @ - X)X

1-xF-ta-x¢
which gives :—
X=1 2 3 4 5 6 7 ‘8 9 10
Kt =117 -281 520 ‘889 15 263 506 120 50 o
These are plotted on a curve, which applies to all ter-
molecular reactions with the initial substances in equivalent
agmounts,
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(ii) If B is in excess, p = b/a>1, then
x 1 p(1-X) X(1-p)
Ki = ja/X)?(p—X)‘(l—p)*{ og.”, "5~ 1% )
The values of K¢ are calculated for different values of

p (1'5,2,25,3 ... ), and a series of curves. obtained.
(ii)) If A is in excess, p = b/a <1, and then
ax 1 p-X X(p- 1)}
= ) = l b y
Kt = [ X0 G 17 8 5= 0 - %)

where K = kb®. Another series of curves may be plotted
for different values of p, as before.

The cases of quadrimolecular reactions, and the figures
of the curves for the various cases, are given in the original
paper.

The application of this method to the rate of oxidation
of nitric oxide admixed with air, which is an important
technical problem, will be found in the publication, ““ Phy-
gical and Chemical Data of Nitrogen Fixation,” Munitions
Inventions Department Publication, H.M. Stationery
Office, 1918.

The above calculations refer to constant volume ; if the
volume changes during the reaction (e.g., 2NO + 0,=2NO,),
they require modification if the pressure is maintained
constant throughout the reaction. In the case just men-
tioned :— )

XNO + NO + O, = 2NQ,
let @ = half the number of mols of NO in the reaction
space v,
b = total number of mols of oxygen in volume v,
z = half the number of mols of NO converted,
= number of mols of oxygen used up.

Then 4 (G5) = (5 zﬂb o)
or Lds _zdo koo Ly

The volume is now proportional to the number of
molecules present, at constant pressure .—
v 3Ba(l+ aX)+ (- a)

vy 3a + (b - a) ’
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where X = z/a, a = — 1, since the diminution of volume
18 one volume in three volumes. Thus

v 3u,a dX
&S+ (b-a- - (B)
Substitute (B) in (A), putting z/a = X bla =p>1 (B
‘in excess) :—
dX ‘ 1 - X)(p - X)
Ldt T 71(1,0) 14 3a X
23+ P
127
LTI P T L
o 1 - X)(p - X)

1 2 o p1-X) p+1 X
=p+‘l{(1)—1)2 X tp-1°1 -X}
If na molecules of inert gas are present initially as
well as 2a¢ molecules of A and 4 molecules of B, we have
v 3al+aX)+ (b -a)+ na
v, 3a+(b—a)+na

’

t - J‘ 2 + p Trp IX.
1 - X)(p - X)
Correspondlng equations with A in excess are found by
a similar method (¢f. Todd, Phil. May., 88, 435, 1918).
_ 92, GENERAL EXAMPLES FOR EXERCISE

The following are to be worked by the methol of
Partial Fractions.

@) L n m; =5 - log V1 + 2%,

) = xzdz i - log /1 - 2%

® - ‘°g2'ff—11-

@  [ErLa-lge-D- 2y

®  [oiGve- log(ii 232-

O [t g
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The following are to be integrated by the method of

Let u = f(z),
= f(z)dz. 4
Thus f(z) may be replaced by u, and dz by f(Tu) in the

integral. After the integration has been performed, re-
place the original variable.
dx
M (1 + xt) .
Put 2% = u, i

.dw—du

- J‘m(1+x2) 1}J‘u(1+u)_’},l‘ 1+u

z

=1}10g1+ élgl+ 2 = log 7 —.
xdzx
® [ = tloggy g
zidx
@ (@ + bx)? ’
Pata+bdbz=2 . xaz;a;
bdx = dz . dz = éb—z
2%z J (z - a)2 dz
(@ + bx)® "bat
1 (z - a)'dz
E 2
1 (2 - 2az + a“d
)
i 1(/1 2a a?
= B‘J(E - F e
1 2a a’
- =T)§<10gz+_2——ﬁ>

1 3a? + 4abz
= b—s{log (@ + bz) + B@ + ba)? }

N
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dz
10) zia + bx)¥
A double substitution is necessary in this exampie,
Let z = L odr = —-d;.
z Z
JJL_ - o[ A
ziHa + bx): b+ az)®
Now put & + az = y,
= ¥b
a
dz = l}_?{
a
J_ﬁ‘?z_ - - Juf dy
b+ az)? 37
1((y - b)“’
-
1 2b | b
=‘a@'g+ﬁ@
1

= —&g(y—Zblogy—?;>

=\2bl a+bzx  a+ 2z
8% o’z + bx)
2c 3

b b
an J(a—5§,+0z>d1‘—-az+é~2+—gz

(@ — x)dx )
12 J Qaz - zz)v‘z = (2az ~ %)

(13) Jlggfdm = 3(log )®. (Put z = ev)

m + ne)dr _n >
(14) ,[a ~ha + ozt Glog (@ + bx + cx?)
_ 2me - an‘

a + bz + oz¥
(15) Arrhenius used the followmg expression in hig

study of the hydrolysis of ethyl acetate:—

1+ mz -~ na?

(a - z)(b - z)dm'
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To integrate, divide out by the denominator

1+ mz - na* +1+abn+ {m - nla + b)}:c

@-ob -2 e (@ - 2)(b - z)

Pat 1+ abn=p, m - n(a + b) =g¢q, p and g being
constants. Then assume

P+ qx A B
(a—x)(b—x)—a—x b-=x

By multiplying both sides by (@ - 2)(b - z), putting

z = @ and z = b in succession, we readily find ;}—

_ _ptag
A a-25’
p+bq
B-= P

. [1+mz-nz*, p+ag 1
j(a—z)(b—z)dm“."{—n_a—b a-z
p+b 1 }dm
b -z

- — P+ aq _ _p+gb B
m+a_blog(a z) a_blog(b z).

(16) Noyes’ method of finding the order of a chemical
reaction is an application of the method of * Equal Frac-
tional Changes ”. Different initial quantities or concen-
trations of the reacting substances being taken, the times
for the conversion of equal fractions of the orlgma.l
amounts are determined. The general velocity equation is

_dc 1 1
t. N
o = kd -1°C!
Let ,C, be one initial concentration t=0

R } 1 (01}-1 - 10(,}-1) = k.

Let ,C,, ;C; be two initial concentrations (¢ = 0); btl, ta
the times for equal fractions to be transformed, so that
(ICO - G;O/]CO == (300 - Og)/qu -.. 100/01 = 200/02 = a, S&y.

11

= kt + const.
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1 1 1
)=kt
['hen P | (Cl"“l 100"—l> 1

1 1 1
i ilgra o) =
GG - G Gt G
o (200"—] - 02"—1) Cl'MI 100"_1 2
LG gy logh - logt
Gt -a) - g log ,C, — log,C,

(17) In the case of opposing reactions, the products of the
direct reaction interact to reproduce the original substances.

Ezample :—

@) CH,CO,H + C;H,0H - CH,CO,C,H, + H,0,
Gi) CH,CO,C,H, + H,0 - CH,CO,H + C,H,0H;
or, expressing this in one equation,
CH,CO,H + C,H,0H > CH,CO,C,H, + H,0.

Let a, b, ¢, d denote the initial concentrations of acid,
alcohol, ester, and water ; and let the amount of change
after a time ¢ be =,

The velocities of the direct and reverse reactions are
% = k(@ - 2)(b - 7),
Qx—-k(c+z)(d+x),

hence the velocity of esterification is ,
o _ 00 L k(e - a0 - o) - Ko + 2)d + 2.

To integrate this equation we put :

dzl[k(a- 2)(b - z) - ke + 2)(d + 2)] = d¢.

The denominator on the left can be written

(k,ab — kyed) - {ky(a + b) + Eyc + d) e + (b, - k)z?;
or dividing by %, and putting %,/k, =
(Kab - cd) - {K(a + b) + (c + d)w+ (K - 1)a?
which is of the form

lz* + mz + n.
To factorize this expression we proceed as follows :—
Liet a, 8 be the roots of the quadratic equa,tlon
Iz + me + n =0,
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1 1 1
e 0 ) = Ry
Then 1 (Cl,ﬁl 100"_1) 1

1 1 1
- =kt
n -1 (C2 U O “‘) 2
R O S K O S O S

TUECTT =G ) G Gt

Or i (=@ & ., _y, logh-logt

TGl - -t log ,C, - log ,C,
(17) In the case of opposing reactions, the products of the
- direct reaction interact to reproduce the original substances.

Ezample :—

# CH,CO,H + C,H,0H - CH,CO,C,;H; + H,0,
@y CH,CO,C,H, + H,0 - CH,CO,H + C,H,OH;
or, expressing this in one equation,
CH,COH + C,H,0H = CH,CO,C,H, + H,0.

Let a, b, ¢, d denote the initial concentrations of acid,
alcohol, ester, and water ; and let the amount of change
after a time ¢ be z.

The velocities of the direct and reverse reactions are

% =k(a - 2)(b - ),
da:

= f(c + 2)({d + 2);

hence the velocity of esterification is )
gf = % - % =kla - )b - 2) - ke + z)d + z).
To integra te thls equation we put
dzj[k(a- 2)(b - ) - kyc + (@ + x)] = dt.
The denominator on the left can be written
(k,ab — kyed) — {ki(a + b) + ke + d) &+ (k- k)a?
or dividing by %, and putting %, /%, =
(Kab - cd) - {K(a + 8) + (c + d)a: + (K - De?;
which is of the form
lz? + mz + n.
To factorize this expression we proceed as follows :—
Let a, B be the roots of the quadratic equation
W+ me+n=0
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1t ig proved in the appendix that
-m+ Jm? - 4ln

&= 2l S
- m - Jfm® -~ 4in a
B = 2l

On comparmg these results with the expr&ssmn to be
factorized, it is seen that

l=K-1, 4
m= - {K(a+b)+(0+ d} = ‘Qsa;‘y’
n = Kab - cd; k

thence ‘

1
2= 3R - 1) 1)"{Q + JQ - 4K - 1)(Kab - cd)},

1
8= Q(T——T){Q - JQ! - 4K - 1)(Kab - cd) }

Put JQ? - 4(K - 1)}(Kab - cd) = P \
Q+P 3 = Q-P \

2K - 1y 2(K - 1) k)

Thus (Kab - ¢d) -~ {K(@ + b) + (¢ + D)}z + (K - 1)z

Jeoa =

= (@ -ax- 8.
Now, to split into partial fractions, assume )
1 _ A + B '
@-ae-B) z-a z-§ \\

and, by the usual methods, it is found that
= (R - 1)P,B= - (K - 1)/P,
The expression is now integrable

‘= {2(K ~ 1)2}{2(K1_ log [Q + P - 2(K - 1)z]

i
1
- o8 [Q - P - 2K - 1).1:]}

To find C put = 0, t = 0, and simplify
L1.E-1,,Q-PIQ+P-2K -1z _,
"t P Q+PQ-P-2K-1z] *
(18) M. Bodenstein studied the rate of decomposition
of hydriodic acid heated in a glass bulb. Let 1 gram
molecule of HI be heated in a v litre globe.
HI +HIZH, + I,
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2 k(57 - (),

where l-2_ concentration of undissociated acid.
Put kl/k'a’ =
dr - 2
J‘m—_—g kzt/v .

1 — A o B |
Ki-27 -2~ JEQ- o)+ JRA -2 -2

L 1=(JK + 1)A(—E— - z>

Put

JE +1
— K
+ (VK - 1)B(jé_ 1~ x).
JE JE . .
) Put =z = JK_: T and N _’;1 In succession,
A= - :/_IS:_I, B = “2{_1_1
2J/K /K

The student may now complete the integration :
1 ~EK(1 - 2) + 2
QJKIOg’J—I'Z(l——— = kgt/ 2 .

. bt + 1
(19) Integrate A 8p 0

[—5+15z—blog @- 1) + 41 log (z—Q)]

(20) The Clapeyron-Clausius formula (p. 126) in the
form :—

by partial fractions.

n

ldp _dlogp _ » )
pdl— dT RT? ) )
may be integrated on the assumption that A is indepen-
dent of temperature to give

B
logp———BTT+const = A T o . (2)
where A and B are constants. This is a vapour-pressure
formula, giving the vapour pressure of a liquid as a func-

tion of the temperature. If we assume that A (the latent
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heat of evaporation) is a linear function of temperature :
A =%, — aT, we find
logp=-%,fl Rlogt+const A——%—Clogt(&»
This is Kirchhoff’'s vapour-pressure equation. Julius-
burger (4dnn. Phystk. [iv.], 3, 618, 1900) found that this
equation gave excellent results with pure liguids even up
to the critical point; Dr. G. N. White and the author
find that it applies to aqueous solutions of sulphuric acid
(the composition of each solution fixes the values of the
three constants A, B, C).
If we consider solutions, the osmotic pressure P takes
the place of the vapour pressure, and A is the heat of
golution. But P = CRT, where C is the concentration,
. dlogC _ A (1a)

74T RT
Van't Hoff (1886) assumed that A was independent of
temperature over small intervals, and thus found
B
log C = ~»R—T+const =A - T

This equation has been shown (e.g., by Noyes and
Sammet, Zeit. phys. Chem., 43, 513, 1908) to give good
results with a small temperature range. R.T. Hardman
and J. R. Partington (Trans. Chem. Soc., 99, 1768, 1911)
extended the range of the equation by showing from ther-
- mochemical measurements of Thomsen that the heat of
solution could be expressed in the form A= %, - aT.
Thence

(2a)

I%C=A—g—m%T .. Ba)

This formula gives excellent results even with very
concentrated solutions, e.g., with cane sugar :—
T abs. . . 283 313 333
Gmos. per 100 gm. . . .
water (calcd.) 1898 2398 2884
Do. obs. . . 1905 2381 287°8.
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922 + 9z - 128
2 - 522+ 32+ 9

[—810g(z+ 1) +%+17log(z—3).]

(1) Integrate by partial fractions.

3
22+ 1
(22) Integ‘ra.te Z(E——m. ‘ )
2+ 1 A A, A,
Assume o D " e T @ T @- 1)
A, Cz+D B

+ P ’
-1 22-z+1 z+1
e 1A+ A - D+ Ay - D2+ A - DH @+ 1)
+{B@®-z+ 1)+ (Cz + D)@+ D}z - D*. o))
Putz=1 .. 2=2A, . . . @)
“A =1
From (1) and (2) by subtractlon
2Z-1=AE@-D+{A+AE-1+AE-1%..
x(@-1D)@*+1)+{B@*-z+1)+ Cz+ D)@+ 1)}~ 1)“
Divide by = ~ 1, then
z+l=A@+2z+ 1)+ {A+ Ayz- 1)+ Ae - 1)}
x (z*+ 1)+ {B(x?- z + 1)+ (Cz+ D)}z + 1)}(z - 1)* 3
Put z = 1, then 2 = 3A, + 2A,, . “4)
coA = -4
We subtract (3) and 4), divide by = - 1, put z = 1,
etc, and so on, until we have found A,, A,, A3, A, Bl, C,
and D. The separate fractions are then integrated, a.nd
the result is
_ 1 1. 1
3z-1F "4z - 1¢ T 4@ - 1)
+ xlog(z + 1) - §log (2% — z + 1)

+ log (z-1)

93. INTEGRATION OF IRRATIONAL FUNCTIONS

An irrational function may be transformed into a
rational function of a new variable by suitable substitution.
For the general discussion, see Liamb’s ** Calculus,” §§ 75,
85. We shall indicate the nature of the process by the
consideration of particular examples.
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Ezxamples :—
@ Sz V1 + z.dx,
Substitute =z + 1 = u?,
ez =uwl-1,
s de = 2udu.,
fzJ1 + z.dz = §(u? - 1)2udu
= Nuidu - uldu
= 2 - 3w
3@+ 1Y - %(a: + i

v; 2z + 1)*{~ - &l

ﬂ

@

gives
,,/1

udu _ du
:le+:v (u 1)u~ w1

log " 1, by Partial Fractions,

JI+z-1
= logN 2" =
gN/1+av+1
dz
®) z 5 ~ 6z®
Putx5=]i§
n
. blogz= - 2logu
Bde = - 20
z n
dz 2 du
r— = — -, ,—,
T 5 wu
J‘ dz 2 dw
z b — ba® 5[“ /5__5_2
u
ar__ du
= T 5] Jhut - 6
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Now
- dz

dflog (x + Jz* + a?)] = ﬁ,

hence the last integral is

- 5—3—-—5‘log (u + \/—1ﬂ——§>

The substitution of z % for » will complete the inte.
gration. \

may be independently worked as follows—a very instruc-
tive example :—
Let a® + 2% = 22,
.. rdz = zdz,

. dz _dz _dz + dz

"z 2 T+z’
by the very important rule of the Theory of Proportion,
viz. if a geries of fractions are equal,
sum of numerators

sum of denominators’

each fraction =

Proof ;—
Lt &%y,
Then dz = kz, and d:c=kz,
oo dz + dz) = k(e + z), ®
dzr + dz k—@—@
z+z Tz "=
HenceJ J'd:c de + dz _ [dlz + 2)
Ja? +z2 z+2 ) xz+z
= log (@ + 2) = log {& + .Ja*+ ¥
(5)JJ2— = log {& + Jz* ~ a¥

T
() ZN/al_a;zzfaﬁ( jg—l
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. 1 a a? $
g "'a‘°g{5+(;2"1)}
‘ =1 2
a%q+ Jat -t
(1) A double substitution is required in integrating
I dx
et -1
Put z = 1/z,
log z= - loge
dz/:v = - dzfz
-1=1/2-1=(1 - ,22)/.22
‘ .z
. dz _ 3 _ J‘zﬁ(— 2d?z)
* Iz4(zz - 1)5 f(l ~ Za)% a- 22)}
P

Now substitute 1 — 22 = u?
v - 2zdz = 2udu,
or - zdz = udu.
Also 22 =1 - 4?
. J'ZZ( - 2d2) _ J‘(l - uudu - J-(l - w)du
(]_ _ z2)’} uU

—-u— 3—u)
uv - - «/13‘Z<3_.1+z2)

- “/zT‘_1<2 + }:)

3z xz?
2z + 1
= T35

2 -1,
(8 Integrate
J’ dz
a1+
@z - D + a:"’)’}.]

3a®

Put 1+ 2t = 2%2%, [
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94, METHODS OF APPROXIMATE INTEGRATION

It may be proved that every continuous function has
an indefinite integml This integral may not, however,
be expressible in a finite form by using the ordmary
functions of mathematics.

Examples :—

az dx -
%2 f —
'[e 4, .[z dz, J1+ 2
cannot be integrated in finite terms, because we do not

know any ordinary function which, when differentiated,
gives as a result ¢”, etc. Now such integrals often occur

in practical work. Thus e~ “dz is a very important in-
tegral in physics, occurring in the mathematical treatment
of heat conduction (Fourier’s theorem), the secular cooling
of the earth, the kinetic theory of gases, and the path of a
ray of light through a continuously varying medium. Two
lines of attack suggest themselves.

(1) Invent a new mathematical function.

Thus, if we had been ignorant of the logarithmic

function, we could not have integrated the expression J_ %"3,

and such a function might have been suggested by an
attempt to integrate this particular expression. (Cf.
Hardy's “ Course of Pure Mathematics,” Cambridge, 1908,
chap. 1x.) Various new functions have arisen in *this
way; for example Legendre’s Elliptic Functions, the
Error Function, ete.

(2) Obtain an approzimate value of the integral.

The method most generally employed is to endeavour
to express the function as an infinite convergent series,
which may then be capable of integration to any desired
degree of accuracy. This is called Integration by Series.

Let y = ¢(@)
be the function we are given to integrate. ‘

Assume that ¢ (@) may be expressed 1n the form of an

infinite convergent series :—
¢@) =ay+ax+az’+...+aa"+...
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When we assume that a function can be expanded
into such a serles, containing only algebraic terms, we
assume that it is a continuous function.

The constants a,, a,, a,, . .., which are independent -of
the value , are at present undetermined. If these con-
stants can be found up to a certain point in the series, the
value of the integral can be at once found to a degree of
accuracy corresponding to the magnitude of the terms of
the series which have been rejected. The integral is in
fact

\ 1 1
J(]:(x)da: = aye + Qale + éazws +...+ @zt + |

n+1

The inﬁestigation of the next paragraph enables us to
find the values of the constants a, a,, a,, ... in the series,

95. MACLAURIN’S THEOREM

Maclaurin’s Theorem determines the law for the ex-
pansion of a function of a single variable in terms of a
series of ascending powers of that variable.

Let u = ¢ (),
and assume that ¢(@) can be developed into a series of
ascending powers of z, this series being uniformly conver-
gent. Then the derivative ¢'(z) may be obtained by differ-
entiating the seri¢s term by term ;—
@) =ayt T+ at+ ... +ax"+ ..,
L@ =a + 2+ ...+ na T L

The resulting series will also be convergent, and the

process of differentiation may be repeated.
¢'@ =2+ ...+ nn - Daz" "%+ ...
@) =2.3.a3+ ... +nn - L(n - Yaz" "%+ ..

'@ =nm - 1Hn -2 ...3.2.1.a,+...;

a constant vanishing at each step. With the “factorial ”
notation 21 =1.2; 83!1=1.2.3,etc.; nl=nn-1)...
2.1y :—
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S @ =ataztarttat.. a2+ ...
¢ @) = a, + 2z + Bagz? + ...+ nax" "+ ...
P'@=21a+3lag+...+nm-Daz""*+...

¢"@) =n!la,+ ...

These equations being true for all values of z, the con-
stants a,, @, @y, . . . a, have the same value for a particular
form of ¢(x) whatever value we assign to 2. Let us
asaume that z = 0;—

¢0) = q, Csoay=¢0);
¢0) = a, coay = ¢(0);
"0y = 2!ay, e Gy = Ql—!¢>"(0);
¢"(0) = 3!a, Sy = gl—!¢”'<0>;
¢"(0) =nla, Soa, = nl!¢"(0).

$(0), ¢'(0), ete. imply that z is put equal to O after the
differentiations have been performed. Substituting the
values of a,, a,, . .. a,, we get

2 n
p@) = $O) + 2¢O + 578"0) + ...+ "0 + ...
which is called Maclaurin's Theorem.

'96. TAYLOR'S THEOREM

Let u = ¢z + 9).

Taylor’s theorem determines the law for the expansion
of a sum or difference of two variables in terms of a series
of ascending powers of one variable.

We assume that

P+ y) =a,+aytay+...+ay+...
where a, a,, a, ... are independent of y, but may be
functions of z. Now since the series is assumed to be
true for all values of 2 and y, it will be true when z
assumes a particular value &

PE+y)=aj+a Y+ ayylP+. .. +ad Y+ .
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Put z= E+ Y, - y=2z— &, and, by Maclaurin’s theorem
W=p@=a+a\@~H+a@z-+.. . +a,z - "+

¢'(2) = a’; +2a5(z- &) +3a,(z-8%+...
¢’ (2) = ( 2.a, +3.2. aa(z—f)+...
¢ (2) = . 3.2.a,

: +4.3.2. a,4(z -H+.
Maclaurin’s theorem deduces the values of @y, al, ce

on the hypothesis that « = 0, but in the present case it is

required that z = £&. Letz=§¢ . y= (2 - § = 0,

¢ =da, | o ay=¢@®;
$O-a, O d- g0
FO =2 = 5O
$TH =31dy L dy= 5@
R B
$"E =nta’, | = ooal= i¢’(i:’),
ChE+ Y =9 + ¢ (E}y + qb”(f)m + ¢"’(E)3,
+ ¢"<§>y

But £ being any value of z, we put £ = =,

2 3
L= @t y) = ¢@ + @y + $ @+ ¢ @5+
\ ! !
\ ¥
+ ¢"(x)%—, +
which 18 Taylor’s Series.
97. EXAMPLES ON MACLAURIN’S THEOREM

@) Let u = (@ + o)*
d@) = (@ + 2)" s $0) = a
'@ =n@+ )"} s 0 = na’ 1

(@) =nmn-1).@+ x)""? S d"0) = nin - a2,
ind so on. Substitute in Maclaurin’s series :—

ml
@+ 2"=a"+na"~ .z + nn - 1)a*~ 57 +

21
which is the well-known Binomial Series.
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Now this is true for positive integral values of n for all
values of x ; but if n is negative or fractional, the expan-
sion fails unless = lies between + 1. In the latter case the
assumption virtually made on expansion into a series is
invalid, ie. ¢(z) cannot be expanded into a convergent
power series.

(@) Integrate (1 + 2)! in series.

A+t =1+%c- 22>+ &2 - ...
e+ x)gdx =z + $x? - Aot + Kzt~ ...

NOW if z = 01, say,

= 0:00001, and ¢yz* = 0-000001 approximately.

The remaining terms are still less, and it will probably
be sufficient to stop after the fourth term.

(b) The coefficient of expansion of a gas, liquid, or
solid, is defined by the equation

Ve= V1 + at),
where V,, V = volumes at 0° C., # C,, and a is the co-
efficient of expansion. This equation may be written
V.= VO + at.
where a = Vya = constant. .
Liet m, p be the mass and density of a given amaunt of
the substance, then m = pV,
s~ polpe=V,[Vy=1+ at,
“p=p/L + atb),
= p,@ + at) 71,
= p,1 - at + (at)? — (a)® +..)
by Maclaurin’s theorem.

In the case of mercury, a = 000018 ; in the case of air
a = 0:0036.

Thence show that if p is required to be accurate to 6
decimal places, all terms after the second may be neglected
in the case of mercury, but not in the case of air,

dz 1 ., 1.8
()Ia S ST S W
@ A +a) " de =z - 32+ §2° - . ..

»+ ...
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@ Let u = ¢,

2 3
thene"=1+x+;—'+gﬁ+...
(@ Ifu=a,
2 .
u=1+z.loga+%(loga)2+...

® If u=e"* show that
z? 2t

u=1—z+m—§—!+...

—a? i.{. z - i +
© Ie dz=z -7 3%1 95 1.2.3.7""

@) ¢@ =log 1 + z).
@) =log L +2z) . $0) =0
Y@ =1 LeO =1
and 80 on, |
2 3
.'.¢(z)=z—g‘+§—— ,\\
Also show that if : . o

$(@ =log (I ~ z),
¢@) = -z - 42 - 3B - ...

These are convergent only if z<1.

e

’ 98. EXAMPLES ON TAYLOR'S\‘\THEOREM

ey Let u, = ( + y)™
Puty=0 .. u=2z"; N
@) = z"; «
(@) ="wa" "
¢’ @) = nn — a"~?; etc.
2
Bub u, = ¢@) + ¢'@) .y + ¢" @) g—, e

=z +na" "1y + n(nz_'l)
(2  Letwu, =a"*’

= a",a’,

z Tt 4,
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Puty =0, u = a*;
@ = a*;
¢’ @ = a*log a;
. ¢"(@) = a® (log @)?; and so on.
Thus %, = ¢z + y)
. 2 2 3 3
a’(l +y.loga + %(log a) + %(log a) +.. )
3 Let u, = et
h? A

u, = ¢ + he i gt

4 Letu,=(@+y+ a)t.
U, = (:v+a)’1‘+1}(a:+ a)_q‘.y....

L]

Examine the case z = - a.
5) Lietu =10g (z + 7). -
2 3
u1=logz+g— 2%—2+3%—3—

6 Let v =1log (n + R);
where % is small compared with #, and 2 <1.
log (n+ k) =logn + @—£+
n 20

Tf <1 and n = 10000, g<o-ooo1,

2 ,
Qhﬁ < 0:000,000,005, which is quite negligible.

P

Hencelog (n + k) = logn + g;

and log @ + 1) = log n + 71;

log(m+ h) —logn *
_ Thence logn+1) -logn 1’
the familiar ““ Rule of Proportional Parts ” in logarithms.

l+z z 2 ab
Mg =2{f+5+z+.. .}
i1+2
1-a

This can be used to find log N, where N>1,if N =

S .
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99. SOME EXAMPLES ON INFINITE INTEGRALS

(1) The velocity eqlia,tion for a bimolecular reaction is
dzfdt = k{a - z) (b - z).
The integral of this has been shown to be

211 bla - z)
k—t‘a—ib'lOga(b—w) . . 8]
If a = b, this reduces to
k = l .:_Il .lo = 1 9
g1 o
The fraction g 18 “‘indeterminate’”. The case @ = b

may, however, be developed by an application of Maclaurin’s
theorem.

Fora—w=a(1—g),

b-a= b(1 - %)
- o 5= g = o8 =1y - loe(1 - ) - (-

Develop the logarithms by the logarithmic series (ex-
ample 2(d) on Maclaurin’s theorem) —

log (1 - zfa) = { + 3 “’+%a3+ }’

logL-afb)= - {2+ 45+ 35 +...),
whence

ogs =5 == - 2) + 3~ @)+ 55 - )

a_b w2a2_b2 x3a3_b3

= 7ab +Q_ b Ty e T
_ :1: a+b = a®+ab-b?
=D gty e )
Now substitute in (1), and (& - ) cancels :—
1 ba-x) z 1 2 a+bd 2® a®+ ab - b
a - Oga(b z) 1 ab+2 atb? +~' a’b®

12
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Put a = b,

. 1 b(a-z):{_g_ z8  z
Lxm[a_bloga(b_m) =St It ot
a—>b

z z @

=(72(1+E+E§'+'.')

-z ___z -

Tt _g—a(a—a))”
(-3

on summing the geometrical series. Thus -
1 z
“ta@- o)’
which has been found independently by mtegra.tmg the
equation
dz/dt = k(@ - )2
] If dzjdt = k(@ - 2)(b - 2)?,
find the integral when a is very nearly equal to b.
Add and subtract b - ) ~%:—

dz/(@ - z) (b - 2)?

=|: ! + 1 I :ld:c

0-2? @-2)b-2)* (b-2x)?

[ _a—b{ 1 a-b L
b-x® b-z (b 2 b-z' la-2) -2

_ [ (a b? (@a-b)? »
TLe-o (b :c)‘* G-z G-met .]d:z:
a geometrical series which is convergent if (@ - b) < (b - 2),
which may be satisfied by taking a sufficiently near b,
before developinginto a series. Integrate term by term :—

1, 1 1 -5 1 1
"=Z[§{(b-x)2"ﬁ}‘QT{(b-x)s“l?} :l

If @ is nearly equal to &, all terms after the first bracket
may be neglected ;—
p=if 1 1
2L - 2 B
a result which is independent of a.
+
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® % 2
cannot be *ntegrated in finite terms.
'"\& 2z2 adz®
=1+ ax tigat1g3gt:
f“' 1 liat aﬁx a’z? +
b 127123

P \ aﬂzz aaxz
z d“*l"g“ @+iooa%v19.3.37%

. a result which will be required later.
@ gi J“de
g;"y Let € = v, - 1fz = u,

dv =€, du = :]?

Now we have by the result of the differential calculus
d(uv) = vdu + udv,
o Jd(uw) = Yodu + fudo,
. fvdu = wv - fudo.
Comparing mth the values of u and v selected, we see
that
J-——da: —_ +\_[-—da:
z
e l 2 x3
- -Gtlgster ooty gyt
This iz an example of *“ Integration by Parts .

©) Jeﬁ’ S Rl

may be integrated in finite terms by a suitable transfor-
mation.

e“"—1=e"<e"—%;,>=e’(e"—e"),
1

22 — % p%* 2| = px(e* -

€ +1—e(6 +e,) e + e ).

Jeﬁ: - lda: = je’ LA ['d____(e‘ + e-:) = log (¢ + ™).

e+ 1 eE+e* J e+e”
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6) |eferde = €,
since de’ = e*dz.
exdzr " 1
@ J(1+z)‘ Hl ¥z T %

. 1
=J1+wd(eﬁ +jed(1 +:v>
- 26"~

1+




CHAPTER X

DEFINITE INTEGRALS
100. THE DEFINITE INTEGRAL

HE process of integration we have so far considered
merely as the inverse of differentiation; so that if
¢’ (@) be the differential coeflicient of a function, the prob-
lem of integration has been to find ¢(z), the function
from which ¢'(x) was derived. Another very important
meaning which may be attached )
to integration is to regard it as % 'P"\
the process of finding the limat- '
ing value of @ sum, when the
terms tend to become infinitely
small, and their number infi-
nitely large. We will consider
the matter [rom a geometrical a
point of view. Py

vLet the line OR, ==, be §— o —
increased continuously from z, : o Ru .
to OR,, = =,, say by the uniform
motion of a particle placed in the line. Let R,, R, be
two successive positions of the advancing point very close
together. Describe squares on OR,, OR,, OR,, OR,,

Let R|R, = dz,
+R.P, + RP) = =,
.. gnomon QP R; = 2zdz.

As P, advances along OP,, whilst R, advances along
OR,, the figure Q,R, is formed continuously from the in-
finitesimal gnomons like Q,R,, and the total area is the
sum of these when their size is diminished indeﬁnitely,

’ 181

bp
-]

9

Fia. 26.
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Area = 3%zdz when dz ~ 0
= Lim 3%zdzx;
dr -0 .
and to indicate that the summation is to extend over a
range from z = z, to ¢ = z,, we write this \
Lim ::x,"
da: -0 zﬂ7d-’v.

=%

This symbol we shall now abbreviate to
fz"Qxdx;
o

which is called the Definite Integral of 2x between the
limits of integration z =2, and 2=z, (Note the
difference in meaning between ‘“limit of integration,”
and “‘limit" as used up to this point.) '

But area = 0Q, PR, - OQ,P,R,

=11, - 22,
- J i),

The definite integral is therefore equal to the difference
between the values of the indefinite integrals when & = 2
and ¢ = x, :— '

J-"sza: =22, - 2%; Co»
a‘/0
also 2xde = 22 + C
o if @ =z, this = 22, + C;
if z = 2, this = 22 + C;

the difference being 2%, — z*,.
This is denoted by

x
n

[x‘l:l — xzn _ 120;
X

]

i

the square brackets indicating that the value for z = x, is
to be subtracted from the value for z = 2,.
We shall now generalise this reasoning.
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101. THE DEFINITE INTEGRAL

Let y = f(z)
be a function of  which is finite and continuous from
z=g,toxr =z,
_ Let the range z, ~ z, be subdivided into a large num-
ber of small intervals », - zy, 2y - z,... 2. — #,_;. BErect
ordinates from ), #,, . . . to the curve, and draw inner and
outer rectangles as shown.
e, -zy=2-2,=...=2a, - a,_., = O, the differ-

y o )

/

x‘ 12 X a DC,'
Fia. 27,

‘ence between the sums of the outer and the inner rect-
‘angular areas is
(!/n - 'yo) 8:0;

" which can be made as small as we please by increasing the
number of intervals and decreasing their size. Each sum
therefore approaches the same fipite limit when dz is
diminished indefinitely and this is defined as the area en-
closed by the curve, the extreme ordinates z = z, and
& = z,, and the axis of @,
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The sum of the inner rectangles ig

J)dz + fz)dm+ ... + fz,_ )0
=f(@)dz + f'(z, + dx)dz + f'(x, + 202)dz + . ..

r=n—1

= zf (&, + rdz)bz.

=0
We define the limiting value of this sum, when éx — 0,
and -

ndr = z, — x,,
as the area enclosed by the curve, and denote it by
J f (z)d.
o
Now, considering any small strip, say that on z,z,, we
have, if 8A is its area, y, 82z >8A>y,dz., But as 8z is
diminished y, and y, approach each other continuously,
and in the limit we may write
dA, = y,dz;
o SdAm:= Syndz;
orA,=1fydz+ C
= {f.(»dz + C.
v~ Let f(z) be a function such that
{f@dz =fx) + C;
then A, = f(z,) + C,
where A, = area PQuz.x,
If z, = z,, this area vanishes
B s 0= fz,) + G,
or C= - f(z,),

o [ @an = fied - fa.
The reason for the symbol of integration in
JV@h
o
is now apparent; the definite integral being the difference
between the indefinite integrals at the limits of integration.
The name “ definite integral ” is used because the arbitrary

constant of integration vanishes when the integration ig
Performed between definite limits,
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- 102. EXAMPLES ON THE DEFINITE INTEGRAL

(1)’ Find the area enclosed by the part of the parabola
y? = daz,
the ordinates at z = z,, z = z;, and the axis of z.

We imagine the area dividéd up into very narrow strips
such as P,z,. The sum of the areas of these strips, when
their width is indefinitely diminished, and their number
indefinitely increased, is the required area.

Area of strip Pz, = y,dz

But y = 2 Jaxz,
... area of strip = 2 Jaz, .dz.
4 A P
) R
R
.q,'
----- \

Qz'.-..

Fia. 28. \\

JTotal area PPz, = limit of sum of strips such as
Pz, when their thickness is reduced indefinitely

= ’PQ\/W.’;
31

z s

A

= 2./a f e
1

—2 ,7= 4
=2 J“[@z"l{ = 5a(at - o)
(The area P, P,Q,Q, is twice this area.)
(2) The area enclosed between the curve
Yy = ax",
the axis of z, and the ordinate ¢ = £ ig
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£ £
J ydz = Jz"da:
0

0

1 n+1j|£
a[n ¥ 17 ,

T enta
T+ lf ’
If a&" = length of extreme ordinate = 7,
&
n+ 1
(3) Area enclosed between the rectangular hyperbola
ry = c,
the z-axis, and £ = a, z = b can be easily shown to be

area =

¢ log 4
&
(4) Prove that

Jieudz = %l(e“” - e"“).

(5) Find the area between the ordinates z = 1, 2 = 4,
of the parabola ? = 42. [Area = 94 sq. cm.]

d

Fia. 29.

(6) Find the area enclosed between
the parabola y? = 4u,
the hyperbola zy = 10,

and the ordinates z = 1,z = 3,
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On solving the equations y? = 4z, 2y = 10, for z we
find that the parabola and hyperbola cut at z = 292. We
have therefore to find the area under the hyperbola from
the point = 1 to the point & = 2°92; the area under the
parabola between the same limits, and then subtract the
gecond area from the first. 'We then find the areas from
z = 292 to ¢ = 3, subtract the area under the hyperbola
from the area under the parabola, and add the result to
the first difference. Thus required area

-2 1) 2.92 . 3 — 10
= {Jql fmda: —~J‘1 ,J4zdz} ~ {.J‘m Jizdz - J’:-”——a-:—dx}
=10 log,2:92 - (292} - 1% ,
- 43 - ©92)% - 1000g.3 - 10g.292)}

=10 log3 - 4% - 1} !
= 10986 - 5594 !
= 5392 sq. cm. :

(7) Find the area enclosed by the curve

y=e"%

between the ordinates z = 1 and z = 2.

Area =e¢~ 4 —-¢ 2

3 _
L oL a1 onn

e et & €

¢ (8) Find the area enclosed between the curve y = z2
: the straight line y = 2 — =, and the ordinate z = 05.
: Draw the graphs of the curves.
The line cuts the curve in two points, the co-ordinates
of which are obtained by solving the equations:—

y=2a
y=2 -z
ettt -2=(@+ Pz -1 =0,
ileez=-2o0rz=+1

The required area will be one of two areas seen in
the figure,
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@ Ifax=+1,

area under the line = @;—y"(xz - z) 1——2+—1~ x ‘5

I

area under the curve = [éx“] = 291.

5
The difference of areas is therefore

0625 - 0291 = 0334 sq. units.

) Ifz= -2 i
area under the line = 4 +21.5 x 25 = 6875 sq. units.

The area under the curve now consists of two parts,
that for z =0 to z = + 05, and that for z = - 2 to

z=0;
. — 1 3]0.5 I:l 3]2 — l:_]: 3]2.5
. ArEea = |:3Z ! + 3112 ! = 3Z i N

neglecting signs, = 5208 sq. units.
The required area is thus 6:875 - 5208 = 1-667 sq. units.
These results should be verified by plotting the curves
on squared paper and counting up the enclosed squares.

103, SOME PROPERTIES OF THE DEFINITE INTEGRAL

a b
@ qu(x)dz - - J¢(a:)da:,
since the ‘‘increments”’ dz are now negative.
(2) If the integral area lies wholly above or below the
z-axis in the part considered, and if

d(- 2) = ¢(@);
i.e. ¢(z) is an even function of z;
+a @
J: Px)yde = ZJ b(@)de;

the first integral bemg bisected by the axis of y.

Eg. ¢@) = 22, a*, 25 ete.

(3) Butif ¢( - :c) = - d(z); e ¢(w) 18 an odd func-
tion of #;

~
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J+:¢(z)dz = 0;

because in formmg the sum, every element of area ¢(z)dz
is cancelled by the element ¢( ~ z)dz of opposite sign.

Fia. 30. k Fia. 81

Egify=4¢@ =z,
/ $@) =2, ¢(~2) = -

J zdx = 4a® - 3ad = 0.

(4) If part of the curve, or all the curve, lieg below the
axis of z, the corresponding definite integral is negative,

Ty )

Fia. 32.

since the values of ¢(z) used in forming the sum are
negative. If the curve cuts the z-axis at points z;, z,,

. part of the area lies above and part below the z-axis.
In this case we integrate separately up to these points and
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add the areas. The integral taken over the whole range
gives the algebraic sum of the areas. In the figure

[*vtz = @ - ap + @m.
zl
(5) J:j)’(a:)dx = J- ¢’ @)dz + J- ¢’ (z)dz.

This is seen from the figure, or analytically
fidf(z)dx —pB -0 . . . O
[o@a=om-sm. . | @
[v@iae =g - ¢@ . . i

*. gince (i) + (iil) = (i) the proposition is proved.
(Compare with Example 8 of the preceding section.)

4 b
Fia. 33,
104. INTEGRATION BY PARTS

Integration by Parts is a method of integration of very
great service in dealing with expressions containing ex-
ponential or trigonometrical functions, and it is often re-
quired in the applications to physical chemistry. It is
used when the function to be integrated is the product of
two functions, one of which is a differential coefficient.

E.g |z log zdz = J(log z) ‘%@j)
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The method is an inversion of the very important
formula of the Differential Calculus
d{uv) = udv + vdu.
Integrating both sides
% uv = {udv + Svdu
Special case ;'
| Lo=2
ur = \udz + \zdu.

‘a 7/
f udv
v
fvdu
. \ .
' TN U, —u
Fra. 84,

Now in many cases, one of the integrals fudv, fvdu, is
more easily obtained than the other. Suppose this is fvdu.
Then

fudv = wv - fodu;
ie. from the product of the two factors subtract the in-
tegral of the non-integrated factor with respect to the in-
tegrated factor.

The factor which is a differential (v) must be picked
out by frial; the progress of the integration will soon
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indicate whether the corrett factor has been chosen or not.
Graphically, the total shaded area represents
L w= (- )0~ 0),
considering the definite integral

[].

The area above the curve is {

.r"udv,

1

J“’vdu.

“

Obviously uv = fvdu + fudv.
(Note that v 18 the independent variable in the first
case, u that in the second.) ‘ ’

that below the curve is

-~

)

105. EXAMPLES ON INTEGRATION BY PARTS
1) §zlede.

It is obvious on inspection that e* = ﬁd(e"), ;
hence, following the method explained above, we set
dv = edz) u = z?

v = %‘e‘“ }du = dez}'
Then by the formula
J 2™ = lw“e"‘ _1 J e .2z, dz.
a a
‘We have now to deal with the second integral on the
right.
, Putdv = e“dm} u = 2 }

v = le"‘ du = 2dz

a

J2me°‘*da: = e Qp - g.l‘e“dz

N Q=

= —xe* — —e"%,

a?

[+
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Therefore Jz“e"dx = lx%u + %mu - .2._281:
a a a
e( , 2& 2 )
= - 5

a \" a ai/

Suppose that, instead of g*:, we had chosen z* as the
. L. ¥ y
lifferential, ie. d<g—). |
R el _ zs \: ez
N V=3 } u=e ]_
dv = 22dz)] du = ae=dx J

3
B8 Jz%"da: = ‘;—eu - gjm"e“ldrc.

The result is a more complicated integral than the one
ve started with, indicating that our chome of the differ
ntial factor was not suitable.

@) fx log zdz = 42? (log z — 4).

3) fze'dz = (@ - 1)¢~

@) flog zdz = = (log ¢ - 1).

This is an important case. Note that » = 1.

') J—loi Tdz = %(log z)%
dx z 1, a+ a2
®) J (@ - 7! 2a%a’ - @%) T i@

4\? 3logm.

L 3 ‘\
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APPLICATIONS OF THE DEFINITE INTEGRAL

106, THE EXPANSION OF GASES

i) LET 1 gram molecule of a perfect gas be enclosed

in a rigid cylinder, fitted with an alr-txght
piston sliding without friction. TLet the whole be placed
in a vacuous space, and the piston loaded with weights
until it is in equilibrium.

Let p = pressure on piston (per unit area). The equa-
fion connecting the variables is

pv = RT (Horstmann’s equation) . Y
where v = volume (2224 litres at N.T.P.), T = absolute
temperature, R is the molar gas-constant.

Now suppose the pressure on the piston ever so
slightly diminished by taking off a very small weight, say
a milligram. The gas expands slightly, until the new
volume corresponds to the slightly diminished pressure.
The work done = force x distance

*. dA =p x (area of piston) x (movement of piston}
. dA =pdv,
where dv is the slight increase of volume.’

The curve representing the expansion is a rectangular
hyperbola, T' being supposed kept constant, and the work
done by a finite expansion from volume », to volume v, is

given by
Jgpdv=J2§E.dv=RTJ2d—v
" o O w v

- RTJ"“d log )

= RT (iog v, — log v)

= Ve

RT logvl.
194
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To show that “log” means “natural logarithm,” we
often write it “In " :— ‘

x.wmkdmm:sA==RTm?‘

1
If we had » gram moletules of gas in the cylinder
instead of one, and v is the total volume, then if we put
vfn for v in (1) we have
pv = nRT,

and A, = nRTln:—j?'

1
The work done by the gas on compression is - RT)n%Z-
1

(1) Show that A = RTIn,

2
(2) Interpret the two expressions for the work by
means of the diagram expressing p as a function of ».
(3) Show that {pdv = — fvdp if the gas obeys Boyle’s
law.

107. ISOTHERMAL AND REVERSIBLE EXPANSION.

We have considered the expansion to be effected ir
a cylinder under a piston; it will next be shown that
.the work 1s the same no matter how the gas expands from
volume v, to volume v, pro- '
vided two conditions are satis-
fied.

Consider any mass of gas
confined, for example, in an
elastic envelope subjected to a
uniform pressure p all over its
surface. Let its volume be v,.
Now imagine a slight expansion,
shown by the dotted perimeter, to take place consequent
upon a slight diminution of pressure.

The total (small) increase of volume, between the
full and dotted perimeters, may be imagined divided into
a large number of small cylinders, as shown, in each of

Fia. 88,
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which the increase of volume is 4v. The work done is
3pdv = p5dv = pdv, where dv is the increase of volume
taken over the whole surface.

Hence in every case of isothermal expansion, under the
conditions specified, from an initial volume v, to a final
volume v,, the work done per gram molecule is . .

A = RTIn2. j
. v, ‘

The conditions are:— f

(1) The temperature T remains constant. This may
be ensured by immersing the cylinder in a large tank of
water at temperature T, and performing the expansions
and compressions so slowly that any heat absorbed or
produced is compensated by conduction from or to the
‘heat reservoir. The case is one of Isothermal expansion.

(2) The pressure of the gas is just balanced at every
instant by the pressure due to the load on the piston. A
very slight increase of pressure causes the piston to move
down instead of up, the expansion changes to a compres-
sion, and the process is reversed. A process is said to be
conducted reversibly when an infinitesimal change of one
of the conditions of the system causes the process to
proceed in the opposite direction. Another way of stating
this condition is to say that the forces causing the system
to change its configuration must be infinitely near equili-
brium at every phase of the change. The concept of>a
reversible process is fundamentally important in the theory
of Thermodynamics, and the student should note carefully
that when we say that a process is reversible we do not
mean that it can be reversed by some change of conditions,
but that it must be reversed by an inflnitesimal change
of an external condition. If the piston moves with fric-
tion, a finite change of pressure will be required to reverse
its motion, and the process is irreversible.

To sum up, the work done in an isothermal and re-
versible expansion of 1 mol. of a gas from volume v, to

volume v, is RTln:)—’—'". If the process is not reversible, the
1
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work i8 not given by this expression, but is always less.
It varies from zero, as when the gas rushes into a vacuum

to the maximum value RTln:)—)l. This last value is called

the mazimum work of the expa.r;sion, since when the process
is conducted reversibly, the piston is raising the greatest
weight possible.

108. OTHER CASES OF EXPANSION.

(i) If the expa.nsmn is not performed 1sothermally, ,
the work done is still represented by the integral

A ='[ pdv,
but p is now a different function of v.
If the gas is still considered to be ideal o
» = RT/v, o
but T is no longer a constant.

If the expansion isperformed adiabatically, that is,
the working substance is expanded or compressed in a
cylinder which is a perfect non-conductor of heat, so that
no heat is transferred between the workipg substance and
its surroundings, then the law of expansion is

pv¥ = constant = ¢,
where vy = ¢,/c,, the ratio of the specific heats at constant
pressure and at constant volume.

-

2dv
A= dev =c| v

1

oA = i C_ ry(vzlﬂ' - vf‘*),

. ¢ 1 1 :
A= 1- ry(’Ug"”l - le'l)'
But pv, = RT,,
pwy, = RT, |

A=_B -y
y~-1

The work of adiabatic expansion is therefore. inde-
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pendent of the initial pressure and volume, and the work
done by a perfect gas in passing along an adiabatic from
one isothermal to another is constant and independent of
the actual initial and final temperatures. It is propor-
tional to the difference of these only.

(iti) If the gas does not obey Boyle’s law,

A= J‘ *pdv )
"1
is still true, but instead of
pv = const. (T' constant)
we must now write
p = f@) (T constant).

The form of the function will depend on the nature of
the substance undergoing compression. In the case of
strongly compressed gases or liquids, van der Waals has
proposed

1

(p+%)w- v = BT,

where a and b are constants.

Clausius gave an equation in which a was regarded as
s function of the temperature. Many other eguations
have been given, but Kammerlingh Onnes concludes that
the state of a strongly compressed gas cannot be repre-
sented by any equation with a finite number of terms. »

Assuming the gas to obey van dar Waals’ equation
during isothermal expansion:—

A= 'r"pdv,
where p = RT/(v - b) - a/vﬂ.]
Thence show that
A= ernv_ﬂf_{’ - a<} _L
v, - b

; — v, v/
@iv) If the gas obeys van der Waals' equation and
expands adiabatically,

A= f“pdv,
1
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where

N
(p + %>(v ~ b)Y = constant = ¢,
¢ a

Thence, with the equation
@ ‘
@+5g@—m=am
show that

R

A= 2

L 1
'Y(T2 - Ty - a(jv—l r\" v‘g)
109. DISSOCTATION. '

(v) Let the gas dissociate during expansion.

Assume that the original gas, and the products of its
dissociation, obey Boyle’s law. Two cases arise :—

(@) There is & change of volume.

E.g N0, ZZ2NO, + NO,.

In this case the work done on expansion is greafer
than the work which would be obtained from a non-
dissociating gas, because the volume increases as new
molecules are produced by the dissociation. \

(b) There i3 no change of volume. \

Eg 2HIZH, + L.
* The mixture then behaves exactly like & non-dissociating
gas, because for every new molecule produced one of the
molecules of the original substance is put out of existence,
and the total number of molecules, and -therefore the
volume, remaing constant.

Consider the case of nitrogen peroxide, which has been
extensively studied.

N,0,ZNO, + NO,.

Let n = original number of molecules of N,0, present,
z = degree of dissociation, ie. fraction of molecules dis-
sociated. (1 — z)n, 2nz are the numbers of molecules of
N,;0, and NO, present at the equilibrium position, and
hence, if v = total volume, the law of mass-action gives
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i1-=2
v

K.

Tz
vV

2

8

Ko =

— " . . (a)

The pressures before and after dissociation are propor.
tional to the numbers of molecules present (Avogadro’s
law)

ot

. D _ n 1 :
'p’ A-on+2m 1+a \
S p=p1+ 2).

Now dA = p'dv = p(1 + 2)dw,
. dA = pdv + zpdv.
From Boyle’s law and the Mass-law equation (a),
_c_cK{l -2 '
=,= " v ()]
" To find dv we differentiate (a) :
2l -z + a2, 22 - 2)
®="KA -7 PTRA- 2

thence A = J-vﬂpdv + J.vgxpdv
. i b¢

“of jf:(l P

dz,

= D U S »
= c(lnv1 + -2y ln1 - 11). >
2
But v, = G (1 —— and similarly v,; also ¢ = RT from

the Horstmann equation,
. xl(]‘ - Zy)
A= R’I‘{x2 -z - QInM}.

(vi) If a solution of an electrolyte is compressed by a
gemipermeable piston backed by pure solvent, the calcula-
tion is exactly similar to that in (v), except that p is now
the osmotic pressure, and z the degree of ionisation,

z=A/dq,.
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'ﬂ;ence, for expansion from volume v, to volume v,

A, -4, o Adg - A
A=R{h b oo — 4}
A "4,y - 4)

110. THE INDICATOR DIAGRAM

The expression {pdv for the work of a finite expansion
i8, a8 we have seen, quite general and independent of the
law connecting p and v. So long as the pressure is finite
at every point, and varies continuously from point to
point, the work of expansion is always equal to the area
enclosed by the p-v curve and the z-axis. This area will
of course be different for different working substances for
the same expansion. The idea of representing an amount
of work done on a p-v diagram was first applied by Janies
Watt in studying the efficiency of steam engines, The
diagram is called Watt's Indicator Diagram.

111. CYCLIC INTEGRALS

> 7 Sadi Carnot’s fundamental contribution to thermo-
dynamics was the idea of taking the working substance in
the cylinder through a complete cycle of changes, and so
bringing it back to its initial state. Such a cycle is repre-
sentéd on the indicator diagram by a closed loop, formed
by & curve returning to the initial point. -

*Liet P,QP, represent the direct process; P,RP, the re-
verse process ; the pair makes up the cyél\g, and is repre-
gented by the loop QR. .

Let P, be (v, py),

P, be (1, 7).

Work done by the substance in direct operation
= {pdv = area P,QP,0,v, .

Work done on the substance in reverse operation
= {pdv = area P, RPy, .

.". Nett work set free during the cycle
= area P,QPuw, - area P RPvu,
= area of loop.

Thus the work done per cycle = area of loop.
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We usually denote this by ()pdv, the sign (f) meaning
that the integration is taken round the cycle.

p

N

+ |

TN S

< +

Tk

i
11

< 4

s
M4 =444 -+

- -
+ -l +1-

= 4 <

Rdbsds

== (= = =

d o of g

A

11

.
4

LTI
..-—n-q-———--—-——-
THTITITILT
-l-ﬂ——rrl'hl— b b -4

Ansaak

{4 <

L

-<
o<

= ' Fia. 36.

112. SIGN OF AN AREA. : )

‘We must now consider the sign to be attributed to the
area of the loop. If the volume is increasing during the
direct process, and decreasing under lower pressure in the
reverse process, the cyclic loop is traced out clockwise and
the work done by the system is obviously positive. But
if the reverse process is performed at higher pressure than
the direct process, the loop is described coumnterclockwise,
and the work done by the system is negative. If the loop
is made up of more than one part, due to intersection of
the cyclic curve with itself, each part is treated separately,
and the algebraic sum of the areas is the work done.

. The diagram illustrates the three cases.
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The general method of finding the area of & loop will
not concern us, it is described in treatises on the Integral
Calculus. Some simple particular cases must, however,
be dealt with. o

Tt ¢,) =
be the equation of curve P,QP, in fig. 36, and

d(v) =p

}

i

Fia. 87,

N

that of the curve P,RP,, then it is an immediate conse- "
quence of our definitions that the area of the loop

- [Lowa - [ aueran

113. EXAMPLES

(1) Find the area of the loop enclosed between the two
parabolas
y! = 4z
z? = 4y.
These intersect at the origin and (4, 4) as we find by
solving for z and y.
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Area = Jyldz - ijdw
0 9
_ o
- fz Jeds - j%dw

_ m“ %]

= 22 8q. cm.

(2) To find the area of the loop in Carnot’s cycle (mde
Mazxwell, ‘ Theory of Heat”).
This consists of four operations
performed on a working substance,
which we agsume to be a perfect
gas, contained in an engine cylin-
. der of peculiar construction. The
operations are:

@) Adiabatic compression,from
state represented on the p-v dia-
gram by A, to that represented by -
B. (We shall speak of these as
“the gtate A,” ete)

(i) Isothermal expansion from
the state B to the state C.

(iiiy Adiabatic expansion from
the state C to the state D. »

@iv) Isothermal compression from the state D to the
initial state A.

Total work = Area of loop ABCD

= - AabB + BCe¢b + CDdc ~ DdaA.
The equations to the various curves are
AB, an adiabatic curve, pv* = ¢ .". pv.Y = ¢, because
A lies on AB, p,, v, being the pressure and volume
at A, and so on.
BC, an isothermal curve, pv = ¢ .". po, = ¢,
CD, an adiabatic curve, pv* = ¢ .. pwyY = Cy
DA, an dsothermal curve, pv = ¢ .. po, = C,.
But AabB = CDde,

Fia, 38.
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since the processes are adiabatic and conducted between

| \
8 ~5’C N \

-

\
Fia. 39. ;

the same isothermals, hence these areas, being equal but
oppositely signed, cancel ; the work is thus equal to

BCcb - DdaA

v v,
= ¢ln=* - ¢In-t
U, va

But p,v, = po. = ¢,
Py = Py = Cn

. ,vby"l = 9_1_
C
/ s -1 Cy
Similarly vy~ 1= o
2
L
T o, A
. v\ ¢
Similarly (—T> = -1
Yy Cs
Hence °
’ v ¢ ¢
gln= = —2—=In-1,
v, v-1 ¢
) ¢, 4. C
¢ln-? = —4slnd,
Vg -17¢
" work done per cycle :
Cy — €4y C
A=2_An3?
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114, ATTRACTIVE AND REPULSIVE FORCES—THE )
POTENTIAL FUNCTION

Let the force P exerted between two material particles,
electric charges, or magnetic poles, regarded as points, be
a function of the distance, &, between the points i—

P=flx) . . . . @O

Consider two point charges of electri¢ity + ¢ and + 1,
separated by a distance z in air, and repelling each other
with a force

P =g/
along the line joining the points.

Let O denote the charge + ¢, O’ the charge + 1, OO’
being 2.

Let O’ be moved towards O by an infinitely small dis-
tance — dz. 'The work done by the displacement is

dA = - Pdz = —-g—zdz )
Thus dA. is a differential of & function of the distance,

of the form <%>, since

d(%) = - Las = aa,

we define g/z as the electrical potential, at the point O,
of the quantity of electricity + ¢, distant z from O’,
For motion of O’ over a finite dista.nce z, »

A= J' I Dy L -9,
@z @
Iz = ,q/a:,—O and
A, = q/z; is the potential at a point distant z, from O,
Now it is a characteristic property of the potential
function that its gradient in any direction is equal to minus
the force in that direction. This follows from the equa-
tions

P, = gfx?,
= q/‘cs
. P = - dA,/dx.

- dA/dz therefore measures the tendency of the unit
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charge to leave the vicinity of the charge + ¢ along the
direction Owz.

[¢] [}

Fra. 40.

Further, for motion of the ciia.rge + ¢ 1n an electric
field from a point x, to a point a:, m the direction of z, the
work done is

A= J"(force) x dzx.

1
But force = jfield strength x g,
and field strength = - dV/dz,
. where V is the electric potential of the field,

. A= —qJ,ﬂdx—q(V -V.)

This work is dependent only on the initial and final
positions, and is independent of the path taken by the
charge from x, to x;, This characteristic is true generally
for potential functions. It may be proved directly by an
application of the principle of conservation of energy.

115. THE PERFECT DIFFERENTIAL

We return to the discussion of the equation
o du = ¢z, y)dr + Yz, y)dy, . . @
where ¢(z, y), ¥, y) are functions of the independent
variables z and y. Writing this
du = Mdz + Ndy, . . . (1a)
we see that two cyses arise, according as ¢(z, y) and
Y, ¥), ie. M and N, do or do not satisfy Fuler’s
criterion :—
M ON
e
If condition (2) is satisfled, the expression on the right
of (1) or (1e) is immediately integrable; for it is a com-
plete differential of some function of z and y, in which
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these are treated as independent variables, formed by the
equations i—

b—*xF(.’E, y) =M

iF(rc y) = ﬁk&\

Thus, by mtegra,tlon there is obtained at oncé an
equation of the form i

w = F(z, y) + constant . S

But if (2) is not satisfied, it is not possible to lntegrate

(1), and % cannot be expressed as a function of z and y

considered as independent variables. For if i

u=F@w, i
M=o 2R, ) \
Y ' Y) s \
Du - : N
i lﬂ(m ¥ \
LM b‘F(x y) IN_ VFz, y) l\\
" dy dxdy ' x| dydz 4
YF@, y) _ ¥F, y) !
But oy T s A
. Dal':j: b\ , contrary to the assumption.

If, bowever, we assume some relation between x and y,
so that they are no longer independent variables but ¢he
can be expressed as a function of the other, integration
again becomes possible. For if

f(z: Z/) . . 4)
i.e. y is an implicit function of z, we can ehmmate zory
from (1) and obtain
du = ${z)dz
.. % = F(z) + constant . . (5)

Equations (4) and {5) together may be rega.rded as
forming a solution of (1).

Since f(z, ) may have any form whatever, the number
of solutions is infinite.
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Geometrically, we may interpret the equations (38), and
4) and (), as follows:—

Assume that F(z, ) in (3) is a single valued function
of the co-ordinates, and that the initial and final positions
of the point representing the value of the function in the
plane of co-ordinates are known points (z,, y,), (z,, ¥,).
Then we can find the change in the value of the function
u a8 the point passes from its initial to its final posmon
quite independently of the path. For

w = F(z, yo) — Flz, y).

A potential function, as we have seen, always satisfies
this condition.

In the second case, it is quite otherwise. Of the two
equations

f(w: y) =0
% = ¥ (x) + constant,

the first may be regarded as the equation to a curve, and
gsince the form of the second equation depends upon it,
the relation between them may be expressed by saying
that the change of » during the motion of the point is
determinate only when the whole of the path is known,
for an infinite number of curves may pass through .the
initial and final points (z,, y,), (@ ¥). If the point in its
rotion describes a loop, the initial and final points are
identical

Ty = Ty Y1 = Yo ]
and in the first case (8) » = 0, but in the second case u
may have any posisive or negative value.

This distinction occurs frequently in the study of
thermodynamics. The internal energy ¢ of a system is &
function of the first type; this follows at once from the
principle of conservation of energy; for if the energy is
not completely specified by the co-ordinates defining the-
state, i.e. is not definite for a given state, then a perpetnum
mobile would be possible. Thus if p, v, 6, ¢ are the -

14

1
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pressure, volume, temperature, and entropy, we have for
a small reversible change
de = pdv + 6do ;
pdv = work absorbed, 8d¢ = heat absorbed.
This is a perfect differential, by the properties of e,
o p = e/, 6 = e/

Neither pdv nor 8d¢ are themselves perfect differentials,
since the work and heat depend on the path, and a finite
quantity of work may be done, and heat absorbed, on
passing round a cycle.

116. APPROXIMATE INTEGRATION

. If the value of the indefinite integral
fydz

cannot be obtained (either because y cannot be expressed

directly in terms of z, or because the function is not

integrable), the value of the definite integral J- zzyd:c may
g

often be found, at least approximately. We will consider
a few of the common methods :—

(1) Graphically.

If y is plotted against z, from the tabulated values,

ydz is given by the area enclosed between the curve,

1

the ordinates z = z,, £ = =, and the z-axis. This areg is
found :— ®

(@) Directly, by counting up the squares.

(b) Tndirectly, by cutting out the area, weighing it,

and comparing its weight with that of a known
area of the same paper. i

(2) By the Planimeter.

One point of the Amsler planimeter is fixed down, and
the other is carried round the boundary of the area. The
area is read off directly on the graduated wheels and
vernier.

(8) Trapezordal Rule. :

Draw n equidistant ordinates of the curve, join their
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extremities by straight lines, and so replace the area by
the sum of a series of trapeziums. If A = distance be-
tween consecutive ordinates, and ¥, ¥, . .. ¥., the
lengths of the ordinates, the sum of the trapeziums is
Y@+ Wh+ 3@t YR+ .+ 3G + YD
=@+t Yt Y+ YA
This is only a rough method, giving a result too great
or too small according as the curve is convex or concave
to the z-axis.
(4) Newton-Cotes Rule.,
Agsume that y is a rational integral function of z of
the (n — 1)th degree:—
y=ay+ ax+ ax?+...+ a,_ 2"}
and determine a,, @,, . . . so that for the n equidistant
values of z, y shall have the values ¥, 7y, #;. . . . The
area is then

z,
2

J:yda: = [aoaz + %alm2 + %%:ﬁ +.. 0+ i—za"“lm"],]'

The coefficients for 3, 4, b equidistant ordinates are
given below :—

3y, + 49 + yo)h
$n + By, + 3y, + yh
0y, + 32y, + 12y, + 32y, + Ty )h.
This is the most exact method.
o (B) Simpson’s Rule. !

Liet an odd number of ordinates be taken, and the areas
between alternate ordinates, beginning with the first, be
calculated by the formula %(y, + 4y, + ¥y 2 of the preced-
ing section. If these areas are added, we get the total
area, which is therbfore given by
M+ dye+ Yo + Y + 4y + s+ Y+ Y+ oy e

+ Yooy + 4Yn + Yourith
= HW + Y T 2@ + Ys + - W) T AQ + Y,
+ .t Y the

The rule is in words: Take the sum of the first and
last ordinates, twice the sum of the other odd ordinates,
and four times the sum of the even ordinates. One-
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third of the total sum, multiplied by %, gives the required
area.

Hzample :—
Calculate log,2 from the formula
log2 = [ %,
’ ol +

Divide the range into 10 equal intervals, so that % =0-1.
Cealculate values of 4 = 1/(1 + ) corresponding to values
zof1,09,08,...0,and use Simpson’s rule. The correct
value is 0-693147. ...

117. MEAN VALUES OF INTEGRALS

Let y;, 45, ¥5 . . . ¥, be values of
. y=f@ .
for n equidistant values of z distributed over the range
b - a. The limiting value to which the arithmetic mean

%(y1+ Yo+ Y+ ..ot YD)
tends as » is increased indefinitely is called the mean value
of the function over the range b ~ a.
Now % = (b ~ a)/n .. the above expression
YAt yht+ o+ YR
h b-a

b
Also Lim (y,h + %k + ... + y,h) =J. f@)dz,
h -3 O @

1 [
.. mean value = b——EL f@)da.

Geometrically, the mean value is the altitude of a rect-
angle on the base (b — a) and having an area equal to that
under the curve between the ordinates™at the extremities
of this base. See Fig. 41.

- Ezamples :—

(1) The mean value of the velocity of a falling stone in

any interval of ¢ime ¢, from rest is

1J "odt = 1J‘gtdt = }gt,
. 6o . to _
i.e. half the final velocity.
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(2) The mean value of the velocity of a falling stone
for equal infinitesimal elements of space s is, since v? =
2gs, b

2 3 b
lj "vds = ﬂles ds = g(Qgsl)’s,
S1) S Jo ‘ 3
1.e. two-thirds the final velocity.
The mean value therefore depends on the choice of the

. independent variable to which the equal increments are
- given, :

&

, \

\

/ Fia. 41. \

3) Find the mean value of the velocity of a unimole-
sular reaction.

(@) For equal intervals of ¢¢me, we have, since

. z=ze "
v=dz/dt= - kx = - kxe™ ",

kzy (" s Zo,-x _ Ty
. oe dt—t—le 1—t—1.
(&) For equal amounts of substance transformed .

mean value = -

_ - B _ k 2 _ N __ Z‘Z
mean value = b zJ oxda: = m(% z,h) = 3 (@, + ).
\



CHAPTER XII

DIFFERENTIAL EQUATIONS

Part I
118. FORMATION OF A DIFFERENTIAL EQUATION

RELATION between z, ¥, and one or more of the
derivatives .dy/dz, d*y/dz? ...is called a Differ-
ential Equation.

Ezamples ;—
. d
M -
.t _ .y
m y=z= e
i) T4 - om® 1 miy = 0.

If the highest derivative occurring in the equation is
the nth derivative, d"y/dxz", the equation is of the nth order.
Thus (i) and (ii) above are of the first order; (iii) is of the
- gecond order.

The degree of an equation is the hlghest power of the
derivative occurring in it. Thus

LY _ 4y
Tix? ~ dz
is of the second order and the first degree ;
dy  (dy -
Y <dz) 0
is of the second order and second degree,
214
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119. ELIMINATION OF ARBITRARY CONSTANTS

215

A differential equation may be produced by the process
of Elimination. If we are given an equation between z,
y, and n arbitrary constants, which is called the Primstive,
then differentiation #n times in succession with respect to
z will lead to n + 1 equations, from which the » constants

may be eliminated.
- 120. EXAMPLES ON BLIMINATION

) y=mz+ b \
d L

\
b 18 here an arbitra.ry constant. &
If both constants, m and &, are: to be eliminated
d2

e = Q. ;\
@ (94‘—¢1b)2+('y—,ljl)"’=a,2 \ . .
(m-a)+(y—3)gy=0 i
dy \
1 +< ) + (y - B) .
Thence d
Y
dy {1 + (Zf) }dm
a=z+ (y ,3) _dzy.-— and,
dz?
dy\?
N () +1
B=1y —Ty
: » da?
from (b) and (c). Substitute in (@)
dy dy dy\?
da: + (da:) (dx)_ +1 .
dz + @‘!— = a°,
W dz?

or a{%)z = {1 + (%)2}3

@ -
®)

)
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@) If y = az® + bz,
dy 2dy 2y

show that + ==
‘dz T %
@ Iy =Ae” + Beﬂ‘ . . . . . (@)
then Z— = alAe” + ,BBe"‘ . . . . (b)
_and Z; = a?Ae” + BB, . . . . (c)
~ Multiply (a) by a8 and (%) by B, and subtract —
afy - 3 = (af - BH)Bef* . i @

~ and, by symmetry, ,
afBy - a,aL (aB - a®)Ae* . | . &)
Multiply (b) by a, subtract from (c), and add (d)
B @ AW s apy =0
6) Ify = Ae™ + Be ™, '
show that %—2 - Ky
Ae* + Be—*

r ’

® 1t ¢ -

show that 2%+ 2,98 _ ey _ g

121. SOLUTION OF DIFFERENTIAL EQUATIONS

L]

A far more important process than elimination is the
inverse process ; that is, the recovery of the primitive of a
given differential equation. This process is called ‘ solving
the differential equation,” and will obvidusly involve one
or more integrations, an arbitrary constant appearing with

each integration.
122. EXAMPLES

(1) Solve y/—*—a /

‘Whenever pOSs1ble, we bring all the #’s and dz’s to-
gether, and all the y's and dy's together, This is called
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separating the variables. Each side is then integrated,
and an arbitrary constant added to one side.

In the example, the variables are separable:—

dyly = dxla,
. log y = :c/a + C,
Y =\ é‘f. e°
Y= be‘;:
where b = €%
(2) Solve dy/dx = - z/y.\
zdz + ydy = 0, ;
sttt =C. /

This is the equation of a system of circles with the
origin as centre; the radii increase from 0 tow as C is
given all positive values from 0 to o .

" (8) A particle moves in a straight line under an
attractive force varying inversely as the square of the
distance from a fixed point. Find the velocity at any

point.
The equation of motion is
dv e
Yds = T
ovdy = - %Z—x \\
’ . 1 9 _ M .,
. 2’0 = z + C. \,

(4) Abegg states that the dielectric .constant of a
liquid is related to the temperature by the equation
ak &
T dt 190
Thence show that
k = C@ -31190'
(5) Solve dp/dx = (@ - 2p)/z. [p = $a + Cz %]

z
(6) Solve dy/dzx = y/(@z* - 1). [yZ = Ca: i

d—y+y=1. [y =1+ Ce'~]

2
(7) Solve x iz ‘ \
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(8) Solve g% + b = al

Separating the variables :—
d
F—-—_yb‘fy—‘l = dr.
Split into partial fractions :—
4y ay = dr
2a(a .~ by) " Ja(m + by) ’
Integrate :—

_1_]Oa+by
2ab ga—by
L by+a

Tby - a

=z+C

= C e‘lubl

(9) Solve ‘w% + 2y = zy%
Separate the variables and integrate.
xty™ = Ce
10) Solve (1 + y9de - zyd + z9dy = 0. )
[d+ 50 + 2% = Ca.)

(11) Solve dy/dz + ey = ey?. [log y-1_ ¢ + c.]
dy
(12) Solve (xy - z)a; y%
dJ - a;ldy ) )

‘We have ey et y*

.. dividing through by y and rearranging
2 dy dy
y dzr dm

S E g

Now integrate, and we geb

- Y,

¥
logy—x+C,

.y = Ce’
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d ' X
(13) Solve y/gg = ¥z [y = Ca]
14 Solve y% =kz. [y = k2 + 6]

The student will observe that the integration of the
velocity equations in chemical kinetics is really the solution
of differential equations with separable variables.

'; 123. HOMOGENEQOUS EQUATIONS

An expression is said to be homogeneous in respect of
two or more variables if each term is of the same dimen-
ons. ‘
E.g. 2% - 32%° + 'y - 95,
s homogeneous and of the sixth degree.
If M, N are homogeneous functions of z and y, of the
same degree, the equation

M+ NZ o
dzx '

is called a homogeneous differential equation.

124, EXAMPLES \

. day _ \
@ z+y. o 2¢ = 0. \

> Put y = 2z,

' oo dy = zde + zdz,
*, substituting in the original equation,
A - 2%z + z2dz = 0.
The variables 2’and 2z may now be separated :—
dx zdz

Zz T -

By integration :—
I@ + J‘ zdz c
z -2

0.

1
Iogm+1~_g+log(1~z)—_0.
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Replacing 2 by y/z, and simplifying,
zfx - y) + log -y =C,
or (z - y) &7 =0C.
() (y - ®)dy + ydz = 0.
Put z = vy, and show that

x

y=Ce 7.
(i) @ - yz)% - Qzy = 0.
Put y = vz, and prove that
2 + y* = Cy.
It is obvious from the definition of homogeneous
equations that M/N is a function of y/z alone, i.e.

M dy Ly
“N: = (_iE _-f<53) . . . . (a)
If a straight line y = ma, or % = m, be drawn through

the origin, the various curves of the system represented by
the general solution of (@) have all the same direction
at their points of intersection with this line, for then

Z—‘Z = m = constant.

Such curves are said to be similar and similarly situ-
ated, the origin being called, in this case, the centre of
stmilitude. The curves are those which would be con-
structed to represent the same equation if we took different
units of length. If ¢ is the unit of length, then

z Y\ _
1GY)=0
is the general equation of the system, hnd ¢ is called the
variable parameter.

(iv) Two liquids, X and Y, are boiling in a still. Ac-
cording to F. D. Brown the ratio of the components pass-
ing off as vapour is proportional at every instant to the
ratio of the components in the boiling liquid at that instant :

dy _ y
de = %
vy =Cg”
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W A+ yhde - zy(l + zHdy = 0.

dy dz
‘We have W = m
ydy dz

CIrr T ozl + 2D
The variables are now separated, and we can integrate
by partial fractions:
1+ A + zb) = Gz

i) 2wydz + (y* - 3z*)dy = 0.

Put y = vz, and solve as usual.
[2* - y* = Cy*]

(vil) (2® - 8yHadz + B2® - yHydy = 0.
[@ + y9)? = C(y* - =9).]

- 125, NON-HOMOGENEOUS EQUATIONS

" . The most general type of such equation is
(az + by + ¢)ydz + (@'z + by + ¢)dy = 0,
Assumez=v + A,y = w + K,
s [av+ bw+ (@h+ bk + o)jdv+ [a'v+ dw+ (@h+ bk + ¢)]dw
=0. . . (@)
Now let % and % be so chosen that
ah + bk + ¢=0,
ah+ bk+c = Q;
be - b k ae ~ a'c

i
3

. le. k= m, = ’l) ab’ . (b)
Substitute in (a), which becomes homogeneous :
(av + bw)dv + (@v + Vw)dw = 0 . ©

126, EXAMPLES
(1) Solve By - Tz - 7)dx + (Ty - 3z - 3)dy = 0.

a= —~1 a=-3
b=3 b’—7 “h= -
c= -1 ¢= -3 k=0
Thenz=v -1
y = 10,

an(—-d Tv + Bw)dv + (- 3v + Tw)dw = 0
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Put w = vt .. dw = vdt + tdv,
and on substituting and simplifying,
7d_v 2dt 5dt

v t-1 t+1
S Tlogv+2log(t-1)+ 5logt+ 1) =C.
Replacingv =z + 1, t = wjvo = y/(z + 1),
@-a-D¥y+z+15=C.

2 @z + 3y - 5)dy + 2z + 3y - L)dz = 0.

In- this case ab’ = a'b, and the above method is no
longer applicable, for the denominators of 4 and & vanish.
We put

z = ax + by,

eliminate ¥, and obtain '

z+c¢ | dz
—— + 5 = 0,
mz + ¢ dz
where a/b = a’[b’ = 1/m. The variables are now separable.
The solution is '

z+y-4log 2z +3y+ 7 =C.

127, EXACT EQUATIONS

The equation
Mdz + Ndy = 0,
where M and N are functions of z and y, is said to be
“exact” if M and N satisfy Ruler’s criterion : '
M N
by
(See p. 108.) ’
In this case, the equation has been formed by differenti-
ating a function, u, of z and ¥, so that
u=f@=9;

du du >
du = B':Edw + —@dy, ‘

a+b

where . M, u N.
dz d
The most general form of function the z-derivative of
which is M, is obviously
u=Mdz+Y;

where Y is independent of z, but may be a function of y.
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The only other condition is that du _ N,

dy .
or N = jMd + dyY
dy’
XN dJde £y
dy

But Y being a function of y alone, the derivative of the
right-hand side with respect to £ must vanish, or

dN dM

dz  dy

ay d _
Also Y = J@dy = J(N - @J_de dy H
d
o= Jde +Y = Jde v J(N - d—yJMdz)dy.

This equation enables us to solve any equation which
satisfies Euler’s criterion. 'We examine the equation by
this criterion first, and if 9M/dy = IN/dz we can use the
above formula. \

Ezamples :— i

@) z(x + 2y)de + (2° - yHdy = 0. ;

YM/dy = IN/oaz = 2z,
ie. Euler’s criterion is satisfied.

= 0, as before.

{Mdz = §(z* + 2ey)dz = }a* + 2a%y. \\
d 2
. a—de=2z*N=z’—y2, N\

N——~J‘Mda'—:c“’—y - 2= -yt~ 2t .

JN———Jdedy —J(y + aidy

- - W -
Thus, » = }z® - 14® + 2%y,
is the complete solution of this differential equation.
@) By’z — 2)dy = Cry - yi)dz.
[zy® = z?y + C.]
B) (@ ~ 4oy - 2y%dz + (¥* — 4oy - 22%)dy = 0.
[z° + 3 - 6zy(z + y) = C.]
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128, NON-EXACT EQUATIONS

Equations which do not satisfy Fuler's criterion may
often be integrated by special devices; for particulars the
student is referred to books on differential equations, e.g.
Forsyth. We may, however, just mention a few cases
which are open to simple treatment.

If the equation

Mdz + Ndy =0 . . . @)
is not exact, it implies that some factor has been cancelled
out in deriving the equation from the primitive. The
equation (1) may be made exact by multiplying it by this
factor, called an integrating factor, p. Thus

pMdz + Ndy) = du =0 . . 2
Let 2 + ¢ = Cy,

0= Qzydx + (_zz - 2hdy @
Now we have previously obtained
z* + y* = Cy
by integrating 2zydz + (y* - 2°) dy = O as a homogeneous
equation ; this is simply the equation (i) with the factor
1/y? cancelled out by multiplying both sides by 4% Hence
1/y* is the integrating factor of
2zydx + (y® - 2Hdy = 0;
because if we multiply both sides by 1/y* we get

2
Qeydr + (@t - 2)dy} + 42 = dly + N 0,
{ )

the solution of which is
2t c,
y+ y
or z* + ¢ = C.
This example also shows that an equation which is
‘not exact, and cannot therefore be solved by the formula
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u= JMdm + j (w - -d—J‘Mdz)dy,
can often be solved by another method. n
We may also remark that an infinite number of {in-
tegra.tmg factors exists for Mdz + Ndy = 0 correspond g

to various forms of the solution.
E.g let ydz — zdy = 0.

@ It p=z-2: Ydo - %dy -0,

coy =0
. dz  dy
e ol -1, % 4y
@O p=ay P y 0,
wlogz - logy=C,
. log2 = C”,
gy
© If w=y-? -’!d—z;z—”dy=o,
Z
a(;)-o
! -..x_:C/”y.

It is obvious that all these solutions are equivalent,
the constants being related :—
Cl - 1/C/ll = ec
129, EXAMPLES
QD C -y+ Ddz+ 2y — - 1)dy=0.
[2 -axy+ 9y’ +2-y=0C]

@ z@+ 3yhde + y? + 32Bdy = 0.
[z + 627y + y* = C.]

4

3 (y - xdy + ydz = 0.

This is not exact, since dM/dy = 1, 3N/dw = - 1.
ydz — zdy + ydy = 0.

Multiply through by 1/y2, and integrate

lo + — = C,
16
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d d
@ azgy"d{i = QxE-Z - ¥
L aztydy + yde — %edy = 0.
Maultiply through by y/*

ylde - 2xydy
x? B

ay" ldy + 0.

fa o)+ a) =0,

ay"tt 9t
- AR B
n+ 2 =z

d -
) wg‘g ~y =zt + yh
Divide through by z, and put ¥ = v :—
d .
0+d-;;—v=a:~/1+v“,
-
NI

oo 42? = log {v + JI+ 0% + C,

1, 1 —_—
R log 2+ J2' + g+ C

/

. zdx

130. LINEAR EQUATIONS
An equation which involves y and its derivatives onl;
in the first degree, is called a ‘‘linear’ equation. Th
most general type of linear equation of the first order i
Leibnitz’ equation : ’
dy + Py=Q a
e Y . .
where P, Q are either constants, or functions of «.
(i) P 1s constant. 5

% —ay=Q . . . 2
(@) If @ = 0, the variables are separable,
%1/ ~adz=0 . . @3
slogy - ax = A,
ory=0Ce* .. .. . @

where C = &%, is an arbitrary constant,



DIFFERENTIAL EQUATIONS 227

® If @=*0, we multiply both sides of (3) by ¢ ~*;
the left side is now a perfect differential :

—ax é}.l_/ —-axr __ d — ax,
e 'dx_ae ~35(e Y, ‘
- (e“"y) Qe=™=. . . 1'\®
Whence e~y = SQe‘“’dz +C .
ory = ¢iQe " “dr + Ce= . . . \\\ ©)

The solution (6) consists of two parts: i
@) e={Qe~“dz is called the particular integral, :
(2) Ce~*is called the complementary function.

One or two special cases may be noticed. Y}
(@) Q = He= . N ()
*. multiplying both sides of ;
dy e
s~ W= He

by the “integrating factor” e~ *, we gef

dy —ax __ —-—az __ {a — a)x
P aye™** = He )

d
— ax, — (a — a)x
iz (e~ *y) = He as before,

and ¢~y = Hie*~Vdz = H el ¥,
a-a
whence y = H e+ Ce* . . 8)
a-a
* 3 Ifa=a,or Q=He* . . C))

§Qe = *dz = Hidz = Hz,
and y = Haze* + Ce™. . . . 10

) Q = Ha"e~ . H'"+1 . . . @an
IQe ot sz"dx = #1,
Y= Ex;'-‘”; + Ce™ . . .12
(i) P s a function of z.
BWiPy=q . . . O

Let p be an integrating factor, i.e. a factor which makes
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the left-hand side of (1) a perfect differential. Then we
may write

pdy + p(Py - Q)de=Ndy + Mdz,,
an identity. Thence, by the principle of Undetermined
Coefficients,

N % M dp
% "y’ o Py - Q>S§+P’u"
By Euler’s criterion of a perfect differential
N M
% " oy

LMoy '
o ia= By - Qg + P,
Lo, I oy
. ﬂdx = (Py Q)bydz + Pude = - @dy + Pudz.
Mgy Y
o a:'Jd:z: + bydy = Pudz.

But g-gdw + g—;dy is a perfect differential of a quantity

M, hence
du = Pudz,
_ L dp
udx’
s (Pdz = log p,

.~ (\Pdz) log e = log u,

since log e = 1,
J’sz

' >
vu=€¢ . . 1 @©
. : . [ra
Hence the integrating factor for (1) i8¢’ .
J'sz J'sz J’sz
e (dy + Pydx) = dye ) =¢ Qdux,

'( Pdx »

- J’sz
6]
which is an exceedingly important equation. :

The student need not remember (3) if he understands

the method—* multiply both sides of (1) by i
tegrate .

and in-
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131, EXAMPLES ON THE LINEAR EQﬁATION

(1) Solve (1 + az:z)gg —-ay — m =0,

_dy mo
Rearrange: 7 - m?/ e

which is now of the form + Py = Q.

IPda: = - ,[i—fvw?dz = - %log (1+28H=-log JI + 2%
S
N
M\llt]ply through by 1/ /1 + 2% and integrate :
y=mz+ CJI + .
2 Soalve (1 - zhdy + (2y — ax)dr = )
[Rearrange as in Example (1), multlply by the integrat-
mg factor, and integrate.]
: y=a+CJyl = a2

Integrating factor = efrer = & " N+ =

dy — 2 . ~ a2
(3)d—£+2wy—1+2z. [y =2+ Ce~=.] P

4) zdy + &z + y)de = 0. [2% + 22y = C.]
(5) Solve Bernoulli’s equation

d
’ dg + Py = Qy™ \
Multiply through by (1 -~ »), and dnhde through by y*,
: 1;""’ W, a- n)Pyl el - Q.
s Put = , -
Ldv_ d(yl~ﬂ)_1~n dy
"dz - dz |y dx
dv

ot 1 -nPv=(Q1-n)Q,

which is linear in v, the solution being
ve(l—n)jl’dz - (1 _ n)SQe‘l“")f”‘dx + C
. y(l—n)_e(l—n)J'sz =1 - n)SQe(1—n)jpdzdz + Q.
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d
© W, Yy,
2'dz yz . 7
Put v = 1y .- ﬂ’:_:;ﬁ% 1

The student will be able to complete the solution {
Cxy - zy logz = 1.]

"N Zz+n = g™,
. nle/ n—1 — m+n
LAt me Ty =g
o xm+n+l
Y s mEn+l T G,
Zm+1 o
e WA A

the integrating factor being obtained on inspection. ,
(8) The electric current ¢ flowing in a circuit of resist-
ance R and self-induction L is given by Helmholtz’ equation
L% . R =B,
where E = electromotive force, ¢ = time.
E constant. We have to find the current produced when
a constant B, M. F. is acting round the circuit for a time ¢
dz Ri E 7
Al T
which is of the standa.rd type. Thence show that

E _Be
=R‘+ Be L,

where B 18 a constant.
Ifi=0whent=0

®»

_E_E,%
R R~
The first term is the current according to Ohm’s law,
the second is the extra curremt at make. As ¢ increases
the second term dies away and the current settles down
to the steady value E/R. Itis a very instructive exer-
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cise to plot the value of ¢ against ¢ for given values of E,
R,and L (say E = 1 volt, R =1 ohm, Ll = 1 henry; 4 is

then given by )
i=(1-7))

The gradual rise of current after completing the cir-
cuit is then clearly seen. The current on breaking the
circuit cannot be calculated in this way, on account of the
indefinite resistance of the air-gap.

(9) A massive particle subject to a resistance varying
a8 the velocity and to another force which is a given
function of the time, obeys the equation of motion

+ kv = f(b).

Thence v = e‘*‘Se"‘ f(t) dt + Ce ™.
If f(t) = g, the accelera,tlon of gravity,
v=Ce ™+ g/k.

This is the equation for the velocity of a falling rain-
drop, k being the viscosity of the air. As ¢ increases, v
approaches asymptotically a constant value g/k. In this
case we have a particle under the influence 'of forces in
equilibrium. The motion of ions in an elecl\rolyte is a
similar case.

If f(t) is constant :—

. v increases with time if f(£) > kv,
v decreases with time if f(f) < kv.
In both cases f(f) - kv approaches zero asymptotically,

and v approaches a limiting value v, = f U )
(10) Solve xc}y + ydz = 2°dz. [}2® + c/z = y.]
(11) Solve % + hy = kya(l - €M),

- a2t - 1‘241‘ kzdt —klt
y = Ce f + € f Sef Jka(l - e )dt
= Ce % + e Mem . ka(l - e M)dt
= Ce ™% + e *kale”dt - k,ale®~*dt}
ka o

—k

=Ce-n + q - %,
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12) Solve ¥ . Ky__ Kz
de a-2 a-2

Integrate as above, then by parts. If z =0 whqny =0

K K@ - o)
y=Cb-o"+ =g 71
Where C= (T—_l)—i__l‘

(18) In a chemical reaction let there be present a
parts of A, and a parts of C. Let A be changed into a
substance B, which then reacts with C.

Let z equivalents of A remain after a time ¢, and let
w equivalents of B remain after the same interval.

The rate of diminution of & is proportional to & :—

dz
7l ke . . . @)

The rate of diminution of w is proportional to w x
(amount of C present), and the rate of increase of w is
equal to the rate of decrease of z :—

dw

P T el bawE+ w + ke . . Q)
The solution of (1) is
z=ae™® . . . . ®

so that if the residue of z could be measured separately,
k, conld be found. In practice z and w are determined
together, and the relation between the total residue’
y = = + w, and the duration of the reaction, ¢, is very
complex.

Adding (1) and (2), we have

Woikwy=0 > . . @

and if we put dt = - dz/k, z, from (1);
and w = y - z, we get
ldy k1 1 -

ke 1
ol Pl il Al I )
Put ky/k, = K, and we get ‘
1 di K K v
y——‘l.a'g-f“:l;"-'g—;:o. . . (5&)
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Cbmpa.ring with Bernoulli’s equation (Ex. 5)

we put v = 1/y, dvjdz = - lﬁ%’
dv K
L Phal il

The integrating factor is e ‘K’ ; also Q =L\ - K/z,
e = KPe"“dw + G

v
The integral cannot be evaluated in finite terms; we
1ave already effected the integration as an infinite series

e Kz)? _ (Kz)®
.[5 d:z:—loga:—K:c+1.22 19 8 +...+ G,
2 3
e = K{logz - Kz + iK—;)z - 1(.%90.)3# . +C}
Multiply through by yex:
" 1=Ke{C - logz + Ko - E2 |
. 1=Ke - logz + Ko - 355 + .00,
, |
@ L ka-ne-y !
where y = a(l — e~ ™). A
Put 2 = 1/K(@ - o) .» de = - dz/K#, o
dz ~mt __
?Z_t - Kze = 1,
v linear equation of the first order. |
»

[raz _Eﬂ""“
Put P=Ke ™ .. e

=e
Thus z =

|
= ¢", say. |

\
The latter 1ntegral has been treated in Ex. (13).
(15) + Y = az”
(y=alg" - nz*"'+...+(-D"nn-1)...3.2.1}+ Ce~*]
dz
16) dy + — " yde = L
T e " T g ot

[(v- Do+ @+ et = ]
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DIFFERENTIAL EQUATIONS
Parr II

132. LINEAR EQUATIONS OF THE SECOND ORDER

HE general linear equa.tion of the second order is
dly ‘
‘ d:cz + P P Qy=R. . . L
where P, Q, R are functlons of z, or constants.
(i) Equations with constant coefficients.
d d
H+PErQy-0. . . @
is equation (1) minus the right-hand member.
Now the complete solution of (1) may be written
Yy=u+w . . . . 3
where w is any function whatever which satisfies (1) as it
stands, and u is the general solution of (2). For if u is to
be determined, and w s&tisﬁes @), We ha.ve, by substitution

% +Q+ z+P +Qw=R
but (f;ﬂ;+P -+ Qu = R, by hypothegis,
.du P——+Qu=0

iz " ~
i.e. the functxon u must satisfy (2). "

The functions w, u are called the Particular Integral
and Complementary Function, respectively, of the general
solution of (1).

The particular integral may be any solution of the
’ . 234
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original equation ; it is usual to choose the simplest. {The
complementary function is the genera! solution of (2), and
involves two arbitrary constants.

If w,, w, are two solutions of (2), then equation (1) i8
satisfied by

y = Cyuy + Couy,
C,, C, being arbitrary constants, This can be verlﬁed by
substitution. Let the equation be
dy 4

a2~ "R
Since w,, w, satigfy this, we have
d*u d*u
&t = s gt = -

M\ﬂtiplying by C,, C,, and adding :—
& uzf;; Gty = — k{Cyu, + Cuup),
which proves the proposition for this case.
" This is called the principle of Superposition of Par-
© ticular Integrals,

138. THE OPERATOR D AND THE ALGEBRAIC LAWS

. We denote the aperating symbol diz by D.

» Thus Dy = dy/dz, D log z = 1/x, ete.
‘We have already proved that
() D@ + v) = Du + Du.

. du du
05)) (D+a)u—a +au—-au+~c—ﬁ~(a+D)u

d
(i) Diaw) = ai‘ = aDu,
but D (zp) is not = a:Dy,

i.e. the commutative law is only obeyed with constant

" multipliers. N
Further, it can be shown that
@v) D"D"w = D™ *"u.
Thus the operator D, alone, and combined with constant
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multipliers, is subject to the algebraic laws. The following
deductions are immediate :—

@) Let Du = v,
u=D1 = (1/D)v
. D"y = va,
or DD-!' =1

Obviously D1 = §.
(2) Let X, A, be any constants, then

O - 2O -2 u =0 - (% -2

= d%(%“-x@—x —d—u~—7\‘zu> ’

= g’j a +>\2) o MAgu
= [D*- (A + 7\2)D+ Mg lu.
This means that any eq\m.txon of the form
2
B @+ OZ +agy =0
may be written as a product of two factors, since [D? -
(@ + B)D + aBly, which is equivalent to that equation,
may be written as
DO-a®-pPy=
134, LINEAR EQUATIONS OF THE SECOND ORDER WITH
CONSTANT COEFFICIENTS »

‘We return to the consideration of the equation
Z;ﬁ + de +Qy=R . . . @
where P, Q, R are, for the present, considered as constants.
‘We have geen that to solve this we must find two
functions w and w, called the particular integral, and the
complementary function respectively, such that
y=u+w. . . @
Further, w (the particular mtegral) is any solution
whatever of (1), the 81mp1er the better; and « (the com-
plementary function) is the most genera.l golution of the
equation ,
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DWW iqu-0. . . B
and involves two arbitrary constants.
Let P= - A, + Ay,
Q = MAg;
then (3) may be written —
D - (A + 2Dy + Ay = 0,
or D?2- A+ )D+ ANy =0, @

Case (i).

P>4Q; ‘
: bhe roots of (4) are then, by the theory of Quadratlc
Equations (see appendix), real and unequal

D-MND-2y=0 . . (da),
where A, A, are the roots of
M+PA+Q=0 . . 6))

ie. ;‘;} — = §P+ JIPTZ- Q.
Equation (5) is called the auwxiliary equation.
Let D~ N)y=2 . . . (6)
‘. (4a) becomes
D=2)z=0. . . @
which is a linear equation of the first order. The solution
of {(7) we have shown to be

2z = AeM® . . . . (8)
Substituting in (6), we get
! (D ~ Ny = Aed™ . . . @
This is linear, and of the form
dy _
dz ~ ay =Q,

+  where Q = He>,
discussed in § 130 () ; and it was shown there that the
solution is

Yy = H e + Ce™,
a-—-a

Nowa =2, a=21,
ooy = CeMt o+ Gyt . Qo

vhere C, = ﬁ; and C, is arbitrary.
=
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Since A is arbitrary, both C, and C, are arbitrary, and
(10) is the most general solution of the equation (5).
Case (i1).
If P? = 4Q, the roots are equal, A, = A,.
The equation (9) then becomes
D - M)y = AeM . . . ay
the general solutlon of which has been found in § 130 (8)
to be
y = (Az + B)e* . V12
Case (iii). :
If P? < 4Q), the solution involves trigonometric functions, .
but is never met with in Physical Chemistry.
Summarizing, we may say that the solution of the
"auxiliary equation
d’y dy
kT P + Qy =0,

when P, Q are constants, ta.kes three forms; accordmg as:
@ P*>4Q;
y = C,eM* + Cyelv, ad
where A, A; are the roots of
M+ PA+ Q=0
() P~ 4Q;
y = (Az + B)eM™ ‘ »
(i) P*<4Q; |
which case does not concern us.

Notice that the above results furnish only the comple-
mentary function ; if the given equation is of the form

d
dz y"‘QfJ"

they enable us to solve it, but if the form is

&y | od
S+ P+ Qu=F,

we have still to find the particular integral.
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185. FEXAMPLES ON THE LINEAR EQUATION OF THE
SECOND ORDER

1) Solve ar:g_—2 1.
We ha.ve = 1/:&,\
. dy dz -
B el =log z + C,.

Integratlng a second time, we have,
= §log zdz + SC dz,
. y—a:loga:—z+ Cix + Cy,
Soy==zloga + Az + B,
where A=C, - 1: B =C,
A similar method enables us to solve
d2
E‘x—a = f(@), \

for—-— if@dz + A \\

y = W fl@)dz}dz + Az + B,
‘here A, B are arbitrary constants.
) Solve gﬁ = xe’,

(Integrate by parts.) [y = (& - Z)e‘ + Az + B.]
(8) Solve a;“’dy =a [y=a 10g + A’f + B]

@) Solve g—ﬂ - gy 32y = 0.
This is written in the symbolic form thus:
D*-14D - 32y = 0.
The auxiliary aguation is .
A - 143 - 32 = 0,
"TA-1A+ 2 =0,
A =16,0= -2
The solution of the original equation is therefore
y = C,e!%* + Cie %,

2
(5) Holve %+ ';Z =0, [y=A+ Be" "]
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(6) Solve Z% %ﬂ - 10y = 0. [y = Cye™ + Cpe~%.

., (7) Solve 2~ Zy +y=0. [y=Cpe + Cet.]
® Solve ¥ _ 6%Y , 11% _ 6y — 0.

da? " da? az
The results proved for equations of the second order
may be generalized. The most general type of linear
equation with constant coefficients is
fD).y=0; :
if f(D) can be resolved into # real factors
D) =®-MD-2D -2y ... D - r);
where A;, Ag, N, . . . are the (real) roots of

&) =0;

fDy =0
is the equation
y=Cieh® + Gy + Cgel® + L., + C,eM"
involving n arbitrary constants. '
[y = Cie® + Cye® + Cye?=]

©9) Solve L+ 4 =+ 8y =0

then the solution of

[y = Cie* + Cyer]
(10) Solve =% d Y+ 43-‘/ +4=0. .

(The aumhary equation is
A+ 4+ 4=,
: A+ 2=
ie. wehave N, = Ay = — 2
This is the case of equal roots, hence
y= (Az + B)e %)
2,
(11) Solve %— g—f— %+ y =0
(The auxiliary is
M-oAZ-rA4+ 1=
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The case is a combination of equal and &\unequal roots

and bAY
¥y = (A + Bx)er + Ce“’.) \‘E
(12) Solve 2¥ — 324 4 4y L
[y = A+ Bz)eﬁ‘ + Ce“’]
) .
(13) Solve gﬁ.{ - 3? + 2 = 0. \

[y = A+ Ba)e® + Ce™%.]
(14) Solve %05 - B0 =0, [0=CP + CpeF]

@5) Show how to solve an equation of the type
d2
da? Y= rw.
[The first integral may be obtained in one of two
ways:—
(1) Multiply both sides by dy/dx, and integrate
dy dy dy
dz’ dz* =/®) d

. 1d/dy dy
© 3 dx(dx) A
) = [ro%az + & = [rgay + A
wm Let dy/dz = p,

dy dp dp dy _ dp
de®  dzx  dy dr dy

Then d = f(y) may be written

’ I’@ = fly.
Integrate with respect to ,
= {fy)dy + A

In both cases the solution would be completed by
separating the variables:—
dy _
N2 fydy + 2A

16
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dZ P ~
(16) Bolve EE%*' Y= h‘ 7

[dy> Y "2th2-'/+0']

dy _ dy
(17) Solve ad—zg = d’—z.

®ut dy/dz = p.) [y = A + Befe]
d2y dy
(18) Solve @y + (d:c) 0.

dy d*y dp
Pub G2 =P gg2 = Py
dp
dy+p—0
.logp = - yla + C,
S o= e vieC
'.p=Z—=Ce“’(“
. dzjdy = ae’/®
. 2 = aae’* + B,
- B = qae'l"
e ,g z- B
“a = log 1
a*v 14V
(19) Solve —5—+;H—0.

In this case the dependent variable (V) does not appear
explicitly (cf. Ex. 16)

Putg—v—p,
ap P _ v
d/r+1'*0

p=Afr;
LAV _A v = AT
dr r T

“V=Alogr+ B.
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136. LINEAR EQUATIONS WITH VARIABLE COEFPICIENTS

Let d y dy StQ=0 ¢ . D
where P = f1 (=), Q = f,(m)? \
To solve such an equation we put ‘ \ _
x=2e . . » v (2)
Ezxamples ;— - o
d'y dy
2L - =
(}) A + 4wd¢v + 2 =0 SR (@)
Put z = ¢, or z = log =, }
. dw — p? dy dy )
N ZER R il \
LW _ldy o
. i » :l:dz . . \ .
Also \
Py _ d(l dy dy dyy |
e AB )
Substitute the values from (b) and (¢) in (a) :—
(flyz + th + 2y=0 . . . (d)
an ordina‘.ry linear equation with constant coefficients,.
4
.y =0 + Gt = Oz + Cya. \\
dy dy - 0. .

d?
s (2 Solve a* %+ r5% dz‘ dw

[y = C, + Cyfz + Cgzd.] "
' &y dy
27 J . - =
3) Bolve (@ + =) iz 5(a + ) dz + 6y = 0,
» Put 2 = a + z,

22Y dy -
Zz‘j‘ 522}‘*‘ 6y——0.

' dr = ¢
Pat e an e o [0 0O,

.y -
o 5dt + 6y =0,

Ly = Cle‘“ + Ce* = Cila + 232 + Cyla + )%,
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137. CONSECUTIVE CHEMICAL REACTIONS

The view is becoming more and more pronounced
that many, perhaps all, the reactions which are repre-
sented by complicated equations are in reality composed
of a series of simpler reactions, the products of one re-
action being involved in the succeeding reactions. These
component reactions are usually bimolecular. The frequent
occurrence of the bimolecular reaction receives a simple
explanation from the kinetic molecular theory, since the
chance of a binary molecular encountér is very much larger
than the chance of a ternary, quaternary, etc., encounter.
If one of the component reactions is very much slower
than the others, the order of the whole reaction is then
approximately that of the slow reaction. Thus if A is
converted very slowly into B, and B very quickly into C,
the order of the whole reaction is practically that of the
reaction

A-B;
the B, as fast as produced, being converted into C
B-=C. '

Very rapid, or * instantaneous,” reactions, such as
occur between ions, will have little or no effect on the
observed velocity of reaction. Purely hypothetical sub-
stances, with this convenient property, may be postulated
ad ltb. in the supposed explanation of a reaction; if no
independent evidence of their existence is forthcoming,
the *explanation” is simply a complication of the prob-
lem to be solved: ‘It introduces a new unknown; it
is unnecessary, and nothing more damning can be said of
a scientific theory”.

To get a clear idea of the nature of consecutive re-
actions, we may consider a number of reservoirs on a
sloping hill-side connected by pipes of varying diameter.
Il a quantity of water is let into the first reservoir this
will correspond with the initial substance. Since this can
only leave the reservoir, its quantity can never tend to a
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maximum ; on the contrary it will diminish continuously,
and approach a minimum value of zero. The rate at
which water accumulates in any reservoir will be directly
proportional to the head of water in the preceding reser-
voir and to the cross-section of the inlet pipe; it will be
inversely proportional to the cross-section of the outlet -
pipe. It is evident after a little thought that the quantity
of water in such a reservoir can become a maximum after
some period of time has elapsed, it then decreases continu-
ously, and approaches asymptotically a minimum value
zero. The quantities of water in the reservoirs correspond
to the quantities of the products of the component re-
actions; the cross-sections of the inlet and outlet pipes to
the velocity-constants of the reactions in which the pro-
duct enters and leaves the system. The rate at which any
substance Y accumulates is directly proportional to the
product of the concentration of the parent substance (X)
at any moment and the velocity-constant of the reaction
X-Y.

The rate at which the substance Y disappears is propor-
tional to the concentration of Y at any instant multiplied
by the velocity-constant of the reaction \

\
Y-Z.

Hence the resultant rate of production of Y is given
* by the equation :
ay

E?_kX kY.

The supply of X is however after a certain point, con-
tinually diminisding, and that of Y continuously increasing

The velocity % will therefore pass through a maximum

value, and then diminish. At the maximum point the
rates of production of X and Y are in the ratio of %,: %,.
Such a system of reactions, in which the various stages
are genetically connected, must not be confused with a
system of side reactions, in which the original substance
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(or substances) are converted directly into a variety of final
products.

A chemical reaction is the resultant of a large number
of conditioning causes. The reaction as a whole must
proceed in conformity with the laws of conservation of
matter and of energy ; and the available energy of the final

system must, if the reaction has occurred spontaneously,

be always less than the available energy of the initial
system. The actual manner in which the available energy
is dissipated will, however, depend largely on the conditions
under which the system is placed; on its temperature and
pressure, on the concentrations of the reacting substances,
on the extent of the surfaces of the phases, on the op-
portunity for free diffusion, etc. The reaction therefore
proceeds in a variety of ways, and leads to a variety of pro-
ducts. It is only in a few cases that we can say exactly
how & reaction proceeds in all itg stages. o
Instead of taking up the general theory of consecutive
reactions, which is still very incomplete, we will consider
a few examples which have been actually investigated.
We may refer once more to the work of Professors V.
Harcourt and W. Hsson, of Oxford ; who in their researches
“Qn the Laws of Connexion between the conditions of a
chemical change and its amount,” “ Phil. Trans.,” 1866 and

1867, laid the foundations of chemical kinetics. The .

mathematical and experimental treatment of consecutive
reactions was carried out by them in & manner which,
when we remember that the general laws of mass-action
had not then been enunciated by Guldberg and Waage,
can but impress us by its thoroughness an¥ accuracy.

138. CASE 1

Two consecutive unimolecular reactions :—
A->M-B.
M is called the intermediate product.
After a time ¢ let the system contain
# mols. A + y mols. M + 2 mols. B.
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The rates of formation of A, M, B are given by
da

- a? = klz . . | \\ (1)
p -
T=ky . . . . b @
dy dr dz _
e O ke by - ®
Let one mol. of A be the initial amount, then !
z+y+2=1, . . - @
Dlﬁ'erentlate @ — ‘ \
d?z dy
9B - kgjt— =0 . . . ®)
Add and subtract k& kzy :
d?
Tt i+ Y kil r =0 . @
From @) z- 1= - (@ + y),
2(y —
LB -1, (&, + kz)d(z Dy kke-1n=0.

de
a linear differential equa.tlon of the second order in the
variable (z - 1) with constant coefficients,
The solution ig therefore
2-1=Ce "+ Ce % . . (8)
When ¢t =0, 2= 0,

s =1=0C+GC . . . (9)
Differentiate (8):—
dzfdt = — E,Cle™ % — kG4 . .0
From (2), dz/dt Owhent=20
= - kC - kC . . .1y
From (9) anﬁ 11)
Cimytr o= - P
Vo R -k Y k- R
. k2 —ke kl ~k ¢
.Z"].=k—1-—_*—k;6'1—m6 Pl (12)
Put kf(ky - k) = A; kif(ky - k) = B;
eTh=0;efa=D . . . (13)

Then z + y = A(CY - BD)* . . . . (19
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Values of A, B, C, D may be calculated which satisfy
the data, Harcourt and Esson found an example of this
cage in the reduction of KMnO, by oxalic acid. Mangan-
ese dioxide is first formed by an instantaneous reaction,
and is then slowly reduced to MnO via an intermediate
oxide, possibly Mn,0O, :—

MnO, ~» Mn,0, = MnO.

They found that A = 42'7, B = 53, C = 094, D = 075,
satisfied the data.

Calculate the values of (z + y) for ¢ = 2, 4, 6, 8,

40, and compare with the following experimental num-
bers :—

t= 2 4 6 8 10 18 30 40
r+ y=3475 3175 286 2575 231 1415 67 39

139, CASE 2. MONOMOLECULAR FOLLOWED BY BIMOLE-
CULAR REACTION

If KMnO,, MnSO,, C,;H,0,, and H,80, are mixed in
the proportions :—
2KMnO, + 15MnS0O, + 5C,H,0, + 3H,80,,
(instead of 2KMnO, + 14MnSO, + 108C,H,0,+ 760H,SO,
as in case (1)) the following reactions appear to take_

place:
() 2KMnO, + 3MnS80, + 2H,0 = 5MnO, + K,;80,
+ 2H,80,, ,
or, since everything except KMnO, is in excess,
KMnO, -» MnO,.
If z = concentration of KMnO, after a time ¢,
—g—f=k1z. L e @

(i) Reduction of the MnO, formed in (i} by the oxalic
acid now takes place :—
MnO,, + C,H,0, + H2SO = MnS8O, + 2H,0 + 2CO,,
or since H, SO is present In excess :—
MnO + C,H;0, - MnO + 2H,0 + 2CO,.
Let y, z = concentratlons of MnO, and C.H, O in the
solution after a time ¢,
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dr .
"E§=kz?/?- )

Also 2 '—— =kx-Ilyz. . . 3

It the amounts of KMnO,‘ and MnO, are determined
together, and if a is the amount of C,H,0, or KMnO,
originally present (in gram equivalents),

@ ~ z = number of equivalents of KMnO, transformed
© ab time ¢,

a - 2z = number of equivalents of C,H,0, transformed
at time ¢,

But (number of equivalents of KMnO, transformed)
= (number of equivalents of MnO, transformed) + (number
of equivalents free MnO,), from the equations,

A~ T=a -2+ Y 2=+ Y . 4)

Divide (3) by (1),

_dy dt -1 ky yz

' Tdtds T T Ky !
Substitute dy = dz — dz, from (4), a.nvé put k,/k, =K :—
_de__gyr
dz z’ ‘
Substitute y = (# - z), and divide through by 2?:—
1 d2 K K
» ;ﬁ . l_i; ‘; - E = 0 . . . (5)

This hag been solved in Example (18) on § 131 :—
Ke ™ "‘{Cl— logz + Kz - +—;(Ka)? + .. .}z =1. 6)

1. 2‘
Integrating (1) »—
dz _ _ k,dt + const,
x
*. log £ = ~ k,t + const,,
orx = ae - b . . ("N

Substitute this value of z in (6) and neglect the terms
ufter log = (after five minutes, it was found that the per-
manganate had practically disappeared) i—
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;:—“(C1 -loga+ kbz=1,
1
or, collecting the constants,

C+ Ha=1/k, . . ®
The values C = 01, k; = 0:006364 were found to give
good results when compared with experiment,.

140. RADIOACTIVE CHANGES

The emanations of radium and thorium; and the
substances ““ uranium X" and ‘‘ thorium X,” produced in
the disintegration of uranium and thorium, lose their
activity according to the simple exponential law previously
considered. The change is monomolecular, involves the
disintegration of a single atom, and proceeds according to
the equation

T = mpe ~ N,

The “excited radioactivity ” produced on a body (e.g.
a platinum plate) exposed to the emanations of thorium,
radium, and actinium, does not decay in such a simple
manner ; Rutherford therefore suggests that the deposited
matter undergoes a series of successive changes, the
process being an example of consecutive reactions. It
was found that the rate of decay was quite different ac-
cording as the body had been exposed for a short time or
for a long time to the action of the emanation. We shall
therefore have to consider the phenomena in the cases pf
““ghort exposure ”’ and ‘‘long exposure .

‘We will take the first part of the life of radium. This
is composed of the following stages :—

Ra — Ra Emanation —>RaA —>RaB —>Ra.C -

actlve deposit
Fach change, involving the disintegration of a single
atom, is unimolecular, and if N, N, are the number of
atoms of any changing substance present at time ¢, and the
number of atoms present when it begins to disintegrate,
respectively,
N = Nge-*»;
where A\ is the radioactive constant.
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This is the integral form of the velocity equation

aN
il AN.

(@) Let N,, N,, N,, be the numbers of atoms of RaA,

RaB, RaC left unchanged after a time ¢

Let A, 2, 2y

be the radioactive constants for the same three substances ;
and, in the case of a short exposure, we may consider, say,
N atoms of A deposited, these changing into B and C.

0
A
» \
o [\ N
5 |{s \
iw N _..__j}\
; &‘ , \\
) 8
» N I~
A : 8
0 3 o - 45 60 75 90 105
» ‘Time in Minutes,
. Fia. 42,
Nl = Ne-** (1)
dN
’ 7172 =N, - LN, . @
dN
“Ef = )‘INﬂ - 7‘:;Na . 6)]
dNZ - At
Therefore > il AMNe-re - N, 4)
he solution of this being of the form
N, = N(ae " + be~™) ®)

where a = A /(Ag = .
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Since Ny =0 when ¢t =0 .. b = - M2 = ).

. _ Ny A _ a—A
.Ng—xl_xg(e i — e~ M) e )

Substituting in (3) it is found that

N, = N(@e M + be -+ ce~™) . . @
— )"17‘*2 . — "7"17‘1 .
Where @ = & M m 3 O T B = A0y — Ay
R
(7\1—7&3)(7\1—7&)'
100 0\
N

NERN

IINERN

2 ‘ \

‘Qwory fo oy easpjay

A [ — B
0 5 0 4 6 75 80 s "
Timg in Minutcs
Fia. 43.

If the curves showing the amounts of A, B, C present
at any time ¢ after a short exposure be dtawn from (1), (5),
(7), the variation of the three substances is evident. In
the case of radium,
A =385 x 103,
A =538 x 104,
A, =413 x 1074
If N = 100, and the amounts of B and C be taken as
initially zero, the curves for the production of B and C,
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and the decay of A may be drawn. These are given in
Fig. 42.

(b) In the case of a long exposure, the emanation and
its products have reached a state of equilibrium, in which
the number of atoms of A deposited per second from the
emanation change into the same number of atoms of B,
and so on. Let n, be this number. ,

ny = MNP = ANy = N0 . 0))
where N,", etc. are the va.lues for the steady state.
: Initially, N, = N,° = no/)»w

\\\ - N == N = ’no/hp
\ N, = Na = MeAg . . @
hence, as before \\
. n “
S T S
My h —At . o, —At \
N2 7\,1 - )\'2<}\26 ) ¢ l) ' (4)
N, = nyae "M + be =M + ce~*) ' . )
A - N
= 4 b = ’
vhere a P WY VW -\ (7\‘2 - Ay
. Ay

gy = M)Ay ~ Ay

Taking the value N, = 100, and the values of xl, Ags
™A, already given, the curves for the change of the active
deposnt after long exposure may be drawn. They are
given in Fig. 43






Arpenpix 1
THE THEORY OF QUADRATIC EQUATIONS

HE general type of quadratic equation is
e+ bz +ce=0 . . L
where a, b, ¢ are constants. In proceeding to the solution
of this equation, we observe in the first place that
&+ a)? = 2 + 2az + a?,
in which both members are complete squares. :
Any quadratic expression is a complete square when -
the third term is the square of half the coefficient of z,
provided the coefficient of z? is unity.
Divide (1) by a, and transpose :—
g, b ¢
*+ —r= - -
a a
Oomplete the square of the express129n on the left by

iagding ( ) to both sides :— A

b b ¢ b?
2 — — = - — —
et <2a) = T at i
) (z_*_i?_b”—etac
e 2a) 4a?
. b b~ dac
..w+§5—-i—““‘§a__'—x
. _»b+~/b2 dac -
L= % . @)

k. We observe that every quadratic equation has two
Woots,~ie. two values of z which satisfy the equation.

These roots are
266
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- b + Jb® - dac —b—Jb2—4ac
2a » T 2a
If we denote the roots by a and 8, we have

—b+ JBF-dac  -b- JP-4ac_ b
a

T =

a+B- 2a * 2a T

coefficient of =
coefficient of =%

or the sum of the roots = —

Also
_(_ JO — dac b Jb - dac
o8 = (- 5o+ PN g T )
¥ -dac_o
T 4q? a0
third term

or the product of the roots = coefficient of z*

Ezamples :— ‘
(1) Show that the sum of the roots of
ax? — az + ¢ = 0 is unity.
(2) Show that the product of the roots of
ace* + bz + 2 =0
is that of the roots of
ar® + bz + ¢ = 0.
8} Let a, B be the roots of
az® + bx + ¢ = 0.
Show that the factors of this expression are '
alz - a)(z -~ B) = 0. »
This result enables us to factorize any quadratic ex-
pression very readily.
Consider the equation
ar? + bz + ¢ =0,
where a, b, ¢ are real quantities, i.e. do not mvolve the
square root of a negative quantity.
The roots we have shown to be
- b+ Jb2—4ac —b—Jb2—4ac
@= 2a P B = 2a
Now all questions as to the nature of the roots may be
answered, without actually solving the equation, from a




THE THEORY OF QUADRATIC EQUATIONS 257

consideration of the expression (62 ~ 4ac). This expression
is therefore called the discriminant of the eguation.

@) If b* - 4ac is negative, ie. if b? <4ac, the roots are
smaginary, since the square root of a nega.tlve quantity is
not & real quantity.

(i) If b2 — dacis zero,ie. if b? = 4dac, the roots are real
and equal.

(@iil) If % - 4ac 18 positive, ie. if b2 > dac, the roots are
real and unequal.

(iv) If ¥ ~ 4ac is a perfect square, the roots are ra-
tional.

(The distinction between * real” quantities and ‘‘ ra-
tional ” quantities must be kept clear. /2 is real but ir-
rational, /- 2 is unreal, or imaginary.)

() If b® - 4ac is not @ perfect square, the roots are
irrational.

Formation of Quadratic Equations :—

Given the roots m and =, it is required to form the quad-
ratic equation. '

Let the coefficient of 2% = 1, then

coefficient of « = ~ (m + n),
third term = mn,
*. the equation required is
2 — (m+ njxz + mn = 0,



ArpENnDIX II

THE SOLUTION OF SYSTEMS OF LINEAR
EQUATIONS BY DETERMINANTS

Systems of equations of the types

ax + by = ¢
ax+ by + ez =d; ) .
T+ by + 6z = dg} - (B)
a,x + by + ¢z = dg

occur frequently in practical work.
Now it is shown in textbooks on Algebra that the
solution of (A) may be written

@ 6 ‘gl G ‘
Ay G o Cg ’
T = sy = .Y
51 bll @, b1| '
@ b % b
where |U1 1| = a,c, - a0y, 9
4 G

i.e. we take cross products; descending products being
positive, ascending products negative.

a, 77 Ci
0
az/\tc,
Similarly 22‘60,; = b6, = by, ete.

The symbol Z;illis called a Determinant; the pro-
2

258
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cess of writing out the products, in conformity with the
rule, is called expanding the determinant. The utility of
determinants lies in the compactness and symmetry which
they introduce into algebraical operations.

All simultaneous equations of type (A) may be solved
by introducing proper values of the constants into {(A').

If the equations involve three unknowns, z, y, an({ ¥
simultaneously, the determinant equations are

|

The determinants in these equations are expanded by
the following rule :—

Rule of Sarrus ; repeat the first two columns after the
third column, make products along the diagonals as
shown, counting descending **, ascending ~*.

o NS
AN

as b; Ca

= a,be, + blcga3 + c1aby — agbe; — byeya; — cyaby

Another method is to expand the determinant into its
minors :—
a, b ¢
a; b
a, by 03

b, ¢,

+ a
o,

C.
=qa 2 2
1lb ¢y

— a2 21'
3 C3
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Then, expanding the minor determinants, we get
@y (bycy — bycy) — aa(bios — byey) + ay(bie; - Byey).

Further particulars respecting Determinants must be
looked for in textbooks on Algebra.

Ezamples :—

(1) Solve the equations

2z + 8y + 2= 20
3z + 5y + Tz = 34
z+ 2+ 42 =17.

=1y=22=3)

(2) Field estimated the chlorine, bromine, and iodine
in a mixture of a chloride, a bromide, and an iodide, by .
precipitating one-third with silver nitrate and weighing
the mixed halides, precipitating another third with silver
nitrate and digesting the precipitate with KBr, when
AgCl » AgBr, since the solubility-product of the latter is -
less; and finally by digesting the precipitate from the
remaining third with KI, when AgCl - Agl, AgBr -» Agl.

Let w, w', w” be the weights of the three precipitates
after treatment; z, y, # the (unknown) amounts of AgCl,
AgBr, Agl. The student will easily prove that

z+y+z=w

187-80

143-33
23480 234'80

14333 " * m780Y

Thence find z, y, z by determinants.

(8) Macnatr treated the mixture of AgCl, AgBr and
Agl with K,Cr,0; + H,80,, thus converting AgCl and
AgBr into soluble Ag,80,, and Agl into insoluble AgIQ,.
The iodate was reduced to Ag, and the Ag in the filtrate
estimated. Let w = weight of mixed halides; w, = weight
of Ag from AgIO;; w, = weight of Ag from AgCl and
AgBr.

z+y+z=uw

z2=w".
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Prove that

A8 . A
AgCl * YAgBr =

Thence find 2, y, # by determinants. !

(4 Sodium and potassium may be estimated by the
evaporation of a mixture of their salts (with a volatile acid)
with strong hydrochloric acid. NaCl(x) and KCIl(y) re-
main. Tet the weight of the residue be w,:

T+ y=w.

The mixture is evaporated with strong sulphuric acid

and the residual sulphates weigh, say, w;, :
71 87
575" Y TrsY T v

Thence find z and y by determinants.

(See Ostwald, “Principles of Inorganic Chemistry,”
trans. A. Findlay, 1902, p. 472).

(5) A mixture of z vols. ethylene, y vols. proplyene,
and z vols. benzene vapour is measured in the gas burette.
Its volume = a. It is then mixed with excess of oxygen
and fired. The contraction = 5. The residual gas is
passed into the potash pipette and back to the burette.
''he contraction = ¢. From the equations prove that

z+y+z=a
Qe+ fy+ 52=10
2z + 3y + 62 = ¢.

Thence find £} y, z by determinants.



ArrPENDIX ITI
APPROXIMATION FORMULZAE

. . .
If the magnitudes a, b, ¢, d are small in comparison
with unity, it is true to a first approximation that:

1D A+a)QA+dA+e)...=1lxa+btct....

@) 1+a)?!=1x%2. :

3) R  (l+a@)?=143a

4) l+d)"=14+na.

6] Nl t+a)=14%+4a. /
G Ylera=14}a o

0] Jab = (@ + b).

(The first member is the so-called geometric mean, the
- gecond is the arithmetic mean.)

1

® 1ta=1:.a,.
1
9 ;=17 4a.
@) PPy Fta )
1 -
(10) . m=1+ﬂa.
l+ta)yd +b) -
(12 e =1+ a.
(13) z* =1+ alog,z.
2
14 log(l + @) = a* - %

The student should verify the above formule. Further
examples (mainly modifications of the types just given) are
added, ’

262
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Ezxamples :—
Show that to the first order of approximaition, if & is

small compared with a:

® a}-8=}z<1+g)'
@ Ja 5= Jya(l L%) ‘
B 3 /a - 0= Ja( L T‘Z%)

(4) Prove equation (7) above by putting b =a + §,
where & is small, and using Ex. 2. .

As an example of the practical utility of these approxi-
mation formulse, consider the correction of the barometric
height for temperature. If a is the relative coefficient of
linear expansion of the mercury with reference to the brass
scale, and A the (uncorrected) barometric height at tem-
perature £ C., the correction to be added is—aht, to re-
duce to the reading at 0° C.

a for a brass scale = 0°000163.
Now under ordinary conditions, » and ¢ will differ but
slightly from 760 mm. and 15° C. respectively ;
o h =160 + E,
t= 15+ §
where k and 8 are small quantities compared with 760 and
, 15 respectively. Thus by formula (1) ’
ht =760 x 15 + 15k + 7608.
+. Writing (b — 760) for k, and (¢ - 15) for'3,
‘/" ht = 11400 + 15(h — 760) + 760(¢ - 15)
‘ s a ht =186 + '0024(h - 760) + 0124(¢ - 157).

(See Schuuter and Lees, “Intermediate Practical
Physics,” § 2; Watson, ¢ Text-Book of Practical Physics,”
Ch. I; Kohlrausch, * Liehrbuch der praktischen Physik ”,

Ezamples :—

(1) Find the approximate values of the following :—

(1-000024) (1'000065) ; (1-00018) (099982) ;

1 1-00018
1-000025° 0-99986" [1-000089 ; 1; 0°999975; 1-00032.]
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(3) The formula for the expansion of a bar by heat is
I, = l(1 + a?),
where I, = length at 0° C. Show that if heated from ¢ to
t° the final length is approximately
=11+ at - atb).
(3) Prove similarly for the volume of a liquid ;—
vi = v,(1 + Bt - Bb).
‘Would this be true for a gas? [No; see the section
on Taylor'’s Theorem.]
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\APPENDIX IV

TABLE OF EXPOﬁENTIAL AND LOGARITHMIC
FUNCTIONS

The following table will furnish values for
y = logz if # is regarded as given,
x = ¢ if y is regarded as given.

Values intermediate between tabulated values may be
obtained by interpolation with the Rule of Proportional
Parts. .

Examples ;— ’

(1) Find log,1256.

Here z = 1256 = 1256 x 102

<. logx = log,(1256 x 10 = log,1:256 + 2 log,10.
Now log,1'25 = 02931,
log,126 = 02311,
. 02311 - 02231  log,1-256 - 02231
126 - 125 1:256 - 125

S 08,1258 = 02279

< log, 1256 = 02279 + 2 x 23026

= 4-8331.
(2) Find the value of ¢ 26
Here y = - 236, or if we put ¢~ 2% = 1/¢23 we can

evaluate ¢~236 if %ye find the value of €23, From the
tables :—
log10-50 = 2:3513; log10°75 = 2:3749.
Hence if z = ¢3¢ :—
1075 - 1050 __z-1050
93749 — 23513 236 — 23513
ooz = 10558
v e 23 =1 = 10558 = 0:09471.
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z Y z Y z y i x Y

1:00 0 1-51 4121 2-02 +7031 2-58 +9284
1-01 -0099 1:52 -4187 2-03 *7080 2-54 +9329
1-02 0198 1-53 4253 2-04 7129 2-55 9361
1:08 0296 1-54 +4318 2-05 7178 2-56 9400
1-04 0392 1-55 +4383 206 ‘71227 2-57 9439
1-05 +0488 1-56 4447 2-07 7275 2-58 |. -9478
1-06 0683 1-57 4511 2-08 7324 2-69 9517
1-07 0677 1-58 4574 2-09 7872 2-60 ‘9555
1-08 0770 1-59 +4637 2:10 ‘7419 2-61 9594
1-09 0862 1-60 *4700 2:11 7467 262 9632
1-10 0953 1-61 4762 2-12 7514 2+63 9670
111 ‘1044 1-62 4824 2-18 ‘71561 2-64 ‘9708
1-12 +1133 1:63 -4886 2-14 7608 2:65 ‘9746
1-13 11222 1-64 4947 2:16 ‘7655 266 ‘0783
1-14 1310 1-65 5008 2-16 ‘7701 2467 ‘0821
1-15 +1398 1-66 *5068 2-17 7747 2-68 1°9858
1-16 +1484 1-67 5128 218 ‘7798 269 9895
117 *1570 1-68 +5188 219 7839 270 *9933
118 1655 1-69 +5247 2-20 -7885 2:71 9969
1-19 1740 1-70 +5306 2-21 7930 272 | 10006
1-20 +1823 171 *5865 2:22 ‘71975 273 | 1-0043
121 -1906 172 5423 2-23 8020 274 1-0080
1-22 -1988 1-73 +5481 2:24 8065 2-75 | 1-0116
1-23 2070 174 +5539 2-25 8109 276 | 1-0152
1-24 +2151 1-75 *5596 2:26 8154 277 | 1-0188
1-25 +2231 1-76 +5653 2:27 8198 278 | 1-0225
1-26 2311 177 +5710 2-28 8242 279 | 1-0260
127 +2390 1-78 *5766 2-29 8286 2-80 | 1-0296
1-28 2469 1-79 5822 2-30 8329 281 1-0332
1-29 +2546 1-80 +5878 2-81 8372 2:82 | 1-0367
1-30 2624 1-81 -5933 2-32 8416 2-83 1-0403
1-31 2700 1-82 +5988 2-33 8458 284 | 1-0438
1-32 2776 183 6043 2-34 *8502 285 | 1-0473
1-33 +2852 1-84 -6098 2-85 86544 286 | 1-0508
1-34 2927 1-85 6152 2-36 8587 2:87 1-0548
1:35 +3001 1-86 6206 2-37 8629 288 | 1-0578
1-36 8075 1-87 6259 2-38 8671 2-89 | 1-0613
1-37 +3148 1-88 6313 2:39 8713 290 | 1-0647
1-38 *8221 1-89 6366 240 8765 2491 | 1-0682
1-39 +3293 1-90 6419 2-41 8796 292 | 10716
1-40 *3365 191 6471 2:42 8238 293 | 1-0750
1-41 +3436 192 6523 2-43 *8879 2:94 | 1-0784
1-42 3507 193 6575 2:44 *8920 295 | 1-0813
1-43 3577 1-94 -6627 2:45 *8961 296 | 1-0852
1-44 +3646 1-95 6678 2-46 9002 2-97 | 1-0886
1-45 +3716 1-96 6729 2-47 9042 298 | 1-0919
1-46 -3784 1-97 6780 2:48 9083 2-99 | 1-0953
1-47 +3853 1-98 -6831 2-49 9123 300 | 1-0986
1-48 +3920 1-99 -6881 2:50 9163 3-01 | 11019
1-49 -3988 200 6931 251 9203 3-02 1-1053
1-50 -4055 2:01 6981 2:52 9243 3-03 | 1-1086
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z ¥ z ¥ z ¥ z y
3:04 1-1119 355 1-2669 4-06 |1 1-4012 4-57 1:5194
3:05 1-1151 356 1-2698 4-07 | 1-4036 4-58 1-5217
306 1-1184 357 1-2726 4-08 " 1-4061 4-59 1-5239
3-07 1-1217 3-58 1-2754 4-09 | 14085 460 1-5261
3-08 1-1249 3-59 1-2782 410 | '1-4110 461 1-5282
3-09 1-1282 360 1-2809 4-11 1-4134 462 1-5304
310 1-1314 3-61 1-2837 412 1-4159 463 1-5326
311 1-1346 3-62 1-2866 413 1;4183 4-64 1-5347
3:12 1-1378 3-63 1-2892 4-14 1:4207 465 1-5369
313 1-1410 3-64 1-2920 415 1-4231 4-66 1-5390
314 1-1442 365 1-2947 4-16 1-4255 4-67 1-5412
3-15 1-1474 366 1-2975 417 1-4279 4-68 1-5433
318 1-1506 367 1-3002 418 1-4303 4.69 1-5454
317 1-1537 3-68 1-8029 419 1-4327 470 1-5476
3-18 1-1569 369 1-3056 4:20 1-4351 471 1-5497
319 1-1600 3-70 1-3083 421 14375 4-72 1-5518
320 1-1632 371 1-3110 4-22 1-4398 4-73 1-5539
321 1-1663 3-72 1-3137 4-23 1-4422 474 1-5560
322 1-1694 373 1-3164 424 1-4446 475 1-5581
323 1-1725 3:74 1-3191 4:25 1-4469 4-76 1-5602
324 1-1756 375 1-3218 426 1-4493 477 1-5623
3-25 1-1787 376 1-3244 4-27 1-4516 478 1-5644
326 1-1817 3-77 1-3271 4:28 1-4540 479 1-5665
327 1-1848 378 1-3297 4-29 1-4563 4-80 1-5686
328 1-1878 379 1-3324 4:30 1-4586 4-81 1-5707
3-29 1-1909 3-80 1-3350 4-31 1-4609 4-82 1-5728
330 1-1939 3-81 1-3376 4:32 1-4633 483 1-5748
3-31 1-1969 3-82 1-3403 4:33 1-4656 484 1-5769
3-32 1-1999 383 1-3429 434 14679 4-85 1-5790
3:33 1-2030 384 1-3455 435 1-4702 4-86 1-5810
3:34 1-2060 3-85 1-3481 4-36 14725 4-87 1-5831
3:35 1-2090 3-86 1-3507 4-37 1-4748 488 1-5851
3:36 1-2119 3-87 1-3533 4-38 14770 4-89 1-5872
» 387 1-2149 388 1-3558 4-39 14793 4-90 1-5892
3-38 1-2179 3-89 1-3584 440 1-4816 491 1-5913
3:39 1-2208 3-90 1-3610 4:41 1-4839 492 1-5933
3-40 1-2238 391 1-3635 4-42 1-4861 493 1-5953
3-41 1-2267 3-92 1-3661 443 1-4884 4-94 1-5974
3-42 1-2296 3-93 1-3686 4-44 1-4907 495 1-5994
343 12326 3:94 1-3712 4-45 1-4929 496 1-6014
3-44 12355 %95 1-3737 4+46 1-4951 4-97 1-6034
345 1-2384 3:96 1-3762 4-47 1-4974 4-98 1-6054
346 12413 3-97 1-3788 4+48 1-4996 4-99 1-6074
3:47 1-2442 3:98 1-3813 449 1-5019 500 1-6094
3448 1-2470 3:99 1-3838 4:50 1:5041 5-01 1-6114
© 3-49 1-2499 4-00 1:3863 4-51 1-5063 502 1-6134
3-50 1-2528 401 1-3888 4:52 1-5085 503 1-6154
3-51 1-2556 402 1-3913 453 1-5107 5-04 16174
352 1-2585 403 1-3938 4:54 1-5129 505 1-6194
3:53 1-2613 4-04 1-3962 4:55 1-5151 5-06 1-6214
354 1-2641 405 1-3987 4-56 1-5173 507 16233
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y ' z y z Y z y
16253 || 559 | 17210 | 610 | 1-8083 || 661 | 18886
lea27s || 560 | 17228 | 611 | 1-8099 | 662 | 18901
16292 || 561 | 17246 | 612 | 18116 | 663 | 18916
1312 || 562 | 17263 | 613 | 18132 || 664 | 18931
18332 || 563 | 17281 | 614 | 1-8148 || 665 | 116948
1eas1 || 564 | 17209 | 615 | 18165 || 666 | 18961
1ean || 565 | 17317 | 616 | 18181 | 667 | 18976 -
1eag0 || 566 | 17384 | 617 | 18197 | 668 | 18991
Tedoo || 567 | 17352 | 618 | 18213 | 669 | 1-9006
16420 || 568 | 17370 | 619 | 18229 || 670 | 1-9021
Leats || 569 | 17387 | 620 | 18245 || 671 | 1:9036
o467 | 570 | 17405 [ 621 | 18262 | 672 } 19051
Lose7 | s | 17a2a | 622 | 18278 || 678 | 19066
16506 | 572 | 1-7440 | 623 | 18294 || 674 | 19081
1es28 || 573 | 17457 | 624 | 18310 | 875 | 19095
Lessd | 574 | 17415 | 625 | 18326 || 676 | 19110
Teses | 575 | 17492 | 626 | 18342 || 677 | 19126
Teses || 576 | 17509 | 627 | 18368 || 678 | 1-9140
leeor || s77 | 17527 | 628 | 18874 || 679 | 19155
1ee20 || 878 | 17544 | 629 | 18390 ) 680 | 19169
160 || 579 | 17561 | 630 | 18405 | 681 | 19181
Leess || 580 | 17579 | 631 | 1-8d2l | 682 | 19199
Teer || se1 | 17596 | 632 | 18437 || 683 | 19213
Leeo6 || 582 | 17613 | 633 | 18453 || 6-84 | 19228
Lenis || 583 | 17630 | 684 | 18469 || 685 | 19242
1e734 || 584 | 17647 | 635 | 18485 | 686 ) 19367
Le7sa || 585 | 17664 | 686 | 18500 || 687 | 1:9272
Terns || see | 17681 | 637 | 18516 | 688 ) 19386
1e790 || 587 | 17699 | 638 | 18582 | 689 [ 19301
1esos | 5es | 17716 | 639 | 18547 || 690 [ 1:9815
Tes2r || se9 | 17133 | 640 | 18563 || 691 | 1-9380
Tesss | 500 | 17s0 | 641 | 18579 | 693 ) 1-9341
Losed || 591 | 17766 | 642 | 18594 || 6:98 ) 19359
Lasss || 592 | 17783 | 643 | 18610 || 694 | 19373
16901 || 593 | 17800 | 644 | 18625 | 695 | 1-9887
16019 || 594 | 17817 | 645 | 18641 || 696 ) 19402
16938 || 595 | 17834 || 646 | 18636 || 697 | 19416
Teose || so6 | 17851 | 647 | 18672 || 698 | 19430
1eo74 || 597 | 17867 || 648 | 18687 || 6:99 | 19445
1903 || 598 | 17ssa [ €49 | 18708 | 700 | 19459
17012 || 599 | 17901 | 650 | 187187| 7-01 | 1-9478
17029 || 600 | 17918 | 651 | 18733 || 7-02 | 19488
L7047 || 601 | 17934 | 652 | 18749 || 708 | 1-950
17066 || 602 | 17951 | 688 | 18764 ) 704 ) 19516
Lrosd || 603 | 17967 | 654 | 18779 ) 705 | 19580
17102 || 604 | 17984 | 685 | 18795 || 706 | 19544
17120 || 05 | 18001’ | 656 | 18810 | 707 | 19589
17138 || 606 | 1-8017 | 657 | 18825 || 708 ) 19578
17156 || o7 | 1-8034 | 658 | 18840 || 709 } 19587
17174 || e0s | 18050 | 659 | 1-8856 | 7-10 | 19601
17102 || 609 | 18066 || 660 | 18871 [ 711 [ 1961
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y z y z y x y
19629 || 763 | 20821 | 814 | 20968 | 865 | 21576
19643 | 764 | 20334 || 815 | 2-0980 | 866 | 21587
19657 | 765 | 30347 || 816 | 2-0992 | 8-67 | 21599
19671 || 766 | 20360 | 817 | 2-1005 | 868 | 21610
19685 | 767 | 20373 | 818 | 21017 | 869 | 21622
19699 || 7-68 | 2-0386 | 819 | 21029 | 870 | 21633
19713 | 769 | 2-0399 || 820 | 21041 | 871 | 21645
19727 |[* 770 | 2-0412 || 821 | 21054 | 872 | 31656
19741 || - 771 | 20425 | 832 | 21066 | 873 | 2-1668
19755 || 772 | 2-0438 || 828 | 21078 | 874 | 2-1679
19769 || 773 | 20451 | 824 | 21090 || 875 | 21691
19782 || 774 | 20464 | 825 | 21102 | 876 | 2-1703
19796 | 775 | 20477 || 826 | 21114 | 877 | 2173
19810 | %76 | 2-0490 | 827 | 21126 | 878 | 21725
19824 || 777 | 20508 | 828 | 2-1188 | 879 | 2-1736
19838 | 7-78 | 2-0516 | 829 | 21150 | 880 | 21748
19851 || 779 | 20528 || 830 | 21168 | 881 | 21759
1-9865 7-80 20541 8-31 2-1175 8-82 2:1770
19879 || 781 | 20554 || 832 | 21187 | 883 | 2-1789
19892 || 782 | 20567 || 838 | 21199 | 884 | 21793
1-9906 7-83 2-0580 834 21211 8-85 2:-1804
19920 | 784 | 20592 || 835 | 21223 | s8-86 | 21815
149933 | 785 | 2-0605 | 836 | 21285 | 887 | 2-1827
19947 || 786 | 2-0618 | 837 | 21247 | 888 | 21838
19961 || 787 | 2-0631 || 838 | 21258 | 8-89 | 2-1849
19974 | 788 | 20643 | 839 | 21270 | 8-90 | 21861
19988 (| 789 | 20656 | 840 | 21282 | 891 | 21872
2-0001 7-90 2:0669 8+41 21294 8-92 2-1883
2:0015 || 791 | 2:0681 || s8-42 | 21306 | 8-93 | 21894
2:0028 || 7-92 | 2:0694 || 843 [ 21318 || 894 | 21905
20042 || 793 | 20707 | 844 | 21330 || 895 | 21917
2-0045 || 794 | 20719 | 845 | 21342 | 896 | 21928
20069 || 795 | 20732 || 8-46 | 21353 | 897 | 2-1939
20082 | 796 | 20744 || 847 | 2-1365 || 8-98 | 2-1950
2:0096 || 797 | 20757 | 848 | 21377 | 899 | 21961
2:0109 | 798 | 20769 || 849 | 21389 || 900 | 2-1972
20122 | 799 | 20782 || 850 | 21401 | 901 | 2-1983
20136 | 800 | 20794 | 851 | 21412 | 9-02 | 21994
2-0149 | 801 | 20807 || 852 | 21424 | 908 | 2-2006
2-0162 | 802 | 20819 || 853 | 21436 | 904 | 22017
2:0176 | 9803 | 20832 || 854 | 21448 | 905 | 2:2028
2:0189 | 804 | 20844 | 855 | 21459 | 9-06 | 2-2039
20202 || 805 | 2-0857 | 866 | 21471 | 9-07 | 2-2050
20215 | 806 | 20869 | 857 | 211483 | 9-08 | 2:2061
2:0229 || 807 | 20882 | 858 | 21492 | 909 | 2-2072
2:0242 || 8-08 | 20894 | 859 | 21506 | 910 | 2-2083
2:0255 | 809 | 20906 || 860 { 21518 | 911 | 2-2094
2:0268 8:10 20919 8:61 2-1529 912 2-4105
20281 || 811 | 20981 | 862 | 21541 || 913 | 29116
20295 | 812 | 20943 || 863 | 21552 | 914 | 2-2127

| 20808 | 813 | 20956 | 864 | 21564 | 915 | 22138
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) z ) x Y
22148 953 22544 9-89 2-2915
22159 954 | 22555 990 | 2-2925
22170 9-55 22565 9-91 22935
22181 9-56 2:2576 9-92 22946
2:2192 957 2-2586 9-93 2:2956
22203 9-58 2-2597 9-94 22966
22214 9-59 22607 995 22976
2-2225 9-60 2-2618 9-96 22986
22235 9-61 22628 9-97 2:2996
22246 9-62 2-2638 9-98 2°3006
2-2257 963 2-2649 9-99 2-3016
2-2268 9-64 | 22659 10-00 2-3026
22279 9-65 2:2670 10-25 2-3279
2-2289 9-66 2-2680 10-50 | 2-3513
22300 9-67 2-2690 10-75 2-3749
2-2311 9-68 2-2701 11-00 23979
2:2322 9:69 2:2711 11-25 2:4201
2:2332 9-70 2-2721 11:50 2:4430
2-2343 9-71 2-2732 11-75 2:4636
2-2354 972 2-2743 12-00 24849
2-2364 973 2-2752 12:25 2:5052
2-2375 9-74 2-2762 12-50 265262
2-2386 9-75 2-2773 12-76 25455
2-2396 9-76 22783 13-00 2:5649
2-2407 977 22793 13-25 2-5840
2-2418 9-78 22803 13:50 2-6027
2-2428 979 2-2814 18-75 26211
22439 980 2-2824 14-00 2:6391
2-2450 9-81 22834 1425 | 2-6567
22460 982 2-2844 14-50 2-6740
2-2471 9-83 2-2854 1475 26913
2-2481 984 2-2865 1500 | 2-7081
2-2492 9-85 22875 15-50 27408
22502 9-86 2-2885 16-00 | 27726
22513 9-87 2-2895 16-50 2-8034
2-2523 9-88 22905 17-00 | 28382
2-2834
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17-50
18-00
1850
15-00
19-50
20-00
21-00
22-00
23-00
24-00
2500
26-00
27-00
28:00
29-00
30°00
31:00
32-00
33-00
34-00
35-00
36-00
37-:00
38-00
39-00
40-00
41-00
42-00
43-00
44-00
45-00
46-00
47-00
48-00
49-00
50-00

2-8621
2-8904
29173
2-9444
2:9703
2-9957
3-0445
3-0911
31355
31781
3-2189
3-2581
3-2958
3-3322
3-3673
3-4012
3-4340
3-4657
3-4965
3-5263
3-5553
3-5835
3-6101
3-6376
3:6636
3-6889
37136
3-7877
3.7612
3-7842
3-8067
3-8286
3-8501
38712
3-8918 ?
39120
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ApIABATIC expansion, 47, 197, 204.
Approximate integration, 170, 210,
Approximation formule, 112,
Archimedes’ method, 61.

Areas, 202.

Atomio weights, 61.

Attractive forces, 206, 217, |
Autoeatalysis, 68 163

Avogadro’s Law, 128.

BerNoULLI'S equation, 229, 232,
Binomial series, 53, 173,

CARNoOT's cyole, 204,

Chemical reactions, 81, 93, 144, 152,
232, 244,

Complementary function, 227, 234.

Compound interest law, 76.

Conductivity, 63, 156.

Continuity, 14.

Convergence of geries, 48.

Cyclic integrals, 201.

PEFINITE integrals, 181, 188,
Derivative, 30.

Derived function, 30,
Determinants, 258.

Dielectric constant, 217.
Differential, 38.

—_ coeﬂ‘iclent 29, 36, 124,

— equatxons, 214. -
Differentiation, 40.
Diffusion, 156.
Discontinuity, 17.
Discriminant, 257.
Dissociation, 119, 126, 180, 165, 199,
Distillation, 220,

ErasTICITY, 65,
Elimination, 215,

Empirical formule, 112, 118,
Equivalents, 61.

Euler’s eriterion, 108, 222, 228.
Exact equations, 222,

Expansion, 102, 174, 194,
Exponential functions, 72, 82, 265,
Extraction, 51.

Extrapolation, 121.

Facror theorem, 58.
Freezing-point, 122, 128,
Functions, 10, 18,

— of functions, 63.

GEOMETRICAL progression, 47,
Gradient of & curve, 36,

HermHaoLTZ’ equation, 230,

Higher partial derivatives, 107.

Homogeneous differential equations,
219,

Hydrolysis, 160.

Hypothesis, 7, 244,

Inpicaror diagram,’ \201.

Indices, 70.

Infinite integrals, 177.

— series, 47,

Integrals, 138.

Integration, 134, 137; constants,
136 ; factor, 224 ; by parts, 179,
190.

Interpolation, 111, 118, 120.

Inverse operations and functions,
133.

Irrational functions, 166.

Isothermal expansion, 195,

Law of nature, 1.
Leibnitz’ equation, 226.
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Light absorption, 95,

Limit, 21.

Linear differential equationy, 226,
234, 236.

Loops, 202.

MacrLavmin’s theorem, 171,
Mass action, 27, 35,

Mazxima and minims, 55, 66, 109,
Maximum work, 197.

Mean valaes of integrals, 212.-
— value theorem, 125,
Melting-points, 128,

Method of least squares, 115,
Molecular weight, 123,

Nrwrox-Cores rule, 211,
Newton's law of cooling, 94.
Nitric oxide, oxidation of, 157,
Non-exact equations, 224,
Non-homogeneous equations, 224,
Normal equations, 117.

OreraTor D, 235.
Order of a reaction, 32, 151, 11,

PARAMETERS, 114.

Partial differentiation, 98 ; fractions,
148, 149, 158.

Particular integral, 227, 234.

Partition coefficient, 52.

Perfect differentials, 108, 207.

Point of inflection, 67.

Potential function, 206.

Precipitates, 50.

Probabilities, 115.

QuapraTIC equations, 255.
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RapiaTron, 94, 119,
Radioactivity, 94, 250,
Rate of change, 24,
Reaction constant, 62, 153,
Refractive index, 119.
Reliability, 62.

Repulsive forces, 206. .
Reversibility, 196. .
Rule of proportional parts, 112, 176.

SELF-INDUCTION, 230.
Side reactions, 103, 245
Simi;aéx(-) and similarly situated curves,

g Ay
Simpson’s rule, 211, \
Smasll errors, 59, 61. : \
Solubility, 165, \.
Solugiloﬁu of differential equations, |
Sound, 65.

Specific heat, 118.
Stefan-Boltzmann law, 94.
Substitution, 159.
Superposition of integrals, 285.

Tavror's theorem, 172, 175.
Thermodynamics, 104, 196, 209.
Total differentisl, 100.
Transcendental functions, 44.

UNDETERMINED coefficients, 148,

Vax pEr WaaLs’ equation, 121, 123,
198.

Vapour pressure, 10, 94, 118, 120,
126, 129, 165.

Velocity, 25, 231; constant, 97;. of,
reaction, 25, 144, 155, 281,
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