- AGRICUL'TURAL COLLEGE, COIMBATORE.

A NOTE-BOOK

 OF
AGRICULTURAL FACTS AND FIGURES.

MADHAS:
PRINTED BY THE SDPERINTENDENT, GOVERNMENT PRESE.

PREFACE.

This Note-book will, it is hoped, be found nseful by those engaged in South India in agricultural investigation, instruction or demonstration. Their numbers are even now not small, and are increasing. The book is modelled very closely on McConnell's Agricultrral Note-book, a volume which I have found invaluable, both in England and here.

I am responsible for the arrangement of the book, though I have to agknowledge, with thanks, the assistance I have received from members both of the College and District Staff, in its compilation. Mr. Fischer of the Indian Forest Service kindly wrote the notes on the timber trees of the Presidency. The book has been in private circulation over two years, and many mistakes have been corrected; many more still remain bowever, and I shall be most thankful to be notified of them, in case a want is felt for a future edition.

> Agriculitural College, \quad R. CECIL WOOD, Coimbatore, Principa 16th March 1915.

CONTENTS.

A NOTE-BOOK $\dot{0}$ F AGRICULTURAL FACTS AND FIGURES.

WEIGHTS AND MEASURES.

Imperial Atoirdupois Weiget.

27.34 grains (gr.)	...		$=1$ drachm (dr.).
16 drachms	...		$=1$ ounce (oz.).
16 ounces	...		$=1$ pound (lb.).
14 pounds	$=1$ stone (st.).
28 pounds	$=1$ quarter (qr.).
4 quarters	$=1$ hundredweight
			(cwt.).
118pounds.	...		$=1$ hundredweight
20 hundredweights	...		$=1$ ton.

Jmperial Indian Wetght.

(Used in Railways.)
10 tolas 1 chittak.
8 chittaks $=1$ seer.
40 seers = 1 maund.
A tola is the weight of a rupee One seer weighs $2 \cdot 6$ Avoirdupois, and one maund 82.28 lb .

Madras Weigmt.

3 tolas		1 palam.
8. palams		$\underline{1}$ seer.
5 seers ...	\ldots		1 viss
B vissea			= 1 maund.
20 maunds			$=1 \mathrm{candy}$.

A viss is a little over 8 lb . A Madras mand is thas nearly 251b. Avoirdapois (24.64), and a candy is generally taken at $500 \mathrm{lb} .1 \mathrm{lb}=39$ tolas.

Imperial Measures of Oapacity.

5 fluid ounces of water	\ldots	$=1$ gill.		
4 gills \ldots	\ldots	\ldots	\ldots	$=1$ pint (pt.).
2 pints \ldots	\ldots	\ldots	\ldots	$=1$ quart (q.).
4 quarts...	\ldots	\ldots	\ldots	$=1$ gallon (gal.).
2 gallons	\ldots	\ldots	\ldots	$=1$ peok (pk.).
4 pecks.	\ldots	\ldots	\ldots	$=1$ bushel (bus.).
8 bushels	\ldots	\ldots	\ldots	$=1$ quarter (qr:).

A gallon contains $\mathbf{8 7 7} \mathbf{4 6 3} \mathrm{c}$. inches and equals 10 lb . of diatilled water at $62^{\circ} \mathrm{F}$.
6.25 gallons $=1$ cubic foot.

1 gallon $={ }^{\prime} 16$ oubic foot.
1 fluid onnce pure water weighs 1 oz. avoirdupois.
" A pint of pure water weighs a pound and a quarter."

Madras Measures of Capacity.

These are extremely variable, and only a few of the most Fidely known are given.

The type Madras measure is 108 inches cubic capacity, contains 62.5 fluid ounces and is usually 4.5 inches in diameter and 675 inches deep. It is struok, not heaped.

Imprbial Linear Measure.

The chain used for measuring land is 4 poles or 22 yards and consists of 100 links, each link being $\frac{2 \frac{2}{100} \text { yd. or } 7.92 \text { inches }}{}$ long.
$10,000 \mathrm{sq}$. links $\quad \ldots \quad . . . \quad . . \quad=1$ sq. ohain.
$100,000 \mathrm{sq} \mathrm{kss}$ or 10 sq . chains.. = $=1$ aore.
A quarter anna is 1 inch in diameter.

Impertal Squarf Meaburt.

144 sq. inches	$=1 \mathrm{sg}$. foot (sq. ft.).
9 sq . feer	$=1 \mathrm{sq}$. yard (sq. yd.),
304 sq. yards	$=1 \mathrm{sq}$. pole (sq. po.).
40 sq . poles	$=1$ rood (ro.).
4 roods	.	-	$=1 \mathrm{acre}$ (ac.).
640 a.cras	$=1 \mathrm{sq} . \mathrm{mile}$ (sq. m.).
6,272,64! sq. inches	$=1$ acre.
43,560 sq. feet	\ldots	...	$=1$ acre.
4,840 sq. yards	$=1$ acre.
160 sq. roods	...	\ldots	$=1 \mathrm{aore}$.
10 sq . chains	$=1$ acre.

The acre is universally ased in revenue accounts, though different districts still use their-local land measures. It is divided into cents each $\frac{1}{0}$ th part of an acre.

An ácre has roughly four equal sides of 70 yards (208.71 feet).

Imperial Cubic Measure.

1,728 cubic inohes	\ldots	\ldots
27 cubic feet	\ldots	\ldots
$=1$	ou. loot.	
	$=1$ ou. yard,	

LOCAL WEIGHTS AND MEASURES.

ANANTAPUR.
Taple of Weights.

A seer of gold or silver weighs, as elsewhere, 24 tolas.
Grain Méasure.
1 seer $=88$ tolas weight of second sort rice heaped, divided into ara, pavo, etc., as before.

The next largest measure above the seer is the muntha Whose cnpacity differs from talul to taluk.

$$
\begin{array}{llll}
16 \text { munthas } & . . & & \\
20 \text { thumus } & . . & \ldots & =1 \text { thnma. } \\
\text {... } & =1 \text { putty. }
\end{array}
$$

The thamu and the putty are as inconstant in value as the muntha itself.

Liquid Measure.
The grain seer is used for milk, buttermilk and ourd. Oil and ghee are generally sold by weight.

BELLARY.
 Weigars.
 Same as Anantapur.

Grain Measures.
1 seer $=84$ tolas weight of a mixtare of the 9 grains known as navadhanya,
which seems $=86$ tolas weight of paddy divided into are, para, eto.
The multiples of this seer differ in different talaks: in Bellary taluk a putty weighs 2,560 seers.

Liquid Measures.
Same as Anantapar.
GANJAM,
Weigrts.

80 tolas	\ldots	\ldots	\ldots	$=1$ seer.
5 seers	\cdots	\cdots	\ldots	$=1$ viss.
8 visses	\cdots	\ldots	\cdots	$=1$ maund.
8 maunds	\ldots	\ldots	\ldots	$=1$ candy.

For gingelly, castor, coconut-oil and ghee, 1 seer $=22$ tolas. For onions, garlic, saffron, tamarind, potatoes und silk, 1 seer $=24$ tolas.

For chillies	\ldots	\ldots
For vegetables, etc.	\cdots	1 seer $=105$ tolas.
For camphor, spices	\ldots	180 tolas.
Fiss $=118$ tolas.		

Land Meabure.
4 seers of rice and other grains $=1$ tbuma.
16 seers =1 nowtie (cent.).
20 nowties = 1 bharanam.
100 nowties $=1$ acre.

WEIGHTS AND MEASURES.

GODDAVARI.

Weights.

2 pampus	$=1$ yebulam.
2 yebulams	= 1 padalam.
2 padalams	...	\cdots	$\begin{aligned} & =1 \text { riss (5 seers or } \\ & 120 \text { tplas). } \end{aligned}$
2 visses	$=1$ yettedu.
4 yettedus	$=1$ maund (or 25 lb .).
20 maunds	$=1$ putti (or candy).

Fael is sold by the following table :-
5 raands $=1$ kavadi.
4 kavadies $. . . \quad . . \quad 1$ putti.
1 putti ary jungle wood ... $=500 \mathrm{lb}$.
1 putti green jungle wood $\quad=612 \mathrm{lb}$.
1 putti of jaggery $\quad . . \quad=504 \mathrm{jb}$.
Grain Meagures.

Linear Meagurtment.
1 nula $=\frac{1}{8}$ inch.
2 nulus $=1$ pathika.
Land Meastre (popular).

1 kuncham	\ldots	\ldots	$=10$ oents.
1 yedum	\cdots	\cdots	$=2$ acres.
1 pandum	\ldots	\cdots	$=4$ acres.

MALABAR.

WALLUVANAD TALUK.

 Meaburements for Grain and Liquids.| 2 azhakus | \ldots | \ldots | \ldots | $\ldots=1$ ozhakn. |
| :--- | :--- | :--- | :--- | :--- |
| 2 ozhakus | \ldots | \ldots | \ldots | $\ldots=1$ uri. |
| 2 uris | \ldots | \ldots | \ldots | $\ldots=1$ nazhi. |
| 4 nazhis | \ldots | \ldots | \ldots | $\ldots=1$ edangadi. |
| 6 nazhis | \ldots | \ldots | \ldots | $\ldots=1$ narayam. |
| 10 narayams | \ldots | \ldots | \ldots | $\ldots=1$ para. |
| 24 nazhis | \ldots | \ldots | \ldots | $\ldots=1$ chottana. |

Nots.-One Madras measure $=7$ nazhis; 1 narayam paddy weigh 90 rapees weight.

Linear Measubements.

8 ellammanies	\ldots	\ldots	$\ldots=1$ thora.
8 thoras	\ldots	\ldots	\ldots
24 virals	\ldots	\ldots	\ldots
		\ldots	$\ldots=1$ viral.
mazhakole			
carpouter's			

Measurements by timber merchants.
576 perrkams

$$
\ldots \quad . . . \quad . .=1 \text { kandy. }
$$

Weights.

4 nellummanies	\ldots	\ldots	$\ldots=1$ kanni.
2 kannis \ldots.	\ldots	\ldots	$\ldots=1$ maniadi,
2 manjadis...	\ldots	\ldots	$\ldots=1$ parathookam.
10 panathookams	\ldots	\ldots	$\ldots=1$ kazhanchn.
12 kazhanchus	\ldots	\ldots	$\ldots=1$ palam.
100 palams \ldots	\ldots	\ldots	$\ldots=1$ thulam.
20 thulams	\ldots	\ldots	\ldots

Nore.-Grain is measared strack. There are palams of different weights.

Bazaar drugs 1 palam
$\begin{array}{lll}\begin{array}{l}\text { Pepper, ginger, } \\ \text { potatoes, etc., } 1 \text { palam }\end{array} \\ \text { Jaggery and tobacco } 1 \text { palam }\end{array} \quad \ldots=10 \begin{aligned} & \ldots=15\end{aligned}$

ERNAD TALUK.

5 Walluvanad nazhies $=1$ edangali.
10 edangalis $=1$ para.
1 kole of sawed timber $. . . \quad . .=\frac{1}{2}$ kole $\times 1$ viral $\times 1$ viral.
1 kole $\quad i \cdot . \quad . . \quad . . \quad . . .=2 \mathrm{ft} .3 \frac{3}{10} \mathrm{in}$.
Note.-24 local virals make 1 kole.
Ginger is sold by the thulam of 35 lb . weight.
CHIRAKKAL TALUK.
Meabcrements for Graing.

Wbights.
1 ipalam $=8$ rupeus weight.
40 rupees weight' ... $=1 \mathrm{lb}$.
28 lb $=1$ thulam.
20 thulams $=1$ bharam.
TELLICEERRY.
32 lb$=1$ thulam.
20 thulams $=1$ bharam.
CANNANORE.
$30 \mathrm{lb} . \quad . . . \quad . . . \quad . . \quad . .=1$ thulam.
20 thulams $. . . \quad . . \quad . .=1$ bharam.
Note.-In all the above thrse cases. $1 \mathrm{lb} .=40$ rupees weight.

MADURA.

Whights.

6 tolas (4114 oz.$)$	\ldots	$\ldots=1$ palam (nearly $2 \frac{1}{y}$ oz.).	
20 palams	\ldots	\ldots	$\ldots=1$ viss.
6 visses	\ldots	\ldots	$\ldots=1$ thalam (about $18+1 \mathrm{lb}$.).
8 visses	\ldots	\ldots	$\ldots=1$ manad (about 25 lb.$)$.

Grain Meabure.
1 heaped measure contains $=132$ tolas rice.
4 measures = 1 marakkal.
12 marakbals $. . . \quad . .=1$ kalam.

NILGIRIS.

Land Measure.

Mabubres.

$$
\begin{array}{lccc}
2 \text { ollooks } & \ldots & . . & \ldots=1 \text { ullock. } \\
8 \text { ollocks } & \ldots & \ldots & \ldots=1 \text { padi or measure. } \\
8 \text { measures } \ldots & \ldots & \ldots=1 \text { marakkal. } \\
5 \text { marakkals } & \ldots & \ldots=1 \text { para. } \\
400 \text { marakkals } & \ldots & \ldots=1 \text { garisa. } \\
50 \text { jodis (i.e. double) messures } \\
\text { or } 100 \text { Madras measures } . . . & =1 \text { palla. }
\end{array}
$$

Weights.

3 rupee weight (tolas) $\ldots=1$ palam.
8 palams$=1$ seer.
5 seers ($3 \frac{1}{8}$ rattal)$=1$ viss.
60 palums (14 viss)$=1$ tuk.
8 vilsses $=1$ maund.
20 manade $=1$ baram or candy.

NORTH ARCOT.
Weights.

3 tolas...	\ldots	\ldots	$\ldots=1$ palam.
8 palams	\ldots	\ldots	$\ldots=1$ seer (kaccha).
5 beers	\ldots	\ldots	$\ldots=1$ viss.
2 visses	\ldots	\ldots	$\ldots=1$ dhadiyam.
4 dhadiyams	\ldots	$\ldots=1$ maund.	
20 marands	\ldots	\ldots	$\ldots=1$ candy.

The pucka seer of Chittoor and Vellore, is 72 tolas.

Meagures.

8 padis	\ldots	\ldots	$\ldots=1$ marakkal or toom.
12 marakkals	\ldots	\ldots	$\ldots=1$ kalam.
400 marakkals	\ldots.	\ldots	$\ldots=1$ garce.
40 kalams	\ldots	\ldots	..

The toom or marakkal differs in different places of the istrict.
Milk, cards and buttermilk are sold by measure.
Ghee, oils and honey are sold by measure as well rats by reight.

Lańd Meaburè.

1 kole or rod ... I square kole...		$\ldots=24$ feet.
		kazhi (Tamil)
		gunta (Teluga).
100 kulis or guntas	...	$\begin{aligned} \ldots=1 \mathrm{kani} & =57,600 \text { equare } \\ \text { feet } & =1.32 \text { aores. } \end{aligned}$
		Same as cawni of
		Tanjore.

SOUTH ARCOT.
Weights.
3 tolas (or 4114 of an oz.).. = $=1$ palam.
8 palams $=1$ seer.
40 palams (5 seers) $=1$ viss.
50 palams $. . . \quad . . \quad . . .=1$ tuk (about 4 lb. Av.).
12 palams and a fraction (varying in different localities) $=$ I rattal (for indigo).

125 tuks $=500$ English pounds $=480$ French pounds $=$ I baram or candy (used for groundnut'sold to Earopean firms).

In the salt factories.

80 tolas	\ldots	\ldots	$\ldots=1$ seer.
40 seers	\ldots	\ldots	$\ldots,=1$ Indian maund.
120 maunds	\ldots	\ldots	$\ldots=1$ garce ($4: 39$ tons).

Grain Measube.
(Officially recognised).
132 tolas of rice $=1$ heaped Madras measure.
2 Madras measures $=1$ marakkal.
The marakkal however varies in size in different talaks though at all places 12 marakeals $=1$ kalam and 24 kalams are generally held equal to a cartioad. Near Palur, a kalam $=36$ Madras measures and 12 kalams go to the cartload.

Liquid Meastre.
Usually as fractions and maltiples of a Madras measnre, ghea and oil are retailed by weight by the sear and polam above.

Arrack is sold by gallons and drams.
Lineal Measube.
9 angulas (thumb's breadths) $=1$ jan (span).

2 molams $=1$ gaja (yard).
2 gajas... = 1 mar (distance
between tips of the two middle fingers measured across the chest with the arms horizontal).

Land Measure.

SOUTH CANARA.
mangalore.
Wfights.

24 tolaz	\ldots	\ldots	$=1$ seer.
48 seers	\ldots	\ldots	$\ldots=1$ mannd,
20 maunds	\ldots	\ldots	$\ldots=1$ candy.

WEIGHTS AND MEASORES.

Grain Meagores.

1 para		flseèr.
2 paves.		= $\frac{1}{2}$
14 seers	\ldots			= 1 falasikay.
3 kalasikays	...	\ldots		$=1$ muda.
42 mudas		$=1$ boprgee.

Notr.-(1 muda paddy seed is generally 4 kalasikays.)
Liquid Meastres.

Money and Gold.

TANJORE AND TRICHJNOPOLY. Weights.
16 pies $=1$ palam or 3 tolas.
8 palams i.. $=1$ seer.
5 seers $=1$ viss.
8 visses $\quad . . \quad$... ... $=1$ maund.
20 maunds $. . . \quad . . \quad . . .=1$ candy.
Hides and leather are weighed in terms of a rattal, of $1 \frac{1}{8}$ r8.
Tegetables, tamarind, etc., in terms of thukka or edai of sеөгя.

Measures.

A small padi of which four go to the marakkal, is still largely used by the ryot. A seer, one-fifth of a padi, is used for measaring milk, etc.

Land Measúbr.

TINNEVELLY.

Weigets.

In the cotton tracts in the south 1 edsi is equivalent to $10 \div 1 \mathrm{l}$.

Weighta ubed for weighing Gold 1 An d Silver.
20 manchadis $!.=1$ kalanji.
${ }^{\frac{4}{5}}$ kalanji $\quad . . \quad . . . \quad . .=1$, varagan idai,
$3 \frac{5}{6} \cdot{ }^{\frac{5}{6}}$ varagan idai... $\quad . . \quad . . \quad=1 \begin{aligned} & \text { rapee weight } \\ & 1 \text { tola. }\end{aligned}=$
Grain Méabures.

In some parts of Rāmnād-
3 Madras measures...$=1$ marakkal.
90 Madras measures ... $=1$ kottai.
Land Measuremeny.
Wet land.
8 seer padi $\quad .$. $=1$ marakkal (nearly 8 cents).
21 marakkals $\quad . . \quad . . \quad=1$ kota (1.63 cents).:

> Dry land.

21 karakkamsis the area which can be ploughed by one pair in a day.
8 kurakkams $\quad . . \quad . . .=1$ sangili. or-

3 Madras measures $\quad . .=1$ marakkal.
30 marakkals $=1$ kottai:
12 marakkals $=1$ acre.

$$
\begin{array}{rlrl}
\text { VIZAGAPATAM. } \\
& \text { WEIGHTs. } \\
2 \text { chatakas } \ldots=1 \text { nantak } \quad \ldots & =1 \frac{4}{4} \mathrm{oz} . \\
8 \text {.nentaks } \ldots=1 \text { seer } \ldots \quad \ldots & =10 \mathrm{oz} . \\
5 \text { seers } \ldots=1 \text { visam or viss } \ldots & =3 \frac{1}{8} \mathrm{lb} . \\
8 \text { visams } \ldots=1 \text { manugu or maund } & =25 \mathrm{lb} . \\
8 \text { menugas... }=1 \text { kantlam } \ldots & =200 \mathrm{lb} . \\
20 \text { manigùs } \ldots=1 \text { patty or candy } & =500 \mathrm{lb},
\end{array}
$$

The following table is also used side by side with tl first:-

2 yebalams .. $=1$ padalam $\quad . . \quad . .=1 \frac{1}{2} \mathrm{lb}$.
2 padalams... $=1$ visam $\quad . . \quad . . .=3 \mathrm{lb}$.
8 visams $\ldots=1$ manngu $\quad . . \quad$... $=24 \mathrm{lb}$.
8 managai... $=1$ kantlam $\quad . . \quad . .=192 \mathrm{lb}$.
20 managus...$=1$ candy $\quad . . \quad . . .=480 \mathrm{lb}$.

Grain and Liquid Meabure.

| 4 giddas | $\ldots=1$ nola $\quad \ldots$ | $\ldots=$ |
| :--- | :--- | :--- | :--- |
| 2 solas | $\ldots=1$ tarva $\quad \ldots$ | $\ldots=2 \frac{1}{8}$ pints. |
| 2 tarvas | $\ldots=1$ adda or manika $\ldots=4 \frac{1}{4}$ pints. | |
| 4 addas | $\ldots=1$ kuncham \ldots | $\ldots=17$ pints. |
| 20 knncharns | $\ldots=1$ putti $\quad \ldots$ | $\ldots=42 \frac{1}{2}$ gallons |
| 30 putties | $\ldots=1$ garce $\quad \ldots$ | $\ldots=1,275$ galloı |

OTHER WEIGHTS AND MEASURES.

Ootton.

1 skein	\ldots	\ldots	$\ldots=120$ yards.
7 skeing	\ldots	\ldots	$\ldots=1$ hank.
18 hanks	\ldots	\ldots	$\ldots=1$ spindle.
The nrmber of hanks in 1 lb. $=$ "counts."			

Angujar Meabure.

60 seconds $\left({ }^{\prime \prime}\right)$..	\ldots	$\ldots=1$ minute (${ }^{\prime}$),
60 minntes	\ldots	\ldots	..
90 degrees	\ldots	\ldots	$\ldots=1$ degree $\left(^{\circ}\right)$.

Metrical Syetem.
Linear Measure.
10 millimetres = 1 centimetre.
10 centimetres ... , $=1$ deoimetre.
10 decimetres = 1 metre.
10 metres = 1 decametre.
10 decametres $=1$ hectometre.
10 hectometres = 1 kilometre.
10 kilometres $=1$ myriametre.
I millimeire $=039$ inches.
1 metre $=3.28$ feet.
1 kilometre $=621$ miles.

Square measure.
1 hectare $=1$ square hectometre $=2 \cdot 47$ acres.
Weights.
1 gramme $\quad . . \quad . . \quad . .=0=0$ pois). 0 (Avoirdu:
1 kilogramme$=2 \cdot 2 \mathrm{lb}$. (Avoirdupois).

> Dry Fluid Measure.

1 litre $=\cdot 22$ gallons.
ef The metrical system is based on the metre which is the ten millionth part of the quadrant of a terrestrial meridian. The litre is the cabe of the tenth part of the metre and the weight of a litre of distilled water at its greatest density is a kilogramme.

Useful Nombera.

For converting.		Multiply by	Converse.
Linear.			
Feet into links	1.5151	$\cdot 66$
Yerds \# "	4545	22
Chains," miles	0125	80
Feet ", metres	3048	3-2809
Yards ", "...	...	-9144	$1 \cdot 0936$
Chains " ,	$20 \cdot 117$	049
Square.			
Square yds . into eq. metres	.	-8361	$1 \cdot 188$
Square ", acres	-0002066	4,840
Square miles " "	640	. 001562
Capacity.			
Cabio ins. into bushels ...	\ldots	-00045	$2219 \cdot 7$
Cubic ft. ",	\cdots	778	1.285
Cubicy, ", gallong	6.228	-1605
Gallỡs , , litres	4.543	-220
Litres " cub. ft, ...	\cdots	'03532	28.33
Weights.			
Lbs into cab. ins. of water	...	27.74	. 038
Lbs. $"$ " ft	$\cdot 01605$	$62 \cdot 2786$
Cubio ft. of water into tons	...	$\cdot 0278$	35.9
Lbs. into Kilogrammes	...	-454	$2 \cdot 2$
Money.			
Dollars into Rs, ...	\ldots	31245	-32
Francs ", :,	58665	$1 \cdot 70$

MENSURATION AND SURVEYING.

Area; of rectangle $=$ length \times breadth.
Area of square $=$ any side X itself.
Area of parallelogram $=$ base X perpendicular height.
Area of trapezoid $=$ half the sum of the parallel sides \times perpendicular beight.

Area of trapezium or any quadrilateral $=$ sum of the two triangles of which it is composed.

Area of triangle $=$ half the product of the base into the perpendicular height or $\frac{A B \times C D}{2}$.

or if $s=$ half the sum of the 3 sides a, b, c, the area $=$

$$
\sqrt{s(s-a)(s-b)(s-c)}
$$

(a) Area of a circle $=$ diameter $\times \cdot 7854$.

The circumference $=$ twice the radias $\times \frac{22}{7}$ or the diameter $\times \frac{22}{7}$
(b) Area $=$ circumference \times half the radius or if $r=$ the radins, area $=2 \mathrm{r} \times \frac{22}{7} \times \frac{\mathbf{r}}{2}=\frac{22}{7} \mathrm{r}^{2}$
(c) Area $=(\text { the circumference })^{2} \times 08$

Area of a sector of a circle $=$ length of the aro \times half the radias.

Area of a segment of a circle -

$$
A \text { rea }=\frac{4 H}{3} \sqrt{4 c \times \frac{2 h^{2}}{5}}
$$

Area of an ellipse-

$$
\text { Area }=\frac{A B}{2} \times \frac{C D}{2} \times \frac{22}{7}
$$

Cabe-

$$
\begin{aligned}
& \text { Snrface }=6(\mathrm{AB})^{2} \text { or } 6(\mathrm{BD})^{2} \\
& \text { Volame }=(\mathrm{AB})^{3} \text { or }(\mathrm{BD})^{3}
\end{aligned}
$$

Bectangalar solid or parallelopiped-

B
Surface $=2 A B \times B C+2 B D \times B C+2 A B, B D$ Volume $=\mathrm{AB} \times \mathrm{BD} \times \mathrm{BC}$.

Solid cylinder-
Surface $=$ area of both ends + length \times oircumference.
Volnme $=$ area of one end \times length.
Solid cone or pyramid-
Surface of cone $=$ area of base + circumference $\times \frac{1}{2}$ the slant height.
Surface of pyramid $=$ area of the base + areas of the side triangles.

Solid content $=$ area of the base \times one-third of the perpendicular height.

Sphere-
Surface $=$ diameter ${ }^{2} \times 3.14159$
Solid content $=$ diameter $^{3} \times{ }^{5} 5236$
Wedge -
Solid content $=$ areàof base $\times \frac{1}{\text { a }}$ perpendioular height if all the edges are equal.

A Prismoid is a solid whose ends are parallel bat anequal in area, e,g., a bund whose extreme heights are unequal, is cutting whose extreme depths are different, a gravel heap on ithe roadside, a pond, etc.

Note.-A prismoid includes a cone and a pyramid: but if the ende besides being parallel are also equal and similar so that the solid is: suniorm from end to end it is a prism.

Solid contents of a prism $=$ area of one of the parallel ends \times heignt or depth or length.

The solid contents of a prismoid may be caloulated in thres ways-
(a) Average of extreme areas \times length (or height).
(b) The middle area \times length (or height).
(c) By the following formala :-
h = distance between the parallel ends.
$A_{1}=$ area of one end.
$\mathbf{A}_{2}=$ area of the other and parallel end.
$A_{m}=$ area of a section taken midway between A_{1} and A_{2} and parallel to them.
Solid contents $\frac{h}{6} \times\left(A_{1}+4 A_{m}+A_{2}\right)$
(a) Alwaye gives more than the real volume and may be used for making estimates, so as to be on the safe side.
(b) always gives less than the real volume and is nsed for measuring heaps of road metal stored by contractor.

Example.-A metal heap has a rectangular base $14^{\prime} \times$ h' $^{\prime}$ and a rectangolar top sorface $10^{\prime} \times 2^{\prime}$ with a height of 2^{\prime}. Find ite volume.
\%
(a) $\frac{84+20}{2} \times 2=104$ cubic feet.
(b) $12 \times 4 \times 2=96$ cubic feet.
(c) $\frac{84+4 \times 48+20}{6} \times 2=88.6$.

Contents of a stack.-There are two general types of stacks.
(i)

(ii)

(i) A rectangnlar parallelopiped and a prismoid.
(ii) Two prismoids.

The weight of straw per cubic yard in the stacts varies with the natare of the straw and the length of time it has been in the stack, and the position from which it is taken. Old straw is heavier than new straw and if taken from the bottom of the stack weighs more than that from the top.

Weight of strave and examples. -The weight of cholam and paddy straw in the stack is about 124 lb . per cubic yard. The weight of one stack of hay made at Coimbatore was only 88 lb . per oubie yard.

At these rates the hay will measare 25 cubio yards to the ton, and the straw, 18 yards.

To, set out a right angle with the chain.
Take 40 links on the chain, 30 links for the perpendicular and 50 for the hypotenuse.

Obstacles in ranging survey lines.

1. Seen over and chained round.

Lay off $A B$ and $C D$ equal to each other and at right angles to the line, then $\mathrm{A} O \doteq \mathrm{BD}$.
2. Not seen over bat chained round.

Lay off the lines EF, AB, equal to each other, and at right angles to the line; range the points D, H, in line with FB , ind set off the lines $D C, H G$, equal to $A B$ and EF, and at right angles to the line $F H$, then C and G aro points for canging the contination of the line EA, and $A C=B D$.
3. Seen over but neither chained across nor round,

By figure 1--

Measure off perpendiculars $B C, \Delta D$ ranging D in line with OC.

$$
\frac{O A}{A D}=\frac{O B}{B D} ; O A \times B C=A D \times(O A+A B)=A D \times O A
$$ $+A D \times A B ; \therefore O A(B C-A D)=A D \times A B$ or $O A=$ $A D \times A B$ $\widehat{B C-A D}$.

By figure 2-
Measare $A B$ at right angles to $A O$ and bisect $A B$ at C. Set off $B D$ at right angles to $A B$ until at D, C hides 0 .

Then $A O=B D$.
By figure 3-
Set off $A C$ at right angles to $A D$ and $C B$ at right angles to CO .

Then $O A \times A B=A C^{2}$.
Therefore $\mathrm{OA}=\frac{\mathrm{AC}^{2}}{\mathrm{AB}}$.
By figare 4-
Fix any line $A D$ and bisect it at F.
Make $B F=F C$. Produce CD antil at E.
F hides O. Then $A O=D E$.
Measurements of heights.

Fix two rods $A C, B D$, of unequal height vertically as shown so that C, D, and T are in one line. Measure $A B$ and BE.

$$
\begin{aligned}
& \text { Then } \frac{T F}{\overline{F C}}=\frac{D E}{\bar{E} \bar{C}^{-}} \text {or } \frac{T F}{\mathrm{AH}}=\frac{\mathrm{DE}}{\overline{\mathrm{AB}}} ; \\
& T \mathrm{~F}^{\prime}=\frac{\mathrm{DE} \times \mathrm{AH}}{\overline{\mathrm{AB}}} .
\end{aligned}
$$

The height of the tower TF + AC.

Cr plant any stick vertically and measure its shadow; at the same time measure the shadow of the object whose height is required?
Then $\frac{\text { Height of object }}{\text { Its shadow }}=\frac{\text { Height of stick }}{\text { Its shadow }}$.

Simple methods of levalling.

A line at right angles to the plumb line is horizontal.
After driving a few pegs on one level with a bricklayer's level, a peg at a distance on the same level may be driven with the help of boning rods or any three sticks of one height.

Place two of the sticks over the extreme pege A and B driven with a mason's level and drive the peg C so that the third stick placed over it is in line with the tops of the other two. Intermediate pegs may similarly be got on the same level.
The pegs may also be driven on any required gradient. If $A B$ is 3 feet, place npon B a small plants 1 inch thick and level. The gradient from A to \mathbf{B} will then be a gradient of 1 in 36 fand so on.
2. Liquids in commanicating vessels are on a level.

3. Instead of mason's level a babble tube placed on a plank with parallel edges may be used.

The following simple example shows the use of the Dumpy level.

It is required to find the difference in level between stations (1) and (3). Erect the spirit level at A and take the "backsight" reading on the staff at (1) and the "foresight" on the staff at (2). Then move the level to , B and repeat the same for (2) and (3) : the distance. between the stations is also to be measared. These observations are extered in columins. in the book as follows:-

	$\begin{aligned} & \dot{8} \\ & \text { 島 } \\ & \text { B. } \end{aligned}$	Staff readings.		Riee.	Fall.		Remarks.
		Backsight.	Fore, sight.				
1	**	10	$\begin{aligned} & \text { Datum } \operatorname{lin} \theta \\ & \text { below sta- } \\ & \text { tion.1. } \end{aligned}$
2	105	5.85	1.65	$4 \cdot 20$		14.20	
3	325	$3 \cdot 25$	$5 \cdot 10$...	185	12.35	
	478	$\begin{aligned} & 9 \cdot 10 \\ & 6.75 \end{aligned}$	6.75	4.20 1.85	1.85	$\begin{aligned} & 12 \cdot 35 \\ & 10 \end{aligned}$	
		$2 \cdot 35$		$2 \cdot 35$		$2 \cdot 35$	

Thus there is a fall of 2.35 feet from (3) to (1) (distance, 478 feet) or 5.9 inches nearly in 100 feet.

MACHINERY AND BUILDINGS.

Nominal Horse Power (N.H.P.) is a general or vague term used to indicate the size of the engine and means the power given out when worked at a pressure of about 30 lb . to the square inoh.

Indicated Horse Power (I.H.P.), refers to the total power exerted on the piston by the steam or the exploding gases in the cylinder as tested by an indicator. It is nsaally 24 times the 'nominal.' Brake or effective Horse Power (B.H.P.) is the net aseful work transmitted by the driving shaft through a band which acts as a 'brake' to the motion of the fly wheel. It represents the ordinary working power of an engine, and runs about $\frac{3}{4}$ of the I.H.P., or $1 \frac{1}{3}$ times the N.H.P.

One Horse Power $=$ raising $33,000 \mathrm{lb}$. one foot high in one minate or $=33,000$ foot pounds $=33,000$ units of work. The heat unit, i.e., the energy required to raise 1 lb . of water 1° Fah. is 744 ft . lb ., to raise 1 Ib : of water 1° O. requires 1,390 $\mathrm{ft} . \mathrm{lb}$.

1 lb . of coal yields 14,000 heat units.
1 lb . of kerosine vil yields 20,000 heat units.
The modulus of an engine is the proportion of motive power which is given out as useful work: in ordinary farm machines it is about a balf, the other half being used up in overcoming the resistance of the machine itself.

In an oil engine aboat 60 per cent. of the heat is dissipated by the cnoling jacket, 25 per oent. escapes by the exhaust and only about 15 per cent. are altimately available for transmitting power to other machinery.

1 pint of oil is supposed to be required per B.H.P. per hoor.
Water Lifting.
Water lifted in one hour by various machines.
Picottah (3 men-2 on beam) ... 14 ft. 2,735 gallons.

Oil engine $3^{\prime \prime}$ pump and $3 \frac{1}{2}$ H.P. $25 \mathrm{ft} .9,300$ " engine.
The co-efficient of atility is the amount of useful work done in one hour, expressed in foot pounds, divided by the weight of the animal in pounds, and represents the vertical
height in feet to which by the expenditure of a similar amonnt of work, the animal's body would be raised.

-	Duration of time of experiment.	Footpounds of work done per hour.	Weight of animals.	Coefficient of utility.
	Minntes.			
Double Saidapet. mhote	; 180	413,000	1,146	360
Stoney's improved double mhote.	367	'1,700,300	1,146	498
Subba Row's improved single mhote.	60	500,940	1,348	371
Single mhote Bellary lift of 35 feet.	102	1,337,000	2,688	497
Single mhote Bellary lift of 13 feet.	165	456,400	2,05 8	223
Picottah	16	375,810	308	1,220
Do.	420	394,330	331	1,191

[Table from Madras Agricultural Department Bulletin 35, by A. Chattorton.]
Amount of water, lifted one foot for one anna.
By bullocks in country mhote (1882 Benson) 4,000 By bullocks in conntry mhote (1907 2,000 Chatterton).
By oil-engine and pump: under very 13,500 favourable conditions.
By oil-engine and pump: under ordinary 9,000 canditions.
By oil-engine and pump : under nafavourable 4,000 conditions.
The loss of power in a centrifugal pump ranges from 75 per cent. for a $2^{\prime \prime}$ suction pipe to 60 per oent. for a $3^{\prime \prime}$ suctiqn pipe and 45 per cent. for a $10^{\prime \prime}$ or $12^{\prime \prime}$ pipe.

A $3^{\prime \prime}$ pipe will lift up to 22 feet easily and a $4^{\prime \prime}$ pipe will lift up to 28 feet.

The larger the installation the more economically the engine cen be ran, owing to the increased efficiency of the engine; and the saving in the establishment.
Actucl cost of installations.

	Name of station.	Engine.			Pump.								-
1	Kuhoor ...	$3 \frac{1}{2}$	965	150	$3^{\prime \prime}$	285	93	30	40	30	50	82	1,725
2	Unjalur ...	5	1,286	77	$3^{\prime \prime}$	270	145	20	50	35	31	86	2,000
3	Bangalaputtur.	$7 \frac{1}{2}$	1,546	101	$4^{\prime \prime}$	345	165	30	50	35	40	118	2,430
4	Nellikuppam ...	9	1,794	93	$4^{\prime \prime}$	365	128	30	80	50	40	130	2,710
5	Pallavaram ...	14	2,474	180	$5{ }^{\prime \prime}$	450	...	30	80	200	81	175	3,670
6	Katalai	25	4,423	730	12°	1,265	445	150	200		123	404	8,490

Vide Appendir to "Lift lrrigation", by A. Chatterton.

Duty of water.

Theduty of water is the irrigation work which a given quantity of water can perform and is usally shown as the number of aores on whioh a crop can be irrigated by a continuous flow of water at the rate of 1 cubic foot per second. The dnty of water when used to cultivate paddy is moch less than when irrigated dry crops are grown. For tank irrigation whioh is generally wastefnl, the duty may be taken as 50 acres : in large irrigation systems, where the water is under proper control, the duty will be as high as 100 acres. For water lifted from wells by engines and pamps the duty may be taken as 240 aores: actual experiment at Coimbatore with water lifted from wُills gives 280 acres. At Cawnpore where sugarcane,needed 50 acreinches of water, the daty is 171 : for wheat 347 and for maize 192.

Amounts of water needed for irrigated crops.

1 cubic foot water $=62 \cdot 425 \mathrm{lb} .=\cdot 557 \mathrm{cwt} .=\cdot 028$ tons.
1 cubic inch $=03612 \mathrm{lb}$.
1 gallon $=10 \mathrm{lb}=16 \mathrm{o} . \mathrm{ft} .=277.274$ cubic inches.
1 cobic foot $=6.25$ gallons ($6 \frac{1}{3}$ gallions).
Gauging water.

1. Through a slnice or submerged opening

$$
Q=A \times V=A \times 5 \sqrt{H}
$$

Where $Q=$ quantity in cusects. (c. ft. per second).
$A=$ area in sq. feet of the opening through which the water passes.
$H=$ height of water in feet above the ceptre of the opening.
$Q \times 875=$ gallons per minute.

$$
\begin{aligned}
& \text { 2. Over } \Omega \text { weir or plank, free overfall. } \\
& Q=H \times L \times V \\
& \text { where } \\
& H=\text { height of still water above crest in feet. } \\
& L=\text { length of crest in feet. } \\
& V=\text { mean velocity of water approaching the crest in feet } \\
& \text { per second }=\frac{2}{3} \times 5 \sqrt{H} \\
& Q=\text { quantity discharged over the crest in c. ft. per } \\
& \text { second. }
\end{aligned}
$$

In gauging, the water must all be made to pass over a rectangular aperture in a thin board. The height must be measared from the top of the crest to the level of the surface where it is not affeoted by the carve of the overfall.

Storage.

It is usual to assame that an acre of crop will require an acre-fathom (6 ft .) of storage in a tank if the latter is the source of supply. Rain is required to supplement this sapply as also to make up for the loss due to evaporation which may be taken as 4 inch as a maximum figure on a very hot day. It is less proportionately in deep tauks than in shallow ones.

Capacity of a tank may be ronghly taken to be = area of waterspread at F.T.L. (fall tank level) $\times \frac{1}{3}$ of the depth of the lowest sluice.

Velocity and discharge of minoy irrigation channels.

The average velocity of water flowing in a channel may be taken as 4/5 of the surface relocity which may be easily asoertained by means of a float floated down a measured distance. The average velocity of an earthen channel shoald ordinarily be more than one foot per second and less than three feet per second. If less than one foot per second, there will be a free deposit of silt and the channel will be ohoked with aquatic plants. If more than three feet per second, the water will cut its own bunks and bed and take a new course.

The velocity of a channel depends apou the depth of wator flowing as well as the fall of bed. If the depth is great as in large rivers the bed-fall will have to be small so that the velocity may not exceed about three feet per second. In amall channels where depth is limited the bed-fall will have to be great to seonre the proper velocity. The bed-fall is usually half to two feet per mile in large rivers, five to ten feet per mile in canals, and 20 to 25 feet per mile in very small ohannels, 25 feet per mile $=1$ in 211 or say 1 in 200.

For small masonry channels where friction is less and therefore velocity greater, a fall of 1 in 300 or 400 may be given.

Discharge of a channel $=A \times V$ cusect, where $A=$ area of cross section of stream in square feet and $V=$ arerage velocity in feet per second.

Draught of carts.

The force of traction of a cart along a level fairly metalied road is about z^{2} - of the weight of the cart with load. To move a loaded cart weighing one ton, with the wheels well greased along such a road will require 100 lb .

Up a gradient of 1 in 100 the draught will increase by $1 \frac{1}{0}{ }_{0}$ of a ton, i.e., $22 \cdot 4 \mathrm{lb} .=$ total 128 lb .

Weights and draughts of various implsments.

		Weight.	Dranght.	
			$1 b$.	cwt.

LABOUR.

Carting manure.-Two carts, one left for loading while the other goes to the field, one pair of cattle, one driver and two men loading will fill and take to field 10 carts por day with a lead of not more than half mile.

Carting silt.-The same as above, but one man for loading will be enough.

Clearing, heaping and burning scrub jungle for modan paddy. Malabar-Five men and five women per acre.

Clod crusher.-The area worked by this daily, depends on the state of the land, i.e., the size and hardness of the clods, and will vary from 1 acre with two pairs and a loaded orusher, to 3 acres with single pair in light land.

Cotton ginning.-One woman will beat and gin 25 lb . of cotton per day. For this she is usnally paid three annas per day. Tinnevelly:-One woman gins 3 edai or 31 lb . in a day for which she is paid 8 pies an edai, or 2 annas.

One man will keep about 12 ginners (on piece work) sapplied for a day.

A donble roller gin will olean about $2,000 \mathrm{lb}$. of ordinary cotton in a day's work of ten hoars. Nadam cotton is harder to gin and only aboat $1,500 \mathrm{lb}$. will be pat through in a day, while with Cambodia as much as $3,000 \mathrm{lb}$. per day may be finished.

Crow-barring.- 33 to 40 men working in gangs of two, one digging and the other turning over clods, will dig one acre a day.

Digging wells.-1 Nilavu or man's beight and 4 feet diameter:-

							Rs.	As.
lat	P.							
1sd	\ldots	\ldots	\ldots	\ldots	\ldots	0	12	0
3nd	\ldots	\ldots	\ldots	\ldots	\ldots	1	4	0
3rd	\ldots	\ldots	\ldots	\ldots	\ldots	1	8	0
4th	\ldots	\ldots	\ldots	\ldots	\ldots	3	0	0

Digging wet land with mamuti.--In Tanjore district 12 men per acre for first digging ; 8 men after first paddling. At Coimbatore it takes 16 men.

Cultivating.-The Martin's cultivator at Coimbatore with two pairs of cattle covers 4 to 5 acres per day.

With the gorru worked as a cultivator, 3 to 4 acres a day.

Working guntaka.-With a 3 -foot blade, a man can cover 4 to 5 acres per day.
(i) With Pedda guntaka (Black cotton soil previously ploughed with B.O.S. plough) 4 pairs of cattle and 4 men will cover one acre per day.
(ii) With ordinary guntakas weigbted and worked deeply: one man and one pair will cover:2 acres per day, if worked merely for the parpose of creating a mulch and removing weeds, 3 to 4 acres may be covered according to the weediness of the land.
(iii) With garataka to cover seed: with a 4-span guntaka 4 acres will be covered; if two are fized to one yoke and a boy nsed to guide, from 6 to 8 acres will be covered per day.
(iv) With guntaka to remove cotton or jonna stubble, about 1 acre will be cleared per day.

Chaffing fodder.-This'depends mainly on the length into which the fodder is cat. One man will cat 840 lb . of cholam fodder per day into pieces 24 inches long. Wilh 8 -inch machine needing 2 horse-power to drive it $8,000 \mathrm{lb}$. of cholam fodder can be cat in a day of 8 hours into lengths $1 \frac{1}{2}$ to 2 inches long.

Drilling.-A team consists of one pair with three-tined gorru, tines 10 inohes apart, one pair with guntaka, two drivers and one or two women (if mixed crop) and they will drill $2 \frac{1}{2}$ acres a day, working the guntaka before and after the drilling. If the seed is drilled on the nnworked land, one guntaka will keep pace with two gorras.
(i) Two-tined gorru.- Used for cotton with tines $1 \frac{1}{2}$ feet apart. One man to drive, one boy or woman to sow, will do 4 or 5 acres in a day.
(ii) Three-tined gorru.-Used for jonna, one man to drive and sow, one boy to weight when needed and one pair, 3 or 4 acres per day. Used for cotton (as in Kurnool), the middle tine plagged, the boy may be dispensed with, and the area tarned out will be 4 acres.
(iij) Six-tined gorru.-With another man to sow, and the same labour as shown for the three-tined gorru used for jonna, double the area may be tarned out. Usaally the implement beeds to be weighted.
(iv) Plough and akkadi.-One pair and two men (l for iplongh, 1 for akkadi) abont 1 to 3 aeres will be sown per daý coording to the crop scwn.
(v) Gorru and akkadi- (As for cotton in Bellary district) ne pair of cattle and one duiver, and a coolv for each akkadi.

Extracting fibre-Agave fibre.-One man and 1 wcman will extraot 50 lb . of dry fibre in a day from fresh leaves.

Coir fibre.-A woman can beat out 25 lb . of coir fibre per day.

Gogu,-Catting or pulling crop, 10 women or 10 men. Bandling, 6 women per acre. Retting, 2 men will arrange the bundles and weight them off one acre ($20,000 \mathrm{lb}$.), while in stripping, 3 men will supply stalks to 30 women or boys who will strip the above amount and produce 800 lb . of dry fibre per acre.

Sunn-hemp.-The fibre is obtained by beating the retted stalks in water. Forty men will cut and beat the produce of one acte ($15,000 \mathrm{lb}$. of green stalks) and obtain 600 lb . of dry fibre per day.

In Tinnevelly reaping the crop and bundling Rs. 4 per acre.
Grinding-Cotton seed.-This may be done wet as in Ooimbatore where a woman or boy will do 7 lb . per hour, i.e., 50 lb . per day, enough for 17 animuls, or dry as in Ceded districts where two boys sitting on either side of large stone will crush 100 lb . per day.

Harrowing-Brush harrow.-A namber of branches (wejghted) drawn by a pair ; covers an area of 5 to 6 acres of a sown field.

The Sampson's harrow works $2 \frac{1}{2}$ to 3 acres a day in open fields or if the crop is not too high.

Seed harrow covers about 5 to 6 acres a day.
Harvesting-Bengal gram.-This is pulled ont of the ground and needs 5 to 6 women per acre.

Cholam.-Three women will cat the crop oft an acre and 5 women will remove the heads. The heads [850 lb .] off an acre will fill 1 or $1 \frac{1}{4}$ carts, and 1 man and 2 boys will be needed to load and remove to the floor. Bundling and stooking is generally done by men and needs per acre 4 men. The straw [$4,000 \mathrm{lb}$.] off an acre will fill four carts.

Fodder Cholam.-One woman will out and bundle $1,000 \mathrm{lb}$. a day.

In Tinnevelly, on black soils, 2 men and 8 women will cut and bandle 1 aere of fodder cholam, i.e., abont 1 ton.

Cotton picking.-In a heavy crop 1 woman will pick 25 to 30 lb., but in a poor crop the quantity may be as low as 10 lb .

In Cambodia cotton, as mach as 100 lb . per day may be picked by a woman in a good season.

Cumbu--12 to 20 women for outting earheads and e to 8 women for cutting straw, depending on the size of the crop.

Removing cotton stalks:-Four to five men will clear an acre. (See Gantaka above.)

With the cotton puller (leaflet xix of 1911) the work can be done in the dry weather by 5 women or less per acre.

Groundnut. - In South Arcot, the land is dug over by" 12 to 15 men with the mamuty and 5 women to each man collect the nuts, i.e., 75 to 80 women per a.cre. A rainfed crop may be ploughed with a country or special plough and the nuts collected by hand, if the land is sandy.

Sweet potatoes.-Forty men to dig and 30 women to turn over and colleot the vines and tabers.

Onions,- Figging, lifting, earrying and cleaning 10 men and 60 women.

Other pulses.-The crop will be picked over two or thrie times and will need each time 4 tn 5 women per acre.

Paddy.-Six to 10 men or 10 to 12 women will reap the crop: Buadling and carrying to the floor close by, 2 men and 4 women. Stacking if done preparatory to threshing, 1 man per acre.

Ragi.-Twelve to 16 women to cut hcads off an acre on two occasions and 6 to 8 women for cutting straw.

Sugarcane.-Forty men will cut an acre in a day ; remove tops and strip canes.

Tenai.-In Ceded districts for a mixed crop of Korrapatti, 6 wornen per acre. For a pare garden crop 10 women per acre.

Tobacco harvesting.--Four men will harvest an acre in a day cutting the leaves off the stalks; 2 men and 10 women will oarry and stack the produce.

Stripping and bundling.-Six men and 12 women drying, and heaping 6 men. Finally 8 men and 12 womon will open, sort and rehundle leaves and sprinkle salt water on them.

Turmeric.-Twenty men and 40 women will dig or clean an acre in a day.

Husking-Paddy.-Two women should finish a selagai ($160-170 \mathrm{lb}$) in $5-6$ hours. They may do as mach as $1 \frac{1}{2}$ selagais per day.

Inter-culturing-Bullock hoeing.-With dantulu, abont 2 acres for each danta, i.e., for three, 6 acres per day, for four, 8 acres a day. In the Ceded districts it is not uncommon to cover 9 to 10 acres in a day.
(i) By hand, usually combined with weeding. For a fairly clean field of jonna, 3 to 10 coolies will cover 1 acre, a weedy field will take np to 40 per acre depending on the weedinezs.
(ii) Ootton with Guntaka.-One man and a pair, 3 acres per dav.
(iii) With a plough from $\frac{8}{8}$ to 1 acre per day.

Planting-Canes.-Six men and 10 women will cat, strip, carry and plant an acre in a day asing 10,000 to 12,000 sets. If the rate is 20,000 to $25,000,10$ men and 16 women will be needed.

Planting coconuts-

Digging 8	pits	ac		\ldots			me
Manuring	20	
Planting	\ldots	...	\ldots	4	

Planting chillies and other garden crops.-4 to 8 women are sufficient per acre.

Paddy.-One man or woman will lift seedlings, bundle and clean them for 4 to 5 women depending on the distance of the seed-bed. If seedlings are snpplied it will need 12 to 15 women to transplant an acre. If the planting is done singly, when the women become accustoned to it, they will plant more quickly.

A gang will be allotted in the following proportion: 6 ploughs, one levelling board, 6 men or 8 women lifting seedlings, 3 to 6 boys carrying seedlinge and 25 women transplanting.

Bundling seedlings in a paddy seed-bed.-A man will pull and bundle about 1 cent per day, i.e., from 200 to 250 bundles. On contract he will do at least twice as much and will be paid at the rate of $\frac{1}{4}$ to $\frac{1}{2}$ an anna per 20 bnndles. 1,000 to 1,500 bundles will be sufficient for transplanting an acre singly.

Planting onions.-Twenty to 40 women transplant one acre in a day, according to the spacing of the l,albs.

Pepper.-Digging holes and planting 400 standards per acre, 12 men; digging pits and planting pepper cuttings, 12 men per acre.

Plantains.-Digging 900 holes 1 foot deep per acre, 4 mon; Jifting suckers, 4 men; planting, 8 men; pressing, 18 men.

Groundnuts.--Dibbling 15 women per acre inclading weeding, exclasive of weeding, 10 women in cumbu and 12 in ragi.

Ragi.-Generally planted singly. Three women will lift seedlings for 15 women to plant. For planting in ridges 10 to 12 women per acre, and for beds 14 to 16 women per acre are required. One man and 2 women plant dry ragi an acre a day.

Turmeric.--Behind plough, one and a half pairs and drivers with 4 or 5 boys will sow an acre in the day.

PloughIng.-First ploughing with the country plough in dry land, half acre for each pair daily. There should be no ridges left between the furrows.

In subsequent plonghings the plough takes a little more land and the area covered is about $\frac{8}{4}$ acre daily.

In plonghing to cover seed an acre a day may'be expected. In wet land (puddling), generally with inferior' animals 30 cents the first time, about 40 cents the second time and half an acre for third and subsequent ploughings. with blackcotton soil iron plongh, 4 men and four pairs will plough $40-60$ cents ; whien the soil is very hard, another man is required.

Gallows plongh with two pairs will do 50 cents ${ }^{1}{ }^{2}$ day onless the lead is very short. In Ceded districts half acre can be ploughed daily with the cotton soil plough, uging four pairs of cattle. In places where this implement is newly introduced, the work turned out is less, only one-third of an acre being ploughed daily.
R.I.S', Plongh and Tura wrest plough-40 to 50 cệnts a day.

Ridging.-A man with Ransomes double mould board plough aud a pair of cattle can ridge op to 1直 acres a day (ridges $1 \frac{1}{2}$ feet apart) in land already well ploughed.

Rope making.-One man and 1 woman or boy will twist 30 to 38 lb . of fibre into rope in a day.

Twists of atraw for packing grains are made 30 feet'long and 2 men can rake 40 twists in a day.

Sowing broadcast.-A man will sow 1 acre an hour. To cover this 1 man and a pair of bullooks will take one fall day.

Sowing modan (dry land) paddy in Malabar.-Eight men will carry to the field sow and rake in the seed for an acre (abont 60 lb .).

Groundnuts.-Three pairs of cattle and 6 women extral will do an acre in half day, that is 2 women or men behind pach plongh, if sowing is done in every furrow.

Spreading, - Manure.-The heaps are generally one cartload (10 cwt .), with light dressings (15 to 20 cartloads) 6 women per ncre will spread; as the heaps get closer there is less lead bat more stuff to carry, so for heavy dressings 8 women will be needed per acre.

One man will spread 8 cartloads per day. Applying castor cake to sugarcane, 1 man will apply one bag and for every 4 men, 1 woman or boy will be required to carry.

Thatching.-One man will thatch 400 square feet per day With a wornan to holp.

Threshing Cholam.-The heade are spread out on the flopr nd are either beaten by aticks or are pressed under the atone oller. One man will beat the produce of an acre ($1,000 \mathrm{lb}$. of feads or 600 lb . grain), in one day. With roller two pairs of gimals with drivers, and 2 men and 4 women will thresh out 000 to $7,000 \mathrm{lb}$. of grain in a day.

Threshing by bullocks.-A team consists of four animals with driver, 2 men to turn heads and 2 women. They will thresh $1,300 \mathrm{lb}$. of grain per day.

For threshing with machine, 2 men to feed the machine, 1 woman to supply heads, 5 women to collnet and remove the empty heads after the second tbreshing, and 1 woman to colleot the grain into a heap $15,000 \mathrm{lb}$. per day of eight hours.

Paddy.-This is ceually threshed in two operations. The heads are first beaten against a board and 90 per cent. of the grain removed. One man with a woman or boy to hand him the bundles can thus beat ont $2,000 \mathrm{lb}$, a day. The straw is afterwards trodden out by cattle. In this second threshing roughly, 16 bullocks with 4 boys to drive will thresh out $2,000 \mathrm{lb}$. per day while six will stack the straw in the same timo.

If the paddy is frodden out direotly by cattle, a team of 1.6 cattle, i, e, four yoses of four each with 4 men or boys to drive, and 3 men to tarn the straw, will thresh out $7,000 \mathrm{lb}$. of grain per day.

Bengal gram.-With the stone roller, a team of two pairs, 2 drivers and 3 women will thresh $4,000 \mathrm{lb}$. per day. If the stuff is trodden with cattle 16 ballocks and 7 mea or boys will thresh $5,000 \mathrm{lb}$. per day. If threshed with sticke 1 woman can thresh out 80 lb . grain per day.

Ragi.- Two pairs of cattle, 5 men and 2 women can thresh about $2,000 \mathrm{lb}$. per day.

Cumbu.-Two pairs of cattle, 2 men and 2 women thresh 1,500 lb. per day.

Trenching,-For cane, 25 men per acre.
Watching paddy.-One palikapu to watch and irrigate 50 acres if in one blook.

Weeding by hand.-'l hree to 5 women will weed an acre of land. The figure varies very much with the state of the land.

Winnowing 18 -inch machine. - One woman turning, two supplying and one collecting will clean $3,100 \mathrm{lb}$. cholam, $1,000 \mathrm{lb}$. paddy, $1,500 \mathrm{lb}$. of ragi or tenai and $2,260 \mathrm{lb}$. of cumbu, in a day. (Half the quantity noted above of oholam, if machine threshed, on account of the presence of glnmes.)

Wrapping-Canes.-First time 15 men per acre to wrap and 5 boys to remove rubbish and weeds.

Second time 20 men to wrap and 10 boys to remove rubbish.
Third and subsequent 25 to 30 men to wrap and 1 or 2 boys to remove rabbish.

Fixing bamboos.- (3,000 to 3,51$) 0$ per acre.) One man will fix aboat 300 bamboos per day.

Cost of Labour by Piecemork or Contract or

 Share Sybtem.Cotton ginning.-Three annas per mannd of 261 lb . of kappas., Ten to twelve annas by machine for 250 lb . of kappas, Rs. 5 per candy (500 lb .) of lint.

In Tinnevelly Re. 1 for 247 lb. kappas. In Coimbatore, outside farm, same as above.

Ootton picking.-Usually on the share system, one-tenth to one-sixteenth according to the ease of picking and the pield of the season crop. Out of season, it, may go down to onethird.

Cotton sfalks, removing.-This can be done at Re, 1-4-0 per acre. It is much cheaper with the paller. (See page 34.)

Crowbarring.-In Coimbatore Rs. $10-$ Rs. 15 per acre in wet lands. Rs. 7--Rs. 10 per acre in wet lands in the Gödävari.

Dry lands Rs. 6 to 8 per acre, in the Gödāvari.
South Arcot Rs. 12 to 15 per acre.
Cumbu harvest,-One-sisteenth to one-twenty-fourth of the produce (Tinnevelly).

Digging Hariali.-Coimbatore, Rs. 32 in black soils and Rs. 37 in red soils per acre. The contractor is bound to olear anything left in the next year, pending which one-tenth of the sum is withheld. Rupees 5 extra per acre, if the work is in patches.

Digging cane stubbles in wet lands Rs. 7t per acre. In Gōdāvari Rs, 5 per acre.

Digging with mamuti.-Ceded districts, Rs. 2-5-0 per acre in wet lands. Coimbatore, Rs. $4 \frac{1}{4}$ in wet lands.

F'ibre extraction.-In the Godāvari, one-eighth of the fibre in a good crop of sunnhemp to one-fourth in a bad crop, is given for outting, retting, stripping and washing.

Groundnut lifting.-Contract Rs. 10 per aore, for a rainfed crop or else for one-fourth to one-eighth the crop; or piecowork 2-4 pies for every marakkal (2 Madras measures), the higher rate being for the rainfed crop.

Penning cattle.-In Ganjūm, Re. 1 for a herd of 100 to 150 cattle for one night.

Hurdles.-Ordinary thatties of split bamboo, 2 annas per square yard inolusive of the cost of the materiel. Trellis work 3-3 $\frac{1}{2}$ annas per aquare yard.

Paddy.-Reaping, threshing and cleaning are done in the Gödavari at one-tenth of the crop.

Planting is done on contract in Tinnevelly in some parts at 42 Madras measures of paddy per acre. Reaping, binding and taking to threshing floor in Coimbatore at three selagais of paddy for 3.20 acres erop.

In Tanjore 72 Madras measures per acre for harvesting, threshing and stacking per acre; or one Madras measure for every Kalam (24 Madras measures) of paddy threshed and cleaned. Stacking extra labour : 1 man to 20 women harvesting ; thus:-

Madras measnres.
For 30 kalams cleaned and stored 30
Two Madras measures extra for 8 men ... 16
Wages of 1 man stacking 2
48
In Malabar one-seventeenth of the crop for harvesting only.
Picking Chillies.- One-twenty-fourth of the quantity picked.
Piching coconuts. -One nut for every five trees picked.
Coimbatore rate 7 coconats peeled for every 100 coconuts picked from trees and peeled free of outer cost and given ready for sale.

In Godāvari two nats for every hundred picked and 4 annas per 1,000 for removing the outer oovering.

Ploughing-with cotton soil plough Rs. 5 to 8 per acre.
Rope making.-Twelve annas for making a mhote rope of 25 lb . of fibre and 4 annas for a tail rope.

Sawing timber.-Varies with the hardness and dryness of the wood. In Coimbatore a unit is 12 square feet and for sawing a surface of this dimension the charge is 6 annas.

Sheep penning.-Three handred sheep per day per rapee; at 3,000 sheep per acre, this comes to Rs, 10 per acre.

In Tinnevelly 2,000 sheep for Rs. 7; 350 cattle for Rs. 5 to 7.

Straw twists.-One handred twists of 3 feet length for Rs. 1-4-0. In Tinnevelly 13 annas for 100 twists of 30 feet length.

- Sweet potatoes.-On sandy soils one-tenth to one-eighth is paid in kind for lifting, contract price on heavy soile Rs. 10 to 12 per acre.

Threshing cholam.- One-eleventh to one-twelfth the produce in grain for threshing by hand (Guntur).

Turmeric.-Annas 2 per cent. dag: $\frac{1}{3}$ anna per mannd for oleaning.

SOILS.

Soil is the uppermost layer of the earth's surface, and consists of the more weathered portions of the rocks of which the earth is composed. It is immediately underlain by the subsoil. It consists of stones, gravel, sand, silt, clay and organic matter in varying proportions.

Olagbifioatton of Solls.

					er c	ent.
Sundy	unde	er 10
Sandy loam	\cdots		- 20
Loam		-30
Clay loam		-50
Clay	over	50

Besides this we may have calcareous soils, containing over 20 per cent. calcium oarbonate, humous soils with move than 5 per cent. organic matter, and gravelly soils containing varying quantities of gravel or kankar.

Residual or sedentary soils are those formed in situ from the disintegration and decomposition of rocks.

Transported soils are formed from disintegrated and partly decomposed rock, but instead of remaining in the plade previously occupied by the rock, they have been transported and retransported by various agencies sach as wind and water to the place where they are now found.

Rock-fcrming Mingrals.
Felspar, an enhydrons double aluminian silioate with potash, soda or lime. Orthoclase is a potash felspar and is the commonest. Felspars on decomposition give rise to clay which is a hydrated aluminium silicate, or laterite.

Quartz.-Silica or an oxide of silicon. It is found in all crystalline rocks and forms the bulk of ordinary sand where it is often colcured red with oxides of irou.

Mica is fund in many volcanio rooks and is a constant constituent in the gneissic rocks of Bouthern India. It is extensipely quarried in Nellore.

Carbonate of lime commonly found as acoretionary deposits of kankur or nodalar limestone.

Ohemical Analyses.

An exact chemical analysis of a soil may be uneful as showing any deficiency in plant food, bnt it is not generally of great practical use, because it does not show in what state the elements exist ;-whether suitable for plant food or not. Analyses may, however, show the available amounts of the plant foods present by the use of a 1 per cent. solution of citric acid (Dyer's method). This is purely empirical, but has been found to give good results. Mechanical analyses show the sizes of the particles composing the soil and are usually given in six grades. Analyses of three classes of soils at the Coimbatore Central Farm are given below. They represent "'dry red," "garden" and " black" soils respectively.

Constituents,				Gardon land, number 20.	$\begin{gathered} \text { Dry } \\ \text { red land, } \\ \text { number } \\ 10 . \end{gathered}$	Black soil, number 13.
Sand and insoluble				$78 \cdot 040$	86.780	78.50
$\begin{aligned} & \mathrm{Fe}_{2} \mathrm{O} \\ & \mathrm{Al}_{2} \mathrm{O} \end{aligned}$	4:730	2.250	3.08
	6.680	$4 \cdot 190$	$7 \cdot 06$
CaO	1.500	$1 \cdot 520$	3.67
MgO 920	-490	$1 \cdot 49$
$\begin{aligned} & \mathrm{K}_{2} \mathrm{O} \\ & \mathrm{Na}_{2} \mathrm{O} \end{aligned}$	\ldots	$\cdot 630$	$\cdot 210$	39
	$\cdot 120$	-180	$\cdot 18$
	- 540	'660	$1 \cdot 30$
	\ldots	-115	-028	. 05
$\mathrm{SO}_{\text {Loss }}$	\ldots		...	-030	$\cdot 011$	Trace.
	nition	5795	$3 \cdot 681$	4.24
Loss of		Total	...	$100 \cdot 000$	100.000	$100 \cdot 00$
Nitrogen$\mathrm{K}_{2} \mathrm{O}$ available				-0567	0.037	$\cdot 034$
		...		$\cdot 018$	-008	. 003
$\mathrm{P}_{2} \mathrm{O}_{5}$ arailable		...		-036	-011	$\cdot 015$

Mechanical Analyses.

Constituent. $!$			$\begin{aligned} & \text { Number } \\ & 20 . \end{aligned}$	$\begin{gathered} \text { Number } \\ 10 . \end{gathered}$	$\begin{gathered} \text { Namber } \\ 13 . \end{gathered}$
Fine gravel	...	\cdots	63	$18 \cdot 3$	95
Coarse sand	..*	...	$17 \cdot 4$	41.1	25.0
Fine sand ... ${ }^{\text {t }}$	19.1	16.1	151
Silt ...		\cdots	6.5	$2 \cdot 1$	6.4
Fine silt ...			21.1	$9 \cdot 8$	$28 \cdot 1$
Clay ...		\cdots	25.7	$12 \cdot 4$	120
Moisture, etc.		\ldots	$3 \cdot 3$	1.2	$2 \cdot 8$

MANURES.

Aybrage Analyses of Cattle Manure.

\ldots				Box. Por cent.	Heap. Per cent.	Per cent.
Moisture			...	50	18	56
Organio matter	...	-••	...	27	30	16
Insoluble minera	ma			15	42	19
Nitrogen ...			\ldots	497 .	-623	-527
Phosphoric acid		* 476	- 404	. 335
Potash ...	\ldots \cdot	1×9	1.23	.996

One cartload of farm-yard manure (10 cwt , or half a ton) will contain abont-

$$
\begin{aligned}
& 5 \text { to } 8 \mathrm{lb} \text {. nitrogen. } \\
& 5 \text { to } 8 \mathrm{lb} \text {. potash. } \\
& 2 \text { to } 4 \mathrm{lb} \text { phosphoric acid. }
\end{aligned}
$$

Measurements made at the Central Farm with pitted dung and large box carts give the following: 一

1 cart holds $15-20 \mathrm{c} . \mathrm{ft}$. The weight of $1 \mathrm{c} . \mathrm{ft}$. is 70 to 80 lb.

Mandre produced by Stock per Annom.

A pair of animala may be expeoted to produce 3 tons of farm yard manure in twelve months, including litter and moisture. The figare naturally varies considerably.

Nitrogenous Mandees.

Nitrogen is the most important constituent in the cakes which form so important a manure for many crops. This sabstance can also be purchased alone in various forms. The following shows the fercentages of nitrogen. They should contain-

Nitrate of Soda-15-16 per cent.
Nitrate of Potash-13 per cent.
Nitrate of Lime-13 per cent.

Sulphate of Ammonia- $20-21$ per cent.
Calcirm Cyanamide " (Lime Nitrogen : Nitrolim) 20 per cênt.

Phosphatic Manures.
Phosphorus is usually sapplied as ashes, or in the form of cake or fish manure, but it can be parchased in a more concentrated form as bone meal, bone superphosphate, steamed bones, rook superphosphate or basic slag (Thomas phosphate). The average analyses of these manures are given below:-

The phosphoric acid in saperphosphate is in assoluble form and is therefore considered more valuable. For wet lands, however, it is doubtful whether this is necessary, and bone meal or fish manure are probably better. Steamed bones are rich in phosphoric acid, but have lost a proportion of their organic matter. Thomas phosphate contains a large proportion of lime and is raluable in acid soils, but is heary and expensive to transport. It should be ground to a very fine powder.

Ротash.
Potash may be supplied asi potassinm sulphate, potassinm cbloride (Muriate of potash) or Kainit. It is not generally considered an important manure for Sonth Indian soils, though if analysis shows less than 25 per cent. of total potash in a soil, experiments should certainly be tried with potash manures. Kainit is a mixture of potash and magnesinm salts and containg often fairly large quantities of common salt. Its use is practically unknown, most experiments with potash having been carried out with the sulphate.

Common Manuras.
Analyses of cakes.

-			$\mathrm{P}_{2} \mathrm{O}_{5}$	$\mathrm{K}_{2} \mathrm{O}$.	N.
White castor	261	$1 \cdot 24$	6.42
Black castor	$1 \cdot 86$	$\cdot 70$	4.50
Hongay or pungam	$1 \cdot 34$	-66	3.58
Neem (margosa)	1.31	$1 \cdot 69$	5.04
Groundnut ...	\ldots	...	$1 \cdot 40$	1.21	8.04
Saflower	$1 \cdot 48$	$\cdot 82$, 5.83
Punnai*	1.08	$1 \cdot 55$	$2 \cdot 65$

Castor cake.-This is universally esteemed for the cultivation of the sugarcane crop to which it may be applied at a rate of 1,000 to $2,000 \mathrm{lb}$. per acre. A common application in the Godāari is 10 bags of 164 lb . each, given in two applications. Its cost is about Rs. 80 per ton. As will be seen from the analysis it is a general manare. It is known as black or white cake according to the proportion of hask left in.

Groundnut cake-is not considered so good as oastor cake for canes, butis largely used for paddy in certain districts. ' It is generally better to use it as food for cattle and retarn its constituents to the soil in the shape of dung.

Margosa cake-made from the seed of the neem tree, which is collected by women and children from nnder the trees. The oil is used medicinally. The ase of this cake could probably be extended.

Pungam cake-used in many places where it can be bought as cheap as Re, 85 a ton.

Fish manure (ordinary).				Fish grano.			
Water Organic Ash ...	\ldots	6.5 to 150 $36 \cdot 5$ to $60 \cdot 0$ $18 \cdot 4$ to $41^{\circ} 0$		Water Organic Ash...	$\stackrel{.}{\text {. }}$,		$\begin{array}{r} 8 \cdot 26 \\ 66 \cdot 88 \end{array}$
		\cdots					1000
	...	44 to	6.8		$7 \cdot 46$
$\mathrm{P}_{2} \mathrm{O}_{5}$...	$3 \cdot 9$ to	$5 \cdot 3$	$\mathrm{P}_{2} \mathrm{O}_{5}$	4.38
$\mathrm{K}_{2} \mathrm{O}$...	-2 to	${ }^{7} 7$	$\mathrm{K}_{2} \mathrm{O}$	$\cdot 47$

* Calophyllum Inophyllur."

Fish manure.-This is a most valaable manure which is not yot appreciated at its proper worth. It is a general manurb especially rich in phosphorio acid. It can be produced in large quantities on the West Coast. The fish are simply spread on the beach to dry and are subsequently pounded. This generally causes a considerable amonnt of adniteration with sand whish it is impossible, to remove completely : good samples, however shorld not contain more than 20 per cent. by weight. There is also a considerable proportion of oil which partially prevents decomposition. Fish from which the offal has been removed' and the oil extracted are ground up and sold as fish guano which is a dry powder, capable of atorage without decomposition and a more concentrated manure than ordinary Milled Fish. There are also other bye-products obtainable which however should not be parchased withont analysia.

Tannery refuse.-This may consist of spent bark and of the refnse obtained from the process of tanning. It is reported to be valuable in alkaline lands. Wool, Hair, Hooves, etc., are all waste prodacts. which are used as manures. They are mostly nitrogenous, bat their use for dry lands is not recommended as they are very slow in decomposition. Round Madras they are largely used for the paddy crop.

Waste from rice mill.			Indigo waste (seeth).	
		Parts per 100,000 of liquid.	-	Parta per 100,000 of liquid.
Total N ... Ammoniacal N... A.lbuminoid N ...		$\begin{aligned} 16 \cdot 2 \cdot 2 & \text { to } 56 \cdot 41 \\ 8 \cdot 10 & \text { to } 8 \cdot 78 \\ 2 \cdot 94 & \text { to } 33 \cdot 02 \end{aligned}$	Water ... Organic. Ash \qquad	$\begin{array}{r} 12.90 \\ 81 \cdot 12 \\ 5 \cdot 98 \end{array}$
$\begin{array}{lll}\mathrm{P}_{2} \mathrm{O}_{5} & \ldots & \ldots \\ \mathrm{~K}_{2} \mathrm{O} & \ldots & \ldots \\ \end{array}$			Total	100.00
		$\begin{aligned} & 40 \cdot 80 \text { to } 51 \cdot 72 \\ & 98.74 \text { to } 12370 \end{aligned}$	$\begin{array}{ll}\mathrm{N} & \ldots \\ \mathrm{P}_{2} \mathrm{O}_{5} & \ldots \\ \mathrm{~K}_{2} \mathrm{O} & \ldots\end{array}$	$\begin{array}{r} 1 \cdot 84 \\ \cdot 361 \\ \cdot 277 \end{array}$

Mill refuse.-The waste liquor from sngar or spirit factories, is, though very dilate, highly esteemed for irrigation and its effects can be seen on the lands near the Nellikuppam and Samalkota factories. Ashes too are largely available from most factories. The blowings from rice-mills, a very fine dust
consisting of particles of bran, husk, etc., may be used with good effect, while the effiuent from rice mills could be used for irrigation.

Village aarth (Pati mannu).

$\mathrm{H}_{2} \mathrm{O}$	\ldots	$4 \cdot 20$
Organic	$4 \cdot 22$
Sand		75'51
$\mathrm{Fe}_{2} \mathrm{O}_{3} \mathrm{an}$	Al	$9 \cdot 82$
CaO	-..	260
MgO	-.	$\cdot 78$
$\mathrm{K}_{2} \mathrm{O}$	\cdots	1.39
$\mathrm{Na}_{\mathrm{a}_{2} \mathrm{O}}$...	\cdots	\ldots	\cdots	32
$\mathrm{P}_{2} \mathrm{O}_{5}$	$\cdot 69$
CO_{2}"	1	-32
					Total	...	99.825
N ...	\ldots	\cdots	.	\ldots084

Village earth.-This may be scraped or braghed from old walls, or dag from pits in old village sites and consistis of a greyish powdery earth containing nitrogen, potash and phosphoric acid. It varies largely in composition and is used for paddy and cane, to the former of whioh crops it has been very largely applied in the Kistia.

	Ashes.					$\mathrm{P}_{2} \mathrm{O}_{5}$.	$\mathrm{K}_{2} \mathrm{O}$.
Cane trash ...	\ldots	\ldots	\ldots	\ldots	.78	2.51	
Cotton stalk ash	\ldots	\ldots	\ldots	\ldots	$1 \cdot 77$	9.35	

Village refuse. - This again is a manare which varies very largely in quality. It consists of hoase sweepings, duag, ashes, and refuse fodder and is the most commonly ased manure in South India. If cattle dung largely predominates it is called cattle manure, bat is neaxly always obtained in a dry and powdery condition.

Green manures (fresh).

Green leaf.-Certain plants are largely cat, especially in the south and used as manare for paddy and sugarcane crops. Wild indigo (Tephrosia purpurea: kolinji : vempali) is the most generally esteemed: and is used throughout the Circars for almost all irrigated crops, especially cane but not paddy. Any leaf may be, used in the soath for paddy, but wild indigo, Madder (Callotropis gigantea: erakam : jilledi) and margosa are beld the most valuable.

Night-soil.-The use of this raluable product is being extended in the neighbourhood of the larger towns, especially by those engaged in the cultivation of garden crops. The general method of treating this sulsstance is to bury it in shallow trenches and allow it to be absorbed by the scil and gradually undergo decomposition. In a few months it will become a dry powder in handling which little difficulty will be experienced.

Lime as a manure.-This substance is a plant food and when lacking, most be supplied to obtain pood crops. The quantity needed is however so small that very few soils are without it. Liming consequently is not known. Experiments in its nse, are in progress at some of the Agricultural stations but little effect has as yet been noted. It has a beneficial effeot in soils heavily charged with organio material, and assists in obtaining a tilth on stiff clayey soild while it is said to exert a binding influence on sandy soils. ft may be applied as burnt or slaked lime.

Unit Priugs of Mandres a fíailable in INdia.

N in ammoninm sulphate ...					Rs.
					12
Niin nitrate of soda	...				15.0
N in refined saltpetre					6
N in crude saltpetre	.				6.7
N in calcium cyanamide		\%	\cdots		10.0
N in calcium nitrate	...	\cdots	* 13.0
N in bone meal		12.0
$\underset{\mathrm{N}}{ } \mathrm{in}$ in dried manured $\}$	\ldots	\cdots	..	.	10.0
$\mathrm{P}_{2} \mathrm{O}_{5}$ in superphospLate	\ldots		...		4×8
$\mathrm{P}_{2} \mathrm{O}_{5}$ in bone meal ...					$\cdot 9$
$\mathrm{P}_{2} \mathrm{O}_{5}$ in fisk		..			8
$\mathrm{K}_{2} \mathrm{O}$ in sulphate of potash					$3 \cdot 7$

Pota					
$\mathrm{P}_{2} \mathrm{O}_{5}$ soluble \ldots				,	50
$\mathrm{P}_{2} \mathrm{O}_{5}$ insoluble	\ldots	1.0
N in saltpetre imported	\ldots	\cdots			$13 \cdot 0$
N in saltpetre				\cdots	65
N in bones, poonacs, et					11.0

"Unit" Prices of Mandres.

The price divided by the percentage gives the cost of a "unit", i.e., the $1 / 100$ th of a ton. If os standard unit price is adopted the real valne of any niauare can be found by multiplying the percentage of each ingredient by the standard price and adding all together. The real value oan then ba compared with the market price.

It is customary in fixing the prices of manares per ton, on the system of valuing by anits, to allow only for the phosphates dissolved or soluble, the phosphates undissolved or insoluble, the nitrogen equal to ammozia and the potash. Other items are seldom taken notice of, and in the case of a mineral saperphosphate it is not even usual to allow for the insolnble phosphate.

The above prices are of course only approsimate, as they vary according to markets, and only represent the valne at the ports or manafactories; the cost of bags, carriage, credit, etc., must be added according to circumstances.

It mast be borne in mind that the commercial values bear no relation to the manurial values; the soluble phosphate in a mineral superphosphate, for instance, being probably as good for the planis as that in a bone superphosphate, although the latter has a higher market value. The cheapest sources ahould be tried first in experiments.

Relatite mandrial valde of different Mandres.

Average of several authorities.			
Nitrogen in ammonic sulphate, guano, etc.			10
Do.	sodio nitrate	98
Do.	fish gaano, meat meal, etc.	..	81
Do.	bone meal, horn meal, etc.	...	77
Do.	farmyard manure ...		56
Phosploric a	acid in superphosphate	\ldots	100
Do.	guano	92
Do.	bone meal	88
- Do.	medium meal	.,	6
Do.	coarse meal	...	40
Do.	basic slag		33
Do.	farmyard manure ...		33
Potash in sulp	alphato	\ldots	100
	hloride (muriate)		82

Nitrogen, phosphoric aoid, and potash are the only three substances which require to be applied in ordinary manuring and all manures are valuable only in proportion to the amounts
diagram of manures not tc be mixed

of these they contain; while manarial experiments usually resolve themselves into testing the e侯ect of the various commercial compounds and mixtures of these three bodies on different soils. The other mineral foods required hly plants exist in superabundance in the great majority of soils.

Ubeful Factora.

CROPS.

CEREALS.

PADDY.

> (Oryza Sativa.)

Tamil	Nellu.
Teluga	Vadlu.
Malayalam	\cdots	\cdots	...	Nellu.
Canarese	-	\cdots	\cdots	Batta.
Hindostani	\ldots	Dhan.
Uriya	\cdots	\cdots		Dhanno.
Tulu	Bar.

Area in Madras-10,943,700 acres.
The number of varieties is very large, even if allowances are made for the same variety receiving different names in different localities. These varieties differ in the colour either of the seed-coat or glume; their duration of growth, from three and half to nine months; and their quality, i.e., tho delicacy and flavour of their rice. The crop is normally grown in wet lands irrigated from canals or tanks (rain or river fed); it is occasionally seen as a garden crop (e.g., Salem, North Arcot, etc.) growing in similar conditions. It may be either broadcasted or transplanted. As a dry crop it is extensively found in the Northern Circars and on the West Coast. It is occasionally sown dry and subsequently irrigated.

Seed-rate-Brondcast, 50 lb . per aore. Transplanted, 20 lb . in 7 cents of land will plant up one acre. But this seed-rate is usually very largeiy exceeded, up to 150 lb . per acre being used.

Volume weight-1 M.M. weighs 2.5 lb .
Husk to grain-33 to 36 per cent. by weight.
Weight of seed- 1,000 grains weigh $21 \cdot 23$ grammes.
Number of seeds in $1 \mathbf{l b} .-19,000$ to 22,000 .
Germination capacity- $\mathbf{9 0}$ to $\mathbf{1 0 0}$ per cent.
Yield-Good delta land- 2,000 to $4,000 \mathrm{lb}$. of grain, 3,000 lb , of atraw. Average tank-irrigated land:--1,500 to $3,000 \mathrm{lb}$. of grain, $2,500 \mathrm{lb}$. of straw.

CHOLAM. !

	(Sorghum rulgare.)			
Tamil ...	\ldots	\ldots	\ldots	Gholam.
Telugu	\ldots	\ldots	\ldots	Jonnalu.
Canarese	\ldots	\ldots	\ldots	Jola.
Malayalam	\ldots	\ldots	\ldots	Cholam.
Hinduatani	..	\ldots	\ldots	Juari.
Uriya	\ldots	\ldots	\ldots	\ldots
Talu Jorna.	\ldots	\ldots	\ldots	\ldots
AriJola.				

Area in Madras-5,219,700 acres. .
Varieties-Numerous: see Bull. No. 55, Department of Agriculture, Madras. It in grown as a dry or irrigated crop on almost any class of soil. It is also grown thickly as a fodder crop when it is not intended to produce grain.

Seed-rate-10 to 15 lb . Irrigated 20 to 35 lb .; for fodder up to 100 lb .

Volume weight-1 M.M. weighs 31 ib .
Husk to grain-14 per cent. by weighi.
Weight of seed- 1,000 seeds weigh $20^{\circ} 55$ grammes,
Number of seeds in $1 \mathbf{l b} .-15,900$.
Germination capacity- 95 per cent.
Yield-Average produce of garden lands, 2,000 to $3,000 \mathrm{lb}$. of grain, 5,000 to $7,000 \mathrm{lb}$. of straw.

Dry lands: grain 1,000 lb. per acre in best black soils; 700 in good red soils; down to 300 lb . in dry tracts of Ceded Districts.

BOLRUSH OR SPIKED MILLET.

(Pennisetum typhoideum.)

Tamil ...	\ldots	\ldots	\ldots	Kambu.
Telugu	\ldots	\ldots	..	Sajjalu or Gantelu.
Canarese	\ldots	\ldots	\ldots	Sajje.
Malayalam	\ldots	$\ldots *$	\ldots	Kampam.
Uriya ...	\ldots	\ldots	\ldots	Gantiya.
Hindustani	\ldots	\ldots	\ldots	Bajra.

Area in Madras- $2,606,300$ acres.
There are long and short duration varieties: varieties are also known in whioh the grain thrashes free of the husk (Arisikambu). The crop is grown eirher under dry or garden conditions. The former is fown during the monsoon seasuns, and the latter during the hot weather : as a dry orop it generally occupies poor soils, save in Tinnevelly and Ramnad, where
it takes the place of cholam on black soils. It has wnonderful tillering capacity. It is quick growing, and therefore may be raised as a fodder crop though the strew is considered when ripe, inferior in quality to cholam.

Seed-rate- 3 lb . in black soils; others 6 to 10 lb .
Volume weight-l M.M. weighs 2.7 lb .
Husk to grain- 7 to 8 per cent. by weight.
Weight of seed- 1,000 seeds weigh 4.07 grammes.
Number of seeds in $1 \mathbf{1 b}$-111,400.
Germination capacity- 93 per cent.
Yield-Up to $1,000 \mathrm{lb}$. of grain on best black soils. In other soils about 300 lb . is an average crop. Productivity inferior to cholam both in fodder and grain.

R.AGI.			
(Eleusine coracana.)			
... Ke	r Ragi.
...	...	$\text { ... } \mathrm{Ra}$	Thamidalu,
 , Mu	
\ldots Ra	
\ldots Ra	
... Ma	
... Ra	

Area in Madras-2,600,900 acres.
Varieties-There are distinct varieties for dry and garden lands and for early and late seasons. Plants differ also in the natare of panicles (open or closed). In a few parts of Madras, this is grown as a dry crop (generally mixed with palses and castor) in the uplands of Salem, Coimbatore and Hindupar, in Vizagapatam, and in ralloys near the bills. In some districts it is raised as the first crop on wet lands with limited or precarious water-supply. Elsewhere it is a garden crop, being raised in seed beds and transplanted in beds or in ridges.

Seed-rate- 2 lb . in 2 cenis of land for planting out 1 acre. In dry lands about 3 lb . is mixed with pulses.

Volume weight -1 M.M. weigbs 3.07 Jb .
Husk to grain-5 to 6 per cent. by weight.
Weight of seed $-1,000$ seeds weigh $2 \cdot 88$ grammes.
Number of seeds in $1 \mathbf{~ I b},-157,500$.
Germination capacity- 95 to 99 per cent.
Yield- 2,000 to $3,000 \mathrm{lb}$. garden crop. The straw is usually cut and fed partly green, and will weigh up to $8,000 \mathrm{lb}$. Dry crop 1,000 to $1,500 \mathrm{lb}$. of grain and $4,000 \mathrm{lb}$. of straw.

ITALIAN MILLET.
(Setaria italica)

Tamil	...	\ldots		Tenai.
Telaga...	Korrala
Canarese	Narane.
Malayalam	Ten
Hinduetani	\ldots	Kangun
Triya 1			Kanga

Area in Madras-1,832,000 acres.
Thefe are sereral cultivated varieries differing in the colour of the beed which may be any shade of yellow to orange, brown or black. Grown as a dry or an irrigated crop on almost any soil. 'Frequently mixed with cotton as a dry orop; but is not generilly mixed with polses as other cereals.

Seed-rate-5-6 lb. per acre as a garden crop: half that for dry lands, with further reduction if sown as a mirture.

Volume weight -1 M.M. weighs 35.7 lb .
Husk to grain-20 per cent. by weight.
Weight of seed $-1,000$ seeds weigh $2 \cdot 70$ grammes.
Number of seeds in 1 1b.-168,000.
Germination capacity- 95 per cent.
Yield-Dry crop up to 600 lb . Irrigated up to $1,000 \mathrm{lb}$.; 1. 000 to $2,000 \mathrm{lb}$. of straw per acre.

SAMAI.
(Panicum miliare.)

Tamil	\ldots	\ldots	Shamai.
Telnga...	\ldots	\ldots	\ldots	Samula.
Malayalam	\ldots	\ldots	\ldots	Shama.
Canarese	\ldots	\ldots	\ldots	Shame.
Hindustani	\ldots	\ldots	\ldots	Savan.
Uriga ...	\ldots	\ldots	\ldots	Suniva.

Area in Madras-1,008,500 acres.
There are long and short duration varieties of Samai : One with black glames is also known. It is nsually grown an an ealy dry crop, occupying poor soils and is mixed with pulses.

Seed-rate- 10 lb . per acre.
Volume weight-L M M. weighs 3.1 lb .
Husk to grain-44 per cent. by weight.
Weight of seed--1,000 seeds weigh $2 \cdot 65$ grammes.
Number of seeds in 1 1b.-171,200.

Germination capacity-98 per cent.
Yield - 400 to 600 lb . of grain; 800 to 900 lb . of straw per acre.

COMMON MILLET.
(Panicum miliaceum.)

There are two varieties grown which differ in colour'jf the glume. The crop is grown dry on poor soils: and onlyloccasionally as a garden crop.

Seed-rate-10 lb. per acre.
Volume weight-1 M.M. weighs 3.09 lb .
Husk to grain-35 per cent. by weight.
Weight of seed $-1,000$ seeds weigh $5 \cdot 12$ grammes.
Number of seeds in $1 \mathrm{lb} .-88,600$.
Germination capacity- 99 per cent.
Yield - 500 to 600 lb . of grain. 900 lb . of straw. An urı. gated crop will giold op to $1,200 \mathrm{lb}$. of grain per acre.

SANWA MILLET.

(Panicum Crusgalli, Var. Frumentaceum.)

Tamil	Kudiraivali.
Teluga	Oodalu.

A green and a red variety are found growing in Ganjam : elsowhere there seems to be a single variety. It is a minor gran grown usually on poor soils. It grows very rapidly,' can stand water-logging and is therefore raised in lowlands to prevent wash. The straw is considered grod : grain contains a ve; y high proportion of hask.

Seed-rate-35 lb. per acre.
Volume weight-1 M.M. weighs 2.33 lb .
Husk to grain- 35 per cent. by weight.
Weight of seed $-1,000$ seeds weigh $3 \cdot 14$ grammes.
Number of seeds in 1 1b. - $144,450$.
Yield- 400 to 500 lb . of grain and $2,000 \mathrm{lb}$. of straw $\mathrm{\rho}$ er acre.

KODO MILLET.

(Paspalum Scrobiculatum.)

Tamil	..	\ldots	\ldots	\ldots	Varagu.
Telnga \ldots	\ldots	\ldots	\ldots	Arikelu.	
Canarese	\ldots	\ldots	\ldots	Arikel.	
Uriya	\ldots	\ldots	\ldots	\ldots	Khoddi.

Area in Madras-1, $\mathbf{7 2 1 , 8 0 0}$ acres.
Commonly grown dry on poor soils often mized with red gram (sown in lines 4^{\prime} to ' 5^{\prime} apart) and seldom manured. Occasionally heavy yields are obtained from alluvial or deep blaok soils. A very hardy cereal which can be grown on any soil. The grain can be kept good for many years and hence it is a useful famine reserve, though the food and fodder aco both inferior. The straw is used as manure for salt lands.

Seed-rate-12 to 20 lb .
Volume weight-1 M.M. weighs 2.78 lb .
Hush to grain-40 per cent, by' weight.
Weight of seeds- 1,000 seeds weigh 5.00 grammes.
Number of seed in $1 \mathrm{lb} .-76,800$.
Yield - 600 to 900 lb . of grain and 1,000 to $2,000 \mathrm{lb}$. of straw.
WHEAT.
(Triticum Sp.)

Tamil	\ldots	\ldots	\ldots	\ldots
Godumai.				
Telagu \ldots	\ldots	\ldots	\ldots	Godumala.
Malayalam	\ldots	\ldots	\ldots	Kotampam.
Canarese	\ldots	\ldots	\ldots	Godi.
Tula	\ldots	\ldots	\ldots	\ldots
Godi.				

Area in Madras- 18,300 acres.
Wheat is not an important'crop. According to Howard the Madras wheats fall under three heads, viz., Triticum Pulgare, T. Durum and T. Dicoccum (Emmer). Some of the dry wheats of the northern parts of the Deccan and Akkigodi of Nilgiris fall under the first two varieties, whereas the irrigated wheat of Coimbatore is Dicoccum. This last does not thresh out clean, i.e., the 'seed' is really the spikelet containing two (sometimes three) grains.

Seed-rate- 25 lb . (in 1 and 2); 80 to 70 lb . in Dicoccum.
Weight of seed-1,000 seeds weigh 30.6 grammes (Dicoccum).

Number of seeds in $1 \mathbf{1 b},-14,800$.

Germination capacity-61 to 91 per cent. in 10 days. Yield-The irrigated crop will gield $1,500 \mathrm{lb}$. to $1,700 \mathrm{lb}$. Dry crop 400 to 800 lb .

MAIZE.
(Zea Mays.)

Tamil	\ldots	\ldots	\ldots	\ldots
Telugu Makka Cholanı,				
Thhalakka Cholam.				

Arta in Madras-133,900 acres.
Introduced varieties are occasionally met with. It is cultivated on a very limited scale as a field crop : as for instance in the Kistna delta on lands too high for irrigation. It is sown also ius small patches to supply green cobs. It may also be grown for fodder.

Seed-rate-6 to 8 lb ; for fodder 20 lb .
Volume weight-1 M.M. weighs 3 lb .
Weight of grain- 100 seeds weigh 30.4 grammes.
Number of seeds in $1 \mathrm{lb} .-1,500$.
Germination capacity-80 per cent.
Yield-Vory variable : a good dry crop should give 1,200 to $1,500 \mathrm{lb}$.

PULSES.

BEǸGAL GRAM.
(Cicer Arietinum).

Tamil	\ldots	\ldots	\ldots	\ldots	Kadalai.
Telaga ...	\ldots	\ldots	\ldots	Sanagalu.	
Malayalam	\ldots		\ldots	Kadalakka.	
Canarese	\ldots	\ldots	.	Kadale.	
Uriya	\ldots	\ldots	\ldots	\ldots	Sullo Chonna.
Talu	\ldots	\ldots	\ldots	\ldots	Kadale.

Area in Madras- 138,400 acres.
Variefies are known with white, pale yellow, dark yellow or black grains. The crop is practically confined to the black soils. It is a late crop, sown aftor the rains. It is generally sown by itself, drilled or dibbled behind the plough but may sometimes be broadcasted in mixtures.

Seed-rate-40 to 70 lb . per acre.
Volume weight -1 M.M. weighs $3 \cdot 13 \mathrm{ib}$.
Hask to grain-20 per cent. by weight.
Weight of seed- 1,000 seeds weigh 133.94 grammes.
Number of seeds in 1 Jb. $-3,400$.
Germination capacity-98 per cent.
Yield- 300 to 700 lb ." The refnse is a useful cattle food.

RED GRAM.

(Cajanus Indicus.)

Tamil	\ldots	\ldots	\ldots	\ldots	Tuvarai
Telugu	\ldots	\ldots	\ldots	\ldots	Kandulu.
Malayalam	\ldots	\ldots	\ldots	Tuvera.	
Canarese	..	\ldots	\ldots	\ldots	Togari.
Uriya	\ldots	\ldots	..	\ldots	Kandulo.
Tulu	\ldots	\ldots	\ldots	\ldots	Togori.

Area in Madras-294,800 acres.
There are numerous varieties which, differ in the colour of their seed coats. A very widespread and hardy pulse; sown sarly; stops seven to nine months in the field. Practically always grown as a mixture, frequently in lines 4^{\prime} to 6^{\prime} apart with sereals. Dhal is a very valuable and important human food, while tbe husk is a good cattle food.

Seed-rate will vary with the mixture adopted: from 2 to 4 lb. per acre.

Volume weight-1.M.M. weighs 2.87 lb .
Husk to grain-20 per cent.
Weight of Seed $-1,000$ seeds weigh 68.95 grammes.
Number of seeds in $1 \mathrm{lb}-6,600$.
Germination capacity-76 per cent.
Yield-This will vary very much with the class of mixfure; 300 to $1,000 \mathrm{lb}$, per acre. The refuse (pods, leaves, etc.) obtained in the process of threshing is stacked and given to working cattle.

HORSE GRAM.
(Dolichos biflorus.)

Tamil	\therefore	\cdots	...	Kollu or Kanam.
Telugu	\cdots	Ulavalu.
Malsyalam	-	Muthira.
Canarese	\ldots	IIrruli.
Uriga	...			Kalutho.
Tula				Kudu.

Area in Madras-2,208,000 acres.
There are varieties with black, grey or mottled seeds of various shades. The crop is sown pure on the poorest and thinnest red soils. It is found as a mistare with cotton in Nandyal and Tinnevelly. The grain is used for feeding cattle and horses, and is also eaten by man, it is a good fodder and green manare crop. The black variety is of short duration and is therefore sown late.

Seed-rate -15 to 20 lb .; in the case of black horse gram it is 30 to 40 lb . Half the seed-rate or less if the seed is mixed. For fodder crop from 30 to 50 lb . per acre.

Volume weight-1 M.M. weighs 3.45 lb .
Weight of seed-1,000 seeds wieigh 29.25 grammes.
Number of seeds in $1 \mathbf{l b}$.-15,500.
Germination capacity-90 per cent.
Yield-100 to 200 lb . in a mixtare and 300 to 400 lb . it sown alone. 500 lb . of dry fedder, including pods, etc.

> FIELD BEAN.

(Dolichos Lablab.)

Tamil	\ldots	\ldots	\ldots	\ldots	Mochai.
Telugu	\ldots	\ldots	\ldots	\ldots	Anumalu.
Canarese	\ldots	\ldots	\ldots	Avarai.	
Malayalam	\ldots	\ldots	\ldots	Mocakotta.	
Uriya	\ldots	\ldots	\ldots	\ldots	Bairo.
Tula	\ldots	\ldots	\ldots	\ldots	Abare.

The seeds vary in colour from a dark red approaching black to a light oream almost white. Flowers white, occasionally purple.

It is a climbing plant which is always grown as a mixture, generally with some upstanding cereal like sorghum or kambu sown early in lines. A pure crop may be used to chock weeds (smother crop).

Seed-rate-For a parecrop aboat 30 lb . would be needed. In mixtures 7 to 14 may be sown.

Volume weight-1 M.M. weighs 3.33 lb .

- Husk to grain-21 per cent. by weight.

Weight of seed- 1,000 seeds weigh $256 \cdot 94$ grammes.
Number of seeds in $11 b,-1,765$.
Germination capacity- 89 per cent.
Yield-100 to 200 lb . in a mixture. 300 to 400 if sown alone.

GREEN GRAM.
 (Phaseolus Mungo.)

Tamil	..	\ldots	\ldots	..	Paç̧apayara.
Telugu \ldots	\ldots	\ldots	\ldots	Pesaln, Paçapesalut.	
Malayalam	\ldots	\ldots	\ldots	Cherupayaru.	
Canarese	\ldots	\ldots	\ldots	Hasara.	
Uriya	\ldots	\ldots	\ldots	\ldots	Mruggo.
Tula	\ldots	\ldots	\ldots	\ldots	Padenji.

Area in Madras-386,000 acres.
There are three varieties characterised by having green, yellowt . and black seeds. The crop is commonly grown throughout the Presidency, generally as a subsidiary crop to one of the cereals. It may be grown as a second crop on rice land or sown thick as a smother crop for weeds on irrigated land. The grain is held in high esteem.

Seed-rate-Up to 5 lb . in a mixture.
Volume weight-1 M, M. weighs 3.43 lb .
Husk to grain-24 per cent. by weight.
Weight of seed-1,000 seeds weigh $29 \cdot 22$ grammes.
Number of seeds in $1 \mathbf{1 b} .-15,500$.
Germination capacity- 91 per cent.
Yield-150 to 200 Ib . in a mixture.

JBLACK GRAM.
(Phaseolus Mfungo Var. Radiatus Hook.)

Tamil	\ldots	\ldots	\ldots	\ldots
Thundu.				
Telugu	\ldots	\ldots	\ldots	Minamulu.
Malayalam	\ldots	\ldots	\ldots	Uzhunnu.
Canarese	\ldots	\ldots	\ldots	Uddu.
Tulu	\ldots	\ldots	\ldots	\ldots
Urdu.				

Area in Madras-160,200 acres.
The remarks'under previous crop, which it closely resembles in appearance, gield and mothods of cultivation, hold good. This suits a stiff soil.

Seed-rate-Up to 5 lb . in a mixture.
Volume weight -1 M. M. weighs 3 ' 3 lb .
Husk to grain-11 per cent. ly weight.
Weight of seed $-1,000$ seeds weigh $46 \cdot 3$ grammes.
Number of seeds in $1 \mathbf{1 b},-9,800$.
Germination capacity- 98 per cent.

> DEW GRAM.
> (Phaseolus aconitifolius.)

Tamil	\ldots	\ldots	\ldots	\ldots	Naripayaru, Kanllpayara, Tullikkapayara.
Teluga ...	\ldots	\ldots	...	Mitikelu.	

There is only one variety; which is rather sparingly cultivated in Madras; it is a poor fielder, and is found generally as a misture on the least fertile lands. The whole plant is a valuable fodder and is frequently grown, either alone or mixed $\frac{\text { with some millet, for this purpose exclusively. It }}{\text { on }}$ may also be grown as a green manure crop.

Seed-rate- $1 \frac{1}{2}$ to 3 lb . per acre in mixture.
Volume weight-1 M.M. weighs 2.68 lb .
Weight of seed-1000 seeds weigh 16.67 grammes.
Number of seeds in 1.Ib. $-27,200$.
Germination capacity- 91 per cent. Yield - 120 to 150 lb . in a mixture.

COW GRAM: COW PEA.
(Vigna Catiang.)

Tamil	\ldots	\ldots	\ldots	\ldots	Karanani,
Tattapayaru.					

Besides the varieties known in Madras many introduced American varieties are proving themselves nseful, being prolific and of short deration. A fairly common palse as a mixed orop. The pods are prominent and large. A very useful green manare crop. It makes an excellent combination for cattle food when grown with cholam fodder.

Seed-rate- 15 to 20 lb , as a pare crop. Half this for mixtares.

Volume weight-1 M.M. weighs 3.1 lb .
Husk to grain-10 per cent. by weight.
Weight of seed-1,000 seeds weigh 128.2 grammes.
Number of seeds in 1 Ib.-3,530.

Germination capacity- 95 to 100 per cent.
Yield- 300 to 400 lb . per acre in a pure crop.

VEGETABLES AND GARDEN PRODUCE.

BRINJAL.
(Solanum melongena.)

Tamil...	\ldots	\ldots	\ldots	Kathri.
Teluga ...	\ldots	\ldots	\ldots	Vankaya.
Malayalam	\ldots	\ldots	\ldots	Vazhuthininga.
Canarese	\ldots	\ldots	\ldots	Badinekayi:
Uriya...	\ldots	\ldots	\ldots	Banjino.
Tulu...	\ldots	\ldots	\ldots	Badane.

There are many local varieties which differ in colour, shape, size :and flavour. Introduced, varieties from American seed have been tried but have not spread., The crop is grown all over the Presidency on garden lands, sometimes alone, but more often mixed with various vegetables or at the edges of betel gardens. The unripe fruits are ased for making curries.

Seed-rate-The crop is grown from transplanted seedlings. Between one and two pounds of seed sowntin three-fourth of a cent., will plant one acre two feet apart both ways.

Yield-ap to $16,000 \mathrm{lb}$. per acre for a good crop.
CLUSTER BEAN.
(Cyamopsis' psoralioides.)

Tamil	..	\ldots	\ldots	.	Kottavarai.
Telaga	\ldots	\ldots.	\ldots	\ldots	Goruchikkudikaya.
Oanarese	\ldots	\ldots	\ldots	Govardhanakayi.	

The crop is of very little importance and is confined to mixtures in regetable gardens. It if nowhere grown on a field scale as a dry crop.

PUMPKIN.
(Cucurbita maxima.)

Tamil	Pushinikkai: Parangikkai :	
			Sakkara	inikkaj.
Telugu	Gummadika	
Malayalam	Mattanga.	
Tulu	...		Kambuda:	Kembude:

There are several varieties differing in shape, size and colour of fruits. There are also varieties which are sown in summer and in the rains. It is chiefly a rainy weather crop. The ripe
and unripet froits are used as vegetables for making curries. The ripe fruits keep for monthe. It is usually grown near the hedges in field margins : bnt occasionally may be found as a field crop.

COCOMBER.
(Cucumis Sativus.)

There are many local varieties whioh differ in colour, shape, size, flavour and keeping quality of the frait. The orop is commonly grown mised with all crops in black soils of Kistna district. It is also grown in tank beds when tanks get dry in the beginning of summer. It is Fery common on the west coast. Near Madras occasionally on a field scale.

The fruits are eaten fresh or cooked. The variety oultivated in Kistna district can be dried and preserved, and is often ased in making pickles.

MELONS.
(Cucumis Melo.)

Tamil	Mulampazham : K bujapazham.
Telnga	Karbaja panda.
Malayalam				
Canarese		Karbaja hannu.
Talu	Tekkarpe: Tekkare.

There are a number of melons grown in tank beds or in the sandy beds of rivers, in the hot weather many of which have local repatation, e.g., Cuddapah melons, Siddout melons. They are generally beavily manured and hand-watered.

There are several varieties differing in size and shape of the fruit. Occasionally met with in vegetable gardens.
(Cucurbita Moschata.)
Tamil Arasanikai,
This variety is found in the Coimbatore district.

WATER MELONS.

(Citrullus Vulgaris.)

Tamil		Piç̧a pazham Karbaja. ${ }^{\text {a }}$
Telugu		Kalangadi Puçca pandu
Canarese.	Baẹcangayi.'
Tala	Baç̧angayi. "

A large green water melon with dark mottled green skin and nkish flesh with black seeds.
The ripe fruits are sold in the hot weather in the bazaars.
LADIES' FINGERS.
(Hibiscus esculentus.)

Tamil \ldots	\ldots	\ldots	\ldots	Vendaikay.
Teluga \ldots	\ldots.	\ldots	\ldots	Bendakaya.
Canarese	\ldots	\ldots	\ldots	Bend akayi.
Tula	\ldots	\ldots	\ldots	\ldots
Bendekayi: Benduyi.				

This is grown as a small percentage in a mixtare in vegeble and other gardens for the sake of its unripe fruits. It is jwhere very extensively grown, though found all over the residency, especially near large towns. It has been recom:ended as a "trap crop" for cotton pests.
Seed-rate - 5 to 10 lb . when the crop is to be transplanted.
SWEET-POTATO.
(Ipomæa Batatus.)

Tamil	...	-..	...	Salskaraivallikiz. hanga or Chinikizhangu.
Teluga	Genasugaddaln.
Malayalam	Chakkarai kizhangu.
Canarese	Genuнr.
Uriya	Kondamalo.
Tnlu	...	\ldots	...	Kerang.

A white skinned and a red skinned variety are known.
The crop is grown extensively throughont Madras as a mden orop, preferably on deep sandy soils. The mature vines re cat into lengths with generally three nodes, and planted on dges or flat beds. Care must be taken to see that the spreadif plants do not root at the nodes. It is commonly used as (5
food either cooked in curry or boiled, roasted or fried. The vines are good cattle food.

Seed-rate $-20,000$ to 35,000 sets per acre.
Yield $-8,000$ to $12,000 \mathrm{lb}$. per acre.

TAPIOCA.

(Manihot utilissima.)

Tamil	..	\ldots	\ldots	\ldots	Maravallikizhangu,
Telugn	\ldots	\ldots	\ldots	\ldots	Karra pendalam.
Malayalam	\ldots	\ldots	...	Marachini.	

The crop is grown fairly widely from outtings in the sandy' soils of South Aroot, Chinglepat and Nellore, and occasionally further north along the littoral tracts. It is grown also on the West Coast.

ELEPHANT YAM.

(Amorphophallus campanulatus.)

Tamil	\cdots	Karakkaranai; naikizhangu.
Telogn	Thiyyakanda.
Malayalam	Senai.

On the West Coast, this is cultivated on dry land often mixed with ginger as a rain-fed crop; also in the compounds of houses where it may receive occasional irrigation. In Coimbatore, it forms a subordinate orop in tarmeric.

Seed-rate-Abont 1,500 lb. of corms per acre.
Yield-About $15,000 \mathrm{lb}$. per acre.
oolocasia.
(Oolocasia Antiquorum.)

Tamil		Sheppaakizhangu or Shamakkizhanga.
Teluga	...	\cdots	...	Shamagadda.
Malayalam	Chempakizhangu,
Canarese		Chamagadda.
Tula		Tera.

There is a variety without acridity ocourring rarely in Malabar. The area under this crop is limited and it is confined to rioh garden lands and backyards, with the exception of the West Coast, where it may be grown as a dry crop. In Chingleput, this occars as a pure orop on good sandy loams, where it is heavily manared with cattle manare and copiously
watered. In Tanjore it is grown as a field orop, either pure or mixed with yams and other vegetables. It is grown in treaches or pits and needs heavy manuring, when it is most profitable returning up to forty-fold. The corms are cooked and made into ourry. Red soil is said in Chingleput to prodace round tubers.

Seed-rate -600 lb . of corms.
Yield-8,000 to $10,000 \mathrm{lb}$.

TYPHONIUM TRILOBATUM.

Tamil	Karanai kizhangu
Teluga	Kanda.
Driya,	\ldots	Ullo.
Tulu	Kere.

This is cultivated in small quantities in Chinglepat and Chittoor. The root is acrid. The acridity is removed by boiling the root with tamarind water. It has a reputation as a remedy for piles.

Seed-rate- 500 to 600 lb . per acre.

> ARROW-ROOT.
(Curcuma Angustifolia.)

Tamil	\ldots	\ldots	\ldots	\ldots	Ararutta.
Talugu	\ldots	\ldots	\ldots	\ldots	Palagunda.
Malayalam	\ldots	\ldots	\ldots	Kuvva.	
Canarese	\ldots	\ldots	\ldots	Kuvegida.	
Uriya	\ldots	\ldots	\ldots	\ldots	Palu.
Tulu	\ldots	\ldots	\ldots	\ldots	Kooveda dayi.

The cultivation is very limited and the crop is found only in Ganjam, parts of the Circars and the West Coast. It is grown on well-manored sandy soils.

Seed-rate-Aboat 700 lb . per acre.
Yield $-4,000$ to $8,000 \mathrm{lb}$. of tabers. 100 lb , of tubers produce abont 121 lb. of flour.

POTATO.
(Solanum tuberosum.)

Tamil	Urulaikkizhangu.
Teluga	Urula gaddla.
Malayalam	Urula kizhangu.
Canarese	Erala gadda,
Tula		Batate.

The varieties are numerous. The crop is confined to the hills, since the temperatare of the plains is too high for it to be grown profitably. It is an increasingly important crop on the Nilgirie.

Seed-rate-900 to $1,000 \mathrm{lb}$. per acre.
Yield-5 to 8 tons.
CEPHALANDRA INDICA.

Tamil	Kovai.
Teluga	Dondai.	

There are two varieties, one is wild and is bitter, and the other oultivated whioh is sweet. It is said that the fruits lose bitterness ander oultivation. In the Circars, it is cultivated and the frait is ased as a vegetable. Elsewhere it is commonly found wild growing on bushes and hedges. The ripe fruit may be gathered as it becomes swreet.

> AMARANTH,
> (Amaranthus Gangeticus.)

Tamil \ldots	\ldots	\ldots	\ldots	Kiraithandu.
Telugu ...	\ldots	\ldots	\ldots	Thotakoora.
Malayalam	\ldots	\ldots	\ldots	
Canarese	\ldots	\ldots	...	

This is grown as a mixed crop in vegetable and backyard gardens. The whole plant is generally pulled out and sold.

There is another variety which goes by the name A Paniculatus, and which is grown on hills for the sake of its grain which is parched and made into flour and eaten. It is also used for making sweetmeats.

Weight of seed- 1,000 seeds woigb 82 grammer.
Number of seeds in 1 1b.-553,158.
GUINEA GRASS.

(Panicum Maximum.)

A fodder orop which bas been introduced successfully in parts of Madras. The crop is usually propagated by portions separated from the root stocks, which become overgrown and need division. The roots should be set ont evenly in rows running in both directions to ensure thorough inter-cultivation. The plant needs copious irrigation, and liberal manaring; it is quick growing and ordinarily eight cuttings can be had in a year.

Yield- 25,000 to $40,000 \mathrm{lb}$. of green fodder per acre per anmum in 8 cattings.

OIL SEEDS.

'	GINGELLY*			
${ }^{\prime}$	(Sesamum Indicum.)			
Tamil	...	\cdots	\cdots	Ella.
Teluga	**	Navvula.
Malayalam	-	Ellu.
Canareso	Yellu.
Uriya ${ }^{\text {a }}$	Rasi.
Tulu ${ }^{\prime}$. ${ }^{\text {c }}$	Yenme.

Area in Madras-812,800 acros.
There are several local varieties which differ in their period of growth, time of sowing and the colour of their seed. Tho orop is grown throughont the Presidency generally as an early crop. It is seen on the driest and poorest soils, on the riohest delta lands and on paddy fields as a second orop. Owing to the small size of the seed it is sometimes difficult to get a fall plant.

Seed-rate-2 to 3 lb ; less if drilled.
Volume weight.-1 M. M. weigh $2: 57 \mathrm{lb}$.
Weight of seed- 1,000 seeds weinh 2.61 grammes.
Number of seeds in $1 \mathbf{l b} .-173,800$.
Germination capacity- 90 per cent.
Yield- 350 to 450 ! b ,; but of course this will vary very mach according to the conditions under which it is grown.

Percentage of oil-40 per cent. by weight.
CASTOR-OIL SEED.
(Ricinus communis.)

Tamis	\ldots	\ldots	\ldots	Amanakku: Kottai-
mntliu.				

Area in Madras-454,900 acres.
There are numerous varietien, annual, biennial ond peronnial, grown either as garden ordry crops, and either green or bronze red in oolour. As a dry crop, castor occupies the poorest red soil, alone or mised with one of the iuferior millets or grams. As a perennial, it is dibbled along the edges of
sugarcane and betel rine and other garden crops. It is gene. rally sown in fields in lines.

Seed-rate-10 to 20 lb . per acre.
Volnme weight-1 M.M. weighs 2.87 lb .
Weight of seed- 1,000 seeds weigh $346 \cdot 71$ granımes.
Number of seeds in 1 Ib.- 1,308 .
Germination capacity- 80 per cent.
Yield-200 to 300 lb . as dry crop in poor lands, up to 700 lb . in more favourable surroundinga.

Percentage of oil-46, bat ordinary extraction gives 36. The cake is an excellent manare.

GROUNDNOT.

(Arachis Hypogaa.)

Tamil	Verkadalai : kadalai.	Nilak-
Telugn	\cdots	Vershanagalu shanagalu.	: Nela
Canarese		\ldots	...	\cdots	Nilakkadela.	
Tulu	-	...	Nilakkadale.	

Area in Madras- $1,455,800$ acres.
The Manritius variety has practically displaced the old local variety: other varieties may be seen on trial at the Palur Agricultaral station.

The crop suite sandy soils, and is either sown as a dry rainfed crop, when it is mixed with some cereal, or raised under irrigation mixed with ragi.

Rain-fed orop:-June-July to December-January. Irrigated crop: Febraary-March to July-Augast. The crop is very profitable, and ita area has increased rapidly in the last few years.

Seed-rate- 60 to 75 lb . good shelled seed.
Volume weight-1 Madras measure of unsh8lled nuts weighs $1 \frac{3}{4} \mathrm{lb} .1$ Madras measure of shelled nats weighs $2 \frac{1}{2} \mathrm{lb}$. 1 Madras measure of oil is $3 \frac{1}{3} \mathrm{lb}$.

Weight of seed- 100 seeds weigh 43 grammes.
Number of seeds in 1 lb.-1,000.
Yield-Dry average $1,300 \mathrm{lb}$, per acre. Irrigated crop as much as $2,500 \mathrm{lb}$.

Percentage of oil-As extracted by conntry mill is 36 to 40, actual contents np to 50 per cent.

Proportion of shell to kernels-25 per cent. by weight, being a little higher in the case of dry rain-fed crop.

NIGER SEED.
(Ouisotia Abyssinica.)

Tamil	\ldots	\ldots	\ldots	\ldots	Peyelin : Uchachella.
Telugur	\ldots	\ldots	\ldots	\ldots	Verrinavvalu:
Vanariselu : Ojurellu.					

A black oil seed grown occasionally as a mixture in the western and northern taluks of Bellary, and in the uplands of the Circars, Salem, Coimbatore, etc.

Seed-rate-About one pound of seed is mired with a coreal.

Weight of seed- 1,000 seeds weigh 4.55 grammes.
Number of seeds in $1 \mathrm{lb} .-100,000$.
Yield-Abont 305 lb . may be expected from an aore.
Percentage of oill- 35 by extraction.

LINSEED.
 (Linum usitatissimum).

Area in Madras- 25,000 acres.
This is only grown for its seed, which yields a ratuadle oil: the fibre not being extracted. The crop is found mostly in the Bellary portion of the Deccan upland, mixed with other crops like satflower or wheat.

Seed-rate-15 to 20 lb . per acre.
Volume weight-1 M.M. weighs $2: 87 \mathrm{lb}$.
Weight of seed - 100 seeds weigh 6.4 grammes.
Number of seeds in 1 1b. $-70,900$.
Yield- 300 to 400 lb . of seed per acre.
Percentage of oil-about 30 when pressed in the ordinary countery mills.

SAFFLOWER.
(Carthamus Tinctcrius.)

Tamil	\ldots	...		Kusumbavirai.
Telugn	-	Kusumbala.
Canarese...	,	Kusumba.
Tuln	...	\ldots	**	Kasamadapa.

The plant may be grown both for its oil and also for the dye which can be extracted from the fowers, though there is little or no extraction done now in Madras. The foliage of the plants ordinarily met with is thickly armed with spines. There is also a smooth-leaved variety. The oultivation is confined to the black soils of the Ceded Districts, where it is frequently seen sown on the head-lands, partly to prevent cattle trespass, and partly because it can be sown late. The oil is very clear and is used in cooking; also to adulterate ghee.

- Seed-rate-5 to 10 lb .

Volume weight.-1 M.M. weighs $2 \cdot 43 \mathrm{lb}$.
Weight of seed- 1,000 seeds weigh $41 \cdot 27$ grammes.
Number of seeds in $1 \mathrm{lb} .-11,000$.
Yield-- 400 lb . per acre.
Percentage of oil-30; ordinary methods extract 20 per cent. The cake is used as a cattle food and is said not to get mouldy readily.

FIBRES.

COTTON.
(Gossypium herbaceum: Gossypium indicum : Gossypium obtusifolium : Gossypium hirsutum.)

Tamil	.	\ldots	\ldots	\ldots	Parathi.
Telugu	\ldots	\ldots	\ldots	\ldots	Pathi.
Malayalam	\ldots	\ldots	\ldots	Parntti.	
Canarese...	\ldots	\ldots	\ldots	Hatti.	
Uriya	\ldots	\ldots	\ldots	\ldots	Koppa.
Tulu	\ldots	..	\ldots	..	Parti.

Area in Madras-2,018,900 acres.
The two common varieties grown as annuals on the black cotton soils are G. Herbaceum (Tellepathi; Uppam; Ukbam) and G. Indicuin (Yerrapathi ; Karunganni). Besides these, G. Obtusifolium (Nadam) is foand in parts of Ooimbatore, while in the same tract are found the remains of the early introduction of American cotton in the shape of G. Hirsutum (Boarbon) ; both these are perennial.

All the above are dry crops and occupy generally the black cotton soils, though Yerrapathi is fond on reddish soils, and the two last are fonnd on lightish gravelly soils.

Seed-rate-5 to 15 lb . per acre; rate varies in different localities and also with the soils.
 years.

Ginning percentage-22 per cent. up to 26 per cent.

CAMBODIA 'OOTTON.
 (Gossypium hirsutum.)

This is a recently introduced cotton which has spread from the south, and now occupies a very ccnsiderable area. It should be grown normally as an irrigated crop, and will repay good treatment. Very good samples of Kappas may be obtained from the eoils at the foot of the hills, as in Madura district, but Cambodia does not take kindly to black soils. Seed is sown at the commencement of the north-east monsoon.

Seed-rate- 5 to 10 lb .
Germination capacity- 90 per cent.
Yield - 700 to $1,500 \mathrm{lb}$. per acre : cases have been reported where the yield has been over $2,000 \mathrm{lb}$.

Ginning percentage-30 to 33 per cent.

DECCAN HEMP: BIMLIPATAM JUTE.

(Hibiscus cannabinus.)

Tamil	Pulicchai or Pulimanji.
Telaga	\ldots	\ldots	Gogu.	
Canarese	Pundi.

Area in Madras-68,200 acres.
There are several varieties distinguished by the colour of the stem and leaf which is either green or wholly or partly red. The shape of the leaves also varies being either entire or palmately divided. The crop is grown very commonly as a slight mixture in almost any crop, the leaf being used for curry. As a pare crop, its cultivation is contined to parts of Gantur and Vizagapatam. Tests at Coimbatore have shown that there the red stemmed green veined variety with divided leaves is the best for fibre.

Seed-rate- 25 to 30 lb . per acre.
Volume weight--1 M. M. weighs 263 lb .
Weight of seed $-1,000$ seeds weigh $24: 5$ grammes.

Number of seeds in 1 lb. $-18,500$.
Yield-600 to $1,000 \mathrm{lb}$. dry fibre.
Percentage of fibre to dry staiks--16 to 17.
Percentage of fibre to green stalks-4.

SUNNHEMP.
(Crotolaric juncea.)

Tamil	Sanappa or Shanal.
Telagn	Janumu.
Malayalam	Wackoo.
Canarese	Sonabr.
Uriya	Soin.
Trula	Talamba.

Area in Madras-210,400 acres.
The crop is found very extensively as a mixture throughout the uplands of Kistna and Gantur. It is grown as a pure crop in parts of Godavari and Tinnevelly and Thinglepat. Its use as a green manure crop is rapidly extending, and has cansed a heavy demand for seed. The fibre is used for making ganny bags, tails of mhote buckets, harness of pack bullocks, etc. Fishing nets in coastal tracts are exclusively made of this.

Seed-rate- 40 to 60 lb . up to 100 to 150 lb . in places.
Volume weight-1 M.M.weighs $3 \cdot 16 \mathrm{lb}$.
Weight of seed- 1,000 seeds woigh 46.4 grammes.
Number of seeds in $1 \mathrm{lb} .-9,775$.
Yield-500 to 800 lb . of fibre; grown as a seed crop 400 to 600 lb , of seed may be expected.

Percentage of fibre to dry stem- $8 \cdot 2$ per cent.

AGAVE.
(Agave Vera Crum: Agave sisalana.)
Tamil Anaikkattazhaj, Kattaźhai.
Teluga Kalabanda. Malayalam Wakkuchan.
The American or Railway aloe (misnamed) is commonly seen in all parts of the Presidency as a hedge plant. It is generally propagated by means of plantlets which arise as sackers on the roots of the older plant, or by bulbils.

Attempts have been made to grow the sisal agave on a large scale but without mach suecess. It can only pay when rents
are low ; on such lands, difficulties are often felt in the extraction of the fibre for want of water. The fibre is excellent.

Yield-Each plant will produce $15-20$ leaves a year. The average weight of each leaf being $6 \mathrm{lb} ., 900$ plants per aöre will give at this rate and with $3 \frac{1}{2}$ per cent. fibre, 300 lb . of dry fibre per acre per annam.

CONDIMENTS AND SPICES.

GHILLIES.

(Capsicum annuum; Watt.)				
Tamil ...				Milagai.
Telugu		'..	...	Mirapakaya.
Malayalam		Molaka.
Canarese		Menasinakayi.
Uriya	Lonkamonho.
Tulu	Manuchi.

Area in Madras-286,000 acres.
There is one common variety, though special races from particular districts are recognised for their good qualities. The plant is generally transplanted from a seed bed, and is usually grown on garden lands, as a pare crop or as a mixtare in a vegetable garden. On dry soils it is an important crop in Guntur and the aplands in the Godavari and Kistna, where it is grown in large fields which are most accarately transplanted to allow of careful inter-caltivation. The pods are picked and dried for marseting.

Seed-rate- 1 to $1 \frac{1}{2} \mathrm{lb}$. to transplant an acre.
Volume weight-1 Madras measure of dried fraits weighs $\frac{1}{2} \mathrm{lb}$.

Weight of seed- 1.000 seeds weigh 5.65 grammes.
Number of seeds in 1 lb.-80,280.
Yield-2,000 to 2,500 lb.

ONIONS.

(Allium Cepa.)

Tamil	..	\ldots	\ldots	\ldots
Vengayam, Irulli.				
Telagu	\ldots	\ldots	\ldots	Ulligadda, Nirulli.
Malayalam	\ldots	\ldots	\ldots	Chuvannaulli.
Canarese	\ldots	\ldots	..	Irnlli, Dlligadda.
Uriya	\ldots	\ldots	\ldots	Pizago.
Tulu	\ldots	\ldots	..	Neerulli.

The oommon onion growni in Madras is of a reddish colour. It is raised from seed which is sown in a seed bed; the seedlings being planted out in beds or ridges, or is raised from bulbs which are planted preferably on ridges. The latter method is obviously wasteful. White onions from Dhalia in Bombay have been grown successfally. The Bellary onion has a special repatation.

Seed-rate-10 lb. carefully sown in a nurseryä will be enough for an acre. The seed is delicate and must be fresh as it very quickly deteriorates. For balb planting aboat $1,000 \mathrm{lb}$. will be safficient to plant an acre.

Volume weight-1 Madras measure of seed weighs 2 lb .
Weight of seed $-1,000$ seeds weigh $3 \cdot 95$ grammes.
Number of seeds in 1 lb. - $114,800$.
Yield-15,000 to $25,000 \mathrm{lb}$. per acre. About 15 to 25 per cent. of dryage will occur on storing for three months. Onions are rarely kept for more than three or four months, either for consumption or for planting.

GARLIC.

(Allium sativum.)

Tamil	\ldots	\ldots	\ldots	\ldots	Vellaipandu,
Telaga	\ldots	\ldots	\ldots	\ldots	Tellagadda, Velluli.
Malayalam	\ldots	\ldots	\ldots	Vellalli.	
Canarese	\ldots	\ldots	\ldots	\ldots	Bellnlli.
Uriya	\ldots	\ldots	\ldots	\ldots	Losono.
Talu	\ldots	..	\ldots	\ldots	Bolluli.

A rare field crop which is only occasionally seen It is raised from bulbs. TPhe treatment is similar to that ontlined for onions. As a food, garlic is almost universally ased in carries on account of its varied medicinal properties. It is a more valuable crop than onion and can be kept much longer.

Seed-rate- 500 to 700 lb . of bulbs will be safficient to plant an acre.

Yield-8,000 to $10,000 \mathrm{Jb}$ per acre
TURMERIC.
(Curcuma longa.)

Tamil	\ldots	-••	-	Manjal.
Telugu	Pasapa.
Malayalam	...	-••	. ${ }^{\text {a }}$	Manjal.
Canarese	-	Arashina.
Driya	\cdots	...	**	Holodi.
Tulu				Manjal.

Area in Madras.-54,400 acres.
There are no distinct varieties though the rhizomes from different localities show slight differences.

An irrigated crop grown in wet or garden lands; needing a deep fertile, well-drained soil; occupies the ground for nine montbs. It is usually planted in rows by hand on ridges; and generally mixed with yams, castor, etc. Castor gives the necessary shade and sapplies some fael for curing.

Seed-rate-1,000 to $1,700 \mathrm{lb}$. per acre.
Yield- 12,000 to $20,000 \mathrm{lb}$. of green roots which when cared and dried will weigh 3,000 to $5,000 \mathrm{lb}$. approximately.

CORIANDER,
(Coriandrum sativum.)

Area in Madras.- $\mathbf{1 0 5 , 0 0 0}$ acres.
There is only one variety, which is grown on a field scale principally on black soils, and as a miztare with cotton and other crops. In deep and heavy black soils, in parts of Tinnevelly district, this is grown pure in extensive fields, where it rotates with kambu and gives heavy yields. Occasionally grown in gardens for seed, and also as a vegetable for the sake of the leaves.

Seed-rate-10 to 12 lb . for a pare crop; 2 to 4 lb . in mixtares.

Weight of seeds $-1,000$ mericarps ${ }^{\prime}$ (i.0., 500 fruits) weigh 7 '31 grammes.

Number of seeds in $1 \mathrm{lb} .-62,000$.
Yield-about 350 lb , per acre.

CUMMIN.

(Cкminum Cyminum.)

Tamil	\ldots	\ldots	\ldots	\ldots
Telugu \ldots.	\ldots	\ldots	\ldots	Siragam.
Jilakara.				
Malayalam	\ldots	\ldots	\ldots	Jirakam.
Canarese	\ldots	\ldots	\ldots	Jirige.

This is a valuable and delicate orop raised in gardens: it requires mach care, fine tilth and a firm seed-bed : grown in two seasons beginning of south-west and end of north-east monsoons: wants thorough manuring and light watering and mild climate. Hence oultivated in limited extent in Coimbatore and elsewhere in Yadura and in CaddapahKurnool. A rich loam fairly well-drained is preferred: two months crop.

Seed-rate- 20 lb , per acre.
Weight of seed- 1,000 seeds weigh 3.97 grammes-
Number of seeds in $1 \mathrm{lb} .-114,250$.
Yield-up to 750 lb . of seed (fraits).

OMOM-BISHOP'S WEED.

(Carum Copticum.)

Tamil...	\ldots	\ldots	\ldots	Ashamadhan. Omum.
Teluga...	\ldots	\ldots	\ldots	Omu. Omama.
Canarese	\ldots	\ldots	\ldots	Omn.
Malayalam	\ldots	\ldots	\ldots	Ayamodakam.

A crop of very minor importance agriculturally. Grown occasionally as a field crop in parts of the Nandyal valley and as a mixtare on black cotton soils in Tinnevelly.

MUSTARD.

(Brassica Juncea.)

Tamil	\ldots	\ldots	\ldots	\ldots	Kadugu.
Telagu	\ldots	\ldots	\ldots	\ldots	Avala.
Malayalam	\ldots	\ldots	\ldots	Katuku.	
Canarese	\ldots	\ldots	\ldots	\ldots	Sasive.
Uriya	\ldots	\ldots	\ldots	\ldots	Soriso.
Tuln	...	\ldots	\ldots	\ldots	Dasemi.

The area under this crop is small. It is fonnd in parts of Salem and Coimbatore uplands, and as a cold weather crop in Ganjam and on the Kistna lankais. It is always grown as a misture.

Seed-rate-4 to 6 lb .
Weight of seed- 1,000 seeds weigh $1 \cdot 78$ grammes.
Number of seeds in 1 1b,-254.,800.
Yield-400 lb.

PEPPER.

(Pipar Nigrum.)

Tamil ${ }^{\prime}$	Milaga,
Telagr	Miriyalu.
Malayalam	Korumulaku.
Canarese	Olleminasa.
Tula	**	Sedde Munuohi.

The following varieties are grown: Balamcotta, Kalluvälli and Cheriya Kodi. An inferior female variety (others are all hermaphrodite) called Utherankotta is' often seen in gardens. The crop is confined to the West Coast, mostly North Malabiar and the Wynaad. Cuttings are planted against standards. The crop is perennial and commences to bear after the third year up to the 15th or 20th when it declines. (See Keports of the Taliparamba Agricaltural Station.)

Volume weight-1 Madras measure of green pepper weighs 1 lb . avoirdupois when dry.

Weight of seed-1,000 seeds weigh 51 •万 grammes.
Number of seeds in 1 lb. $-8,800$.
Yields.in'the Wynaad about 5 owt. per acre, up to 15 owt ; in the low country 2 to 3 cwt . is a good yield.

GINGER.
(Zingiber officinale.)

Tamil	Inji.
Telugu	Allam.
Malayalam	Inchi.
Canarese	Hasisuntni.
Uriya	Vodda.
Taln	...			Soonti.

The cultiration is praotically confined to the Weist Coast where is grown on the high lands and heavily manured with leaves. a the Circars, occasionally under shade for green ginger. A ariety of ginger with the smell of mangos is occasionally und and is called mango ginger. This is used for making ickles and chutnies.

Seed-rate-1,200 to $2,000 \mathrm{lb}$. of green rhizomes.
Yield up to $10,000 \mathrm{lb}$. of green ginger which will give $2,000 \mathrm{Jb}$ 。

FENUGREEK．

（Trigonella faenumgrcecuni．）

Tamil	．．．	．\cdot	．．．	Venthiam．
＇Telnga ．．．	－	．．．	－	Menthulu．
Malayalam	．．．	．．．	．．．	Ulama．
Canarese	．．．	．．．	．．＊	Menthiya．
Uriya	．．．	．	．．．	Methi．
Tulu	．．．	＊	＊＊	Mente or Met

This is grown in gardens and is a three months＇crop．It is fonnd near towns as a pot herb in gardens．The seed is ased for flavouring carries and is also used medicinally．

Weight of seed－ 1,000 seeds weigh $11 \cdot 75$ grammes．
Number of seeds in $1 \mathbf{1 b} .38,600$ ．
Yield－600 up to 850 lb ．
CARDAMOM．
（Elettaria cardamomum．）

Tamil...	\ldots	\ldots	\ldots	Elakkai．
Telugu \ldots.	\ldots	\ldots	Yelakkayulu．	
Malayalam	\ldots	\ldots	．．．	Elam．
Canarese	\ldots	\ldots	\ldots	Yalakki．
Talu	\ldots	\ldots	\ldots	\ldots
Elakki．				

Area－（1903）Madura－ 4,000 acres ： $650,000 \mathrm{lb}$ ． Malabar－1，500 acres：： $245,000 \mathrm{lb}$ ． Sonth Canara－1，260 acres： $68,800 \mathrm{lb}$ ． Ooorg－1，100 acres ：50，000 lb ．
Its oultivation is practically confined to the Hills，where it is grown by planters at a considerable elevation，and also in the submontane tracts of Madara and．West Coant where the rain－ fall is heary．The orop wants partial skade and a hamous soil ： it is perennial．

Yield－ 150 to 300 lb ．per acre in an year，

DRUGS AND NARCOTICS， BETEL．

	（Piper betle．）			
Tamil		．．．		Vettilai．
Telugu ．．．	．．．	．．．	．．．	Tamalapakalu．
Malayalam	．．．	．．．	．．．	Vetilia．
Ganarese		．．．	．．．	Vilidele．
Uriya ．．．	．\cdot	．．．	＊	Panno．
Tala ．．．	．．．	．．．	．．．	Haccire．

Area in Madras-23,800 acres.
The varieties grown are numerous, but their names vary from district to district, The crop is a three years one, and needs constant attention and careful manoring and irrigation, It is usually/trained to climb the living stalks of Agathigrandiflora, grown for this porpose; it is also trained up bamboos, It is planted from onttings.

Yield is said to be 80 lakhs of leaves per acre per annum after the first year ; bat it is very difficalt to get accurate figures.

TOBACCO.

> (Nicotiana tabacum.)

Tamil \ldots	\ldots	\ldots	\ldots	Pugaigilai.
Telngu	\ldots	\ldots	\ldots	Pogaka.
Malayalamu	\ldots	\ldots	\ldots	Pokayila.
Canarese	\ldots	\ldots	\ldots	Hogesoppn.
Uriya	\ldots	\ldots	\ldots	\ldots
Dunuma.				
Tula	\ldots	\ldots	\ldots	\ldots
Pugere.				

There are numerous local varieties differing in the shape of the leaf, the thickness of the leaf or the midrib and the quality or flavour of the leaf.

The crop is grown extensively. It is sometimes seen as a dry crop, but is more of ten irrigated thongh probably the largest crops are obtained on uairrigated lands on the Godāvari lankas. The crop is often sold standing as the processes of curing and fermenting are difficult.

Seed-rate-2 oz., of seed mixed with gine sand will sow 200 square feet of seed-bed and will plant ont an acre.

Weight of seed-1,000 seers weigh 095 grammees.
Number of seeds in $1 \mathrm{lb} .-4,775,000$.
Yield-900-2,000 lb. of cured leaf.
INDIAN HEMP. (Cannabis Sativa.)

Tamil . .	\ldots	\ldots	\ldots	Ganja.
Teluga	\ldots	\ldots	\ldots	Ganjaza; Ganja ; Ban. giaka.
Malayalam	\ldots	\ldots	\ldots	Kanjaracheti; Kanjara.
Canarese	\ldots	\ldots	\ldots	Bhangi ; Ganja.
Tulu \ldots	\ldots	\ldots	\ldots	Bangi ; Ganja.

Area in Madras- 300 acres.
It is cultivated only under the supervision of the Abkāri epartment. The success of the crop depends on the complete imination of the male plants, as the narcotic principle is only ${ }^{3}$ veloped to any exteot in the unfertilised female plant.

Yield-said to be up to 200 lb . of prepared ganja in the hills: experimental crops at Coimbatore gave 700-800 lb. per acre.

> TINNEVELLY SENNA.
> (Cassia angustifolia.)

Tamil	\ldots	...	Surat Nilavirai, Nilava- kai.
Telugu Nelatangedu.	

The crop is grown for its leaves which are used medicinally and is foand mainly in Tinnevelly in dry, wet or garden lands. Flowers appear after two months and are nipped off, and leaves are firgt gathered four or five months from the time of sowing. After picking, the leaves are cured under shade for seven days, when they are bagged and sold. The crop lastis on dry land for three years.

Seed-rate-4 to 5 Madras measures.
Weight of seed- 1,000 seeds weigh 22.6 grammes.
Number of seeds in 1 lb.--20,000.
Yield-Dry lands, Ist year 700 lb ., second and third-half or less, wet and garden lands-1,400 lb.

\[

\]

Area in Madras-98,800 acres.
There are numerous varieties and one variety may often be known by different names in different/districts. Besides the local canes, there are a number of Mauritius canes and sports from them which are being widely caltivated in oertain tracts. There are further the seedling canes, raised from seed in various countries, from which they have been obtained, namely, Barbados and Java. Indian seedlings are now being, raised on a large scale at the Government of India Sugarcané Station near Coimbatore.

This is the ohief sugar crop although sugar is obtained from the juice of the palmyra, date and coconat palm. It is a twelve-month crop which requires irrigation throughout, and
can only be successfully grown on well-drained garden or wet lands of high fertility which must be well-manured.

Seed-rate-10,000 to 35,000 sefte (cuttings). These should be out from the top halves of the cane. Each sett should have at least two if not three joints. Jaggery is manafactured by boiling down the juice extracted by milling the canes in mills with iron rollers.

Extraction-fi0-70 per cent. by weight of the cane is extracted by a good iron roller in form of juice.

Proportion-jaggery to juice: 11-13 per cent.
Yield- 4,000 to $10,000 \mathrm{lb}$. of jaggery.

DYES.

INDIGO.
(Indigofera tinctoria.)

Tamil	\ldots	\ldots	\ldots	\ldots	Avruri ; Nili.
Telugu	\ldots	\ldots	\ldots	\ldots	Nili.
Malayalam	\ldots	\ldots	\ldots	Nilam.	
Canarese ..	\ldots	\ldots	\ldots	Nili.	
Uriya	\ldots	\ldots	\ldots	\ldots	Nili.
Tula		\ldots	\ldots	\ldots	Neeli.

Area in Madras-66,500 acres.
There is only one variety grown in Madras. Its cultivation is steadily decreasing; but the crop is still found on a fair scale in Vizagapatam, Guntūr, Kurnool, Cuddapah and South Arcot, where the high prices obtainable for the refuse help to keep the industry going. Two or three cuttings are obtained from each crop.

Seed-rate- 10 to 15 lb . per acre.
Volume weight-l M.M. weighs 3.62 lb .
Weight of seed- 1,000 seeds weigh $5 \cdot 85$ grammes.
Number of seeds in 1 lb .- 77,500 .
Yield- $9,000-12,000 \mathrm{lh}$. green stuff of which 40 per cent. should be leaf, and this should give 27 to 30 lb . dry indigo.

CHAYROOT.
(Oldenlandia umbellata.):

Tamil	\ldots	\ldots	\ldots	\ldots	Chayaver.
Teluga	\ldots	\ldots	\ldots	\ldots	Chirivernlu.
Malayalam	\ldots	\ldots	\ldots	Chayaver.	
Canarese...	\ldots	\ldots	...	Chayaveru.	

The plant is of no economic importance now and its culti$p^{\text {ation }}$ has been abandoned.

	 	$\vdots \vdots \vdots \vdots: \stackrel{尺}{\dot{\alpha}} \underset{\sim}{\mathcal{F}}$	
	 		ケロ 우웅
	ตin $\dot{\sim}$ 	¢ 	
	웅 		
	内人） 	 	
			！：：：！：： ！！！：：！：！ ！：：！：：：

Composition of Foods－cont．

Name of food．				岗	哃		产芯		先	昜
Fodderg－cont．										
Oat（straw）．．．			．．．	12.85	$3 \cdot 83$	1＇07	$51 \cdot 47$	25.23	$5 \cdot 42$	
Varagu（straw）	．．．		．．．	$8 \cdot 71$	$1 \cdot 97$	$2 \cdot 51$	47.92	28.84	10.05	$1: 26.8$
Kambu（straw）	．．．		．．．	$7 \cdot 07$	1.94	133	43.99	37.63	$8 \cdot 04$	1：23．5
Maize ensilage	．．．	．．．	．．．	81.87	$\cdot 77$	$\cdot 21$	$9 \cdot 44$	$5 \cdot 50$	2.21	
Cholam encilage	．．．			$60 \cdot 52$	1.89	$\cdot 65$	$21 \cdot 37$	11.29	$4 \cdot 28$	
Bean（straw）	．．．		．．．	．．．	$9 \cdot 9$	1.5	$31 \cdot 8$	33.5	．．．	1：36
Cow Pea（fresh）			\ldots	\cdots	$1 \cdot 9$	$\cdot 2$	7.8	$15 \cdot 3$	＇．．．	1：4．4
Red gram（pods a	nd 1	ves）	．．．	8.81	$11 \cdot 01$	440	44．67	$19 \cdot 23$	11.87	1： 49
Bengal gram（pod	an	eav	\cdots	8.41	3．65	$2 \cdot 27$	45.86	26.71	$13 \cdot 11$	1：14
Lablab（pods and	leav		．．．	9.92	$13 \cdot 37$	$3 \cdot 72$	4303	$16 \cdot 17$	1378	1：3．8
Paddy husk（chit		\cdots	\ldots	8.58	3.85	2.54	34.75	29．24	21.03	1： 10
Paddy bran（tavu	da）	\ldots	\ldots	$8 \cdot 21$	$5 \cdot 72$	$8 \cdot 31$	$34 \cdot 25$	$25 \cdot 18$	18．34	1： $9 \cdot 3$
Green gram（pod	and	ave	．	$13 \cdot 30$	10．88	2.52	40.35	18.68 8.48	14：09	1：422
Wheat bran	\cdots	\cdots	．．．	11．84	18.20	$3 \cdot 50$	58.42	$8 \cdot 42$	4．97	．．．
Miscrilaneous，										
Cow＇s milk				86.33	$3 \cdot 32$	$4 \cdot 83$	460		$\cdot 72$	
Buffalo＇s milk				82＇32	$4 \cdot 34$	$8 \cdot 09$	$4 \cdot 56$	\cdots	$\cdot 73$	．

Composition of Rations．
A satisfactory ration must not only supply the necessary amonnt of nutrition but must also be sufficiently bulky to fill the animal＇s belly；it is not possible to keep an animal in health by feeding it only a ooncentrated food like groundnat cake or cotton seed，but it must also get a bulky fodder．It is import－ ant to see that the proportion between the nitrogenons（proteid） and the non－nitrogenous constituents is correct，in order on the one hand to avoid giving too moch proteid which is expensive and wasteful，and on the other，diminishing the proteid below what is necessary for the animal＇s bealth，whether it is a mature bullock or a growing calf．This proportion is called the＂natri－ tive ratio，＂and shows the proportion between the amounts of each actually digested by the animals．It is incorrect to work out the ration by the actual quantities fonnd by analysis，though as a matter of fact，it has to be done in many cases，becanse to find the digestive co－efficient，i．e．，the proportion of a substance which is digested，is a tedions business and necessitates actual trial on the animal．The nutritive ratio of a standard diet is worked out in both waye below．To find the nutritive or albu－ minoid ratio，the average percentages of the varions substances are taken，the fat brought to its equivalent，in carbohydrate by moltiplying it by $2 \cdot 29$ ，and the total quantity of non－nitro－ genons matter is then divided by the total quantity of nitro－ genous matter．

For example，let us take the following ration ：－1这 lb ．ootton seed， $1 \frac{1}{2} \mathrm{lb}$ ．gronodnut cake and 20 lb ．cholam straw．Then：－

Food．		$\begin{aligned} & \text { 商 } \\ & \text { 菏 } \end{aligned}$	Albumi－ noids．		Fats．		Carbo． hydrates．	
			－		＋	\＃ ¢ O d		
		Lb．	－			LB．		LB．
Ootton seed	．．．	$1 \frac{1}{4}$	19.00	28	$19 \cdot 8$	$\cdot 30$	25．7	$\cdot 39$
Groundnat cake		$1 \frac{14}{4}$	52.06	$\cdot 78$	$7 \cdot 99$	$\cdot 12$	$20 \cdot 7$	－31
Cholam straw．．．	．．．	20	2.10	－42	$1 \cdot 50$	． 30	$39 \cdot 7$	$7 \cdot 93$
Total	．．．	．．．	．．．	1.48	．．．	$\cdot 72$	．．．	$8 \cdot 63$

$72 \times 2 \cdot 29=1 \cdot 65 . \quad 1 \cdot 65+8.63=10.28$ ．
Albuminoid ratio $=10 \cdot 28 \div 1 \cdot 48=1: 7$ ．

If now we take the proportions which are actually digestible we get a somewhat different set of figures. The following digestive co-efficients muy be assumed for ruminants:-

Food.			Albumi- noids.	Fats.	Carbo- hydrates.	
PER	PER	PER				
Cotton seed	\ldots	\ldots	\ldots	67	87	
CENT.	CENT.					
Groundnut cake	\ldots	\ldots	\ldots	70	89	49
Cholam straw	\ldots	\ldots	.	46	74	74

The percentager of the constituents will thus be-

Food.			Albuminoids.	Fats.	Carbohydrates.
Cotton seed	12.88	17.25	12.75
Groundnut cake	3675	$7 \cdot 17$	$10 \cdot 15$
Cholam straw	0.98	1-11	29.59

and the correct nutritive ratio will be-

Food.	Albuminoids.		l'ats.		Carbo. hydrates.	
	Per cent.	Lb.	Per cent.	Lb.	Per cent.	Lb.
Cotton seed, $1 \frac{1}{2} \mathrm{l} \mathrm{l}$.	12.88	'19	17.25	$\cdot 26$	12.75	$\cdot 19$
Gronndnut cake,	$33^{\circ} 75$	$\cdot 55$	$7 \cdot 17$	$\cdot 11$	$10 \cdot 15$	$\cdot 15$
Cholam straw, 20	0.98	$\cdot 20$	1,11	$\cdot 22$	$29 \cdot 59$	$5 \cdot 92$
Total .		$\cdot 94$...	$\cdot 59$...	6.26

$\cdot 59 \times 2 \cdot 20=1 \cdot 35, \quad 1 \cdot 35+6 \cdot 26=7 \cdot 61$.
Albuminoid ratio $7 \cdot 61 \div 94=18$.

Specimen Rationg.

Bullocks doing hard work.

$0.74 \times 2.29=1.69 . \quad 1.69+4.65=6.34$. Albuminoid ratio $=6.34 \div 0.96=1: 66$.

$0.43 \times 2.29=98 . \quad 98+4.95=5 \cdot 93$.
Albaminoid ratio $=5.93 \div 1 \cdot 11=1: 5^{\circ} 4$.

Cotton seed, 4 lb.	\ldots.	\ldots	0.52	0.69	0.51
Italian millet straw, $20 \mathrm{lb}$.	\ldots	0.15	0.09	3.89	
	Total	\ldots	0.67	0.78	4.40

$0.78 \times 2.29=1.83 . \quad 1.83+440=6.23$.
Albuminoid ratio $=6 \cdot 23 \div 0.67=1: 9 \cdot 3$.

$0 \cdot 49 \times 2 \cdot 29=1 \cdot 12 . \quad 1 \cdot 12+6 \cdot 42=7 \cdot 54$.
Albuminoid ratio $=7.54 \div 1.09=1: 68$.

Cows in Milk.

Food and amonnt.		Albuminoids.	Fats.	Carbohydrates.
Groundnut cake, 2 lb . Green fodder, 70 lb .		0.74	0.14	020
	...	$0 \cdot 45$	0.25	767
	Total	1•19	0.39	$7 \cdot 87$

$0.39 \times 2.29=0.89 . \quad 0.89 \times 7.87=8.76$.
Albuminoid ratio $876 \div 1 \cdot 18=1: 7 \cdot 36$.

Cotton seed, $1 \mathrm{lb}, \ldots$	\ldots	\ldots	0.13	0.17	0.13	
Grass, say, 70 lb.	\ldots	\ldots	\ldots	0.56	0.20	5.03
		Total	\ldots	0.69	0.37	5.16

$0.37 \times 29=0.85 . \quad 0.85+5.16=6.01$. Albuminoid ratio $=0.69 \div 6.01=1: 8.71$.

Dry Cows．

Food and amount．	或号号	菏	（\％
Grass，say， 50 lb ．．．．	$0 \cdot 40$	$0 \cdot 14$	$3 \cdot 60$

$0.14 \times 2.29=0.32, \quad 0.32+3.60=3.92$.
Albuminoid ratio $=0 \cdot 40 \div 3 \cdot 92=1: 9 \cdot 8$ ．

Cholam straw， 20 lb.	0.20	0.22	5.92

$0.22 \times 2.29=0.50 . \quad 0.50+5.92=6.42$.
Albuminoid ratio $=6 \cdot 42 \div 0^{\circ} 20=1: 32 \cdot 1$ ．
Calves．

Groundnut cake，$\frac{1}{2} \mathrm{lb}$	\ldots	\ldots	0.06	0.09	0.06
Cholam，green，10 lb．	\ldots	\ldots	0.64	0.01	$\mathbf{1 . 1 0}$
Milk，$\frac{1}{2}$ measure，2 lb．（cow＇s）	\ldots	0.06	0.10	0.09	
	Total	\ldots	0.76	0.23	$\mathbf{1 . 2 5}$

$0.23 \times 2.29=0.53 . \quad 0.53+1.25=1.78$.
Albaminoid ratio $=1 \cdot 78 \div 76=1: 23$.

Milk（cow＇s）， $1 \frac{1}{4}$ Madras measures $=5 \mathrm{ll}$ ．	$0 \cdot 16$	$0 \cdot 24$	$0 \cdot 23$

$0.24 \times 2.29=0.55 . \quad 0.55+0.23=0.78$.
Albuminoid ratio $=\cdot 78-16=1: 4 \cdot 9$.

Milk（buffalo＇s）， $1 \frac{1}{2}$ Madras mea－ sures $=6 \mathrm{lb}$ ．

| | 0.27 | 0.49 |
| :--- | :--- | :--- | 0.27

$0.49 \times 2.29=1.12 . \quad 1 \cdot 12+0.27=1.39$.
Álbuminoid ratio $=1 \cdot 39 \div 0 \cdot 27=1: 51$ ．

Digebtife Co－ryficients．

Food and amount．		$\begin{gathered} \text { 首票 } \\ \text { 品 } \end{gathered}$	$\underset{\text { 宝 }}{\text { 宝 }}$	
Horsegram ．．．	\cdots	75	$59 \cdot 4$	80.6
Paddy straw ．．．	\cdots	45	47.0	$32 \cdot 0$
Safflower cake ．．．．．．	．．．	85	88	80
Italian millet（tenai）straw	．．．	25	42	54
Green fodder（cholam）．．．	．．．	468	74	74
Grass ．．．．．．	．．．	58.5	68．7	$48^{\circ} 5$
Milk ．．．．．．．．．	．．．	94	100	98

Note．－The digestive co－efflcients in these illustrations are those which have been worked out for similar foods in other countries．The actual figares may vary vory largely from these．

Cost of feeding a pair of cattle per annum．
Saidapet， 1885.

Coimbatore， 1911.
Cholam straw－January，February and March 90 days -30 lb ．a day， $2,700 \mathrm{lb}$ ．at 250 lb ．a rapee

101210
Tenai straw－A pril 30 days－ $30 \mathrm{lb} . \ddot{\text { a day ；} 900 \mathrm{lb} .}$ at 150 lb ，a rupee

600
Wheat straw and gram potta；May 31 days－ 30
lb．a day ； 930 lb ．at 500 lb a rapee
1139

10 lb . of green fodder a day additional in May, $3,100 \mathrm{lb}$. at 300 lb . a rupee $1 \quad 0 \quad 6$
Paddy stram-Jone, July and Angust-122 days, 80 lb . a day, $3,660 \mathrm{lb}$. at 150 lb . a rupee
Ragi straw, Octaber 31 days, 80 lb . [green] a day, $2,480 \mathrm{lb}$. at 400 lb . a rupee
November, 30 days, 40 lb . [dry] a day, $1,200 \mathrm{lb}$. at 250 lb. a rupee
Grass-December 31 days at 100 lb . a day, 3,100 lb. at 500 lb . a rapee
Groundnut cake $365 \times 3=1,095 \mathrm{lb}$. at Rupees 78-12-0 a ton
Cofton seed $365 \times 3=1,095 \mathrm{lb}$. at Re. 95 per ton

RS. A. P.

Salt 365×2 tolas or $\frac{730 \times 2}{5 \times 16} \mathrm{lb}$. dr $18 \frac{1}{4} \mathrm{lb}$. at 6 pies a lb.
Shoeing four times at 12 annas
Interest at 5 per cedit. on Rs. 200 10. 0 o
Depreciation at 10 per cent. on Rs 200 20 " $0 \quad 0$
Attendance 12 0 0
Contingencies $\quad . . \quad$......\quad......$\quad 3 \quad 3 \quad 4$
Total ... 1.510

Cost of feeding Cowb per annum.
Saidapet, 1885.

Coimbatore.

(In milt 10 months, 304 days.)

Cotton seed, 1 lb . a day, 304 lb . at Rs. 95 a ton RS. A. P.

Groandnat cake, 1 lb . a day, 304 lb . at Rapees 78-12-0 a ton

12143

Dholl husk, 2 lb . a day, 608 lb . at Rs. 1-3-0 for 50 lb .
$14 \quad 7 \quad 0$
Green cholam fodder, 40 lb . a day, $2,680 \mathrm{lb}$. for 242 days at 300 lb . a rupee

3243
Green grass, 60 lb . a day, $3,720 \mathrm{lb}$. for 62 days at 500 lb . a rapee
Salt, 1 tola a day, 304 tolas for $\dddot{304}$ days or $\dddot{7} \ddot{7}$ lb. at 6 pies a lb. $0 \quad 3 \quad 8$

Total ... $7715 \quad 3$

Dry two months.

Dry cholam fodder (straw) 20 lb . 'a day, 1,220
lb . for 61 days at 250 lb a rapee $4 \quad 14 \quad 1$
$8213 \quad 4$
Attendance* 18 0 0
Depreeiation at 10 per cent. per annum on Rs. 80. Interest at 5 per cent, on Rs. 80
Contingencies ...
Total
$114 \quad 9 \quad 0$
Deduct-one-fourth valne of artificial food chargeable to manure

Net cost per annum
$9 \quad 0$
800 400
1118
990
-10500

Cost of feeding Calves.

First year.
Milk for the first two months, 30 Madras measures at 4 annas a Madras measure

780
Groundnat cake, $\frac{1}{4} \mathrm{lb}$. a day for 10 months, 76
1b. at Rs. 78-10-0 per ton.
2109

[^0]Cotton seed, $\frac{1}{4} \mathrm{lb}$. a day, for 10 months, 76 lb . at
Re. 95 per ton
Es. A. $\mathrm{P}_{\mathrm{i}}^{\mathrm{A}}$,
$3 \quad 3 \quad 7$
Dholl husk, 4 lb. a day, for 10 months, 76 lb . at
Rs. 1-3-0 for 50 lb .
11211
Salt 0 0 10
Fodder similar to that of cows, at one-fourth their

Second year.
Groundnut cake, $\frac{1}{2}$ lb. a day, $182 \frac{1}{3}$ lb, at Rapees 78-12-0 per ton
Ootton seed; $\frac{1}{2} \mathrm{lb}$ a day, $182 \frac{1}{2} \mathrm{lb}$. at Re. 95 per ton
Dholl husk, $\frac{1}{2} \mathrm{lb}$. a day, $182 \frac{1}{2} \mathrm{lb}$. at Re. 1-3-0 for 50 b. ...

454
Salt
0 l 0
Fodder, similar to that of cows, at half their rate. A'ttendance

Groundnut cake, $\frac{3}{4}$ lb. a day, 274 lb . at Rupees 78-12-0 per ton
$910 \quad 0$
Cotton seed, $\frac{3}{4} \mathrm{lb}$, a day, 274 lb . at Rs. 95 per ton
Dholl husk, $\frac{3}{4} \mathrm{lb}$. a day, 274 lb . at Rs. 1-3-0 for 50 lb .
Salt
 rate

A ttendance	2	0	0
		Total	\ldots	49	12	9
Total for three years	115	9	8
Contingencies for three yeary	...	-	...	4	6	4
	Gra	total	...	120	0	0

[^1]
RATIONS.

(Fed to calves at the Miiitary Dairy Farm, Bangalore.) First period-birth to 21 days ... 6 lb. whole milk given three times a day.
Second period--third to fifth week $\left\{\begin{array}{lll}\text { Whole milk } & 1 \mathrm{lb}, \\ \text { Separated, } & . . & 5, \\ \text { Barley meal } & \ldots & 1, \\ \text { Linseed oil } & \ldots & 1 \text { ounce. }\end{array}\right.$
Third period-sixth week to third $\left\{\begin{array}{lll}\text { Separated milk. } & 2 \mathrm{lb} . \\ \text { manth. }\end{array}\right.$
Fourth period-fourth to fifth Barley meal raised to 6 lb. month.
Fifth period-sixth to eighth month. Barley meal grádually reduced until none is given. Green fodder is now given and a ration of 1 lb . wheat bran ; $\frac{1}{4} \mathrm{lb}$. oil cake and $\frac{1}{4}$ ounce salt, each day.
From 9th month on the normal young stock ration is fed, riz.:--

Wheat bran... l lb.
Decorticated cotton cake 1 "
Green fodder 15 ,",
or

Second period-third week to | Whole milk ... 1 lb, |
| :--- |
| Sixth month. |
| Separated |
| Cotton seed"meal. 1 ", |
| Fodder as moch as they |
| will eat. |

PASTORAGE FEES.
In the northern deltas, Rs. 20 to Rs. 30 are charged for grazing a pair of bullooks for four months-August to Septem-ber-including watohing charges.

LIVE-STOCR.

Nambs of Cattee.
Male.

Ai birth.-Boll calf; if castrated, bullock calf or stot calf.
When a years old.-Yearling bull or year-old ball; if castrated, year-old stot or steor.

When two years old.-Two-year old bull; if castrated, twoyear old stot or steer.

When three years old and upwards.-Three-year ola bull or bullock (if castrated), four-year old bull or ballock, five-year old bull or ballock, aged ball or ballock; or

Two-teeth bull ar bullock, foar-tgeth bnll or bullork, sizteeth ball or bullock, full monthed ball or ballock, agediball or ballook.

Female.

At birth.-Heifer calf or cow calf.'
When a year old.-Yearling heifer or year-old heifer.
When two years old.-Two-year old heifer.
When three years old.--Three-year old heifer.
A cow or heifer that bas received a bull is said to have been served or bulled and, if in calf, is called cow in calf or heifer in calf.

A heifer becomes a cow on bearing a calf.
A cow in milk is termed a milk or milch cow (Tamil Karavai). When she ceases miking, she is a dry or yeld cow (Tamil Fáradu).

Cows, as a rule, bear one calf at a time. If two are born at one birth, they are termed twins, if three, triplets. When a bull and heifer calf are born twing, the latter is called a free-martin and is usually barrev.

Breeding.

Cattle are bred in India for draught and mill parposes. Dranght cattle are nsed for the plongh, the mhote and the carte Bullocks are also used as bensts of burden. Of the several breeds in Soathern India, the pre-eminent and the best defined ones are the Ongole and the Mysore. The Ongoles are colebrated for their milking qualities and for draght. The
animals are huge in size and are suitable for a steady, heavg draught. The cows on an average give 6 to 10 lb . of milk per day. The best ones may yield as much as 15 to 20 lb . in 24 hours. The Mysore cattle are quick of pace and very epirited and are specially suited for road work. The cows are poor milkers. Between these two extremes are all the remaining several breeds, in which the working and milking capabilities are combined and are of a mediam standard. Indian heifers, as a rule, do not come in heat until they are from $3 \frac{1}{2}$ to 4 years old, bat some take the bull as soon as they have cut the first. pair, that is, when they are $2 \frac{1}{2}$ years old, and instances are known in which heifers have produced their first calves before ontting the first pair of teeth. It is quite saie to breed from heifers which have ont the first pair, and it is desirable from the point of view of saving in the matter of keep, that they should be so bred from. Early maturity can be secured by proper feeding and care. Indian' cattle tend to go dry for a long time. They are not fed well when they are dry, and it does not pay the owner to do so. There is no reason why cows when they are dry, should not be used as draught animals until they are within a month and a half or two of calving, and fed and looked after well. This practice obtains in some parts of Coimbatore and Salem districts, and deserves further extension. A cow comes in season, as a rule, every three weeks, but this varies very much with different animals. A good cow should average a calf a year : this means she should take the ball two to four months after calving. A oow after calving shonld not be given the bull, even if she comes in heat, until two months have elapsed since calving. Some cows may go on milking during the whole period of pregnanoy. In such cases they should be dried when they are within a couple of months of calving, so that the mammary glands may have rest and the process of the secretion of new milk may go on undistarbed. Heifers should not be allowed to get too fat, as oestrom is liable to be delayed, and they may even go barren. The breeding bull should be particularly selected as his influence on the progeny is extensive, and as he becomes the sire of many animals. A bull should not be used for breeding before he has at least cut the first pair, that is, about $2 \frac{1}{y}$ years old. He is in his vigour from the third to the eighth year, after which he should be discarded. He mast be fed well, and light and regalar work will keep him in good condition, health and spirit. The average period of gestation in cows is $9 \frac{1}{2}$ months or 285 days. It is said that they go longer with a bull calf than with a heifer, which is, however, not confirmed by observation. 'The signs of pregnancy in a cow are these. She does not
come in heat again, and there is improvement in ber condition. The abdomen eularges and becomes pendulous, particularly on the right side. The udder increases in size, and the mucous discharge from the genital parts is also increased. After the fifth month, fortal movements can be perceived by looking at the flank on the right side. Abortion or miscarriage occars frequently. It is due to the nature of the food and other influences. Pregnant amimals when affected with blood diseases may abort. Abortion is also cansed by certain bacterial organisms and therefore rigid separation of animals which have aborted from those which are pregnant should be attended to. Approaching parturition is indicated by the swelling of the udder and occarrence of milk in ic, discharge of thick mucus from the valva and the loobening or "slipping" of the hinder parts, dae to the relazation of the pelvic ligaments. The process of parturition occupies about an hour. The placenta or after-birth comes away in $\frac{1}{2}$ to 4 hours after the calf has been dropped.

1
 Rearing.

In India the calf is allowed to suck its mother both before and after milking. In some parts the calf is tied to the arm of the mother and is allowed to suck only after milking. In Earope the general practice is to separate the calf from the dam as soon as it is born, or in a week or ten days after birth and to hand-feed it. Both the systems have their advantages and disadrantages. Allowing the calf access to the mother acts as a'stimulus for the secretion of milk and ensures the udder being thoroughly emptied after each milking, and the cow yields her milk freely. When the cow is out grazing, there is no danger of her milk being drawn stealthily. The disadvantages are that the cow may not give milk if the calf dies, and that it is difficult to regulate the emonnt of milk to be left for the oalf. Under the European system, the calf is given a regalated and required amount of milk, and the cow can be milked whether the calf is alive or dead, but there is no certainty of the milkman stripping the udder thoroughly. As soon as a cow has calved, she shoald bo milked and a portion of the milk should be given to the calf or left in the udder for it to suck. The milk yielded for the first four or five days is called colostrum; it contains a high proportion of albumen and curdles when boiled. It is called in 'ramil 'sesmbaul,' that is, 'pus milk.' This milk contains some larative principle and helps to clear the intestines of the calf of meconium. Some cows do not secrete milk on the very first day of calving. In such a case an
ounce or two of castor oil may be given to the calf. Daring the first month the calf must get sufficient milk, 2 to 4 lb . a day according to its size. If the cow is a poor milker, the whole of the milk shoald be left to the calf. During the next month, half this quantity may be allowed, the calf being taken out for grazing or supplied with grass and also given a little special food-skimmed milk, batter milk, linseed meal or rice or cholam or cumbu conjee. Handfed calves may be weaned when 4 to 6 months old.

Bulls are castrated in this country when they are four and five years old, the objection to earlier castration berg that the growth is stunted. Unfortanately this leads to promiscuous breeding, young and unsuitable stook being allowed to cover cows. It is still manter for question, as to the best age at which to castrate young balls, so far as their growth and natare is concerned. Young animals should get exercise. Even when there is no grazing available, they must be taken out for a run. The weight of a calf at birth is $\frac{1}{15}$ to $\frac{1}{13}$ of that of the mother. Nellore calves weigh 40 to 50 lb . at birth and Kangayam and big sized country calves 30 to 40 lb .

Febding.

After a calf has been wean θ^{2}, it mast be fed liberally and regolarly as the animal goes on continnously growing. It is only a well fed calf that will give us a good bull or heifer. Bad or interrupted feeding during the early years tells apon the system throughout life. In addition to good grazing or snpply of fodder and grass, which forms the bulk of food in cattle of all ages, the young stock should get a certain amount of concentrated food. The tissues of the body among other elements contain nitrogen. Nitrogen is not contained in all food stuffs but the other elements generally are. The special food given to young stock should therefore be rich in nitrogen. Nitrogen is found in cotton seed and in pulses such as grams, groundnats, etc. A mixture of equal parts of horsegram, cotton seed and qroundnut cake will be a proper food for young stocik. Young animals should be let loose daily for grazing and exercise. Rynts take care of their hall calves bnt neglect their heifer calves. It is very right to feed and look after the bull calves well, so that they may grow into good breeding balls or draught cattle, but it is wrong to neglect the heifer calves. If heifers are required for breeding they must be brought up well. Both the sire and the dam infloence the progeny, althongh the former has more influence in the herd. A dairy cow in milk mast be fed well and regularly. She mast get some green
fodder or grass and also some nitrogenons' and fatty food stuffs, such as oil-cakes aud, cotton seed. Bulls and working cattle should, in addition to fodder and straw, get some special food. Common salt is as necessary to cattle as it is to man, and a tola or two per-head should be gịven daily mixed with food.' Proper housing must be provided, and cattle mast be protected from exposure and wind during inclement weather.

Age of cattle.

The age of cattle is estimated by means of the teeth and also by the rings or nicks round the horn. The first ring appears at the third year, and then each year is supposed to add a ring, so that if there are two ringe the animal is considered foutr years old, if three rings, five years old and so on. The rings are, however, not always'well marked, and it is much safer to judge the age by the teeth.

Dentition.-The dentition of cattle is typical of the ruminants. sAt or within a month after birth the calf has eight incisors or six incisors and two canines in the lower jaw (the canines are shaped exactly like the incisors and situated close to them and are generally regarded as incisors) and twelve premolars, three on each side above and below. The upper jaw has no incisors nor canines and is provided instead with a cartilaginons pad (dental pad). All these are temporary or milk-teeth, and they are replaced later by permanent ones. Three molars on each side of each jaw behind the premolars come up and complete the permanent dentition. The number of permanent teeth is thus 32. Until the eight permanent incisors are completed when the animal is said to be fullmoathed, the age can be told with correctness. After this, ageing is a matter of guesswork from the extent to which the teeth are worn out.

Dental formula for milk teeth.
Incisors $\frac{0-0}{4-4}$. premolars $\frac{3-3}{3-3}$. Total 20.
Dental formula for permanent teeth.
Incisors $\frac{0-0}{4-4}$, premolars $\frac{3-3}{3-3}$, molars $\frac{3-3}{3-3}$. Total 32. \cdot
The top figures show the teeth on each side of the npper jaw and the bottom figures the teeth on each side of the lower jaw.

Teeth indicating age.
(Appearance of temporary incisors.).

At birth or 1 week.
2 weeks.
(Appearance of permanent incisors.) ${ }^{*}$

2 years 6 nturiths.
3 years 6 months.
4 years 6 months.
5 years 6 months. (Appearance of molars.)

Calving Table.
Average period of gestation, 285 days.

\begin{tabular}{|c|c|c|c|}
\hline If served on \& Will calve about \& If served on \& \[
\begin{gathered}
\text { Will calvel } \\
\text { about }
\end{gathered}
\] \\
\hline Jannary 1 \& October 13 \& July . 1 \& April 12 \\
\hline \% 7 \& ," 19 \& \# 7 \& , 18 \\
\hline 14 \& " 26 \& 14 \& 25 \\
\hline " 21 \& November 2 \& 21 \& May \({ }^{\text {a }}\) \\
\hline 28 \& " 9 \& 28 \& \({ }^{\circ}\) \\
\hline 31 \& 12 \& 31 \& 12 \\
\hline February 1 \& 13 \& Angust 1 \& 13 \\
\hline " \(\quad 7\) \& 19 \& 7 \& 16 \\
\hline 14 \& 26 \& 14 \& ", 26 \\
\hline ", 21 \& Décember \({ }^{3}\) \& 21 \& June \(\quad 2\) \\
\hline " 28 \& " 10 \& 28 \& 9 \\
\hline March 17 \& " \(\quad 11\) \& , 31 \& 12 \\
\hline " \(\quad 7\) \& " 17 \& September 1 \& 13 \\
\hline 14 \& 24 \& " \(\quad 17\) \& 18 \\
\hline " \begin{tabular}{l}
18 \\
\hline
\end{tabular} \& "1ry

31 \& " $\quad 14$ \& July $\begin{array}{r}18 \\ \\ 3\end{array}$

\hline " $\quad 28$ \& | January | |
| :--- | ---: |
| | 7 |
| 10 | | \& " 21 \& | July |
| :--- |
| |
| |
| |
| 10 |

\hline	\#pril
1	\& ", 11 \& ", 38 \& ", 10

\hline \% $\quad .7$ \& 17 \& October $\quad 1$ \& ", 13

\hline " $\quad 14$ \& 24 \& " $\quad 7$ \& ", 19

\hline 21 \& " $\quad 31$ \& 14 \& " $\quad 26$

\hline 28 \& February 7 \& 21 \& Anguat $\quad 2$

\hline " 30 \& " 9 \& 28 \& " $\quad 9$

\hline May 1 \& $" \quad 10$ \& " 81 \& 12

\hline 7 \& " 16 \& November 1 \& 13

\hline 14 \& " 23 \& $" \quad 7$ \& " 19

\hline 21 \& March $\quad 2$ \& " 14 \& \% ${ }^{26}$

\hline 28 \& " 98 \& " $\quad 21$ \& September ${ }^{2}$

\hline " 31 \& 12 \& " $\quad 28$ \& \% $\quad 9$

\hline June 1 \& 12 \& $\cdots \quad 30$ \& 11

\hline 7 \& 19 \& December 1 \& 12

\hline 14 \& $\because \quad 26$ \& " 7 \& " $\quad 18$

\hline 21 \& April $\quad 2$ \& $$
" \quad 14
$$ \& Otober 25

\hline 28 \& " 9 \& " 21 \& October $\quad 2$

\hline $\Rightarrow \quad 30$ \& " 11 \& " 28 \& 9

\hline
\end{tabular}

Combon Diseases.

Simple fever.-This may be bronght about through ohanges of weather, change of food, or exposure. It is ushered in with a shivering fit, which is followed by hurried breathing and with temperature increased to 104° to 106°. Confine the animal to the stall. Give as drench 8 to 12 ounces of Epsom salts with an ounce of nitre. Then give twice a day an ounce of common salt and two drams of nitre in a pint of water. The patient mast have green grass and plenty of pure drinking water. When free from the disease, an ounce of powdered chirata with two drams of black pepper in a pint of water or gruel may be given once daily for a few days.

Rheumatism.-A common complaint in India. It resolts from the inflammation of the fibrous tissue through exposure to wet and damp. The most favourahle season is that of the sonthewest monsoon-June to September. Young animals between the ages of one and five are most liable. There is high fever attended with stiffness and pain in moving. The animal walks very lame. It soon lies down and is nabable to get up. The attack lasts for about tbree days, when fover and lameness disappear, but stiffness in gait remains for sometime. Give at once a ponnd of Epsom salts with half an ounce of ginger in sufficient quantity of warm water. The animal must be provided with a good bed and have placed before it green grass and pare fresh water with a little nitre dissolved in it. After recovery two onnces of salphar may be given once daily for a few days.

Cancer.--Cancerous tumours and sores are not uncommoń in cattle. The only plan is to remore, the diseased part completely by sargical meaus. If this is not possible, the disease cannot be eradicated. Mild caustics may be used as a palliative moasure.

1) Tuberculosis.-This is what is commonly known as consumption in man. It attacks cattle and other domesticated animals, The disease is infectious. The canse is an organism known as Bacillus tuberculosis. It is a blood disease, bat the organs particularly affected are different in different attacks. The lungs are the orgins most frequently attacked, but the liver and intestines and other abdominal organs may, also be the seat of the disease. Joints are sometimes affected. The affected animal is out of condition and falls away in flesh. The fæces are offensive and loose. When the lungs are affected there is also a cough, which is weat and coarse. Post-mortem examination shows the presence of small nodules or taberoles
in the organs affected. There is no known cure for the disease. Young animals and cows five to eight years old are most lisble. Infected animals mast be removed from the herd. They are unsafeq to ase either for breeding, milking or for haman food.

Pleuro-pneumonia contagiosa.-Inflammation of the langs and pleara may be simple or contagions. The latter is a specifo form and is contagions and infectious. It is fortunately rare in India. There is fever and general signs of disease. The breathing is hurried and the muzzle is protruded aud the patient grants and moans during respiration. Pressure between the ribs makes the animal gruat from pain. Purging sets in, and the animal dies eventually of suffocation and exhaustion. Affected animals must be isolated. Ten drops of carbolic acid máy be given twice daily in rice gruel. Thurpentine mast be well rubbed in on the throat and chest. The disease is almost always a fatal one and it is best to destroy the animal in the early stage.

Foot-and-mouth disease.-A highly infectious and contagious disorder attacking cattle principally, but also transmissible to sheep, goats and buffalos. The period of incubation varies from one to four days, and the disease shows itself with an elevation of temperature from two to five degrees. The disease is characterised by the appearance of vesicles or blisters in the mouth and between the toes and, in cows, on the udder also. The blisters soon, burst, leaving raw sores. There is saliva foaming from the mouth, with a peculiar smacking of the lips and tongad. The feet are so sore that the animal is extremely lame, and moves with great difficulty. Mortality is very rare in adult animals, but the disease may prove fatal to very young calves. The diet must be nutritious and soft, such as rice or other grain, grael and green grass. Give a mild pargative at the commencement. Wash the month once daily for two or three days with alum lotion- 20 to 30 grains to an ounce of water. The feet must be kept clean and dressed with carbolic, camphor or margosa oil. If the udder is affected, treat as in mammitis. The milk of the affected animals should not be used without being well boiled.

Rinderpest.- This is the most formidable disease in cattle and is highly infections and contagious. It attacks sheop, goats and buffelos. In viralent outbreaks, mortality is 80 to 90 per cent., in ordinarg, 40 to 50 per cent. The period of incubation lasts from four to eight days but may extend even to 14 days. In the beginning there are all the general signs of
disease. There is fever, persistent shivering, congestion of the mucous membranes of the mouth, nose, eyes and vagina, followed with a discharge of acrid tears from the eyes, and of copious saliva from the month, and a maco-puralent discharge from the mose and the vagina. There are often sores in the mouth. Bowels are ai first constipated, bat soon fetid diarrhoa of a dirty yellow coloar with mucus and blood in it sets in. The prostration of strength is very great. In milch cows the secretion of milk entirely ceases. Duration of the disease is from 2. to 10 days. As a rule, a crisis sets in about the sixth or seventh day and the animal dies or shows signs of recovery. Treatment: at the commencement, when the bowels are costive, give once daily, until the bowels get loose, 8 to 10 ounces of castor or linseed oil. Twenty to 30 minims of carbolic acid may be administered in a pint of warm gruel once daily. If tbere be bloody diarrhœa, give some astringent (see Recipes). Diet' most consist of fresh young grass and of gruel, which must gently be drenched down if the animal will not take it of its own accord. Affected animals should be strictly isolated. The carcases with the dung, litter, etc., should be burned or baried deep with quicklime.

Cow-pox.-A specific eruptive fever in cattle. It is of rare occarrence. Cows are more liable to it than bulls, and cows after calving are most liable. It is not a severp affection. The eruptions show themselves in the region of the adder and teats in the form of circular vesicles with a central depression. The vesicles contain a clear flaid termed lymph, which gradually becomes opaque and purnlent. In the course of a few days the pustules burst and scales form, which soon drop away. The disease terminates in aboat three weeks and calls for no special treatment. If the adder is mach inflamed, foment with hot water twice daily, and after milking, dust a little powdered chalk or alom over the sores. Isolation is seldom necessary. Milk of the affected animals must be rejected. It is with the lymph contained in the vesicles of cow-pox that man is vaccinated as a protection from small-pox. One attack of cow-pox gives the animal immanity from the disease in futare.

Anthrax.-A specific disease, inocalable and contagious but not perhaps infectious, attacking cattle and other domesticated animals. It is caused by the presence in the blood of a vegetable organism called Bacillus anthracis. The disease is kighly fatal- 95 to 99 per cent.-and rans a rapid course from a fev hours to a few days. Anthrax appears in various forms.

One form is "splenic fever," which is characterised by very high fever and discharge of bloody fæces and bloody arine.

The disease, as a rule, ends iu death, which occurs in $\mathbf{2 4}$ bo Post-mortem examination shows the spleen enormonsly distended with dark blood.

Another form which is very common in India, is "GlupsAnthrax" or "Malignant sore-throat" [Tamil, "Thond"ai Adapan'"]. In this form, the fauces is the special seat of anthrax lesions and the tongoe becomes enlarged and putrid. There is high fever and respiration is considerably interfered with. Mortality is 95 per cent. The disease lasts from two to six days.

The third form is what is called " blactr-quarter." Here the seat of the disease is one of the limbs, into which there is a sudden effusion of, blood, which rapidly undergoes decomposition and the: part becomes cold and gangrenous and crepitates on pressure in consequence of accomulation of gases in the subcrtaneons tissneas a result of decomposition. The disease is very fatal, few cases recovering. Course, two to four daye.

Treatment is not of mach arail in anthrax. In the early stage, one to two pints of linseed oil with 60 minims of carbolic acid i_{s} to be administered. The affected animals should berigidly isolated. The carcases must be burned or baried deep with quicklime. The infected stalls must be thoronghly disinfected.

Choking.-Oattle are sometimes choked with pieces of oil cake, palmyra nats, stalks of cholam. The animal is nneasy and restless and there is no rumination. It coughs and salivates and, when it attempts to drink, water retarns through the nostrils. If the obstruction can be reached by the hand, attempt must be made to remove it. If the impaction be lower down in the gullet beyond the reach of the hand, pour down the throat a little oil and then work the obstacle up and down when it may be dislodged and will descend into the stomach. Should this prove unsuccessful, the probang ought to be used and, in the absence of one, a rattan 6 feet long and half an inch in diameter covered at one end with soft cloth or wash leather may he substitated. The month mast be kept open by the introduction across it of a piece of wood with a hole in the centre to allow of the cane being passed throagh. The obstraction must be gently pushed down into the stomach.

Tympanitis; Hoven.-A common complaint among cattle in India. $1 t$ is due to the distension of the rumen with gas. The cause in -generally a too free use of succulent fodder or grass. There is uneasiness and pain, and a swelling on the left side of the belly, which, when strack, sounds like a drum. The animal
is unable to broathe freely and grunts. In severe cases, relief should be afforded at once or the animal may die of suffocation. Give at once a pint of linseed oil with an ounce of tarpentine in it.(see also Recipes) and administer enemas of warm water. Should, relief be not obtained in a few hours, and should the symptoms become aggravated, pancture the rumer with a trocar and canula on the left side at a point'equally distant from the point of the hip, the last rib and the transverse processes of the lambar vertebric. If this instrument is not to be had, plunge the large blade of a pocket, knife into the stomach and turn it crossways, when the gas will escape.

Impaction of the rumen.-This is distension of the rumen with food. Some particalar foods are liable to cause this disorder, but anything particularly palatable and eaten to excess may produce the disease. The abdomen is distended on the left side bnt percussion elicits a dull sound and the swelling pits on pressure. If not relieved soon enongh, tympanitis may supervene and the animal may die of suffocation. Give immediately an oil purgative with a strong stimulant, linseed or castor oil two pints, croton oil thirty minims, powdered ginger one ounce. Administer copious and frequent enemas of warm water. Should relief be not obtained by the above measures, the only remedy is to perform " raminotomy," that is, to cut into the stomach and remove its contents through the incision. This operation should only be a ttempted by a practised hand.

Diarrhcea.-Frequent evacuations of excessively fluid fceces. The canses are many, such as unwholesome food, free consumption of fresh young grass springing up after rains, scanty pasturage in the hot weather, sudden change of food from dry to green. . change of seasons from hot to cold and viee versct. Impare water may also canse diarrhoes. In most cases, it: wonld be well to clear the bowels with a laxative dose of castor or linseed oil- 15 ounces of oil with a dram of gapja. The food must be carefully examined, and changed if necessary. Should diarrhcoa persist; give daily for a few days an astringent drenoh (see Recipes).

Dysentery.-This is cansed by inflammation of the membrane lining the bowels. It is a frequent accompaniment of blood disorders. Simple dysentery may follow protracted and neglected diarrhca, jr may originate from exposure to cold, coarse, innatritions food or fodder, impare water, ete. It may also be an after effect of poisonous agents. Give once daily or on alternate days, according to the nature of the rase 8 ounces of linseed oil with a dram of gauja or of opiam. Rub
the flanks well with equal parts of mustard and turpentine. A course of astringents may also be administered if necessary (see Recipes).

Hepatitis.-Inflammation of the liver. It may bé cañed by an excessive amount of highly stimulating food, associated with want of exercise. The disease is also attributed to phanges of temperature and of food. It is most frequent in the hot weather. Fever may be present. Tho eyes and the skin are vellow. There may be a perceptible enlargement on the right side with tenderness on pressure. Give frequent saline purgatives so as to keep the bowels loose for a week or ten days. Then give once or twice daily for a few days 2 drams each of camphor, ariseed and fenugreek in a pint of warm grael.

Bronchitis.-Infammation of the trachea and bronchial tubes. It is asually acute but may be chronic. The common causes are exposare to cold and dampness, sudden changes of temperature or over exertion. The disease begins with chill followed by high fever. The respirations are horried. There is congh, which in the early stage is dry, bat in the later stages becomes moist, with a macous discharge from the mouth and nostrils. The howels are generally costive. Administor enemas and a saline purgative. The air passages may' be steamed and stimulating applications rubbed to the sides of the chest and the course of the trachea. The patient must be allowed a free supply of pure air, of tempting food and hif nitrated drinking water- 2 ounces of nitre dissolved in a gallon of water. Later, give a few expectorant drenches (eef Recipes).

Young calv́es are subject to a parasitical bronchitis called "busk" or "boose." This is cansed by a species of thread worm known as Strongylus micrurus. There is a husky cough. Give $\frac{1}{2}$ ounce of tarpentine in 3 ounces of linseed oil twice a week. Funigation with chlorine, carbolie acid or sulphur is supposed to kill the entozoa,

Pneumonia; Inflammation of the lungs.-This disease may be accompanied with pleurisy (inflammation of the pleura). The causes are the same as those of bronchilis. There is quick and laborions breathing; the mouth is hot but the horns, ears and feet are often excessively cold. There is also a frequent sore congh. Give an aperient of Epsom salts and a free supply of nitrated water to drink. The patient must be well honsed and kept warm. Rab torpentine to the chest twice daily, until it becomes slightly sore. A seton may be inserted in the dew lap.

Red water; Black water.-This disease sometimes shows itself in cows after calving. The urinary organs get inritated and the cow strains frequently and passes urine in small quantities tinged with blood. Later, the secretion may become black or brownish black. Keep the cow quiet and give her drinks of linseed tea or of thin rice gruel in which some nitre should be dissolved. Three or four ounces of Epsom salts may be given once daily in the form of a drench for about a week.

Nephritis; Inflammation of the kidney.-This is a frequent disease in cattle, specially working bullocks, as a result of violent strains or blows on the luins. It may also arise from sudden changes in the temperature and exposnre to wet and cold. There are general febrile symptoms. If both kidneys are affected, no urine is passed; if only one, a diminished supply of a thick, viscid character containing blood and pus is passed in small quantities with straining. When pressed on the loins, the animal flinches. The gait is straddling and painfal. Foment the loius with warm water frequently and give warm enemas. Administer 8 or 10 ounces of linseed oil with a dram of opium and repat on the following day if necessary. Give linseed tea to drink freely.

Mange.-A contagious disorder of the skin due to the ravages of a mite known as "Acarus bovis." There are many forms of this mite, but the most frequent one is Dermatodectes bovis. Debility, poverty of condition and uncleanliness are predisposing causes. There is intolerable itohing, the affected parts become sore, the hair falls off and the skin becomes thickened and drawn in folds or wrinkles. The parts primarily affected are the hump and the tail, from which the disease may extend to other parts. All animals affected should be carefally isolsted. Wash them well with soap and water and then rub in ointment made up of sulpher four parta, linseed oil eight parte, turpentine two parts. Any of the antiparasitios given under Recipes may also be used. Give also internally once daily for a few days 2 ounces common salt and 4 onnces sulphur, mixed with food, or as a drench in a pint of water.

Lousiness.-This is very common in cattle, specially in animals in poor condition. Several different forms of lice are known to attack cattle. Dress with tobacco infnsion or some other antiparasitic dressing mentioned under recipes. The dressings require to be several times repeated and well rubbed in. The auimals should be theroughly washed an hoar or two after each application.

Ringworm.-This is due to vegetable parasitps-fungigrowing npon the skin. Two forms are known in cattle, Tinea tonsurans (common ringworm) and Tinea favosa (honey comb ringworm). Round patches are formed• devoid of hair and covered with greyish, fellow scarf. Dress the affected parts with corrosive sublimate lotion dr rab in red iodide of mercory ointment.

Foul.--An irritative inflammation and ulceration between the digits, usually cansed by animals standing in a filthy wet yard or on soft, wet, marshy pastures. The treatment should consist of the removal of the affected animals to a dry place. The feet must be washed with phenyle or carbolic lotion, and then dressed with tar mixed with a little powdered sulphate cf copper.

Laminitis.-Inflammation of the sensitive structare df the foot. This complaint is not verg frequent in catt'e, brit sometimes occurs in highly-fed animals: it may also be caused by overdriring. Working cattle are most liable. Some or all the feet may be affected. Give a cathartic, rest the animal, and continuously apply cold water to the affected feet.

Conjunctivitis, simple ophthalmia.-Results from injuries and from entry of foreign matter into the eye. The ege is red and congested, tears flow freely from it and the patient cannot bear exposure to the light. Seek and remove the cause. Then bathe the eye freely with cold water. Following this, put into the eye a fer drops of alum or zinc or boric lotion (see collyria under Recipes). If any opacity of the cornea should result, dress the eye with silver nitrate lotion-5 grains to an ounce of water.

Worm in the eye.-The worm is Filaria lachrymalis. It does not, as in the horse, live within the aqueous chamber of the eye but grazes on the snrface of the cornea, and lodges at. the inner angle under the haw. There may be one worm or several. The affected eye is partially olosed and continally waters. Cast the animal and bathe the eye freely with cold water. The worms, if present, can be got at by lifting up the haw. They must be picked up with forceps and removed.

Paralysis.-This is characterised by total or partial loss of sensibility or motion or both in some part or parts of the body. The most usual form in which the disease is met with in cattle, is the affection of the hind quarters known as paraplegia. Causes are injuries to the spine, overloading (in pack bullocks), sudden changes of temperature and exposure to wet and cold

The animal is unable to move freely, and drags the hivd quarters. The gait is unsteady and staggering. Give a purgative to clear out the bowels. Apply a blister of red iodide of meroury to the loius (see Irritants under Kecipes) and give daily for about a month half a dram of powdered nux-vomica in food or as drench.

Milk fever; Parturient apoxlexy; Dropping after calving.A disease peculiar to the cow, occurring after calving, specially after the third calf, and within ten daya of it. The disease is one of the nervons system and induces a partial or total loss of power. The animal has a wild look, and the gait is staggering. It lies in a state of torpor and moans: There is no discharge of dung or urine. The mouth opens and saliva flows from it. If any gruel is given, it runs out of the month withont the cow making any attempt to swallow it. The disease is very fatal. Its duration is one or two days. Treatment should be prompt, Give a strong purgative--1 $\frac{1}{2}$ lb. of Epsom salts with an ounce of aloes in two or three quarts of water. Copious warm enemas with castor oil or soap in them should be administered. Thin rice conjee or linseed tea should be given warm and, if the patient does not take it, should be gently poured down the throat. If the animal recovers, it must be kept for sumetime on digestible and laxative:food, or better on a gruel diet with some green grass, and receive a oourse of tonics.

Fracture of the horn.-This often ocours from animals fighting or from an accident. The horn core may be fractured transversely without injury of the horn. The latter acts as splints, and no particular treatment is necessary beyond rest and a cold bandage round the horn. In some cascs the horn alone is stripped off withont the core being injured. In such cases clean the core gently with carbolio lotion and cover it with tarred tow and then with a bandage. When boih core and horn are broken off, the rough projections and broken fragments of bone must be removed and sawn level. The bleeding may be stopped with a hot iron and the part dressed as above.

Sprain.-The muscles and tendons or ligaments of the joint of the leg may beoome sprained, and swelling, heat and pain of the affected part with lameness, may resalt. Foment the part with hot water till heat and pain pass off. Then keep a cold bandage on or make the animal stand in cold water for a couple of hours daily. If this does not complete the cure, and if any swelling still remains, rab in a blister of red iodide of mercurs.

Dislocation or luation.--From accident or over-exertion', a_{0} bone may be pft out of joint. In working cattle the armi bone is perhaps the most frequently dislooated. The reduction fis to be effectet by casting the animal, and seizing the arm and pulling it downwards, when tho bone may be heard to retorn to its socket with a snap After this, rest and cold applications to the part are all that are necessayy.

Wounds and tumours.- In case of injuries to the skin andin wounds generally, wash the parts with clean water freely, and then dress them with some antiseptic dressing. See antisoptic recipes. The neoks of working cattle are liable to be galled in various ways. In case of simple abrasion, the treatment is the same as for wounds. If the neck be inflamed and swollen, fonent with hot water twice daily for two or three days, after which apply cold water freely and frequently. Should any awelling still persist, blister the part with mercury or mylabris ointment. Sometimes an abscess may form, which must bo opened and the contents removed and the part treated as a wound. If there be any longetanding, cold and well circamscribed tumour, it should be dissected out surgically.

Abortion; Miscarriage.-Abortion may happen at any period between the first and the seventh month of pregnancy. If it occurs after the seventh month, it is called miscarriage and the young animal is born alive and is able to live for a longer or shorter poriod. Some of the causes of abortion are injuries, fright or excitement, 9 ver driving, the presence of fangi on the fodder, exposure to cold, debility, etc. Pregnant animals alfected with blood diseases generally abort. Sometimes abortion is due to bacterial organisms and in auch cases it may rage as an enzootic. In every case the safest plan is to segregate the cow that has aboited, to bary the calf and the oleansing deeply in the groand and to disinfect the stall. The animal should be nursed and carefully watched, As a role, the fotal membranes are passed investing the footas, but if not and if they are retained unduly long, they should be removed with the hand. An aperient of Epsom salts should be given to the cow. Cows that have once aborted, are liable to do so at abont the same stage during future pregnancies.

Retention of after-birth or placenta.-The placenta comes away from $\frac{1}{2}$ to 4 hours after the birth of the calf. The cow must be watched till the after-birth drops, when it should be removed and buried. Sometimes the placenta is retained
for sereral days witbout any constitutional disturbances being set up. There is no danger whatsoever in allowing it to remain for two or three days. If it is retained beyond this, it may be removed with the hand. The practice of removing the placenta forcibly when it is retained a little beyond the usual time is to be condemned.

Inversion of the womb; Downfall of the calf bag.-This may occur after calving, specially when there has been difficult labour. After the calf is born, the cow continues to strain until the uterus is forced out. Administer a dram of ganja or of opinm in grael to quiet the animal and make it stand with the hinder parts elevated. The uterus should be carefully woshed with warm water containing a small quantity of carbolic acid or some other antiseptic. The closed fist shonld then be applied to the fundus of the organ, which must be gradually and gently pushed inwards. Stitches may be passed through the lips of the valva to keep the uterus in its place. The stitches can be left for about 24 hours or until all straining has stopped. In some cases, a truss made of rope can be arranged so that it will press against the vagina.

Mammitis; Garget; Downfall of the udder.--Inflammation of the mammary gland is frequent in the cow. Exposure to cold, injuries of various kinds, obstruction of the flow of milk, allowing the animal to remain too long without milking may be enumerated as causes. Foot-and-month discase and cowpox may also induce the disease. Mammitis often occurs soon after partarition and is caused by sudden overdistention of the part from a rush of new milk. The udder becomes enlarged, hot and tender and pits on pressure. The calf shonld be pat to the wother frequently and the milk drawn away gently, so that the udder may be emptied. The part should be fomented with warm water freely 2 or'3 times a day and dressed with camphor oil sfter each fomentation. The patient should have a pound of Epsom salts given in warm water. The udder can be supported with a broad bandage. Abscesses should be looked for and at the first indication they should be opened, the matter let out and the opening dressed with carbolic oil.

Gore teats.-This, like garget, often occurs after calving. Cracks and sores form on the teats cansing moch uneasiness When the cow is milked. Before milking, foment the teats with warm water, in which some alum has been dissolved. After milking dress the teats with boric liniment made in butter, ghee or coconut oil.

Navel- $1 \bar{l}$.- Occasionãally calves suffer from this owing to the abrapt or imperfect separation of the navel cord and the navel bleeds. Should the cord be of sufficient length. it may be ligatured, but if close to the ebdomen, apply a little powdered sulphate of copper or touch it with the point of a heatediron. Sometimes an abscess may form, which must be upened at pace and dressed with carbolic oil. An abscess may lead to the inflammation of the peritoneum and occasion the death of the calf.

Costiveness in the newly born calf. -The best medicine is the cow's first milk. If there is any necessity for an aperient being given, administer in half a pint of rice gruel 2 ounces of castor oil with half a dram of ginger powder.

Scour ; Diarrhcea in calves.-This is cansed by indigestion brought on by repletion. At other times the disease may be. produced by the free ealing of young tender grass. Starvation or want of sufficient nourishment may also indace the disease. The first thing to do is to administer a mild aperient-2 ounces of castor oil in half a pint of gratl. Then put the calf on a course of some cordial like the following-powdered chalk 2 ounces, powdered catecha 1 ounce, powdered ginger $\frac{1}{2}$ onnce, ginger 1 dram, infusion of coriander 1 pint; dose, 1 to 2 ounces, 2 or 3 times a day.

The Sheep.
The sheep is a mammal belonging to the order Ungulata, group Ruminantia, family Ovidae, genus Ovis and species Ovis aries.

The chief breeds of Southern India are :-
The Madras or South Indian.-This breed is found over the whole Presidency. The sheep have tucked up bellies, light feet, 'bony limbs, flat sides and short tail. Only the rams have horns. They are covered with short coarse hair, whose colour is generally red or brown. They have, as a rule, a couple of pendulons lobules hanging from the throat, known in Tamil as ' Munnies,' that is, bells.

The Nellore.-The sheep are large in size and about the tallest in India. The average live weight of adult animals is 80 to 100 lb . The rams have twisted horns. The ewes are hornless. The prevailing colour is white or a light brownish-white. The body is densely covered with short hair. The sheep of this breed are tall and lanky.

The Coimbatore, -This district has, in addition to the Madras breed, a breed of wool-producing sheep. The prevailing colour is white with a black head, sometimes also black neck. The sheep have a fine covering of wool. They have good square compact carcases. They fatten rapidly, and they yield mutton of a superior quality. Fall grown animals weigh from 50 to 60 b.

The Mysore.-This Province is noted for a woolly breed of wheep. The rams have well twisted horns bat the ewes are, as a rale, hornless. T'he usual colour is a light to a dark grey or black. Live weight of adalt animals is 40 to 60 lb . They are not unlike the Coimbatore in point of baild and size. The sheep of this breed are prone to pugnacity and furnish the ohief fighting rams in southeru India. The breed has been improved from time to time by being crossed with Merino rams.

Patna in Bengal is noted for a breed of woolly sheep of good size and form and yielding very good mutton. Some rams of this breed were imported in the Government Farm, Saidapet, and they throve remarkably well and stood the hot weather much better than the Nellore, which were present in the flock at the time.

Names of Sheep.

Male.

Until weaned, suckling. After weaning until a year old, ram lamb; if castrated, a wetber. Afterwards, a two-year ram or wether, a three-year ram or wether and then an aged ram or wether.

In the case of woolly sheep, the ram lamb when shorn at the end of the first year becomes a shearling, then a two-shear ram, then a three-shear ram and then aged.

Female.
Until weaned, suckling. Until a year old, ewo lamb. After a year old until it drops a lamb, a gimmer ; if in lamb, gimmer in lamb, if not, barren gimmer ; if not put to the ram, a yeld gimmer. After a gimmer has lambed, she is called an ewe, twoyear, three-year, aged.

In the case of woolly sheep, the terms used are the same as those for rams, namely shearling ewe, two-shear ewe, three-shear owe, aged.

Breeding and Rearing,

Sheep are bred in India for mutton alone or for matton and wool. The best matton is that which is fine grained and "marbled," that is, evenly intermixed with fat. The wool should be fine and long and free from hair. The ewes kept for breeding should be carefully seleoted. They should have a good conformation and, in the case of woolly sheep, a good fleece, eapecially over the belly. They should be between 1 and 3 years old. Old and ill formed and defective animals should be weeded out from the flock. One ram will suffice for, 50 ewes. The ireeding rams are allowed to run with the ewes always. Under these conditions, all over Sonthern India generally, the ewes take the ram from February to March and the lambs are dropped from July to Angust. The average period of gestation in sheep is 150 days or roughly 5 months. The lambs can be weaned when 3 to 6 months old. Rams are not castrated until they are about a year old, but lamb castration pertormed in a fortnight or a month after birth is highly desirable. The weight of a lamb at birth is abont one -twelfth of the weight of the dam. A sheep attains its fall grow th and weight at the age of three years. About two-thirds of the weight is attained in the first year and the greater part of the remainder during the second year.

Feeding. - The sheep are fed on pastares only and are kept out in the open air all the year round. In the hot weather when the pastures are bare, the animals fall in condition considerably. No provision of any artificial food or of any fodder, green or dry, for such seasons is made.

Shearing.-In India the shéep are clipped once yearly either in the hot and dry part of the year, April to May, or in the cold dry season, January to February. They are olipped for the first tine when they are a year old. The sheep are washed generally before they aro shorn. The washing is done on the same day or the day before,

Dentition.-The dentition of the sheep resembles that of cattle as to the number of teeth and their position. The teeth of the sheep are also similar to those of cattle but much smaller. As in cattle, the front part of the upper jaw has no teeth and has, in their place, a dense fibrous pad. There are two sets of teeth, milk and permanent. The milk set consists of eight incisors in the front part of the lower jaw and three molars (known as premolars) on each side of each jaw, that is 20 in all. All these are replaced later on by permanent teeth and three more
molars on each side of each jaw behind the premolars come up once for all, so that the total number of permanent teeth is 32 .

Dental formala for milk teeth

Incisors $\frac{0-0}{4-4}$, premolars $\frac{3-3}{3-3}$. Total 20.
Dental formula for permanent teeth.
Incisors $\frac{0-0}{4-4}$, premolars $\frac{3-3}{3-3}$, molars $\frac{3-3}{3-3}$, Total 32.
Note.-The top figares in each formula show the t eeth on each side of the upper jaw and the bottom figures the teeth in the lower jaw.

Teeth indicating age.
(Appearance of temporary incisors.)

(Appearance of perwanent incisors.).

(Appearance of molars.)

Tempórary premolars.

Lambing Table.

Average period of gestation, 150 days.

Common Diseases.

Foot-and-mouth disease.-Epizootic aphtha.-(See the description under cattle.) In sheep the feet are chiefly affected and the mouth seldom. Some of the milder applications mentioned under antiseptics (see recipes) may be used. The disease is infectious and contagious but canses little mortality.

Sheep-pox-Variola ovina.-A formidable and highly fatal disease in sheep, infections and contagious. First, reddish spots appear on the naked places, whioh then turn into red or parple circumsoribed vesicles, which often ran into each other. Trealment is of no avail. Every attempt should be made to suppress the disease and dead animals shonld be baried deep with quicklime.

Rinderpest,-(See the description under cattle.) This is also a highly infectious and fatal disease. In virulent outbreaks, 80 per cent. may die. There is fever, blisters in the mouth and bloody diarrhces. Preventive measures should be adopted and dead animals shonld be buried in deep pits with quicklime.

Anthrax.-This is known in sheep as braxy. It is an infectious disease cansing great mortality, but does not spread with the same rapidity and to the same extent as the other infectious disorders, Lambs are more liable than older sheep. The disease is due to a special organism called Bacillus Anthracis, There is fferer, constipation, tympanitis and swolling of the head and the throat. Give 3 to 4 ounces of Epsom salts, or 3 to 4 ounces of linseed or eastor oil, with 5 minims of carbolic acid at onoe. Adopt preventive and suppressive measures as in the case of other specific blood disorlers.

Scrofula-Tuberculosis.-A specific disease and somerrbat infectious. The respiratory organs are often affected, sometimes the abdominal organs. It is very liable to appear in animals which are inbred aud which are in a fat condition. There is slow fever and the animal pines away. An attack of diarrhoes carries off the animal in the end. The best thing is to slaugliter the animal as soon as the symptoms art noticed. If the disease has not made much progress, the flesh can be eaten well boilod.

Rabies-Hydrophobia.-This is praduced by the bite of a rabid dog or jackal. After a varying pertod of incabation after the animal has been bitten, it begins to behave strangely and butts other sheep fariously. The breathing becomes
hurried and saliva flows freely from the mouth. The fatient dies within a week. There is no treatment and a rabid sherp should be destroyed at once. Should thare be suspicion that a sheep has been bitten by a rabid animal, the best thining is to kill it forthwith. The mutton can be used well cooked

Contagious footrot-This is a specific disease. The hoof softens and loosens from-the tissues inside. There is suppuration and fungoid growth on the coronet.. Fortnnately this disease is rare. Make a solution of carbolic acid or ot sulppate of copper in a large tab and dip the feet of the affected sheep once daily.

Catarrh or cold. - A very common oomplaint during wet and cold weather. There is slight cough and copious discharge of mucus from the nostrils. The patient may also lbe feverish. Rest and quiet is all that is necessary. A couple of ounces of Epsom salts with half a dram of powdered ginger may be given as a'drenoh in half a pint of water.

Bronchitis.-This may be the result of a neglected catarrh or may originate from the same causes as catarrh. There ist severe cough and profuse discharge from the nostrils. " The appetite is lost, the breathing is harried and the bowels are costive. Fever is generally present at the commencement. Give once daily for two or three days an ounce of Epsom salts, a dram of nitre and half a dram of ginger powder in half a pint of warm water. In severe casea, rub in some stimalating liniment or turpentine or the throat.

Pneumonia-Inflammation of the lungs.-This is a dangerous disease in sheep. There is fever, hard breathing, much cough and some mucous discharge from the nostrils. Rumination is suspended and food is refused. There is heaving of the flanke and a staggering gait. The disease may prove fatal in a couple of days? Treat in the same way as bronchitis. Rub in powdered mastard or turpentine over the throat and chest until the parts are slightly blistered.

Aphtha.-This sometimes breaks out in a flock, as a rule in the cold weather. Lambs and young shrep are chiefly affected. The dieease is probably contagious. There is a dense crop of warty growths on the lips and the mazzle. They soon become ulcerated and fungoid and rum into each other. Mortality, however, is not marked. Warh the parts onee daily with oarbolic locion and then dress with boric ointment.

Hoven-Tympanitis.-Distention of the rumen with gas.It is generally caused by the oonsumption of young sucoalent
grass. There is swelling on the left side of the belly, which when atruck sonnds like a drum. The patient evinces aneasiness and pain. Give at once in half a pint of warm water Epsom salts 3 ounces, ginger 2 drams and slaked lime 20 grains.

Diarrhea.-This may arise from the same causes as tym-
$\mathrm{a}^{\text {nitis or }}$ from a change of pasture or from change of weather. There 18 excessive purging, loss of flesh and weakness. Give ghelter and dry nourishing food. Change pasture, if possible. Give repeated doses of some cordial (see Recipes) or the following twice daily for a couple of days: Powdered gallnut half a dram, powdered omum half a dram, chalk or slaked lime 20 grains, powdered ganja 10 grains, in half a pint of warm or ${ }^{\text {ne }}{ }^{1}$ or infusion of linseed.

Dysentery-Bloody Aux.-This is inflammation of the mal^{00018} membrane of the intestines. This is a much more dangerous and fatal disease than diarrhcea. There is sometimes an outbreak of dysentery in a flock, which is probably a contagions form of the disease. There is fever, the stools become frequent, are mized with blood and slime and are voided with pain and straining. Give once daily for a couple of $\mathrm{day}^{8} 2$ oances of castor oil with 10 grains of powdered ganju in half a pint of warm gruel. Should the purging gontin after this, give catecha half a dram, powdered ginger half a dram, chalk one dram, in half a pint of warm infusion of $\mathrm{lins}^{\mathrm{e}^{\mathrm{ed}}}$ once daily.

Rot-Liver Rot.-This is very destractive disease. It no $^{00^{t i n}}{ }^{\text {es }}$ breaks out in a tlock during the hot weather. It is due to the presence of fukes-Distoma or Fazcicla heratic skeep infested with the fluke lose flesh gradually. The drotere dall and tinged sellow. The bowels are costive at ey $^{\mathbb{E}^{S}} \mathrm{bu}^{\mathrm{ar}}$, later, violent purging sets in and the faces are fetid first tinged with blood. Dropsy sets in and is particularly

 ate ${ }^{-1}$ end $^{\text {t }}$ should, if possible, consist in the removal of the Treatur an open dry pasture. The animals should have a little fock to addition to grazing. Common salt and sulphate of iron cake in may be ziven mixed with cake or as a drench at porder of lit drams of common salt and half a scrnple of
grass. There is swelling on the left side of the belly, which when struck sounds like a drum. The patient eviaces neasiness and pain. Give at once in half a pint of warm water Epsom salts 3 ounces, ginger 2 drams and slaked lime 20 grains.

Diarrhead.-This may arise from the same causes as tympanitis or from a change of pasture or from change of weather. There is excessive purging, loss of flesh and weakness. Give shelter and dry nourishing food. Change pasture, if possible. Give repeated doses of some cordial (see Recipes) or the following twice daily for a couple of days : Powdered gallnut half a dram, powdered omum half a dram, chalk or slaked lime 20 grains, powdered ganja 10 grains, in half a pint of warm grael or infusion of linseed.

Dysentery-Blcody fux.-This is inflammation of the macous membrane of the intestines. This is a much more dangerons and fatal disease than diarrhoes. There is sometimes an outbreak of dysentery in a flock, which is probably a contagious form of the disease. There is lever, the stools become frequent, are mized with blood and slime and are voided with pain and straining. Give once daily for a couple of days 2 ounces of castor oil with 10 grains of powdered ganja in half a pint of warm grael. Should the purging continne after this, give catechu half a dram, powdered ginger half a dram, ohalk one dram, in half a pint of warm infusion of linseed onoe daily.

Rot-Lirer Rot.-This is very destructive disease. It sometimes breaks out in a Hock daring the hot weather. It is due to the presence of flukes-Distoma or Fascicla hepatica-in the sabstance of the liver, gallbladder and biliary ducts. Sheep infested with the fluke lose flesh gradually. The eyes aro dall and tinged sellow. The bowels are costive at first but, later, violent purging sets in and the fæces are fetid and tinged with blood. Dropsy sets in and is particularly narked as a swelling under the jaw, and the disease terminates generally fatally, from thre e to seven days. After this, Treatment should, if possible, consist in the removal of the flock to an open dry pastare. The animals should have a little cake in addition to grazing. Common salt and sulphate of iron powdered may be given mixed with cake or as a drench at the rate of $1 \frac{1}{2}$ drams of common salt and half a scrnple of sulphate of iron per adalt head.

Tetanus-Lock jaw.-Sheep are very prone to this, from exposure to wet and cold, from injuries and wounds and from
castration. The jaws are fixed, the neck becomes rigid and there is grinding of the teeth and general rigidity of the muscles. The direase generally proves fatal in from 12 to 48 honrs. Give a strong purgative at once-4 ounces of Epsom salts, 2 drops of croton oil and a dram of ginger in half a pint of water. After this give 10 grains of powdered ganja and 2 ounces of country arrack dilated with an equal amonnt ot water, morning and evening.

Scab.-This is a contagious skin disease due to the ravages of a minute acarus-Acarus ovis or Dermatodectes ovis. The disease is known by the following symptoms: The animal shows uneasiness, wool comes away in locks and the parts denuded of wool exhibit pustules. The patient attempts to bite or strike with the feet the parts diseased, and rubs itself against a tree, stone or any other hard object. The affected sheep should be well washed with soap nut powder and water daily. Occasionally, abont half an hour before washing, they may be dressed with an infusion of tobacco-half a pound of tobacco to 4 gallons of water. This should not be repeated too often, as tobacco is liable to be absorbed and to kill the patient. Any of the antiparasitic lotions given under "Recipes" may also be used. Salt should be placed before the animals to lick at pleasure.

The Gad fy.-A species of the gad fly, Oestrus otis, infests sheep and deposits its ova abont the nose and the lips. The larvae, when hatched, creep into the nostrils aud make their way up into the frontal sinnses, where they remain for about a year feeding upon the mocus. The maggots do not cause any irritation anless they are in large numbers. No treatment is necessary, and it is not possible to find out the affected animals.

Lousiness.-The sheep loose is Hippolosca orina. It is geverally associated with scab. Treatment is the same as that for scab.

Ticks. - Sheep are sometimes infested with ticks. There are species peculiar to the sheep, but dog ticks may also attack them. Tioks preler the ears and the region of the neck and shonlders. When lambs are infested, they suffer much and their growth is arrested. Sponge the affected parts with tobacco infusion and then dress them with lamp oil.

Flies. - Many of the Muscidae, particularly the Blue bottle fly, Musca vomitoria, and the Flesh fly, Musca cossar, are very troublesome to sheep. They attack any part that may have a small abrasion or sore, and deposit eggs thereon. The larvae, familiarly known as maggots, are soon hatched and they infest
the sores andeat into them. Dress the sores with a saturated solation of camphor in oil, to which a little kerosine oil may be added.

Abortion.-This is not at all uncommon in ewes and is brought about by varions causes. No particular treatment is necessary. Placing the ewes for a few days in a sheltered place and nursing them will suffice.

Garget or Infinmmation of the $u d d e r$.-This is of frequent occarrence. Exposure to wet and oold, moisture and filth in the places where sheep lie down, wounds and injuries to the udder are amongst the causea. The ndder becomes hot, hard and tender. Foment frequently with warm water and empty the udder of milk.

Recipes.

The recipes given below are for cattle and buffalos and the doses puti down are for adult animals of those species, that is, those that have cut the first pair of teeth. For younger animals the doses should be proportionately reduced. For calves under 6 months give one quarter of the adult dose. Many disorders are common to cattle, sheep and goats and, in sach, the same recipes may be employed for sheep and goats, the dose not being greater than that specified above for calves.

Alteratives and tonics.-Useful in debility, anæmia, during convalescence from debilitating disorders and in poverty of condition. To be given once daily for a week or more.

Drench-
(1) Sulphate of iron 2 drams.

Drench -
(2) Sulphate of copper 1 dram. Nux vomica, powdered 1 soruple. Coriauder , $\frac{1}{2}$ ounce. Warm water or gruel 1 pint.
Powder or drench-
(3) Sulphate of iron 1 dram.

Nox vomica, powdered 1 scraple.
White arsenic 3 grains.
Fenngreek, powdered $\frac{1}{2}$ oance.
Aniseed ," $\frac{1}{2}$ ounce.

Mix and give in food or as drench in a pint of water. This last recipe is very good when an animal is out of gondition.

Anthelnintics, vermifuges.-These are given when an animal is suffering from worms. Begin with a strong pargative (see purgatives), then give once daily for a formight the recipe No. 3 under 'alteratives' or the following :-

Powder-
Sulpbatenofition in uram.

Sulphur	\ldots	$-\ldots$	\ldots	..	4 drams.
Sodiunn chloride	\ldots	\ldots	\ldots	...	4 drams.

Mix and give in food.
Anoesthetics.--General and local anæsthesia is diffioult to produce in ruminants and is seldom necessary.

Local, cliefly for the examination of, and operations on, the eyes.
(3) Cocaine 1 part. Distilled, rain, or soft clean water ... 20 parts.
Antipyretics, febrifuges.-These lower the temperature of the body in fevers.
(1) Give a saline purgative (see purgatives) and nitre in drinking water.
(2) Dreach-

Magnesinm sulphate 3 oz.
$\begin{array}{cccccc}\text { Nitrate of potash } & . . & \ldots & . . & . . & \frac{1}{2} \text { oz. } \\ \text { Water } & \ldots & . . & \ldots & \ldots & . . \\ 1 & \text { pint. }\end{array}$
Water $\cdots \quad \cdots \quad \ldots \quad \ldots \quad$... $\quad \cdots$ pint.
Give twice a day for 2 or 3 days.
Antiparasitics.-Useful in Mange, Jousiness, and agains ticks.
Lotion-
(1) Carbolic acid or phenfle 1 part. Water 50 to 80 parts.
(2) A strong decoction of margosa leaves or nux vomice leaves.
(3) Tobacco leaf $\frac{1}{2} \mathrm{oz}$. Water, hot 1 pint.
(4) Perchloride of mercury $. . . \quad . . \quad 1$ part. Water 500 parts.
NB.-The Jast two must be employed with great caution specjally when they are applied to the whole, or a large part of, the body, as these drugs are liable to be absorbed and to endanger the life of the patient.

Within three hours of the drossing, the animal should be washed water and the application should not be repeated before the lapse of week.

Liniment-
(5) Camphor 1 part.

Margosa oil 10 parts. Coconut oil 20 parts.

Ointment-
(6) Carbolic acid' 1 part.

Sulphur sublimed or powdered 2 parts. Lard 6 parts.

Antiseptics-
Internal, given in indigestion, tympanitis, etc.
Drench-
Carbolic acid 1 fluid dram.
Linseed oil 1 ounce.
Gruel 1 pint.
External, for wounds, ulcers, etc.
Eotions-
(i) Carbolic acid or phengle 1 part. Water 20 to 40 parte.
(2) Boric acid 1 part. Water (hot preferable) 20 parts.
(3) Permanganate of potash 4 grains. Water 1 ounce.
(4) Perohloride of mercury 2 grains. Witter 1 ounce.

Liniments-
(5) Carbolio acid 1 párt.

Coconut oil 10 to 12 parts
(6) Todoform 1 part.
Carbolic acid 1 part.

Turpentine 2 parts.
Camphor 1 part.
Tobacco snuff $\frac{1}{2}$ part. Coconat oil 20 parts.
N.B.-A very good detergent for foul wounds infested with maggots,

Powders-
(7) Iodoform 1 part.
Borio:acid 2 parts.
(8) Cbalk 15 parts. Carbolic acid 1 part.
Ointments-
(9) Carbolic acid 1 part.
Lard 8 parts.
. (10) Boric acid 1 part. Lard , ... 4 parts.
(11) Common tar $\underset{\text { Lard }}{\text { Rasin }}\}$ Of each equal parts.
N.B. - Melt and mix over a gentle fire. Useful in foot-rot in sheep and in foul in cattle.

Astringents-
Internal, for diarrhœa, dysentery, etc.
Drenches to be given twice daily-
(1) Gallnut, powdered 3 drams.

Chirata, powdered 4 drams. Fenugreek, powdered 4 drams. Gruel 1 pint.
(2) Catechu, powdered 2 drams. Camphor! ... 2 drams. Bael frnit, powdered... 4 drams. Grael 1 pint.
(3) Decoction of the leaves and the rind of the frnit of the pomegranate tree.

External, for wounds and ulcers, and for stopping capillary bleeding.

Lotions-
(1) Alum, or zinc sulphate or solphate of copper 1 ounce. Water 6 to 10 ounces.

Powders-
(2) Alam

Sulphate of iron... . Of each equal parts. Sulphate of zinc...
(3) Galls, powdered...
Catechu Of each equal parts.

Collyria or eye washes useful in conjunctivitis :-
(1) Alnm or sulphate of zinc or
sulphate of copper 5 to 10 grains, Water 1 ounce.
(2) Alnm 5 grains. Zinc sulphate 5 , Boric acid ..: 10 " Water 1 ounce,
(3) Silver nitrate 5 to 10 grains. Water 1 ounce.
Note. 5 to 10 minims of tincture of opiom may be added to each of the above as an ancdyne.

Gargles in simple and epizootic aphtha, for wounds in the mouth, etc.:-
(1) Boric acid 20 grains.

Water 1 ounce.
(2) Alum 15 grains.

Water 1 onnce.
(3) Permangarate of potash 4 grains Water l ounce.

Cardials and stimulants-useful in indigestion, fatolency and tympanitis :-

Drenckes-
(1) Ginger, powdered 4 drams,
Cumin 4 "
Asafœetida, 2 ," Water 1 pint.
(2) A mmoninm carbonate 2 drams. Nuxvomica, powdered $\frac{1}{2}$ dram. Water 1 pint.
(3) Solution of 5 mmonia .- in 1 ounce. Turpentice F.. 2 ounces. Anisced, powdered 4 drams. Water $1_{2}^{\frac{1}{2}}$ pints.

Very strong and efficecious in tympanitis,
Disinfectants. - Interral, given as curative and prerentative in specific blood diseases.
Recipes given under "Antiseptics internal" may be employed.

External, for disinfecting cattle shods, shoop pens and contaminated articles-1
(1) Freshly slaked lime 100 parts. Carbolio acid 15 ," Mix thoronghly and sprinkle:
(9) Carbolic acid 3 ounces.

Water 1 gallon.
(3) Perchloride of mercury 1 ounce.

Water 1 gallon.
(4) Permanganate of potash... ... $1 \frac{1}{1}$ ounces. Water 1 gallon.
(5) Chlorine gas and sulphur anhydride are very useful disinfectants.
(6) A good fire is the best disinfectant. All contami. nated straw, litter, otc., should always be burnt.

Diuretics.-These inorease the secretion of urine and are indicated in dropsical swellings, in fevers and in dysuria.

Drenches-
(1) Nitrate of potash 3 drams.

Resin, powdered 3 ,
Tarpentine 2 "
Water 1 pint.
(2) Magnesiom sulphate 3 ounces.

Nitrate of potash $\frac{1}{2}$ ounce.
Water 1 pint.
Demulcents and emollients.-These soften ánd soothe the parts to which they are applied.

Demulcents (internal).-Bland oils, linseed tea, gruel.
Emollients (external).-All non-irritating oils and fats, starch, chalk powdered, otc.

For burns and soalds, a very efficaoious application is carron oil, prepared as follows :-
$\left.\begin{array}{l}\text { Solution of lime } \\ \text { Coconut oil }\end{array}\right\}$ of each equal parts.
Ecbolics-parturients. -These make the womb contract and expel its contents.
lowder or tincture or extract of ergot. 1 onnce.
Assafcetids 2 drams.
Water 1 pint.
Expectorants.-These remove phlegm from the air passages and are given in cough, catarrh and lnag affections.

Drenches-
(1) Ammonium carbonate

Assafœetida $\}$ of each 2 dram. Camphor Water 1 pint.
(2) Opiam 1 dram. Camphor 2 drams. Turpentine 1 ounce. Water or gruel 1 pint.

Irritants.-These are employed externally for connterirritation in cases of sprains, sore-throat and infammatory affections of the internal organs; as stimulants, detergent and caustic to unhealthy sores and ulcers; for bringing about absorption of bony tumors, enlarged glands and thickened integaments, and for ringworm.

Liniments-

Digest over a bot bath.
(3) Mustard powdered 4 ounces.

Turpentine 5
Coconat oil 5 "
Ointments-
(4) Mylabris in powder... 1 part.

Lard 6 parts.
(5) Red iodide of mercury 1 part. Lard 8 parts,

For bites of venomons reptiles and rabid animals apply immediately to the part andiluted carbolic acid or some other strong canstic.

Purgatives-

Mild-
Drenohes -
(土) Magnesium sulphate ... 12 to 16 ounces. Ginger, powdered $\frac{1}{2}$ ounce. Water 2 pints.
(2) Sodium chloride $. . . \quad . . .1 \mathrm{lb}$.; Omam, powdered $\frac{1}{2}$ ounce. Water 2 pints.
(3) Castor oil or linseed oil 2 pints. Infusion of ginger (1 ounce). ... 10 fluid ounces.

Strong-
Drenches -
(1) Magnesiam sulphate
... 1 lb . Aloe powdered 1 ounoe. Ginger $\quad, \quad . . . \quad .{ }^{-} \frac{1}{2}$ ounce. Water :.. :.. ... 2 pinte. ;
(2) Magnesium sulphate ... 1 lb . Gamboge, powdered ... $\frac{1}{2}$ ounce. Aniseed $\frac{1}{2}$ ounce. Water 2 pints.
(3) Castor oil or linseed oil ... 2 pints. Croton oil 30 minims. Infusion of ginger 10 flaid ounces

Weights and Meabures and other Substituteg osed in Veterinary Practice,

[Solid medioines are weighed. Liquid medicines are generally measured but may also be weighed.]

,	Solids.
60 grains	.. $=1$ dram or drachm.
8 drams	.. $=1$ ounce.
16 nunces	... $=1$ pound.
1 soraple	$=20$ grains.
1 viss $=40$	alams $=3$ pounds, 2 ounces $=120$ tolas.
1 pound...	... $=38 \frac{2}{5}$ tolas.
1 palam...	$\ldots=3$ tolas $=1$ ounce, 2 drams.
1 tola ...	$=3 \frac{1}{3}$ drams.

Liquids.
60 minims $\quad . .=1$ fluid dram.
8 fluid drams...$=1$ fluid onnoo.
16 fluid ounces ... $=1$ flaid pound.
I pint ... $\quad . .=20$ fluid onnces.
1 gallon $=8$ pinta $=160$ flaid ounces $=10$ fluid pound.
1 Madras measare $=82 \frac{1}{2}$ fluid ounces.
A bottle contains 20 to 25 ounces.

Medicinal Substances and Instrumbets whice a Farmer - should always haye at hand.

Medicinal eqbstances.

Aloe.
Alam.
Arecaduts.
Assafoetida.
Bicarbonate of soda.
Boric aoid.
Cámphor.
Carbolio acid, phenyle, oyllin or cresol.
Castor oil.
Catecha.
Chirata.
Coconut oil.
Croton oil.
Gallnuts.
Ganja.
Ginger.
Iodoform.
Sulphate of copper (blue stone).

Sulphate of iron.
Linseed; linseed oil (raw).
Liquor ammoniw.
Mylabris.
Nux vomica.
Omum.
Perchloride of mercury.
Permanganate of potash.
Red iodide of mercory.
Saltpetre (nitre).
Slaked lime or chalk.
Sulphate of magnesia (Epsom salta).
Sulphate of zinc.
Sulphar.
Turpentine.
Tar.

Instruments and oppliances.
Dressing instraments:-Forceps, seton nesdles, suture needles, probe, a couple of scalpels, scissors.
Trocar and canala for tympanitis.
Enema funnel.
Firing irons.
Shoeing tools-drawing،knife, pincers, buffer and hammer.
Castrating clamps.
Teat bistoury.
Probang or a piece of smooth flexible rattan about 6 feet long.
Drenching horn or bamboo or bottle.
Clinical thermometer.
Syringe.
A big knife for post-mortem examination.
Lint $\mathrm{t}_{\text {tow, }}$ cotton and suture thread.

- Periods of ofstation of domestic animals and of INOUBATION OF PODLTRY.

Number of Femaleg to each Males.

Mares	60
Cows and	buffalos		*		50
Ewes		\ldots	...	50
Goats	-		20
Sows	-		10
Hens	\cdots	...	\cdots		\ldots	...	10
Ducks	\cdots		...	\ldots	10
Turkeys	\ldots	8
Geese	t

> Perjods of 'Heat' (Oegtrum).

Animal	Daration of 'heat.'	First 'heat' after birth of young.	Reourrence of heat.
Mare	5 to 7 days,	10 to 15 days ...	2 to 3 weeke.
Cow	1 to 2 "	i to 3 months and more.	2 to 4
Buffalo	1 to 3 s	2 to 3 montbs and more.	3 to 4 "
Ewe	1 to 2 ,	2 to 6 months ...	2 to 3
Goat	1 to 2 "	1 to 3 "	2 to 3 "
Sow	2 to 4 "	5 to 6 weeks ...	2 to 3

Pulse, Respibation and Temperature.

Animal.	Pulse.		Respiration per minute.	Temperatore F.
		W'here felt.		
Horse ...	35-45	Jaw	10-12	100-101
Cattle ...	50-60	Tail and jaw ; in calves, arm and thigh also.	16-24	$\begin{aligned} & 100: 5 \\ & 10 k \cdot 5 \end{aligned}$
Buffalo	45-50	Tail aud jaw ...	20-25	100-101
Sheep ...	60-80	Arm and thigh ...	30-40	102-104
Goat ...	60-70	Do.	25-30	101-103
Pig ...	70	Heart ...	15-25	102:5

The above figures are the average for adult animals while at rest. There are considerable individual variations and, consistently with health, variations in the same animal at different times and under different conditions. For instance, in sheep the number of respiratory acts may lun ap considerably on account of excitement or atmospherio temperature. In the young animal respiration is quicker and temperature slightly higher than in the adult. Exercise and digestion increase temperature and respiratory acts.

Disinfretion.

An infected building is best disinfected with sulphur burnt inside, the doors and windows being closed. Cattle sheds can be disinfected with a 5 per cent. solution of carbolic acid or a $\frac{1}{2}$ per cent. solution of corrosive sablimate or 1 per cent. solution of permanganate of potash, All the wood work should be sponged with the solution and all corners and crevices should be well damped with it. Gutters should be fushed with the disinfectant lotion. If the floor be of mud, some litter may be bornt on it and then it shonld be spinkled with quick or freshly sleked lime, to which some carbolic acid may be added. Finally, the walls should be lime-washed, a litule carbolic acid being added to the wash. See "Disinfectants" under "Recipes."

Life of Animals.
\}

						Years.	
Horse	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	35
Ass	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots.	30
Cattle	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	20
Buffalo	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	25
Sheep	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	10
Goat	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	15
Pig	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	20
Cat	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	12
Dog	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	12
Hare	\ldots	..	\ldots	\ldots	\ldots	\ldots	7
Rabbit	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	7
Hen	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	14
Goose	\ldots	\ldots	\ldots	\ldots	\ldots	..	80
Camel	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots.	60
Elephant	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots.	150

List of tee perncipal Animal and Vegetable
 Parabites.

Scientific name.	Commod name.	Attack.
Sub-kingdom, Verme		
Class, Platyhelmia (Hat worms).		
Order, Cestoda or Tæniada (tapeworms).		
Cysticercus Cellulosus.	'Measles' in pork.	Muscles of the pig. Becomes common or armed tape worm (Tcenia Solum) in man.
Cysticercus sp. ...	'Measles' or ' Bladder worm ' of the ox.	Muscles of the ox. Becomes unarmed tapeworm (Tenia saginata, in man.
Oænerus Cerebralis.	'Sturdy' . in sheep.	Brain of the sheep. Becomes tapeworm (Tœnia cennuчus) in dog.
Tcenia expansa	...	Tapeworm in the ox, sheep and goats.
$\begin{aligned} & \text { Order, } \\ & \text { (flukes). } \end{aligned} \quad \text { Trematoda }$...	,
Fasciola or Distoma hepatica.	Fluke '- 'rot'- ' liver rot.'	Liver, gall bladder and biliary ducts of sheep.
Class, Nemathelmia (round worms).
Order Nematoda
Trichina spiralis ...	Flesh worm ...	Muscles of man, pig, etc., causes trichiniasis.
Strongylus fi'aria ...	'Husk' - in lambs.	Trachea and bronchial tubes of lambs.
Strongylus micrurus.	- Husk \quad in calves.	Trachea and brouchial tubes of calves.

Libt uf the principal Animal and Fegetable Parasites-cont.

Scientific name.	Common name.	Attack.
Sarcoptes ovis ...	- Sarcoptic mange.'	Sheep.
Sarcoptes suis ...	'Mange' ..	Pig.
Sarcoptes canis ...	Do. ...	Dog.
- Dermatodectes equi ...	Do.	Horse.
Dermatodectes bovis ...	Do. ...	Ox.
Dermatodectes ovis ...	'Scab' , ...	Sheep.
- Ixodes ricinus	${ }^{\text {s Dog tiok }}$ ' ...	Dog, also man', ox and sheep.
Inodes reduvius ...	'Sheep tick.'	Sheep and grate.
Ixodes reticulatus ...	' Ox tick ' ...	Or and also sheep and goats.
Class, Insecta ...	\ldots	
Order, Parasita		
Hamatopinus crocephalus.	' Horse-louse.'	Horse.
Homatopinus eury. sternus.	- Sucking ox louse.'	Cattle.
Hematopinus eurysternus ani et vulvo.	'Sucking cow lonse.'	Cow (genital parts).
Hematopinus vituli...	'Sucking calf lonse.'	Calves.
Hamatopinus stenopis.	- Sucking goat louse.'	Goats.
Trichodectes scalaris.	Biting, ox lonse.'	Cattle.
Melophagus ovinus ...	'Ked '- 'Sheep louse.'	Sheep.
Order, Diptera Oestrus fqui	- Bot ${ }^{\text {a }}$ -	Horse (stoma
Oestrus bovis ...	'0x-bot'— 'Warble.'	Ox (ander the skin).

Ligt of the pbincipal Animal and Vegetable Parasires-cont.

Yield of milk.		Nellore (1).		Aden Banu (2).		Kerry	(3).	Cross Bhag (4)	-bred iam I).	Nellore Raja (5).
		M.MS.	LBS.	M.Ms.	LBS.	M.Ms.				
First month		m, 110	4443	M.14. 77	311	H14s. 128	515	M 18	73	465
Second "	...	114	459	85	340	159	636	97	391	511
Third ",	..	106	425	91	365	155	$\overline{5} 20$	107	429	518
Fourth ,	\cdots	111	445	91	368	138	552	117	470	404
Fifth ",	\cdots	112	450	94	378	134	536	117	471	161
Sizth \%,	\ldots	115	482	99	389	135	540	121	484	294
Seventh ",	.	116	464	97	390	136	546	120	481	316
Eighth "	...	102	411	97	391	126	506	88	358	283
Ninth ",	,	70	283	87	348	128	515	86	346	291
Tenth	\ldots	56	226	89	356	114	458	65	261	309
Eleventh \quad,	.	40	161	76	318	- 105	420	38	155	311
Twelfth	...	27	110	54	217	89	386	24	96	283
Thirteenth	,	\cdots	...	61	247	85	340	271
Fourteenth "	\cdots	55	222	88	354	.	.	269
Fifteenth		.	*..	\cdots	\cdots	78	315	3		256
Extra parts of month		...	\ldots	18	72	62	248	3	12	22
Total		1,086	4,344	1,181	4,727	1,874	7,498	1,007	4,030	4,964

Nore.-The first three records are of cows kept at Saidapet : the forth was a oross-bred Ongole.
Kerry-Aden cow at Coimbatore and the fifth a Nellore cow also at Coimbatore.

ANALTBEG.
Cows' Milk.
Per cent.
$1 \quad \overbrace{\text { From To Average. }}^{\sim}$

Water	-	87.5	845	86.0
Fat	...	\cdots	...	3.5	60	4.5
Proteid	$3 \cdot 1$	3*4	$3 \cdot 3$
Sugar	-	4.1	$5 \cdot 1$	$4 \cdot 8$
Ash	$\cdot 6$	${ }^{8}$	$\cdot 7$

> Buffalos' Milk.!

Water	\ldots	\ldots	\ldots	80.0	850	$82 \cdot 4$
Fat	\ldots	\ldots	\ldots	$5 \cdot 0$	10.0	$8 \cdot 1$
Proteid	\ldots	\ldots	\ldots	$4 \cdot 3$	4.5	4.3
Sugar	\ldots	\ldots	\ldots	$4 \cdot 2$	$5 \cdot 0$	$4 \cdot 5$
Ash	\ldots	\ldots	\ldots	.7	.8	$\cdot 7$

Oream.
Fat $\quad . . \quad 47.6 \quad 68.0 \quad 57.0$

Skim Milk.

Water 90°
Fat ... :.. $\mathbf{1 . 0}$
Proteid $4 \cdot 0$
Sugar 40
Ash
‥ 8

Butler Milk.

Water	\ldots	\ldots	\ldots	\ldots	\ldots	$90 \cdot 5$
Hat	\ldots	\ldots	\ldots	\ldots	\ldots	..
Proteld	\ldots	.	\ldots	\ldots	\ldots	$3 \cdot 3$
Sugar	\ldots	\ldots	\ldots	\ldots	\ldots	$5 \cdot 3$
Ast	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

Butter.

					er ce	
	*	,		From	To	Avera
Water	\cdots	...	-."	12.5	$17 \cdot 0$	14.5
Fat	81.0	85.0	84.5
Proteid	-**	$\cdot 2$	$\cdot 3$	'2

Whey.

Water	\ldots	\ldots	...	92.2
Fat	\ldots	\ldots	\ldots	\ldots	\ldots	.3
Other solids	..	\ldots	\ldots	..	$7 \cdot 5$	

Goats' Milk.

Water	\ldots	\ldots	\ldots	\ldots	\ldots	85.5
Fat	\ldots	\ldots	\ldots	\ldots	\ldots	4.0
Other solids	\ldots	\ldots	\ldots	\ldots	10.5	

Colostrum (Cows').

Water	\ldots		$75 \cdot 0$
Fat		...	\ldots	$6 \cdot 0$
Other		...	\cdots	\ldots		19.0

Useful Data.
One gallon of milk weighs 10 lb .
One bottle of milk weighs ronghly 1 ld .4 oz .
One Madras Measure of milk weighs 4 lb .
One seer of milk weighs 2 lb ,
An ollock of milk is $12 \frac{1}{3}$ cabic inches, and contains abont 8 ounces of milk. Cows are occasionally sold when in milk on the valuation of Re. 10 for every bottle of milk given per day: i.e., a forr-bottle cow will be sold at Rs. 40.

The specific gravity of milk is from $1,028-1,032$ (water 1,000); that of shimmed milk 1,034-1,037, of oream 985. In testing milk for quality by a specifio gravity method, one should be
sure that the milk is not adulterated, because the removal fof fat which will increase the speoific gravity, may be counterbalanced by the addition of water which will reduce it.

Buffalos' milk is much richer than cows' milk and may contain as mach as 10 per cent. of bnttbr fat. In estimating the amount of butter to be got from any milk, it will be found approximately equal to the percentage of fat as found by analysis, the loss of fat which occurs in making the butter, being made up by the water contained in the butter. The following table is calcalated on this assamption:-

Percentage of butter fal.	Pounds of milk to make one pound butter.	Fonnds of milk pound make pound gheo,
10.00	10	15.0
9.09	11	$16 \cdot 5$
$8 \cdot 33$	12	18.0
$7 \cdot 69$	13	19.5
$7 \cdot 14$	14	21.0
$6 \cdot 66$	15	$22 \cdot 5$
6.25	16	240
$5 \cdot 88$	17	25.5
5.55	18	$27 \cdot 0$
$5 \cdot 26$	19	28.5
5.00	20	30.0
4;76	21	31.5
$4 \cdot 54$	23	33.0
$4 \cdot 35$	23	34.5
4.17	24	36.0
4.00	25	$37 \cdot 5$

The ghee is taken as 70 per cent. of the butter: this is only approximate ; from 70-80 per cent. may be obtained.

The percentage of cream obtained from milk will vary according to the quality of the milk and the setting of the Separator. Thas 6-8 lb. of buffalos' milk will give 1 lb . of cream (14 per cent.), or $10-12 \mathrm{lb}$. of cows' milk (9 per ceut.),

One Madras measare of buffalos' milk should give $10-12 \mathrm{oz}$. cream and 4-5 oz, of butter.

One viss of ghee ($3 \frac{1}{\mathrm{~g}} \mathrm{lb}$.) is obtained from $60-70 \mathrm{lb}$. of buffalos' milk.

100 lb . of cream will yield 30 lb . butter and 70 lb . batter milk. 100 lb . of skim milk will yield 75 lb . ourd and 25 lb . whey.

For calculating the yield of milk from a herd, the following figures from the herd at Coimbatore may be of use :-

In November 1913, 22 cows in milk gave 124 lb . of milk, i.e., about $5 \cdot 6 \mathrm{lb}$. of milk per cow in milk. In addition to these there were 19 cows dry, so that the average gield for the 41 cows is only 3 lb . In March 1914, 22 cows in milk gave 163 lb . daily or an average of 7.4 lb . Adding 18 dry cows, the average for the whole herd of 40 cows was $4 \cdot 1 \mathrm{lb}$. The proportion of dry to milking cows is from 89 to 46 per cent.

COMMON INSECT PESTS.

Padoy.
(i). The Stem-borer Moth (Schonobius bipunctifex) is a serions pest in all rice-growing areas, destroying probsbly an eighth of the total crop in normal years and one quarter or more in bad years. The caterpillar feeds in the stem, and remedial measures consist chiefly in ploughing the stubble and burning or burying it as soon as the crop has been harvested.
(ii) Rice Hispa (Hispa aenescens), a small blackish spiny beetle, which danages young plants, occurriog on the West Coast especially. No remedy can be advised until its life history and manner of occurrence have been studied.
(iii) Bice Bag (Leptocorisa), a narrow greenish insect which sucks the ripening grain, oausing very marked diminution of Field when it is abondant, especially on the West Coast and in South Canara. Remedy--" bagging," i,e., catching the bugs in nets dragged over the crop, or in small hand nets.
(iv) Caterpillars (Spodoptera mauritia and Cirphis) occur in occasional outbreaks with heary damage. Isolation of attacked areas by trenching around them, bagging and ploughing are remedies indicated.
(v) Rice Case Worm (Nymphula depunctalis) is a caterpillar which lives in the water itself in a small case made of bits of grass, etc. It occurs chiefly in Malabar where it does serions damage. It is ohecked to some extent by small fish. Draining the water off the fields, when possible, is a simple remedy.
(vi) Rice Grasshopper (Hieroglyphus), a greenish grasshopper which occurs chiefly in Malabar and Soath Canara. Can be checked by bagging the young hoppers.

Sorghem.

(i) Moth-borers (Chilo simplex and Nonagria), whose caterpillars bore into the stem of the plant, occur in all areas and form the chief pest of Sorghom. They attack young and old plants, in the latier often leading to serious and widespread reduction of crop. Remedies indicated are (a) removal and immediate destruotion of all plants seen to be withering; (b) disposal of stabble and dry stalks during the winter season.
(ii) Cholam Bag (Calccoris angustatus) occurs chiefly in the Gōdāari and Kistna districts. The ripening grain is sucked ont and is either not formed or is light.

Remedy-? \quad
(iii) Mites, causing rust on the leaves.
(iv) Deccan Grasshopper (Colemania sphenaricid ${ }^{\prime} \theta$), a greenish wingless grasshopper which has only recently begon
to attack cultivated crops. It attacke the crop in all stages, devouring the leaves and even the grain.

Remedies.-(a) Bagging the young hoppers from July to November; (b) ploughing, where practicable, to destroy the egge, which are in the ground from Janaary to Juse.

Pennisetun Tfphoideum.

(i) Hairy Caterpillars (Creatonotus spp.) attack the crop regularly in Sonth Aroot. Attracting the moths to lights at night has been tried but further investigation is required. The - white moths should be colleoted and destroyed.
(ii) Green Bug (Nezara viridula) is a pest in Tinnevelly, 'Guntur, etc., attacking the ripening crop. Can probably be collected by hand and destroyed.
(iii) Grasshoppers of soveral kinds attack this crop also ; bagging is asually effective for these.

Eledsine coracana.

Grasshoppers of several kinds. Remedy, bagging.
Mileets.
(i) Surface Grasshoppers eat young plants and grain heads ; they may be canght by bagging in nets.
(ii) Stem Fly attacks young plants. Destruction of plants seen to be attacked is probably the only remedy.

Maize.

The principal pest is Stem-horer (Chilo), the caterpillar of which bores in the stem. Destraction of witheriag plants and disposal of stubble are remedies indicated.

Wheat.

A very small green-fly (Aphis) does considerable damage at times.

Sugarcane.

(i) Stem-borers of various kinds are important pests, especially in the young crop. All dead hearts should be rigidly cut out and burnt.
(ii) Mealy-wing Bugs (Aleurodss) are important chiefly in ratoon crops; they suck the leaves, leading to weak plants and vers inferior juice, making bad sagar.
(iii) White-ants (Termes spp.) often do great damage to young sets. Soaking these in a solution of copper sulphate before planting and the use of insecticides in irrigation water will qsually check the attack ontil the young canel are establisbed.

Polses.
There are various minor pests, but very little is known as yet regarding the insects which attack this class of crop.

Gingelly.
Is attacked by a caterpillar (Antigastra); hand-pioking is probably the best remedy.

Castor.

Attacked by semi-looper caterpillars (Ophiusa) and by Hairy Caterpillars. Handpicking is probably the best remedy. In bad cases, outting down the plants may be necessary.

Groundnet.
(i) Sural (Anacampsis nerteria) is the most important pest, May perhaps be cheoked by light-trapa, bat further investigation is required.
(ii) Verpachi (Sphenoptera) is a pest of general occurrence, causing considerable loss by boring in the stem. All plants attacked should be removed from the field and destroyed.
(iii) 士airy Caterpillars occur especially in South Arcot.

Cotron.

(i) Bollworm (Earias) attacks firstly the topshoots of the young plants and afterwards bores into the bolls. All topshoots seen to wither should be removed and destroyed and the same practice applied later on to all bolls found to be attacked. The removal of the plants from the fields immediately after harvest will of itself form a remedy also.
(ii) Red Cotton Bug (Dystercus) suoks the bolls, destroying the seed and staining the lint. May easily be collected by hand and destroyed.
(iii) Dusly Cotton Bug (Oxycaranus) is a very smali bug which breeds chiefly in old bolls, which have been attacked by the Bollworm. All these old useless bolls should be removed and destroyed.

Brinjal, Gourds and Melons, Sweet Potato,
These are all attacked by various minor insect pests. The usual remedy is the complete destruction of the plants or fraits affected.

Tobacco.

(i) Tobacco Caterpillar (Prodenia) does damage especially in the nurseries ; may be picked off by hand; in bad cases it may be necessary to irrigate or trench.
(ii) Stem Caterpillar (Pthorimæa) bores in the stem, causing charaoteristic swellings. Young plants attacked should be destroyed and replaced.

Agathl.

(i) Is bored by A_{z} goophleps; borer should be cat out.
(ii) Weevil (Alcides) may be collected by hand.
(iii) Tobacco Caterpillar (Prodenia) may be hand-picked; in bad cases ground may be irrigated or trenched.

Mango.

(i) The Mango Beetle (Batocera) bores the branches as a large white grub. It should be out out and the wound tarred over.
(ii) The Mango Hopper (Idiocerus) is often a serions pest and can only be controlled by spraying early in the season.
(iii) Fruit fly (Dacus) attacks the fruit itself. All attacked and fallen fruit should be destroyed.
(iv) Mango Weevil lives inside the stone of the frait.

Pomegranate.

The caterpillar of a small Blue Butterfly (Firachola) bores into the fraits. Attacked fruits should be destroyed.

Grapes.

(i) Cockchafers often do damege. They ure probably best dealt with by spraying a sweetened arsenical poison on to the leaves.
(ii) Scales (Aspidiotus) can only be treated by spraying with a contact poison such as rosin wash.
Palis.

Buth Coconut and Toddy palms are attacked by the Rhinoceros Meotle (Oryctes) and the Red Weevil (Rhynchaphorus). The former bores into the crown and the latter then lays its eggs in the hole made by the former. The grabs of the weevil bore into the tree and ultimately kill it after which the grobs of the Rhinoceros Beetle live in the decaying stem. Old dead stumps should be cat down and burnt and accumalations of leaves, etc., under the trees should be avoided, as the large white grabs of the Rhinoceros Beetle will breed in any heaps of decaying vegetable rabbish.

Bordeaux Mixtore.

Bordeanx mixtaré is a preparation of copper sulphate and quicklime in water. It may be nsed strong or weak. The strength generally regarded as a standard is :-

Copper sulphate	\ldots	\ldots	5 lb.	
Quicklime	..	\ldots	\ldots	5 lb.
Water 50 gallons.	

A mixture of this strength is known as the 5-5-50 formula,
The quantity to be made at one time is a matter of convenience depending on the number of plants to be sprayed and on the a vailable vessels.

Fifty ghllons is often a conveniënt quantily to make at a time; for this, one 50 -gallon barrel and two 25 -galion tabsare required. The method of preparation is always the same whatever the quantity of misture required-
(1) Wrap 5 lb . of copper sulphate in a piece of gunny bag, powder it on a stone, tie up the piece, of gunny and suspend it by a string to a stick laid across the mouth of a tub containing 25 gallons of water. In a short time the oopper salphate will have dissolved.
(2) Put 5 lb . of good quicklime in a tub and sprinkle about a quarter of a gallon of water'on it. When the lime begins to crack and orumble add more water a little at a time, takiug care that the lime does not become ton dry. Keep on adding water, a little at a time, till a thick creamy paste frect from lumps is formed. Add the requisite quantity of water to make up to 25 gallons. Stir well.
(3) While stirring vigorously, slowly pour the solution of copper solphate and the milk of lime together into the large barrel. Keep stirring for two or three minutes.

Properly prepared mixtare is of a light sky blue colour.
When using Bordeanx mixture during the monsoon, an adhesive substance must be added to prevent the mixture being washed off by the rain. An efficient adhesive may ho propared 'from resin and washing soda. For the above quantity of 50 gallons Borieaux mixture put 2 lb . washing soda in au earthenware pot containing 2 gallons of water and bring to the boil. Add 4 lb . of powdered resin, a little at a time. For the first half hour the liquid is liable to boil over, so the fire should be a slow one, as the liquid beoomes clear the fire may be made to burn more brightly. The liquid should be boiled altogether an hour. It becomes olear like coffee decoction, While stirring vigorously slowly add the resin-soda liquid to the Bordeaux mixture.

Test.-Rab the blade of a knife in sand or earth till it is polished then dip in the mixture for a minute. If the blade is unchanged the misture is safe. But if the blade becomes red, then more lime must be added till the clean blade is not stained when dipped afrosh in the mixture.

HORTIOULTURE.

Number of trees.							Per acre.
2	feet	h	\cdots	\cdots	\cdots	**	10,890
3	"	"	...	\cdots	4,840
4	"	" \cdot	. ${ }^{\text {c }}$	2,722
5	"	"	...	\ldots	1,742
6	"	" \cdot	...	*-	1,210.
8	"	"	\ldots	\ldots	680°
10	"	"	435
12	"	"	-	302
15	"	"	- 0	200
18	,"	"	\ldots	135
20	"	;	110
25	;	"	\cdots	.	70
30	,	"	-	50
35	"	"	-••	..	35
40	"	"	\cdots	. $*$	27

Hedge Plants.
Hedges are used for guarding against trespans, providing lateral shade and for ornament. Almost any plant can be used for one or other of these parposes, bat attention here is chiefly directed to such hedges as are agriculturally useful. For gardens there are a very great number of hedge plants in India and all stages can be obtained between creepers on trellises on the one hand and rows of tall shrabs and borders for ornamental beds.

1. Pithecolobium dulce-
 Korakapili-Tamil.

Simachintha-Telaga.
This is a legaminons plant well suited for bedges as it stands any amount of cutting back. Seeds must be sown in 2 or 3 rows. When the plants are' about 2 feet high, they must be topped to make then branch and daring each year they must be cut back at least twice. Gaps in old hedges may be easily filled up by half cutting through tall branches and laying them down across the gaps.
2. Opurtia Dillenii.-The prickly-pear.

Sappaththi Mnlln-Tamil.
Nagadali --Telagu.
An excellent hedge, impenetrable and easily made, with one disadvantage that it takes ap rather a lot of room. It leaver the land on which it grows enriched, however, and crops can
be grown right up close to it. It is propagated by simply laying cut pieces on the groand.
3. Balsamodendron Berryi-

Mullukiluvai--Tamil.
It is possible to get a good hedge by planting cut branches just before the commencement of rains (June or July). To keep the hedge in good condition it must be cut back occasionally.
4. Euphorlia Tirucalli.-WThe milk hedge.

Tirugukalli--Tamil.
A small tree with ronnd stem and smooth cylindrical branches. Useful as a hedge plant becánse cattle will not approach it as the milky juice or latex is acrid and irritating. It caases acute pain if it gets into tho eyes. Easily propagated by, outtings.
5. Euphorbia Antiquorum--Chadurakkalli-Tamil.
This is also often used as a hedge plant and is raised from cuttings.
6. Casuarina equisetifolir--

Savakkumaram-Tamil.
Chavakkn Manu--Teluga.
These plants forn a very bandsome hedge as may be seen on the Marina, Madras Beach, if constantly pruned and trimmed. Casuarina most be raised from seeds.
7. Arundo donax--very often forms a thick impenetrable hedge, generally seen round betel gardens. It is plantfd from stumps.

$$
\%
$$

8. Saccharum arumdinaceum-

Pekkarumbu--Tamil.
Verricheruku -Telúga.
This is also a common hedge plant round betel gardens. Propagated from stamps.
9. Sesbansa grandifora--

Agaththi--Tamil.
Avisi-Telngu.
10. Sesbania aegyptiaca-

Siththagaththi or karnnsembai-Tumil.
These plants ure sometimes used in betel gardens to form a hedge. Both are raised from seeds.
11. Pcinciana elata.-Hy planting stamps a good hedge may be formed. Bat the shoots misst be constantly trimmed or it will become thin below.
12. Lawsonia alba.-Henta.

Maruthani-Tamil.
Gorantaku-Teluga.

By sowing seeds or by planting cattings a hedge may be formed. As with others this must be constantly cat back.
13. Acacia farnesiana-

Pee Velan-Tamil.
Kampataman-Telugu. and
13. Acacia arabica-Babul.

Karuvelan-Tamil.
Nallatumma-Telugu.
Both these Aoacias are capable of being ased for hedges. They mist be raisert by suwing seeds and cat baok at.intervals.
14. Agave americana and other agaves.

Kaththalai-Tamil.
Agave plants may be propagated from suckers. These planta form a fine hedge after sometime. Little or no attention is required after planting.
15. Borassus fabelliformis.-The palmyra palm.

Panai-Tamil.
Thadi - Telugu.
; The palmyra palm can be propagated only by seeds. By. sowing the seeds in rows these may be made to grow so as to forin a hedge. As they grow very slowly they form a good bedge for a considerable period of time.

Coconut Gardens. East Coast.

Thoroughly ripe nuts from trees that have passed the middle age are oarefally collected and dried in the shade for about a fortnight. These nuts are then arranged one touching the other in a seed-bed with the butt-ends above, covered with sand and irrigated every day. The nuts begin to germitnate after abnut two months, all finish sprouting after 5 or 6 months. When the seedlings are about 3 feet high or 6 to 8 months old, they are lifted and permanently transplanted in all the southern districts. In the northern districts these are transplanted 7 feet apart in a second seed-bed, and 3 or 4 years after, these are again lifted and transplanted permanently in a field at the rate of 50 or 60 per acre. In the south as many as 350 per acre are planted. 'The trees begin to bear 8 to 10 years from the date of planting the nuts, but the full bearing is to be expected after 12 years. On an average about 50 or 60 nuts can be expected from each tree, and the trees bear for about 100 years provided proper care is taken. In the south tapping coconnt trees is very common, but in the north it is entirely
absent. Root pruning and careful manuring are the secrets of suocessful coconat cultivation. In the sonthern districts coconut topes are irrigated, but in the north a fine surfaice malch of fine soil is provided by ploughing immediately after the rains.

West Coast.

Ripe nuts are carefully gathered from the middle-aged trpes in February-March, germinated and planted out after six months to three years, in February-March or Juno-July, according as the land is low or high lying. Ten trees per aore is 'a fair number, bat even double the nomber is not nncommon in certain parts.

Sandy loams are the best. Aloug sea-coast and river banks they flourish very well. T'ke yield per tree varies from 10 ld 100 nuts. The trees may live long, 75 years or more ; generally begin to bear fruit in about 12 years increasing in yield up to 60. It has been observed along salt water river banks that the trees begin to bear in about 5 years, but dis an earlier death.

They require plenty of sun and water, and respond to heavy manuring. They are opened out in June-July and manared with green leaves and ashes. This operation facilitates snaking in of water and formation and development of young roots.

There is nothing else in the West Coast to be compared to this tree in point of yield and nsefulness, every bit of it being of great economical value. It is therefore rightly called "Kalpaka Vriksha", i.e., the tree that gives all the requirements of man.

Areca Nuts.

Ripe nots are gathered from old trees and seedlings are raised from them. When about six months old, they are transplanted, generally in June-July. Loamy soils at the bottom of a valloy, cool and moist, are the best fitted. They grow straight and tall, begin to bear in about 10 years and may live over 80 years, the jield becoming less and less after middle age. They give three to six bunches, varying from 50 to 200 nats each, even more in favourable localities if properly watered and heavily manured. A rupee per tree is not an exaggerated figure. The nuts are prepared and largely exported from the West Coast. They are ased for chewing with chunam and betel leaves, with or without tobacco. They are valuable as a medicine. The stem is much used for house construction.

Mango Gardens.

The number of plants to the acre varies with the soil. On rich soils where the trees spread well, 20 to 25 are planted while on gravelly soils where the growth is rather stanted ap to 50 trees to the acre. The best distance is 40 feet apart in rows 30 feet apart the plants arranged quincuncially whereby 36 go to the acre. Grafts are not allowed to bear for the first three or four years to promote growth. Afterwards an average yield of about Rs. 2 to 3 may be expected from each tree. The value of the fruit varies considerably with the variety. There are varieties that fetch up to Rs. 4 a dozen. The gardens can be considerably improved by intercaltaring and growing a palse crop like horse gram. Graft mango gardens bear well for about 50 years when they must be renewed.

Jack Gardens.

The Jack is an Indian tree, which requires plenty of rainfall, and moist and dewy climate : it is rare in parts of the East Coast where the conditions are adverse, but is quite a common tree in the West Coast bearing very heavily in the dewy, cold and monntainous interior villages.

It is always planted mixed with coconat, arecanut, mango and pepper, serving as a standard for the Jast-mentioned creeper. Its top shade is rery beavy and highly objectionable to the neighbouriag trees. When alone 20 trees will be ample per acre. Seedlings are raised from well chosen nute from young trees and they (4 to 6 months old) are planted out in well prepared and protected pits at the close of the South-west Mousoon rains. They should be watered when necessary.

Red loams with an admixture of gravels are preferred. The trees grow slowly, begin to bear in about 12 years, live loyg, even over 100 years: flower in December-Jannary; harrest is completed in June-Jaly. They are seldom manured, but the garden receives one or two diggings a year. The yield per tree varies considerably from 5 to 200 fruits (worth 5 annas to 5 rupees) with age, soil and locality. [t is a poor man's food in the West Coast. There are two main varieties, hard and soft known as Varikai and Pazhoni. The wool is one of the best in the world in point of hardness and polish, with golden yellow colour. It is excellent for all kinds of wood work particular'y for furniture.

Plantain Gardens.

[This note refers to the practice which prevails in the Caarery valley.]
The land is leased for three years: pits are dug aboat $7 \frac{1}{2}$ feet apart, and in the month of October, 750 suckers to the acre are planted. Drains are dug between every alternate row in both directions dividing the land up to into a number of beds. After one month, the field is dug over thoroughly some six times, i.e., every alternate month. Fencing has to be attended to, and manure--generally a mixture of cattle manure and tannery refuse-is applied four months after planting. The trenches are deepened, and irrigation attended to and the removal of side suckers from May onward, and the earthing up of the trees is carried out.

Bunches appear in October and November, twelve to thirteen months after planting, and are collected until February. Meanwhile, only one, new sacker has been allowed and the land is dug over, bat only twice during the second year, in February and Jane: manure is given after the first digging. The second crop is obtained from October to February. Towards the end, suckers are not removed, the object now aimed at being to get plenty of leaves which are eventually cat and sold in June, when the whole crop is renoved. A crop of paddy is taken before the land is handed back to the lessor.
-
Castarina Topes.
Csually poor sandy soils of upland tracts are pat under casuarina coltivation. Hipe fruits from old trees are gathered in the hot weati.er, pat in earthen pots and kept in the sun. The fruits burst and the seeds are then carefully dried and stored. Twelve ounces of seed sown on 100 square feet will sapply seedlings sufficient to transplant one acre. The seed is sprinkled evenly or the surface of the nursery and covered thinly with ashes and cattle manare. The plot is then covered with atraw, leaves, etc., and regularly watered. The seeds sprout in 8 to 10 days. Care should be taken to keep weeds and ants from the nursery. After three months, the seedlings should be transplanted in another narsery and they are finally removed for planting in the field in 6 or 8 months, i.e. when they are less than 3 feet bigh. 3,000 to 4,000 small pits are dug with mummuttie in an acre 3^{\prime} to $4 \frac{1}{2}$ ' a part, kept exposed for a time, and then hand-watered just before planting. The pits are not manured. The plants should be watered almost daily till they take root, and then they can be watered once a
week during the first year, or in exceptional cases, for two hot weather seasons. The plantation should be thinned and all crooked plants removed, leaving 1,500 plants to the acre. The trees will be ready for cutting in 10 years, and will fetch about Rs. 750 to 1,000 per acre at 8 annas per tree. In the intervening years the proceeds from the loppings of the side branches, etc., will defray all expenses such as hand-watering, etc. After the plantation is cat about 50 per cent. of the roots will put forth fresh shoots, and when the dead roots are dug ont, a ground-nut crop may be raised in the interspace. The ratoon plantation will also be ready for cutting in 10 years.

Batavian Orange Gardens.

Seeds are collected from ripe fruit of fairly aged trees, mixed with ashes and dried in the shade for abant a week. These are then planted in a seed-bed abovt an inch apart. When the seedings are about 6 inches bigh, they are lifted and transplanted in a second nursery about 6 inches apart. Here they are kopt for 3 years or even more. Seedlings about 3 years old are available at Rs. 50 per 100. These are transplanted 15 tol6 feet apari or 150 or 200 plants to the acre depending on the nature of the soil. Plantains are also planted to give shade to the young transplants. The trees begin to bear seven years after permanent transplanting. A mixture of ped earth and sheep manure is considered to be a very good manure. On the borders of the gardens limes, pumeloes, citrons are always planted. Along the water channels very good pine apples are also grown. On average each tree gives about 200 fruits worth about Rs. 5, in tho garden itself. The garden gives full produce for about 20 years.

Babdl Topes.

Land intended for babul topes may be either sown or trees may be allowed to spring ap naturally from seed passed by sheep or goats which have browsed over the land. The seed possesses a hard coat which anless scratched or pounded in some way may interfere with germination. No further treat. ment of the land is necessary, and the plantation may be left to itself. The rate of growth depends upon the soil and the tope may be mature in anything from 10 to 20 years, i.e., be of a size sufficient to afford marketable timber. The grazing under babul is generally good, and the pods themselves are a valuable and nutritions food.
(This note embodics the practice at Ayyampet, Tanjore District.)
The seeds are sown in the nurnery in July-August. O Madras measure of seed, which costs from Re.. 1 to Rs. 5, is sown in one cent divided into 25 beds. Seeds keep their vitality only for one year. Seeds germinate in six or seven days. Until then the nursery is sibaded. Pedeare watered once a day for a week and are kept free from weeds. About four months after sowing, i.e., in December-January, the seedlings are remored and planted in bunches of four plants at 8 inches apart. Agathi grandifora or Sesbania aculeata is sown here and there for shade. In this condition the seedlings remain for about two years. Afterwards they are removed and planted in padugai lands (in pits) in bunches containing from four to ten tillers at 8 feet apart. While planting the plants ure topped from 4 feet to $2 \frac{1}{2}$ feet high. Seedlings in 100 knlis or 33 sents are sold for Rs. 200. These are sufficient for planting $4 \frac{1}{3}$ acres. There is a class of Muhamadans (Rowthers) who grow seedlings for sale and have made this their business. No manure is applied to bamboos and no other particular operation is given except proning from the third or fourth year. The cost of pruning will be realised by the sale of loppings, besides getting the area fenced round. The bamboos will be fit for cutting from about the fifth year after the final planting or about seven and a half years from the date of sowing the seed. In some places they are cut when they are ubout ten years old. The cutting is done in alternate years and the value of the yield amounts to Rs. 400 or 500 evéry other year or from Ra, 200 to 250 per acre annually. The bamboos are sorted into four classes according to different sizee:-

It is said that bamboos flower once in sixty years, when they all die. Some say that they flower in thirty years.

Pruning.

The proper pruning of trees is often auch neglected and the loss in timber, foliage and fruit thereby cansed is very considerable. The matter receives very careful attention among horticulturists in temperate climates, bnt it is
rendered diffioult in India because of the rapia growth, and the absence of any true resting period, when pruning usually takes place. Stated briefly, the object of pruning a tree is to give it a good natural shape, whereby all its branches, leaves and flowers have free space to grow, and tincidentally, to inorease the number of these. An ideal form must be aimed at in each tree but, as the natural habit of trees varies very much, this will differ with the species. Compare for instance the cork 'tree (Millingtonia suberosa) of erect, narrow habit and the low flat-crowned gold mohar with the well ronnded tamarind. All three of these must be troated in entirely different ways to obtain the maximum of leaf surafce. Seeing that trees are so constantly cat for fael, fodder and leafmanure in Soath lndia, a recognition of the general principles of pruning is very important.

Pruning for fruit is little understood in India. Two of the commonest methods adopted for increasing fruitfulness are root-pruning and shoot-pruning, and one example has been chosen among Indian fruit trees to show that the right method can only be arrived at after a careful study of the natoral habit of the plant. The guava is a small tree or large shrub of very variable shape, bat the flowers and fruits are corne in very well defined places. A little study will show that, when a new shoot appeare, the second, third and fourth pairs of leaves usually bear flowers in their axils, and that these are produced nowhere else. If then a tree has become unfraitful nqmerons new shoots must be produced. Some grafted Chinese guavas in the Botanic garden at Coimbatore had not borne frait after three years' srowth and two of them were taken for experiment. In the first a deep trench was dug around and all the roots were cut across and a severe praning of all its branches was given to the second. The result was very instructive. The root-pruned plant dropped many of its leaves bat produced no now shoots and therefore no flowers. The shoot-pruned plant was covered with bursting buds within a week of the operation. Many of these bore flowers in the usual place and, after six months, there were nearly a hundred fruits upon it.

SOME COMMON TlMBER TREES. 1. Grewia tiliaefolia, Pahe.

Vernacular.-Sadachi, Thedasu, Unu, Tam."; Thadasu; Mal.; Thadasal, Kan.; Thana, Thadda, Tel. ; Dhomono, Uriya;

Habitat.-Throughout the Presidency, ascending to 4,000 feet.

Desrciption.-A moderate sized deciduous tree. Wood brown, hard, tough, and elastic. Takes agood polish. Weight about 40 lb . ${ }^{*}$

Chief uses.-Boats, masts, oars, ploughs, shoulderpoles, toolhandles, house-posts, door and window. frames, furniture, carts (all parts), excellent for cooper's work. Has some of the properties of American hickory.

Bye-products.-Fibre extracted from the bark.
2. Azadirachta indica, Juss. (Melia indica, Brandis.)

The Margosa or Nim.
Vernacular.-Veppam, Vembu, Tam.; Veppu, Mal.; BettaBevan, Kan.; Yepa, Vepa, Tel.; Limbo, Uriya.

Habitat.--Natural in the dry forests of the Carnatic and Deccan but widely planted eapecially as an avenue tree.

Description-A moderate to large sized deciduous tree, Heart-wood red, hard, close-graiged, scented, resembling mahogany, durable. Weight about 50 lb .

Chief uses.-Hopse-bnilding (all parts excent planking), furniture, carts, axles, yokes, naves and felloes, ship and boat building, oars, ploughs, oil-mills.

Bye-products.-Bark yields a febrifuge, seeds expressed for oil, all parta medicinal.

[^2] The abbreviations of Vernacular names used are as follows:-
\[

$$
\begin{array}{llll}
\text { Tam, } & \ldots & \ldots & \ldots=\text { Tamil. } \\
\text { Mal. } & \ldots & \cdots & \cdots \\
\text { Kan. } & \cdots . & \cdots & \cdots \\
\text { = Malayalam. } \\
\text { Tel. } & \cdots & \cdots & \cdots \\
=\text { Kanarese. } \\
\text { Telugu, }
\end{array}
$$
\]

3. Cedrela toona, Roxb.

The Red-cedar.
Vernuculàr.-Santbana-Vembu, Agli, Tam.; Vembu, VellaAgil, Mal. ; Noga, Kan. ; Mahalimt o, Uriya.

Habatat.-Western Ghats and low sills of Sonthern India.
Description.-A large deciduous tree, wood brick-red and soft but even-grained, fragrant and easily worked, seasons readily, does not split or warp when seasoned. Durable and not attacked by white ants. Weight 30 to 35 lb .

Chief uses.-House building (chiefly plarking and panels) excellent for furnitare and boxes, well-construction, dug-outs, and canoes, onrs, yoken, carving.

4. Chloroxylon sfietenia, D.O.

The Satin wood.
Vernacular.- Karum-porasu, Tam.; Huragalu, Kan.; Billudu, Tel.; Bhera, Uriya.

Habitat.-Dry forests, and low hills of Sonthern India, not in areas of heavg rainfall.

Description.-A moderate sized deciduons tree. Wood light-yellow, hard, close-grained, with a satiny lustre, Very durable. Weight 60 lb .

Chief uses.-Much exported to Europe for furniture and cabinet work. Bridge work, wharf-piles, ploughs, ayricaltural implements, oil-mills, pestles, carving and turning, carts (all parts), boats, tool handles, gonstocks, high olass panelling.

5. Mangifera indica, Linn

The Mango.

Vernacular.-Ma-marana, Tam.; Mava, Mal.; Mava, Kani;
midi, Tel.;Ambo, Uriya. Mamidi, Tel.; Ambo, Uriya.

Habitat.-Indigenous along the Western Ghats, bot extensively cultivated everywhere.

Description.-A large evergreen tree. Wood grey, in old trees sometimes dark-brown, soft. Weight 42 lb .

Chief uses.-Planking, door and window frames, packing, cases, tea-boxeb, cheap furnitare, dag-aats, well-construction, plonghs, yokes, felloes, cooper's work.

6. Dalbirgia latifolia, Roxb.

The Black-wood or Rose-wood.
Vernacular.-Iti, Tam.; Iti, Mal.; Biti, Kan.; Jittegi, Tel. ; Siasua, Uriya.

Habitat.-Throughdut the Madras Presidency up to 4,000
t. feet.
large deciduous tree. Heart-wood dark purple with black streaks, very strong and durable, seasons well without warping or splitting and takes polish well. A sery fine timber. Weigbt about 55 lb .

Chief uses.-High nlass furniture, carts (all parts), ploughs, well-oonstruction, tool-handles, walking-sticks, cooper's work.

7. Pterocabpus mabsupidil, Roxb.

The Kino tree. '
Vernacular.-Venge, Tam.; Venge, Mal.; \#onne, Kan.; Yegi, Yegise, Țel.; Piasal, Uriya,

Habrtat. - Throughout the Madras Presidency except in wet evergreen forests, up to 4,000 feet.

Description.-A large deciduous tree. Heart-wood yellowistbrown with darker streaks, very hard, durable, seasons well and takes a fine polish. The heart-wood stains yellow when damp. Weight abont 55 lb .

Chief uses.- Posts, beams, door and window frames, furniture, agricultural implements, carts (all parts), toat-building, cars, cooper's work.

Bye-products.-Yields gum kino.
8. Habowigkia binata,' Roxb.

Veqnacular.-Acha, Tam. ; Kamra, Kan. ; Yepi, Tel.
Hubitat.-Dry forests of Southern India, up to 3,000 feet.
Description.-A large deciduons tree. Heart-wood dark red or purplish, streaked with black, extremely hard, olose and cross-grained, very durable, docs not warf, but apt to split. Weight about 82 lb .

Chief uses.-House and bridge posts, beams and rafters, carts (all parts), ploughs, clod-crushers, vessels for sowing seeds, hand-looms, well-construction, carving, turning and ornamental work, bearinge for machinery, oars.

Bye-products.-The bark yields a naeful fibre:
9. Tamarindus indica, Linn.

The Tamarind.

Vernacular.-Puli, 'T'am.; Puli, Mal. ; Hunase, Kan. ; Ohiṇta, T.el.; Koya, Tentuli, Uriya.

Habitat.-Doubtfully indigenons in India, but everywhere yrown.

Description.-A large evergreen tree, sapwood yellowishwhite, sometimes with red streaks, heartwood small, present only in old trees, very darable and diffioult to work. Weight, sapwood 62 lb ., heartwood 80 lb .

Chief uses.-Oil and sugar-mills, rice-pounders, mortars, pestles, ploughs, mallets, tool-handles, farniture, house fittings, well-construction, cooper's work, tent-pegs, side planks of boats, carts, shafts, axles and naves.

10. Xyifa dolabripormis, Benth.

Ironwood.
Vernacular.-Iral, 'I'am.; Irul, Mal.; Jambe, Kan.; Kondatangeda, Tel. ; Tangani, Driya.

Habitat.- Gastern and Western ghâts in semi-moist forests.
Description.-A large deciduous tree, remaining small on poor soils. Heartwood reddish-brown, extremely hard, orossgrained, very durable. Weight 60 lb .

Chief uses.-Honse building (chiefly posts, beams and scantlings), bridge-construction, piles, telegraph posts, sleepers, railway waggon construction, tent-pegs, railway keys, well-construction, boats, dug-onts, carts, (all parts), ploughs, harrowteeth, yokes, oil-presses, shingles, tool-handles.

11. Acacia arabica, Wildd.

The Babul tree.

Vernacular.- Karu-velam, Tam.; Karu-velam, Mal.; Jali, Kan.; Nalla-tumma, Tel.; Babulo, Uriya.

Habitat.-Probably not indigenous in Southern India, but abundantly cultivated and self-sown in tank beds, on bunds, along obannels and other similar situations where there is alluvial soil and water not far from the surface.

Description.--A moderate sized tree, heartwood pink turning reddish-brown on exposure, mottled with dark streaks, hard, very darable. Weight 54 lb .

Chief uses.-House buildings (posts, beams, rafters, door and window frames), carts (all parts), solid-wheels, boat-building, onrs, sugar and gil-presses, rice-pounders, ploughs, harrows, clod-crnshers, Persian wheets, well curbs, tool-haudles, cooper's work, carsing and turning, the best wood for tent-pegs. Exoellent fuel.

Bye-products.-Bark yinlds taunin and a dye, the pods are used as fodder, the resin yields a fair gum.

12. Albizzia lebbek, Benth.

The Indian Walnut.

Vernacular.-Vage, Sele-unjal, Tam. ; Vage, Vel-vage, Mal.; Bengha, Bage; Kan.; Dirisanann, Tel.; Sirisa, Uriya.

Habitat.-Throughout Southern India in the drier parts, often planted.

Description.-A large deciduons tree. Heartwood darkbrown atreaked with lighter or darker streaks, hard, fairly darable, seasons, works and polishes well. Weight 47 to 50 lb .

Chief uses.-A handsome farnitare wood, house bailding (chiefly posts and beams). ploughz, rollers, oil-mills, sugarcane orushers, yokes, well-curts, boats, carts (ill parts), cooper's work and turnerg.

13. Terminalia tomentosa, W. \& A.

Vernacular.-Karumarudu. Tam.; Karimaridu, Mal.; Karimadi, Kun. ; Nellamaddi, Tel.; Sahajo, Uıiya.

Habitat. - Thronghout the Presidency up to 4,000 feet, but not in evergreen forests.

Descriction-A large deoiduous tree. Henrtwood darkbrown with streaks of dark colour, hard and apt to split in seasouing. Weight 67 lb .

Chief uses.-House bailding (11 parts), rough furniture, oilmills, rice-pounders, ploughs, harrows, yokes, shafts and axles of carts, boat and ship-building.

Bye-products. - Barkis used for tanning and dyeing (especial. ly fishing nets).

14. Anogeissos latifolia, Wall.

Vernacular.-Velnage, Vekkali, Tam.; Vella-naga, Mal.; Dinduga, Kan. ; Chiruman, Tel.; Dhau, Uriya.

Habitat.-Dry deciduous forests throughout the Presidency up to $\mathrm{E}, 000$ feet.

Description.-A large decidunus tree, often stunted at the higher elevations, saprood grey, hard, shining, smooth. Heartwood small and irregular, purplish-brnwn, very hard, very tough, but splits in seasoning. Weight 62 lb .

Chief uses.-Poles and rafters, axles and shafts of carls, yokes, naves, ploughs and other agricultural implements, ricepounders, mortars, tool-handles, tent-pegs, spinuing-wheels, shoulder-poles, furniture, boat-building and mine props.

15. Eugenia jambolana, Lam.

The Black Plum.

Vernacular.-Naga Naval, Tam.; Navil, Mal ; Ner̂ale, Kan.; Naredu, Tel.; Jambo, Uriya.

Habitat.-Throughout the Presidency up to 6,000 feet, chiefly along streams, often cultivated.

Description.--A large evergreen tree. Wood reddish-grey, moderately hard; fairly durable, lasts well under water. No distinct heartwood. Weight 48 lb .

Chief uses.--House bailding (chiefly posts, beams and rafters), carts (all parts), boat-building, oars, masts, agrical'aral implements, rice-mortars, well carbs, common farniture, carving and turning.

Bye-products.-The fruit is edible.

16. Adina cordirolia, Houe. F.í

Vernacular.-Manjakadambe, Tam.; Màuiakadamba, Mal.; Kadamba, Kan.; Rudrabataganapu, Tel. ; Holondo, Urija.

Habitat.-Deciduous forests throughout the Presidency up to about 3,000 feet.

Description.-A large deciduons tree, wood yellowish, moderately harr, even-grained, seasons well, but apt to warp and orack. No heartwood. Weighr 45 lb .

Chief ugys - Building (posts but chiefly planking), dagouts, packing-cases, light furniture, agricultural implements, fokes, shingles, carving and tnrning.
17. Tectona grandis, Linn. F.

The Teak tree.
Vernacular.-Tekku, Tam.; Tekku, Mal.; Tega, kan; ; 'Teku, Tel.; Saguvani, Uriya.-

Habitat.-Hilly tracts of Gödāvari, Karnool, Cuddapah, My. sore, Coorg, Malabar ${ }_{\perp}$ the Nilgiris, Coimoatore, Madura, Tinnevelly. Travancore and Cochin.

Description.-A large deciduous tree, wood datralden, yellow when fresh, turning dark-brown with age, hard and very durable, rarely attacked bv white ants, probably due to the large amoant of oil it contains. Does not warp or crack. One of the finest known timbers. Weight 45 lb .

Chief uses.-Honse building (all parts), bridge-work, shipbuilding, furniture, ploughs, yokes, harrows, carts (all parts), railway sleepers, railway carriages, casks, well-construction, looms, spinning whepels, ete.

18. Ficus bengalensis, Linn.

The Banian tree.
Vernacular.-Ala, Tam.; Peria-ala, Mal.; Ala, Goli, Kan.; Marri, Tel, ; Bori, Uriya.

Habitat.-Probably not indigenous in the Madras Presidenos, but widely planted especially as an avenue tree.

Description.-A large shady tree, throwing down numerous ærial roots from the branches. Wood gres, moderately hard, not durable but lasts well under water. Wood of the mrial roots stronger than that of branshes. Weigbt 36 lb .

Chief uses.-Door panelf, boxes, cheap furniture, well carbsh pestles, the wond of the mrial roots is used for tent-poles, cartyokes, and shafts and shoulder poles.

19. Artogarpes integriforia, Linn. F.

' The Jack tree.

Vernacular.--Pilla, Tam. ; Pilaru, Mal. ; Alasa, Kan. ; Panasa, Tel. ; Ponaso, Urija.

Habitat.-Indigenous in the forests of the Western ghate up to 4,000 feet, much coltivated elsewhere.

Description. - A large overgreen trep, heartwood bright yellow, darkening on exposure. Moderately hard. Weight 40 lb.

Chef uses.-House building, boats, masts, oars, carts (yokes, na, ves, spokes and felloes), rice-pounders, cooper's work, well-construction, furniture, boxes and turnery.

Bye-products.-Yield the well known jack fruit.
20. Borassos frabellifer, Linn.

The Palmyra Palm or Toddy Palm.
Vernacular.--Pane, Tan.; Pana, Mal.; Pani, Talimera, Kan.; Tadi, Tel; Talo, Oriya.

Habitat.--Not indigenous in India, bat cultivated and run wild throughout the Madras Presidency.

Description-A large erect palm. Wood light-brown and soft inside, outside black and bandsomely streaked, hard strong, very durablo under water.

Chief uses.-Posts and rafters, water-pipes and gutters, troughs, dug-onts, well-construction, turnery, buckets.

Bye-products.-The sap is tapped for toddy and jaggeryThe leaver are used for thatch, umbrellas, mats, fans, hats, sandals, buckets, basket work, writing tablets, etc. The palp of the frait is edible. The fibres are ased for brashes.

STATISTICS.

Table ghowing the agricultural position of the digtricts of the Madras Prebidency.

District.					
	acres.	acres.	acr	acres.	acres.
Ganjām	5,362,976	1,749,702	2,112,382	469	$5 \cdot 76$
Vizagapatam.	11,022,477	2,237,348	2,747,165	9.94	26
Gódàrari	3,980,698	1,000,029	1,281, ${ }^{\text {¢ }}$ (46	8.74	$4 \cdot 74$
Kistna	3,780,264	1,839,455	2,128,892	$7 \cdot 71$	8.00
Guntūr	3,670,687	2,132,701	2,420,858	7.38	16.39
Neliore	5,103,C53	1,427,154	1,573,127	7.80	1252
Kurnool	5,015,936	2,968,235	2,138,104	10.13	22.88
Bellary	3,757,734	2,441,293	2,475,377	14.68	21.66
Anantapar	4,299,968	1, $\cdot 588,923$	2,053,906	11.71	15.88
Caddapah	3,771,968	1,096,239	1,197,584	4.99	1380
Chittoor	3,631,782	679,729	795883	4:80	$5 \cdot 60$
North Arcot...	3,148,915	1,163,636	1,366,700	$4 \cdot 14$	$5 \cdot 22$
Chingleput	1,965, "54	750,044	918,388	4.18	516
Madras	17,210				
South Arcot	2,693,299	1,401,219	1,563,303	$3 \cdot 61$	$5 \cdot 81$
Sal:m	4,031,872	1,526,813	1,728,821	6.51	12.62
Coimbatore ..	4,603,677	2,033,682	2,310,221	9.69	11.60
Tricbinopoly.	3862,522	1,618,715	1,811,656	$5 \cdot 63$	$7 \cdot 57$
Tanjore	2385,267	1,340,136	1,438,130	80	6.63 7.0
Madura	3,146,860	1,462,226	1,633,483	$5 \cdot 80$	訾
Pāmnād	3,087,731	1,390,682	J,445,820	6	993
Tinnevelly	2,788,704	1,373,443	1,605,656	0	761
Nilgiris	646,061	69,437	72,538	2000	15;33
Malabar	3,708.410	1,316,751	1,578,645	6.43	$38 \cdot 16$
Anjeugo	375	335	335		
South Canara.	2,573,421	521,926	721,254	8.28	3115
Total for the Presidency.	92,037,141	:4,605,8,3	39,119,874		

Table ghowing the aferage rainfall of the districts of the Madrab Presidpincy.

District.					
Ganjām *	174	$3 \cdot 78$	29.57	10.47	4558
Vizagapatam*	$1 \cdot 42$	3.77	24.70	10.99	40.88
Gôdāvari *	$2 \cdot 45$	$6 \cdot 66$	$19 \cdot 17$	10.79	3907
Kistna*	0.80	205	24.06	9.05	3596
Guatūr *	0.90	$2 \cdot 01$	18.53	$10 \cdot 16$	31.60
Nellore *	$1 \cdot 36$	1.72	11.14	$20 \cdot 28$	34.50
Kurnool *	0.36	3•88	$17 \cdot 80$	5.72	25.76
Bellary ${ }^{*}$..	0.33	$2 \cdot 71$	14.02	$5 \cdot 50$	$22 \cdot 56$
Anantapur $\dagger+\ldots$	025	$2 \cdot 75$	1286	691	22.77
Cuddapah \dagger	0.51	$2 \cdot 30$	14.46	$10 \cdot 41$	27.68
North Arcot \dagger	0.95	$3 \cdot 35$	17.05	15.91	37.26
Chinglepat * ...	$1 \cdot 45$	$2 \cdot 25$	16.50	2491	$45 \cdot 11$
South Arcot \dagger	$1 \cdot 36$	$3 \cdot 16$	16.60	22.45	43.57
Salpm \dagger	093	5×5	14.59	11.18	$32 \cdot 5$
Coimbatore * ...	$2 \cdot 64$	6.91	1081	16.49	36.35
Trichinopoly *	127	$4 \cdot 99$	11.74	14:29	$32 \cdot 29$
Tanjore*	221	334	12.59	26.09	4423
Madura*	1.89	$5 \cdot 24$	$8 \cdot 84$	1474	3071
Rāmā̆d *	236	3.81	5.97	16.77	28.91
Tinnerelly *	3.67	345	$3 \cdot 07$	17.06	27.25
The Nilgiris \dagger	3.39	$8 \cdot 96$	34.75	19.82	66.92
Malabar*	$1 \cdot 34$	1149	$89 \cdot 23$	14.63	116.69
Sonth Canara*	0.42	$7 \cdot 67$	125.54	11.72	$145 \cdot 35$
Obitlour	0.89	$3 \cdot 18$	1487	1387	$32 \cdot 8 \mathrm{I}$

*Prepared from the rainfall statistics for forty years ending 1909.
\dagger Prepared from the annual rainfall table of Madras Presidency, 1909.
dable bhowing the normal prices of pood grains per Imperial madod (82 lb.) during the Agr cultural YEaR 1:10-11.

Average field (podnds PEr Adra) of priNcipal crops in each-pistrietof-the-Madras Presidency.

District.	Rice husked.	Cholam.	Cumbu.	Ragi.	Gingelly.	$\begin{gathered} \text { Sugar- } \\ \text { oane } \\ \text { (jaggery). } \end{gathered}$	Cotton (cleaned)
Ganjām ... $\begin{aligned} & \text { Irrigated } \\ & \text {... }\end{aligned}$	1,032	\cdots	$\cdots 5$	\% 726	55	5,5:8	\cdots
Ganjam \cdots U Unirrigated ...	556	...	659	-676	252		\ldots
Vizagapatam. $\left\{\begin{array}{l}\text { Irrigated } \\ \text { d }\end{array}\right.$	693			693	573	6,229	
Vizagapasam. ${ }^{\text {a }}$ Unirrigated 0	866	1,074	430		...
Gōdèvari ... $\left\{\begin{array}{l}\text { Irrigated } \\ \text { U }\end{array}\right.$	1,007	650		907	582	5,605	\ldots
Godan ... ${ }^{\text {a }}$ Uairrigated ...		901	636	901	251		
Kistna $\quad . .\left\{\begin{array}{l}\text { Irrigated }\end{array}\right.$	1,010	976		1,594,	586	4,528	...
Kintia \cdots U Unirrigated ...		781	655	640	330	-	61
Guntûr $\quad \cdots\left\{\begin{array}{ll}\text { Irrigated } \\ \text { Unirrigated }\end{array} \cdots \cdots\right.$	1,037	458	617 482	1,489	\cdots	...	${ }^{*} 88$
- ${ }^{\text {Irigated }}$...	1,034	458 1,230	482 1,270	1,427	386	...	${ }^{88}$
ore .. U Unirrigated ...	370	628	1.	1,452	289	\ldots	${ }^{\cdots} 25$
Kurnool ... $\{$ Irrigated. ...	1,285	\ldots	..	1,102		5,713	
Kurnool \cdots U Unirrigated .		706	662	597	207		40
Bellary ... $\begin{aligned} & \text { lrrigated } \\ & \text { Unirigated }\end{aligned}$.	1,19]	\cdots	- 45	\cdots	106	8,511	
Bollary Unirrigated - ...		429	445	519	196		42
Anantapar ... (Irrigated ...	1,383	1,429	\ldots	1,683		8,131	
And Unirrigated ..		481	361	1,819	83		31
Cuddapah ... ${ }^{\text {I }}$ Irigated ${ }^{\text {a }}$	1,288	1,031	1,298	1,625	363	7,761	4
(${ }^{\text {a }}$, Unirimated		973	772	1,089			45
North Aroot. $\{$ Irrigated ..	1,248	1,297	\cdots	1,813	396	9,181	...
North Acoot. \{ Unirrigated ..	,	434	636	682	247		.

[^3]TABLE sHOWING THE GROPPING OF THE DIStrigts of the Madras Presidency．

Crops．	Nereage under crops in the Madras Presidency during the agricultural year 1912－13．								
		$\begin{aligned} & \circ \\ & \stackrel{80}{0} \\ & \stackrel{0}{0} \end{aligned}$		莒	$\begin{aligned} & \dot{8} \\ & \text { 8} \\ & \text { + } \\ & \frac{1}{0} \end{aligned}$			品	熍
1	2	3	4	5	6	7	8	9	10
Cerpats－	ACRES．	ACRES．	AORES．	ACRES．	ACBES．	ACEEE．	ACRES．	ACRES．	ACRES．
Puddy $\quad \ldots$	148，554	．．．	87，276	617，777	187，863	92，920	100，130	1，174，432	626，338
Sorghum ．．．．．．	290，111	\ldots	758，397	15，396	－25，285	612，140	366，723	27，713	125，909
Spiked Millet ．．．	161，511	\ldots	152，411	20，289	169，571	468，936	137，326	30，131	33，627
Ragi ．．．\quad Pa \ldots	107，726	．．．	40.307	90，288	149，480	197，81：2	90，243	28．，744	39，789
Paspalum Scrobi－ culatum．	29，676	\ldots	1，504	44，402	21，543	10，171	37，020	1，509	9，505
Itulian Millet ．．．	379，239	．．．	631，103	638	1，869	21，388	101，567	22，976	5，936
Panicum Miliare ．．．	109，354	\ldots	30，493	67	10，271	17，221	908	52，952	13，914
$\begin{array}{ccc} \text { Muice... } & \ldots & \ldots \\ \text { Whont } \end{array}$	15	\cdots	761 3077	2	－8	4	43	16，963	2，764
Wheat Others	1，999	\ldots	3，277	${ }^{* *}{ }^{2} 65$	776 976	533	327	115	312
Others ，．．．．．． Pulses－	1，088	＊＊	2，956	265	976	．．．	19，557	9，738	10，257
Bengal gram ．．．	7，497	．．．	13，391	1	143	7，615	2，896	377	11，743
Iforse grim ．．．	343，806	\ldots	122，686	10，029	110，834	267，971	87，690	65，001	67，620
Red gram or dholl．	15，461	\ldots	45，688	362	3，997	13，886	577	37，934	10，159
Green erarn	2，430	\ldots	18，435	410	1，301	9，407	1，821	134，205	44，356
Black gram Others	$\begin{array}{r} 8 \\ 5.485 \end{array}$	．．．	1788	2，958	1，503	12，087	． 455	11，069	23，455
Others $\text { CONDIMENTS } \triangle \dddot{N D}$	5，495	\ldots	17，842	894	1，949	43，315	1，702	7，5：7	8，732
Spices－ Chillies	6，049	＊＊	9，591	2，754	4，139	15，641	4，167	2，422	12，058

Onions and garlic.	2,082	\cdots	1,662	298	506	4,564	2,479	1,250	6,209
Coriander $\quad .$.	4,377	...	5,048	2	594	3,779	2,801	0.9	2,794
$\underset{\text { Ourmers }}{\text { Tur }}$...	259	...	1	222	569	3,278	7,054	16,727	1,709
Obchard and Gardes	16	33	202	88	888	593	2,257	2,259	809
Orchard and Garden Producr.	6,413	335	7,637	21,479	22,628	14,080	10,564	66,58\%	65,870
Orl-seeds-									
Gingelly or til ..	34,255	\ldots	17,811	18,516	4,421	34,041	8,543	65,807	69,410
Castor ...	107,983	...	53,444	150	17,581	27,752	19,910	6,503	12,077
Groundnuts	100,486	...	20,374	47,795	22,791	47,018	59,514	45,018	14
Others Sugar Producas-	10,785	...	11,720	462	6,805	3	9,101	12,41)5	216
Sugarcane ...	3,249	.	9,291	79	9,181	9,975	249	4,834	9,821
Olhers ...	5,143	...	117	1,306	1,866	543	905	${ }^{2} 7$	204
Cotton	141,405	\cdots	444,984	20	821	252,713	101,780	1,701	18,486
Hibiscus Cannabinus.		...	870	...	8	321	10,44	${ }^{1} 528$	617
Sunhemp	54	\cdots	1,676	850	160	182	291	2,443	21,080
Dres - ${ }^{\text {Others }} \cdot \cdots$.	2,485	\cdots	93	80	54	...	263		63
$\begin{array}{lll}\text { Indigo } \\ \text { Others }\end{array} \quad \ldots$.	226	\cdots	364	6,370	4,900	2	6,290	$\dddot{1000}$	993
$\underset{\substack{\text { Drugs } \\ \text { TIOS- }}}{ }$					
Tobacco	2,637	...	3,136	164	645	29,337	1,612	4,198	
Betel vine ...	1,159	...	680	1,281	1,176	2,2:20	807	186	32
Others		\ldots		24	1,404	2,784	23	59	62
Fodder Crops and	50,457	...	11,212	52,802	4,031	8,338	12,294	216,926	17,580
Total	2,082,700	335	2,470,299	953,544	790,913	2,312,536	1,199,938	2,916,827	1,282,611
Deduct area cropped more than once	89,530	...	35,406	167,626	32,561	278,529	100,087	351,409	281,269
Net area cropped ...	1,993,180	335	2,441,293	785,918	758,352	2,036,007	1,099,871	1,965,418	1,001,342

TABLE $E H O W I N G$ THE CROPPING OF THE DISTRIETS OF THE MADRAS PRESIDEACY＇－CONt．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Crops．} \& \multicolumn{9}{|l|}{Aereage under crops in the Madras Presidency during the agricultural sear 1952－13．}

\hline \& 宫 \& ボ丸 \& \& \& \& \& $$
\cdot \operatorname{S!x!g!N} \text { əप山 }
$$ \& \&

\hline \& 11 \& 12 \& 13 \& 14 \& 15 \& 16 \& 17 \& 18 \& 19

\hline Cerrals－ Paddy \& $\triangle C R E S$.
362,730 \& ACRES．
$1,089,414$ \& A CRES．
69，664 \& ACRES．
396,771 \& ACRES．
845,955 \& ACRES．
405.603 \& AcRes．

5,772 \& ACRES． \& ACRES．

\hline Sorghum \quad ．．．\quad ．．． \& 362,780
$\mathbf{3 5 9 , 7 1 0}$ \& $1,089,414$
405.135 \& 69,664
695.532 \& 396,771
281,820 \& 848，955 \& 405，603 \& 5,772
81 \& 471，174 \& 307，474

\hline Spiked Millët ${ }^{\text {a }}$ ．．． \& －248，622 \& 405，185
67,187 \& 105，821 \& 102，716 \& 2.8
14 \& 123，586 \& 81 \& 57,333
$123.2 \therefore 8$ \& 104，453

\hline Ragi $\ldots \quad \ldots$ \& 27，400 \& 20，167 \& 26，904 \& 108，671 \& 12，009 \& 85，739 \& 2．388 \& 153，256 \& 23n，241

\hline Paspalum Scrobi－
culatum． \& 8，7i3 \& 10，777 \& 118，668 \& 90，835 \& 12，000 \& 144，037 \& 2， 2 \& 87，378 \& 124，134

\hline Tralian Millet ．．． \& 106，748 \& 6，174 \& 437，916 \& 12，901 \& \& 37，147 \& \cdots \& 1，661 \& 1，287

\hline Panicum Miliare ．．．
Maize．．． \& 54，777 \& 2,177
31,903 \& 1，191 \& 198，239 \& 14，981 \& 4，117 \& 5，357 \& 95，785 \& 39，916

\hline | Maizн．．． |
| :--- |
| Wheat | \& 54,777

2,109 \& 31，203 \& 113
2.259 \& ＋ 456 \& ．．． \& \& 11 \& 500 \& 563

\hline $\begin{array}{lll}\text { Others } & . . & . . \\ & \end{array}$ \& －2，109 \& 2，254 \& 2，259 \& 1,104
43,283 \& \& 26，${ }^{1}$ \& 1，896 \& 204
4,649 \& … 233

\hline PULSES－$\quad \cdots \quad \cdots$ \& 318，534 \& 2，204 \& 19，263 \& 43，283 \& 38 \& 26，245 \& 9，174 \& 4，649 \& 95，233

\hline Bengal gram－．．． \& 28，121 \& 14， 263 \& 24，528 \& 1，351 \& \& 1，330 \& 6 \& 1，711 \&

\hline Horse grain ${ }^{\text {ar }}$ \& 78，641 \& 94，875 \& 93，343 \& 116，210 \& 4，551 \& 101，352 \& 6 \& 79，435 \& 8,824
19,057

\hline Red gram or dholl． \& 28.823 \& 5，613 \& 21，742 \& 9，797 \& 2，022 \& 1，218 \& － \& 13，621 \& 19,057
$\mathbf{0 , 3 0 8}$

\hline Green gram \& 18，239 \& 17，032 \& 7，836 \& 1，554 \& 1，667 \& －2，449 \& ．．． \& 2，853 \& 4，439

\hline Black gram
Othars \& 1，331 \& 9，327 \& 5，381 \& 5，944 \& 4，089 \& 2，489 \& ， \& 7.970 \& 6，296

\hline $$
\begin{gathered}
\text { Othars } \\
\text { Condiments }
\end{gathered} \cdots \quad \cdots
$$ \& 2，031 \& 6，688 \& 4，261 \& 7，632 \& 15，390 \& 1，067 \& 285 \& 2，382 \& 8，747

\hline Spices－ Chillies \& 100，243 \& 16，247 \& 19，158 \& 7，140 \& 1，383 \& 8，876 \& 16 \& 4，266 \&

\hline
\end{tabular}

Table showing the cropping of the districts of the Ma d́rab Presidenct-cont.

Crops.	Acreage under crops in the Madras Presidency during the agricultural year 1912-13.							
	$\frac{\text { gi }}{\text { 馬 }}$		芸					Total in hundreds.
	21	22	23	24	25	26	27	88
Crrests-	ACRES.	ACRES.	ACRES.	AcBes.	\triangle CRES	ACRES.	Acbes.	$\triangle C E E S$.
Pardy ...	137,474	509,021	574,470	1,097,630	328,308	296,508	1,154,479	10,913,7
Sorghum ...	104, 978	63,857	...	15,647	117,181	281,951	68,788	5,818,7
Spiked Millet ...	360,318	131,022	\%	14,213	242,227	442,998	192,224	3,508,3
Ragi ${ }_{\text {Paspalum }}$	343,043	118,033	5,213	33,358 74,134	37,985 18,543	148,662 185,240	376,127	$2,600,9$ 1781,8
Paspalum Scrobi. culatum.	83,304	154,799	...	74,134	16,543	185,240	17,309	1,721,8
Italian Millet ...	18,561	11,406	135	187	35.3	5,533	26,532	1,832,0
Panıcum Miliare ...	111,654	2,569	135	1,010	142,043	33,718 683	20,431 20,230	1,008,5
Maize ... Wheat ...	${ }_{364}^{311}$	\cdots	\ldots	4,590	...	8805	20,230 2,735	138,3 18,3
Others ...	11,572	2,183	...	1,283	32,577	040	76,107	8,880
Pulsfs-								
$\begin{array}{ll}\text { Bengal gram } \\ \text { Horse gram } & \ldots . .\end{array}$	$\begin{array}{r}5,242 \\ 210,567 \\ \hline 15208\end{array}$	-1,248		2,836 ${ }^{2}$	3,530 $106,1: 3$	6988 59,271	3,378 101,069	2,208,0
Horse gram or dholl.	240,567	$16,3 ¢ 1$ 6,091	23,564	5,859	10, $3,50.4$	30,507	10,330	2,294,8
Green gram	-8,193	633	10,016	265	12,374	935	64,203	386,0
Black gram - $\cdot .$.	8,018	2,998	14,8:3	3,083	18,293	1,726	16,991	160,2
Others	37.675	1,596	3,086	2,147	33,904	9,493	8,062	229,2
$\begin{array}{ccc}\text { Condimbats } & \text { and } & \text { Spi- } \\ \text { Chs- } \\ \text { Clillies } & \ldots & \ldots\end{array}$	7,221	1,836	4,308	4,541	10,332	11,417	17,648	286,0

LIf
WITH ENGLIBH MJNTH日.

[^0]: * One man on Rs. 8 and one boy on Rs. 4 a month for every eightcows.

[^1]: *This has been calculated at the rate of Rs, 4 (one boy) for every 24 calves per month, all through.

[^2]: * Note.-The weights of wood given are per cabric foot, dry.

[^3]: * From Agricultaral Statiatics of India for 1909-10.

